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Aim: To determine whether dynamic DNA methylation changes in the human placenta 
can be used to predict gestational age. Materials & methods: Publicly available placental 
DNA methylation data from 12 studies, together with our own dataset, using Illumina 
Infinium Human Methylation BeadChip arrays. Results & conclusion: We developed an 
accurate tool for predicting gestational age of placentas using 62 CpG sites. There was 
a higher predicted gestational age for placentas from early onset preeclampsia cases, 
but not term preeclampsia, compared with their chronological age. Therefore, early 
onset preeclampsia is associated with placental aging. Gestational age acceleration 
prediction from DNA methylation array data may provide insight into the molecular 
mechanisms of pregnancy disorders.
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DNA methylation is a heritable epigenetic 
process that can regulate important genetic 
mechanisms and processes such as gene 
expression, X chromosome inactivation 
(XCI)  [1], cellular identity  [2] and genomic 
imprinting [3]. DNA methylation is the cova-
lent attachment of a methyl group to a cyto-
sine ring by a DNA methyl transferase  [4]. 
In this article we focus on cytosine-5 DNA 
methylation within CpG dinucleotides as 
opposed to other methylated cytosines such 
as CHG and CHH. Recently, DNA methyla-
tion levels for 353 CpG sites have been used 
to measure the epigenetic age, defined as the 
predicted age by DNA methylation, of a vari-
ety of human tissues, which has a high corre-
lation (r = 0.92) with the actual age [5]. More-
over, another study found that accelerated 
aging  [5], defined as the difference between 
the estimated epigenetic age and the actual 
known age, is associated with maternal char-
acteristics in pregnancy such as smoking, 
weight, BMI, selenium and cholesterol in 
peripheral blood  [6]. The placenta is unique 

compared with other tissues, with the excep-
tion of cancer tissues [7,8] and a human fetal 
fibroblast cell line (IMR90) [9], in that it has 
been shown that it has low levels of genome-
wide CpG methylation  [10,11]. Despite this, 
overall placental genome CpG methylation 
has been observed to increase during ges-
tation  [12]. However, precisely what DNA 
methylation changes occur during gestation 
and how these changes relate to pregnancy 
success is unknown.

Poor placental function, due to impaired 
placentation has been proposed to be a cause 
of preeclampsia (PE) [13], which is character-
ized by high-maternal blood pressure and 
proteinuria [14]. Adversities during pregnancy 
may cause epigenetic changes and altered 
fetal development outcomes  [15], which may 
be orchestrated by the placenta  [16]. Differ-
ential DNA methylation in the placenta has 
been shown to occur in pregnancy compli-
cations  [17] including PE  [18–21], gestational 
diabetes mellitus  [18,22,23] and intrauterine 
growth restriction  [24]. DNA methylation is 
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critical for optimal placental and fetal development. 
For example, genomic imprinting regulates expression 
of IGF2 and H19, which are both required for proper 
placental development. Hypomethylation within the 
imprinting control region of IGF2 has been shown to be 
associated with reduced fetal growth [25,26] whereas loss 
of imprinting of H19 has been reported to be associated 
with PE and with small for gestational age infants [27].

Previous studies have reported altered placental gene 
expression in human pregnancy complications includ-
ing PE  [28–32], gestational diabetes mellitus  [31] and 
fetal growth restriction [28,33]. However, little is known 
whether changes in DNA methylation and gene expres-
sion overlap in the placenta. The relationship between 
global placental gene expression and DNA methylation 
is conflicting as one study has reported a general trend 
between the increase in DNA methylation and decrease 
in gene expression levels during gestation [12], whereas 
another study using matched samples has reported no 
overlap between gene expression and DNA methyla-

tion changes between placentas from PE and uncom-
plicated pregnancies  [21]. In addition, genes within 
partially methylated domains in the term placenta have 
been reported to be repressed [10].

In this study, we assembled a large dataset of pub-
licly available placental tissue DNA methylation data, 
which has been measured using the Illumina Infinium 
HumanMethylation BeadChip arrays (Illumina). We 
sought to determine the precise changes in DNA meth-
ylation that occur in the placenta across gestation and 
determined whether DNA methylation data can be used 
to predict the gestational age of a placenta. Finally, we 
investigated what happens to the predicted gestational 
age in placentas from preeclamptic pregnancies. We 
hypothesized that the gestational age of the placenta 
can be estimated by its DNA methylation levels and that 
pregnancy complications such as PE would be character-
ized by accelerated placental aging. Our computational 
analysis of DNA methylation data reveals accurate pre-
dictions of the gestational age of the placenta. Moreover, 

Table 1. A description of the DNA methylation datasets containing placental tissue used in this study.

