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Abstract 
This study is concerned with the analysis and design of a tuneable vibration absorber, which is composed 
by a flexible beam with a clamping block in the middle and two masses symmetrically mounted at two 
ends. The free length of the beam is used to accommodate piezoelectric strain actuators. The two masses 
at the ends are equipped with inertial accelerometers. Firstly, this arrangement is used to generate two 
independent acceleration feedback control loops that produce virtual mass effects, which consequently 
shift the absorbing frequency of the device. Secondly, the accelerometer output is time-integrated twice in 
order to implement displacement feedback loops that generate virtual changes in the beam stiffness to shift 
the characteristic frequency of the device. The two feedback approaches are first analysed theoretically, 
using a mobility-impedance approach, and then experimentally on a prototype absorber unit. The stability 
of the feedback loops is studied using the Nyquist criterion in order to estimate the limits on the tuneable 
range of frequencies which are set by the maximum stable feedback gain. The study indicates that the 
stability margins for the acceleration feedback loops substantially depend on the application of an 
appropriate low-pass filter. This is due to unfavourably large amplitudes of the sensor-actuator frequency 
response functions at higher frequencies. In contrast, implementation of displacement feedback naturally 
yields a favourable roll-off at higher frequencies and gives better stability margins. The maximum 
feedback gain is however limited at low-frequencies due to the frequency response of the analogue 
double-integrator.  Nevertheless, the use of an integrator with a cut-off frequency low enough results in 
good stability margins that allow for a relatively large shift of the characteristic frequency of the absorber 
by the active displacement feedback control. 

1 Introduction 

Vibration absorbers are essentially base-excited one degree of freedom mass-spring resonator systems 
with appropriately adjusted mass-stiffness ratio. The driving point accelerance at the base has a zero which 
is the absorber characteristic frequency. This fact can be used to attenuate vibrations of a structure linked 
to the absorber through the resonator spring [1,2]. The absorber efficiency is limited to the frequency band 
close to the zero of the driving point accelerance function. The width of this frequency band depends on 
the damping ratio of the absorber. Generally, the lower is the damping; the narrower is the frequency 
range where the attenuation occurs [1-4]. 
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Vibration absorbers can be used for solving vibration-related problems belonging to two broad groups. 
The first group includes vibrations of flexible structures with a marked resonance peak that requires 
attenuation. The second group includes rigid structures excited at a single forcing frequency. Traditionally 
the problems of the first group have drawn more interest [3]. In this case it is important to optimally adjust 
the damping ratio of the absorber with respect to the mass ratio between the absorber and the vibrating 
structure, in order to avoid excessive vibration amplification in the vicinity of the troublesome structural 
resonance [4]. This reduces the peak performance of the attenuation while generating optimal broadband 
reductions [4]. In contrast, problems belonging to the second group require quite a different set of the 
optimum parameters, as the vibrations are excited only at the forcing frequency [5,6]. With respect to this, 
efforts have been made recently to make the device resonant frequency tuneable in order to track the 
excitation frequency [6-19]. The tuning can be achieved mechanically: for example by changing the arm 
of cantilevered masses with beam type absorbers [11], or by altering the effective number of coils in the 
spring with mass-spring type absorbers [12,13]. It can also be achieved by using controllable “smart” 
materials such as shape memory alloys [14,15]. Furthermore, the tuning can be achieved electrically: for 
example by means of shunted piezo-elements whose electrical boundary conditions can change the 
effective stiffness of the material [16-19]. Finally, the tuning can be achieved actively, by means of a 
control force actuator that acts in parallel with the absorber spring. Then an absolute acceleration sensor at 
the absorber mass, or a relative stroke sensor between the mass and the vibrating structure, can be used to 
implement an acceleration or displacement feedback loop [20-23] which consequently generates a virtual 
mass or stiffness change, respectively. Furthermore, attempts have been done to adjust the damping ratio 
of the absorber by means of a positive velocity feedback to reduce the damping for increasing the peak 
performance [22].  

The use of stroke or acceleration sensors in conjunction with the control force can be viewed as a 
collocated control. However, such a sensor and actuator pair is not dual so that they do not produce energy 
absorption, which would guarantee unconditional stability [24]. Therefore, the stability of such 
acceleration or displacement feedback loops is limited by maximum stable feedback gains, which 
determine the maximum shift of the absorber input accelerance zero and thus influence the adaptability of 
the device. 

