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Abstract—Power and ancillary service markets are strongly
coupled. However, at the moment auctions are organized in such
a manner that the coupling is not taken into account. Every
market participant submits bids at power and/or AS markets
without possibility to adjust with respect to the outcome of the
other market. Inexact approximations of the actual market price
induce deviations from the optimal social welfare value.

In this paper, we firstly describe and analyze the consequences
of power and ancillary service market coupling. Secondly, we
present two different market design strategies, both of which
are based on the idea of iterative auction and have the goal
to optimally account for power and AS coupling, enabling the
overall system to maximize its social welfare.

An illustrative example is used to present potential benefits and
downsides that might arise as a result of introducing proposed
market arrangements.

I. NOMENCLATURE

Ji is an objective function in a node i, i = 1, . . . , n
μi denotes a probability of activating allocated reserves,

0 ≤ μi ≤ 1
p := col(p1, . . . , pn) is a vector1 of power injections;

depending on the sign it can represent produced (+)

or consumed (-) power

a := col(a1, . . . , an) is a vector of allocated reserve

power; always positive

Areq is a required amount of reserves in a control zone

p := col(p1, . . . , pn) is a suitably defined vector of max-

imal power injections at the nodes

p := col(p1, . . . , pn) is a vector of minimal power injec-

tions at the nodes

p∗ := col(p∗1, . . . , p
∗
n) is a vector of optimal nodal power

injections

a∗ := col(a∗
1, . . . , a

∗
n) is a vector of optimal nodal reserve

power allocations

λPi(pi)is a bid of a BRPi
2 to power market

λAi(ai)is a bid of a BRPi to AS market

λ
(k)
P is a global power price in iteration k

λ
(k)
A is a global AS price in iteration k

II. INTRODUCTION

A stable, reliable and economically efficient electric energy

supply plays a crucial role in every modern society. The

1We use col(x1, . . . , xn) to denote the column vector
(
x1 . . . xn

)�
.

2BRP stands for “Balance responsible party” and is a market participant
acting on both, power and ancillary service, markets.

liberalization of electricity markets started a few decades ago

with the goal of improving the economic efficiency of power

systems (by this, we mean increasing the social welfare, i.e.,

the sum of benefits for producers and consumers). Compared

to other commodities, power has several specific character-

istics. To name a few: i) the inability of efficiently storing

large energy quantities, which, as a consequence, leads to

ii) the necessity of meeting the demand by production in

real-time (power balancing); and iii) the lower demand price-

elasticity of power as a commodity. For all these reasons,

power markets differ from standard markets, making their

design a challenging topic.

To facilitate real-time power balancing, other than power

markets, another type of markets was created - ancillary

services (AS) markets. On these markets, participants are

paid for availability and/or3 producing more (or less) power

than contracted to assist the system operation. Power and AS

markets are strongly coupled and actions taken on one of the

markets affect the other. The coupling comes from the fact

that both commodities, power and AS, are provided by the

same set of units that have certain production and consumption

limits. Coupling also results from using the same limited

transmission system in which power flows obey the laws of

physics (Kirchoff’s law) and are, in general, not controllable.

Conventional day-ahead power markets are based on col-

lecting 24 hour power production and consumption profiles

from all participants, i.e., balance responsible parties (BRP).

We define a BRP as the only entity allowed to participate in

power and AS markets. These power profiles are discrete in

time, i.e., they are divided into a number of program time units

(PTU). After all BRPs bid their offers or needs, one entity, a

power exchange (PX), aggregates them in one common power

supply and one common power demand curve and clears the

market. Afterwards, BRPs can offer their spare capacity to

a transmission system operator (TSO) on AS markets and

thus potentially earn more money.4 Therefore, power and AS

markets are, at the moment, organized in such a way that each

BRP has to submit two independent bids, not knowing the

3In the majority of current arrangements, participants are paid only for
producing (reducing) extra power; however, there are some countries, such as
Norway, in which they are rewarded not only for producing more (or less)
than contracted, but also for being available.

