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Abstract: The problem of stabilizing networked dynamical systems (NDS) in a scalable fashion
is addressed. As a first contribution, an example is provided to demonstrate that the standard
NDS stabilization methods can fail even for simple linear time-invariant systems. Then, a
solution to this issue is proposed, in which the controller synthesis is decentralized via a set
of parameterized local functions. The corresponding stability conditions allow for max-type
construction of a Lyapunov function (LF) for the full closed-loop system, while neither of the
local functions is required to be a local LF. It is shown that the provided approach is non-
conservative in the sense that it is able to find a stabilizing control law for the motivating
example network, whereas state-of-the-art non-centralized Lyapunov techniques fail. For input-
affine NDS and quadratic parameterized local functions, the combined LF synthesis and control
scheme can be formulated as a set of low-complexity semi-definite programs that are solved
on-line, in a receding horizon manner.
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1. INTRODUCTION

Electrical power networks, urban water supply infrastruc-
tures, automated highways, coupled chemical processes
and the Internet are but a few examples of systems that
consist of a large number of interacting dynamical sub-
systems, see, e.g., (Strogatz, 2001; Camponogara et al.,
2002; Dunbar, 2007; Venkat et al., 2008; Negenborn et al.,
2008) and the references therein. Many of such networked
dynamical systems (NDS) are characterized by significant
nonlinearities, strict input and state constraints and, most
importantly, coupling dynamics.

One of the challenges in NDS research is to establish
asymptotic stability in a scalable way, which is crucial in
the design of globally stabilizing control laws. Convention-
ally, stability is determined by verifying the existence of
a quadratic Lyapunov function (LF), given a linearized
description of the system dynamics. However, the large
size of NDS (power systems, for instance, can have millions
of states) renders this method infeasible, as the required
full system model is usually difficult to obtain and the
corresponding LF synthesis problem, formulated as a semi-
definite program (SDP), comes with a computational bur-
den that can be arbitrarily large.

The issues associated with the application of classical
Lyapunov methods to large-scale NDS motivate the need
for decentralizing the standard asymptotic stability condi-
tions. Non-centralized stability analysis typically relies on
dissipativity theory to generate a LF from a set of local
storage and supply functions, see (Willems, 1972). Perhaps
the simplest dissipativity-based stabilization methods re-

quire linear system dynamics and employ fixed, quadratic
storage functions and constant supply rates to obtain a
separable set of SDP problems that are solved off-line,
in a decentralized fashion. This includes approaches that
require the supply functions to be zero for all the sys-
tems in the network, and consider storage functions that
are local Lyapunov functions, see, e.g., (Sandell et al.,
1978; Šiljak, 1991). Although decentralized methods are
attractive because of their low complexity, they are often
conservative, which significantly limits their applicability.

More advanced scalable Lyapunov methods aim to increase
flexibility with respect to decentralized synthesis by em-
ploying state-parameterized supply functions that can be
generated in a distributed fashion. As an example, we men-
tion the scheme that was recently proposed in (Jokić and
Lazar, 2009). This technique employs a set of parameter-
ized supply rates and fixed, positive-definite storage func-
tions, i.e., structured Lyapunov functions, the sum of which
yields a Lyapunov candidate for the full network. However,
the existing tractable, distributed methods for a-priori
generating a set of quadratic structured LFs and supply
rates for linear NDS, see, e.g., (Langbort et al., 2004), come
with communication requirements that are incompatible
with many large-scale applications. In (Hermans et al.,
2010), a partial solution to this issue was provided that is
based on “max-type dissipativity conditions”. Such con-
ditions do not require distributed optimization and allow
for max-type construction of a LF, which provides more
flexibility than the sum-type construction employed by
the structured LF scheme, see also (Dashkovskiy et al.,
2010). Even so, both the decentralized and distributed
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schemes described above suffer from the impediment that
is characteristic to a-priori fixed storage function synthesis.

