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ABSTRACT

A novel adaptive control approach is presented using extended fuzzy logic systems without any rules. First, the extended
fuzzy logic systems without any rules are used to approximate the uncertainties. Then the sliding mode controllers via the
proposed extended fuzzy logic systems without any rules are proposed for uniformly ultimately bounded (UUB) nonlinear
systems. The adaptive laws are used for estimating the approximation accuracies of fuzzy logic systems without any rules,
Lipschitz constants of uncertain functions and scalar factor, respectively, which are not directly to estimate the coefficients of
basis functions. Finally, a compared simulation example is utilized to demonstrate the effectiveness of the approach proposed in
this paper.
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I. INTRODUCTION

Fuzzy control design is a fundamental method in the
control theory [1–12]. However, in the previously described
conventional fuzzy adaptive control (FAC) methods [1–3,5–
7], the Mamdani fuzzy rules or Takagi–Sugeno (T–S) fuzzy
rules are employed, and thus two substantial drawbacks are
shown. The first is that the exponential growth in rules
accompanied by the number of variables increases, because
the input space of the fuzzy logic system (FLS) is generated
via grid-partition [13,14]. A few works [15–17] present a new,
nonconventional analytic method for synthesis of the fuzzy
control by using fuzzy logic systems without any rules
(FWR). However, the output of FWR can not be rewritten as
a linear combination of fuzzy basis functions. Hence, the
FWR is unsuitably employed in the conventional adaptive
fuzzy control algorithms [1–3,5–11].

The second drawback is that FAC easily leads to
complex adaptation mechanisms. In order to solve this
problem, more recently several new adaptive fuzzy control
schemes have been proposed in [5–7,18–20] for nonlinear

systems with triangular structure. The general idea of these
methods is to use the norm of the ideal weighting vector in
fuzzy logic systems as the estimated parameter, instead of the
elements of weighting vector. However, each virtual control-
ler needs to induce new state variable. In addition, the above
methods [5–7,18–20] can be applied only to the FLS with
if-then rules, due to the outputs of FLS can be written as
linear combination of fuzzy basis functions. This limits the
applications of the other types of fuzzy logic system such as
the FWR in [15–17].

In order to overcome the above two shortcomings, the
FWR are used to approximate the uncertainties of the con-
trolled systems. In this paper, in order to put the FWR
together with the usual adaptive method, the scalar and satu-
rator with adjustable parameters are employed and are serially
connected with the input port of the FWR to form the
extended FWR. By using the extended FWR, the sliding
mode controllers via the parameter adaptive laws are pro-
posed for a class of nonlinear uncertain systems such that the
states of the controlled systems are uniformly ultimately
bounded (UUB). The parameter adaptive laws in this paper
are designed to adjust approximate accuracies of extended
FWR, scalar factor, and Lipschitz constants of uncertainties,
respectively, rather than to estimate the coefficients in the
linear combination of fuzzy basis functions. This implies that
the two processes of constructing the FWR and designing
adaptive laws may be separated. This will helpfully serve in
the process of choosing of the suitable FWR for obtaining
better approximate accuracies. The above idea of adaptive
fuzzy control is involved in [21]. However, in [21] the FWR
are not employed and the unknown functions are request to be
continuous homogeneous functions, which limit the category
of unknown functions. In this paper, the FWR are employed
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and the unknown functions just satisfy Lipschitz conditions
instead of homogeneous condition. The proposed method in
this paper is a unified adaptive law design scheme suited to
the FWR.

II. FUZZY SYSTEM WITHOUT FUZZY
RULE BASE

In this section, the FWR in [15–17] is introduced. These
fuzzy sets are defined only for the normalized input variables
with the following membership functions
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where xj are input variables, m is the number of input
variables and nj is the number of fuzzy sets belonging to the
jth input variables. The parameter zi

j
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and zie
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The normalized input variable xj = xj/|xjmax|, xj is jth
input variable, j = 1, . . ., m; xjmax is the maximum value
of xj.