GEO accession Dataset summary Platform Number of placental 
tissue samples

Gestational age 
range (weeks)

GSE31781 Placental tissue samples from three gestational age 
time points

27k 18 first trimester, 
10 second trimester, 
14 term

8–42

GSE36642 Cord blood and placentas from MZ and DZ twins 27k 28 third trimester 32–38

GSE36829 Placental tissue from term pregnancies 27k 48 term 37–42

GSE59274 Placental tissue samples from women with PE or 
uncomplicated pregnancies

27k 24 uncomplicated, 
24 PE

28–41

GSE46573 Epigenome-wide association study 450k 2 term NA

GSE52576 Genome-wide human imprinting analysis of different 
healthy human tissue

450k 4 term NA

GSE54399 Whole cord blood and placental tissue from normal 
pregnancies

450k 24 uncomplicated NA

GSE57767 Placental tissue samples from normal term, preterm 
PE and term PE women

450k 14 uncomplicated, 
12 preterm PE, 
19 term PE

NA

GSE44667 Placental tissue from women with EOPET and 
gestational age matched controls

450k 20 third trimester, 
20 PE

25–37

GSE66210 First trimester chorionic villus samples from normal 
and trisomy pregnancies

450k 12 normal, 
12 trisomy 21, 
12 trisomy 18, 
6 trisomy 13

NA

GSE73375 Placental tissue samples from preeclamptic and 
normotensive women

450k 17 uncomplicated, 
19 PE

NA

GSE74738 Placental tissue from uncomplicated pregnancies 450k 28 term 36–42

This study Placental tissue from uncomplicated elective 
cesarean pregnancies

27k 22 term 35–40

27k: Illumina Infinium Human Methylation27; 450k: Illumina Infinium HumanMethylation450; DZ: Dizygotic; EOPET: Early onset preeclampsia; GEO: Gene Expression 
Omnibus; MZ: Monozygotic; NA: Not available; PE: Preeclampsia.
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gestational age prediction of the placenta may identify 
novel mechanisms in pregnancy complications, such as 
those associated with placental aging.

Materials & methods
Quantification of the DNA methylation levels
Quantification of the DNA methylation level of each 
CpG site that is annotated in either the Illumina Infin-
ium HumanMethylation27 or 450 BeadChip (Illu-
mina) was performed using standard techniques. The 
publicly available human placental datasets (Table 1) 
were obtained from the Gene Expression Omnibus 
using the GEOquery Bioconductor package. Briefly, 
DNA methylation levels of each CpG site from each 
dataset were quantified by the β-value. The β-value is 
calculated by taking the ratio of the two fluorescent 
signals (methylated and unmethylated signals) in stud-
ies that provided the two fluorescent signals.

Differential methylation analysis
Differential methylation analysis was performed using 
the 450k datasets for which we had data for 469,017 
probes. Normalization was performed using the Beta 
MIxture Quantile dilation (BMIQ) method  [34], 
which corrects for the probe design bias in the Illumina 
Infinium HumanMethylation450 BeadChip followed 
by quantile normalization. Since the data were from 
multiple datasets, batch effects were corrected using the 
ComBat function in the ChAMP Bioconductor pack-
age [35,36]. Multidimensional scaling plots of the 1000 
most variable probes of the data were used to check 
for outliers. Sample sex was identified using the minfi 
package in which the median value of the β-values for 
probes that mapped uniquely for the X and Y chromo-
some, respectively, were determined [37]. Differentially 
methylated CpG sites were identified using empirical 
Bayesian variance method in limma  [38]. The Bump-
hunter Bioconductor package was used to identify 
differentially methylated regions (DMRs) by running 
1000 permutations of the data  [39]. We selected data-
sets (GSE44667, GSE46573, GSE52576, GSE54399, 
GSE57767 and GSE73375) that had used the Illumina 
Infinium HumanMethylation450 BeadChip array to 
assess sex differences in placental DNA methylation 
and differential methylation between PE and uncom-
plicated pregnancies (Table 1). In total, we had placen-
tal DNA methylation data for 70 preeclamptic and 
62 uncomplicated pregnancies.