The contribution of this paper is twofold. First, we illus-
trate the conservatism associated with off-line LF synthe-
sis by providing a motivating example of a controlled NDS
that does not admit construction of a Lyapunov function
from a set of fixed quadratic storage functions, but that
is stable nonetheless. Then, the objective is to find a
solution to this issue, by endowing the storage functions
with a finite set of state-dependent parameters. Stability
conditions similar to the ones provided in (Hermans et al.,
2010) are employed to allow for max-type construction of
a Lyapunov function for the full network, while neither
of the parameterized storage functions is required to be a
local LF. The merit of the proposed approach is that the
parameterized local storage functions can be constructed
during operation, i.e., along a trajectory, via a collection
of coupled convergence conditions. Thus, the impediment
of off-line synthesizing structured LFs via fixed storage
functions is removed. The provided stability conditions
are efficiently exploited in devising a non-centralized con-
trol scheme that relies on non-iterative communication
among directly coupled systems only. For input-affine NDS
and quadratic parameterized local functions, the combined
synthesis and stabilization scheme can be implemented by
solving a single low-complexity SDP problem at each node,
in a receding horizon fashion. The motivating example is
used to demonstrate that the concepts proposed in this
paper may allow for stabilization in cases where conven-
tional non-centralized methods based on off-line generated
fixed quadratic storage functions and static state feedback
fail.

2. PRELIMINARIES

Let C, R, R+, Z and Z+ denote the sets of complex num-
bers, reals, non-negative reals, integers and non-negative
integers, respectively. For each c ∈ R and Π ⊆ R we
define Π≥c := {k ∈ Π | k ≥ c} and similarly, Π≤c.
Let ZΠ := Z ∩ Π. For a finite set {xi}i∈Z[1,N] , xi ∈
Rni , N ∈ Z≥1, let col({xi}i∈Z[1,N]) and col(x1, . . . , xN )

denote the vector
(
x>1 , . . . , x

>
N

)>. Let 0n be the zero
vector in Rn. For x ∈ Rn, let ‖x‖ be an arbitrary p-

norm, i.e., ‖x‖p :=
(∑n

i=1 |[x]i|p
) 1

p for p ∈ Z[1,∞) and
‖x‖∞ := maxi=1,...,n |[x]i|, where [x]i, i ∈ Z[1,n], is the i-th
component of x and | · | is the absolute value operator.
For a finite set {Mi}i∈Z[1,N] ,Mi ∈ Rni×mi , N ∈ Z≥1,
let diag({Mi}i∈Z[1,N]) be a

∑N
i=1 ni by

∑N
i=1mi matrix

with diagonal blocks Mi and all-zero off-diagonal blocks.
Let z := {z(l)}l∈Z+ with z(l) ∈ Rn, l ∈ Z+, denote an
arbitrary sequence. For a set S ⊂ Rn, let int(S) be the
interior of S. A function ϕ : R+ → R+ is in class K if
it is continuous, strictly increasing and ϕ(0) = 0; ϕ is in
class K∞ if ϕ ∈ K and lims→∞ ϕ(s) = ∞. A function
β : R+ × R+ → R+ is in class KL if for all k, s ∈ R+,
β(·, k) ∈ K, β(s, ·) is decreasing and limk→∞ β(s, k) = 0.

Consider the discrete-time autonomous nonlinear system
x(k + 1) = Φ(x(k)), k ∈ Z+, (1)

where x(k) ∈ Rn is the state at discrete-time instant k and
Φ : Rn → Rn is a nonlinear function. For simplicity, let
the origin be an equilibrium of (1), i.e., Φ(0n) = 0n.

Next, suppose that X ⊂ Rn contains an open neighbor-
hood of 0n, and consider the following definition.
Definition 2.1. (i) System (1) is globally asymptotically
stable (GAS) if there is a KL-function β(·, ·) such that the
trajectories of (1) satisfy ‖x(k)‖ ≤ β (‖x(0)‖ , k) for all k ∈
Z+ and x(0) ∈ Rn. (ii) System (1) is globally exponentially
stable (GES) if it is GAS with β(s, k) := csµk, for some
c ∈ R≥1 and µ ∈ R[0,1). System (1) is exponentially stable
in X, denoted by ES(X), if this property holds only for
x(0) ∈ X.
Theorem 2.2. (Jiang and Wang, 2001; Lazar, 2006). Let
α1, α2 ∈ K∞, ρ ∈ R[0,1) and V : Rn → R+ satisfy

α1 (‖x‖) ≤ V (x) ≤ α2 (‖x‖) (2a)
V (Φ (x)) ≤ ρV (x) (2b)

for all x ∈ Rn. Then (1) is GAS.

A function V (·) that satisfies the conditions of Thm. 2.2
is a Lyapunov function (LF) for system (1).

