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 

Abstract—As it is well known, nanorobotics is the field that 

deals with the controlled manipulation with atomic and 

molecular-sized objects. In order to control nanorobots in the 

regions of mechanics, electronics, electromagnetism, photonics 

and biomaterials we have to have the ability to construct of the 

related artificial control potential fields. At the nanoscale the 

control dynamics is very complex because there are very strong 

interactions between nanorobots, manipulated objects and 

nanoenvironment. The problem is to design the control 

dynamics that will compensate or/and control the mentioned 

interactions. The first step in designing of the control dynamics 

for nanorobots is the development of the relativistic 

Hamiltonian (Hamilton functions) that will include external 

artificial control potential fields. Thus, derivation of the first 

and second form of the relativistic Hamiltonians for nanorobots 

control is presented in this paper.  

 

   Index Terms    —    Nanorobotics, Relativistic Hamiltonian, 

Multipotential field, Artificial control field. 

 

I. INTRODUCTION 

     As it is well known, the nanorobotics belongs to the 

multidisciplinary field that deals with the controlled 

manipulation with atomic and molecular-sized objects and 

therefore sometimes is called molecular robotics 1-10.       

Potential applications of the nanorobots are expected in the 

tree important regions: nanomedicine, nanotechnology and 

space applications. In nanomedicine the nanorobots can be 

employed for surgery, early diagnoses, drug delivery at the 

right place (for destroying a cancer cell), biomedical 

instrumentation, pharmacokinetics, monitoring of diabetes 

and genome applications by reading and manipulating DNA 

7. In nanotechnology the nanorobots can be utilized for 

creation of new materials, nanofabrics for different products, 

cell probes with small dimensions, computer memory, near 

field optics, x-ray fabrication, very small batteries and optical 

antennas. In the space applications it is expected that 

nanorobots replace of human being in the intergalactic space 

missions, be hardware and software to fly on satellites and 

have a high level of an artificial intelligence. The complex 

tasks of the future nanorobots are sensing, thinking, acting 

and working cooperatively with the other nanorobots.  

In order to control nanorobots in mechanics, electronics, 

electromagnetic, photonics, chemical and biomaterials 

regions we have to have the ability to construct the related 

artificial control potential fields. At the nanoscale the control 

dynamics is very complex because there are very strong 

interaction between nano robots and nanoenvironment.  Thus, 
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is the development of the relativistic Hamiltonian that will 

include external artificial potential field. This paper has been 

written by consideration of the related theories and 

fundamental laws of physics in  11-21 and 30-37. The 

generally approach to the multidisciplinary nanorobotics field 

has been presented in 22-23. In the derivation of the 

Hamiltonians that includes the external potential fields for 

control in nanorobotics, the new General Lorentz 

Transformation model (the GLTα model derived in 24-26) 

and the new Relativistic Alpha Field Theory (RAFT) in 27- 

29 are employed.  

The first form of the Hamilton function has been derived 

starting with variation principle and using the procedure from 

[31-[32]. In that sense, the relativistic invariant term Ldt 

(where L is the Lagrange function and dt is the differential of 

the time) is derived by employing product of the two 

relativistic invariant terms: proper time dτ and energetic term 

moc
2. Here mo is a rest mass of a sample (particle) and c is the 

speed of the light in a vacuum. It is shown that the relativistic 

invariant term Ldt can also be derived starting with the 

generalized line element ds, since ds2 is a fundamental 

invariant of the four dimensional space-time continuum. The 

obtained first form of the Hamiltonian H is equal to the 

general covariant energy equation Ec that usually can be 

derived by employing the null component of the covariant 

four-momentum vector Po. Further, this form of the 

Hamiltonian can be easily transformed into the expression 

that includes extended momentum as a function of the field 

parameters α and α′. This form is also very important, because 

the obtained Hamiltonian is a linear function of the extended 

momentum and therefore belongs to the Dirac’s like structure 

of the Hamiltonian [16]-[17]. The obtained result gives the 

possibility to compare the coefficients of the well known 

Dirac’s Hamiltonian and the first form of the Hamiltonian 

derived in this paper.  

The second form of the Hamiltonian H has been derived 

starting with the modification of the some relations in the 

previous derivation procedure. This form of the Hamiltonian 

belongs to the usual structure of the classical relativistic 

Hamiltonians [36]-[37]. The main shortage of the second 

form of the Hamiltonian is the fact that this form is a 

nonlinear function of the extended momentum. Thus, the first 

form of the Hamiltonian has got the important priority, 

because this form is linear function of the extended 

momentum. Usually, one can introduce the approximation of 

the second form of the Hamiltonian. It also has been done in 

this paper and resulted with the new form of the Hamiltonian 

as the approximation of its second form.   

