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Abstract  

Purpose Oral mucositis is one of the most common and debilitating side effects of 

chemotherapy treatment. Patients are often unable to eat and drink, which can lead 

to poor clinical outcomes and extensive resource utilisation. The primary aim of this 

study was to determine the molecular integrity of oral epithelial tight junctions in 40 

patients undergoing chemotherapy. The secondary aim was to correlate these 

changes with proinflammatory cytokines and matrix metalloproteinase profiles. 

Methods Patients (n=23) were recruited from the Royal Adelaide Hospital between 

2000-03. Reach patient underwent two oral buccal mucosa biopsies (4mm): one prior 

to chemotherapy treatment and a second one after chemotherapy treatment. Oral 

buccal mucosa biopsies were also taken from 7 healthy volunteers with no history of 

cancer, chemo- or radiotherapy treatment or inflammatory disorders. Routine 

haematoxylin and eosin staining was performed to determine epithelial thickness. 

Immunohistochemical staining was performed for claudin-1, zonular occludens-1, 

occludin, interleukin-1, tumour necrosis factor, interleukin-6, matrix 50 

metalloproteinase-2 and -9. Results Patients receiving standard dose chemotherapy 

had significant epithelial atrophy. Elevations in all cytokines and matrix 

metalloproteinases were seen, with significant lamina propria staining for interleukin-

6 and tumour necrosis factor. Matrix metalloproteinase-2 appeared most upregulated 

within the oral epithelium. These changes coincided with altered tight junction 

staining properties. Changes in the staining intensity and localisation were both 

noted, with clear cytoplasmic staining for zonular occludens-1 and claudin-1 in 

patients treated with chemotherapy. Conclusions Chemotherapy causes defects in 

oral tight junctions, coupled with altered cytokine and matrix metalloproteinase 

profiles. Tight junction disruption in the epithelium may contribute to ulcer 60 

development or lead to poor tissue integrity and the timing of these events may be a 

target for preventative treatment.  
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1.0 Introduction  

Chemotherapy treatment is associated with a host of debilitating side effects with 

varying effects on patient quality of life, resource utilisation and treatment efficacy. 

Over the past decade, there has been an appreciation gained for the impact of 

chemotherapy-induced alimentary mucositis on patient quality of life, leading to vast 

improvements in our understanding of its pathobiology [1, 2]. Mucositis is 70 

characterised by severe ulceration along the entire alimentary tract [3], however, oral 

lesions are most easily accessed and therefore diagnosed. In fact, oral mucositis is 

frequently described as the most common dose-limiting factor for patients undergoing 

chemotherapy treatment, affecting 80-100% of those receiving high dose treatment 

[4, 5]. The development of oral mucositis in patients during cancer treatment places a 

significant clinical and economic burden on the provision of care. Additionally, oral 

mucositis can compromise treatment outcomes and, in itself, increase mortality 

through heightened infection risk. Despite its prevalence and clinical impact, there is 

limited data on the molecular mechanisms that underpin or initiate this toxicity.  

It is currently accepted that the pathobiology of alimentary toxicity, in which oral 80 

mucositis is included, can be described using a continuous and overlapping 5-phase 

model proposed by Sonis in 2004 [6, 7].  This model was the first to recognise that 

alimentary toxicity is not purely an epithelial phenomenon, highlighting the dynamic 

interactions that occur between the epithelium, extra cellular matrix (ECM), 

submucosa and the chemotherapeutic agent itself. Consequently, the pathobiology is 

defined as the collective consequences of direct cytotoxicity, induced by the 

chemotherapeutic agent, as well as inflammatory-driven indirect cytotoxicity primarily 

controlled through nuclear factor kappa B (NFB). Although this model of alimentary 

mucositis remains universally accepted, recent advances in our understanding have 

identified complimentary molecular mediators of toxicity. One such example is the 90 

emerging role of tight junctions [8] in regulating barrier dysfunction commonly 

observed following cytotoxic treatment.  

