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SUMMARY 

 
11C-choline PET scans can be used to identify foci of cancer within the prostate. A 

planning study on eight patients with localized prostate cancer compared the use of 

11C-choline PET-guided IMRT dose painting to 90 Gy with standard radiotherapy to 

78 Gy in terms of technical feasibility and biological modeling. IMRT dose painting 

using 11C-choline PET is technically feasible, results in higher tumor control 

probability, and does not raise the rectal normal tissue complication probability. 
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ABSTRACT 

 

Purpose: To demonstrate the technical feasibility of IMRT dose painting using 11C-

choline PET scans in patients with localized prostate cancer. 

 

Methods and materials: This was a radiotherapy planning study of eight patients with 

prostate cancer who had 11C-choline PET scans prior to radical prostatectomy.  Two 

contours were semi-automatically generated on the basis of the PET scans for each 

patient: 60% and 70% of the maximum standardized uptake values (SUV60% and 

SUV70%).  Three IMRT plans were generated for each patient: PLAN78 which 

consisted of whole prostate radiotherapy to 78 Gy; PLAN78-90 which consisted of 

whole prostate radiotherapy to 78 Gy, a boost to the SUV60% to 84 Gy and a further 

boost to the SUV70% to 90 Gy; and PLAN72-90 which consisted of whole prostate 

radiotherapy to 72 Gy, a boost to the SUV60% to 84 Gy and a further boost to the 

SUV70% to 90 Gy.  The feasibility of these plans was judged by their ability to reach 

prescription doses while adhering to published dose constraints.  Tumor control 

probabilities based on PET scan-defined volumes (TCPPET) and on prostatectomy-

defined volumes (TCPpath), and rectal normal tissue complication probabilities (NTCP) 

were compared between the plans. 

 

Results: All plans for all patients reached prescription doses while adhering to dose 

constraints.  The TCPPET values for PLAN78, PLAN78-90 and PLAN72-90 were 65%, 

97% and 96%, respectively.  The TCPpath values were 71%, 97% and 89%, 

respectively.  Both PLAN78-90 and PLAN72-90 had significantly higher TCPPET (p = 

0.002 and 0.001) and TCPpath (p < 0.001 and 0.014) than PLAN78.  PLAN78-90 and 
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PLAN72-90 were not significantly different in terms of TCPPET or TCPpath.  There were 

no significant differences in rectal NTCPs between the three plans. 

 

Conclusions: IMRT dose painting for localized prostate cancer using 11C-choline PET 

scans is technically feasible.  Dose painting results in higher TCPs without higher 

NTCPs. 
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INTRODUCTION 

 

There is a clear dose-response relationship between radiation dose and biochemical 

tumor control rates in prostate cancer.  A meta-analysis (1) shows that an increase of 

radiotherapy dose from 70 Gy to 80 Gy results in an increase in biochemical prostate 

specific antigen (PSA) control rates by 19% in patients with high risk prostate cancer.  

An extrapolation of that data suggests that in this population, doses higher than 90 Gy 

may be necessary to maximize tumor control rates.  However, such high doses are 

impossible to deliver using conventional external beam radiotherapy without an 

unacceptably high risk of severe toxicity (1, 2). 

 

“Dose painting” (3) is a strategy that has been proposed to enable the delivery of such 

high radiotherapy doses without giving an unacceptably high risk of toxicity.  This is 

the concept of using functional imaging to identify regions within the conventional 

target volumes that may have different biology and thus may require escalated doses 

of radiation to achieve tumor control. 

 

Previous studies of local recurrence patterns indicate that strategies such as dose 

painting may be beneficial.  Pucar et al. showed that dominant intraprostatic lesions 

(DILs) identified on pre-treatment MRI are the main sites of local recurrence 

following whole-prostate radiotherapy (4).  It is reasonable then to hypothesize that if 

higher doses of radiation are delivered to DILs, lower local recurrence rates may 

result. 
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Previous studies have examined the use of dose painting in prostate cancer using 

various imaging modalities ranging from dynamic contrast enhanced (DCE) MRI (5), 

magnetic resonance spectroscopy (MRS) (5), 18F-fluorocholine PET (6), and 11C-

acetate PET (7).  This study examines the use of dose painting in prostate cancer 

using 11C-choline PET scans. 

 

This study is an extension of a previous study performed at Austin Health (8).  In the 

previous study, 11C-choline PET scans were compared with prostatectomy specimens 

to quantify the degree of correlation for the purposes of target volume definition for 

prostate radiotherapy.  The current study uses the contouring methods developed from 

that study to determine the technical feasibility of using 11C-choline PET for dose 

painting by contours. 

