
ACCEPTED VERSION 

 

Bree Bennett, Mark Thyer, Michael Leonard, Martin Lambert, Bryson Bates 
A comprehensive and systematic evaluation framework for a parsimonious daily 
rainfall field model 
Journal of Hydrology, 2018; 556:1123-1138 
 
 

 
© 2017 Elsevier B.V. All rights reserved. 

This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/ 

Final publication at http://dx.doi.org/10.1016/j.jhydrol.2016.12.043 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://hdl.handle.net/2440/104352 

PERMISSIONS 

https://www.elsevier.com/about/our-business/policies/sharing 

Accepted Manuscript 

Authors can share their accepted manuscript: 

 [24 months embargo] 

After the embargo period  

 via non-commercial hosting platforms such as their institutional repository 
 via commercial sites with which Elsevier has an agreement 

In all cases accepted manuscripts should: 

 link to the formal publication via its DOI 
 bear a CC-BY-NC-ND license – this is easy to do 
 if aggregated with other manuscripts, for example in a repository or other site, be 

shared in alignment with our hosting policy 
 not be added to or enhanced in any way to appear more like, or to substitute for, 

the published journal article 

 

19 March 2020 

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.jhydrol.2016.12.043
http://hdl.handle.net/2440/104352
https://www.elsevier.com/about/our-business/policies/sharing
https://www.elsevier.com/about/our-business/policies/hosting


A comprehensive and systematic 1 

evaluation framework for a 2 

parsimonious daily rainfall field model 3 

 4 

Bree Bennett1, Mark Thyer1, Michael Leonard1, Martin Lambert1, Bryson Bates2 5 

 6 

1School of Civil, Environmental and Mining Engineering, 7 

University of Adelaide North Terrace Campus 8 

SA 5005  9 

Australia 10 

Email: bree.bennett@adelaide.edu.au 11 

Telephone: +61 8 8313 1113 12 

Fax: +61 8 8303 4359 13 

 14 

2CSIRO Oceans and Atmosphere  15 

Underwood Ave 16 

Floreat 17 

WA 6014 18 

Australia 19 

  20 

1 
 

mailto:bree.bennett@adelaide.edu.au


Keywords 21 

Rainfall generation, spatial rainfall simulation, continuous simulation, rainfall intensity, latent 22 

variable approach. 23 

Abstract 24 

The spatial distribution of rainfall has a significant influence on catchment dynamics and the 25 

generation of streamflow time series. However, there are few stochastic models that can simulate 26 

long sequences of stochastic rainfall fields continuously in time and space. To address this issue, the 27 

first goal of this study is to present a new parsimonious stochastic model that produces daily rainfall 28 

fields across the catchment. To achieve parsimony, the model used the latent-variable approach 29 

(because this parsimoniously simulates rainfall occurrences as well as amounts) and several other 30 

assumptions (including contemporaneous and separable spatiotemporal covariance structures). The 31 

second goal was to develop a comprehensive and systematic evaluation (CASE) framework to 32 

identify model strengths and weaknesses. This included quantitative performance categorisation 33 

that provided a systematic, succinct and transparent method to assess and summarise model 34 

performance over a range of statistics, sites, scales and seasons. The model is demonstrated using a 35 

case study from the Onkaparinga catchment in South Australia. The model showed many strengths 36 

in reproducing the observed rainfall characteristics with the majority of statistics classified as either 37 

statistically indistinguishable from the observed or within 5% of the observed across the majority of 38 

sites and seasons. These included rainfall occurrences/amounts, wet/dry spell distributions, annual 39 

volumes/extremes and spatial patterns, which are important from a hydrological perspective. One of 40 

the few weaknesses of the model was that the total annual rainfall in dry years (lower 5%) was over-41 

estimated by 15% on average over all sites. An advantage of the CASE framework was that it was 42 

able to identify the source of this over-estimation was poor representation of the annual variability 43 
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of rainfall occurrences. Given the strengths of this continuous daily rainfall field model it has a range 44 

of potential hydrological applications, including drought and flood risk.  45 

1 Introduction 46 

Robust assessments of the hydrological impacts of floods and droughts, climate and land-use change 47 

across catchments requires the use of spatially-distributed hydrological models. As these models rely 48 

on spatially-distributed rainfall fields it is essential to have realistic simulations of rainfall fields that 49 

can reproduce all practically relevant temporal and spatial characteristics over a broad range of 50 

scales. Despite the significance of this need, as yet, there are few models for long-term continuous 51 

simulation of spatial rainfall fields over a region at daily or sub-daily scales.  52 

Although rainfall models have become increasingly sophisticated over recent decades, the majority 53 

of models have been based on a single site (Heneker et al. 2001; Onof and Wheater 1993; Rodriguez-54 

Iturbe et al. 1988) or the extension of these methods to represent multiple sites in a catchment 55 

(Rasmussen 2013; Srikanthan and Pegram 2009; Wilks 1998). Broadly, there are three main 56 

approaches for developing rainfall models based on rainfall gauges that have been extended to 57 

simulating spatial rainfall fields: (i) a conceptual generating process that combines amounts and 58 

occurrences together (Leonard et al. 2008) (ii) a two-step approach that simulates the wet-dry 59 

occurrences and then the conditional amounts (Kleiber et al. 2012; Wilks 2009) and (iii) a 60 

transformed latent (i.e. hidden) variable that maps the wet and dry occurrences to a single 61 

distribution so that dry values stem from a lower truncated portion and the amounts stem from the 62 

upper portion (Baxevani and Lennartsson 2015). In contrast to the first two approaches, the latter 63 

approach allows the process of wet-dry occurrences to be parsimoniously combined with the 64 

process of generating rainfall amounts, as well as reproducing realistic patterns of spatial rainfall. 65 

The structure of latent-variable models is flexible, as demonstrated by their wide range of 66 
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applications including the analysis of satellite data (Bell 1987), downscaling (Allcroft and Glasbey 67 

2003) and continuous simulation (Bardossy and Plate 1992; Sanso and Guenni 2000). 68 

Box and Jenkins (1976 p. 17) note the general importance of parsimony in the development of 69 

stochastic models. The particular applications of spatial rainfall field models also require a 70 

parsimonious approach. Continuous hydrological simulation for applications such as flood and 71 

drought risk typically require long-term sequences of rainfall. For example, Li et al. (2014) calculate 72 

that to achieve a prediction error of less than 20% in the 1 in 100 year flood estimate 10,000 years of 73 

rainfall is required. The greater the level of parsimony in the model, the easier it will be to generate 74 

long-term sequences for applications assessing hydrological risks. In the literature there is a wide 75 

variety of models having spatiotemporal features (Groppelli et al. 2011; Northrop 1998; Seed et al. 76 

2013; Seed et al. 1999; Zhang and Switzer 2007). However, their complexity means they typically are 77 

not suitable for long-term continuous simulation of a catchment. For example, spatiotemporal 78 

models that are developed for forecast applications using weather radar (Kim et al. 2009; Seed et al. 79 

2013), implement high levels of complexity to represent the spatial structure of storm events and 80 

their spatiotemporal evolution, however their focus is typically restricted to single events. While 81 

these complex spatial-temporal rainfall models provide insight into the spatiotemporal structure of 82 

individual rainfall events, it remains to be demonstrated how they can be used to generate long-83 

term rainfall sequences suitable for continuous hydrological simulation of a catchment. 84 

This paper describes a parsimonious model for spatial rainfall fields and evaluates its performance  85 

over a range of spatial and temporal scales. The rainfall field model is based on the multi-site model 86 

of (Rasmussen 2013) and uses a Gaussian latent-variable approach  that simulates rainfall 87 

occurrence and amounts using a simple power transformation, taking full advantage of the 88 

parsimonious nature of the transformed latent-variable approach. There are numerous 89 

enhancements on (Rasmussen 2013) model to enable parsimonious simulation of rainfall fields. 90 

These include adopting a contemporaneous and separable covariance structure. Kriging is used to 91 
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produce parameter surfaces since the Gaussian latent-variable representation is well suited to 92 

kriging (Cressie 1993; Kleiber et al. 2012). Additional features of this approach are that it: 1) removes 93 

the need for interpolation methods to construct areal totals (it is surprising that sophisticated 94 

multisite models are popularly combined with the Thiessen interpolation method (Candela et al. 95 

2012; Kwon et al. 2011) despite the known limitations of this geometric approach); 2) provides 96 

stochastic replicates for any location of interest in the catchment; 3) preserves the volumetric 97 

properties of rainfall and avoids the need for areal reduction factors (Bennett et al. 2015); and 4) can 98 

be used conveniently with distributed hydrological models. 99 

While there are some studies in the literature that have presented significant advances in the 100 

continuous simulation of rainfall fields using a latent-variable approach (Baxevani and Lennartsson 101 

2015; Kleiber et al. 2012), there is, in general, a need for more rigorous assessment of model 102 

performance. These previous studies have typically presented results using selected statistics, sites 103 

and months using adhoc, descriptive performance assessment (e.g. words such as ‘adequate’, or 104 

‘suitable’). In this paper, a comprehensive and systematic approach to model evaluation is 105 

presented. It is comprehensive because it clearly summarises model performance over a wide range 106 

of spatial (all sites/fields) and temporal (days/seasons/years) scales. It is systematic because it 107 

includes a transparent performance categorisation scheme, which enables comparison of 108 

performance over a range of model properties and hence provides a mechanism to clearly identify 109 

model strengths and weakness. Furthermore, in previous studies, cross-validation was typically 110 

undertaken for only a few select sites. A further benefit of a systematic approach is that it enables 111 

evaluation on the basis of full leave-one-out cross-validation across all sites within the region.  112 