In [15–17], a special distribution of input fuzzy sets is
used. This has been done by the following modification of the
fuzzy set shape from (1):
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where εi
j and βj ≥ 0 are free adaptation parameters.

By using (2) and sum/product inference operators, the
new activation function ωj of the jth output fuzzy set can be
proposed as
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The activation function ωj denotes the grade of mem-
bership of input xj to all of the input fuzzy sets.
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where yjc(xj) denotes the normalized position of center of the
corresponding output fuzzy set.

Since the input variables are normalized, it requires a
determination of a gain Kcj of output set center position. The

gain Kcj is proposed as K U F xcj m j j
a j= +( )1 , where Um > 0,

Fj > 0 and aj > 0 are the maximum value of the position of
center of the corresponding output fuzzy set and free param-
eters, respectively.

By using the gain Kcj, the output fuzzy set center posi-
tion is obtained as

y U F x y x j mcj m j j
a

cj j
j= +( ) =1 1( ), , ,� (5)

Finally, the proposed output of the FWR in [15–17] has been
described below:
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where the constant Tj is jth fuzzy set basis, εi
j are adjustable

parameters. More details about the FWR are available in
[15–17].

Remark 1. (i) In this new approach the number of fuzzy
system input variables and the number of input fuzzy sets are
not limited. (ii) It can be seen from (6) that the output of FWR
may be not in the usual form (linear constant combination of
the fuzzy basis functions) In this paper, we propose an adap-
tive control scheme for a class of nonlinear uncertain systems
by using scalar, saturator and the output (6) of the FWR.

III. PRELIMINARIES AND THE FWR WITH
SCALAR AND SATURATOR

Definition 1. The mapping: ϕ:x = ρx is called a scalar, noting
that ϕ(x) = ρx, where the real ρ is called scalar factor,
x x x Rn

T n= ∈( )1 � .

Definition 2 [22]. The mapping: sat:x ↦ sat(x) is called a
(vector) saturator, and the saturator function is defined as
follows:

sat x sat x sat xn
T( ) ( ( ) ( )) ,= 1 �
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where αi is positive real numbers, and α is the minimum
saturated degree of the whole αi, that is α α=

≤ ≤
min{ }
1 i n

i .

Remark 2. (i) If αi = 1(i = 1, 2, . . ., n), then sat(x) in Defi-
nition 2 is called a normalized unit saturator [22]; (ii) It is
easy to verify that sat(x) = x for ||x|| ≤ α, where ||x|| is the
Euclidean norm.

The FWR is shown in Fig. 1 with the output (6) abbreviated
as

y FWR x= ( ) (7)

where x = (x1 . . . xm)T and the knowledge base is not
represented in the form of the fuzzy if-then rules. From input
interface to output interface, an intuitive reasoning is
introduced in [15–17] to mapping the input to the center
position of output fuzzy set by using the activation function
(3) and the output fuzzy set center position function (5).

Now, a scalar and saturator are in series with the input
port of FWR in Fig. 1, to form the extended FWR (EFWR).

Here the scalar factor of the input port in Fig. 2 is
1

ρ
,

and α is the minimum saturated degree of the saturator in the
input port.

From (7) and Fig. 2, the output of the extended FWR is
given by

y EFWR sat
x= ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ρ

. (8)

Based on the Definition 2, and provided that the inequality
x

ρ
α≤ is satisfied, the following property holds:

y EFWR
x= ⎛

⎝⎜
⎞
⎠⎟ρ

, where y denotes the output of the extended

FWR.

Lemma 1. Consider a continuous function ψ(z) in a closed
bounded set Ω, which satisfies L-Lipschitz conditions. If for
real E > 0 (approximation accuracy), there exists an FWR
such that the following approximate result is true on the set
U z z z Rn= ≤ ∈ ⊆{ , }α Ω,

sup ( ) ( )
z

z FWR z E
≤

− ≤
α
ψ (9)

then the following approximate property holds on the set U :

sup ( )
z

z EFWR
z

L z E
≤

− ⎛
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⎞
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≤ − +

ρα
ψ

ρ ρ
1

1
(10)

where the output of the extended FWR (in Fig. 2) is described
with (8).