4Bids can afterwards be slightly changed on an intra-day power market,
but this is outside the scope of this paper.
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result of one market when bidding for the other. This means

that during the bidding phase, the coupling of power and AS

markets is not taken into account neither on a BRP (local) nor

on a global level.

It is indisputable that introducing markets in power systems

has increased economic efficiency, see e.g. [1]. Still, it has

been recognized that, due to the above explained independence

of submitting bids, the markets designed in the current manner

do not necessarily reach optimal economic efficiency[2]. In

other words, current arrangements for power trading do not,

in general, guarantee reaching the optimal social welfare value,

even under conditions of perfect market competition when

BRPs bid their marginal costs. This is due to necessary

approximations that market participants have to make while

submitting the bids to power and AS markets. So far, the

research that aimed at solving the implications induced by

market coupling, concentrated on bidding strategies. On the

other hand, the research that aimed at increasing the social

welfare investigated optimization techniques, but not in the

view of iterative market auctions [3], [4], [5]. One of the

first papers that proposed iterative decentralized markets is

[6]. There, the authors describe a decentralized market pool

auction for real and reactive power. However, in their work,

the coupling of energy and AS markets is not considered.

In this paper, we present the results of a study on possibili-

ties of increasing the economic efficiency of power markets by

changing the way of bidding. We investigated the benefits of

introducing iterative markets to overcome the BRP’s problems

of making approximations that prevent the overall system from

reaching the optimal point. We proposed and compared two

different market structures for solving the problem, which is

formalized in Section III, both based on the idea of iterative

markets and presented in detail in Section IV-C and Sec-

tion IV-B. Our preliminary results show that iterative markets

are well worth exploring in more detail as their introduction

would eliminate the effects of errors in prediction of market

outcomes for BRPs. It would also increase the overall social

welfare.

III. PROBLEM FORMULATION

The problem under consideration is given in Problem III.1

and is referred as ”optimal power and reserve dispatch”

(OPRD) problem.

Problem III.1 The Optimal Power and Reserve Dispatch
(OPRD) Problem

min
p,a

J(p, a) = min
p,a

n∑
i=1

Ji(pi, ai), (1)

subject to:

n∑
i=1

pi = 0 (2a)

n∑
i=1

ai ≥ Areq (2b)

pi + ai ≤ pi ≤ pi − ai, ∀i ∈ {1, . . . , n} (2c)

ai ≥ 0, ∀i ∈ {1, . . . , n} (2d)

where Ji(pi, ai) = (1− μi)(αip
2
i + βipi) + μi[αi(pi + ai)2 +

βi(pi + ai)]. �

The objective function Ji is assumed to be a convex function.

In case BRPi in a node i is a producer, Ji represents the

corresponding production cost. In case BRPi in a node i is

a consumer, Ji is the corresponding negated benefit function.

Note here that J , as defined above, has an interpretation of a

social welfare function.

For the sake of simplicity, we have chosen μi to be

a parameter that indicates the probability of activating all
allocated reserves. Such a choice of μi implies that, with

respect to activating allocated reserves, there are only two

possible cases considered: i) reserves are not activated at all,

or ii) reserves are activated, and they are activated in their full

allocated amount. Constraint (2a) denotes the power balance

requirement, while (2b) means that there should always be a

sufficient amount of reserves, Areq, in the system. The amount

Areq is chosen to be deterministic and known in advance, as

it is in current market arrangements5. Equation (2c) states that

every producer or consumer has production (and consumption)

capacity limits, i.e., there are bounds on power injections in

each node. Constraints (2d) come from another simplification

of the presentation. Note that in (2d) we have assumed the

symmetry between the up-regulating AS and down-regulating

AS. In a more general setting, the up-regulating limit and

down-regulating limit can be different, and up-regulating and

down-regulating actions can be treated as different commodi-

ties in AS markets. Results presented in this study can be

easily generalized in that direction.

The OPRD problem can be seen as a variation of the optimal

power flow problem (see e.g. [7], [8] or [1]), where now we

deal with the allocation of both, power and AS at the same

time. Tie-line constraints are here not taken into account, and

the transmission system is considered to be robust enough

and to have sufficient transmission capacity. In this study,

we are concerned with one PTU of ahead markets only, and,

therefore, time is not a variable in the considered problem

formulation. Furthermore, each BRP is seen as a price taker,

i.e., the influence of its bid is such that it cannot significantly

change market outcomes and the global price of commodities.

