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Abstract. The paper presents examples of the evaluation of uncertainty components in 

accordance with the current and revised Guide to the expression of uncertainty in measurement 

(GUM). In accordance with the proposed revision of the GUM a Bayesian approach was 

conducted for both type A and type B evaluations.The law of propagation of uncertainty (LPU) 

and the law of propagation of distribution applied through the Monte Carlo method, (MCM) 

were used to evaluate associated standard uncertainties, expanded uncertainties and coverage 

intervals. Furthermore, the influence of the non-Gaussian dominant input quantity and 

asymmetric distribution of the output quantity y on the evaluation of measurement uncertainty 

was analyzed. In the case when the probabilistically coverage interval is not symmetric, the 

coverage interval for the probability P is estimated from the experimental probability density 

function using the Monte Carlo method. Key highlights of the proposed revision of the GUM 

were analyzed through a set of examples. 

 

1. Introduction 
The Guide to the expression of uncertainty in measurement (GUM) was last amended in 2008. The 
revision included minor changes and corrections. The new revision JCGM 100  201X introduces an 
entirely new approach to estimating measurement uncertainty in order to address the problem of 
measuring uncertainty evaluation in situations not covered in the current JCGM 100 : 2008 version of 
the Guide. Key conceptual changes in the evaluation of measurement uncertainty with respect to the 
current version of the GUM include the application of the Bayesian approach and conditional 
probabilities for the estimation of type A standard uncertainty as well as the problem solving 
assessment of measurement for the cases when the number of measurements is less than four [3,4]. 
Changes in the GUM in accordance with the norm JCGM 100 201X are listed below.  
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2. Changes of the Guide to the expression of uncertainty in measurement in accordance with the 

document JCGM 100 201x cd 

In accordance with the proposed revision, the simplest way to eliminate the disadvantages of the GUM 

method is through adopting the Bayesian approach and applying the Monte Carlo simulation in the 

process of calculating measurement uncertainty. Key changes can be stated as follows: 
• The current approach to estimating type A uncertainty components relies on the frequentist 

view while the new version of the GUM uses the Bayesian approach [5].  
Calculation of type A standard uncertainty in accordance with the Guide from the year 2008 
and in accordance with revised GUM from year 2015 is shown with expressions (1) and (2) 
where si represents the standard deviation. 
 

����� = ��
√
 

����� = �
�

���

 �� ∙ ��√
 

 
From expression (2) it is clear that the minimum required number of measurements for the 
evaluation of the standard deviation is four. This requirement is considered to be an example 
of good measurement practice [5]. 

• In the cases where the number of measurements is between one and four, the evaluation of 
standard uncertainty is based on the results and experiences of some earlier measurements. 
Knowledge based on previous results is expressed through a pooled standard deviation estimated 
from a sufficiently large number of measurements npwere sufficient means greater than or equal to 
20 measurements. In the cases were 1 ≤ n < 4, standard uncertainty is estimated by the expression (3).  

•  
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• In the process of evaluating type B uncertainty components, where the low availability of 

input data is assumed, in the current GUM, the quantity is described using the symmetrical 
rectangular probability density function (PDF). Standard uncertainty is calculated as the 
standard deviation of the rectangular PDF with assigned degrees of freedom. The rectangular 
distribution is displayed through the use of fixed endpoints a and b. In the revised GUM, the 
degrees of freedom were not assigned to the standard uncertainty due to the fact that the 
distribution was based on available knowledge. 

 
• Coverage interval is calculated from the probability density function of the output quantity y.  

� In the cases where the functional relationship between output and input quantities is 
linear and the central limit theorem is met, probability distribution described by y  and 

)( yu  is approximately normal, one can assume that when k = 2 this results in an 
interval with a probability of about P = 95%. 

� In other cases, Gaussian inequality (k = 3) is applied for the symmetrical distribution 
while the Chebisheva inequality (k = 4.5) is applied for the asymmetric distribution [5]. 