IV. SYSTEM DESCRIPTION AND
SOME ASSUMPTIONS

In this paper, we consider the single input single output
(SISO) nonlinear system characterized by

x f z gun( ) ( )= + (11)

whe u ∈ R and z x x x U Rn n= ∈ ⊆−( )( )�� �1 T are control input
and state vector, respectively. Let �U be a compact set; f(z) is
an unknown continuous function and g is an unknown
constant gain.

In that case the system (11) can be rewritten as

�z Az B f z gu= + +[ ( ) ] (12)

where A
O I

O
n

T
= ⎛
⎝⎜

⎞
⎠⎟

−1

0
, B = (OT 1)T, O denotes n − 1 column

vector with all elements 0, In−1 denotes n − 1 order identity
matrix.

Note that the pair (A, B) is completely controllable. For
given a positive definite matrix Q and vectorK, one should
solve the following equation:

( ) ( )A BK P P A BK QT+ + + = − (13)

for P > 0. Such solution of P exists since A + BK is
asymptotically stable.

Assumption 1. For the compact set �U, there exist two known
positive constants gmin, gmax such that 0 < gmin ≤ g ≤ gmax.

Assumption 2. (i) Consider the system (11), and assume that
the state set z z U≤{ }⊆α � can be defined by choosing the
parameter α. (ii) If Assumption 1 is satisfied, there exists an
unknown positive real number E1 and the FWR1 such that
sup ( ) ( )
z U

z FWR z E
∈

− ≤
�
σ1 1 1 , where σ1( ) ( )maxz

g

g
f z= . (iii)

There exists another FWR2 and an unknown positive real

Fig. 1. Basic configuration of the fuzzy system without rules
(FWR).
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number E2 satisfying sup ( ) ( )
z U

z FWR z E
∈

−
�
σ 2 2 2� , where

σ 2( ) maxz
g

g
Kz= − and K is a matrix such that A + BK is

Hurwitz stable.

V. ADAPTIVE FUZZY CONTROL DESIGN
BASED ON FWR

In application, Ei, Li, i = 1, 2 are unknown. Let ˆ , ˆE Li i

denote the estimation of Ei, Li, and �E E Ei i i= −ˆ , �L L Li i i= −ˆ
the estimate error, respectively. For simplicity, the following
notations are used.

E E E E E E E E E= = =( ) , ( ) , ( )1 2
T

1 2
T

1 2
T� � � ˆ ˆ ˆ (14a)

L L L L L L L L L= = =( ) , ( ) , ( )1 2
T

1 2
T

1 2
T� � � ˆ ˆ ˆ (14b)

Consider the following extended closed-loop system (ECS).

�z Az B f z gu= + +[ ( ) ] (15a)

�ρ η ρ= ( , , , )z E Lˆ ˆ (15b)

ˆ ( , , ˆ )
�
E z E=ϑ ρ1

(15c)

ˆ ( , , ˆ)
�
L z L=ϑ ρ2

(15d)

u u z= ( , )ρ (15e)

where the state vector of the ECS (15) is Z = ( , , , )T T T Tz E Lρ ˆ ˆ .
The mappings η(*) (the updated law of the parameter ρ),
ϑ1(*), ϑ2(*) (the adaptive law of estimate value of E and L,
respectively) and the controller u = u(z, ρ) will be designed
according to the following control goal.

Control goal. Design the controller (15e), updated law (15b)
and adaptive laws (15c) and (15d) such that the state vector
Z = ( , , , )T T Tz E Lρ ˆ ˆ is uniformly ultimately bounded (UUB).