This paper has two objectives: (1) to present a parsimonious latent-variable rainfall model to 113 

generate spatial rainfall fields continuously; and (2) to present and apply a comprehensive and 114 

systematic evaluation framework of model performance across a range of spatial and temporal 115 

scales. The remaining paper is divided into the following sections. Section 2 describes the 116 
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development of the parsimonious rainfall field model, while Section 3 sets out the calibration 117 

procedure. Section 4 introduces the comprehensive and systematic performance evaluation 118 

framework. Section 5 presents the case study while Section 6 provides the results of applying the 119 

rainfall field model to the case study, using the comprehensive and systematic evaluation 120 

framework. The discussion in Section 7, interprets the performance results and compares to other 121 

rainfall field models in the literature. Section 8 summarises the key conclusions. 122 

2 Stochastic Rainfall Field Model Development 123 

Latent-variable approaches to rainfall modelling have received attention in a range of applications, 124 

such as downscaling, continuous simulation and modelling extremes (Allcroft and Glasbey 2003; 125 

Bardossy and Plate 1992; Baxevani and Lennartsson 2015; Davison et al. 2012; Durban and Glasbey 126 

2001; Kleiber et al. 2012; Qin 2010; Rasmussen 2013; Sanso and Guenni 2000). 127 

A new stochastic daily rainfall field model is presented here that is parsimonious and simulates daily 128 

rainfall continuously in space as a field. Hereafter this new model will be referred as the 129 

parsimonious rainfall field (PRF) model and it is based on the multisite latent-variable model of 130 

Rasmussen (2013). The presentation begins by summarising a general form of latent-variable models 131 

for rainfall (Section 2.1), then summarises the multisite model of Rasmussen (2013) in Section 2.2. 132 

The extension of the latent-variable approach for simulation of spatial fields is presented in Section 133 

2.3 with specific discussion of the temporal and spatial modelling components. 134 

2.1 General Set-up for a Daily Multivariate Latent-Variable Model  135 

The latent-variable concept simulates rainfall by sampling from a normally distributed ‘hidden’ 136 

variable. Where values lie below zero, the distribution is truncated and assigned a value of zero, 137 

representing a dry day. Where the values of the latent-variable are positive the latent-variable 138 

undergoes a transformation, in this case a power transform, so that the skewed distribution of 139 

observed rainfall can be reproduced. This procedure can be defined as follows: where 𝑟𝑟𝑡𝑡𝑖𝑖  is the 140 
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rainfall at site 𝑖𝑖 =  1, … ,𝑁𝑁 and at time 𝑡𝑡 = 1, … ,𝑇𝑇, which is related to a normally distributed latent-141 

variable 𝑙𝑙𝑡𝑡𝑖𝑖  via truncation at zero and a power transformation, 142 

𝑟𝑟𝑡𝑡𝑖𝑖 = �(𝑙𝑙𝑡𝑡
𝑖𝑖)𝛽𝛽𝑡𝑡𝑖𝑖       𝑙𝑙𝑡𝑡𝑖𝑖 > 0
0  otherwise

 ,          (1) 143 

where 𝛽𝛽𝑡𝑡𝑖𝑖  is the power transformation parameter. Note that, in general, transformations other than 144 

the power transformations (e.g. Baxevani and Lennartsson 2015) could also be used.   145 

To enable simulation at multiple sites or spatial fields of rainfall, multivariate specifications are 146 

required where the latent-variable is specified as a multivariate normal. Let 𝑳𝑳 =147 

�𝑙𝑙𝑡𝑡𝑖𝑖 ;  𝑖𝑖 =  1, … ,𝑁𝑁;  𝑡𝑡 = 1, … ,𝑇𝑇� be the latent variable at all spatial locations (all sites in multi-site 148 

implementation or all points in the entire field for spatial field implementation), 𝑁𝑁, and timesteps, 𝑇𝑇, 149 

the multi-variate representation becomes 150 

𝑳𝑳 ~𝑀𝑀𝑀𝑀𝑀𝑀(𝝁𝝁,𝚺𝚺),           (2) 151 

where 𝝁𝝁 is the mean at all locations and timesteps and 𝚺𝚺 is the covariance matrix between all  152 

locations and timesteps. To simplify the spatial simulation of the latent-variables at all locations, for 153 

a given time step, 𝒍𝒍𝑡𝑡 = �𝑙𝑙𝑡𝑡𝑖𝑖 ;  𝑖𝑖 =  1, … ,𝑁𝑁 � is conditioned on the previous timestep according to:  154 

𝒍𝒍𝑡𝑡|𝒍𝒍𝑡𝑡−1 ~  MVN(𝝁𝝁′,𝚺𝚺′)          (3) 155 

𝝁𝝁′ = 𝝁𝝁𝑡𝑡 + 𝚺𝚺𝑡𝑡,𝑡𝑡−1𝚺𝚺𝑡𝑡−1,𝑡𝑡−1
−1 (𝒍𝒍𝑡𝑡−1 − 𝝁𝝁𝑡𝑡−1)

𝚺𝚺′ =  𝚺𝚺𝑡𝑡,𝑡𝑡 − 𝚺𝚺𝑡𝑡,𝑡𝑡−1𝚺𝚺𝑡𝑡−1,𝑡𝑡−1
−1 𝚺𝚺𝑡𝑡−1,𝑡𝑡                 

        (4) 156 

where 𝝁𝝁𝑡𝑡 and 𝝁𝝁𝑡𝑡−1are the means at respective time steps, 𝚺𝚺𝑡𝑡,𝑡𝑡  and 𝚺𝚺𝑡𝑡−1,𝑡𝑡−1 are the lag-0 covariance 157 

matrices at respective timesteps, and 𝚺𝚺𝑡𝑡−1,𝑡𝑡 and 𝚺𝚺𝑡𝑡,𝑡𝑡−1 are the lag-1 cross-covariance matrices. 158 

Following the specification of the lag-0 and lag-1 covariance matrices time series of rainfall at 159 

multiple locations can be simulated. 160 
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2.2 Multisite Latent-Variable Model  161 

The following description is a summary of the relevant components of the multi-site latent-variable 162 

model from Rasmussen (2013), hereafter referred to as R2013 model. To incorporate seasonality in 163 

rainfall, parameters in the R2013 model parameters are different for each month, but constant 164 

within a particular month. The implications of this are that for a particular month,  𝝁𝝁𝑡𝑡 = 𝝁𝝁𝑡𝑡−1 , 165 

 𝚺𝚺𝑡𝑡,𝑡𝑡 = 𝚺𝚺𝑡𝑡,𝑡𝑡 and  𝚺𝚺𝑡𝑡,𝑡𝑡−1 = 𝚺𝚺𝑡𝑡−1,𝑡𝑡 . This simplifies equation (4) such that: 166 

𝝁𝝁′ = 𝝁𝝁𝑡𝑡 + 𝚺𝚺𝑡𝑡,𝑡𝑡−1𝚺𝚺𝑡𝑡,𝑡𝑡
−1(𝒍𝒍𝑡𝑡−1 − 𝝁𝝁𝑡𝑡)

𝚺𝚺′ =  𝚺𝚺𝑡𝑡,𝑡𝑡 − 𝚺𝚺𝑡𝑡,𝑡𝑡−1𝚺𝚺𝑡𝑡,𝑡𝑡
−1𝚺𝚺𝑡𝑡,𝑡𝑡−1

        (5) 167 

To preserve the spatial-temporal properties of rainfall at multi-sites the R2013 model used a full 168 

multivariate first order autoregressive model. This means that all the lag-0 and lag-1 cross-169 

covariances between modelled sites are explicitly specified for all pairs of locations 𝑖𝑖 and 𝑗𝑗 =170 

1, … ,𝑁𝑁, 171 

𝚺𝚺𝑡𝑡,𝑡𝑡 = �
Σ𝑡𝑡,𝑡𝑡
1,1 ⋯ Σ𝑡𝑡,𝑡𝑡

1,𝑗𝑗

⋮ ⋱ ⋮
Σ𝑡𝑡,𝑡𝑡
𝑖𝑖,1 ⋯ Σ𝑡𝑡,𝑡𝑡

𝑖𝑖,𝑗𝑗
�    𝚺𝚺𝑡𝑡,𝑡𝑡−1 = �

Σ𝑡𝑡,𝑡𝑡−1
1,1 ⋯ Σ𝑡𝑡,𝑡𝑡−1

1,𝑗𝑗

⋮ ⋱ ⋮
Σ𝑡𝑡,𝑡𝑡−1
𝑖𝑖,1 ⋯ Σ𝑡𝑡,𝑡𝑡−1

𝑖𝑖,𝑗𝑗
�      (6) 172 

This model specification requires the estimation of a large number of parameters (3𝑁𝑁 + 2𝑁𝑁2) based 173 

on 𝑁𝑁 sites and where a site here refers to a location within a region with observed rainfall data.  This 174 

large number of parameters makes it infeasible to apply for the simulation of spatial fields (e.g. for 175 