Gestational age prediction
We selected datasets for placental tissue samples that 
were publicly available and which contained individual 
gestational age information and were from healthy sin-
gleton pregnancies (GSE31781, GSE36829, GSE59274, 

GSE44667 and GSE74738) (Table 1). We also com-
bined these datasets with our own dataset for 22 term 
placentas from uncomplicated pregnancies. Probes that 
were present in both the 27k and 450k array were kept, 
and probes that were annotated to the sex chromosomes 
were removed. Every sample in the training dataset con-
tained β-values for 18,437 probes. Normalization was 
performed as described by Horvath  [5], using a modi-
fied version of the BMIQ  [34] method. This modified 
version of BMIQ rescales the Infinium II probes to 
the mean β-value of each probe in the largest dataset 
(GSE36829) prior to quantile normalization. Using 
the R package glmnet [40], we regressed gestational age 
with the 18,437 probes. The elastic net regression or 
the α-parameter of glmnet was 0.5 and the minimum 
λ-value based on the training data was 0.6807. The 
elastic net model automatically selected 62 CpG sites, 
such that given the level of methylation of the 62 CpG 
sites, the gestational age of a placenta can be calculated.

Gestational age acceleration heritability
To determine the heritability of gestational age accel-
eration, which is defined as the difference between the 
chronological and predicted gestational age of a pla-
centa we used Falconer’s formula (H2 = 2(cor(MZ)-
cor(DZ))). Falconer’s formula was used to determine 
the broad sense heritability, which is the proportion 
of variance of gestational age acceleration as a result of 
genetic factors. The broad sense heritability was deter-
mined by using a dataset (GSE36642) that contained 
monozygotic (MZ) and dizygotic (DZ) twins of the 
same sex. First, the predicted gestational age of the 
twin placentas were determined as described above. 
The twin dataset was split into either MZ or DZ twins, 
and for each twin pair the gestational age acceleration 
was calculated. For each twin pair, each sibling was ran-
domly selected as either twin 1 or twin 2 and the pear-
son correlation of gestational age acceleration was deter-
mined in both MZ and DZ twins. The correlations of 
both MZ and DZ twins were inputted into Falconer’s 
formula to determine the broad sense heritability.

Annotation of CpG sites
Annotation of all the CpG sites within the analysis of 
this study for the Illumina Infinium HumanMeth-
ylation27 and HumanMethylation450 BeadChip 
was performed using two annotation Bioconductor 
packages [41,42].

Results
Differential methylation in placentas from 
preeclamptic pregnancies
We searched Gene Expression Omnibus  [43] for 
DNA methylation datasets containing placental tis-
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sue that were measured on either the Illumina Infin-
ium HumanMethylation27 BeadChip or Infinium 
HumanMethylation450 BeadChip. In total, we iden-
tified 387 placental tissue samples from 12 different 
datasets (Table 1). We selected only placentas assessed 
using the Illumina DNA methylation arrays, the most 
commonly used platform to quantify DNA methyla-
tion in the placenta. Here, we used publicly available 
placental DNA methylation data (Table 1) to assess dif-
ferential methylation between placentas from PE and 
uncomplicated pregnancies. We selected only datasets 
that used the Infinium HumanMethylation450 Bead-
Chip for differential methylation analysis since most 
studies involving placental samples from women with 
PE had used this platform (Table 1) and it contains 
the largest number of CpG sites available for analy-
sis. When comparing 70 placentas from preeclamptic 
pregnancies and 62 placentas from term uncompli-
cated pregnancies we found that a total of 741 CpG 
sites (false discovery rate [FDR] <0.01) were differen-
tially methylated (Supplementary Table 1). We then 
tested for DMRs and identified three DMRs in placen-
tas from preeclamptic pregnancies, which overlapped 
the 5′ region of MARC2, FAM3B and TP53TG1.