In this paper a beam type tuneable vibration absorber is considered, which is made of a flexible beam with 
a clamping block in the middle and two masses symmetrically mounted at the two beam ends. Two control 
designs are considered. For both designs, the free length of the beam is used to accommodate piezoelectric 
strain actuators and the two masses are equipped with inertial accelerometers. For the first control design 
the accelerometer outputs are used to generate two independent negative acceleration feedback control 
loops that produce virtual mass effects, which result in a downward shift of the characteristic frequency of 
the device. The second design considers acceleration signals passed through a double time-integrator. This 
arrangement is used to generate positive displacement feedback loops that generate a virtual reduction in 
beam stiffness and thus reduce the characteristic frequency.  

The paper is structured in four sections. Section 2 describes the system and provides the mathematical 
formulation for the theoretical study. In Section 3 the stability and adaptability study for the acceleration 
feedback is presented, whereas in Section 4 the stability and adaptability study is given for the 
displacement feedback approach. There are two appendices, Appendix A and Appendix B which describe 
respectively mobility and impedance matrices and functions used for the mathematical formulation of the 
problem. 

2 System studied and mathematical model  

The vibration absorber considered in this study consists of a flexible beam with two cantilevered masses at 
the beam ends. The beam is clamped in the middle via a mounting block where it is supposed to be 
attached to the primary vibrating structure. The free length of the beam is used to accommodate 
piezoelectric actuators, and the masses are equipped with inertial accelerometers (Figure 1). The 
accelerometer outputs are used to provide error signals for driving two piezoelectric patch actuators in 
order to create two independent feedback loops. Two feedback configurations are considered: a) direct 
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acceleration feedback, and b) the feedback of double-integrated accelerometer outputs which is equivalent 
to displacement feedback (Figure 1). 

 

Figure 1: The two tuneable vibration absorber design schemes: a) direct acceleration feedback, b) 
direct displacement feedback. 

The theoretical study was performed using a mathematical model based on a mobility-impedance 
approach [25]. The system was modelled assuming that only the bending vibrations along the beam length 
are significant. It is assumed that the absorber can be modelled as a finite free-free Euler-Bernoulli beam 
with added rigid masses at the two ends and in the middle. The excitation of the beam via each 
piezoelectric actuator is modelled as a moment pair excitation.  

 

Figure 2: The mobility model scheme. 

The mass and stiffness added by the two piezoelectric patches is neglected. The effects of the proof 
masses at the beam ends and in the middle are taken into account by applying appropriate inertial effects 
at the points of attachment along the beam, as shown in Figure 2. For example, the left mass is modelled 
as an inertial force and an inertial moment, 1mf , and 1mT , acting at the left end of the beam (Figure 2), 
depending on the linear and angular velocity of the beam at the left end via appropriate impedance 
functions. In total, there are three relevant locations along the beam with respect to the inertial effects of 
the lumped masses attached to the beam, and four relevant locations with respect to the active moments 
exerted onto the beam by the two piezoelectric actuators (Figure 2). In addition to these seven locations, 
linear and angular velocities at a number of extra points along the beam were also considered to 
reconstruct the beam deflection shapes. Thus, the beam was divided into a number of N elements, and the 
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linear and angular velocities at the element centres, eiT , ei  (Figure 2) were included into the formulation. 
All relevant locations are defined via the following x coordinates, grouped together into the location vector 
x: 

 T
eNeecccmmm xxxxxxxxx ][ 21421321 x . (1) 

The linear and angular out of plane velocities at the locations defined by Equation (1) are grouped into the 
beam velocity vector, v . Also the external bending forces and moments are grouped into the external 
force vector, f , and the impedance forces and moments due to the attached masses are grouped into the 
impedance force vector 'f : 

 TeNeecccmmmeNeecccmmm vvvvvvvvv   2142132121421321
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The velocity vector, v , can be expressed as a function of the two force vectors, f and 'f  as follows: 

 'YfYfv  , (3) 

where the matrix Y is the beam mobility matrix. The matrix Y  can be subdivided into four matrices as 
follows: 

 



 α,tf

v,tv,f

YY
YYY , , (4)  

where v,fY is the mobility matrix between the velocities and forces, v,tY  is the mobility matrix between 

the velocities and moments, f,Y  is the mobility matrix between the angular velocities and forces, and 

finally α,tY  is the mobility matrix between the angular velocities and bending moments. Expressions for 

the matrices v,fY , f,Y , tv,Y  and t,Y  are given in Appendix A. 