100 km2 field with grid size 1 km2 this would require over 20,000 parameters). Hence model 176 

enhancements are required to enable spatial field simulation.  The requirement for model 177 

parsimony to enable spatial field simulation is discussed in Section 2.3.4.  178 

2.3 Enhancements  to enable parsimonious spatial field modelling 179 

This section outlines the enhancements made to the R2013 model to develop the PRF model. To 180 

extend the R2013 model to be continuous in space each parameter must be specified across the 181 

whole simulation region, rather than just for selected sites. Therefore the latent-variable is specified 182 
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as a Gaussian Random Field. To represent seasonality, the approach of R2103 model is used, where 183 

the parameters are specified on monthly basis.  184 

To develop the PRF, by extending the R2013 model to space, the following assumptions have been 185 

made: 186 

1. A contemporaneous approach is used, in that only the lag-0 cross-covariances are explicitly 187 

modelled. Therefore, 𝚺𝚺𝑡𝑡,𝑡𝑡−1 preserves the diagonal covariances (related to at-site 188 

autoregressive parameters) and off-diagonals are zero.   189 

2. The use of a separable cross-covariance 𝚺𝚺𝑡𝑡,𝑡𝑡−1 = 𝜑𝜑𝑡𝑡𝚺𝚺𝑡𝑡,𝑡𝑡 where the temporal component is 190 

denoted by a scalar autoregressive parameter,𝜑𝜑𝑡𝑡, is separate from the spatial component 191 

𝚺𝚺𝑡𝑡,𝑡𝑡 (Genton 2007).  192 

3. The use of a single scalar autoregressive parameter,𝜑𝜑𝑡𝑡 , across the entire field.  193 

4. The use of a spatial correlation function to model the lag-0 cross-covariances.  194 

5. The use of spatial interpolation approach to specify the latent-variable parameters for all 195 

locations over the entire field.   196 

The PRF modelling specification that results from these assumptions is outlined in the following 197 

sections, first considering the temporal component and then the spatial modelling components. 198 

During this description, the PRF model will be compared against R2013 model to clearly identify the 199 

differences.  200 

2.3.1 Temporal modelling component 201 

Assumptions 1, 2 and 3 above mean that the temporal modelling component reduces to an 202 

multivariate AR(1) model, specified as follows:  203 

𝝁𝝁′ = 𝝁𝝁𝑡𝑡 + 𝜑𝜑𝑡𝑡(𝒍𝒍𝑡𝑡−1 − 𝝁𝝁𝑡𝑡−1)
𝚺𝚺′ = (1− 𝜑𝜑𝑡𝑡2) Σ𝑡𝑡,𝑡𝑡

2         (7) 204 
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where 𝜑𝜑𝑡𝑡 is the autoregressive parameter. This assumption of a spatially constant autoregressive 205 

parameter across the region enables the temporal correlation structure to be continuous over the 206 

simulation region. In contrast, the R2013 model has individual auto-correlations for each site. While 207 

this may improve the fit of the R2013 model to empirical auto-correlations at individual sites  208 

(Rasmussen 2013), it requires many additional parameters to be estimated and, because it does not 209 

have a mechanism to spatially interpolate the at-site auto-correlations, it is not possible to simulate 210 

continuous spatial fields with a temporal correlation structure. Whether the assumption of a 211 

spatially constant autoregressive parameter in the PRF model will provide an adequate fit to the 212 

observed data will depend on how spatially homogeneous a study region is in terms of observed 213 

daily auto-correlations. This assumption is tested in Section 6.1.1.  214 

2.3.2 Spatial modelling component 215 

The use of a separable covariance structure and contemporaneous approach (assumptions 1 and 2) 216 

enables the specification of a spatial correlation function (assumption 3) to model the lag-0 217 

covariances. The main reason for this assumption is to enable the PRF model to be continuous in 218 

space, which requires a continuous positive definite spatial correlation structure for simulation of 219 

the latent variable.  220 

For this spatial correlation function an isotropic, powered exponential function was chosen (Gneiting 221 

2002).This is specified by considering that the lag-0 covariance matrix 𝚺𝚺𝑡𝑡,𝑡𝑡 has elements Σ𝑡𝑡,𝑡𝑡
𝑖𝑖𝑖𝑖 =222 

𝜎𝜎𝑡𝑡𝑖𝑖𝜎𝜎𝑡𝑡
𝑗𝑗𝜌𝜌�𝑑𝑑𝑖𝑖𝑖𝑖�𝜈𝜈𝑡𝑡 ,𝛼𝛼𝑡𝑡 , 𝜆𝜆𝑡𝑡� for all pairs of locations 𝑖𝑖 and 𝑗𝑗 = 1, … ,𝑁𝑁 . Where 𝜎𝜎𝑖𝑖and 𝜎𝜎𝑗𝑗are the standard 223 

deviations at each location, 𝑑𝑑𝑖𝑖𝑖𝑖is the distance between the locations, and 𝜈𝜈𝑡𝑡 ,𝛼𝛼𝑡𝑡 and 𝜆𝜆𝑡𝑡 are the 224 

parameters of an isotropic powered-exponential correlation function defined by  225 

𝜌𝜌�𝑑𝑑𝑖𝑖𝑖𝑖�𝜈𝜈𝑡𝑡 ,𝛼𝛼𝑡𝑡 , 𝜆𝜆𝑡𝑡� = �
   1                                          𝑑𝑑𝑖𝑖𝑖𝑖 = 0 

(1 − ν𝑡𝑡)exp�−�𝑑𝑑
𝑖𝑖𝑖𝑖

α𝑡𝑡
�
𝜆𝜆𝑡𝑡
�   𝑑𝑑𝑖𝑖𝑖𝑖 > 0        (8) 226 

where for time step 𝑡𝑡, 𝛼𝛼𝑡𝑡 is the range parameter, 𝜆𝜆𝑡𝑡 is the power term and 𝜈𝜈𝑡𝑡 is the nugget.  227 
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In contrast multisite models, such as R2013, are not required to be continuous in space and are 228 

therefore more flexible, because they can fit individual lag-0 covariances for all pairs of sites. This 229 

may lead to a better fit to observed spatial correlations, but it also leads to a higher number of 230 

parameters to represent the observed spatiotemporal correlation structure (Rasmussen 2013). The 231 

PRF model’s approach of adopting an isotropic, powered exponential function spatial correlation 232 

function is a less flexible but more parsimonious assumption which will be tested in Section 6.2.  233 

2.3.3 Spatial parameter interpolation 234 

Based on the enhancements outlined above, the full parameter specification for the PRF is  𝝁𝝁𝑡𝑡 =235 

{𝜇𝜇𝑡𝑡1, … , 𝜇𝜇𝑡𝑡𝑁𝑁}, 𝝈𝝈𝑡𝑡 = {𝜎𝜎𝑡𝑡1, … ,𝜎𝜎𝑡𝑡𝑁𝑁},  𝜷𝜷𝑡𝑡 = {𝛽𝛽𝑡𝑡1, … ,𝛽𝛽𝑡𝑡𝑁𝑁}, 𝜑𝜑�𝑡𝑡, 𝜈𝜈𝑡𝑡 ,𝛼𝛼𝑡𝑡 and 𝜆𝜆𝑡𝑡, where the parameter values 236 

remain constant for all time steps 𝑡𝑡 in a given month. To simulate the model continuously across a 237 

region 𝝁𝝁𝑡𝑡, 𝝈𝝈𝑡𝑡 and 𝜷𝜷𝑡𝑡 need to be specified for all locations over the entire field, thus a technique is 238 

required to interpolate these parameter surfaces from the observed sites. A kriging approach is used 239 

to produce the parameter surfaces by independently kriging each parameter surface using 240 

dependent variables of distance between locations and elevation. 241 

2.3.4 Impact on Model Parsimony  242 

Model parsimony is important for efficient parameter estimation and simulation of spatial rainfall 243 

fields to estimate engineering design risks (Section 1). For the PRF model the use of a 244 

contemporaneous approach and separable covariance structure, among other assumptions (e.g. 245 

spatial correlation function - see Section 2.3 for full list) significantly reduces the number of model 246 

parameters required for simulation compared with R2013 model (see Table 1).  The PRF model has a 247 

major advantage over the R2013 model because it simulates a field continuously across all locations 248 

within a given region, whereas the R2013 only simulates at specific sites with observed rainfall. This 249 

analysis demonstrates that the PRF model is relatively parsimonious and the model complexity is 250 

further discussed in Section 7. 251 

11 
 



It should be noted that there are alternative methodologies for simulating spatial rainfall fields (as 252 

mentioned in Section 1). These alternate modelling approaches are elaborated on in Sections 7.1 253 

and 7.3 and, where feasible, a comparison to the PRF model is undertaken. 254 

3 Model Calibration 255 

Calibration of the model proceeds in a step-wise manner. The first step is the estimation of the 256 

marginal distribution parameters (𝜇𝜇, 𝜎𝜎 and 𝛽𝛽) at each site. The second step is to estimate the at-site 257 

lag-1 temporal correlation. The third step is to calibrate the spatial correlation function, and the 258 

fourth step is to regionalise the latent parameters.  259 

In the first step for estimating the marginal distribution parameters, both the method of moments 260 

and the maximum likelihood method are valid. The method of moments has been reported as giving 261 

better quality fit to the upper tail of rainfall amounts (Rasmussen 2013) and thus is used in this 262 

study. Consider an observed time series of daily rainfall at a site that is partitioned according to a 263 

number, 𝑛𝑛𝑑𝑑, of ‘dry’ zero values and 𝑛𝑛𝑤𝑤 truncated ‘wet’ values, i.e. 𝑹𝑹𝑤𝑤 = [𝑟𝑟𝑡𝑡;  𝑡𝑡 = 1, … ,𝑛𝑛𝑤𝑤 ]. The 264 

proportion of dry values is determined as 𝑝̂𝑝𝑑𝑑 = 𝑛𝑛𝑑𝑑/(𝑛𝑛𝑑𝑑 + 𝑛𝑛𝑤𝑤). Let 𝑳𝑳𝑤𝑤 denote the latent values 265 

corresponding to 𝒓𝒓𝑤𝑤 after transformation. The observed first and second order non-central 266 

moments of the truncated latent distribution are determined as 267 

E[𝑳𝑳𝑤𝑤] = 1
𝑛𝑛𝑤𝑤
∑ 𝑟𝑟𝑡𝑡

1/𝛽𝛽𝑛𝑛𝑤𝑤
𝑡𝑡=1           (9) 268 

E[𝑳𝑳𝑤𝑤2 ] = 1
𝑛𝑛𝑤𝑤
∑ �𝑟𝑟𝑡𝑡

1/𝛽𝛽�
2𝑛𝑛𝑤𝑤

𝑡𝑡=1 .         (10) 269 

Consider the left-truncated normal distribution with known truncation point. The parameter 270 