Consider a directed connected graph G = (S, E) with a
finite number of vertices S = {ς1, . . . , ςN} and a set of
directed edges E ⊆ {(ςi, ςj) ∈ S × S | i 6= j}. In a NDS, a
dynamical system described by the difference equation

xi(k + 1) = φi(xi(k), vi(xNi(k))), k ∈ Z+, (3)
is assigned to each vertex ςi ∈ S. Thus, xi ∈ Rni is the
state of system i ∈ I := Z[1,N ], i.e., the system assigned
to vertex ςi. With each edge (ςj , ςi) ∈ E we associate a
function vij : Rnj → Rnvij that defines the interconnection
between systems j and i, i.e., vij(xj(k)) characterizes how
xj(k) influences the dynamics of system i. Let Ni := {j |
(ςj , ςi) ∈ E} be the set of indices corresponding to the
direct neighbors of system i. A direct neighbor of system
i is any system whose states/outputs appear explicitly
(via vij(·)) in the equations that govern the dynamics
of system i. Clearly, if j ∈ Ni, this does not necessarily
imply that i ∈ Nj . Let N i := Ni ∪ {i}. We define
xNi

(k) := col({xj(k)}j∈Ni
) as the vector that collects all

the state vectors of the direct neighbors of system i and
vi(xNi

(k)) := col({vij(xj(k))}j∈Ni
) ∈ Rnvi as the vector

that collects all the vector-valued interconnection signals
that enter system i. The functions φi : Rni × Rnvi → Rni

and vij(·) satisfy φi(0ni
, 0nvi

) = 0ni
for all i ∈ I and

vij(0nj
) = 0nvij

for all (i, j) ∈ I ×Ni.
Finally, let the overall NDS dynamics be written in com-
pact form as

x(k + 1) = Φ(x(k)), k ∈ Z+, (4)
where x = col({xi}i∈I) ∈ Rn, n =

∑
i∈I ni, and where

Φ : Rn → Rn is defined as Φ(x) := col({φi(xi)}i∈I). From
the assumptions on φi(·) it readily follows that the origin
is an equilibrium of (4), i.e., Φ (0n) = 0n.

3. A MOTIVATING EXAMPLE

Scalable Lyapunov methods play a key role in the design
of non-centralized control laws for NDS. The existing
techniques for establishing stability in a non-centralized
way generally construct a LF from a set of fixed, quadratic
storage functions that act on local state vectors only. The
first contribution of this paper is to provide an example
network to illustrate that these methods may fail, even for
simple linear and time-invariant networks.
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Consider the following set of systems, interconnected as
shown in Fig. 1 and having states and inputs xi ∈ R2 and
ui ∈ R, respectively, for i ∈ Z[1,4]:

xi(k + 1) = Aiixi(k) +
∑
j∈Ni

Aijxj(k) +Biui(k), (5)

where N1 = {2, 3}, N2 = {1, 4}, N3 = {2}, N4 = {2},

A =

[
A11 A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34
A41 A42 A43 A44

]
=



− 3
4 −1 1

2
1
4 −

1
2

1
2 0 0

1
4 0 1

4 0 1 1
2 0 0

− 3
4 −

1
2 −

1
2 −1 0 0 − 1

2 −
1
4

1
4

1
4 0 − 3

4 0 0 1
2 1

0 0 −1 3
4

3
4 0 0 0

0 0 3
4 −

3
4 0 1 0 0

0 0 0 − 1
2 0 0 − 1

2
1
4

0 0 0 1
4 0 0 − 1

2 −
1
4


and

B =

[
B1 0 0 0
0 B2 0 0
0 0 B3 0
0 0 0 B4

]
= diag

([
0

− 1
2

]
,

[
0
1
2

]
,

[
1
2
0

]
,
[
−1
−1

])
.

The dynamics of the overall network are written in com-
pact form as x(k + 1) = Ax(k) + Bu(k), where x =
col(x1, . . . , x4) ∈ R8 and u = col(u1, . . . , u4) ∈ R4. System
(5) is not open-loop stable; some of the eigenvalues of A
lie outside the open unit disk B := {λ ∈ C | |λ| < 1}.
Moreover, it can be shown that system 3 is neither open-
loop asymptotically stable nor stabilizable under decou-
pled operation, i.e., if xj(k) is zero for all j ∈ N3 and
k ∈ Z+. Still, it is possible to stabilize system (5) using
a static global-state feedback law u = Kx, for some
K ∈ R4×8, as A and B satisfy the Kalman rank condition
for controllability (i.e., rank [B AB ... A7B ] = 8).