The impedance force vector can be related to the velocity vector via an impedance matrix:  

 ZVF' . (5) 

where the impedance matrix Z  is given in Appendix B.  

Substitution of Equation (5) into Equation (3) yields: 

 YZVYFV  , (6) 

which can be manipulated to give: 

   YFYZΙV 1 . (7) 

The term   YYZΙ 1  in Equation (7) represents a matrix containing mobility functions of the absorber 
with the three masses attached to the beam and it is designated as Q , such that Equation (7) can be 
expressed as: 

 QFV   (8) 

The velocities of the absorber at the locations defined by Equation (1) with active forces generated by the 
two piezoelectric actuators can be expressed as follows: 

 activeactive QFQFV  , (9) 

where  
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 activeactive GVF  , (10) 

and the (14+N)×(14+N) matrix G defines the control law, whereas activeF  and activeV  are vectors 
containing forces/moments and linear/angular velocities at locations defined by Equation (1). These 
(14+N)×1 vectors have the same layout as force and velocity vectors in Equations (2a,b). In case of direct 
acceleration feedback, the matrix G  has the following non-zero elements: 

 
gejGegjGgejGgejG

gjGgjGgjGgjG









10,1410,138,128,11

3,143,131,121,11

,,,

,,,,
, (11a-h) 

where g is the feedback gain, and e is the absolute value of the distance along x-axis between the sensor 
sensitive axis and the beam end (see Figure 2). For the implementation of displacement feedback, the right 
hand side terms in each of Equations (11a-h) are multiplied by the double integrator transfer function, 

 2121 j where the time constant   equals to 10 s, yielding the integrator cut-off frequency of 0.1 
Hz. 

Substitution of Equation (10) into Equation (9) yields:  

 activeactive QGVQFV  , (12) 

which can be manipulated to give: 

   QFQGIVactive
1 . (13) 

The term   YQGΙ 1  in Equation (13) represents the matrix containing mobility functions of the 

absorber with the two feedback loops closed and it is designated as   QQGΙR 1 , such that Equation 
(13) can be expressed as: 

 TFVactive  . (14) 

where the matrix T  contains mobility functions of the closed loop absorber, and its element T2,2 is 
effectively the closed-loop absorber input mobility at the attachment point in the middle. 

Table 1: Geometrical and material properties of the vibration absorber 

Parameter  Value 

Beam free length xl  2×52 mm 

Beam width yl  30 mm 

Beam thickness t  3 mm 

Beam mass density b  7800 kg/m3 

Beam Young’s modulus rE  210·109 N/m2 

Beam Poisson’s ratio r  0.3 

Beam loss factor r  0.01 

Total cantilevered mass m  2×0.571 kg 

Total mass moment of inertia along y-axis at the clamping line yyI  0.00043 kgm2 

Upper/lower mass dimensions lm×wm×hm 46×75×10 mm3 

Mounting interface total mass im  0.7 kg 

Upper mounting interface dimensions lui×wui×hui 35×40×20 mm3 

Lower mounting interface dimensions lui×wui×hui 35×40×20 mm3 

Piezoelectric actuator dimensions (PIC 151) lPZT×wPZT×hPZT 50×30×1 mm3 

Mass CG distance from the beam edge d  23 mm 

Accelerometer sensitive axis distance from the beam edge e 35 mm 
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Table 1 summarizes the physical properties of the prototype absorber (Figure 6) that have been used for 
the simulation study. The design with the listed parameters yields the characteristic frequency of about 62 
Hz, and the input accelerance at the absorber mounting point has a zero at that frequency (see Figure 5, 
black lines). 