Tight junctions are highly dynamic signaling complexes vital to epithelial 

homeostasis. Located at the apico-lateral boundary of adjacent epithelial cells, tight 

junctions are integral in maintaining epithelial adhesion as well as regulating 

paracellular permeability [9]. Tight junctions are primarily formed of four protein 

groups; claudins, zonular occludens (ZO), junctional adhesion molecules (JAMs) and 

occludin. Importantly, the molecular interactions of these proteins cause tight 
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junctions to be highly malleable and plastic structure that assemble, grow, recognise 

and disassemble in response to various physiological and pathological cues. Based 100 

on their highly plastic nature, particularly in response to inflammatory mediators, tight 

junctions have gained significant attention in a number of inflammatory-based 

gastrointestinal pathologies, including mucositis [10, 11]. Tight junctions were first 

identified to be involved in the pathobiology of gastrointestinal (GI) mucositis in 1997, 

with Keefe and colleagues [12] showing increased and uncontrolled intestinal 

permeability in patients receiving high dose chemotherapy. In 2000, ultrastructural 

changes in small intestinal tight junctions were identified in patients receiving various 

chemotherapeutic treatment regimens [5]. Since the early 2000’s, several studies 

have identified molecular defects in intestinal tight junctions following chemotherapy 

treatment, with downregulation, redistributing and phosphorylation of occludin, ZO-1 110 

and claudin-1 consistently reported [13-17]. Tight junction disruption is therefore 

emerging are a key player in the pathobiology of mucositis.  

Modification of tight junction proteins, particularly post-translationally, is a well-

documented phenomenon and forms the basis of many inflammatory pathologies 

[18-20]. In the setting of both oral and GI mucositis, the interaction between 

proinflammatory cytokines, matrix metalloproteinases (MMP) and tight junctions is 

compelling given the strong inflammatory component of mucositis [21] and 

documented changes in MMP profiles [22].  The ability of proinflammatory cytokines 

and MMPs to degrade tight junctions is well-established [23, 24], highlighting a 

potential interaction between mediators of mucositis and tight junction disruption. 120 

Importantly, these mediators are not only found at elevated levels in the gut but also 

the oral cavity [25] and circulating serum [21] therefore suggesting that tight junction 

disruption may also play a role in the pathobiology of oral mucositis. This study 

therefore aims to determine the phenotype of oral epithelial tight junctions in patients 

receiving chemotherapy and correlate with established changes in proinflammatory 

cytokines (IL-1 IL-6, TNF) and MMP profiles (MMP-2, -9). Results from this study 

will determine if tight junction disruption is a common mechanism of oral and GI 

mucositis, and may shed light on the underlying mechanisms responsible for barrier 

dysfunction.  

 130 
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2.0 Materials and Methods   

2.1 Patients 

Tissue samples were sourced from a previously conducted study [26] published by 

Gibson et al., 2006. This previous study was approved Royal Adelaide Hospital 

Human Ethics Committee. Briefly, patients were recruited from the Department of 140 

Medical Oncology at the Royal Adelaide Hospital between 2000 and 2003 (n=23). 

The study included 7 male and 16 female patients with a median age of 52.4 years 

(32-86 years) [26]. Patients were excluded is they were undergoing concurrent 

radiotherapy to the head and neck, or if they had pre-existing mucosal damage. 

Tumour type was heterogeneous amongst patients and included breast, non-

Hodgkin’s lymphoma, Hodgkin’s lymphoma, colorectal, lung and neuroendocrine 

pancreatic. Standard dose chemotherapy was used in all patients, administered over 

1-4 hours [26]. Treatments included ABVD, AC, CMF, DOX, Docetaxel, CHOP, 5-

FU/Folinic Acid, CAV and Streptozocin. For tabular breakdown of patient 

demographics and treatment regimens, please refer to Gibson et al., 2006. 150 

Patients had a single oral buccal mucosa biopsy prior to the commencement of their 

first chemotherapy cycle and a second after cessation of their treatment (mean 4.8 

days; range 3-11 days). Seven healthy volunteers (3M:4F), with no history of cancer, 

chemotherapy treatment and pre-existing mucosal damage were also recruited for 

the study. All biopsies were performed by a single operator. Pre-chemotherapy 

biopsies were taken on one side of the mouth and post-chemotherapy biopsies were 

taken on the opposite side. The surrounding buccal mucosa was injected with local 

anesthetic, and a small (4 mm) punch biopsy was taken. A single stitch was placed at 

the site of the biopsy if necessary. The number of previous chemotherapy cycles 

undergone by each patient was recorded at recruitment to determine if these 160 

contributed to histological or molecular changes in the oral cavity. 

2.2 Clinical assessment of oral mucositis  

Case note reviews were used to identify the presence/absence of mucositis in this 

patient cohort at the time of sample collection. Institutional reporting guidelines did 

not require mandatory reporting of oral mucositis symptoms in patient case notes, 

and therefore oral toxicities were not as comprehensively reported in this archival 

patient group as would be required today. Gibson et al., (2006) reported that 50% of 

patients had mucositis symptoms of WHO grades 1-2 (relatively mild) ranging from 
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mouth ulcers, loss of taste, mouth dryness, ‘thick’ feeling over the tongue and cheek 

area and fissured tongues [26]. For full tabular breakdown of mucositis severity and 170 

symptoms, please refer to Gibson et al., (2006) [26]. 