This paper is organized as follows. The second section 

presents a process of the determination of the dimensionless 

field parameters α and α′. It is shown that these parameters are 

functions of the potential energy of the multi-potential field 

with n-potentials plus an artificial control field of the 

nanorobot control. The third section shows the derivation of 
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the first form of the Hamiltonian equal to the general 

covariant energy equation. In the fourth section the second 

form of the Hamiltonian has been derived as nonlinear 

function of the related extended momentums. A 

nonrelativistic approximation of the second form of the 

Hamiltonian is discussed in the fifth section. An application 

of the nonrelativistic Hamiltonian into the nonrelativistic 

quantum systems is given in sixth section. The conclusion of 

the paper with some comments is presented in the seventh 

section. Finally, the reference list is shown at the end of this 

paper.  

II. INTRODUCTION OF FIELD PARAMETERS IN 

MULTIPOTENTIAL FIELD   

   Field parameters α and α′ have been introduced in [22]- 

[29] in order to include the influences of a potential field to 

the well known Lorentz coordinate transformation in Special 

Relativity that is related to the vacuum without any potential 

field. Generally, the field parameters α and α′ are 

dimensionless functions of the space time coordinates that 

satisfy the related field equation of the potential field in 

which particle is propagated. Thus, if a particle is present in 

an electromagnetic field, then the field parameters α and α′ 

should satisfy the well known Maxwell's field equations. On 

the other side, if a particle is present in a gravitational field, 

then the field parameters α and α′ should satisfy the well 

known Einstein's field equations. Finally, if a particle is in the 

both mentioned potential fields at the same time, then the 

field parameters α and α′ should satisfy the both field 

equations of that multipotential field. If the potential energy 

U of the particle (sample) in the multipotential field is known, 

then the field parameters α and α′ can be determined as the 

dimensionless functions of that potential energy [23]. In this 

case the obtained solution for the field parameters α and α′ 

should also satisfy the related field equations of the 

multipotential field. At the nanoscale control of a particle 

(sample) motion or/and manipulation we usually have the 

multi-potential field with n-potentials, plus an artificial 

control field of the nanorobot that influents to the particle 

with a potential energy Uc. Thus, the related potential energy 

of the particle (sample) in that case can be calculated by using 

the following equation: 

1 2 n c j cU U U .. U U U U ,

j 1,2,.., n.

      



=
                     (1) 

In the relation (1) Uj is a potential energy of the particle in the 

j-th potential field. Generally, there are four solutions for 

field parameters α and α′ [27] (like in Dirac's theory) as the 

dimensionless functions of the total potential energy U of a 

particle in the related potential field. For the simplicity here 

will be presented the first solution only [23]: 

2

2 2
0 0

2

2 2
0 0

2U U
1 i ,

m c m c

2U U
1 i .

m c m c

 
      

 

 
      

 

                                     (2) 

In the equation (2) mo is a rest mass of a particle, c is the 

speed of the light in a vacuum and i = √(-1) is an imaginary 

unit. In the Hamiltonians, H, derived in the sections III and 

IV, we have to know the product and the difference of the 

field parameters α and α′ from (2):    
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                

 
       

 

=

             (3) 

The relations (2) and (3) are valid for a strong potential field. 

Meanwhile, in the case of a weak potential field (U << moc
2) 

the quadratic term can be neglected and the relations (2) and 

(3) are reduced to the following forms:  

2 2
0 0

2 2
0 0

2U 2U
1 i , 1 i ,

m c m c

2U 2U
1 , 2 i .

m c m c

     

 
       

 
=

                (4)       

In the application of the field parameters one can meet both a 

strong and a weak multipotential field. Therefore, one should 

employ field parameters α and α′ given by (2) and (3) for a 

strong potential field. In the case of a weak potential field, the 

field parameters α and α′ given by the relation (4), should be 

employed.   