3 Negative acceleration feedback 

The acceleration feedback approach is first studied with respect to the feedback control stability. This is 
done by applying the Nyquist criterion on the sensor-actuator open-loop frequency response function 
(FRF) of one of the two feedback loops. (The theoretical model assumes full symmetry.) Figure 3 shows 
Bode and Nyquist plots of the frequency response function between the voltage applied to the left 
piezoelectric actuator and the acceleration at the left block mass. The accelerometer dynamics is 
neglected. As shown by the blue lines, the phase is contained between 0 and 180 degrees up to 
approximately 4 kHz. Thus the sensor and actuator behave as a collocated pair. Above this frequency the 
phase lags further and it is no longer confined between 0 and 180 degrees. This additional lag can be 
attributed to the non-perfect collocation of the sensor-actuator pair, since the accelerometer measures 
linear acceleration whereas the piezoelectric actuator generates two bending moments. A closer 
approximation of the fully collocated sensor would require measuring the difference between two angular 
velocities at the two ends of the actuator. Such an arrangement is not considered in this study for 
feasibility reasons. At 6.5 kHz the locus depicted in the Nyquist plot crosses the negative real axis in the 
point highlighted by the black × symbol in the Bode plot.  

10
2

10
3

10
4

−120

−80

−40

0

40

Frequency (Hz)

|H
L

L
| d

B
 r

e.
 1

(m
s−

2 )/
V

10
2

10
3

10
4

−720

−540

−360

−180

0

180

Frequency (Hz)

∠
(H

L
L
) 

D
E

G

−60 −40 −20 0 20 40 60
−100

−80

−60

−40

−20

0

20

40

60

80

100

Real

Im
ag

in
ar

y

Figure 3: Bode and Nyquist plots for the sensor-actuator open-loop frequency response functions: 
considering a) an ideal accelerometer (blue), b) an inertial accelerometer (red), and c) an inertial 
accelerometer with a second order low-pass filter having a 200 Hz cut-off frequency (green). 

The amplitude of the open-loop FRF at this frequency determines the gain margin in case the other loop is 
left open. As shown later in the paper, this gain margin is rather low and does not allow for a large shift of 
the absorber characteristic frequency (see Figure 5, blue lines). The red lines in Figure 3 are for the 
simulation including the inertial accelerometer dynamic response. The accelerometer has been modelled 
as a one degree of freedom system and the parameters of the system have been chosen to match a real 
accelerometer calibration chart. As can be seen in the Bode plots, an additional resonance peak and a -180 
degree phase shift occurs due to the accelerometer resonance at about 17 kHz, but no significant stability 
margin changes can be observed. However considering either the ideal or inertial accelerometer the 
amplitude of the sensor-actuator open loop FRF increases with frequency. This is a natural property of any 
accelerance function and it is not a consequence of the sensor-actuator physical match (collocation). Since 
the two transducers behave as fully collocated only at lower frequencies, and also the control is aimed to 
shift the rather low characteristic frequency of 62 Hz, this amplitude behaviour is rather unfavourable. For 
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this reason an attempt is made to filter out the high-frequency output of the sensor. This is not a 
straightforward task, because any filter introduces also a phase shift. In particular, a low-pass Butterworth 
filter induces a phase change of -90 degrees per filter order across the cut-off frequency. For this study 
several filters were tested, and after a careful consideration a second order Butterworth filter was selected 
with a cut-off frequency of 200 Hz. The implementation of this filter yields the open loop sensor-actuator 
FRF depicted by the green line in Figure 3. As shown in the Bode plots, the amplitude now rolls-off 
quickly with frequency such that the largest resonance peak is due to the lowest resonance at around 100 
Hz. This is a desirable property for stability as the amplitude at the cross-over point, marked by the black 
× symbol, is significantly reduced. However, as shown in the phase plot, the phase lags with frequency, 
and the locus in the Nyquist plot is rotated clockwise towards the right hand side quadrants, entering the 
damping-like region of the   plane, as shown by the green line in the Nyquist plot in Figure 3.  

The stability study on one channel helps to explain the sensor-actuator dynamical coupling, yet, it is not a 
valid criterion to establish the stability of the whole system, which is composed by two channels that 
operate simultaneously. This is because of the cross-talk between the two control loops. To asses the 
stability of the two channel system the generalised Nyquist criterion should be used. In this case the 
generalised stability study is carried out in terms of the eigenvalues of the return difference matrix QG , 
where the off-diagonal elements of the matrix Q  contain the cross-talk frequency response functions. The 
return difference matrix in this case has two eigenvalues and the larger one is relevant for the multichannel 
system stability. In fact, the classical one channel Nyquist stability criterion can be applied onto the locus 
of the larger eigenvalue in order to determine the available gain margin of the multichannel system [26]. 
Figure 4 shows Bode and Nyquist plots of the larger eigenvalue  2E  for the same three cases studied 
previously, i.e. the blue lines are for the ideal accelerometer, the red lines are for the inertial 
accelerometer, and the green lines are for the inertial accelerometer with filtered output. It can be seen that 
qualitatively the shapes of these Bode and Nyquist plots are similar to Bode and Nyquist plots of the 
single channel open loop sensor-actuator FRFs, and that the locus crosses over the negative real axis at 
similar frequencies. The total gain margin is however lowered by about 4 dB. This gain margin can be 
used to determine the maximum feedback gain in the two loops operating simultaneously.  
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Figure 4: Bode and Nyquist plots of the larger eigenvalue of the return difference matrix QG : using 
an ideal accelerometer (blue), inertial accelerometer (red), and inertial accelerometer with a second 
order low-pass filter having a 200 Hz cut-off frequency (green). 