Through the rest of this paper we assume that there is one

BRP in each node, and we use terms ”node” and ”BRP”

interchangeably.

5TSO calculates this amount.
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A. Coupling of Power and AS markets

With the abbreviation x := [p�a�]�, it is trivial to rewrite

the objective function (1) of the OPRD problem in matrix form

J(x) = x�Hx + f�x

with H =
[

Cn Dn

Dn Dn

]
, where Cn := diag(α1, . . . , αn),

Dn := diag(μ1α1, . . . , μnαn); and f� =
[β1, . . . , βn, μ1β1, . . . , μnβn]. The above representation

is a standard quadratic programming (QP) representation.

The OPRD problem is suitable for QP solvers [9] under the

assumption that all parameters, including confidential data

that define cost and benefit functions, are known to some

central entity. In a liberalized, market-based power systems,

this is not the case. In this paper we treat the solution to

the centralized QP-based OPRD problem as a reference for

comparison with other proposed solutions.

The iterative bidding algorithms explained in Section IV-B

and Section IV-C are devised with the aim that their solu-

tions coincide with the solution of the work presented in

Section III-B. When confidentiality, computing power and

communication do not pose any constraints in finding a

solution; the results obtained using a QP solver are the best

solution achievable, and a ”golden standard” for all the other

solutions of the OPRD problem. In the remainder of the paper,

we refer to it as the ”golden standard” (GS) of the OPRD

problem for the aforementioned reasons.

In practice different solution approaches have to be con-

sidered to cope with any assumption that cannot be fulfilled.

For example, market organization can avoid dealing at some

central level with confidentiality, distributed solution can cope

with computing power and/or communication limitations, and

also in certain cases with confidentiality issues.

In current market designs, BRPs have in principle one

chance only to submit the bids for power and AS. To create

these bids, due to coupling of power and AS markets, it

is necessary to make assumptions on market outcome, i.e.,

realized prices on both markets. It is reasonable to assume that

each BRP would be able to make bids for both, power and

AS markets, that are economically more efficient (”better”) if

it was known in advance what the realized price on at least

one of these markets would be.

The outcome of one market influences the outcome of the

other market. Every bid curve is a result of a market outcome

prediction, and, therefore; it depends on the forecast error. In

turn, this error induces changes in the market clearing prices.

Consequently, even in the conditions of perfect competition,

the clearing prices cannot guarantee that the maximum of the

social welfare is reached.

The challenge is to find new strategies that solve the

above indicated problems. While doing so, it should also

be kept in mind that confidentiality requirements, and not

only necessary estimations from local level, pose serious

burdens to the system. One possibility to overcome the above

described difficulties is to create iterative markets. Iterative

market arrangements not only remove the requirement that

one single entity knows all the confidential data to reach the

optimum, but also facilitate making approximations and enable

BRPs making much better bids in each step of iteration.

We present two approaches for designing iterative markets.

One design strategy is completely based on the dual decompo-

sition and subgradient methods. It considers iterative bidding

of amounts of power, pi, and AS, ai, for globally given prices

λP and λA. We refer to this approach as the ”point bid-based

iterative market” (PBM), and we present it in some more detail

in Section IV-B. Alternative design strategy considers BRPs

bidding of complete λPi(pi) and λAi(ai) curves, similarly as

is done in the current practice, with the difference that that the

bidding is performed in several iterations for each PTU. We

refer to this approach as the ”curve bid-based iterative market”

(CBM), and we present it in detail in Section IV-C.

B. Golden Standard for Solutions of the OPRD Problem

The quadratic programming problem is a special, widely-

known class of optimization problems; and the theory, in-

cluding solution methods, and algorithms for QP problems

are highly developed. It is a subclass of a more general

class, convex optimization problems6. Once the problem is

formulated in such a manner that it fits in the framework of

convex optimization, there is a number of available convex

optimization solvers that can be applied to solve it. The QP

solver finds the optimal solution when the full knowledge of

all the parameters of the objective function and constraints.

