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Guided wave-based identification of multiple cracks in beams 

using a Bayesian approach 

 

Shuai He and Ching-Tai Ng* 

School of Civil, Environmental & Mining Engineering, The University of Adelaide, 

Adelaide, SA 5005, Australia 

 

Abstract 

A guided wave damage identification method using a model-based approach is 

proposed to identify multiple cracks in beam-like structures. The guided wave 

propagation is simulated using spectral finite element method and a crack element is 

proposed to take into account the mode conversion effect. The Bayesian model class 

selection algorithm is employed to determine the crack number and then the Bayesian 

statistical framework is used to identify the crack parameters and the associated 

uncertainties. In order to improve the efficiency and ensure the reliability of 

identification, the Transitional Markov Chain Monte Carlo (TMCMC) method is 

implemented in the Bayesian approach. A series of numerical studies are carried out to 

assess the performance of the proposed method, in which the sensitivity of different 

guided wave modes and effect of different levels of measurement noise in identifying 

different numbers of cracks is studied in detail. The proposed method is also 

experimentally verified using guided wave data obtained from laser vibrometer. The 

results show that the proposed method is able to accurately identify the number, 

locations and sizes of the cracks, and also quantify the associated uncertainties. In 
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addition the proposed method is robust under measurement noise and different 

situations of the cracks. 

 

Keywords: Multiple cracks; Damage identification; Bayesian statistical framework; 

Bayesian model class selection; Guided waves; Spectral finite element; Mode 

conversion 

 
  



1 Introduction 

1.1 Structural Health monitoring 

Structural health monitoring (SHM) has attracted much attention as it plays a vital role 

in ensuring safety, reliability and serviceability of a range of infrastructures in civil, 

mechanical and aviation engineering. It provides a tool to continuously examine the 

integrity of structures and presents essential information of any damage and 

deterioration at the early stage. Numerous damage detection techniques have been 

developed to provide safety inspection for structures in the field of SHM. Conventional 

non-destructive evaluation (NDE) techniques are generally limited in measuring a very 

small region of the structure and not applicable to inspect inaccessible locations. 

Efficient damage inspection requires the pre-knowledge of possible damage locations, 

which is usually not available in practical situation for NDE. Acoustic emission [1] is a 

passive technique that is able to monitor the generation and growth of defects but it is 

not applicable to detect existing defects. The vibration-based techniques [2] have the 

capability to detect and locate the damage in entire structures. However, they are 

insensitive to incipient defects as they are based on low vibrational frequency. 

 

1.2 GW Damage identification 

Guided wave (GW) has been proven sensitive to small and various types of damages 

[3][4]. GW is a mechanical stress wave, which can be actuated by piezoelectric 

transducers installed on structures and its propagation is confined to the structures 

guided by structural boundaries. It can be used to inspect large area of the structures as 

it is able to propagate a long distance. In recent years, GW has demonstrated significant 

capabilities in damage detection [5] in a variety of structural components, which are 

commonly categorised into one- (1D) and two-dimensional (2D) waveguides. The 



characteristics of GW propagation and its interaction with damage have been studied for 

1D waveguides (e.g. pipes [6]) and beams [7][8] and 2D waveguides (e.g. plates [9]).  

 

Based on the identified damage information, the damage detection process has four 

different levels, i.e. determine i) damage existence, ii) damage location, iii) damage 

severity and iv) remaining service lifespan of structures prediction [10]. In the literature 

different types of damage detection techniques have been developed for 2D waveguide 

and most of them are able to identify the existence, location and severity of the damages. 

For example, numerous advance damage detection techniques, such as damage imaging 

[11][12], maximum-likelihood estimation [13], diffraction tomography [14][15], 

phased-array beamforming [16], model based approach [17][18] and the Bayesian 

interface [19][20] were developed for plate-like structures. In contrast, most GW based 

damage detection techniques for 1D waveguides were limited in identifying the 

existence and location of damage [21]. 

