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RIGID BODY ATTITUDE CONTROL WITH COMPLETE REJECTION OF UNKNOWN 

EXTERNAL DISTURBANCES 

 

TOMIC, T[eodor]; KASAC, J[osip] & MILIC, V[ladimir] 

 

Abstract: In this paper a new class of rigid body attitude 

controllers is proposed. The proposed controllers provide 

asymptotic attitude stabilization with complete rejection of 

unknown external disturbances. The controller design is based 

on integral sliding-mode control strategy which, in contrast 

with standard sliding mode control approach, provides 

asymptotic tracking without chattering. Simulation results show 

favorable features of proposed controllers for stabilization of 

rigid body in presence of relatively large disturbances. 
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1. INTRODUCTION 
 

The rigid body attitude control problem (Wen & Kreutz-

Delgado, 1991) is relevant for a wide class of applications, e.g., 

helicopters, satellites, spacecrafts, and underwater vehicles 

maneuvering. The attitude stabilization problem in presence of 

external disturbances (Ding & Li, 2009; Yamashita et al., 2004) 

has also attracted a great deal of interest, since the external 

disturbances are always of existence. Depending on particular 

applications, there are many unknown disturbances, such as 

gravitational torque, radiation torque, fluid turbulence and other 

environmental torques. 

The continuous control laws, like robust H∞ control and 

adaptive control cannot completely reject unknown external 

disturbances. On the other hand, the sliding-mode control 

approach (Kim at al., 1998) provides complete disturbance 

rejection. But, one of the drawbacks of sliding-mode control is 

the chattering problem which causes the high-frequency 

oscillations of control variables. For the rigid body control, 

chattering may excite high frequency modes and cause the 

structural failure. Chattering can be avoided by smoothing the 

control input by boundary layer method. But, such a continuous 

sliding-mode controller cannot achieve asymptotic stabilization 

since a steady state error is present. 

In this paper we propose a control law for rigid body 

attitude stabilization in presence of large external disturbances 

which provides asymptotic stabilization without chattering. The 

proposed approach is based on concept of integral sliding mode 

or sliding PID control (Parra-Vega et al., 2003; Peng & Chen, 

2009). The main problem in direct application of standard 

sliding PID control strategy to rigid body attitude control is 

definition of position error in terms of Euler angles. In this 

paper we resolve this problem by defining attitude error in the 

form of vector products between actual and desired orientation, 

following similar argumentation as is described in (Milic et al., 

2009). 

 

2. RIGID BODY ATTITUDE CONTROL 
 

We consider rotational motion of a single rigid body 

controlled by torque actuators, such as thrusters or propellers. 

The controller design is based on the assumption that the rigid 

body attitude and angular velocity are available for feedback 

and that the rigid body is controlled by three independent 

torque actuators.  

 

2.1 Rigid body attitude dynamics and kinematics 

The three-axis rotational dynamics of the rigid body are 

represented as 

     Jω ω Jω τ d , (1) 

where J is the 3×3 inertia matrix, ω is the 3×1 angular velocity 

vector, τ is the 3×1 vector of actuator torques, and d is the 3×1 

vector of unknown external disturbances. 

The kinematics equations of the rigid body are given by 

 Bx Ω ω , (2) 

where x = [ θ ψ]T are Euler angles defined according to the 

xyz-convention, and 
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where ci ≡ cos(xi) and si ≡ sin(xi), i =1,2,3. 

The objective of the control system is to bring the rigid 

body to the desired attitude xd = [d θd ψd]
T starting from any 

initial condition, in presence of unknown external disturbances.  