Next, consider the design of such a feedback law for
(5). State-of-the-art non-centralized schemes for assessing
closed-loop stability usually employ a set of storage func-
tions {Vi(·)}i∈I with Vi(xi) = x>i Pixi, Pi ∈ Rni×ni , to
construct a Lyapunov candidate V (x) :=

∑
i∈I Vi(xi) =

x>Px with block-diagonal P := diag({Pi}i∈I) ∈ Rn×n.
Note that in many approaches, neither of the functions
Vi(·) is required to be a LF for its corresponding local
system, see, e.g., (Langbort et al., 2004; Jokić and Lazar,
2009). In this case, the above described methods succeed
if there exist matrices P := diag({Pi}i∈Z[1,4]) ∈ R8×8,
K ∈ R4×8 such that P � 0 and

(A+BK)>P (A+BK)− P ≺ 0, (6)

in accordance with Thm. 2.2. Verifying the existence of
matrices P,K that satisfy the above inequality amounts to
solving a semi-definite program ((6) can be rewritten into
linear form via the Schur complement rule), which is trivial
for the small NDS considered here. Using this approach,
it can be shown that there is no block-diagonal P :=
diag({Pi}i∈Z[1,4]) with Pi ∈ R2×2, i ∈ Z[1,4], that satisfies
(6) and, consequently, conventional scalable design of
fixed state-feedback controllers fails. Notice that this also
impedes the application of decentralized control schemes
that rely on a block-diagonal K, see, e.g., (Sandell et al.,
1978; Šiljak, 1991). The same limitation applies to scalable
stabilization techniques that belong to the framework of
model predictive control, see, e.g., (Dunbar, 2007; Alessio
and Bemporad, 2007; Raimondo et al., 2007). For all these
methods, the stability guarantee completely depends on
the existence of fixed quadratic storage functions.

1

3

2

4

Fig. 1. Topology of the example network.

Motivated by the above observations, the objective of this
paper is to provide an alternative scalable stabilization
method that is able to stabilize discrete-time NDS (5).
This is attained via parameterized storage functions.

4. MAIN RESULTS

Let c1 ∈ R>0, c2 ∈ R≥c1 and consider a Lyapunov function
with quadratic bounds, i.e., a LF V : Rn → R+ that
satisfies (2a) with α1(s) := c1s

2, α2(s) := c2s
2.

Lemma 4.1. The following two statements are equivalent:

(i) System (4) is GES.
(ii) System (4) admits a LF with quadratic bounds.

Lemma 4.1 is proven in (Jiang and Wang, 2002, Thm. 2),
for the general case of a time-varying V and system
dynamics. Next, we decentralize this result by showing
that every LF with quadratic bounds can be decomposed
into a set of local, quadratic storage functions, each
parameterized by a full-state-dependent matrix P̃i(x) ∈
Rni×ni .
Lemma 4.2. Let V (x) be a LF for (4) with quadratic

bounds. Then there exist P̃i(x) ∈ Rni×ni , i ∈ I, such

that V (x) = maxi∈I Vi(P̃i(x), xi) with Vi(P̃i(x), xi) =
x>i P̃i(x)xi, for all xi ∈ Rni .

Proof. To prove Lemma 4.2, let us construct functions
Vi(P̃i(x), xi) that equal V (x) except when xi lies within
a particular neighborhood of the origin, whose size is
determined by the full network state x. Since ‖xi‖22 ≤
‖x‖22 =

∑
i∈I ‖xi‖22 ≤ N maxi∈I ‖xi‖22, define for all

x ∈ Rn and i ∈ I,

P̃i(x) :=


V (x)‖xi‖−2

2 Ini , ‖xi‖22 ≥ 1
N ‖x‖

2
2,

NV (x)‖x‖−2
2 Ini , ‖xi‖22 < 1

N ‖x‖
2
2 6= 0,

Nc2Ini , ‖x‖22 = 0.

(7)

From the quadratic bounds on V (x), it follows that P̃i(x)
is well-defined and c1Ini

� P̃i(x) � Nc2Ini
for all x ∈ Rn.

