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Abstract  
The notion of an alpha field has been associated to any potential field that can be 
presented by two dimensionless field parameters α and α′. The problem in this paper is 
to derive the generalized metrics in the Relativistic Alpha Field Theory (RAFT). In that 
sense, it is started with the new General Lorentz Transformation model in an alpha field 
(GLTα – model) derived by employing the well known group postulates and isotropy of 
the space. It follows the derivation of the general line element and the related general 
metric tensor in an alpha field both in the Minkowski and Riemannian metrics. The one 
section of the paper is devoted to derivation of a general diagonal form of a line element 
and metric tensor in an alpha field. It has been shown that there exists a simple 
coordinate transformation procedure in an alpha field that transforms the Riemannian 
metrics into the Minkowski one and vice versa. 

Keywords: General Metrics, Relativistic Alpha Field Theory, General Line Element, 
General Metric Tensors, Diagonal Forms in Metrics.  

1 Introduction 

     This paper has been written by consideration of the related theories and fundamental 
laws of physics in the references 1-21. The notion of an alpha field has been 
associated to any potential field that can be presented by two dimensionless field 
parameters α and α′. For an example, to this category belong an electromagnetic field, a 
gravitational field and their combination (a two-potential field). These parameters 
should satisfy the field equations of the related potential field in each concrete case. The 
field parameters α and α′ are the functions of the potential energy of the related field. In 
the case of the multi-potential field, the field parameters α and α′ become the functions 
of the total potential energy in the multi-potential field. This fact opens the possibilities 
of derivation of the form invariant mathematical descriptions that unify dynamics of 
one, or two, or more potential fields. Even vacuum (without any potential field) is 
included, because in that case the field parameters α and α′ are equal to one (α = α′ =1). 
Following this idea one can derive the form invariant features that unify the well known 
Einstein’s Special and General Theory of Relativity.  
     The first step in that unification should be the derivation of the related unified metric 
forms. Thus, the problem in this paper is to derive the generalized metrics in the 
Relativistic Alpha Field Theory (RAFT). In that sense, it is started with the new General 
Lorentz Transformation model in an alpha field (GLTα – model) derived by employing 
the well known group postulates and isotropy of the space. It follows the derivation of 
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the general line element and the related general metric tensor in an alpha field, both in 
the Minkowski and Riemannian metrics. The one section of the paper is devoted to 
derivation of a general diagonal form of a line element and metric tensor in an alpha 
field. It has been shown that there exists a simple coordinate transformation procedure 
in an alpha field that transforms the Riemannian metrics into the Minkowski one and 
vice versa. The presented line elements and metric tensors can be used in Special 
Relativity for  = ' = 1 and in General Relativity by identification of the field 
parameters  and ' in a gravitational potential field, using the well known Einstein’s 
field equations. Following the considerations in this paper, one can conclude that the 
unification of the line elements, metric tensors and coordinate transformations in the 
Einstein's Special and General Theory of  Relativity is possible, if one employs the 
dimensionless field parameters   and  '.  
     This paper is organized as follows. Derivation of general Lorentz Transformation 
model in an alpha field (GLTα – model) is presented in the section 2. The general line 
element in an alpha field, as function of the dimensionless field parameters  and ', is 
derived in the section 3. The related general metric tensors in an alpha field are 
presented in the section 4. Derivations of the general diagonal form of the line element 
and the metric tensor in an alpha field are pointed out in the section 5. Finally, the 
conclusion and the reference list are given in the sections 6 and 7, respectively. 