IV. ITERATIVE MARKET ARRANGEMENTS

A. Dual decomposition

We present the market-based solution of the OPRD problem

based on the Lagrangian relaxation. The constraints of the

OPRD problem can be grouped into local and global con-

straints. Local constraints exist on a BRP level and all informa-

tion needed for their satisfaction can be collected locally. An

example of this type of constraints are lower and upper power

production limits given by (2c). Equation (2d) also defines

a local constraint. Global constraints, also called coupling or

complicating constraints, are constraints that connect all pro-

ducers and consumers in one system. For example, the power

balance requirement, (2a), or requirement for certain amount

of reserves in the system, (2b), are global constraints. Since,

in a competitive market environment, it is highly unlikely that

BRPs will share their local information with any other entity,

the OPRD problem should be decomposed and solved in such

a way that each BRP autonomously optimizes its own costs,

while the overall system still reaches the global optimum. To

accomplish this goal, we dualize only the coupling constraints

by employing dual decomposition [10] and subgradient [11]

methods. Decomposition not only removes the requirement for

sharing the sensitive data but also significantly decreases the

computational complexity. The partial Lagrangian consists of

6Note that this is the case only if H defined in Section III-A is H � 0
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the global objective function (1) and global constraints (2a)

and (2b), and is given by:

L(p, a, λP , λA) :=
n∑

i=1

Ji(pi, ai) − λP

(
n∑

i=1

pi

)

−λA

(
n∑

i=1

ai − Areq

)
. (3)

The Lagrange multipliers λP and λA have an interpretation of

global prices for energy and AS, respectively. Lagrange dual

problem is given by:

max
λP ,λA

l(λP , λA) (4)

subject to

λA ≥ 0, (5)

where l(λP , λA) is the dual objective function defined as

follows

l(λP , λA) := min
p,a

{L(p, a, λP , λA)}

subject to (2c) and (2d).

For fixed λP , λA, it is straightforward to decompose the

dual function (4) and, as a result obtain n decoupled local op-

timization problems, where each local optimization problem,

which is defined as follows, is assigned to one node only.

Problem IV.1 Local Optimization Problem
Given the prices λP and λA, for each i ∈ {1, . . . , n}, the local

optimization problem is given by

min
pi,ai

gi(λP , λA), (6)

subject to:

pi + ai ≤ pi ≤ pi − ai, (7a)

ai ≥ 0, (7b)

where objective function is defined as gi(λP , λA) :=
Ji(pi, ai) − λP pi − λAai. �

For given λP and λA, the minimizers p∗i and a∗
i of the Local

Optimization Problem (Problem IV.1) are the optimal values

of power and AS in a node i.
The maximizers of the dual problem (4), λ∗

P and λ∗
A,

are the optimal market prices for power and AS. For the

optimal market prices, power balance constraint and, (2a), and

constraint on amount of AS, (2b), are necessarily satisfied [10],

[12].

B. Point Bid-Based Iterative Market (PBM)

1) Formal representation: If we assume transparent mar-

kets, with prices λP and λA that are publicly (globally)

available, the Problem IV.1 is easily solved by a QP solver.

Since the dual function is, in general, not a smooth function

in λP and λA, gradient methods are not applicable and,

therefore; subgradient methods are to be used.

λ
(k+1)
P = λ

(k)
P − ρ

(k)
P

(
n∑

i=1

pi

)
(8a)

λ
(k+1)
A = max(0, λ

(k)
A − ρ

(k)
A

(
n∑

i=1

ai − Areq

)
) (8b)

Step sizes, ρ
(k)
P and ρ

(k)
A , are chosen in such a way that

convergence is obtained, see e.g. [11] or [12] for more detail

and proofs. They can be constant or can change in each

iteration. The convergence of subgradient methods is proven in

[11] for several choices of step size, e.g. for constant step size,

ρk = ρ > 0. Some other step size examples for which con-

vergence is guaranteed are series ρk = q
r+k , q > 0, r ≥ 0,

and ρk = q√
k
, q > 0. The difference in prices between two

iterations k and k + 1 for both commodities, power and AS,

is used as a stopping criterion. When these values fall below

certain predefined threshold ε, the auction is stopped. Theoret-

ically, the dual variables, i.e. the prices, are not monotonously

converging. Still, this stopping criterion has been chosen as it

is of the practical value for the implementation.