Next, we show by contradiction that for any x ∈ Rn,
‖xi‖22 ≥ 1

N ‖x‖22 for at least one i ∈ I. Suppose that
‖xi‖22 < 1

N ‖x‖22 for all i ∈ I. This implies that ‖x‖22 =∑
i∈I ‖xi‖22 < N 1

N ‖x‖22 = ‖x‖22. Since this assumption
yields a contradiction, for all x ∈ Rn, there exists a non-
empty set Ĩ ⊆ I such that ‖xl‖22 ≥ 1

N ‖x‖22 for l ∈ Ĩ.
Now consider the functions Vi : Rni×ni ×Rni → R+, with
Vi(P̃i(x), xi) := x>i P̃i(x)xi for all i ∈ I. From the above
result and the construction of P̃i(x), it follows that

max
i∈I

Vi(P̃i(x), xi) = Vl(P̃l(x), xl) = V (x), l ∈ Ĩ, x ∈ Rn,

which concludes the proof. �

Let Pi := Rni×ni , i ∈ I, denote a set of real-valued param-
eter sets/matrices and consider the following definition.
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Definition 4.3. Let c1,i ∈ R>0, c2,i ∈ R≥c1,i
and ρi ∈

R[0,1) for all i ∈ I. A set of functions {Vi}i∈I with
Vi(Mi, xi) := x>i Mixi, Mi ∈ Pi := Rni×ni , that satisfy

c1,i‖xi‖22 ≤ Vi(Pi(x), xi) ≤ c2,i‖xi‖22 (8a)
Vi(Pi(x+), x+

i ) ≤ ρimaxj∈IVj(Pj(x), xj), (8b)

for all x ∈ Rn, x+ = Φ(x), i ∈ I and some set of full-
state parameterizations Pi : Rn → Pi, i ∈ I, is a set of
parameterized quadratic LFs (p-qLFs) for (3).
Corollary 4.4. The following statements are equivalent:

(i) System (4) is GES.
(ii) System (4) admits a set of p-qLFs.

Corrolary 4.4 straightforwardly follows from Lemma 4.1
and Lemma 4.2, by observing that Vi(Pi(x), xi) with
Pi(x) := P̃i(x) as defined by (7) yields p-qLFs that satisfy
(8) with c1,i = c1, c2,i = c2, and ρi = ρ, i ∈ I. Local func-
tions whose maximum defines a LF are frequently used in
NDS stability studies, see, e.g., (Dashkovskiy et al., 2010),
which deals with establishing input-to-state stability for
networked systems that are subject to disturbances. How-
ever, in contrast to the method employed in (Dashkovskiy
et al., 2010), (8b) requires neither of the functions Vi to be
a LF for the corresponding local system dynamics, which
decreases conservatism considerably.

Next, we propose two non-centralized synthesis solutions
to the NDS stabilization problem based on the above
results. Firstly, consider a global-state feedback scheme
that serves as a starting point for both approaches. For
this, consider a non-autonomous NDS with graph G =
(S, E), and let each system ςi ∈ S be governed by the
dynamics
xi(k + 1) = ψi(xi(k), vi(xNi(k)), ui(k)), k ∈ Z+. (9)

Here, xi(k) ∈ Rni , vi(xNi(k)) ∈ Rnvi and ui(k) ∈
Rmi is the control input to the i-th system at time k.
The functions ψi : Rni × Rnvi × Rmi → Rni satisfy
ψi(0ni , 0nvi

, 0mi) = 0ni for all i ∈ I.

Given Def. 4.3, let us formulate an optimization control
problem to be solved on-line, in a receding horizon fashion,
that yields trajectory-dependent p-qLFs. This means that
the computed sequences {Pi(x(k))}k∈Z+ are valid only
along the corresponding closed-loop trajectory {x(k)}k∈Z+ .
Problem 4.5. Centralized p-qLF-based synthesis.
At each k ∈ Z+, let x(k) := col({xi(k)}i∈I) be known. Let
c1,i ∈ R>0, c2,i ∈ R≥c1,i

and ρi ∈ R[0,1), i ∈ I, be given
and consider the following inequalities

c1,i‖xi(0)‖22 ≤ Vi(Pi(x(0)), xi(0)) ≤ c2,i‖xi(0)‖22 (10a)

c1,i‖x+
i (k)‖22 ≤ Vi(Pi(x+(k)), x+

i (k)) ≤ c2,i‖x+
i (k)‖22 (10b)

Vi(Pi(x
+(k)), x+

i (k)) ≤ ρimaxj∈IVj(Pj(x(k)), xj(k)), (10c)

for all x+
i (k) = ψi(xi(k), vi(xNi(k)), ui(k)), i ∈ I. If k = 0,

find ui(0) ∈ Rmi and Pi(x(0)), Pi(x+(0)) ∈ Pi that satisfy
(10). If k ∈ Z≥1, set Pi(x(k)) = Pi(x+(k − 1)) and find
ui(k) ∈ Rmi , Pi(x+(k)) ∈ Pi that satisfy (10b)–(10c). �

Notice that apart from the maxj∈I Vj(·)-term in (10c),
conditions (10) concern subsystem parameters only. This
allows for non-centralized implementation of Prob. 4.5, by
assigning the problem of synthesizing Pi(x(k)) and ui(k)
to network node i ∈ I, while providing it with knowledge

of the i-th subsystem model, i.e., (9), state information
(xi, vi(xNi)) and the value of maxj∈I Vj(·). The latter
can be determined efficiently via multi-branched recursive
communication, see (Cormen et al., 2001).

