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A number of simplified models of rotating tires have been suggested in the past. The belt 

had been modelled as a cylindrical shell, almost exclusively having simply supported 

boundary conditions. Such models are unable to represent certain groups of mode shapes 

due to the assumed zero radial displacements at the ends of the tire belt. In this paper, a 

model using free boundary conditions is reported. The developed model is able to 

approximate mode shapes that are similar to Rayleigh and Love symmetric and anti-

symmetric mode shapes. Mode shapes, natural frequencies and their veering with rotation 

speed are calculated exactly. 

1 INTRODUCTION  

The effects of rotation significantly alter the dynamic behaviour of automotive tires [1]. In non-

rotating tires, vibrations are characterized by pairs of traveling modes that rotate in opposite directions 

but have the same speed of rotation. The travelling modes thus superimpose, which results in 

formation of a stationary (non-rotating) vibration mode. On the contrary, if the tire rotates, the two 

modes rotate with different speeds [2]. This is due to the Coriolis effects which alter the propagation 

speed of the two otherwise superimposing modes in the co-rotating reference frame. Also the Doppler 

Effect plays a role when observing the vibrations from a fixed reference frame.  

A great number of studies have been concerned with analysis of the effects of rotation onto vibrations 

of rotating tires. For example, in order to capture detailed dynamics of a rotating tire, complex 

numerical models have been developed accounting for non-homogenous structural properties of the 

tire belt and sidewall, structural-acoustic coupling and complex geometry description (including that 

of the wheel rim), under varying rotation speeds [3]. However, although a remarkable amount of 

details can be successfully modelled using such an approach, it can be rather difficult to parameterize 

the model, i.e. to establish clear-cut relationships between geometrical or material properties of the tire 

and the corresponding influence onto the tire dynamics.  

An alternative way of studying vibration of rotating tires is to utilise simplified, analytical models 

using the theory of cylindrical shells [2], [4-6]. The principal assumption used in such tire models is 

that the geometry of the tire belt can be simplified through a cylindrical shell approximation with 

homogeneous, smeared material properties. Additionally, the air and sidewall stiffness are roughly 

approximated using an elastic foundation beneath the shell surface, which has distributed radial and 

circumferential stiffnesses. Also, the pressurisation and the centrifugal force can be approximately 

taken into account via an initial circumferential tension (hoop stress) in the belt. 

However, closed form solutions for resonance frequencies and mode shapes of shell-like structures are 

possible only for certain geometries and in combinations with mathematically convenient boundary 

conditions. If the effects of rotation are to be studied as well, then it becomes even more difficult to 
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derive the closed form expressions. For example, Huang and Soedel [4] used the strain-displacement 

relationships of Herrmann and Armenakas [6], and solved the free and forced vibration problem 

assuming simply supported boundary conditions. The natural frequencies were calculated as roots of a 

characteristic polynomial, which was shown to be bi-cubic if the shell does not rotate, or of full order 

of six if the shell rotates around the axis of symmetry.  

A drawback of such models assuming the simply supported boundary conditions is that they are 

unable to represent certain groups of mode shapes that occur with real tires. This is due to the assumed 

zero radial displacements at the ends of the tire belt. This would be an unnecessary constraint of the 

infinite radial stiffness of the sidewall. 

In this study, a model for rotating cylindrical shells with free boundary conditions is developed. This is 

thought to be a more useful set of boundary conditions if the shell is to be used for modelling a tire 

belt. This is because the present model is able to approximate also mode shapes that are similar to the 

so-called Rayleigh and Love symmetric and anti-symmetric mode shapes.  

The drawback of the present model, however, is that the calculation of the mode shapes and resonance 

frequencies is rather complex because it is done in a fully analytical manner (the free vibration 

problem is solved exactly). Nevertheless, once developed, the model allows for calculating the 

resonance frequencies and the mode shapes of the rotating shell as a function of some basic 

geometrical and material properties as well as the rotation speed. The paper is structured as follows. 

The mathematical model is briefly presented in the first section, and an example shell is considered in 

the second section, which is followed by a conclusions section. 