� In the case of asymmetric distribution, the probabilistically symmetric coverage 
interval is not sufficient. It is necessary to apply the method of the Monte Carlo 
simulation and estimate coverage interval from experimental probability density 
function for a given probability P. 
 

3. Examples of measurement uncertainty evaluations 
The values of the uncertainty component obtained through type A evaluation in accordance with the 
GUM from the year 2008 and a revised Guide from the year 2015, depending on the number of 
measurements, are given in Table 1. 
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Table 1.The values of the uncertainty component obtained through type A evaluation, depending on 

the number of measurements. 

Number of 
measurements, n 

Standard uncertainty 

JCGM 100 : 2008 

Standard uncertainty 

JCGM 100 : 201X 

5 

�∗���� = ��
√� 

 

 

����� = �� − 1
� − 3�


 �� ∙ ��√� 

 

����� = 1.41 ∙ �∗���� 
10 ����� = 1.13 ∙ �∗���� 
20 ����� = 1.06 ∙ �∗���� 
30 ����� = 1.04 ∙ �∗���� 

 
In accordance with the new revision of the GUM the standard uncertainty, calculated on the basis of  
n = 20, increased by 5.7% compared to the version of the Guide from 2008. 
 
The following example illustrates the estimation of the standard uncertainty of the thermal expansion 
coefficient of the steel gauge blocks [6]. According to information available in the literature it is 
known that the thermal expansion coefficient of steel gauge blocks α equals (11 × 10

-6
 ± 1 × 10

-6 
) K

-1
. 

According to the current GUM the input quantity will be described with a priori rectangular 
probability distribution, with the lower bound being a = 10 × 10

-6 
 K

-1
 and the upper bound being  

b = 2 × 10
-6 

K
-1

. The question of the number of the degrees of freedom which should be attributed to 
standard measurement uncertainty begins to be raised. The probability density functions (pdf) of input 
quantity α, in accordance with current and revised GUM, obtained by using the Monte Carlo 
simulation (MCS) with a number of simulation M = 100000, are given in Figures 1 and 2. 
 

 

 

 

Figure 1. Probability density function of input 

quantity α, in accordance with the current GUM. 

 Figure 2. Probability density function of input 

quantity α, in accordance with the revised GUM. 

 
In this case the standard deviation of input quantity α is characterized by a trapezoidal distribution and 
equals 6.241 × 10

-7 
K

-1
. This value is larger than the standard deviation of α which is characterized by 

a rectangular distribution (5.788 × 10
-7 

K
-1

).
 

 
In the following section, the use of the current and revised GUM methods for the output quantity y, 
which is described using the equation y =x

2
, are shown [5]. 

The input quantity is defined by the Gaussian probability density function (as shown in Figure 3) with 
the mean being 3 and the standard deviation being 5. Figure 4 shows the probability density function 
of the output quantity y. The input and output quantities obtained using the Monte Carlo simulation 
(MCS) with a number of simulation M = 100000, are given in Figures 3 and 4. Figure 4 also displays 
the shortest 95 % confidence interval evaluated according to the revised GUM. It is clearly visible that 
the 95 % confidence interval evaluated according to the current GUM is clearly not reliable because it 
includes infeasible (negative) values of the output y.   
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Figure 3. Probability density function for input 

quantity x. 

 Figure 4. Probability density function and 

coverage interval for output quantity y=x
2
.
 

 
The following example is an example of the evaluation of the measurement uncertainty that was 
performed for the calibration procedure of the micrometer setting rod. The mathematical model is 
provided in expression 4 while the input values and probability density functions in simulation of 
value LX is provided in Table 2.  
 

