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Introduction 

Vibration control using dynamic vibration absorbers is an 

interesting option for reducing vibrations of various types of 

mechanical structures. The attractiveness of the method is 

that a relatively small extra mass carefully suspended to the 

primary structure can lead to significantly reduced 

responsiveness of the primary structure to forcing. The mass 

is added to the primary structure via a coupling that can be 

approximately represented through a spring-dashpot pair.  

Depending on whether the excitation of the primary structure 

is at a single frequency or it comes in a broad range of 

frequencies, the coupling is designed using different 

principles. For example, in case of simple harmonic 

excitations at a single frequency, the stiffness of the absorber 

coupling can be set such that the resonance frequency of the 

mass-spring system equals the excitation frequency. If the 

absorber damping can be set to be very low, then its addition 

to the primary structure generates virtually a zero in the 

primary structure input receptance at the excitation 

frequency. Thus the primary structure gets unresponsive to 

harmonic forces acting at the absorber mass-spring 

resonance frequency. This type of absorber is often referred 

to as vibration neutraliser. 

The excitation can also cover a broad frequency range, such 

as the case is with aerodynamic loading, vehicle road 

excitations, earthquakes or impacts. In such cases the 

damping and the stiffness of the absorber could be tuned 

such that certain vibration metrics are minimised in the 

frequency band of interest. Devices with such tuned stiffness 

and damping are known as Tuned Mass Dampers (TMD) as 

well as damped vibration absorbers. The kinetic energy, 

which, given the constant mass of the primary structure, is 

proportional to the average squared vibration velocity, 

provides valid metrics for vibrations of the primary structure 

and can be used to optimise the system. This is in fact an ℋ2 

optimisation of the system composed by the TMD and the 

primary structure whose vibratory kinetic energy is thus 

minimised [1]. There are also other possible optimality 

criteria that can be of interest and some of the relevant 

studies can be found in [2]. 

Considering their mechanical layout, TMDs are rather 

similar to inertial actuators. However, in addition to the 

passive elastic and damping forces in the coupling, an active 

force can be generated between the inertial actuator proof 

mass and the primary structure. The force can be made 

proportional to the primary structure velocity via a fixed 

negative feedback gain in which case an amount of active 

damping can be generated on the primary structure [3]. This 

is an attractive option as the active damping force is 

proportional to the absolute velocity of the primary structure 

only, instead of being proportional to the relative velocity 

between the primary structure and the proof mass of the 

inertial actuator. In other words, a force can be exerted 

which is proportional to the primary structure absolute 

velocity approximated by the integrated output of an 

accelerometer attached to the primary structure. This is a 

more attractive option as the principal concern could be 

vibrations of the primary structure rather than relative 

vibrations between the absorber and the primary structure.  

This study is focused onto the described active damping 

approach where a damped inertial actuator is added to an 

otherwise undamped primary structure and its force 

generator is driven with a signal proportional to the primary 

structure absolute velocity in order to create an additional 

active damping effect. It is shown that there is an ℋ2 optimal 

combination of the passive and the active damping which, 

when employed, minimise the kinetic energy of the primary 

structure. The passive and the active damping ratios are 

calculated in the closed form. Finally, the kinetic energy of 

the primary structure under ℋ2 optimal active control is 

compared to that under ℋ2 optimal passive control using 

tuned mass dampers having the same proof mass. The 

comparison of the two control effects reveals that the active 

control can significantly outperform the passive control 

provided that the resonance frequency of the inertial actuator 

is made very low. In fact, the optimal active control 

outperforms the optimally tuned TMD having equal mass by 

an amount which increases with the reduction of squared 

resonance frequency of the inertial actuator. 

The paper is structured into 4 sections. In Section 2 the 

model problem studied and the mathematical formulation are 

given. In Section 3 the ℋ2 optimal control using TMDs is 

reviewed, and finally, in Section 4 the ℋ2 optimal active 

control parameters using inertial actuators are derived. 

Section 5, which gives the comparison of the passive and 

active control effects, is followed by conclusions.  

Model problem studied 
As stated in the introduction to the paper, two control 

approaches are studied and compared, passive and active. 