Next, let πi : Rn → Rmi be a feedback law that selects an
arbitrary control action ui out of the set of solutions to
Prob. 4.5 for each x ∈ Rn. Moreover, let

xi(k + 1) = φi(x(k)), k ∈ Z+, (11)

with φi(x) := ψi(xi, vi(xNi
), πi(x)), describe system (9)

in closed-loop with global-state feedback law πi.
Theorem 4.6. Let X ⊂ Rn with 0n ∈ int(X) be bounded
and such that Prob. 4.5 is recursively feasible for all
x(0) = col({xi(0)}i∈I) ∈ X. Then, (11) is ES(X).

Proof. Feasibility of Prob. 4.5 for all x0 := x(0) ∈ X and
corresponding x(k) ∈ Rn, k ∈ Z+, allows for recursive
application of (10c), which yields
V (P (x(k)), x(k))

:= maxi∈IVi(Pi(x(k)), xi(k)) ≤ ρkV (P (x0), x0),
where ρ := maxi∈I ρi and P (x) := {Pi(x)}i∈I . Then,
(10a)–(10b) yield

V (P (x(k)), x(k)) ≥ 1
N

∑
i∈I c1,i‖xi(k)‖22 ≥

c1
N ‖x(k)‖22

V (P (x(k)), x(k)) ≤ maxi∈I
(
c2,i‖xi(k)‖22

)
≤ c2,i‖x(k)‖22,

where c1 := mini∈I c1,i and c2 := maxi∈I c2,i. Therefore
‖x(k)‖22 ≤ ρk Nc2c1

‖x(0)‖22, for all x(0) ∈ X and k ∈ Z+.

Hence, (11) is ES(X) with µ :=
√
ρ and c :=

√
Nc2
c1

. �

Even though methods for evaluating maxj∈I Vj(·) in an ef-
ficient, distributed fashion exist, the corresponding extent
of communication might still become infeasible for certain
large-scale applications. In what follows, we will therefore
propose a way to further decentralize the parameterized
stabilization problem, by generating Vi(Pi(x(k)), xi(k))
and ui(k) based on local information only.

Let {Ji(·)}i∈I with Ji(λi) := λi for λi ∈ R+ be a set of
cost functions. Now consider the following problem.
Problem 4.7. Almost-decentralized p-qLF-based synthesis.
Consider Prob. 4.5, but replace (10c) by

Vi(Pi(x+(k)), x+
i (k)) ≤

ρimaxj∈N i
Vj(Pj(x(k)), xj(k)) + λi(k) (12a)

λi(k) ≥ 0, (12b)

for all x+
i (k) = ψi(xi(k), vi(xNi

(k)), ui(k)), i ∈ I.
If k = 0, minimize Ji(λi(0)) over ui(0) ∈ Rmi ,
Pi(x(0)), Pi(x+(0)) ∈ Pi and λi(0) such that (10a)–(10b)
and (12) hold. If k ∈ Z≥1, set Pi(x(k)) = Pi(x+(k − 1))
and minimize Ji(λi(k)) over ui(k) ∈ Rmi , Pi(x+(k)) ∈ Pi
and λi(k) such that (10b) and (12) hold. �

Note that in Prob. 4.7, only subsystem model (9) and the
values of (xi, vi(xNi

)) and maxj∈N i
Vj(·) are needed to

synthesize Pi(x(k)), ui(k) and λi(k). From N i := Ni∪{i},
it follows that a single run of information exchange among
direct neighbors is sufficient to acquire this knowledge.

Next, let πi : Rni × Rnvi → Rmi be a feedback law that
selects an arbitrary control action ui from the solution set
of Prob. 4.7 for each (xi, vi(xNi)) ∈ Rni × Rnvi . Since
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λi(k) is unbounded from above for all k ∈ Z+, Prob. 4.7 is
recursively feasible and πi is well-defined for all i ∈ I. Let

xi(k + 1) = φi(xi(k), vi(xNi(k))) (13)
with φi(xi, vi(xNi

)) := ψi(xi, vi(xNi
), πi(xi, vi(xNi

))),
denote the difference equation corresponding to (9) in
closed-loop with local-state feedback law πi. Let λ∗i (k)
denote the λi that optimizes Prob. 4.7 at instant k ∈ Z+.