2  Derivation of General Lorentz Transformation Model in an Alpha 
Field (GLTα - Model) from Group Postulates 

     The GLTα – model can be derived, among the others, by employing the group 
postulates [1] and isotropy of the space. The coordinate transformations between inertial 
frames form a group. This group is called the proper Lorentz group with the group 
operation being the composition of transformations. This means performing one 
transformation after another. In that sense, the following four group axioms should be 
satisfied: 

1. Closure: the composition of two transformations is a transformation. In such a 
manner a composition of transformations from the inertial frame K to inertial 
frame K' and then from K' to inertial frame K'' can be replace with a 
transformation directly from an inertial frame K to inertial frame K'':  

                                           K K΄ K΄ K΄́ K K΄́ .                                     (1)   

2. Associativity: the result of the following two transformations is apparently the 
same: 

                          
      
       

K K΄ K΄ K΄́ K΄́ K΄́ ΄ K K΄́ ΄ ,

K K΄ K΄ K΄́ K΄́ K΄́ ΄ K K΄́ ΄ .

    

    
                 (2)   

3. Identity element: there is an identity element, a transformation K   K. 
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4. Inverse element: for any transformation K   K' there apparently exists an 
inverse transformation K'   K. 

     Let an inertial frame K' is moving in an alpha field with a velocity v


 relative to an 

inertial frame K. Using rotations and shifts operations one can choose the x axis in K 
and x' axis in K' along the relative velocity vector v


and that the events (t = 0, x = 0) 

and (t' = 0, x' = 0) coincide. The velocity boost is along the x and x' axes only, therefore 
nothing happens to the perpendicular coordinates (y, z) and (y', z') and one can just omit 
them for brevity. The transformation [KK'] connects two inertial frames. Therefore 
it has to transform a linear motion in (t, x) into a linear motion in (t', x') coordinates. 
The conclusion is that the transformation [KK'] must be a linear transformation. This 
also includes that a relative velocity vα between K and K' systems should be a constant. 
Meanwhile, a motion in an alpha field with relative velocity vα, between reference 
frames K' and K, generally is not a constant. In order to derive a linear coordinate 
transformation model, one should assume that in the infinitesimally small space-time 
regions of an alpha field (dx, dt) and (dx', dt'), a relative velocity vα is a constant. In that 
case the General Lorentz Transformation in an alpha field [KK'] transforms a linear 
motion in (dt, dx) into a linear motion in (dt', dx') coordinate system. 
     Generally, for a relative motion of the systems K and K' in an alpha field, the relative 
velocity vα is a composition of the two velocities (v and vf). Here v is a component of 
the relative velocity vα that is equal to the free particle motion. The velocity vf is a 
component of the relative velocity vα that shows an influence of an alpha field to the 
particle motion. For an example, vf could be a free fall particle velocity in a 
gravitational field. Therefore, the velocity vf should be a function of the field parameters 
 and '. Taking into account the previous consideration, the relative velocity vα , 
between two systems K and K', can be described as the following composition of its 
components: 

             

 

 
x x

x

x
x f f x

΄ c
v    v v v vcos v cos v ,

2
΄ c

0 v    v v .
2

 

 

  
       

  
       

       (3) 

Here φ and ψ are angles between vectors ( v,v
 

) and ( fv ,v
 

), respectively. In the 

relation (3) we assume that the observation signal is the light with invariant velocity c in 
both system K, and K'. Finally, we can employ, for the convenience, an observation 
parameter κ. Thus, one can put κ = 1 if an observation signal is emitted from the origin 
of the system K, or κ = -1 if an observation signal is emitted from the origin of the 
system K'. The relation (3) can also be obtained by using the relativistic adding law for 
velocities and putting u' = 0. The structure of the relative velocity vα in (3) has been 
confirmed, among the others, by derivation of generalized relativistic Hamiltonian in an 
alpha field [21] that, after inclusion of the related field parameters  and ', is valid for 
both an electromagnetic and a gravitational field. 
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     In order to derive the GLTα – model in the tensor form one can introduce the 
differential forms of the displacement four-vectors, dX and dX'. Let these four-vectors 
are defined in frames K and K' by the relations: 

                         
   

   
dX K cdt,dx,dy,dz dx ,

dX' K ' cdt ,dx ,dy ,dz dx , 0,1,2,3.