The passive is an addition of a TMD onto the primary 

structure, and the active is an addition of an Inertial Actuator 

(IA) onto the same primary structure with a velocity 

feedback control loop. The loop includes a vibration velocity 

sensor mounted onto the primary structure and a force 

actuator in parallel with the passive mount. The output of the 
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sensor is amplified by a negative gain and fed back to the 

actuator. The two control approaches are shown 

schematically in Fig. 1. As can be seen in Fig. 1, the primary 

structure is modelled as an undamped, lumped parameter 

one degree of freedom (dof) system, defined through the 

mass 
1m  and the stiffness 

1k . It is excited by the primary 

excitation force 
pf . It is assumed that nothing a priori is 

known about this force, and throughout the paper it is thus 

considered to be a white noise random force with the flat 

spectral amplitude equal to unity. 

 

Fig. 1  The schematic of the passive vibration control using 

Tuned Mass Dampers (TMD - left hand side) and active 

vibration control using an Inertial Actuator and a velocity 

feedback loop (IA - right hand side)  

As shown in the left hand side of Fig. 1 the TMD of mass 

2m  is connected to the primary structure through a spring of 

stiffness 
2k and a dashpot with a damping coefficient

2c . On 

the other hand, the primary structure can be equipped with 

an inertial actuator, as shown on the right hand side of Fig. 

1. In this case, in addition to the mass, spring and the 

dashpot, the inertial actuator has a reactive control force 

between the masses 
1m  and 2m  which is proportional to the 

primary structure velocity 1v  through a feedback gain g . 

Thus the feedback gain has the dimension of damping that 

is, Ns/m, and the feedback loop can thus deliver an active 

damping onto the primary structure in addition to the passive 

damping which is realised through the dashpot
2c . The 

following is assumed throughout this paper: the primary 

structure properties 
1m and 1k  are fixed, and the mass 2m , 

which in fact is added to the primary structure merely to 

control vibration, is constrained by requirements on the total 

weight of the structure and can also be considered as fixed. 

Therefore, the remaining parameters available for the 

optimisation are the spring stiffness and the damping 

coefficient (
2k and 

2c ) in case that the tuned mass damper is 

used. On the other hand, if the active damping system with 

an inertial actuator is used then the parameters to optimise 

are the spring stiffness, the damping coefficient and the 

feedback gain (
2k , 

2c  and g ).  

ℋ2 optimal control using Tuned Mass 

Dampers 
In order to generalise the study, non-dimensional parameters 

are introduced first.  
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where 1 1 1k m   is the resonance frequency of the 

primary structure, 2 2 2k m   is the resonance 

frequency of the TMD, and 2crit 2 22c k m  is the critical 

damping of the TMD. Thus the three non-dimensional 

parameters are the mass ratio  , the frequency ratio f , and 

the damping ratio   such that the ℋ2 norm of the primary 

structure velocity takes the form [1]: 
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As can be seen in Eq. (4) the part 
3

1 1k m  determines the 

scale of the problem, and the remaining part is a varying one 

and can be minimised through adjusting the damping ratio  

and the frequency ratio f . Now the expression in Eq. (4) 

can be partially differentiated with respect to   and f , the 

partial derivatives equated to zero, and solved for   and f . 

Using this procedure, the optimal damping and frequency 

ratios are obtained as [1]: 
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whereas the ℋ2 norm of the velocity of the primary structure 

under the optimal setting is [1]: 
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ℋ2 optimal control using inertial 

actuators 
In this section the focus is put onto the ℋ2 optimal active 

control using inertial actuators, and the optimal control 

parameters are derived in the closed form. Again, non-

dimensional parameters are included which help to 

generalise the study. Besides to those previously defined in 

Eqs. (1) to (3) an additional one related to the feedback gain 

g is introduced: 



2

g

c
  ,  (8) 

which defines the ratio between the active and passive 

damping coefficients. The ℋ2 norm of the primary structure 

velocity is then given by: 
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The right hand side in Eq. (9) can be partially differentiated 

with respect to the passive and active damping ratios and the 

numerators of the two derivatives equated to zero. These 

operations yield a set of equations: 
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If the system defined in Eqs. (10) and (11) is solved for   

and  , the optimal passive and active damping coefficients 

can be calculated as follows: 
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where p is a substitution to shorten the expressions: 
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The ℋ2 norm under optimal setting can be expressed as: 
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As can be seen in Eq. (15) the optimal active and passive 

damping ratios are still a function of the frequency ratio f . 

In other words, the optimisation has been performed without 

considering the frequency ratio as an optimisation parameter. 