Sex differences in DNA methylation
To identify whether sex differences also occur in 
the placental DNA methylome, we identified a total 
of 2898 differentially methylated CpG sites (FDR 
<0.01) between 35 male and 27 female placentas from 
uncomplicated singleton term pregnancies that had 
been analyzed using the Infinium HumanMethyl-
ation450 BeadChip (Supplementary Table 2). Of the 
2898 CpG sites, 420 were located on autosomes, 2464 
on the X chromosome and 14 on the Y chromosome. 
Although we are reporting Y chromosome CpG sites, 
we do not consider these CpG sites as differentially 
methylated between sexes. In addition, upon remov-
ing the Y chromosome from our analysis we did not 
observe a difference in the total number of differen-
tially methylated X chromosome or autosomal CpG 
sites. We also identified a total of 396 DMRs between 
sexes (Supplementary Table 3). All of these were located 
on the X chromosome with 311 and 85 being hyper-
methylated in females and males, respectively. The 
85 hypermethylated DMRs on the X chromosome 
in males did not overlap with any reported sex-biased 
genes [44], with the exception of XIST, which is upregu-
lated in females and is well known for its role in XCI in 
female mammalian somatic cells [45]. The most statis-
tically significant differentially methylated autosomal 
CpG site as defined by the empirical Bayesian variance 
method in limma between sexes was hypermethylated 
in females and was within exon 1 of TLE1, which is 

a marker of synovial sarcoma  [46]. Although TLE1 is 
expressed in the placenta, it has not been reported to 
be differentially expressed between fetal sexes in the 
placenta [44,47].

Gestational age calculator training dataset
Although a multitissue age predictor using DNA 
methylation data has been previously developed  [5], 
we set out to determine if DNA methylation can be 
used to predict the gestational age of the placenta. To 
develop our placental gestational age calculator, only 
placentas from healthy singleton pregnancies with 
individual gestational age information were included. 
Placental tissue samples from PE pregnancies were 
excluded from the training dataset to reduce potential 
confounding factors caused by the disease. In total, we 
used 170 placental tissue samples that had individual 
gestational age information to generate the gestational 
age calculator. The 170 placental tissue samples were 
taken from five publicly available datasets, along with 
our own generated data analyzing 22 term placentas 
(Table 1). Four of the six datasets were obtained using 
the Infinium HumanMethylation27 BeadChip and 
the other two on the Infinium HumanMethylation450 
BeadChip, and the included datasets contained placen-
tal tissue samples that spanned 8–42 weeks gestation. 
We selected probes that were present in all six datasets 
and removed probes that were found on sex chromo-
somes, leaving a total of 18,437 probes (no missing 
data). We randomly assigned half of the 170 placental 
tissue samples to a training dataset, leaving the other 
85 samples for validation.

Identifying & validating the gestational age 
calculator
Briefly, we first normalized the training data using 
the modified version of the BMIQ  [5,34]. The mean 
β-value of each probe in the largest dataset (GSE3829) 
was used as the gold standard of the probes, simi-
larly as previously described  [5], in the normalization 
step (Supplementary Table 4). A gold standard of the 
probes was used for normalization since the datasets 
were from two different microarray platforms and it 
rescaled the probes that were present in both microar-
ray platforms. After normalization, we regressed the 
chronological gestational age against the 18,437 CpG 
sites using an elastic net penalized regression 
model [40]. The model automatically selected 62 CpG 
sites (Supplementary Table 5) to predict the gestational 
age of a placenta. In the training dataset we found 
an extremely high correlation (r = 0.99, p < 2.2e-16) 
between the chronological and the predicted gestation 
age (Figure 1A). In addition, the median absolute dif-
ference between the predicted and chronological gesta-
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tional age in the training dataset was found to be 0.23 
weeks. We then tested these 62 CpG sites in the vali-
dation dataset (Figure 1B) and also found a high corre-
lation between the chronological and predicted gesta-
tional age (r = 0.95, p < 2.2e-16). The median absolute 
difference in the validation dataset was 1.47  weeks 
and the root mean square error was 2.3. The heatmap 
(Figure 1C) allows visualization of the CpG sites and 
shows changes in DNA methylation across gestation. 
Furthermore, the lack of vertical lines in the heatmap 
suggests that the CpG sites are robust against dataset 
effects. In order to further validate the 62 CpG sites, 
we predicted the gestational age of all remaining pub-
licly available placental tissue samples from uncom-
plicated pregnancies that did not have individual 
gestational age information (Supplementary Table 6). 
Although these samples did not have individual ges-
tational age information, we sought to determine if 
the predicted gestational age matched the labeled tri-
mester of pregnancy for each sample. We found a con-
cordance between the predicted gestational age and 
labeled trimester of pregnancy, which assured us that 
it is an accurate predictor of gestational age. Here in 
this study we refer to the predicted gestational age of 
each placenta as the DNA methylation gestational age 
(DNAm GA).