𝛽̂𝛽 can be estimated by solving the following two equations according to Johnson et al. (1994, pages 271 

161-2). 272 

𝜎𝜎�
E[𝑳𝑳𝑤𝑤]

= � ϕ(𝛿𝛿�)
1−Φ�𝛿𝛿��

− 𝛿̂𝛿�
−1

          (11) 273 

12 
 



� 𝜎𝜎�
E[𝑳𝑳𝑤𝑤]

�� 𝜎𝜎�
E[𝑳𝑳𝑤𝑤]

− 𝛿̂𝛿� = E[𝑳𝑳𝑤𝑤2 ]
E[𝑳𝑳𝑤𝑤]2

          (12) 274 

where E[𝑳𝑳𝑤𝑤] and E[𝑳𝑳𝑤𝑤2 ] are defined in Eq. (9) and Eq. (10), ϕ( ) is the probability density of the 275 

standard normal distribution, Φ( ) is the normal cumulative distribution function, and 𝛿̂𝛿 = 𝜇̂𝜇/𝜎𝜎�, 276 

which represents the truncation point as a standardised deviate. To obtain the deviate of the 277 

truncation point, the procedure first equates 𝛿̂𝛿 = Φ−1(𝑝̂𝑝𝑑𝑑), then 𝜎𝜎�
𝐸𝐸[𝐿𝐿𝑤𝑤]

 is determined using Eq. (11). 278 

Following this, the left hand side of Eq. (12) is reduced to a constant (see Eq (13)), whilst the right 279 

hand side is dependent on the 𝛽̂𝛽 parameter through Eq. (9) and Eq. (10). 280 

� ϕ(𝛿𝛿�)
1−Φ�𝛿𝛿��

− 𝛿̂𝛿�
−2
− 𝛿̂𝛿 � ϕ(𝛿𝛿�)

1−Φ�𝛿𝛿��
− 𝛿̂𝛿�

−1
= E[𝑳𝑳𝑤𝑤2 ]

E[𝑳𝑳𝑤𝑤]2
        (13) 281 

Subsequently, Eq. (13) can be used to estimate 𝛽̂𝛽 to give the best fit using root finding techniques 282 

(Rasmussen, pers. comm., Jan. 2014). 283 

Having estimated 𝛽̂𝛽, the parameters 𝜇̂𝜇 and 𝜎𝜎�  can be estimated by minimising the objective function 284 

𝑚𝑚𝑚𝑚𝑚𝑚 ((E[𝑹𝑹𝑤𝑤] −𝑚𝑚�𝑤𝑤)2 + (VAR[𝑹𝑹𝑤𝑤] − 𝑠̂𝑠𝑤𝑤2 )2)       (14) 285 

where 𝑚𝑚�𝑤𝑤 and 𝑠̂𝑠𝑤𝑤2  are the mean and variance of the truncated wet values  286 

𝑚𝑚�𝑤𝑤 = 1
𝑛𝑛𝑤𝑤
∑ 𝑟𝑟𝑡𝑡
𝑛𝑛𝑤𝑤
𝑡𝑡=1           (15) 287 

𝑠̂𝑠𝑤𝑤2 = 1
𝑛𝑛𝑤𝑤−1

∑ (𝑟𝑟𝑡𝑡 − 𝑚𝑚�𝑤𝑤)2𝑛𝑛𝑤𝑤
𝑡𝑡=1          (16) 288 

and the corresponding moments, E[𝑹𝑹𝑤𝑤] and VAR[𝑹𝑹𝑤𝑤] in terms of the marginal parameters 𝜇̂𝜇, 𝜎𝜎� and 289 

𝛽̂𝛽 are obtained by integration over the wet values, 290 

E[𝑹𝑹𝑤𝑤] = (1 −  𝑝̂𝑝𝑑𝑑)−1 ∫ 𝑟𝑟𝑓𝑓𝑅𝑅(𝑟𝑟)𝑑𝑑𝑑𝑑∞
0         (17) 291 

VAR[𝑹𝑹𝑤𝑤] = (1 −  𝑝̂𝑝𝑑𝑑)−1 ∫ (𝑟𝑟 − 𝐸𝐸[𝑹𝑹𝑤𝑤])2𝑓𝑓𝑅𝑅(𝑟𝑟)𝑑𝑑𝑑𝑑∞
0 .      (18) 292 
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where the (1−  𝑝̂𝑝𝑑𝑑) renormalises the density due to the truncation at zero and 𝑓𝑓𝑅𝑅(𝑟𝑟) is given by  293 

𝑓𝑓𝑅𝑅(𝑟𝑟) = �2𝜋𝜋𝜎𝜎�2𝛽̂𝛽2�
−1/2

𝑟𝑟�−1+1/𝛽𝛽��𝑒𝑒𝑒𝑒𝑒𝑒 �−𝜎𝜎�−2/2�𝑟𝑟1/𝛽𝛽� − 𝜇̂𝜇�
2
� , 𝑟𝑟 > 0     (19) 294 

In the second step, the lag-1 autocorrelation (𝑙𝑙𝑡𝑡+1, 𝑙𝑙𝑡𝑡) is estimated for all pairs of points above the 295 

zero threshold and relies on the at-site marginal distribution parameters (𝜇̂𝜇 and 𝜎𝜎�) for each site and 296 

month (from Step 1). This estimate corresponds to an estimate of correlation in the left-truncated 297 

bivariate normal distribution (wet day amounts) and can be related to the underlying 298 

autocorrelation parameter 𝜑𝜑�𝑖𝑖 of the non-truncated bivariate distribution (latent-variable) at site 𝑖𝑖 299 

(Weiler 1959). The relationship can be numerically solved for 𝜑𝜑�𝑖𝑖  since the other marginal parameters 300 

𝜇̂𝜇 and 𝜎𝜎� have been determined, resulting in 𝜑𝜑�𝑖𝑖 estimates for all months at all sites.  301 

In the third step, due to the separable covariance function, only the pairwise lag-0 cross-covariances 302 

Σ�𝑖𝑖𝑖𝑖 remain to be estimated and from them the parameters of the spatial correlation function. As 303 

with the autocorrelation, lag-0 cross-covariances can be estimated from the non-zero latent values 304 

corresponding to pairwise sample spatial correlation in a left-truncated bivariate normal distribution 305 

for each pair of sites. The Σ�𝑖𝑖𝑖𝑖 are found by solving the covariance relationship between the 306 

truncated and non-truncated Gaussians (Weiler 1959) with known 𝜇̂𝜇 and 𝜎𝜎�. A sum of squared errors 307 

approach is then used to minimise the differences between the pairwise sample spatial correlations 308 

and the spatial correlation function, Eq. (8), to obtain the parameters  𝜈̂𝜈,𝛼𝛼� and 𝜆̂𝜆 . 309 

In the fourth step, the spatial field of marginal distribution parameters (𝝁𝝁, 𝝈𝝈 and 𝜷𝜷) are estimated by 310 

interpolating the at-site marginal parameter estimates (𝜇̂𝜇, 𝜎𝜎� and 𝛽̂𝛽), obtained from step 1, with 311 

dependent variables of distance between locations and elevation. It is possible that independently 312 

kriging (rather than jointly kriging) the parameter surfaces could lead to spurious parameter 313 

combinations that affect the marginal distribution of rainfall. The ability of this kriging approach to 314 

produce realistic parameters is tested by comparing the results from full calibration versus via leave-315 
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one-out cross-validation (Section 6.3). For the lag-one correlation, a single representative 𝜑𝜑�� for each 316 

month is specified as a weighted average of the 𝜑𝜑� 𝑖𝑖  at-site estimates. 317 

4 Comprehensive and Systematic Evaluation Framework 318 

This section describes a comprehensive and systematic evaluation (CASE) framework. It is designed 319 

to systematically evaluate the performance of rainfall models against a comprehensive range of 320 

observed statistics at multiple spatial scales (individual sites to entire fields) and temporal scales 321 