However, as shown in Fig. 2, where the ℋ2 norm defined in 

Eq. (15) is plotted against the mass and the frequency ratio 

(with the unit scaling factor,
3

1 1 1k m  ), there is no optimal 

frequency ratio. On the contrary, there is a frequency ratio 

that is to be avoided, especially for small mass ratios, where 

the kinetic energy under optimal setting increases. This 

frequency ratio is about one. The lowest kinetic energy 

levels are in the range where the frequency ratio is below 

one. In this range the trend is that a decrease in the kinetic 

energy comes with a decrease in the frequency ratio. The 

mass ratio, as discussed earlier is also well below unity for a 

lightweight inertial actuator. Thus, the lower the frequency 

ratio, the better is the reduction in kinetic energy. The lower 

limit on the frequency ratio can be imposed by practical 

problems related to designing very compliant springs 
2k  

combined with small size of the actuator [5]. 

 

Fig. 2 The primary structure velocity ℋ2 norm under 

optimal active and passive damping ratios, plotted against 

the mass ratio and the frequency ratio. Unit mass and 

stiffness of the primary structure are assumed.  

To conclude, the frequency ratio f should be set to a values 

as small as possible. In the following section, the ℋ2 optimal 

vibration control performance using an Inertial Actuator is 

compared to that of using a Tuned Mass Damper having the 

same mass. It is assumed that the frequency ratio for the 

active approach can be set to a value below one, and the 

results are expressed as a function of a small frequency ratio 

f.  

Comparison of the control effects using 

Tuned Mass Dampers and Inertial 

Actuators 

It is now possible to compare the vibration control effects 

obtained with Inertial Actuators to those obtained with 

Tuned Mass Dampers. In order to do that, the Control 

Performance Ratio is defined as: 
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which, taking into account 1  can be developed into 

Taylor series around 𝑓=0 which yields: 
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Thus, the Control Performance Ratio expressed in dBs is: 

10 104,15 5log 1 20l[ ( ) og]CPR f     , (18) 

It is possible to see from Eq. (18) that halving the frequency 

ratio gives an extra 6 dB vibration reduction over the 

optimally tuned passive absorber, and decimating it gives an 

extra 20 dB reduction. This is illustrated in Fig. 3, where the 

control performance ratio is plotted against the frequency 

ratio for various mass ratios. 

 
Fig. 3 The ratio of the control performance (CPR) between 

ℋ2 optimally tuned Inertial Actuators and TMDs for 

different mass ratios, as a function of the frequency ratio.  

It can be noted that the improvement achieved by using 

active control over the passive control is more evident for 

smaller added mass of the device.  

Finally the two control approaches are compared on an 

example system, and the effects of adding either an 

optimally tuned TMD or an optimally tuned IA onto an 

undamped primary structure are illustrated. The example 

system has a unit mass of the primary structure, the 

resonance frequency of the primary structure of 100 s
-1

 and 

the absorber mass of 10 per cent of the primary mass 

( 0.1  ). Fig. 4 shows the amplitude of primary structure 

driving point mobility plotted against frequency for the two 

cases. 

 

 

Fig. 4 The amplitude of the primary structure driving point 

mobility plotted against frequency for two cases. Red line is 

for an ℋ2 optimally tuned mass damper, and the green line 

is for an optimally tuned inertial actuator having the 

resonance frequency of 1/10 the resonance frequency of the 

primary structure. 

 

It can be seen that the amplitude of driving point mobility in 

case of the passive control is higher than the it amplitude of 

driving point mobility in case of the active control at all 

frequencies except around the resonance frequency of the 

inertial actuator (in this case at about 10 Hz). This is due to 

the fact that the active control generates control spillover at 

frequencies around the actuator resonance. Thus the optimal 

active control is a trade-off between the vibration reduction 

at around the resonance frequency of the actuator and around 

the resonance frequency of the primary structure. This trade-

off however can be achieved with significant improvement 

in vibration reduction over the passive control approach. 

Conclusions 

The optimal tuning parameters for the active control using 

inertial actuators are derived. These are the passive damping 

of the actuator dashpot and the active damping determined 

through the velocity feedback gain. There is no optimal 

resonance frequency for the active control using inertial 

actuators; instead it should be as below the resonance 

frequency of the primary structure as practically possible. 

Depending on how low the frequency ratio can be, the active 

control can outperform the passive control for the same 

added mass. Halving the frequency ratio gives an extra 6 dB 

vibration reduction, decimating it gives an extra 20 dB 

reduction. The improvement over the passive control is more 

evident for smaller added mass. It is noted that the optimal 

active control is a trade-off between the vibration reduction 

at around the resonance frequency of the actuator and around 

the resonance frequency of the primary structure. 
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