2.3 Histological analysis  

Oral buccal mucosa biopsies were cut at 5m using the Leica Microtome and 

mounted onto glass microscope slides. Routine haematoxylin and eosin staining was 

conducted on all buccal mucosa biopsy samples. Briefly, sections were dewaxed and 

rehydrated through graded ethanols. Sections were placed in Harris Haematoxylin for 

2 mins before being placed in 0.5% ammonia for 1 min. Sections were washed and 

placed in eosin for 2 mins before being dehydrated, cleared and coverslipped. Slides 

were scanned using a NanoZoomer (Hamamatsu Photonics, Japan) and analysed 

using NanoZoomer Digital Pathology software (Histalim, Montpelier, France). 180 

Epithelial thickness was measured ten times across the width of the tissue section 

and an average determined [27]. All analysis was conducted in a blinded fashion.  

2.4 Immunohistochemistry 

Immunohistochemistry (IHC) was carried out on 4 m sections of oral buccal 

mucosal cut on a rotary microtome and mounted onto FLEX IHC microscope slides 

(Flex Plus Detection System, Dako, Denmark; #K8020). Immunohistochemical 

analysis was performed for three tight junction proteins (claudin-1, ZO-1 and 

occludin), proinflammatory cytokines (IL-1, IL-6, TNF) as well as MMP-2 and MMP-

9 (Table 1). Immunohistochemical analysis was performed using Dako reagents on 

an automated machine (AutostainerPlus, Dako, Denmark) following standard 190 

protocols supplied by the manufacturer. Briefly, sections were deparaffinised in 

histolene and rehydrated through graded ethanols before undergoing heat mediated 

antigen retrieval using an EDTA/Tris buffer (0.37g/L EDTA, 1.21g/L Tris; pH 9.0). 

Retrieval buffer was preheated to 65oC using the Dako PT LINK (pre-treatment 

module). Slides were immersed in the buffer and the temperature raised to 97oC for 

20 min. After returning to 65oC, slides were removed and placed in the Dako 

AutostainerPlus and stained following manufacturer’s guidelines. Briefly, endogenous 

peroxidase was blocked using the FLEX peroxidase block followed by a serum-free 

protein block (Dako, Denmark; #X0909). Primary antibodies were suspended in the 

EnVision™ FLEX Antibody Diluent (Dako, Denmark; #K8006) and applied for 60. 200 

Negative controls had the primary antibody omitted. The EnVision™ FLEX+ 
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Rabbit/Mouse LINKER (Dako, Denmark; #K8019) was then applied for 30-60 min 

before DAB was used to visualise the target protein. Slides were removed from the 

automated stainer, counterstained in Harris Haematoxylin, dehydrated and 

coverslipped. Slides were scanned using the NanoZoomer (Hamamatsu Photonics, 

Japan) and assessed with NanoZoomer Digital Pathology software (Histalim, 

Montpellier, France). Healthy control samples were used as an internal positive 

control for tight junction proteins. Human tonsil was used as a positive control for IL-

1, IL-6, TNF, MMP-2 and MMP-9.  

Slides were scanned using a NanoZoomer (Hamamatsu, Japan) and analysed using 210 

NanoZoomer Digital Pathology software (Histalim, Montpellier, France). Tight 

junction staining was analysed in the superficial/intermediate, prickle cell and basal 

epithelium as well as the endothelium of the lamina propria (Figure 1), whilst IL-1, 

IL-6, TNF, MMP-2 and MMP-9 staining was analysed in the whole oral epithelium 

and lamina propria. Staining intensity was analysed using a validated semi-

quantitative grading system [27] from 0-3; where 0 = no staining, 1 = mild staining, 2 

= moderate staining and 3 = intense staining (Figure 2) and was conducted in a 

blinded fashion [27]. In addition, the characteristics of tight junction staining, including 

membrane specificity and location, were assessed qualitatively. 

Table 1: Antibody specification and application.  