(daily to monthly to annual).  322 

4.1 Description of framework 323 

The CASE framework consists of four steps:  324 

1) Determine a comprehensive range of key observed statistics of interest  325 

For a spatial field or multisite model this range of statistics should assess both the temporal and 326 

spatial properties.  For example, daily statistics, annual totals, extremes and spatial rainfall gradient 327 

may be targeted for evaluation. The range of statistics evaluated in this paper is outlined in Section 328 

4.2.1. 329 

2) Systematically categorise performance at specific spatial and temporal scales using quantitative 330 

criteria for each statistic  331 

For example, this paper applies a three level categorisation system, where model performance of a 332 

single statistic for given spatial or temporal scale was placed into one of three categories; ‘good’, 333 

‘fair’ and ‘poor’ performance (see Section 4.2.2). 334 

3) Systematically categorise ‘aggregate’ performance over multiple spatial and/or temporal scales 335 

using quantitative criteria, informed by Step 2, for each statistic 336 

This enables an assessment of common strengths and/or weaknesses in the models ability to 337 

reproduce a particular statistic over multiple spatial and temporal scales. For example, this paper the 338 
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‘aggregate’ performance is based on the percentage of cases across multiple sites or months which 339 

are classified as ‘good’, ‘fair’ or ‘poor’ in the first stage (see Section 4.2.3). 340 

4) Comprehensively evaluate performance in both calibration and LCV 341 

Both evaluations are essential because calibration will identify deficiencies in model structure where 342 

the model has access to the full set of available data. Whereas a comparison of calibration and LCV 343 

performance will enable the identification of model overfitting. The quantitative categorisation 344 

approach of Steps 2 and 3 enables for easy side-by-side comparison of performance of the 345 

comprehensive set of statistics in calibration and LCV.  346 

One of the main advantages of the CASE framework is that categorising performance for each 347 

statistic for a range of spatial and temporal scales means that it provides a systematic and 348 

transparent method to analyse the multitude of results. By using a quantitative approach to 349 

categorise model performance it reduces the often used, ad-hoc nature of descriptive assessments, 350 

(words such as ‘adequate’, ‘suitable’, or ‘reasonable’). The disadvantage of performance categories 351 

is that even with quantitative criteria to define categories, an element of judgement/subjectivity is 352 

required when choosing the number of categories and defining the difference between the 353 

categories (e.g. Evin et al. 2014). For example, in this paper, we use three categories, ‘good’, ‘fair’ 354 

and ‘poor’ performance in Step 2 (see Section 4.2.2). The difference between ‘fair’ and ‘poor’ is 355 

somewhat subjective (see Section 7.2 for a discussion of the impact of this subjectivity). Ultimately, 356 

what constitutes the differences the types of performance will depend on the user preferences 357 

and/or on the practical application of the model (this is further discussed in Section 7.2). Despite this 358 

element of subjectivity, this categorization of performance is far more transparent, consistent and 359 

less subjective than the usual ad-hoc descriptive assessment, commonly employed in other studies 360 

(Baxevani and Lennartsson 2015; Leonard et al. 2008; Rasmussen 2013). 361 

16 
 



4.2 Implementation of Framework 362 

This section describes the implementation of the CASE framework to assess the PRF model. Other 363 

models developed for different contexts can follow the same framework steps but, depending on 364 

the practical application, may need to rely on different choices in the detailed implementation of 365 

each step. 366 

4.2.1 Determining Key Observed Statistics of Interest 367 

The first step of implementing the CASE framework in the context of evaluating the PRF involves 368 

choosing the key observed statistics of interest. This case study uses a range of statistics at different 369 

spatial and temporal scales. At the individual site scale, the temporal scales include: daily, monthly 370 

and annual time scales. At the regional scale, both daily and annual scales were evaluated. 371 

The evaluation of individual site scale performance focuses primarily on the following temporal 372 

statistics listed below.  At the daily scale the following statistics are evaluated: 373 

• Mean and standard deviations of number of wet days and wet day amounts as well as skewness 374 

of amounts to evaluate if the marginal distribution of daily rainfall occurrences and amounts are 375 

being preserved.  376 

• Wet and dry spell length distributions – where a ‘spell’ is a block of consecutive time steps 377 

having the same ‘wet’ or ‘dry’ state – to evaluate if the wet and dry rainfall intermittence/ auto-378 

correlation is being preserved. 379 

Monthly and annual scale statistics are important for preserving seasonal characteristics and inter-380 

annual variability. Whilst rainfall extremes are an important feature to reproduce for flood 381 

frequency applications. At the monthly and annual scale the following statistic are evaluated: 382 

• Distributions of monthly total rainfall, annual total rainfall and the number of wet days 383 

annually are presented. The ability of the model to reproduce these aggregate totals is 384 

presented as quantile-quantile plots of representative statistics of the examined 385 

distributions (mean, standard deviation, lower tail indicator - 5th percentile, upper tail 386 

indicator - 95th percentile). 387 
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• Monthly temporal correlations (e.g. January-to-February) are evaluated to further 388 

understand the structure of variability in the annual rainfall. 389 

• Annual temporal correlations are evaluated to assess whether the model reproduces inter-390 

annual variability. 391 

• The distribution of daily annual maxima are assessed which are an emergent property of the 392 

model. 393 

There are three parts to the evaluation at the regional scale. The following tests are presented: 394 

• The distributions of the number of jointly wet sites for each month are compared. 395 

• The catchment domain aggregated behaviour of the observation sites is evaluated (See also 396 

Baxevani and Lennartsson 2015; Kleiber et al. 2012). The domain averaged rainfall is the 397 

catchment average rainfall time series estimated by Thiessen weighting of the rainfall at 398 

each site on each day. The domain aggregated series for the observed rainfall and the 399 

simulated rainfall are compared using the aforementioned metrics to assess at-site rainfall 400 

statistics (see Section 4.2.4).  401 

• The spatial rainfall gradient produced by the model is evaluated by comparing the field of 402 

average annual total rainfalls produced by the model against interpolated observed annual 403 

rainfalls. 404 

It is challenging to truly assess the spatial features of the rainfall model since the rainfall is observed 405 

at points, thus any spatial comparison to observations must also rely on interpolation of the 406 

observations. While comparison to radar data is possible, this can be problematic, since radar 407 

records are short and subject to measurement errors that require correction against the same 408 

underlying rainfall gauges. 409 

4.2.2 Selection of Performance Categories at Specific Temporal and Spatial Scales 410 

To implement Step 2 of the framework this paper categorises the performance of each evaluated 411 

statistic as one of three categories; ‘good’, ‘fair’ and ‘poor’ performance.  412 

Table 2 summarises the quantitative tests for each performance category with accompanying 413 

examples. ‘Good’ performance indicates that less than 10% of the observations lie outside the 414 

simulation’s 90 % probability limits and therefore the simulated rainfall is statistically 415 
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indistinguishable from the observed for that evaluated statistic (Fig. 1, case (1)). ‘Fair’ performance 416 

indicates that the statistic derived from the observed rainfall sits within three standard deviations of 417 

the simulated mean - assuming the uncertainty in the statistics is normally distributed, this 418 

represents the 99.7% limits (Fig. 1, case (2)), or the absolute relative difference between the 419 

observation and the simulated mean is less than 5% (Fig. 1, case (3)). The absolute relative 420 

difference is calculated as 421 

𝑅𝑅𝑅𝑅 = |100 (𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 − 𝐸𝐸[𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠]) 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜⁄ |       (20) 422 

where 𝑅𝑅𝑅𝑅 is the absolute relative distance,  𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 is the evaluated statistic’s observed 423 

value, 𝐸𝐸[𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠]   is the expected value of the statistic, 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖   for over all realisations 𝑖𝑖. Otherwise, 424 

performance is classified as ‘poor’ (Fig. 1, case (4)).  425 

4.2.3 Selection of ‘Aggregate’ Performance Categories Over Multiple Temporal and Spatial 426 

Scales  427 

To implement Step 3 of the framework this paper categorises the aggregate performance of each 428 

evaluated statistic as one of six categories. Table 3 details the aggregate performance categories, 429 

which range from ‘Overall Good’ to ‘Overall Poor’, and the quantitative tests used to determine 430 

them. The tests are based on the percentage of cases (e.g. sites/months) which are categorised as 431 

‘good’, ‘fair’ or ‘poor’. For example, ‘Overall Variable’ occurs when the percentage of cases classified 432 

as ‘good’ and ‘poor’ is greater than the percentage of cases deemed ‘fair’.  433 

4.2.4 Comparison of Calibration and LCV Performance 434 

A LCV of both the parameters predicted by the kriging and at-site model performance is conducted 435 

to assess the error associated with spatial interpolation. The LCV was performed by calibrating to all 436 

sites, except for the one validation site. Kriging was then used to estimate the parameters at the 437 

validation site. The estimated surfaces (µ*, σ∗, β*) at the validation site are compared against the 438 

calibrated parameter values (µ, σ, β). Rainfall time series simulated at the validation site is then 439 
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evaluated for all at-site statistics listed in Section 4.2.1. This process was then repeated so that each 440 

site in turn was treated as the validation site. 441 

5 Case Study 442 

The Onkaparinga catchment in South Australia is used as a case study (Fig. 2). The catchment 443 

contains the Mt Bold Reservoir, which is the largest reservoir supplying metropolitan Adelaide, and 444 

is supplemented by water from the Murray River via a pipeline to the east. Modelling rainfall over 445 

the catchment is important for understanding the natural flow regime, which informs understanding 446 

of dependence on the Murray River for water security.  447 

There are 22 daily rainfall gauges within and surrounding the Onkaparinga catchment (Fig. 2 and 448 