Case 1. ||z|| > |ρ|α

In this case, we adopt open-loop control, that is u = 0, and use
the FWR1 to approximate the nonlinear function σ1(z). Mean-
while, the updated law of ρ = ρ(t) is proposed as follows:

�ρ
ρα

λ= + − + ⋅ +( ){1

2
2 1 2

2

2
1 1n z z E EFWRˆ (16)

where λ is an adjustable positive constant.
The adaptive laws of the estimated parameter vector are

proposed as follows:

ˆ , ˆ , ˆ , ˆ ,
� � � �
E x E L L1 1 2 1 22 0 0 0= = = =β (17)

with β1 being a positive design constant.
We use the following Lemma 2 in order to prove that the

state Z = ( , , , )T T Tz E L Tρ ˆ ˆ of the ECS (15) can reach D = {Z|
||z|| ≤ |ρ|α} in finite time.

Lemma 2. Consider the ECS (15). If Assumptions 1 and 2,
and the condition ||z|| > |ρ|α are true, then the above controller
u = 0 and the updated laws, described by (16) and (17), can be
ensured to force the state Z = ( , , , )T T Tz E L Tρ ˆ ˆ of the ECS (11)
to reach the compact set D = {Z| ||z|| ≤ |ρ|α} in finite time.

Proof. See Appendix A.

Remark 3. (i) In the open-loop case, the updated law (16)
ensures that the SSs can go into the effective range of the
saturator. (ii) FWR1 is used to approximate the unknown
function f(z) and to obtain the available information of their
upper boundary.

Case 2. ||z|| ≤ |ρ|α

In this case, the two EFWRi, i = 1, 2, are employed to syn-
thesize the controller u = u1 + u2, where

Fig. 2. The extended FWR (EFWR) with scalar and saturator.
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The updated law of ρ is proposed as follows:

�
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ρ λ
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where γ is a positive design constant, and

sign�( )
,

,
ρ

ρ
ρ

=
>

− <
⎧
⎨
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1 0

1 0
.

The related adaptive laws are proposed as follows:

ˆ ( )

( )
ˆ�

E
Q

P
E PB1 1 12= − +λ

λ
δ ρ αmin

max

(20a)

ˆ ( )

( )
ˆ�

E
Q

P
E PB2 2 12= − +λ

λ
δ ρ αmin

max

(20b)

ˆ ( )

( )
ˆ�

L
Q

P
L PB1 1 2

2 22 1
1= − + −λ

λ
δ ρ α

ρ
min

max

(20c)

ˆ ( )

( )
ˆ�

L
Q

P
L PB2 2 2

2 22 1
1= − + −λ

λ
δ ρ α

ρ
min

max

(20d)

where δ1, δ2 are positive design constants.

Lemma 3. Consider the ECS (15). If Assumptions 1 and 2
and the condition ||z|| ≤ |ρ|α are satisfied, then Controller (18),
Updated law (19) and Adaptive law (20) ensure that the state
Z = ( , , , )T T Tz E L Tρ ˆ ˆ is uniformly ultimately bounded (UUB).

Proof. See Appendix B.

Remark 4. (i) The controller u1 consists of extended FWR1

in form of Fig. 2, which serves against the affection of the
unknown function in f(z). The controller u2 is in switched
form to overcome the uncertainties in σ2(z). (ii) The updated
law (19) is not directly connected with the state z of the
system (11) but is connected with the estimate values of
approximate accuracies of the FWRi, i = 1,2.

Theorem 1. If Assumptions 1 and 2 are satisfied, then the
state Z = ( , , , )T T Tz E L Tρ ˆ ˆ of the closed-loop system (15),
associated with the control law and the adaptive laws in Case
1 and 2, are uniformly ultimately bounded (UUB).

Remark 5. (i) Adaptive laws have nothing to do with fuzzy
basis functions. From the expression (19), we clearly see that
the adaptive law in this paper is not directly related to the
fuzzy basis functions. The same conclusion can be obtained
in the expressions (16). In the conventional adaptive fuzzy
methods, the adaptive laws are used to adjust the parameters
with respect to the fuzzy basis functions. In this sense, one
basis function needs to have one adaptive law that suffers
from combinatorial rule explosion. (ii) The FWR can be
employed in this approach. In [7–11], usually the fuzzy
approximators have been used where the structure of outputs
is a linear combination of fuzzy basis functions (such as
Mamdani or TS type) in order to approximate nonlinear
terms. These approximators can be easy used for adaptive
technique in order to adjust the coefficients of the fuzzy basis
function. But at the same time it brings restriction to us: when
the approximation’s structure of output is not in a linear
combination of fuzzy basis functions (such as FWR), the
previous methods [7–11] are ineffective. The approach pro-
posed in this paper is effective in avoiding this problem.