2 MATHEMATICAL MODEL 

The rotating cylindrical shell is shown schematically in Figure 1 (a). 
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Figure 1: (a) The scheme of a rotating cylindrical shell, and (b) the shell boundary force resultants 

The equations of motions, assuming the free vibration problem, are [4]: 
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where: 

a   =  shell radius, 

h   =  shell thickness, 

L   =  shell length, 

p0   =  inflation pressure, 

( , , )u u x t   =  axial displacement, 

( , , )v v x t   =  tangential displacement, 

( , , )w w x t   =  radial displacement, 

x   =  axial coordinate, 

     =  tangential coordinate, 

z   =  radial coordinate, 

     = Poisson’s ratio, 

E   = Young’s modulus, 

    = mass density, 

k

    = elastic foundation stiffness in the tangential direction, 

z
k     =   elastic foundation stiffness in the radial direction, 

,x i
N     = initial tension in the axial direction, 

,i
N


    = initial tension in the tangential direction, 

     = rotation speed, 

 3 212 1D Eh    = bending stiffness, and 

  21K Eh    = membrane stiffness. 

The initial tension in the tangential direction is given by [4]: 
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where the first term is due to centrifugal forces and the second term is due to the initial inflation 

pressure of the shell. Substituting: 

  0
e cos

x

au U n t



   ,  (12) 

  0
e sin

x

av V n t



   ,  (13) 

  0
e cos

x

aw W n t



   ,  (14) 

into the equations of motion (1), yields: 
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where 
, ,~i j

k can be found in [7]. The determinant of the matrix in Eq. (15) must vanish in order for the 

equations of motion to be satisfied. Setting the determinant to zero yields the biquartic polynomial in 

 : 
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where the coefficients 
r

A  in function of 
, ,~i j

k  are given in [7]. So there are eight roots of the 

polynomial and so the radial component of the displacement can be expressed as: 

  ( )cosw W x n t   ,  (17) 
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where 
r

B , with r=1…8, are eight generally complex constants. The roots of the polynomial (16) may 

be calculated at this stage by assuming the frequency  . 

The roots can take eight types of forms as listed in Table 1 below. 

Table 1 The eight types or roots of the characteristic bi-quartic polynomial 
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The complete set of solutions for all roots can be found in [7]. Here only the first type of roots (Case 1 

in Table 1) is covered for brevity. Note that 
1 2
, , ,p q   are real and positive numbers. In such a case 

the radial component of the displacement is given by: 
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where 
r

C  are now real constants.  

From Eq. (15): 
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where 
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Substituting for each root 
r

  into Eqs. (20) and (21), the expressions for ( )U x  and ( )V x can be 

represented as: 
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The constants dr can now be calculated using Eqs. (20) and (21) as [8]:  1
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p q   .At each end of the shell marked with x=const. there 

are five resultant forces as shown in Figure 1 (b). The equations of motion are however of maximum 

fourth order and can only accommodate for four boundary conditions [9-10]. Thus the Kirchhoff 

effective shear stress resultant of the first kind, 
xz

V , and the Kirchhoff effective shear stress resultant 

of the second kind, 
x

T
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Since the boundary conditions are the same at the two ends, the modes can be either symmetric or 

anti-symmetric, or in other words, they cannot be asymmetric. Consequently the boundary conditions 

can be separately satisfied for symmetric and anti-symmetric modes by assuming the origin in the 

middle section of the cylinder and the boundaries at / 2x L  . Here the radial and the 

circumferential displacement components share the symmetry or anti-symmetry properties. The axial 

displacement component mathematical symmetry or anti-symmetry is opposite to that of the radial and 

circumferential displacement components but the physical symmetry is also the same. In case the 

modes are symmetric, the radial component of the displacement can be shortened by using 
/

cosh( / ) sinh( / )
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  and ensuring that the anti-symmetric terms in Eq. (19) vanish. Then 
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Substituting Eq. (30) into (17) for the radial displacement component, and also Eqs. (31) and (32) into 

analogue expressions for tangential and axial displacement components gives a set of displacement 

components u, v and w. These can be substituted into Eqs. (26)-(29), which after assuming / 2x L  

and putting into a matrix form gives: 
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where coefficients br depending on 
, ,~r s

t are given in [7]. The zeroes of the left hand side of Eq. (34)  in 

fact represent the length of the shell whose m,n  mode resonates at the assumed frequency 
,m n

 , where 

the lowest zero (the smallest length) is for m=1 symmetric mode, the next one is for m=3 symmetric 

mode etc. According to this notation there are m+1 axial nodes (the cross-sections where w=0) for a 

mode number m. In case of a non-rotating shell ( 0  ), assuming frequencies 
,m n

  yields the 

same length for either the positive or the negative frequency 
,m n

 . However for 0   this is not the 

case, since the forward and backward rotating modes are now characterised by different rotation 

speeds. Thus for rotating shells negative frequencies must be assumed in order to account for the 

forward rotating modes. 