Antibody  Distributor 

Catalogue # 

Dilution  Polymer Type  

Incubation period  

Occludin 

Mouse monoclonal 

Invitrogen  

33-1500 

5 g/ml EnVision™ FLEX+ Rabbit LINKER 

60 min 

Claudin-1  

Rabbit polyclonal  

Abcam 

ab15908 

2 g/ml EnVision™ FLEX+ Rabbit LINKER 

60 min 

ZO-1 

Rabbit polyclonal 

Invitrogen 

61-7300 

2.5 g/ml EnVision™ FLEX+ Rabbit LINKER 

60 min 

TNF 

Rabbit polyclonal 

Abcam 

ab6671 

10 g/ml EnVision™ FLEX+ Rabbit LINKER 

30 min 

IL-1 

Rabbit polyclonal 

Abcam  

ab9787 

2 g/ml EnVision™ FLEX+ Rabbit LINKER 

30 min 

IL-6 

Rabbit polyclonal 

Abcam  

ab6672 

1.67 g/ml EnVision™ FLEX+ Rabbit LINKER 

30 min 

MMP-2 

Rabbit polyclonal 

Abcam  

ab58803 

1.25 g/ml EnVision™ FLEX+ Rabbit LINKER 

30 min 

MMP-9 

Mouse monoclonal 

Abcam  

ab37150 

1.25 g/ml EnVision™ FLEX+ Mouse LINKER 

30 min 

 220 
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2.5 Statistical analysis  

Epithelial thickness and immunohistochemical staining were compared between 

healthy control samples, pre-chemotherapy samples and post-chemotherapy 

samples using GraphPad Prism 7.0. Data was assessed for normality using the 

D'Agostino-Pearson omnibus test. When normality was confirmed, a two-way 

analysis of variance (ANOVA) was performed with a Tukey’s post hoc. If normality 

was not achieved, a Kruskall-Wallis with a Dunn’s multiple comparison was 

performed. To determine the relationship between previous chemotherapy cycles 

and epithelial thickness, a linear regression model was applied and the coefficient of 

determination (r2) was determined. A p-value<0.05 was considered significant.  230 
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3.0 Results  

3.1 Chemotherapy causes significant epithelial atrophy  

Epithelial atrophy was observed both before (p=0.0008) and following chemotherapy 

cycles (p<0.0001; Figure 3a/3c). Given that patients were not naïve to chemotherapy 

treatment, it is likely that the atrophy observed prior to treatment was due to the 

previous cycles patients underwent. This was confirmed by a strong correlation 

between epithelial thickness and the number of previous chemotherapy cycles 

patients had undergone (r2=0.66; Figure 3b).  

3.2 Chemotherapy increases proinflammatory cytokines and alters MMP profiles   240 

Increases were seen in all proinflammatory cytokines and MMPs subtypes following 

chemotherapy (Figure 4). IL-1 and IL-6 showed increased expression in the 

epithelium of patients treated with chemotherapy (p=0.0017, p=0.0167, respectively). 

Although no significance change was seen in the epithelial expression of TNF across 

all groups (p>0.05), there was a significant increase in the lamina propria following 

chemotherapy treatment (p<0.0001). This was consistent with the changes seen in 

IL-6, with significant increases in patients treated with chemotherapy (p<0.0001). 

Both IL-6 and TNF appeared most prominent in the fibrous material and amorphous 

ground substance of the lamina propria (Figure 4b). MMP-9 staining remained 

showed mild increases in staining expression in both the epithelium (p=0.0039) and 250 

lamina propria (p=0.0409) of patients treated with chemotherapy. MMP-2 staining 

was most significant in the epithelium of patients treated with chemotherapy 

(p=0.001), with clear cytoplasmic staining in the prickle layer indicating active 

secretion. The vasculature and fibroblasts in the lamina propria also showed positive 

MMP-2 staining in patients treated with chemotherapy.  

Residual inflammatory signaling was evident in the oral cavity of patients exposed to 

previous chemotherapy treatment, with pre-chemotherapy biopsies displaying 

increased TNF in the lamina propria (p<0.0001).  

3.3 Tight junction defects are seen following chemotherapy  

Claudin-1 and ZO-1 protein expression decreased most notably in the basal (claudin-260 

1: p=0.0130, ZO-1: p<0.0001) and prickle cell layers (claudin-1: p=0.0078, ZO-1: 

p<0.0001). Despite only modest changes in the overall staining intensity of tight 

junction proteins, clear changes in their localisation were evident (Figure 5). In 
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healthy controls, ZO-1 and claudin-1 displayed strong specificity for the membrane, 

with epithelial staining showing the typical ‘cobblestone’ appearance. In patients 

treated with chemotherapy, claudin-1 expression appears disrupted, particularly in 

the basal epithelium, and less specific for the membrane. Membrane specificity is not 

evident until more superficial epithelial layers. This redistribution is also clear in ZO-1 

staining characteristics, with clear cytoplasmic staining evident.  