Table 4) obtained from the SILO database (Jeffrey et al. 2001). Their records span the period from 449 

1900 to present, but to minimise any potential impact of missing values in the records, the period 450 

1914 to 1986 was selected, since this period had minimal missing data. The data were quality 451 

checked for erroneous trends and data inhomogeneities (Westra et al. 2014) by comparing against 452 

the Happy Valley site (23721) which is part of the high quality network of gauges. None of the sites 453 

showed strong evidence of erroneous trends or data in-homogeneities. From Fig. 2, it is clear there 454 

is a strong rainfall gradient with average annual rainfall ranging from 522 mm at the mouth of the 455 

Onkaparinga (Site 19) at elevation 7 m up to 1088 mm at Uraidala (Site 20) at an elevation of 499 m. 456 

The catchment rainfall is highly seasonal with the majority of rainfall occurring in the seasons of 457 

winter (June, July and August) and spring (September, October and November) and with negligible 458 

rainfall occurring throughout summer (December, January and February).  459 

Nineteen rainfall gauges lie inside the boundary of the Onkaparinga catchment and are used for 460 

model calibration and evaluation. The three gauges that lie outside the catchment are used in 461 

calibration only to reduce edge effects due to the spatial interpolation of parameters. The simulation 462 

experiment consisted of 100 replicates using 0.88 km square grids over the case study region. 463 
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6 Results 464 

The results present a wide range of statistics as described in Section 4.2.1, and uses the performance 465 

categorisation system from Section 4.1. Section 6.1 assesses at-site performance of the model, 466 

Section 6.2 assesses spatial field performance of the model and Section 6.3 presents the 467 

performance in LCV. Table 5 shows a summary of results across all rainfall sites in calibration and 468 

LCV. Due to the multitude of results, only selected key statistics are presented in the main paper, 469 

with further detailed results for each site and statistic located in Supplementary Material A—F.  470 

6.1 At-site performance in calibration 471 

6.1.1 Daily rainfall occurrence and amounts 472 

‘Overall Good’ performance is shown for the mean, standard deviation and skewness of wet day 473 

rainfall amounts, and the mean number of wet days (Table 5 and Fig. 3). This shows the model 474 

reproduces the observed daily marginal rainfall statistics. However, the model under-predicts 475 

standard deviation in the number of wet days for some months (February, May, June, August, 476 

October and November) and over-predicts it for one month (January) (Fig. 3d).  477 

Table 5 shows model performance in simulating the wet spell and dry spell distributions to be 478 

‘Overall Fair - Good’ and ‘Overall Good’ respectively. This suggests the use of a spatially constant 479 

autoregressive parameter for each month yields ‘Overall Fair– Good’ performance in producing 480 

realistic temporal patterns and rainfall persistence. Fig. 4 shows the model performance in 481 

simulating wet spell and dry spell length distributions on a seasonal basis (Fig. 4 a-b) and for 482 

illustrative sites/months (Fig. 4 c-f). Specifically, the model shows ‘Overall Good’ performance in 483 

simulating the wet spell length distribution for the autumn and winter months (MAMJJA) and 484 

‘Overall Fair – Good’ performance for the spring and summer months (SONDJF) (Fig. 4a). The model 485 

shows ‘Overall Good’ performance in simulating dry spell lengths (Fig. 4b).  486 
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The majority of instances in which performance was categorised as ‘poor’ occurred in February or 487 

November when the catchment has very little rainfall (e.g. Fig. 4e). The ‘poor’ categorisation 488 

typically resulted from an over-estimation of short duration wet spells and an under-estimation for 489 

longer durations. The potential reasons for this weakness are discussed in Section 7.2. 490 

6.1.2 Monthly and annual statistics 491 

Table 5 shows the model performance to be ‘Overall good’ in simulating the distribution of total 492 

monthly rainfall amounts (mean, standard deviation, lower and upper tails). Quantile-quantile plots 493 

of performance are shown in Fig. 5. Although, the simulated standard deviation of monthly rainfall 494 

totals is ‘poor’ for some sites with higher monthly standard deviation in June (Fig. 5b). 495 

Table 5 shows that the model exhibits ‘Overall Good’ performance in simulating the mean and upper 496 

tail of the total annual rainfall distribution (see Fig. 6a and d). However, the model underestimates 497 

the variability of the total annual rainfall, exhibiting ‘Overall Fair – Poor’ performance for the 498 

standard deviation (Fig. 6b). This is because model does not reproduce the rainfall in drier years. This 499 

is seen in the ‘Overall Fair – Poor’ performance in simulating the lower tail of the total annual 500 

rainfall, with the simulated rainfall being larger than the observed by on average 15% (Fig. 6c). 501 

Whilst the upper tail performance is ‘Overall Good’.  502 

The simulation demonstrates ‘Overall Good’ performance annually in simulating wet day amounts 503 

(means and standard deviations) and the mean annual number of wet days (Table 5). The model 504 

shows ‘Overall Poor’ performance in simulating the variance in the number of wet days annually 505 

because the annual variance is underestimated (Table 5 and Supplementary Material A). This 506 

suggests that the over-estimation of the lower tail of the annual total rainfall distribution (Fig. 6c) is 507 

due to the deficiency that the variance in the number of wet days annually is under-estimated, 508 

rather than a problem with rainfall amount generation.  509 
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6.1.3 Temporal correlation of annual and monthly totals 510 

At the annual scale, the observed correlation between consecutive annual rainfall totals has ‘Overall 511 

Good’ performance (Table 5) as there is little inter-annual persistence for rainfall in this catchment. 512 

The model does not include month-to-month correlation, thus the simulations are centred on zero. 513 

As there is low monthly persistence in this catchment, the correlations between monthly 514 

consecutive rainfall totals show ‘Overall Good’ performance for all sites and months (Table 5). 515 

However, correlations in the consecutive totals for June and July show a number of sites that are 516 

deemed ‘fair’ (Supplementary Material B). This may be of concern as these months are part of the 517 

wet (winter) season for the catchment in which a large proportion of the annual rainfall occurs.  518 

6.1.4 Daily rainfall extremes 519 

The model exhibited ‘Overall Good’ performance in reproducing the daily annual maximas (Table 5). 520 

Fig. 7 shows a comparison of the observed and simulated daily annual maximum rainfall for example 521 

sites Coromandel Valley (site 6, ‘fair’), Cherry Gardens (site 4, ‘poor’), and summarises the aggregate 522 

performance. Fourteen sites (53%) across the catchment the model showed ‘good’ or ‘fair’ 523 

performance in reproducing the distribution of daily annual maxima (Fig. 7).  524 

6.2 Spatial field performance 525 

6.2.1 Multi-site occurrences 526 

The top panel of Fig. 8 illustrates three categories of spatial rainfall coverage: ‘sparse’ rain (Fig. 8a), 527 

‘patchy’ rain (Fig. 8b) and ‘dense’ rain (Fig. 8c). The middle panel shows an example of the 528 

distribution of jointly wet sites (March) and the bottom panel summarises model performance over 529 

all months for each of the three illustrative categories. The model shows ‘Overall Good’ performance 530 

for each category from ‘sparse’ and ‘patchy’ rain coverage (Fig. 8a and b) but is deemed ‘Overall 531 

Variable’ for the ‘dense’ rain category (Fig. 8c) due to the model over-predicting the number of 532 

instances in which all 19 sites were wet.  533 
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6.2.2 Catchment rainfall 534 

The domain aggregated behaviour of the sites can be assessed using the same statistics as for 535 

individual sites. This approach showed that the domain aggregated behaviour had ‘Overall Fair – 536 

Good’ performance when reproducing the same statistics evaluated in the at-site analysis (see 537 

Section 4.2.1). As with the individual sites, the model showed poorer performance in reproducing 538 

the lower-tail of the annual total rainfall distributions (see Supplementary Material C), but this was 539 

to be expected. 540 

The interpolated mean observed annual rainfall fell within the 90% limits of the simulated mean 541 

annual rainfall for 78% of the region indicating ‘Overall Good’ performance. Another 22% of the 542 

region showed ‘fair’ performance. The instances having the greatest difference occurred at the very 543 

high elevations and near the boundaries, which suggest a potential limitation of the interpolation 544 

approach. 545 

6.3 Leave-one-out cross-validation performance 546 

The model was evaluated using a LCV approach (Section 4.2.4). There was minimal difference 547 

between the observed and predicted parameters over the region (see Supplementary Material D), 548 

suggesting that the regression against elevation and the variogram parameters are appropriate. This 549 

is further assessed by comparing the model’s at-site performance calibrated using all data against 550 

the LCV at-site performance. Table 5 summarises the performance of the model when using all sites 551 

in calibration and the performance at each site when that site is removed from calibration.  552 

The LCV shows some decrease in performance, but this decrease typically occurs when sites nearer 553 

the boundary (e.g. Site 11) are left out and there is little other nearby information to assist the 554 

interpolation. This issue is a property of the spatial interpolation component of the model 555 

framework. Nevertheless, the performance of the model for monthly and annual rainfall 556 

distributions, correlations in rainfall totals and extreme rainfall is predominantly ‘Overall Fair – 557 