In case of anti-symmetric modes it must be 
51 7 83 6

0,  , and C C C C C C      so that: 

 
2 4

1

3 4

2sin sin( ) h sinh cos cosh sin
x x px qx px qx

W x C C F F
a a a a a a

 
   

           
           
           

,  (35) 

with similar expressions for ( )V x  and ( )U x . After recalculating the determinant for the anti-

symmetric modes an expression analogue to Eq. (34) results, which can be obtained by substituting 

1 1
tanh( ) coth( )  , 

3 3
tanh( ) coth( )  , 

2 2
cos( ) sin( )  , and 

2 2
sin( ) cos( )    into Eq. 

(34). Then the zeroes represent the length of the shell whose m,n mode resonates at the assumed 

frequency
,m n

 , where the lowest zero is for m=0 anti-symmetric mode (Love-type mode with one 

nodal cross section), the next one is for m=2 anti-symmetric mode etc. In order to calculate resonance 

frequencies for a shell of given length it is necessary to iterate until the length resulting from finding a 

zero of the determinant (34) matches the desired length of the shell to an acceptable precision. An 

alternative approach is also possible which utilises a detection of two frequencies between which the 

determinant (34) changes sign for the shell of a given length. In the following section an example 

rotating shell is considered and a number of mode shapes and resonance frequencies are calculated. 

3 RESULTS 

The example shell material and geometrical properties are listed in Table 2. 

Table 2 The geometrical and material properties of the example shell 

a (m) h (m) L (m)   (-)   kgm
-3

 E (GPa) z
k (Nm

-3
) k


 (Nm

-3
) p0 (Pa) ,x i

N (Nm
-1

) 

0.1 0.002 0.2 0.45 1452 0.45 0 0 0 0 

Figure 2 shows the resonance frequencies calculated using the methodology described above for the 

example shell as a function of the circumferential mode number up to 1 kHz (left plot) and from 1 kHz 

to 3kHz (right plot). The method for calculation of the resonance frequencies is as follows. The 

frequency range of interest (0-3 kHz) was divided into 30000 frequencies with an equidistant spacing 

of 0.1 Hz. Then a “scan” was performed through all frequencies in the range and a change in the sign 

of any of the sixteen determinants was detected between two adjacent frequencies assuming the shell 

length as in Table 2. The change of sign in fact indicates the existence of a mode with its resonance 

frequency between the two adjacent frequencies. Thus the accuracy of the calculated resonance 

frequencies is 0.1 Hz or better. As shown by the black continuous lines, it is in principle possible to 

calculate fictive resonance frequencies also for circumferential mode numbers which are not integers. 
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This has no physical meaning in the present study; however it enables to visually identify the so-called 

branches. 

 
Figure 2: The natural frequencies of a stationary shell as a function of the circumferential mode number n; 0-

1000 Hz (left) and 1000-3000 Hz (right). The root type is indicated by using different marker types: blue × mark 

– type 1, red circle – type 2, black diamond – type 3, blue hexagon – type 4, magenta pentagon – type 5, cyan 

triangle -  type 6, black square – type 7, and finally, green asterisk – type 8, according to the notation given in 

Table 1. 

Each branch contains resonance frequencies of modes having a constant axial mode number m. For 

example, the two branches with lowest resonance frequencies per a circumferential mode number 

contain the Rayleigh type (m=-1) and Love type modes (m=0), [8]. As can be seen in the plot these 

two groups of modes are characterised by very similar resonance frequencies, since the two branches 

nearly overlap. A depiction of a Love and a Rayleigh mode shape is given in Figure 3. 

(a) (b) 

 

 
Figure 3: (a) A Rayleigh bending mode, m=-1, n=16, f=1437.5 Hz. (b)a Love mode,  m=0, n=9, 

f=455.1Hz. Root type is 3; 
1 2
, , ( i )p q     . 