The 62 gestational clock CpG sites
The 62 gestational clock CpG sites can be character-
ized into two groups depending on the direction of 
their correlation with gestational age. Twenty-seven 
CpG sites were found to positively correlate and 
become hypermethylated with increasing gestational 
age whereas, the other 35 CpG sites negatively cor-
related and became hypomethylated with increasing 
gestational age.

Gestational age acceleration in placentas from 
preeclamptic pregnancies
Since differential DNA methylation occurs in pla-
centas from PE compared with uncomplicated preg-
nancies  [17], we investigated if accurate prediction 
of gestation age can also be achieved in placentas 
from PE pregnancies. Two datasets (GSE44667 and 
GSE59274) contained individual gestational age infor-
mation for placental tissue samples from PE pregnan-
cies (26 early-onset PE and 18 late-onset PE). We then 
compared the chronological gestational age with the 
DNAm GA (Figure 2) and found that placentas from 
early-onset PE pregnancies (<34 weeks gestation) had a 
higher DNAm GA compared with their chronological 
gestational age (p = 3.44e-6, two-tailed, paired t-test). 
However, late-onset placentas from PE pregnancies 
(≥34 weeks gestation) did not show any significant dif-

ference between their chronological and DNAm GA 
(p = 0.38) indicating that late-onset PE does not affect 
placental aging. From here on, we refer to the difference 
between chronological and DNAm GA as gestational 
age acceleration, similar to what has been defined pre-
viously [5]. One dataset (GSE36642) contained placen-
tas from MZ and DZ twins with individual gestational 
age information, allowing the determination of gesta-
tional age acceleration heritability by calculating the 
broad-sense heritability using Falconer’s formula (H2 = 
2(cor(MZ)-cor(DZ))). We conducted our analysis on 
gestational age acceleration heritability on twin sam-
ples of the same sex. The broad-sense heritability was 
used to determine the proportion of variance of gesta-
tional age acceleration as a result of genetic variation. 
Despite having a small sample size, we calculated the 
gestational age acceleration for each sample and deter-
mined the broad-sense heritability to be 57.2% in MZ 
and DZ twin pairs (Supplementary Figure 1).

Discussion
In this study, we investigated DNA methylation dif-
ferences in the placenta across gestation and in differ-
ent pregnancy outcomes. We found 34 genes that have 
been reported to be differentially expressed in placenta 
from PE compared with uncomplicated pregnan-
cies  [30] to contain at least one differentially methyl-
ated CpG site (Supplementary Table 1). For example, 
there was a differentially methylated CpG site in the 
promoter of RAC1 (Supplementary Table 1), a member 
of the RAS superfamily [48], which has been found to 
be upregulated in placenta from preeclamptic pregnan-
cies  [30]. We also tested for DMRs in placentas from 
preeclamptic and uncomplicated pregnancies. We 
identified three DMRs, which overlapped the 5′ region 
of MARC2, FAM3B and TP53TG1. However, to our 
knowledge these genes have not been reported to 
be differentially expressed in placenta from women 
with PE.

The placenta has been implicated in a number of 
pregnancy complications, including preterm birth [49]. 
Sex differences in pregnancy outcomes have also been 
reported, for example, women bearing a male fetus are 
at a 20% higher risk of preterm birth [50–52]. The fetus 
and placenta are genetically identical [53]. Therefore, it 
is reasonable to suggest that sex differences in outcomes 
may potentially be orchestrated by the placenta. Sex dif-
ferences in placental gene expression have been previ-
ously reported [44,47] and in comparison to the placental 
sex-biased gene expression meta-analysis [44], 20 genes 
(located on the X chromosome and upregulated in 
females) were found to contain at least one CpG site or 
DMR that was hypermethylated in females. However, 
this may be the result of XCI in females.
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Figure 1. DNA methylation accurately predicts gestational age of the placenta. The correlation between the chronological and DNA 
methylation gestational age of each placenta in the (A) training dataset and the (B) validation dataset. (C) A heatmap visualizing 
the gradual changes in DNA methylation in each of the 62 CpG sites (rows) across gestation in all samples (columns). The samples 
have been ordered by increasing gestational age and the probes have been ordered by the increasing magnitude of correlation with 
gestational age. The dataset heatmap represents the origin of each sample.
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It is unclear why 85 X chromosome DMRs would 
be hypermethylated in males considering XCI occurs 
in females. Despite being hypermethylated in males, 