Algorithm (PBM)

repeat until the stopping criterion is satisfied:

i) Solve n local problems (Problem IV.1) for fixed global

parameters λ
(k)
P and λ

(k)
A calculated in the iteration k, or

for given initial global parameters, i.e., prices λ
(0)
P and

λ
(0)
A

ii) Update prices according to (8a) and (8b)

2) Implementation: The iterative point bidding method

starts with a market operator7 announcing the initial prices

for power and ancillary services (initial conditions): λ
(0)
P and

λ
(0)
A . Given these prices, each BRP (i = 1 . . . n) maximizes its

profit. This corresponds to solving optimization subproblems,

i.e., local objective functions, as defined in Problem IV.1, for

given fixed prices for power and ancillary services. Results

of these optimization algorithms, that is, optimal power and

AS amounts of each BRP, are then bade again and a market

operator announces a new set of prices. The process is repeated

until the stopping criterion is satisfied.

Although, the algorithm is proven to converge, it might

happen that the convergence is very slow, i.e., that the optimum

is reached after large number of iterations. Moreover, even

though the global constraints are satisfied in the optimal point,

there is no guarantee that they are also satisfied in every

iteration. This means that it is not possible to stop the process

of optimization, i.e., the bidding iterations, before the optimum

is reached. In case of doing so, it might happen that the

markets will not be cleared, and there will be a scheduled

7By market operator, we mean PX for power markets and TSO for AS
markets. Our problem formulation enables them to be one entity or separated
entities, as long as they are synchronized in time and publish clearing results
simultaneously.
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power imbalance, insufficient amount of AS, or both. This

may impose a serious practical implementation issue for this

market clearing strategy and is also the reason why we propose

another iterative market clearing approach.

C. Curve Bid-Based Iterative Market (CBM)

1) Formal representation: The OPRD problem can be

solved in another way, with BRPs bidding not only optimal

amounts of power or AS, but the whole price - power profiles,

λPi(pi) and λAi(ai). The core idea still comes from the

decomposition methods, but the algorithm itself is slightly

modified. Same as before, the OPRD problem is decomposed

in n smaller, simpler problems given by Local Optimization

Problem IV.1. Optimal values p∗i and a∗
i are calculated as a

result of each of these optimizations. Unlike in PBM, BRPs

now do not bid only these values, but each of them calculates

its own optimal bid curve for both markets as follows:

λi(pi) =
∂Ji(pi, a

∗
i )

∂pi
(9a)

λi(ai) =
∂Ji(p∗i , ai)

∂ai
. (9b)

While calculating the new bid, each BRP takes care of its

own production limits, as expressed in (2c). Note that with

quadratic cost/benefit functions, the slope of each BRP’s bid in

every iteration is the same, but the production (consumption)

low and high limits differ from one iteration to the other.

After optimal bids are calculated, bid curves for power and

AS markets are aggregated, the markets are cleared, and the

new clearing prices are announced. The process repeats till the

stopping criterion is satisfied.

In this paper, we present simulation results which indicate

that the proposed algorithm converges to the optimal point.

In some cases, however, the proposed algorithms runs into

infeasible problems. This might be due to small number

of BRPs that participate in the simulated market. Recursive

feasibility and further analytic treatment of the algorithm are

topics for future research.

Algorithm (CBM)

repeat until the stopping criterion is satisfied:

i) Calculate the optimal bids for this step (for fixed

global parameters λ
(k)
P and λ

(k)
A calculated in the previous

iteration k, or for given initial global parameters, i.e.,

prices λ
(0)
P and λ

(0)
A ) according to (IV-C1)

ii) Sum up all bids for power and for AS and clear the

markets (i.e., calculate the prices for which constraints

(2a),(2b) are satisfied); update the prices

2) Implementation: It is straightforward to verify that in

each iteration all system constraints, local and global, are

satisfied. Because the procedure, which is in essence equal

to market clearing procedure, is done in each iteration step,

it is guaranteed that all the constraints are met. This fact has

the following advantageous practical implication: it is now

possible to break the execution of the iterative optimization

before actually reaching the optimum without violating the

system’s constraints.