 

METHODS AND MATERIALS 

 

Study design 

 

The radiotherapy planning study cohort consisted of eight patients with intermediate 

to very high risk prostate cancer who had 11C-choline PET scans prior to radical 

prostatectomy.  Their characteristics are described in Table 1. 

 

Image co-registration 
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11C-choline PET scans and CT scans were acquired and co-registered.  Following 

radical prostatectomy, transverse sections were taken of the prostate.  A single 

pathologist outlined each tumor focus on the histological sections and then scanned 

the sections directly on a flat-bed scanner.  The JPEG images of the prostatectomy 

transverse sections were manually deformed to account for shrinkage and distortion of 

the prostate ex-vivo (Fig. 1).  These deformed prostatectomy images were then co-

registered with the CT scan.  The image acquisition, histopathological preparation and 

co-registration protocols have previously been described in detail (8). 

 

Generation of contours 

 

Contours for the prostate, seminal vesicles, and the surrounding normal structures 

were generated as per the RTOG 0126 protocol (9).  According to our previous 

study (8), the contour of 11C-choline PET resulting in the best correlation with the 

prostatectomy-defined DIL was SUV60%.  SUV70% had higher specificity at the 

expense of lower sensitivity.  As such, for the current study, SUV60% and SUV70% 

were used as the volumes for dose painting (Fig. 1F). 

 

Four PTV volumes were generated for each patient.  PTV1 was defined as the 

prostate and seminal vesicles with a 6 mm isotropic expansion margin.  PTV2 was 

defined as the prostate alone with a 6 mm isotropic expansion margin.  PTVS60 was 

defined as the SUV60% volume with a 6 mm isotropic expansion margin with 6 mm 

exclusions from the rectum and bladder.  PTVS70 was defined as the SUV70% volume 

with a 6 mm isotropic expansion margin and 6-8 mm exclusions from the rectum and 

bladder. 
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Using the co-registered prostatectomy specimen images, DILs were contoured and 

designated “PathDIL” (Fig. 1F).  These were used as the “gold standard” contours for 

the true location of the tumor for the biological modeling calculations. 

 

Radiotherapy Treatment Planning 

 

All of the images and contours were imported into a treatment planning system, CMS 

Monaco 2.03 (Elekta CMS Software, St Louis, MO, USA).  Step-and-shoot IMRT 

treatment plans were created using seven equally spaced fields. 

 

All plans had a dose of 60 Gy prescribed to the PTV1.  Three radiotherapy plans were 

generated for each patient: a standard whole-prostate radiotherapy plan (PLAN78) 

with a dose of 78 Gy prescribed to the PTV2; a dose escalation plan (PLAN78-90) with 

a dose of 78 Gy prescribed to the PTV2, 84 Gy to the PTVS60 and 90 Gy to the 

PTVS70; and a dose escalation / de-escalation plan (PLAN72-90) with 72 Gy prescribed 

to the PTV2, 84 Gy to the PTVS60 and 90 Gy to the PTVS70.  All of the treatment plans 

were based on schedules with 39 fractions. 

 

The prescribed dose for each PTV was defined as the median dose within the volume 

(D50).  In addition, the D98 within each PTV had to exceed 95% of the prescription 

dose, and the D2 within the highest dose PTV could not exceed 107% of the 

prescription dose. 
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Dose constraints for OARs were combined from the QUANTEC review (2) and the 

RTOG 0126 protocol (9), taking the more conservative values from each.  These 

constraints are listed in Table 2. 

 

Biological modeling 

 

TCP was calculated using the modified (10) Zaider and Minnerbo (11) formula.  The 

following parameters were used: α/β = 3.1, α = 0.15, β = 0.048, λ = 0.0165 and tumor 

cell density = 107 clonogens/cm3 (12).  Two different TCP calculations were 

calculated for each plan for each patient, according to two different ways of defining 

the actual tumor volume: TCPPET was calculated using the above parameters, using 

SUV60% as the tumor volume; and TCPpath was calculated using the above parameters, 

using the prostatectomy-defined DIL volume as the tumor volume. 

 

The TCPPET metric (which takes SUV60% as the tumor volume) follows the 

methodology of most previous planning studies (5-7), which assume that the imaging-

defined volume is representative of the actual tumor with 100% accuracy.  This is 

almost without exception an overestimation of the accuracy of imaging in prostate 

cancer.  However, this metric was included as it allows comparisons with previous 

planning studies.  The TCPpath metric, which takes the prostatectomy specimen-

defined DIL volume as the tumor volume is a more novel way of calculating TCP.  