VI. SIMULATION

In this section, we apply the proposed controller in this
paper to an inverted pendulum system under different initial
conditions. Consider the following second-order model of the
inverted pendulum system:

�
�
x x

x f z gu t d t
1 2

2

=
= + +( ) ( ) ( )

(21)

where z x x= ( , )� T, x1 = θ(rad) and x rad s2 = �θ( ). u(N) is the
applied force (control). Further, d(t) = sin(πt)cos(πt) is the
disturbance. The smooth functions f(z) and g are unknown for
synthesizing the controller in this paper. Assume that f(0) = 0,
1 ≤ g ≤ 2.

We choose the design parameters as:
β1 = δ1 = δ2 = 0.0001, γ = 1, λ = 1, the minimum saturated
degree α = 1. ρ(0) = 6, ˆ ( ) .E1 0 0 4= , ˆ ( ) .E2 0 0 6= , ˆ ( ) .L1 0 0 8= ,
ˆ ( ) .L2 0 0 5= .

Based on the design ideas in this paper, we will need to
construct two FWR for approximating the following nonlin-
ear functions.

For the first nonlinear function σ1 = −gmaxg−1Kz, where
K = (−30 −40), by using the methods in [15–17], we choose
the parameters of FWR shown in Tables I–III.

For the second nonlinear function σ2 = f(z), the most
simple form of the analytic function is considered (more
details about the method may be seen in literature [15]).

ω γ γ α βji ji ji ji ji ji ji j ji jix S x x x( ) ( ) exp= = + − −( )2 (22a)
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yc kc x sign xji ji ji ji ji= − −( )( )1 exp ( )β (22b)

where j = 1, 2, i = 1, . . ., Nj, Nj = 1, αji = 0.
The following two cases are considered in simulation.

Condition 1. The smaller initial condition state
x1(0) = 0.19 ≈ 11°.

Fig. 3 shows the time responses of the angle in [5] (noted as
CB) and [2] (noted as FLS) and the method proposed in this
paper (noted as FWR). Fig. 4 is a locally-enlarged picture of
Fig. 3. It is seen clearly that the controller in [2] fails to
converge, while the controller in [5] and the controller in this
paper still converges. Additionally, the controller in this paper
has a shorter response time. Fig. 5 shows the updated law, and
Fig. 6 shows the estimate value of approximate accuracies for
the two FWR and Lipschitz constant. From Fig. 5 and Fig. 6,
it can also be observed that the proposed updated law,
approximate accuracies and Lipschitz constant in this paper
quickly converge to zero.

Condition 2. The same simulation as Example 1 is performed
except that the large initial condition state x1(0) = 1 ≈ 57°.

Fig. 7 shows the angular response by extended FWR in this
paper and the work in [5]. It can be seen that the proposed
adaptive controller in this paper remains stable for the large
initial condition, while the controller in [5] is out of the work.
The updated law is shown in Fig. 8. The estimate values of
approximate accuracies and Lipschitz constants, shown in
Fig. 9, also tend to zero.

Remark 6. The above simulation is compared with Wang’s
work [2] and Chen’s method [5]. Wang and Chen employed a
fuzzy adaptive approach, which contains 25 adaptive laws
and one adaptive law, respectively. Wang’s work uses the
traditional fuzzy adaptive method. It is easy to create the
problem of exponential growth in the number of fuzzy rules
for the multivariable nonlinear systems. Note that Wang’s
method uses the smallest initial angle. When the initial angle

Table I. Basis parameters of input fuzzy sets.

Fuzzy
set NO.

Adaptable
parameter ε

Base of
fuzzy set

Fuzzy set
center

1 2 2 0
2 2 2 0
3 2 2 0

Table II. Basis parameters of activation function.