In Figure 2 the modes (at integer circumferential numbers n) are highlighted using markers of 

different types corresponding to different types of the roots (Table 1) governing the mode shapes. For 

which marker type corresponds to which root type see the caption to Figure 2. It can be seen that 

indeed a large group of mode shapes are determined by the roots of type 1 (two real, two imaginary, 

four complex) as shown by the blue × symbols. However, the Rayleigh and Love modes are never 

governed by that root type. Instead, they appear to be determined by the roots of type 2, 3 and 4. Also 

the modes with low circumferential mode numbers (those with n=0 and n=1) are governed by roots of 

type 6, 7 and 8. Then also a large group of modes is determined by the roots of type 5 at higher axial 
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mode numbers m (see the right hand side of Figure 2). Thus it is certainly necessary to consider all 

eight root types in order to get all possible modes and resonance frequencies. In the right hand side of 

Figure 2 it is possible to note that additional branches occur, having a steeper slope with respect to the 

horizontal axis, which in fact cross the branches containing the resonance frequencies of bending 

modes. These contain additional resonance frequencies that correspond to the longitudinal mode 

shapes having a pronounced axial, “in plane” deformations of the shell [7].  

A comparison with an FE model of a stationary shell is given next. Two different FE meshes were 

used for this purpose. The first, “coarse” mesh is constituted by x  =40×101=5040 S4R ABACUS 

rectangular thin or thick doubly curved shell elements with 4-nodes, with reduced integration and 

finite membrane strains. The second, “fine” mesh is constituted by x  =40×180=7200 elements so 

that the number of elements along the circumference is increased by 80%. Figure 4 shows the 

resonance frequencies using the same layout as in Figure 2, where the continuous lines are the 

solutions using the present exact method, and the blue circle symbols represent the resonance 

frequencies obtained using the FE method. It can be seen that in general the finite element analysis 

results fall very close to the analytical continuous lines indicating a very good agreement between the 

numerical and the analytical method. Some discrepancies, however, can be seen with high 

circumferential mode numbers of n=12 and n=13 in case the “coarse” mesh is used (left hand side of 

Figure 4). This is because such modes have 12 or 13 lobes in the circumferential direction or about 8 

finite elements per wavelength so that the resonance frequencies can become overestimated by the FE 

method. However with the “fine” mesh having the increased number of elements in the 

circumferential direction the ratio goes up to 15 elements per wavelength so the resonance frequencies 

become more accurately calculated by the FE method. Thus the blue circles in the right hand side plot 

of Figure 4 fall onto the black continuous lines almost perfectly. 

 
Figure 4: The comparison of natural frequencies of a stationary shell with a FE model in the range 0-1000 Hz; 

“rough” FE mesh (left) and a “fine” mesh (right) 

Thus the present method can be considered to agree very well with the FE method and its validity is 

confirmed for the stationary (non-rotating) case. The validation of the present method for the rotating 

case is considered next. Figure 5 follows the same layout as Figure 4, where the blue circles are the 

FE results and the black continuous lines are the exact results. The “fine” mesh is used in both plots, 

however the left hand side plot is for the constant rotation speed of 100 rad/s, whereas the right hand 

side is for the constant rotation speed of 200 rad/s around the x- axis. An excellent agreement between 

the FEM results and the analytical results can be seen so the present method is valid also for the 

rotating case. Note that the branches are no longer symmetric. In other words, the natural frequencies 

of the forward rotating modes (in the direction of rotation of the shell) are now different from their 

backward rotating counterparts. Thus they now rotate in opposite directions at different speeds (see 

Eqs. (12)-(14)). 

4 CONCLUSIONS 

A simplified model of a rotating tire is developed. Effects of the flexible support in the radial and 

circumferential direction, the initial hoop stresses due to a possible pressurisation and/or centrifugal 
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forces are considered in the model. The model is based on the rotating cylindrical shell having free 

boundary conditions. Exact expressions are given to calculate its resonance frequencies and mode 

shapes. An excellent agreement between the resonance frequencies obtained using the FE method and 

the present method is demonstrated for both stationary and rotating shells. It should be noted that the 

model presented relies heavily on the assumption that the air and sidewall stiffness can be 

approximated using an elastic foundation beneath the shell surface, which has distributed radial and 

circumferential stiffnesses. Also the expressions for mode shapes and the resonance frequency 

determinants are rather complicated. As a future work an approximate Rayleigh-Ritz methodology 

will be used to derive simpler expressions for natural frequencies via approximate mode shapes. 

 
Figure 5: The comparison of natural frequencies of  shell rotating with a constant speed of 100 rad/s (left and 

200 rad/s (right) with a FE model in the range 0-1000 Hz using the “fine” FE mesh. 
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