 270 
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4.0 Discussion  

Recent clinical practice guidelines [8] and preclinical research outcomes [10] have 

highlighted the growing evidence indicating the impact of tight junction disruption in 

the development of chemotherapy-induced mucositis. In light of this new research 

avenue, the current study utilised archival tissue samples obtained from patients 

undergoing standard chemotherapy, with the aim of determining oral epithelial tight 

junction integrity and correlating with established changes in proinflammatory 

cytokine and MMP profiles.  

An unexpected finding from the current study was significant epithelial atrophy seen 280 

in the buccal mucosa biopsies taken prior to chemotherapy treatment. Importantly, all 

patients recruited for the original study had received previous cycles of cytotoxic 

treatment indicating that treatment causes persistent, long-term changes in the oral 

cavity. Epithelial thickness strongly correlated with the number of previous treatments 

patients underwent. These results support the idea that affected tissue exhibits long-

term ultrastructural changes. These changes in epithelial thickness were also 

accompanied by residual inflammation and extra cellular matrix signalling, with 

elevated staining intensity compared to healthy controls. Unfortunately, we were 

unable to access information regarding the timing of previous cytotoxic treatment and 

correlations could not be drawn.  290 

This study is the first to identify chemotherapy-induced oral epithelial tight junction 

disruption in patients receiving chemotherapy. In fact, it is one of only a few clinical 

studies that have documented changes in tight junctions from clinical patient 

samples. Keefe and colleagues (2000) showed altered tight junction integrity in the 

duodenum of patients undergoing chemotherapy [5]. These changes, detected by 

transmission electron microscopy, were the first to suggest that tight junction 

disruption may contribute to ulceration, loss of tissue integrity and diarrhoea 

development in patients undergoing chemotherapy. Consequently, chemotherapy-

induced tight junction disruption may indeed be a critical aspect of oral ulceration – a 

major clinical aspect of mucositis. More importantly however, tight junctions provide 300 

an important paracellular barrier to potential pathogens and thus disruption may 

promote bacterial translocation and increase the risk of local, or systemic, infection in 

already immunocompromised patients. This is a well documented risk associated 

with tight junction disruption in the gastrointestinal tract, with chemotherapy-treated 

rats showing increased bacterial translocation to the mesenteric lymph nodes and 
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spleen [28] coupled with severe tight junction impairment. Implications for oral 

epithelial tight junction disruption may therefore not only promote mucosal breaches, 

but have detrimental effects on patients’ clinical health outcomes.   

Tight junctions are highly plastic complexes, with the ability to change in response to 

a wide variety of physiological and pathological cues. Although reduced expression 310 

of key tight junction proteins is most widely documented, cytoplasmic redistribution of 

these proteins has also been shown to drastically affect their function. For example, 

Nassour et al., (2014) showed that application of STb, a low molecular weight heat-

resistance toxin produced by enterotoxigenic Escherichia coli, caused significant 

translocation of claudin-1 to the cytoplasm of T84 cells [29]. This was accompanied 

by increased permeability of T84 monolayers and poor transepithelial resistance. In 

similar studies, redistribution of claudin-1 from the membrane to a more soluble form 

was associated with marked alterations in F-actin stress fibres [30]. F-actin filament 

dissolution and condensation were also accompanied by redistribution and 

fragmentation of ZO-1 and occludin. This relationship has also been demonstrated in 320 

response to IL-1 treatment, with altered subcellular localisation of claudin-1 and ZO-

1 shown in both thyroid cells [19] and cultured human corneal epithelial (HCE) cells 

[31]. In the setting of chemotherapy-induced tight junction disruption, it has also been 

shown that downregulation and redistribution of ZO-1 drastically affects the function 

of intestinal tight junctions. For example, Hamada and colleagues showed that 

methotrexate-induced diarrhoea resulted in significantly increased permeability to 

fluorescein isothiocyanate-dextran coupled with internalisation of ZO-1 in colonic 

epithelial cells [32, 33]. Although shown in a variety of cell types and in response to 

varying cues, these studies emphasise the significance of cytoplasmic redistribution 

of tight junction proteins and may offer mechanistic avenues to explore.  330 

The current study has shown clear increases in several proinflammatory cytokines 

and MMP subtypes. This change comes as no surprise given the vast amount of 

research showing a strong inflammatory component to alimentary toxicity [21, 25, 27, 

34]. However, few studies have assessed cytokine and MMP expression in the oral 

epithelium of patients receiving chemotherapy, with most research coming from 

preclinical animal models. For example, our laboratory has previously shown 

elevations in IL-1, TNF and IL-6 in the oral mucosa of tumour-bearing rats receiving 

chemotherapy [25], paralleling the clinical changes observed in the current study. 