 

       
                 (4) 

Here dX has the components in the frame K, and dX' has the components in the frame 
K'. The variables dxμ, or dx'μ are the related contravariant coordinates in a space-time 
region.  
     Because the field parameters  and ' are functions of the space-time coordinates, a 
particle velocity, vα, in an alpha field is not a constant. In derivation of the GLTα –
model we supposed that in the infinitesimally small space-time regions of an alpha field 
dxμ, and dx'μ, μ = 0, 1, 2, 3, the particle velocity vα is a constant. This means that in the 
mentioned infinitesimally small intervals of dxμ, and dx'μ, the field parameters  and ', 
and the free particle velocity v are constants. Now, taking into account the displacement 
four – vectors (4) and employing the four group postulates [4] one can derive a tensor 
form of the GLTα - model for the events on x-axis: 

                                      
dx ' dx , , 0,1,2,3,

v const. x ' x .

  


  
 

    

   
                  (5) 

In this relation the Einstein’s summation convention is postulated. The first line in (5) is 
valid for vα is a constant in the regions (dx,dt) and (dx',dt'), while the second line in (5) 
is valid for vα is a constant in the regions (x,t) and (x',t'). The term Λμ

ν is the element in 
the μ-th line and ν-th column of the (4x4) transformation matrix [Λμ

ν] of GLTα - model: 

                                     

H H 0 0

H H 0 0
.

0 0 1 0

0 0 0 1






  
        
 
 

                              (6) 

In the relation (6), the parameters H and βα are presented by the equations: 

            

 

   

1/ 21/ 22 2
xx x

x2 2 2

22
x x

x x

cvv v
H 1 ,

c c c

cv
, v v , 1 .

c 2 4






 

    
       

   

      
      

     (7) 
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If the angles between vectors ( v,v
 

) and ( fv ,v
 

) are equal to zero (φ = 0 and ψ = 0, 

respectively) then vx → v and κ( - ')x → κ( - '). In that case the relations (7) are 
transformed into the expressions: 

               

 

   

1/ 2 1/ 22 2

2 2 2

22

cvv v
H 1 ,

c c c

cv
, v v , 1 .

c 2 4

 




 

     
        

   

       
      

       (8) 

It is easy to see that in the case of vacuum (without any potential field) the field 
parameters  and ' should be equal to one ( = ' = 1). For that case the relations (6), 
(7) or (8) are transformed into the well known Lorenz Transformation model (LT – 
model) [1] .   

3  General line Element in an Alpha Field 

     Generally, in mathematics, a line element can be thought of as the square of the 
change in a position vector in an affine space. This is equated to the square of the 
change of the arc length [2-8]. A line element is a function of the metrics and can be 
related to the curvature tensor. Therefore, the line elements are often used in physics, 
mainly in the Special and General Theory of Relativity. Thus, in a gravitational field a 
space-time is modelled as a curved manifold with Riemannian metrics. When one wants 
to consider space and time derivatives of functions it is agreed that time derivatives are 
taken with respect to the proper time τ 8-11. This is because a proper time is an 
invariant, with consequence that the proper time derivative of any four-vector is itself a 
four-vector. From the time dilation relation in the GLTα - model one has very important 
equation that connects the proper time derivative dτ with another time derivative dt: 

                    
 1/ 2 1/ 22 2

2 2 2

cvdt v v
H 1 .

d c c c

 

      
             

           (9) 

Here d is a differential of the proper time of the moving particle, H is a transformation 
factor,  as an invariant of  the GLTα – model and  vα  is a particle velocity in an alpha 
field. In the relation (9) we suppose (without losing in a generality) that the angles 
between velocity vectors ( v,v

 
) and ( fv ,v

 
) are equal to zero (φ = 0 and ψ = 0, 

respectively). The consequences are that vx → v, (α')x → ' and κ( - ')x → κ( - 
').  
     In order to derive a line element ds2 of the GLTα - model one can employ the 
equation (9) and derivation procedure from the references 5,6,8,11,13 and 20: 