The simulated input accelerance for the passive system and for the system with control is plotted on the 
left hand side plot in Figure 5. The passive absorber accelerance is shown using the black line, whereas the 
active absorber input accelerance, with feedback loops applying the maximum feedback gain that still 
yields stable loops, is plotted using the same coloured lines as in Figure 3 and Figure 4 with respect to the 
three cases studied.  
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Figure 5: Input accelerance at the absorber mounting point with open loops (black line), and closed 
loops using the maximum stable feedback gain. The closed loop accelerance is shown using an ideal 
accelerometer (blue), inertial accelerometer (red), and inertial accelerometer with a second order 
low-pass filter having a 200 Hz cut-off frequency (green). The left plot is theoretical and the right 
plot is experimental. 

As shown by the blue and red lines, the maximum downward shift of the characteristic frequency (the 
antiresonance at 62 Hz) is of the order of few Hertz. This shifting could probably be used for minor tuning 
in applications where the primary structure is excited at constant frequencies that can only slightly vary. 
For example, an air-conditioning unit compressor rotation speed will typically vary by few Hertz due to 
changes in loading conditions [22,23]. However, a larger variation in the rotation speed could not be 
followed. In contrast, the filtered acceleration feedback gives a larger shift of almost -40 Hz, as shown by 
the green line. However it can be seen that the filtering of the accelerometer output (that rotated the locus 
of the sensor-actuator open loop FRF in Figure 3 towards the damping region of the   plane) actually 
generates a damping effect.  

 

Figure 6: The prototype absorber. 

In fact, the absorber response is so damped that the amplitude of the input accelerance function goes up by 
25 dB. Thus it can be stated that the filtering of the accelerometer output generates a combined effect of a 
negative acceleration and a negative velocity feedback. This is not a favourable behaviour since the aim of 
the active control is to shift the characteristic frequency while keeping the favourable low damping that 
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gives the high input impedance (the low input accelerance) of the absorber. It is probably possible to 
increase the cut-off frequency of the filter and to reduce the damping effect, but this would also reduce the 
gain margin and thus the maximum shift of the characteristic frequency of the absorber. 

The simulation study is backed up by an experimental analysis performed on the prototype absorber that is 
shown in Figure 6. The prototype was equipped with an additional accelerometer in the middle and 
attached to the shaker through a force gauge in order to measure the input accelerance passively and under 
control. The measured open-loop sensor-actuator FRFs are shown up to 1 kHz in Figure 7.   
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Figure 7: The Bode and Nyquist plots of the experimentally determined open-loop sensor-actuator 
FRF up to 1 kHz. Blue lines are for the left feedback loop and red lines are for the right feedback 
loop. The green lines are for the left feedback loop with filtered output.  