there are no reports of sex differences in expression of 
the genes in which these DMRs occur. Potentially they 
may regulate other sex-specific differentially expressed 
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RNAs including ncRNAs or affect transcription factor 
binding. Further research is required to elucidate the 
precise mechanisms by which the 85 X chromosome 
hypermethylated DMRs in males act.

We therefore, found a lack of overlap with our differ-
ential DNA methylation analysis and two gene expres-
sion meta-analyses  [30,44]. These findings were consis-
tent with a previous study in which changes in gene 
expression and DNA methylation did not overlap from 
matched placental samples from PE and uncomplicated 
pregnancies  [21]. Furthermore, changes in DNA meth-
ylation within the promoters of genes do not always alter 
gene expression as reported for colon cancer [54]. We also 
found little overlap between genes that have previously 
been reported to be sex biased in the placenta  [44] and 
our DNA methylation results. Interestingly, we did find 
420 differentially methylated autosomal CpG sites and 
85 X chromosome hypermethylated DMRs in males. 
However, due to the poor overlap with gene expression 
and the effect of XCI it is difficult to draw any con-
clusions on what the effect of the differences in DNA 
methylation that were observed had on gene expression.

The lack of overlap between DNA methylation and 
reported gene expression changes has several limita-
tions. First, in comparison to the two gene expres-
sion meta-analyses, we analyzed far fewer samples and 
therefore may not have been statistically powered to 
detect small differences. Second, the Illumina DNA 
Methylation BeadChip arrays only assess approxi-
mately 2% of the CpG sites in the human genome and 
do not assess other methylated cytosine sites such as 
CHG and CHH. Therefore, we may not have captured 
the true landscape of DNA methylation in the pla-
centa. Finally, the comparison between DNA methyla-
tion and gene expression was not in the same samples 
and therefore there may have been too much biological 
variability to detect any overlap. Despite these limi-
tations, our findings suggest that CpG methylation 
in the placenta may not be a key regulator of gene 
expression and therefore may be more dependent on 
other epigenetic factors such as histone modifications, 
small RNA regulation or ncRNA changes. It has been 
reported that the placenta with the exception of the 
brain, has high levels of non-CpG methylation com-
pared with other human tissues [55], which may have a 
bigger influence on gene expression levels.

In this study, we identified 62 CpG sites, which 
together can be used to determine the gestational age 
of a placenta. Several limitations of our study for pre-
dicting gestational age do require discussion. First, 
the training dataset consisted of placentas from 8 to 
42 weeks gestation with a bias of samples being from 
late third trimester. First and second trimester samples 
comprised only 11 and 9.5% of the training and vali-

dation data, respectively. This may have created some 
biases in the CpG sites chosen and may cause some 
inaccuracy in identifying the gestational age of placen-
tas from first and second trimester. Second, in relation 
to gestational age acceleration heritability the twin 
dataset only contained 14 twin pairs. Therefore we 
may have not captured the true extent of gestational 
age heritability within this study. Future studies with 
large sample sizes of twin pairs are required to deter-
mine the true extent of the heritability of gestational 
age acceleration. In addition to gestational age predic-
tion, we used first and second trimester placentas from 
terminated pregnancies. One limitation is that some of 
these placentas may have been from women destined 
to develop a pregnancy complication, which may have 
implications for our gestational age prediction. A pos-
sible approach to overcome this limitation is to use pla-
cental villi from chorionic villus sampling in ongoing 
pregnancies. Thereby, samples that were from compli-
cated pregnancies could be excluded from the analysis. 
Unfortunately, to our knowledge there is no publicly 
available DNA methylation data on such samples that 
we could use to test our gestational age prediction.