An example: let a particle (sample) is an electron that is 

present in the weak two-potential electromagnetic and 

gravitational field and is manipulated (positioned) with a 

nanorobot by artificial potential control energy Uc. We also 

assumed that a gravitational potential field belongs to a 

spherically symmetric non-rotating and non-charged body 

with a mass M. For that case the potential energy of the 

electron with rest mass mo in the mentioned multipotential 

field is given by the relation: 

0
c

m GM
U qV U .

r
                                                    (5) 

Here q is the electric charge of the electron, V is a scalar 

potential of the electromagnetic field, G is the gravitational 

constant and r is a radial position of the electron related to the 

center of gravity of the mass M. Applying (5) to the first line 

of the relations (4) one obtains the related dimensionless field 

parameters in the form: 

c

2 2 2
0 0

c

2 2 2
0 0

Uq V GM
1 i 2 ,

m c rc m c

Uq V GM
1 i 2 .

m c rc m c

 
      

 

 
      

 

                        (6) 

For that example the second line of the relations (4) is 

transformed into the expressions:  
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' =

                     (7) 

In order to control of a particle (a sample) motion or/and 

manipulation in a multipotential field with n-potentials, one 

can divide an artificial control potential energy Uc into two 

parts:   

1 2 1

2

c c c c j

c

U U U , U U , j 1,2,...,n,

U f (e), e w x.

   

  

=
      (8) 

Here e is a vector of the control errors of a particle position 

or/and orientation, w is a desired vector of a particle position 

or/and orientation and x is a vector of a measured particle 

position or/and orientation.  As we can see from the relation 

(8) the first part of the artificial control potential energy Uc1 

has been used for compensation of the influences of the 

natural multipotential field to the particle position or/and 

orientation. The second part of the artificial control potential 

energy Uc2 can be used for control of the particle position 

or/and orientation. Therefore, this part of the artificial control 

potential energy should be a function of the vector of the 

control errors of position or/and orientation. This function 

should be determined by applying some of the control 

methods. 

 

III. DERIVATION OF THE FIRST FORM OF HAMILTONIAN  

 

   An alpha field is a potential field where the influence to 

the dynamics of a particle motion in that field can be 

described by two dimensionless field parameters  and '. In 

order to develop a Hamiltonian that includes dimensionless 

field parameters  and ' of an alpha field, one can start with 

the variation principle [26]-[27]: 

2
1 Ldt extreme.                                                              (9) 

Here L is the Lagrange function and dt is the differential of 

the time. The term Ldt should be a relativistic invariant. We 

know that the differential of the proper time d of the moving 

particle is the relativistic invariant. It is given in the GLTα – 

model by the relation [24]: 

 
1/ 2

2

2 2

cv1 v
d dt dt.

H c c

   
       

 
             (10)   

Here v is a particle velocity and c is the speed of the light both 

in vacuum without any potential field. Parameters  and ' 

are dimensionless field parameters of a multipotential field in 

which a particle is propagating. The parameter  can have two 

values [27],  = ± 1and 2 = 1. The system K' is moving 

relative to the system K with velocity vα: 

 c
v v ,

2


  
                                                     (11)   

The parameter H is determined in the reference [24] by the 

following form:  
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1/ 2 1/ 2
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cvv v
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 


     
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                                                                                        (12) 

In this relation vα is a particle velocity in a multipotential 

field. Now, the relativistic invariant term Ldt can be obtained 

by employing product of the two relativistic invariant terms: 

the proper time dτ from (10) and the rest-mass energetic term, 

moc
2, of the particle standing in a vacuum without any 

potential field (a rest-mass energy). Thus, the Lagrange 

function valid in the GLTα – model may be described by the 

following expression: 

 
1/ 2

2
2

0 2 2

cvv
L m c .

c c

   
      

 
                (13)  

In the case of a vacuum without any potential field, the field 

parameters α and α' from (2) or (4) satisfy the relation α = α' = 

1. For that case the relation (13) is transformed into the 

well-known equation, valid in the Special Relativity [11]: 

1/ 2
2

2
0 2

v
L m c 1 .

c

 
    

 
                                             (14)  

For the small particle velocity v, the Lagrange function (13) is 

transformed into the new relation: 

 2
02 0

0

m c vm v
L m c ..

2 2

  
     

 
      (15)  

The relativistic invariant term Ldt can also be derived 

starting with the line element ds of the GLTα – model, since 

ds2 is a fundamental invariant of the four dimensional 

space-time continuum [26]:  

 2 2 2 2 2 2ds c dt c v dt v dt .                       (16)  

This line element can be rewritten into the following form:  
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                  (17)   

Now, starting with the second equation in (17), the relativistic 

invariant term Ldt can be described in the new form:  

0Ldt i m cds .                                                               (18)   

Thus, the integral property of the motion S is given by the 

relation: 

2 2
1 1 0S Ldt i m cds extreme.                                     (19)   

After substitution the line element ds from the second 

equation in (17) to (19) we obtain the relation: 
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From this relation one can recognize the Lagrange function L 

in the form equal to (13). 