Now consider the following theorem.
Theorem 4.8. Let XD ⊆ X ⊂ Rn, with 0n ∈ int(XD),
be the set of initial conditions x0 := x(0) such that all
corresponding trajectories of (13) satisfy x(k) ∈ X, for all
k ∈ Z+, and let the assumptions on X given in Thm. 4.6
hold. Then, (13) is ES(XD).

Proof. First, we relate Prob. 4.7 to Prob. 4.5. Observe
that recursive feasibility of Prob. 4.5 for all x(0) ∈ X
yields point-wise feasibility of (10b)–(10c) for all x(k) ∈ X,
independent of k ∈ Z+. Thus, given x(k) ∈ X and
Pi(x(k)) ∈ Pi, there exist ūi(k) ∈ Rmi and P̄i(x+(k)) ∈ Pi,
i ∈ I, that satisfy (10b)–(10c). Now consider the function
∆i : P1 × . . .× PN × Rn, with
∆i(P (x), x) :=

ρi

(
max
j∈I

Vj(Pj(x), xj)− max
j∈N i

Vj(Pj(x), xj)
)
.

Due to feasibility of (10c) for x(k) ∈ X and Pi(x(k)) ∈
Pi, k ∈ Z+, there is a λi(k) such that 0 ≤ λi(k) ≤
∆i(P (x(k)), x(k)), that satisfies (12) for P̄i(x+(k)) and
ūi(k), and yields x+(k) ∈ X if x(0) ∈ XD. By construction,

0 ≤ ∆i(P (x(k)), x(k)) ≤ ρimaxj∈I Vj(Pj(x(k)), xj(k))
for all Pi(x(k)) ∈ Pi, x(k) ∈ Rn. Note that the term
maxj∈I Vj(Pj(x), xj) is bounded on bounded sets.

Next, we prove that (13) is ES(XD). Minimization of
Ji(λi(k)) over λi(k) yields 0 ≤ λ∗i (k) ≤ ∆i(P (x(k)), x(k))
and consequently
Vi(Pi(x+(k)), x+

i (k)) ≤ ρimaxj∈I Vj(Pj(x(k)), xj(k))
for all x+

i (k) ∈ φ(xi(k), vi(xNi
(k))), i ∈ I and k ∈ Z+.

Then, exponential stability of (13) in XD straightforwardly
follows along the lines of the proof of Thm. 4.6. �

In contrast to (10), conditions (10a)–(10b) and (12) con-
cern local/neighboring system parameters only. Hence, we
have obtained a non-centralized control scheme that guar-
antees closed-loop stability while relying on non-iterative
communication among directly connected systems only.

4.1 Implementation via semi-definite programming

Next, we show that for input-affine NDS and parameter-
ized quadratic LFs, Prob. 4.7 can be formulated as a set
of low-complexity semi-definite programming problems.
Consider NDS dynamics (9) with
ψi(xi, vi(xNi), ui) := fi(xi, vi(xNi)) + gi(xi, vi(xNi))ui, (14)

for i ∈ I, where xi ∈ Rni , ui ∈ Rmi , fi : Rni×Rnvi → Rni ,
gi : Rni × Rnvi → Rni×mi , such that fi(0ni

, 0nvi
) = 0ni

.
Let γi ∈ R>0, Γi ∈ R≥γi

and let Pi(x(0)) = ΓiIni
. Now

consider the matrix inequalities
Zi(k) � Γ−1

i Ini , Zi(k) � γ−1
i Ini , λi(k) ≥ 0 (15a)[

ρi max
j∈N i

xj(k)>Pj(x(k))xj(k) +λi(k) ∗

f̃i(x(k)) + g̃i(x(k))ui(k) Zi(k)

]
� 0, (15b)

where f̃i(x) := fi(xi, vi(xNi)) and g̃i(x) := gi(xi, vi(xNi)).
Lemma 4.9. At time k ∈ Z+ and node i ∈ I, let xi(k),
xNi

(k), ρi, γi, Γi and {Pj(x(k))}j∈N i
be given. Sup-

pose that {Zi(k), ui(k), λi(k)} is a solution of (15). Then
Pi(x+(k)) = Zi(k)−1, ui(k) and λi(k) is a solution of (10b)
and (12) with c1,i := γi and c2,i := Γi.