 

1.3 Model-based approaches 

There are two major approaches in GW damage detection of 1D waveguides: the 

non-model and model based approaches. Most research of GW damage identification 

focuses on non-model based approaches. Generally, non-model based approaches apply 

forward algorithm to detect damage by recognising the subsequent changes in certain 

features between the damaged and healthy state of structures. However, accurate 

baseline signal is difficult to obtain because it normally contains numerous unnecessary 

data, such as noise from environments, natural vibration of the structures and data 

acquisition systems. Although different signal processing techniques have been recently 

proposed to extract the damage information in the measured signal, these studies only 



roughly quantified the severity of the damage. For example, Hossein Abadi et al. [22] 

proposed a pattern recognise technique to detect step damage on a thick steel beam 

based on discrete wavelet transform of GW signal. Experimental results demonstrated 

that the damage location was appropriately detected and its depth was estimated. Amjad 

et al. [23] utilized the changes in time-of-flight and phase to detect circular hole-type 

damage in 1D waveguide. Different signal processing techniques such as Fast Fourier 

Transform (FFT), Wigner-Ville Distribution Transform (WVDT), S-Transform (ST) 

and Hilbert Huang Transform (HHT) were employed to improve the quality of the GW 

signal in identifying the damage size. 

 

Model-based approach is capable to characterise more complicated damage by 

updating a damage model. The damage parameters, such as damage location and 

geometry, are treated as unknown parameters and updated through minimising the 

discrepancy between the simulated and measured data. This approach is able to provide 

more quantitative information in the damage identification, and hence, this paper 

focuses on using the GW model-based approach for cracks identification of beam-like 

structures. 

 

1.4 Modelling of GW propagation and scattering 

Methods of modelling the GW propagation can be found in the literature [24]. 

Generally, GW propagation could be numerically modelled by conventional finite 

element (FE) method [25], while this method is impractical for model-based damage 

identification. The mesh size of the FE element usually needs to be small enough to 

ensure the accuracy in simulating the GW propagation but it is computational 

expensive. Other numerical methods, such as finite difference method [26], would 



confront convergence problem when the GW propagates through different materials. 

Finite strip element method [27] is difficult to be applied to geometry-complex 

structures. Boundary element method [28] is inefficient for simulating large structures. 

The frequency-domain spectral finite element (SFE) method has been widely applied in 

most GW model-based damage detection techniques [7][29][30] because of its 

computational efficiency. It has been used for damage identification, for example, based 

on genetic algorithm (GA) in beam-like structure with a symmetric open crack [29] and 

in composite beams with delamination [30], and Bayesian statistical framework 

combined with simulating annealing (SA) [31] and particle swarm optimization (PSO) 

algorithm [7] in a beam with a step damage. However, because the frequency-domain 

SFE method requires one side of the structure to be infinitely long, it is unsuitable for 

modelling practical and complex structures. 

 

Time-domain SFE method, which is also called the p-version FEM [32], has the 

same flexibility in model discretisation as conventional FEM. The method uses 

high-order approximation polynomials to reduce the number of elements. Also, the 

application of Gauss-Lobatto-Legendre (GLL) nodes, leads to a diagonal mass matrix, 

and hence, the dynamic equilibrium of the model can be solved efficiently by explicit 

central difference method. In addition, the Runge effect is avoided by the application of 

this GLL-node element [33]. The time-domain SFE modelling has been proven to be an 

effective tool in simulating GW propagation for 1D and 2D waveguides [34]. In this 

paper, the time-domain SFE method is utilised to simulate both fundamental 

longitudinal (S0) and flexural (A0) GWs propagation based on the Mindlin-Herrmann 

rod [35] and Timoshenko beam theory [36], respectively. These theories provide more 

accurate results for the high frequency GW propagation. 

 



GW mode-conversion effect is a general phenomenon occurring at the moment 

when the GW interacts with asymmetric discontinuity in the waveguide. Additional 

damage information from the mode-converted GW can be provided to describe the 

damage features. In the literatures, for example, Xu et al. [37] determined the depth of a 

partial-thickness crack in plate by the mode converted energy rate using FE simulation. 

Li et al. [38] compared the mode-converted signal with the baseline signal to detect 

damage in high-speed railway. However, the use of GW mode-conversion effect for 

model-based damage identification in beam-like structures has not been studied. In this 

paper, a time-domain SFE cracked beam element [39] was adapted to simulate the 

mode-conversion effect. The flexibility of the cracked element was formed by applying 

the Castigliano’s theorem and laws of fracture mechanics to couple the longitudinal and 

flexural displacement. As a result, the mode converted GW signal was simulated and 

better performance of damage characterisation in beam-like structure was achieved. 