Now, we are ready for the derivation of the Hamiltonian 

H following the well known procedure [31]-[32]: 

i

L L
L v L ,

v

 
   

 



H 

i

q
q

                                      (21)  

where i
q are generalized velocities.  

Applying (21) to the relation (13) one obtains the following 

expression:  
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H                          (22)  

It follows the substitution of the parameter H from (12):  
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                           (23)  

to the relation (22). As the result of this substitution, the 

Hamiltonian H from (22) is transformed into the first form 

equal to the general covariant energy equation Ec: 

 02
c 0

Hm cv
E Hm c .

2

  
   H                   (24) 

In the case of a vacuum without any potential field, the field 

parameters α and α' satisfy the relation α = α' = 1. For that case 

the relation (24) is transformed into the well-known equation, 

valid in the Special Relativity [11]: 
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E 0 E 2
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c


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H                              (25) 

Here HE is the well known Einstein's parameter. The relation 

(24) is very important, because this Hamiltonian H is a linear 

function related to the relativistic momentum P = Hmov and 

therefore belongs to the Dirac’s like structure of the 

Hamiltonian. 

 

IV. DERIVATION OF THE SECOND FORM OF HAMILTONIAN  

 

In order to develop a relativistic Hamiltonian in the 

second form one can start with the solution (24). Applying the 

square operation to the relation (24) and including the 

equality [11]: 

 
22

21 , 1,
4
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                                   (26) 

the equation (24) is transformed into the new form: 
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                          (27) 

This is the energy – momentum equation of a particle moving 

in an alpha field with a relativistic momentum P. Dividing 

this relation with (αα') we obtain the following expression: 
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In the relation (28) He is the extended Hamiltonian and Pe is 

the extended momentum. Now, one can call the relation (3) 

from where we can derive the following equations: 
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Applying (29) to the equation (28) we obtain the second form 

of the Hamiltonian H: 

2
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0 2

0

P U
c m c P U.
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 
H                               (30) 

This Hamiltonian is a function of the extended momentum Pe 

and potential energy U of the particle in the related 

multipotential field. The extended momentum Pe is given by 

the relation: 

e 2
0

P U
P P .

m c

 
   
 

                                                          (31) 

As one can see from (31) the extended momentum Pe includes 

the interaction of the relativistic momentum P with the 

potential energy U. In the case of a vacuum without any 

potential field (U=0), the field parameters α and α' satisfy the 

relation α = α' = 1. For that case the relation (30) is 

transformed into the well-known equation, valid in the 

Special Relativity [11]: 

2 2 2
0 E 0c m c P , P H m v ,  H                           (32) 

where HE is the well known Einstein's parameter,  given by 

(25). 

 

V.  NONRELATIVISTIC APROXIMATION OF THE HAMILTONIAN 

IN AN ALPHA FIELD 

 

If the extended momentum Pe is a small enough in the 

sense that the following expression is vanishing: 

4
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                              (33) 

then the relation (30) can be transformed into the approximate 

equation: 

2
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It is very easy to see that from the relation (34) one obtains the 

approximate Hamiltonian in the form: 
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0 0

1 P U
m c P U.

2m m c

 
     

 

H                             (35) 

In the nonrelativistic case (v << c) and a weak potential field 

(αα'  1) the parameter H from (12) is close to one (H  1) 

and momentum P = mov. For that case the relation (35) is 

reduced to the form: 

2

2
0 2

0

1 v U
m c P U.

2m c

 
    

 
H                                (36) 

This is a nonrelativistic approximation of the Hamiltonian in 

an alpha field. 

Now, for an example, if an electron is moving with constant 

velocity v << c in an electromagnetic field, then one should 

use the following relations: 

x x
x2

y y z z
y z2 2

U v Vvq q
U q V A ,

c c cc

U v Vv U v Vvq q q q
A , A .

c c c c c cc c

   

   

       (37) 

Here (Ax, Ay, Az) is a vector potential of the related 

electromagnetic field. Including (37) into the equation (36), 

one obtains the well known Hamiltonian of a electron moving 

in an electromagnetic field: 

2 2

2
0 x x y y

0 0

2

z z

0

1 q 1 q
m c P A P A

2m c 2m c

1 q
P A q V.