Good’. 558 
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Several statistics are worth noting in which changes in performance were observed between 559 

calibration and LCV. Mean annual rainfall total performance changed from ‘Overall Good’ in 560 

calibration to ‘Overall Poor’ in LCV. However, the relative difference between the simulated and 561 

observed mean annual total rainfall is within 10% for 14 sites (Table 6). This issue is due to the small 562 

uncertainty in the simulated mean annual total rainfall, such that changes to the interpolated mean 563 

can easily lie outside the 90% limits (see Supplementary Material E). Likewise, the same issue 564 

occurred for the simulated mean annual number of wet days, which dropped from ‘Overall Good’ to 565 

‘Overall Fair – Good’, and mean monthly total rainfall, which dropped from ‘Overall Good’ to ‘Overall 566 

Variable’ between calibration and LCV (Table 6 and Supplementary Material F). 567 

The simulation of the variability in annual total rainfall changes from ‘Overall Fair – Poor’ to ‘Overall 568 

Variable’ due to small changes in the simulation parameters as many of the sites deemed ‘fair’ in the 569 

calibration scenario were near the boundary of being classified as ‘good’ or ‘poor. This was also 570 

determined to cause the drop in performance for the daily annual maximas.  571 

7 Discussion 572 

The latent-variable approach used in this study has a number of features that make it more 573 

parsimonious than existing approaches (see Section 2.3.4 for a full description). Firstly, it implicitly 574 

accounts for temporal correlations in the wet-dry pattern (Section 6.2) as well as the rainfall 575 

amounts (Section 6.2.2) and is thus more parsimonious compared to models which simulate rainfall 576 

amounts conditional on wet-dry patterns (Kleiber et al. 2012; Wilks 2009). Secondly, the use of a 577 

spatially continuous covariance function has meant that significantly less parameters are used than 578 

in multisite models to represent the spatial correlation structure (see Section 2.3.2 for discussion). 579 
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7.1 Differences with existing spatial rainfall field models using latent-580 

variables 581 

Other latent-variable (LV) models have been used to generate spatial rainfall fields suitable for 582 

continuous hydrological simulation of a catchment. A key difference between existing LV approaches 583 

and the PRF model is that a different transformation approach is used. For example, Baxevani and 584 

Lennartsson (2015) have adopted a composite transformation that applies two different 585 

transformation functions to extreme and non-extreme rainfall amounts. In contrast the PRF model, 586 

uses a single power transformation function across the entire range of rainfall (e.g. Eq (1)), which 587 

requires less parameters to be estimated than the composite transformation. Another key 588 

differences is that some LV approaches use a different approach to handle seasonality in rainfall 589 

than the PRF’s approach by of monthly parameters. For example, contemporary models have used 590 

parameters that vary by day achieved by defining a cyclic relationship between the parameters and 591 

the day of the year (Baxevani and Lennartsson 2015; Kleiber et al. 2012). Depending on how many 592 

parameters are required for the cyclic relationship this could potentially lead to fewer parameters 593 

than the vary by month approach adopted in the PRF model. Whether these key differences result in 594 

better reproduction of rainfall statistics is difficult to determine without a comparison using the 595 

same catchment.  596 

7.2 Interpretation of performance results. 597 

This section interprets the performance results and discusses model strengths and weaknesses with 598 

respect to the model assumptions.  599 

The at-site performance evaluation showed the wet/dry occurrences, rainfall amounts, and 600 

extremes evaluations to be ‘Overall Good’ (Table 5). This indicates that the underlying latent-601 

variable model is sufficient for reproducing the marginal statistics. In this study a power 602 

transformation was adopted, while more complex composite transformations have been used 603 

(Baxevani and Lennartsson 2015), the ‘Overall Good’ performance seen in the comprehensive 604 
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evaluation did not suggest that a more complicated composite transformation was needed. The 605 

‘Overall Good’ performance in simulating extremes is a benefit of the modelling approach as many 606 

point rainfall models and spatial rainfall models struggle to simulate extremes due to issues with 607 

cascade generators and resampling approaches, limitations in adopted amount generation 608 

distribution, and a lack of correlation between weather states and extreme precipitation amounts 609 

(see Hundecha et al. 2009; Li et al. 2012 and references therein). 610 

The model exhibited ‘Overall Fair – Good’ performance in simulating wet spell durations for some 611 

sites. However, the model exhibited ‘poor’ performance in drier months, November and February 612 

(Section 6.1.1). The ‘poor’ categorisation typically arose due to the over-estimation of short duration 613 

wet spells and under-estimation for longer durations. This difficulty in reproducing the wet spell 614 

distribution for drier months may be a limitation of the AR(1) model and/or a consequence of 615 

applying a single homogeneous AR(1) parameter, 𝜑𝜑𝑡𝑡, for both dry and wet spells. The model also 616 

under-estimated the variability in the number of wet days simulated in these months (November 617 

and February). Whether the difficulties matter in terms of hydrological model performance is 618 

another question, because these months contribute very little to annual total flow in this catchment. 619 

The model shows ‘Overall Good’ performance in simulating the number of jointly wet sites. Although 620 

the model over-predicted the frequency of days where rainfall is observed at all sites. Baxevani and 621 

Lennartsson (2015) similarly noted the higher probability of observing rainfall at all sites (right hand 622 

side of Fig. 8c) compared to partial coverage of the region, but their model under-predicted 623 

instances where the sites were either all dry or all wet. The ‘Overall Good’ performance suggests 624 

applied spatial correlation function is sufficient. 625 

A lack of variability at annual scales was observed and identified as a model deficiency. The under 626 

prediction of variability in aggregate totals, termed overdispersion, is a well-known issue with many 627 

classes of stochastic precipitation generation models (Katz and Parlange 1998; Mehrotra and Sharma 628 

2007; Paschalis et al. 2013; Wilks 1999). Often, this is attributed to lack of model persistence at the 629 
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inter-annual timescale, or the lesser acknowledged issue of intra-annual month-to-month variability. 630 

However, the comprehensive evaluation showed that inter-annual correlations were ‘Overall Good’ 631 

(Section 6.1.3) and the intra-annual correlations were ‘Overall Good’. In this instance, the lack of 632 

variability in the number of wet days simulated annually was determined to be the likely cause of a 633 

lack of variability in annual total rainfall amounts (See Section 6.1.2). Specifically, the model showed 634 

‘poor’ performance in simulating drier years.  635 

7.3 Benefits of comprehensive and systematic evaluation framework  636 

As demonstrated above the CASE framework enabled the identification of model deficiencies and 637 

the attribution of these deficiencies to specific model features. Specifically, the CASE framework 638 

demonstrated that a difficulty in simulating variability in the number of wet days annually was a 639 

likely cause of the lack of variability in annual total rainfall amounts. This diagnosis demonstrates the 640 

value of a comprehensive evaluation, because identifying the root cause of the issue can lead to a 641 

differing remedy. In this instance, the ‘poor’ performance in drier years suggests model 642 

improvement might potentially consider drier years in more detail rather than focus on the issue of 643 

inter-annual persistence. 644 

Another key advantage of the CASE framework has been a direct comparison between the 645 

performance in calibration and spatial LCV. This is rare in studies that present spatial continuous 646 

simulation approaches. Overall there was not a large change in performance for the spatial LCV, 647 

which provides greater confidence in model performance ability. The largest differences in LCV were 648 

for locations with less adjacent surrounding gauges or higher elevations - approaches to remedy this 649 

are discussed in the following section. The CASE framework could be extended to undertake a 650 

temporal LCV analysis (Wang and Robertson 2011; Wang et al. 2009) in addition to the specified 651 

spatial LCV. However, this was not undertaken here as the focus of this study was to evaluate the 652 

parameter interpolation scheme, a key new component of the PRF model. 653 
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A future benefit of the CASE framework will be the comparison of different rainfall field models at a 654 

given catchment of interest. There are many varied approaches to simulating spatial rainfall fields, 655 

ranging from cluster point processes (Burton et al. 2010; Leonard et al. 2008) to random field models 656 

(Paschalis et al. 2013) and disaggregation based models (Jothityangkoon et al. 2000). Each relies on 657 

different mechanisms to simulate precipitation in space and time. Due to these stark differences it is 658 

difficult to compare the models based on model structure alone. Therefore a better approach is to 659 

compare them based on their ability to reproduce the key observed rainfall statistics for the same 660 

catchment, however, these comparisons are rarely undertaken. The key issues being that, until now, 661 

there has been no systematic approach to achieve this on a comprehensive range of key statistics. 662 

The CASE framework overcomes this issue and enables future studies to be undertaken to compare 663 

and evaluate spatial rainfall field models.  664 

7.4 Future PRF model developments  665 

The CASE framework identified the variance in annual totals and occurrences as being a limiting 666 

feature of the PRF model for the given case study. Future versions of the PRF model may address 667 

this issue, for example, by conditioning the model on weather states, conditioning on covariates and 668 

model nesting over multiple time scales (Sharma and Mehrotra 2013).  669 

The LCV evaluation identified some sites with larger decrease in performance, which was postulated 670 

to be due to the spatial interpolation. This could be addressed by incorporating the uncertainty in 671 

the interpolation approach, as undertaken by Kleiber et al. (2012), or developing more sophisticated 672 

interpolation techniques.  673 

Future research will also include evaluation of the PRF model across different regions and in 674 

different contexts, such as conditional simulation (e.g. Renard et al. 2011) or as a weather generator 675 

simulating fields of variables such as temperature or evapotranspiration (Srikanthan and McMahon 676 