Input variable NO. X1 X2

Xmax 100 100
Parameter β 0.25 0.01

Table III. Basis parameters of output fuzzy sets.

Output fuzzy set no. 1 2

Parameterα 0.05 0.02
Gain F 0.06 0.01
Gain Um 10 10
ParameterT0 10 8
Parameterε0 20 30

Table IV. Basis parameters of out fuzzy sets.

Output fuzzy set NO. 1 2

Gain Kc 100000 300
Parameterβ 100000 1
Parameterγ 0.5 0.5
ParameterI 0.01 1

Fig. 3. Response of state variable x1(x1(0) = 0.19 ≈ 11°).

Fig. 4. Locally-enlarged picture of Fig. 3.
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becomes bigger, Wang’s method ceases to work, but Chen’s
approach and the method proposed in this paper can still
guarantee the system stability. Comparing the number of
adaptive laws, one can see that Chen’s work uses only one
adaptive law. From the analysis of Chen’s work design
process, we can conclude that the reduction of the number of
adaptive laws lies in the cost of bringing in the extra numbers
of state variables. In other words, when the number of state
variables becomes bigger, the fuzzy basis functions become
more and more complex in Chen’s work. Therefore, when the
initial angle reaches 40o, Chen’s method ceases to work. In
this simulation, we employed five adaptive laws to guarantee
system stability, including four approximation accuracies and
one updated law. From the point view of computational terms,

the method proposed in this paper effectively reduces the
number of adaptive laws, and deals online with the
multivariable-fuzzy adaptive control problem. In that sense,
the method proposed in this paper offers an efficient approach
for reducing the number of adaptive laws and promoting the
stability of nonlinear multivariable systems.

VII. CONCLUSION

A novel adaptive method based on the FWR, for design
of control and stability of n-order nonlinear systems, has been
proposed in this paper. This method efficiently reduces the
number of adaptive laws and relaxes the restriction on uni-
versal approximators to be chosen, whose outputs are not

Fig. 5. Response of updated law ρ (x1(0) = 0.19 ≈ 11°).

Fig. 6. Response of approximation accuracies and Lipschitz
constants (x1(0) = 0.19 ≈ 11°).

Fig. 7. Response of state variable x1(x1(0) = 1 ≈ 57°).

Fig. 8. Response of updated law ρ(x1(0) = 1 ≈ 57°).
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requested to be represented as the linear combination of the
basis functions. The extended FWR has been proved with
good approximation accuracy by tuning the scalar factor.
Comparing with the existing results, the main advantage of
the approach in this paper is that the FWR can be utilized to
design the adaptive controllers for a class of nonlinear uncer-
tain systems. It is easily seen from the above design process
that the method in this paper is also suitable for several other
different kinds of universal approximators, such as NN, FLS,
and partition of unity. This extends the applicability of this
approach to many more kinds of practical systems. From the
two simulation results in this paper, one can clearly see that
the method proposed here gives better results compared with
the adaptive fuzzy approach in [2] and [5]. It can be seen in
the reduction of the number of “rules”, and also in the ability
of the designed controllers. Finally, one can conclude that the
method proposed in this paper could be a useful control
algorithm for stabilization and control of multivariable non-
linear practical systems.
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VIII. APPENDIX A

8.1 Proof of Lemma 2
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Obviously, it is true that {Z|S = 0} ⊆ D. This completes the
proof of Lemma 2.

IX. APPENDIX B

9.1 Proof of Lemma 3

Description of the closed-loop system, composed of the
controller (18), updated law (19), adaptive laws (20) and the
system (12), is given by the relation:
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If Assumptions 1 and 2 are true, the derivative of V2(t) along
the closed-loop system (12) is given by
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Substituting the updated laws (19) and (20) into (C.1) one
obtains that
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It is concluded from (C.3) that if t
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for a given positive design real ε, then V2
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holds. This means that the state convergent into
the neighborhood Ω in finite times, where
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following inequalities are obtained: z
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This completes the proof of Lemma 3.
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