2m c

   
        

   

 
   

 

H

     

                                                                                        (38) 

In the case where quantum mechanical effects are not present 

one can employ classic Hamiltonian canonic forms for 

designing equations of the particle (sample) motion: 

i i

i i

P , q .
q P

 
  

 
 

H H
                                         (39)                  

In the relation (39) qi and Pi are generalized coordinates and 

momentums, respectively.  

 

 

VI. APPLICATION OF NONRELATIVISTIC HAMILTONIAN TO 

QUANTUM SYSTEMS 

 

In order to apply nonrelativistic Hamiltonian into the 

nonrelativistic quantum systems one should use the following 

two steps. The first one is to reduce the Hamiltonian from 

(36) to the kinetic and potential energy only: 

2

2
0

1 v U
P U.

2m c

 
   

 
H                                            (40) 

This is Hamiltonian without rest-mass energy, moc
2.        

 

 

The second step is to introduce the related Hamiltonian 

operator: 

22 2
2 x
e 2

0 0

2 2
y z

2 2

v Uћ ћ
U( ) [ i

2m 2m x ћc

v U v U
i i ] U( ).

y zћc ћc

  
        

 

   
       

   

H r

r

     (41) 

Here 
2
e  is the extended Laplacian operator, ħ is the reduced 

Planck's constant (Planck's constant divided by 2π) and r = 

(x, y, z) is the particle position in three-dimensional space. 

For a general quantum system one can employ time 

dependent Schrödinger equation [30] and [35]: 

iћ ( , t) ( , t).
t


  


Hr r                                                (42) 

Here Ψ(r,t) is the wave function, which is the probability 

amplitude for different configurations of the system. 

Applying the Hamiltonian operator from (41) to (42) we 

obtain the time dependent Schrödinger equation for a single 

particle in three dimensional space: 

2
2
e

0

ћ
iћ ( , t) ( , t) U( ) ( , t).

t 2m


      


r r r r           (43) 

Here Ψ(r,t) is the wave function, which is the amplitude for 

the particle to have a given position r at any given time t, and 

U(r) is the potential energy of the particle at each position r. 

For every time independent Hamiltonian operator 


H  there 

exists a set of quantum states |Ψn   known as energy 

eigenstates and corresponding real numbers En satisfying the 

eigenvalue equation: 

n n n      H                                                         (44) 

This is the time independent Schrödinger equation. For the 

case of a single particle, the Hamiltonian H is the following 

linear operator:  

22
2
e 2

0 0

ћ 1 vU
U P U.

2m 2m c

 
       

 
H                 (45) 

This is a self-adjoint operator when U is not too singular and 

does not grow too fast. Self-adjoint operators have the 

property that eigenvalues are real in any basis, and their 

eigenvectors form a complete set, either discrete or 

continuous. The presented Schrödinger equations describe a 

particle dynamics without spin effects. For inclusion of the 

spin effects one should employ the related Dirac's equations 

[16]- [17]. 

     Dynamics of the quantum feedback systems and control 

concepts and applications are presented in [31]-[32], 

respectively. 
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VII. CONCLUSION 

 

At the nanoscale the control dynamics is very complex. 

This is because there are very strong interactions between 

nanorobots (particles), manipulated objects (samples or 

particles) and nanoenvironment. The first step in designing of 

the control dynamics for nanorobots is the development of the 

relativistic Hamiltonian that includes external artificial 

control potential field. In that sense, the presented first and 

second form of the relativistic Hamiltonian can be applied to 

nanorobots control of a particle (a sample) motion in a 

multipotential field. The derived Hamiltonians are the 

functions of the dimensionless field parameters α and α' that 

describes the influences of the multipotential field to the 

particle (sample) motion. At the small enough distances 

between particles (nanorobot tip - sample distances) a 

quantum mechanical effects can be appeared. Thus, at 

Angstrom-scale distances, a quantum mechanical effect 

called tunneling causes electrons to flow across the 

tip/sample gap and current can be detected. This current is a 

function of the tip/sample distance and can be employed for a 

feedback position control of a tip or/and a sample. In the case 

of quantum systems control the derived Hamiltonian has been 

transformed into the related Hamiltonian operator. This has 

been done in the sixth section. The applications of the derived 

Hamiltonians in the dynamics of the nanorobot control will 

be presented in the next papers.  
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