In simulations it has been observed that in some cases,

depending on choice of initial prices or market outcome in

one of iterations, it could happen that ratio of prices is so

unfavorable for AS that there are not enough bids to clear the

AS market. This is due to taking local constraints into account

only on local and not as well global level. In that sense, this

algorithm is not robust.

V. SIMULATION RESULTS AND DISCUSSION

Simulations are run in Matlab on a model of 12 nodes

devised from Table 1. of [13] where typical range of power

market parameters is listed. Simulations are run for several

cases, but only one of them is presented here as similar

conclusions hold for all of them. The simulation parameters

are given in Table I. In the presented case, the required amount

TABLE I
SIMULATION PARAMETERS

BRP α β pi pi

1 0.008 40.0 0 155
2 0.009 46.0 0 190
3 0.012 44.0 0 150
4 0.012 45.0 0 150
5 0.011 43.0 0 140
6 -0.008 50.0 -150 0
7 -0.010 48.0 -150 0
8 -0.011 47.0 -150 0
9 -0.014 49.0 -150 0

10 -0.012 47.5 -150 0
11 -0.008 50.0 -150 0
12 -0.015 47.0 -150 0

of reserves is chosen to be Areq = 120 and μ = 0.06 for all

BRPs. To facilitate the comparison of algorithms, the same

initial condition and stopping criterion are implemented in

both algorithms.

Optimal prices are calculated to be λ∗
P = 46.68 and

λ∗
A = 2.82. The results of the simulations of both market

arrangements (PBM and CBM), are given in Figure 1 and

Figure 2. First observation is that, indeed, both methods

converge to the real optimum, i.e., the solution obtained by GS.

PBM procedure reached the optimum after k = 116 iterations,

while it took only k = 16 iterations for CBM to find it.

The PBM method has proven to be very sensitive to the

choice of the step size update ρ
(k)
P and ρ

(k)
A , see equation

(8a) and (8b). In case of choosing too small step size, the

convergence might be very slow, or, in case of too big param-

eters ρ
(k)
P and ρ

(k)
A , Lagrange multipliers, i.e. prices, could be

too oscillatory. The speed of convergence also depends on the

choice of initial prices.

However, while PBM has shown to be significantly depen-

dant on choice of ρ
(k)
P and ρ

(k)
A which can lead to slowness

and oscillatory behavior, it has also proven to be more robust

with respect to choosing the initial prices compared to CBM.
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Fig. 1. Normalized prices for power and AS on PBM markets.
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Fig. 2. Normalized prices for power and AS on CBM markets.

VI. CONCLUSIONS

In this paper, we studied the interaction of power and AS

markets and investigated different approaches of integrating

these markets. It has been shown that in current market

auctions the optimal social welfare is, in general, not reached

even under conditions of the perfect market competition, and

that BRPs are not available to offer bids to the market in such

way that the maximal economic efficiency is achieved.

In this paper, we suggested and analyzed two new iterative

power and AS market designs. They are both based on decom-

position methods, with the important difference that in one

case (PBM) BRPs bid only optimal values of power and AS,

while in the other case (CBM) the the BRPs submit complete

curves that describe dependencies between power and price.

In the first case, the global constraints are fulfilled only in

the optimal point. In the second case, all the constraints are

satisfied in every iteration and if the optimization is stopped

before actually reaching the optimum, the only property lost

is optimality itself.

Simulation results show some weak points of the PBM

design, such as possible slow convergence and great oscil-

lations in prices. Still, for this market design, convergence

is analytically proven, unlike that for the CBM design. The

CBM markets converge in the significantly smaller number of

iterations, but on the downside, the method is sensitive to a

choice of the initial market prices. However, in both designs

the effects of errors in prediction of market outcome for BRPs

are removed and the overall social welfare is increased when

compared to today’s situation.
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