Since PET scans do not always correlate well with the actual tumor location, this may 

be more representative of real world scenarios. 
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NTCP was calculated for the rectum using the Lyman-Kutcher-Burman formula (13).  

The following parameters were used for rectal NTCP (for Grade ≥ 2 late rectal 

toxicity): n = 0.09, m = 0.13 and TD50 = 76.9 Gy (14).  Doses were normalized to 2 

Gy per fraction using α/β ratios of 3 Gy for the rectum (14). 

RESULTS 

 

In all 24 radiotherapy plans generated, the target volume objectives as well as the 

OAR dose constraints were met without exception.  The dose distributions for the 

three plans for a representative patient (Patient 8) are shown in Fig. 2.  The TCPPET 

and TCPpath values for each patient for each plan are shown in Table 3. 

 

The mean TCPPET values for PLAN78, PLAN78-90 and PLAN72-90 were 65%, 97% and 

96%, respectively.  PLAN78-90 had a 49% higher TCPPET than PLAN78 and this 

difference was statistically significant (p = 0.002).  PLAN72-90 had a 48% higher 

TCPPET than PLAN78 and this difference was statistically significant (p = 0.001).  

There was no statistically significant difference between PLAN78-90 and PLAN72-90 (p 

= 0.673).  For PLAN78-90, every single patient’s TCPPET was improved compared with 

PLAN78.  Similarly, for PLAN72-90, every single patient’s TCPPET was improved 

compared with PLAN78. 

 

The mean TCPpath values for PLAN78, PLAN78-90 and PLAN72-90 were 71%, 97% and 

89%, respectively.  PLAN78-90 had a 37% higher TCPpath than PLAN78.and this 

difference was statistically significant (p < 0.001).  PLAN72-90 had a 26% higher 

TCPpath than PLAN78 and this difference was statistically significant (p = 0.014).  

There was no statistically significant difference between PLAN78-90 and PLAN72-90 (p 
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= 0.15).  For PLAN78-90, every single patient’s TCPpath was improved compared with 

PLAN78.  For PLAN72-90, however, one patient (Patient 8 on Table 3) actually had a 

drop in TCPpath compared with PLAN78.  This patient’s DIL contours and dose 

distributions are shown in Fig. 2. 

 

The mean rectal NTCP values for PLAN78, PLAN78-90 and PLAN72-90 were 4.6%, 

3.7% and 3.2%, respectively.  There were no statistically significant differences 

between the three plans (p = 0.082). 

 

DISCUSSION 

 

This study demonstrates the technical feasibility of dose painting for localized 

prostate cancer.  Two dose painting approaches were compared with standard 

radiotherapy and both were found to be achievable while staying within published 

dose constraints.  Both dose painting approaches had superior TCPs to standard 

radiotherapy, while not having significantly different NTCPs.  There was also no 

significant difference in the TCPs and NTCPs between the two dose painting 

strategies; however, worryingly, one patient’s TCPpath decreased when comparing 

PLAN78 with PLAN72-90. 

 

In this particular case, the drop in TCPpath with PLAN72-90 is not surprising.  While 

11C-choline PET has excellent overall accuracy for defining DILs in the entire patient 

cohort, in some individual patients the extent of disease may not be accurately defined 

(Fig. 2).  With the PLAN72-90 approach, the region outside of the 11C-choline PET-

defined PTV volume is dose de-escalated to 72 Gy.  Therefore, in a patient where 11C-
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choline PET does not accurately define the entire DIL volume, a large proportion of 

the DIL may be under-dosed, leading to a lower TCPpath. 

 

The strategy of dose escalation to the imaging-defined DILs and dose de-escalation to 

the rest of the prostate has been advocated by a number of previous studies.  van Lin 

et al. (5) performed a radiotherapy planning study on five patients who had DILs 

defined using DCE-MRI and MRS.  Two plans were generated for each patient: a 

standard whole prostate radiotherapy plan to 78 Gy, and an experimental plan with 

DIL dose escalation to 90 Gy and rest of the prostate dose de-escalation to 70 Gy.  

The two plans had similar TCPs, however the experimental plans had lower NTCPs.  

The authors concluded that the experimental plan had a higher therapeutic ratio and 

therefore may be preferable.  Seppala et al. (7) performed a planning study on 12 

patients who had DILs defined using 11C-acetate PET scans.  Six plans were 

compared for each patient: a whole prostate radiotherapy plan to 77.9 Gy, and DIL 

dose escalations to 77.9 Gy, 81 Gy, 84 Gy, 87 Gy and 90 Gy with rest-of-prostate 

dose de-escalations to 72 Gy.  They found that all of the DIL dose escalation 

approaches had superior TCP compared with the standard whole prostate radiotherapy 

plan, and that the highest probability of uncomplicated control was achieved with an 

average dose of 82.1 Gy to the dose-escalated volume. 