These results compliment earlier clinical findings showing increased NFB and 
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cyclooxygenase-2 expression in the oral cavity of patients following cytotoxic 340 

chemotherapy [35]. Recent research has also shown elevated MMP-9 expression in 

the ventral surface of the tongue of tumour-bearing rats treated with chemotherapy 

[27]. These parallel earlier research showing a time dependent increase in both 

MMP-2 and MMP-9 in the jejunum following irinotecan administration [34]. Although 

more substantial changes were seen preclinically, particularly for MMP-9, results 

again reflected the changes observed clinically. Importantly, the changes in 

proinflammatory cytokine and MMP profiles observed in our present study were 

clearly coupled with changes in tight junction integrity.  

The idea that both proinflammatory cytokines and MMPs regulate tight junctions is 

not a new phenomenon, with strong supportive in vitro and in vivo evidence. The 350 

earliest evidence for proinflammatory-cytokine dependent tight junction disruption 

was seen in the setting of inflammatory bowel disorders, with clear changes in 

claudin-1, ZO-1 and occludin coinciding with peak relapse and remission phases 

[36]. Recent in vitro research has solidified the modulatory roles of proinflammatory 

cytokines on tight junction integrity, showing that IL-1 and TNF are able to disrupt 

tight junction integrity [37-39]. Comparable effects have also been documented 

following exposure to MMPs [40], although much of the research to date has only 

focused on their effects on endothelial tight junctions. Importantly however, 

interactions between proinflammatory cytokine signaling, MMP activity and epithelial 

tight junction integrity have been documented. In fact, treatment with TNF has been 360 

reported to activate both MMP-2 and MMP-9 resulting in tight junction disruption and 

epithelial hyper-permeability [41].  

More recently, MMP-tight junction interactions have been demonstrated using human 

airway epithelial models [42] and human embryonic kidney cell lines [43]. In both 

cases, MMP-9 activation caused altered expression and localisation of occludin, 

claudin-1 and ZO-1, tight junction strand breaks and epithelial apoptosis, thus 

highlighting a clear role of MMPs in the regulation of tight junctions and barrier 

function. Given the wealth of supportive literature showing cytokine- and MMP-

mediated tight junction disruption, the idea that these interaction underpin 

chemotherapy-induced oral toxicity is compelling. Given that these interaction have 370 

also been reported to contribute to chemotherapy-induced gut toxicity and associated 

diarrhoea, this study therefore indicates that tight junction defects occur throughout 

the entirety of the alimentary tract, regardless of anatomic site. This provides further 
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evidence for a common pathway for mucositis development, which is modified as a 

consequence of local structural differences in the mucosae. These differences are 

overwhelming when comparing the oral mucosa to the gastrointestinal tract, however 

these structural differences may have implications for the resilience that different 

mucosae may exhibit in response to the effects of chemotherapeutic drugs. 

5.0 Conclusions   

Chemotherapy causes defects in key tight junction proteins of the oral cavity, 380 

characterised by decreased expression and cytoplasmic redistribution. This is the 

first study to identify changes in oral epithelial tight junctions of patients undergoing 

chemotherapy. This provides further evidence for a common pathway for alimentary 

mucositis, with regional differences the result of structural variations in the alimentary 

mucosae. Changes in oral epithelial tight junctions were coupled with altered 

cytokine and MMP profiles and the timing of these events may be a target for 

preventative treatment. It is therefore critical that these results be assessed in a more 

controlled manner to assess if tight junction disruption is in fact the cause of oral 

mucositis, or purely an effect. It must also be acknowledged that not all patients 

undergoing chemotherapy treatment developed clinical mucositis. Despite this, 390 

subclinical evidence of mucositis was apparent in the form of apoptosis [26], 

inflammation, atrophy and perhaps tight junction defects. For a stronger 

understanding of the temporal relationship between mediators of inflammation, tight 

junctions and mucositis development to be establish, these investigations should now 

be extended into controlled animal studies as well as into larger patient cohorts with 

heterogeneous diagnoses and more detailed reporting of mucositis onset, severity 

and duration.   

 

 

 400 
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