                             
2

2 2 2 2 2
2 2 2

ds 1 1
d dt ds c dt .

c H H


                     (10) 
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Including the first form of H from (9) to the equation (10) one obtains the line element 
in the following general form: 

                          

1/ 22
2 2 2 2 2

2

v
H 1 ds c dt v dt .

c






 
      
 

                  (11)  

Now, one can make the following substitutions into the relation (11): 

                       2 2 22 1 2 3 dx
v v v v , v , 1,2,3.

dt


 

                   (12) 

These substitutions transform the second equation in (11) into the first form of the line 
element of GLTα – model, valid for a particle motion in an alpha field: 

                                      2 2 22 2 2 1 2 3ds c dt dx dx dx .                              (13) 

Since 1 2 3dx dx , dx dy , dx dz ,         one can describe the first form of the 

general line element of the GLTα - model by the following equation: 

                                         2 2 2 2 2 2ds c dt dx dy dz .                                  (14) 

This line element has a diagonal form with the Minkowski metrics. Meanwhile, the 
coordinates dxα, dyα and dzα are the functions of the field parameters α and α′ as it 
follows from (3) and (12): 

                 

   

 

yx

z

cc
dx dx dt, dy dy dt,

2 2
c

dz dz dt.
2

 



    
   

   
 

       (15) 

Now, applying the second form of H from (9) to the equation (10) one obtains the 
second general form of the line element as the explicit function of the dimensionless 
field parameters  and ': 

                            

 

   

1/ 22

2 2

22 2 2 2 2

c vv
H

c c

ds c dt vc dt v dt .


   

     
 

        

                    (16)  

Further, one can make the following substitutions into the relation (16): 
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       

       

1 2 3
x y z

2 2 22 1 2 3

v v v v ,

dx
v v v v , v , 1,2,3.

dt




                  

     
       (17) 

These substitutions transform the equation (16) into the second form of a line element 
of GLTα – model, valid for a particle motion in an alpha field: 

                
   

       

2 2 2 1 2
x y

2 2 23 1 2 3
z

ds c dt cdt dx cdt dx

cdt dx dx dx dx .

            

       
       (18) 

Since dx1 = dx, dx2 = dy and dx3 = dz, we can describe the second form of the general 
line element of the GLTα – model (18) by the following equation: 

                  
   

 

2 2 2
x y

2 2 2
z

ds c dt cdtdx cdtdy

cdtdz dx dy dz .

            

      
          (19) 

This line element has a nondiagonal form with the Riemannian metrics. It can be shown 
that the substitutions of the coordinates (15) into the line element (14) and including 
relations for ' from (7) or (8), the diagonal form of the line element (14) with 
Minkowski metrics can be transformed into the nondiagonal form of the line element 
(19) with Riemannian metrics.  
     If a particle is moving in a vacuum (without any potential field) then the field 
parameters   and ' satisfy the relation  = ' = 1. For that case the second form of the 
general line element (19) is transformed into the well-known line element valid in the 
Special Relativity: 

                                          2 2 2 2 2 2ds c dt dx dy dz .                     (20) 

As it is the well known, the line elements (14), (19) and (20) are a space like if ds2 > 0, 
a time like if ds2 < 0, and a null (or light) like if ds2 = 0.  

4  General Metric Tensors in an Alpha Field 

The differential form of the contravariant displacement four-vector, dXα, of the GLTα –
model, presented in the first form of the line element (14), can be defined in the frame K 
by the relation: 

                      dX K cdt, dx , dy , dz dx , 0,1,2,3.
                   (21) 

Following (13), (14) and (21) one can derive a matrix expression of the components of 
the general covariant metric tensor gμν, valid for the first form of the line element (14) 
and the coordinate system (21): 
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                                       g diag 1 1 1 1 .                                        (22) 

This matrix expression of the metric tensor is diagonal and belongs to the well known 
Minkowski metrics ημν, as we expected that should be. Therefore, the related line 
element (14) is also called a diagonal line element. The related components of the 
contravariant general metric tensor gμν in an alpha field can be derived by inversion of 
the covariant one using (22). As the result of that inversion one obtains a matrix 
expression of the components of the general contravariant metric tensor gμν equal to 
(22): 

                                           g g . 
                                                   (23) 

The determinants and traces of the matrices of the components of the metric tensors (22) 
and (23) are presented by the relations: 

                  

R R R R

det g det 1, det g det 1,

T g T 2, T g T 2.