 

2.2 Sliding PID controller 

The proposed control law has the following form 

  maxsat ;P I τ K s K z τ , (4) 

 sign( ) z s Q s , (5) 

where sliding vector s is defined by 

 1 1 1 2 2 2d d     s r r r r ω , (6) 

where  

 1 1 1 1( ) ( ) , ( ) ( )y z d y d z d    r R R e r R R e , (7) 

 2 2 2 2( ) , ( )x d x d  r R e r R e , (8) 

 1 2[1 0 0] , [0 1 0]T T e e , (9) 

rotational matrices are 
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and saturation function is defined as 
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max max
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The controller gains KP, KI, and Q are symmetric positive-

definite matrices, α1 and α2 are positive scalar parameters, and 

τmax is saturation level of torque actuators. Note that in case of 

Q = 0, sliding-mode PID controller becomes the standard (but 

nonlinear) PID controller. The controller behaviors is well-
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defined everywhere, except in singular positions defined by 

cos(θ)=0. The basic structure of integral PID controller is 

similar as in (Peng & Chen, 2009) with main differences in the 

form of sliding variables. The sliding variable contains two 

nonlinear proportional terms in the form of vector products 

between actual and desired attitude, following similar 

argumentation as is described in (Milic et al., 2009). Such a 

proportional term induces the control torque which moves the 

rigid body in direction which decreases the angle between 

actual and desired orientation. Also, saturation function is 

included to prevent control signals with magnitudes larger then 

saturation level of actuators. 

 

 
Fig. 1. Attitude and moments of rigid body in the closed-loop 

with standard PID controller (Q = 0) in the case of external 

periodic disturbances 

 

3. SIMULATION RESULTS 
 

In this section the results of simulation verification of 

proposed control strategy to rigid body attitude stabilization are 

presented. The rigid body inertia matrix is J=diag{1, 2, 3}, 

desired attitude is xd = [1 1 1]T, maximum value of actuator 

torques is τmax = 200 Nm, and disturbance torque is d = 

100[sin(t) sin(2t) sin(3t)] T Nm. The controller parameters are: 

KP = diag{100, 100, 100}, KI = diag{100, 100, 100}, α1 = α2 = 

10, Q = diag{10, 10, 10}. 

In Fig. 1. we can see simulation results for standard PID 

controller (Q = 0) in the case with and without large external 

periodic disturbances (with amplitude which is 50% of 

maximum available control torque). First, we can see that in the 

case without time-varying disturbances PID controller 

asymptotically stabilize rigid body attitude. Similar result can 

be obtained in the case of constant disturbances. But, in the 

case of time-varying disturbances the standard PID controller 

cannot stabilize the rigid body attitude. Moreover, the large 

disturbance cause large oscillations of rigid body attitude 

around desired stationary state. 

In Fig. 2. we can see simulation results for sliding PID 

controller (Q = diag{10, 10, 10}) in the case with and without 

of external periodic disturbances. We can see that similar 

response is obtained for the case with and without of 

disturbances. In other words, sliding PID controller provide 

asymptotic stabilization of rigid body attitude completely 

rejecting external disturbances. The time-dependence of control 

torques (bottom subfigures in Fig. 2) shows that control torques 

exactly compensate the external disturbances, so that τ + d = 0. 

On this way, the proposed controller can be used also as 

disturbance observer. 

Simulation results for other choices of initial and final 

conditions (except singular positions defined by cos(θ)=0) 

show similar behavior. Also, controller shows high robustness 

to changes in system parameters. 

 
Fig. 2. Attitude and moments of rigid body in the closed-loop 

with sliding-mode PID controller (Q = diag{10, 10, 10}) in the 

case of external periodic disturbances 

 

4. CONCLUSION 
 

In this paper a control strategy for asymptotic stabilization 

of rigid body attitude based on integral sliding-mode approach 

is presented. The proposed controller provides total disturbance 

rejection without control variables chattering. The main 

problem of proposed control strategy is singular point which is 

characteristics for Euler representation of rigid body 

kinematics. Since the representation of rigid body kinematics 

using quaternions avoids singularity problems, the future work 

will be oriented toward extension of proposed control strategy 

using quaternion representation. Also, Lyapunov-based stability 

analysis will be applied with aim to provide exact controller 

tuning rules. 
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