 

1.5 Bayesian approach 

Bayesian statistical framework was initially applied in the field of low-frequency 

vibrational test [40]. It was then extended to the GW model-based crack identification in 

beam-like structures [7], [29]-[31]. This method determines the damage parameters 

using the maximum likelihood method and provides the quantification of the 

corresponding uncertainties, which is significantly useful for planning the restoration 

work in engineering practice. However, most of the studies were limited to identify 

single damage in 1D waveguides. This is because in multiple-damage situation, a 

numerical model that considers the number of damage more than the actual damage 

number will always have better fitting between the simulated and measured data in the 

presence of measurement noise and modelling error. Therefore, the selection of the 



model with a pre-defined damage number based solely on the fitting between the 

modelled and measured data can be very misleading. In order to solve this problem, the 

Bayesian model class selection algorithm [41][42] was employed to identify the number 

of cracks for multiple-damage situation in this paper, which considers a penalty against 

the model complexity, i.e. increasing number of cracks. 

 

Crack identification in model-based approach requires determine the optimal crack 

parameters that minimises the discrepancy between the simulated data of the crack 

model and measured data. In the case of single crack identification, which is usually 

treated as an identifiable situation [41], there is one or limited number of optimal crack 

parameter regions in the parameter space. Identification of the crack is equivalent to 

finding the global optimum by using global optimisation algorithms such as GA, SA 

and PSO. While in the case of multi-crack identification, the problem is possible to be 

unidentifiable [41] and the aforementioned optimisation tools are inapplicable. In order 

to solve this difficulty, this paper utilises Bayesian approach with implementation of the 

transitional Markov Chain Monte Carlo (TMCMC) sampling method [43] to identify 

the number of cracks and the optimal crack parameters 

 

The arrangement of the paper is listed as follow. The time-domain SFE method and a 

proposed SFE crack model are presented in Section 2. The Bayesian model class 

selection and Bayesian statistical framework for damage identification are then 

described in Section 3. Section 4 describes the TMCMC algorithm. After that a series of 

numerical case studies for investigating the reliability and computational efficiency of 

the TMCMC algorithm are presented in Section 5. Different GW modes, crack numbers, 

noise levels and measurement locations are considered in the numerical case studies. In 

addition, the results of experimental case studies are presented to verify the 



practicability of this approach in Section 6. Finally, conclusions are drawn in Section 7. 

 

2 Time-domain spectral finite element method 

2.1 Mindlin-Herrmann and Timoshenko beam theory 

It has been experimentally proven that the Mindlin-Herrmann rod theory provides better 

results than the elementary rod theory in simulating the fundamental longitudinal GW 

propagation [44] while the Timoshenko beam theory performs better than the Euler–

Bernoulli beam theory in simulating the fundamental flexural GW [21]. Although Love 

theory provides similar results to the Mindlin-Herrmann rod theory for low frequency 

(i.e., fundamental mode) GW propagation in thin rods, it changes the diagonal form of 

the mass matrix by introducing the lateral deformation component [21]. So it is 

inefficiency in solving the dynamic equilibrium using central difference method. 

Furthermore, Love theory is not sufficient to simulate the GW propagation in deep rods 

or at high frequency. Hence, the Mindlin-Herrmann rod theory and Timoshenko beam 

theory are chosen to model the GW propagation in this study. 

 

[Figure 1. Distribution of GLL nodes and shape function of first four nodes (1st node: 

solid line; 2nd node: dashed line; 3rd node: dotted line; 4th node: dotted-dashed line)] 

 

In the Mindlin-Herrmann rod theory, the longitudinal displacement ( )u x  is coupled 

with an independent lateral contraction ( )xψ  that used to account for the Poisson 

effect [35]. In the Timoshenko beam theory, the effect of shear deformation is 

considered and the vertical displacement ( )v x  is independent from the rotational 

function ( )xϕ . Thus, as shown in Figure 1, four degree-of-freedoms (DoFs) were 

considered at each node and eight nodes were employed to model a SFE beam element 



in this paper. The displacement fields in the beam have the following forms: 

 ( ) ( ) ( ), x≈ −u x y u x yϕ  and ( ) ( ) ( ), ≈ +x y x y xυ ψ υ  
(1) 

where y  is the vertical distance from neutral axis. The governing equations of GWs 

using Mindlin-Herrmann rod theory and Timoshenko beam theory are defined as 

[21],[36] 
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where E  and G  are the Young's and shear modules. A  denotes the cross-section 

area of the beam and I  is the moment of inertia. ν  and ρ  are Poisson's ratio and 

mass density of the material, respectively. The external longitudinal and vertical 

excitation are illustrated by ( , )lF x t  and ( , )vF x t , which are the function of time t and 

location variable x , respectively. 1
MK , 2

MK  and 1
TK  can be adjusted to give the best 

correspondence with the experimental results in the considered frequency range. In this 

study 1
MK = 1.1, 2

MK =3.1 and 1
TK =0.922 are obtained from the experimental results 

reported in this paper. 2
2 112 /=T TKK π  to match the cut-off frequency with guided 

wave modes. 