 
 

 
 

                    
                  

        (24) 

Now, one can recall the well known condition that should be satisfied by any metric 
tensor [9-12]: 

                                                        det g 1.                                                  (25) 

From the relations (24) one can conclude that the condition (25) is satisfied.  
The differential form of the contravariant displacement four-vector, dX, of the GLTα 

–model, presented in the second form of the general line element (19), can be defined in 
the frame K by the relation: 

                           dX K cdt, dx, dy, dz dx , 0,1,2,3.                    (26) 

Applying displacement four-vector dX from (26), the second form of the general line - 
element (19) is transformed into the equation: 

             
     

       

22 0 0 1 0 2
x y

2 2 20 3 1 2 3
z

ds dx dx dx dx dx

dx dx dx dx dx .

            

      
     (27) 

As it is the well known, the Riemannian line element can be introduced by the 
following expression: 

                       

 
     

22 0 0 1 0 2 0 3
00 01 02 03

2 2 21 2 3
11 22 33

ds g dx 2g dx dx 2g dx dx 2g dx dx

g dx g dx g dx .

    

  
      (28)  
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Here g is the related metric tensor of the Riemannian manifold. Comparing the 
equations (27) and (28), one can conclude that non-null components of the metric tensor 
g in the line element (27) are determined by the following relations:   

   

 

yx
00 01 10 x 02 20 y

z
03 30 z 11 22 33

g , g g b , g g b ,
2 2

g g b , g 1, g 1, g 1.
2

    
       

  
     

                                                                                                                                      (29) 
Following (28) and (29) one can derive a matrix expression of the components of the 
general covariant metric tensor gμν in an alpha field, related to the second form of the 
general line element (27): 

       

x y z

x

y

z

b b b

b 1 0 0
g .

b 0 1 0

b 0 0 1



 
 
      
 
  

    (30) 

This metric tensor is symmetric and has ten non-zero elements, as we expected that 
should be. The matrix expression of the metric tensor (30) is nondiagonal and belongs 
to the well known Riemannian metrics gμν. Therefore, the related line elements (19) and 
(27) are also called nondiagonal line elements. 
     The related components of the contravariant general metric tensor gμν in an alpha 
field can be derived by inversion of the covariant one using (30). As the result of that 
inversion one obtains the components of the general contravariant metric tensor gμν in 
an alpha field: 

y00 01 10 02 20x
2 2 2

2 2
z y z x y03 30 11 12 21

2 2 2

2 2
x z x z y z13 31 22 23 32

2 2 2

2 2
x y33 2 2 2

x y2

1 b b
g , g g , g g ,

b b b

b b b b b
g g , g , g g ,

b b b

b b b b b b
g g , g , g g ,

b b b

b b
g , b b b

b


    
     

   
    

     
    

    
     

  
  

 
2

zb .

                                                                                                                                      (31) 
The related quantities of the parameters bx, by, and bz are given by (29). The 
determinants and traces of the metric tensors (30) and (31) are presented by the 
relations: 

101



                  

   2 2

R R 2

det g b , det g 1/ b ,

1
T g 3 , T g 2 .

b







             
             

          (32) 

Now, we recall the well known condition (25) that should be satisfied by any metric 
tensor [9-12]. Including the determinant of the matrix of the metric tensor components 
gμν from (32) into the relation (25) one obtains the important relation between field 
parameters  and ':  

                      

 22
2

2
2

det g b 1,
4

1, 1.
2


  

         

       
 

             (33) 

This relation can be employed in the procedure of determination of the field parameters 
 and ' in each particular alpha field. The condition (33) is also satisfied for  = ' = 1 
that is related to the particle motion in a vacuum (without any potential field). This case 
belongs to the Special Theory of Relativity. 