The blue and the red lines are for the left and the right feedback loop, whereas the green line is for the left 
feedback loop with low-pass filtering. As shown by the blue and red lines the left and right feedback loops 
are practically the same due to the symmetrical design of the tuneable absorber. Furthermore, the phase is 
contained between 180 and 0 degrees, which suggests that also in practice the sensor and actuator behave 
as collocated pairs at low frequencies. The implementation of the low-pass filter yielded the amplitude 
roll-off and the phase lag as anticipated by the simulation study (green lines). The aim of showing the 
result up to 1 kHz is to illustrate that the feedback loop delivers the virtual mass at low frequencies where 
the control is actually aimed at. However, as shown in Figure 8, this property is lost at higher frequencies 
above approximately 1 kHz as the phase of the sensor-actuator open loop FRF lags considerably, 
especially at frequencies above 3 kHz. In accordance to what can be observed using the simulation study 
results, the amplitudes at higher frequencies are increasing, reaching the peak around the accelerometer 
resonance (17 kHz), and then gradually reducing as the accelerometer output above its fundamental 
resonance abruptly decreases. Therefore to have good stability properties the low-pass filtering is 
necessary to reduce the large frequency amplitudes. Thus the low-pass filter that was considered in the 
simulation studies has been applied and the result is shown by the green lines in Figure 8. The Nyquist 
plot in Figure 8 shows that without filtering (blue and red lines) the available gain margin is relatively low 
as the locus crosses the negative real axis with large amplitudes of approximately 400 ms-2/V. With 
filtering, the high frequency amplitudes decrease, but at cost of an additional phase lag due to the filter 
transfer function (green lines). In order to determine the maximum stable feedback gain, the generalised 
Nyquist criterion was applied by analysing the eigenvalues of the return difference matrix obtained 
experimentally for the case of low-pass filtered accelerometer outputs. The Bode and Nyquist plots of both 
eigenvalues are shown in Figure 9. As can be seen in the Nyquist plot, the negative real axis cross-over 
now occurs at much lower amplitude, such that larger feedback gains can be implemented without 
compromising the stability. Yet, the loci of both eigenvalues are rotated clockwise and thus the combined 
effects of the two feedback loops deliver a mixture of active mass and active damping. This is clearly 
visible in the right hand side plot of Figure 5 where the green lines show a shift of the characteristic 
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frequency of about 20 Hz, but the amplitude of the accelerance is significantly increased due to the added 
active damping. 
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Figure 8: The Bode and Nyquist plots of the experimentally determined open-loop sensor-actuator 
FRF up to 40 kHz. Blue lines are for the left feedback loop and red lines are for the right feedback 
loop. The green lines are for the left feedback loop with filtered output. 

As previously mentioned this is an adverse effect as a lightly damped input accelerance zero is necessary 
for good vibration absorption. In conclusion, it can be stated that the acceleration feedback, although 
theoretically possible, in practice fails due to the intrinsic property of the open loop sensor-actuator 
frequency response functions which exhibit amplitudes increasing with frequency. This causes stability 
problems as the sensor-actuator pair do not behave as collocated at high frequency. Furthermore, the 
control is aimed at shifting the rather low-frequency zero of the absorber input accelerance while the open 
loop sensor-actuator FRF shows only small amplitudes at low frequencies. 
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Figure 9: Bode and Nyquist plots of the two eigenvalues of the return difference matrix QG  
obtained experimentally with applied a second order low-pass filter having a 200 Hz cut-off 
frequency. 

For example the black and the red lines in the right hand side plot of Figure 5 perfectly overlap, meaning 
that the available feedback gain yields no shift of the characteristic frequency. The filtering attempt results 
in a considerable improvement in the available feedback gain, however at cost of delivering the 
undesirable damping effect.  
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For all theses reasons an alternative feedback configuration is studied in the following Section 4. The error 
signal chosen is a double integrated acceleration with respect to time which is equivalent to displacement. 
Such a feedback control should yield a shift of the characteristic frequency by generating an active 
stiffness effect. Furthermore, it is known that receptances roll-off steeply with frequency [25], which 
should result in adequate stability margins without heavy filtering, since the higher frequency 
imperfections of the sensor-actuator pair collocation should be less influential due to the reduced 
amplitudes. 

4 Positive displacement feedback 

In order to downwardly shift of the absorber resonant frequencies the beam stiffness should be artificially 
decreased. This could be achieved with positive displacement feedback loops. The absolute displacement 
at the end of the beam can be approximated by double integrated acceleration with respect to time. 
Therefore the same experimental setup can be used with the addition of a double integrator analogue filter. 
For the experimental study the double integrator available with the charge amplifiers for conditioning 
accelerometer signals was used, which has a cut-off frequency of 0.1 Hz. Also in this case, a simulation 
study is performed first aiming to investigate the stability of a single feedback loop using the Nyquist 
criterion. The open loop sensor-actuator FRF is depicted in Figure 10 using the layout standard throughout 
the paper. Considering the fact that the real integrator generates outputs proportional to the integrated 
acceleration only at frequencies higher than 0.1 Hz, the integrator has been included in the model used to 
predict the open loop sensor-actuator FRFs. For completeness the sensor-actuator open loop FRFs 
obtained assuming an ideal integrator have also been considered. As shown by the red lines in Figure 10, 
the real integrator causes a small additional semicircle in the locus depicted on the right hand side plot of 
Figure 10 (see the arrow in the zoomed area around the origin). This causes the locus to cross over the 
negative real axis at about 10 Hz. This effect is also visible in the Bode plots of Figure 10. In fact, the 
amplitudes of the sensor-actuator response roll-off rather steeply with frequency such that the additional 
cross-over occurring at 540 Hz is at an amplitude of at least 60 dB smaller than that at very low frequency 
produced by the response of the real integrator. The principal stability limit is therefore due to the real 
integrator frequency response function rather than the sensor-actuator coupling dynamics.    
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Figure 10: Bode and Nyquist plots for the sensor-actuator open-loop frequency response functions: 
using an ideal double integrator (blue), and the real integrator having a 0.1 Hz cut-off frequency 
(red). 