Placentas from early-onset preeclamptic pregnan-
cies were found to have a higher DNAm GA compared 
with their chronological gestational age. Using a twin 
dataset we were able to determine the broad-sense 
heritability of gestational age acceleration to be 57.2%. 
This finding suggests environmental factors also have 
an influence together with genetic factors on gesta-
tional age acceleration. Maternal lifestyle factors such 
as smoking [56,57] are known to alter DNA methylation 
levels in the placenta. Therefore, the maternal environ
ment can affect the intrauterine environment, and 
thereby could influence gestational age acceleration in 
the placenta. Furthermore, other lifestyle factors such 
as BMI have been found to increase the epigenetic age 
in certain tissues such as the liver [58]. It would there-
fore be important to investigate the effect of maternal 
lifestyle factors on gestational age acceleration as they 
may have implications for pregnancy success. Unfor-
tunately these data are often not recorded for publicly 
available datasets. This limitation also applies to the 
exact nature of the twin placentas included in the pub-
licly available data. For example, we do not know if the 
twin pregnancies had fused placentas or not. Although 
each individual twin is listed as having a separate pla-
centa, it may be possible that some of the twin preg-
nancies had fused placentas and therefore the exact 
sampling sites could confound the data on heritabil-
ity. Therefore, we suggest some caution in interpreting 
the heritability of gestational age acceleration analysis 
as we do not have full clinical details for the publicly 
available twin dataset (GSE36642).
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Figure 2. Gestational age acceleration in early-onset preeclampsia. Placentas from pregnancies complicated 
by early-onset PE (A) show a higher DNAm GA compared with their Chron GA. (B) Placentas from late-onset PE 
do not show any difference between the chronological and DNA methylation gestational age. Error bars are 
represented as standard deviations.  
Chron GA: Chronological gestational age; DNAm GA: DNA methylation gestational age.
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Using our gestational age tool, we also provide an 
estimation of the gestational age of all remaining pub-
licly available placenta samples from uncomplicated 
pregnancies for which gestational age information is 
not recorded as a resource to the scientific community 
(Supplementary Table 6). It has also been reported that 
the placental transcriptome is clearly distinct in PE 
compared with other pregnancy complications [31]. It 
would therefore be of interest to determine if the pla-
cental gestational age acceleration observed in early-
onset PE pregnancies also occurs in other pregnancy 
complications. Likewise, the gestational age accelera-
tion observed in placentas from early- but not late-
onset PE highlights potential differences in the etiol-
ogy of the two diseases. Furthermore, gestational age 
acceleration may potentially reveal potential mecha-
nisms in the development of early-onset PE and other 
pregnancy complications. First trimester chorionic 
villus samples could potentially be used to determine 
when accelerated placental aging first occurs. This 
may provide insight into the mechanisms and the 
association of placental aging and pregnancy compli-
cations such as early-onset PE. However, chorionic 
villus sampling is only used in some high-risk preg-
nancies but has a miscarriage risk, so tissue availability 
is limited.

Conclusion
In conclusion, we have identified 62 CpG sites that 
can be used to determine the DNAm GA of a pla-
centa. Furthermore, we found evidence of placental 
aging in placentas from early-onset PE. Future studies 

are required to determine if gestational age accelera-
tion is unique to early-onset PE or is common to other 
pregnancy complications. In addition, future research 
should also determine if gestational age acceleration or 
placental aging could be detected perhaps in mater-
nal blood early in pregnancy in women who are des-
tined to develop a pregnancy complication. Although, 
we found little overlap between DNA methylation 
and gene expression changes, further studies involv-
ing matched samples are required to confirm these 
findings.
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Executive summary

Aim
•	 Preeclampsia is characterized by high-maternal blood pressure and proteinuria.
•	 Differential placental gene expression is known to occur between preeclamptic and uncomplicated 

pregnancies.
•	 Overall CpG methylation in the placenta has been shown to increase across gestation.
•	 We sought to investigate DNA methylation changes in the placenta across gestation and pregnancy 

complications by using publicly available data.
Results
•	 We identified a total of 741 differentially methylated CpG sites in the placenta between preeclampsia and 

uncomplicated pregnancies.
•	 We developed an accurate tool using 62 CpG sites to predict the gestational age of a placenta.
•	 Placentas from early-onset preeclampsia had a higher predicted gestational age compared with their 

chronological age.
Conclusion
•	 Placentas from early-onset preeclampsia pregnancies are associated with placental aging.
•	 Our gestational age prediction tool may offer important insight into the molecular mechanisms associated 

with pregnancy complications.
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