Mathematical measurement model: 

PAETixixX LLLLLLL δδδδδ +++++=  

 
 

Table 2: Input values and probability density functions in simulation of value 
XL  

Input value 

xi 

Probability density function 

g(xi) 

measured length of the setting rod Lix     Normal distribution 

    (M, 0; 0.17 µm ) 

influence of the maximum 

permissible error 
δLix 

    Rectangular distribution 

    (M; - 0.29 + 5.8 L; 0.29 + 5.8 L) µm 

influence of temperature δLT     Normal distribution 

    (M; 0; 0.20 + 0.7 L) µm 

influence of elastic deformation δLE     Normal distribution 

    (M; 0 µm; 0.21 µm) 

influence of Abbe error δLA     Rectangular distribution 

    (M; - 0.03 µm; 0.03 µm ) 

influence of misalignment of 

measuring probes 
δLP     Rectangular distribution 

    (M;-0.11 µm; 0.11 µm ) 

LX - actual (corrected) length of the setting rod 

Lix - measured length of the setting rod 

L - nominal length of setting rod 

δLix - influence of the maximum permissible error 

δLT - influence of temperature 

δLE - influence of elastic deformation 

δLA - influence of Abbe error 

δLP - influence of misalignment of measuring probes 
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It may be noted from Table 2 that the uncertainty element u(δLix), especially in case of longer setting 

rods, will have substantially greater contribution to uncertainty compared to others. In other words, for 

a certain length of the setting rod the conditions of the Central Limit Theorem cease to be valid. In 

applying the GUM method, it is difficult to predict at which moment the required conditions of 

Central Limit Theorem are not met any more. For the mentioned example, the measurement 

uncertainty was calculated by applying the MCS method. 
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Figure 5. Probability density functions and 

coverage interval: a) for 25 mm setting rod, b) 

100 mm setting rod and c) 500 mm setting rod  

 

 
By applying the MCS method it has been determined that, depending on the length of the setting rod, 

the output distributions change their appearance from the normal-like to trapezoidal-like distributions 

as seen in figures 5a, 5b and 5c. For setting rods of nominal lengths 25 mm, 100 mm and 500 mm the 

coverage interval and coverage factor k are directly determined from the experimental probability 

density function. By MCS method it has been determined that the value of the coverage factor k 

changes regarding the length of setting rod. The coverage interval and coverage factor are directly 

determined from the experimental probability density function obtained by combining different 

probability density functions of input values. In measuring the length, the expanded measurement 

uncertainty is very often expressed in dependence on the length. This example indicates the problems 

that may result in expressing the expanded measurement uncertainty. 

The following example, the evaluation of measurement uncertainty for the calibration of the vernier 

caliper given in document EA 4/02, also shows that the conditions necessary for the application of 

GUM method are not always fulfilled. The method used for calculating the coverage factor is clearly 

related to the fact that uncertainty of measurement associated with the result is dominated by two 

influences: the mechanical effects and the finite resolution of the vernier scale. Thus the assumption of 

a normal distribution for the output quantity is not justified [7]. The probability density function (pdf) 

for the 150 mm length vernier caliper is presented in Figure 6.  
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In the final example (Figure 7) a comparison is made between the 95 % coverage intervals estimated 

using the GUM and MCS methods with an asymmetric PDF as the output quantity.  

 

 

 
Quantity  Quantity 

 

 x  x%  s 95% coverage 

interval  

GUM 150.10 150.10 0.03 [150.04; 

150.16] 

MCS 150.10 150.10 0.03 [150.04; 

150.16] 

 
 

 x  x%  s 95% coverage 

interval  

GUM 9.995 9.342 4.467 [1.061; 

18.929] 

MCS 9.995 9.342 4.467 [2.425; 

18.830] 

Figure 6. Probability density function and 

coverage interval for symmetric non-normal 

distribution.  

 Figure 7. Probability density function and 

coverage interval for asymmetric distribution. 

 
4. Conclusions 
Key highlights of the proposed revision of the GUM can be stated as follows: 
 

1. Adoption of the Bayesian approach in the calculation of the A and B types of uncertainty 
components as well as the application of the Monte Carlo simulation. 

2. In accordance with the revision of the GUM, the value of the type A standard uncertainty 
components is higher than in the existing version of the Guide from the year 2008.  

3. The coverage interval is calculated from the probability density function of the output quantity y.  
4. The coverage interval no longer depends on the degrees of freedom calculated using the Welch-

Satterthwaite formula. 
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