2001). These extensions may highlight the need for further model enhancements.  677 
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Additionally, the model will be compared against contemporary spatial rainfall field models (e.g. 678 

cluster point processes, (Burton et al. 2010; Leonard et al. 2008) using the CASE framework to 679 

systematically identify model strengths and weakness on a wide range of catchments.  680 

8 Conclusions 681 

The first goal of this study was to develop a model capable of generating long-term continuous 682 

rainfall fields suitable for hydrological simulation for assessing flood and drought risk. Hence model 683 

parsimony and ease of calibration were important. For this reason, a latent-variable approach was 684 

adopted because it provides a parsimonious method to jointly generate rainfall occurrence and 685 

amount. Furthermore, a parsimonious approach was adopted for the simulation of the temporal and 686 

spatial correlation structure. The second goal was to develop a comprehensive and systematic 687 

evaluation framework. The framework was developed using a performance categorisation system to 688 

provide a systematic, succinct and transparent method to assess and summarise model performance 689 

over a comprehensive range of statistics, sites, scales and seasons. Importantly it was able to identify 690 

and diagnose PRF model strengths and weaknesses.  691 

The evaluation of the results used a wide range of statistics which were important from a 692 

hydrological perspective. This included rainfall occurrence/amounts, wet/dry spell distributions, 693 

seasonality, annual maximum extremes, spatial gradients, temporal and spatial correlations across 694 

range of time scales from daily to annual. The model showed many strengths in reproducing 695 

observed rainfall characteristics, with the majority of statistics categorised as either statistically 696 

indistinguishable from the observed or within 5% of the observed across the majority of sites and 697 

seasons. One of the few weaknesses of the model was that the total annual rainfall in dry years 698 

(lower 5%) was over-estimated by 15% on average over all sites. The CASE framework was able to 699 

identify that the source of this over-estimation was poor representation of the annual variability of 700 

rainfall occurrences. 701 

30 
 



Further research will address model weaknesses, and then apply the model in different regions using 702 

the comprehensive and systematic evaluation framework to identify if further enhancements are 703 

required. Given the strengths of the continuous daily rainfall field model it has a range of potential 704 

hydrological applications because it provides the ability to estimate streamflow over an entire 705 

catchment.  706 
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11 Tables 833 

Table 1 Comparison of the number of parameters required to simulate at 𝑁𝑁 sites per season modelled 834 

No. locations  
modelled 

R2013 multi-site 
model 

PRF Spatial rainfall field model Reduction in parameters 

𝑁𝑁 (3𝑁𝑁 + 2𝑁𝑁2) 16 100[(3𝑁𝑁 + 2𝑁𝑁2) − 16] (3𝑁𝑁 + 2𝑁𝑁2)⁄  

25 1,325 16 99% 
100 20,300 16 ~100% 
2048* 8,394,752 16 ~100% 

* case study Onkaparinga catchment 835 

  836 
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 837 

Table 2 Performance categorisation criteria 838 

Performance 

 

Key Test 

‘good’ 
 

Less than 10% of observations outside 90% limits (case 1) 

‘fair’ 
 

More than 10% of observations are outside 90% limits 
but within the 99.7% limits (case 2)  
OR  
Absolute relative difference between the observation 
and simulated mean is 5% or less (case 3) 

‘poor’ 
 

Otherwise (case 4)  

 839 

  840 
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 841 

Table 3 Aggregate performance categorisation criteria 842 

Overall Performance Categorisation Test Example 
‘Overall Good’ ‘good’ > 50 % 

 

 ‘Overall Fair’ ‘fair’ > 50 % 

 

‘Overall Poor’ ‘poor’> 50% 

 

‘Overall Fair – Good’ ‘fair’ & ‘good’ > ‘poor’ 

 

‘Overall Fair – Poor’ ‘fair’ & ‘poor’> ‘good’ 

 

‘Overall Variable’ ‘good’ & ‘poor’ > ‘fair’ 

 

 843 

  844 
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Table 4 Site names and locations 845 

Site No Site Name Elev (m) Ann. Ave. 
Rain (mm) 

 Site No Site Name Elev (m) Ann. Ave. 
Rain (mm) 

1 Belair 386 786  12 Lobethal 470 882 
2 Birdwood  385 723  13 Macclesfield 302 730 
3 Bridgewater 376 1046  14 Meadows 384 869 
4 Cherry gardens 345 924  15 Cudlee Creek 311 831 
5 Clarendon 223 818  16 Morphett Vale 90 562 
6 Coromandel Valley 234 714  17 Mount Barker 349 766 
7 Echunga 375 805  18 Nairne 403 678 
8 Gumeracha 346 793  19 Old Noarlunga 7 522 
9 Hahndorf 347 845  20 Uraidla 499 1088 

10 Happy Valley 148 638  21 Willunga 158 642 
11 Harrogate 335 552  22 Woodside 387 801 

 846 

  847 
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Table 5 Comparison of calibration and LCV performance. Aggregate performance measure summarised to the 848 
right of each bar using the Table 3 categorisation scheme. 849 

 Calibration  LCV 

Metric Percent of cases Aggregate 
performance Percent of cases Aggregate 

performance 
Monthly 
Wet day amounts – 
means  

Overall Good 
 

Overall Good 

Wet day amounts – 
std dev 
 

 
Overall Good 

 
Overall Good 

Wet day amounts – 
skew  

Overall Good 
 

Overall Good 

No. wet days – 
means  

Overall Good 
 

Overall Good 

No. wet days – std 
dev  

Overall Variable 
 

Overall Variable 

Wet spell 
distribution  

Overall Fair – Good 
 

Overall Fair – Good 

Dry spell 
distribution  

Overall Good 
 

Overall Good 

Total rainfall - 
means  

Overall Good 
 

Overall Variable* 

Total rainfall – std 
dev  

Overall Good 
 

Overall Good 

Total rainfall – 
lower tail  

Overall Good 
 

Overall Good 

Total rainfall – 
upper tail  

Overall Good 
 

Overall Good 

Annual 

Total rainfall - 
means  

Overall Good 

 

Overall Poor* 

Total rainfall – std 
dev  

Overall Fair – Poor 

 

Overall Variable 

Total rainfall – 
lower tail  

Overall Fair – Poor 

 

Overall Fair – Poor 

Total rainfall – 
upper tail  

Overall Good 

 

Overall Good 

Wet day amounts - 
mean  

Overall Good 

 

Overall Fair – Poor* 

Wet day amounts – 
std dev  

Overall Good 

 

Overall Good 

No. wet days – 
means  

Overall Good 

 

Overall Fair – Good* 

No. wet days – std 
dev  

Overall Poor 

 

Overall Poor 

Correlations 

Monthly total 
rainfall  

Overall Good 

 

Overall Good 

Annual total 
rainfall  

Overall Good 

 

Overall Good 

Extremes 

Daily annual 
maxima  

Overall Good 

 
Overall Variable* 
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* The statistics are very sensitive to the choice of relative difference for the categorisation system. This is discussed in Section 6.3 and 850 

further explored in Table 6. 851 

Table 6 Comparison of LCV aggregate performance with relative distance set at 5% and 10%. 852 

LCV  (Percent of cases) 

Metric Fair relative difference 5% Aggregate 
performance Fair relative difference 10% Aggregate 

performance 
Monthly total 
rainfall - means  

Overall Variable 
 

Overall Fair - Good 

Annual total 
rainfall - means  

Overall Poor 
 

Overall Fair 

Annual daily 
rainfall amounts - 
means 

 
Overall Fair-Poor 

 
Overall Fair 

 853 

12 Graphics 854 

 855 

Fig. 1 Illustration of performance categorisation, case (1) shows ‘good’ performance, cases (2) and (3) show 856 
‘fair’ performance and case (4) shows ‘poor’ performance. 857 

 858 
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 859 

Fig. 2 Locations of rainfall observation sites, Onkaparinga catchment and study region. 860 

 861 
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 862 

Fig. 3 At site daily statistics for all sites and months, 90% probability limits shown, overall performance shown 863 
as a percentage of all sites and months. 864 
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 865 

Fig. 4 Distribution of event lengths (a) wet spell length distribution summary, (b) dry spell length distribution 866 
summary, (c) wet spell length distribution Site 19 June, (d) dry spell length distribution Site 1, July,  (e) wet 867 
spell length distribution Site 10 November, and (f) dry spell length distribution Site 8, December, 90% 868 
probability limits shown. 869 

42 
 



 870 

Fig. 5 At site monthly totals for all sites and months (a) means, (b) standard deviations, (c) lower 5th percentile 871 
and (d) upper 95th percentile, 90% probability limits shown, overall performance as a percentage of all sites 872 
and months. 873 
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 874 

Fig. 6 At site annual totals for all sites and months (a) means, (b) standard deviations, (c) 5th percentile and (d) 875 
95th percentile, 90% probability limits shown, overall performance as a percentage of sites. 876 
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 877 

Fig. 7 Simulated and observed daily annual maxima (a) example from site 6, (b) example from site 4 and overall 878 
performance as a percentage of sites. 879 
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 880 

Fig. 8 Distribution of number of jointly wet sites for (a) ‘sparse’ rain, (b) ‘patchy rain’ and (c) ‘dense’ rain. 881 
Example shown for March. Overall performance shown as a percentage of months and options within a 882 
category. 883 

 884 
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