The increase in the integrator cut-off frequency would cause the cross-over frequency also to increase. 
This would in turn also cause the increase in the open loop sensor-actuator FRF amplitude at the cross-
over frequency, as it would approach the first resonance at 100 Hz. Thus the lower is the integrator cut-off 
frequency the higher is the stability margin. However, integration filters with very low cut-off frequency 
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require a large increase in the feedback gain and might also get more difficult to realise in practice due to 
the limitation on the electronics and especially due to the integrator drift. Nevertheless, as shown in the 
remaining of this study the 0.1 Hz integrators give plenty stability margin for large shifts in the absorber 
characteristic frequency. In order to determine this margin, the generalized Nyquist criterion was applied 
and the two eigenvalues of the return difference matrix obtained theoretically are shown in Figure 11 A 
and B, whereas the eigenvalues obtained experimentally are given in plots C and D.  
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Figure 11: Bode and Nyquist plots of the two eigenvalues of the return difference matrix QG  
obtained theoretically (plots A and B) and experimentally (plots C and D) with the double integrator 
having a cut-off frequency of 0.1 Hz. 

The Bode plots obtained from experimental measurements do not show the very low frequency region 
below 10 Hz as it was not measurable accurately due to a low coherence caused by the sensor signal-to-
noise ratio, but in the Nyquist plot (D) it is possible to spot the cross over point at about 10 Hz in the 
zoomed area around the origin. The shapes of the Bode plots are rather similar, showing a favourable roll-
off of the eigenvalue amplitudes with frequency and the Nyquist plots show that the largest circles have 
the  -axis as a symmetry line, which means that the two feedback loops are delivering active stiffness 
effects without the undesirable damping. The closed loop input accelerances are shown in Figure 12 where 
it can be seen that theoretically the maximum downward shift of the absorber characteristic frequency is 
almost -50 Hz as the resulting closed loop characteristic frequency is now 13 Hz. The lowest characteristic 
frequency achieved experimentally was 27 Hz, which is a considerable downshift of 35 Hz from the 
original 62 Hz. In conclusion, the active stiffness approach does not require heavy filtering for stability 
that causes the unwanted damping effects, and it still enables large adaptability of the tuneable vibration 
absorber studied. 

A B

C D
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Figure 12: Input accelerance at the absorber mounting point with open loops (black line), and closed 
loop using the maximum stable feedback gain. 

Conclusions 

The implementation of acceleration and displacement feedback control is applied on a beam-typed 
tuneable vibration absorber aiming to actively tune the absorber characteristic frequency. The two 
approaches are investigated and contrasted theoretically and experimentally using a mobility-impedance 
mathematical model and a prototype absorber. Although theoretically possible, the acceleration feedback 
approach fails in practice due to the intrinsic property of the open loop sensor-actuator frequency response 
functions (FRF), which exhibit amplitudes increasing with frequency. This causes stability problems as 
the sensor-actuator pair do not behave as collocated at higher frequencies. Furthermore, the control aims at 
shifting the rather low-frequency zero of the absorber input accelerance, whereas the open loop sensor-
actuator FRF has only small amplitudes at low frequencies. As a result the implementation of the feedback 
loops with the available feedback gain yields almost no shift of the characteristic frequency. The low-pass 
filtering attempt resulted in a considerable improvement in the available feedback gain, however at cost of 
delivering an undesirable damping effect. In contrast, the implementation of displacement feedback is 
characterized by a sensor-actuator open loop FRF amplitude that rolls off rather steeply with frequency, 
such that the high frequency non-collocated behaviour of the sensor-actuator pairs is no longer relevant for 
the feedback loop stability. The principal stability limit is now set by the frequency response function of 
the double time-integrator rather than by the sensor-actuator coupling dynamics. With this second 
approach, the absorber characteristic frequency can be shifted down from 62 Hz by almost -50 Hz to 13 
Hz. The lowest characteristic frequency accomplished experimentally was 27 Hz, which is a considerable 
downshift of 35 Hz from the original 62 Hz. The active stiffness approach seems to be a more feasible 
one, as it does not require heavy filtering for stability, and it still enables large adaptability of the tuneable 
vibration absorber characteristic frequency. 
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Appendix A 