     If a particle is moving in a vacuum (without any potential field) then the field 
parameters   and ' satisfy the relation   = ' = 1. For that case the parameters bx = by 
= bz = 0, and the second form of the general line element (27) is transformed into the 
form (20). In that case the covariant Riemannian metric tensor g (30) is transformed into 
the well known Minkowski metric tensor η (22). As it is the well known, this metric 
tensor is valid in the Special Relativity.  

5  Derivation of a General Diagonal form of line Element and Metric 
Tensor in an Alpha Field 

The problem is to derive a general diagonal form of the line element in an alpha field in 
the following expression: 

                                        2 2 2 22 0 1 2 3ds dz dz dz dz .                    (34) 

In this relation  dzμ, μ = 0,1,2,3,  are the new contravariant coordinates of the system. 
From (34) one can see that diagonal line element generates a diagonal matrix of the 
components of the metric tensor equal to the well known form of the Minkowski metric 
tensor structure (22). As we know, this metric structure is used in the Special Relativity. 
In order to solve the mentioned problem, one can start with the nondiagonal second 
form of the general line element (27) that belongs to the Riemannian metrics:  

                                         

 
     

22 0 0 1 0 2
x y

2 2 20 3 1 2 3
z

ds dx 2b dx dx 2b dx dx

2b dx dx dx dx dx .

    

   
                   (35)  
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The contravariant coordinates dxμ , μ = 0, 1, 2, 3,  in (35) are given by (26). The related 
parameters bx, by, and bz have the forms given by (29). Now, one can employ the 
following coordinate transformation procedure: 

  

0 0 2 0 1 0 1 2 0 2
x y

3 0 3 2 2 2 2
z x y z

dz a dx b dx , dz b dx dx , dz b dx dx ,

dz b dx dx , b b b b .

       

    
(36)  

Applying (36) to the general diagonal form of the line element (34) one obtains the non-
diagonal form of the line element (35). This confirms that the coordinate 
transformations (36) transform the non-diagonal line element (35) into the diagonal one 
(34) and vice versa.  
     It can be shown that the coordinate transformations (36) are equal to the coordinate 
transformations (15) if the condition (αα′ + b2) = 1 is satisfied. Since this condition is 
always satisfied by (33), one can conclude that the following relations are valid: 

                         0 0 1 1 2 2 3 3dx dz , dx dz , dx dz , dx dz .                      (37) 

Thus, the first form of the general line element of the GLTα – model, given in (13), 
belongs to the general diagonal form of the line element in an alpha field (34). Both 
diagonal forms have the Minkowski metrics (22). 

6  Conclusion 

The presented line elements and metric tensors can be used in Special Relativity for 
 = ' = 1 and in General Relativity by identification of the field parameters  and ' in 
a gravitational potential field, using the well known Einstein’s field equations. 
Generally, these line elements and tensors can be employed in any alpha field if the 
identification of the field parameters   and ' is possible in that potential field. The 
coordinate transformations (36) transform the Riemannian metrics (35) into the 
Minkowski metrics (34), and vice versa. Following the considerations in this paper, one 
can conclude that the unification of the line elements, metric tensors and coordinate 
transformations in the Einstein's Special and General Theory of  Relativity is possible, if 
one employs the dimensionless field parameters  and '. For solution of some 
problems (like identification of the field parameters  and  in a gravitational field) the 
presented models should be transformed into the spherical polar coordinates, which are 
appropriate to these problems. This will be done in the next paper, together with the 
identification of the dimensionless field parameters  and ' in a gravitational field. In 
the future works, the presented approach will be applied to the other items in the Special 
and General Theory of Relativity. 
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