 

All of these studies calculated TCPs according to the way that we calculated TCPPET; 

meaning that they calculated the TCP based on imaging data alone.  For the purposes 

of calculating TCP, these studies assumed that imaging has 100% sensitivity for 

defining the DIL, which is almost without exception an overestimation.  As such, 

these studies assumed that their dose escalation volumes contained the DILs in their 
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entirety, and that their dose de-escalation volumes did not contain any portions of the 

DILs.  It was therefore a foregone conclusion that dose de-escalation to volumes 

containing no DILs would not degrade the overall TCPs according to this method of 

calculation.  In fact, that is what we found with our TCPPET calculation – even 

PLAN72-90, which contains a dose de-escalation volume resulted in higher TCPs for 

every single patient. 

 

The reason these previous studies calculated their TCPs based on imaging data alone 

is that they did not have histopathological data available for comparison.  Our study is 

unique in that all patients underwent radical prostatectomy, therefore we could use the 

histopathological sections to correlate with the imaging data for calculating TCPpath.  

TCPpath takes into consideration scenarios where the imaging and the true location of 

the tumor do not correlate well, and therefore is a more appropriate metric for 

estimating differences in TCPs between plans. 

 

The drop in TCPpath for that single case calls into question the safety of the PLAN72-90 

approach, or in fact any dose escalation / de-escalation approach where the sensitivity 

of imaging is not close to 100%.  This is consistent with the findings of the study by 

Niyazi et al. (15), which demonstrated that a low PET sensitivity along with small 

variations in other parameters such as α/ ratio, 50 and dose may completely 

abrogate the benefits of a 11C-choline PET-based dose escalation.   

 

 

Our study does have a number of limitations, however.  Firstly, like most previous 

planning studies, the effects of inter- and intra-fractional movements are not simulated.  
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It is therefore unknown how well our dose painted PTVs would cover the DILs, or 

how much additional dose the OARs may receive in real world scenarios.   

Secondly, none of the biological models have been clinically validated.  Markedly 

different results can be obtained if different models are used, or if different parameters 

are applied to these models (2).  As such, the values obtained from these models 

should be interpreted with caution, and be used only to compare the relative 

differences between the plans. 

 

It must also be borne in mind that the 11C-choline PET scan itself has a number of 

limitations. The accuracy is not perfect, with our previous study (8) reporting a 

sensitivity of 79% for the SUV60% contouring method, and other studies indicating 

sensitivities as low as 66% (16). Previous studies have demonstrated that prostatic 

disorders other than cancer (such as prostatitis, benign prostatic hypertrophy and high 

grade prostatic intraepithelial neoplasia) may accumulate 11C-choline, which can 

affect its specificity (16, 17).  Furthermore, the tumor configuration affects the 

sensitivity, with small lesions being poorly visualized (17). 

Other imaging modalities such as multiparametric MRI have already been 

successfully employed to guide prostate dose painting in clinical trials. A prospective 

study of 230 patients with prostate cancer treated with MRI and MRS-guided 

radiotherapy dose painting showed that the treatment was feasible and resulted in low 

acute toxicities (18). In this context, it would be an interesting direction for future 

research to directly compare dose painting strategies using the more well-established 

multiparametric MRI with 11C-choline PET. 
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The central premise of our study is that higher radiotherapy doses delivered to the 

tumor will result in higher local control rates.  Higher local control rates may then 

lead to decreased metastatic dissemination (19).  The ultimate aim of this study 

however, is to evaluate strategies that can one day potentially improve survival in 

patients with prostate cancer.  This is most likely not achievable with dose-escalation 

alone, due to factors such as the high prevalence of micrometastatic disease already 

present at the time of treatment (19).  Systemic therapies such as androgen deprivation 

and other emerging therapies (20) will probably need to be used in conjunction with 

dose escalation to lead to meaningful improvements in outcomes. 

 

CONCLUSIONS 

 

Dose painting by contours using 11C-choline PET scans is technically feasible.  This 

study evaluated biological modeling based on both PET-defined DILs and 

pathologically defined DILs, showing that both PLAN78-90 and PLAN72-90 resulted in 

higher TCPs than PLAN78, while having similar NTCPs.  As such, both PLAN78-90 

and PLAN72-90 have higher therapeutic ratios.  Caution should be applied in using the 

dose escalation / de-escalation strategy as evidenced by the drop in TCPpath for a 

single patient when PLAN72-90 is compared with PLAN78. 
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