The elements of the matrix v,fY  are the mobility functions relating velocities to forces between the 
locations defined in Equation (1): 
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Y . (A1)  

The elements of the matrix ,fY  are the mobility functions relating the angular velocities to forces 
between all locations considered along the beam: 
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The elements of the matrix v,tY  are the mobility functions relating the velocities to moments between all 
locations considered along the beam: 
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Finally, the elements of the matrix ,tY  are the mobility functions relating the angular velocities to 
moments between all locations considered along the beam: 
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Y .  (A4) 

The mobility functions fv
jiY ,

, , f
jiY ,

,
 , tv

jiY ,
,  and t

jiY ,
,
 in Equation (A1-A4) between points defined by xi and xj 

have the following forms [25]: 
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where 1j , n are the beam mode shapes,  is the mass density of the beam material, h  is the beam 

thickness, xl  is the beam length, b  is the beam width, n  are the beam natural frequencies,   is the 

circular frequency, and   is the loss factor. Details on how to calculate the natural frequencies and the 
mode shapes can be found in reference [25]. The modal summation in Equations (A5a-d) was truncated 
after including M=20 modes, and the twentieth mode has the corresponding resonance frequency of 281 
kHz which is well above the upper bound of the usable sensor frequency range (0-17 kHz). The boundary 
conditions assumed for the calculation of mode shapes and natural frequencies are free-free. 

Appendix B 

The matrix Z  can be subdivided into four matrices as follows: 
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where vf ,Z  is the impedance matrix between the forces and velocities, vt ,Ζ is the impedance matrix 

between the moments and velocities, ,fZ is the impedance matrix between the forces and angular 

velocities, and finally t,Z  is the impedance matrix between beam bending moments and angular 

velocities. The matrix vf ,Z  is diagonal and it is populated as follows: 
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Z , (B2) 

where 1
,

1,1 mjZ vf
mm  , 2

,
2,2 mjZ vf

mm  , 3
,

3,3 mjZ vf
mm  . The impedances at the control locations are 

0,
,

,
1,1 vf

cMcM
vf
cc ZZ  , since the mass loading of the piezoelectric actuators is neglected, and impedances at 

the element locations are 0,
,

,
1,1 vf

eMeM
vf
ee ZZ   since there is no additional loading at the element locations. 

The matrix ,fZ  is also diagonal and it is populated as follows: 
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The elements on the diagonal are dmjZ f
mm 1

,
1,1   , 0,

2,2 f
mmZ , dmjZ f

mm 3
,

3,3   , 0,
,

,
1,1  f

cMcM
f

cc ZZ   and 

0,
,

,
1,1  f

eNeN
f

ee ZZ  , where the distance of the centre of gravity of the proof mass from the beam edge is 

designated as d (see Figure 2). The matrix vt ,Z  has the same indexing layout as matrices vf ,Z  and ,fZ . 

It is also diagonal and the elements on the diagonal are dmjZ vt
mm 1

,
1,1  , 0,

2,2 vt
mmZ , dmjZ vt

mm 3
,

3,3  , 

0,
,

,
1,1 vt

cMcM
vt
cc ZZ  , 0,

,
,

1,1 vt
eNeN

vt
ee ZZ  . Finally the diagonal matrix ,tZ  has the same indexing layout as 

matrices vf ,Z , ,fZ  and vt ,Z  with the elements on the diagonal yy
t

mm IZ ,
1,1 , 0,

2,2 t
mmZ , 

yy
t

mm IZ ,
3,3 , 0,

,
,

1,1  t
cMcM

t
cc ZZ  , and 0,

,
,

1,1  t
eNeN

t
ee ZZ  . 
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