Proof. As Pi(x(0)) = ΓiIni
, (10a) follows with c1,i := γi

and c2,i := Γi. Also, the Schur complement of (15b) gives

ρimaxj∈N i
x>j Pj(x)xj + λi

−
(
f̃i(x) + g̃i(x)ui

)>
Z−1
i

(
f̃i(x) + g̃i(x)ui

)
≥ 0,

(16)

where the time-dependence was omitted for brevity. Com-
bining (14) and (16) yields (12a) with Pi(x+(k)) =
Zi(k)−1. Moreover, (15a) yields (12b) and γiIni

�
Zi(k)−1 = Pi(x+(k)) � ΓiIni

, which is (10b). �

Lemma 4.9 provides a scalable SDP-based receding hori-
zon control scheme for input-affine NDS. The resulting set
of local control laws is stabilizing under recursive feasibility
of Prob. 4.5, or, under recursive optimality with respect to
linear cost functions Ji(λi) if Prob. 4.7 is considered.

5. SIMULATION RESULTS

Next, p-qLF-based controller synthesis is illustrated for
the network of linear time-invariant dynamical systems
described in Sect. 3, using the SDP-based implemen-
tation given in Sect. 4.1. Network (5) is described by
(14) with fi(xi, vi(xNi

)) := Aiixi +
∑
j∈Ni

Aijxj and
gi(xi, vi(xNi

)) := Bi, for i ∈ Z[1,4]. In the simula-
tions, the values γi = 0.1, Γi = 1 and ρi = 0.95
were used for all i ∈ Z[1,4]. Fig. 2 shows the trajecto-
ries of x(k), ui(k) and λi(k) as generated by Prob. 4.7
in closed-loop with (5) for initial condition x(0) =
[−0.59 −0.91 −0.05 −0.76 0.65 −0.96 0.46 0.50 ]>. The numbers
in the λi(k) plot denote the index of the “dominant sub-
system”, i.e., arg maxi∈Z[1,4] Vi(Pi(x(k)), xi(k)) at discrete-
time instants k ∈ Z[0,15]. The corresponding evolution
of Vi(Pi(x(k)), xi(k)) and V (P (x(k)), x(k)) := maxi∈Z[1,4]

Vi(Pi(x(k)), xi(k)) is depicted in Fig. 3. Therein, it can
be observed that even though neither of the p-qLFs
Vi(·) is enforced to decrease monotonically, the corre-
sponding Lyapunov function for the full network V (·)
does, which in turn results in asymptotically converg-
ing state trajectories. Also, note that λ3(k) 6= 0 for
k ∈ {4, 9}, to relax convergence condition (12a) on
V3(·) as arg maxj∈Z[1,4] Vj(Pj(x(k)), xj(k)) = 1 /∈ N 3 at
these time instants. Consequently, the control problem
remains feasible and asymptotically converging closed-
loop state trajectories are obtained even though each
controller employs local information only. Fig. 4 shows
the level sets of Vi(Pi(x(k)), xi(k)), i ∈ Z[1,4], i.e., {z ∈
R2 | Vi(Pi(x(k)), z) = 1

2}k∈Z[0,15] . Note that the change
in P4(x(k)), corresponding to the sparsely-connected sys-
tem 4, is rather small. Still, the strong variation of the level
sets for the other systems shows that in this simulation,
the flexibility associated with p-qLF parameterization is
amply exploited by controllers 1–3. This enabled synthesis
of stabilizing control actions, whereas standard Lyapunov
techniques that rely on fixed storage functions failed.
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Fig. 2. Simulated state, input and λi trajectories.
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Fig. 4. Level sets of Vi(Pi(x(k)), xi(k)) for k ∈ Z[0,15].

6. CONCLUSIONS

This paper addressed the problem of stabilizing networked
dynamical systems in a scalable way. As a first contribu-
tion, an example was provided to illustrate that standard
NDS stabilization methods can fail even for simple linear
time-invariant systems. Then, a solution to this issue was
proposed, by decentralizing the controller synthesis via a
set of parameterized local functions. The employed sta-
bility conditions allow for max-type construction of a Lya-
punov function for the closed-loop system, while neither of
the parameterized functions is required to be a local LF. It
was shown that the provided approach is non-conservative,
in the sense that it can find a stabilizing control law for the
motivating example network, whereas state-of-the-art non-
centralized Lyapunov techniques failed. For input-affine
NDS and quadratic parameterized functions, the control
scheme was formulated as a set of low-complexity semi-
definite programs that are solved in a receding horizon
manner.
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