2.2 Spectral finite element formulation 

The dynamic equilibrium of the model in time-domain can be represented using the 

following Equation [34] 

 ( )+ + =MU CU FUK&& & t  (4) 



where the global mass matrix, damping matrix and stiffness matrix are denoted by M, 

C  and K , respectively. These global matrices can be obtained by assembling the local 

element matrices. The external excitation force vector ( )F t  is a function of time. C is 

the global damping matrix related to the mass matrix, which has the following form 

=C Mη , and η  is the damping coefficient. U , U&  and U&& are the vectors of 

displacement, velocity and acceleration, respectively. For an element of length eL , the 

element matrices Me  and K e , and the column vector Fe  can be obtained using the 

following equations 
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where n  is the number of the GLL integration points in the element. re  is the mass 

density matrix. Ee  is the stress-stain matrix indicating the relationship between stress 

and strain. ( )fe iξ  is the external excitation. Be  is the strain-displacement operator 

and is defined as 

 ( ) ( ),        ∂= =
∂

B DSe e
xand Jξ ξ
ξ

 (8) 

where J  is the Jacobian functions transferring the local coordinate to the global 

domain. D  is the differential operator developed on the basis of Mindlin-Herrmann 

rod and Timoshenko beam theory, which are defined as 
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[ 1,1]∈ −iξ  for 1,...,∈i n  is the coordinates of the GLL integration points, which can 

be obtained as the roots of the equation below 

 ( ) ( )2
11 0−′− =nLξ ξ  (10) 

where 1−′nL  is the first derivative of the Legendre polynomial of degree 1−n . In this 

study an eight-node element is used, and hence, 8=n , as shown in Figure 1. The 

weights iw  in Equations (5) – (7) is accounted for node i  and it has the expression 

[33] 
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As four DoFs (i.e., longitudinal displacement u , lateral contraction ψ , vertical 

displacement v  and rotation ϕ ) are considered at a node, the shape function matrix 

Se  has the form 

 = ⊗S S Ie  (12) 

where 1[ ( ),..., ( )]= ξ ξS nS S  is a row vector. ‘⊗ ’ denotes the Kronecker product and I  

is a 4×4 identity matrix. The shape function ( )iS ξ  at node i  that is defined as 
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n
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 for ( 1,2,..., )∈i i n  (13) 

 



where n  illustrates the number of GLL integration points in each element and m  

means the sequence of node. The shape function has the orthogonal property as 
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This property is illustrated in Figure 1. With the value of this shape function, the global 

mass matrix M  in Equation (4) can achieve a diagonal form. This contributes to an 

explicit expression of the integrating equation using central difference scheme, and 

hence, the dynamic equilibrium of the model can be efficiently calculated. 

 

Based on the Mindlin-Herrmann rod and Timoshenko beam theory, the mass 

density matrix re  in Equation (5) and the stress-strain matrix Ee  in Equation (6) are 

denoted as below 
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Substituting D , re , Ee  and Se  into Equations (5) – (7), and the element mass 

matrix Me , stiffness matrix K e  and external force matrix Fe  can be obtained to 

constitute the global matrices M , C  and K  in Equation (4). 



 

2.3 Crack element modelling 

A two-node spectral crack element with length cl  was developed to simulate the 

scattering of GW and mode-conversion effect when the GW encounters the crack. The 

crack element can be located continuously at any location cL  along the beam. A 

transverse surface crack, which has an elliptical shape representing a practical situation 

of the crack [45], is modelled in the crack element. The element has a very small length 

(i.e., 0.1 mm) in the longitudinal direction of the beam, thus, it can be treated as 

dimensionless in this direction. As a result, the value of the strain in the longitudinal 

direction is neglected, and hence, the corresponding axis contraction ( )xψ  in this 

crack element is considered zero. The geometric of crack element is shown in Figure 2. 

The elliptical crack has a cross section with width cb  and depth cd , and it is modelled 

at the location cx  measured from the left end of the crack element.  

 

[Figure 2. Schematic diagram of the crack element for simulating a part-through 

surface crack] 

 

The element stiffness matrix K c
e  for the crack element proposed in [46] is modified to 

account coupling of the longitudinal, transverse and rotational displacement, and hence, 

it can simulate the mode conversion effect when the incident GW interacts at the crack. 

The element stiffness matrix K c
e  is defined as 

 1−=K YQ Yc T
e f  (17) 

where the position transformation matrix Y  is a function of crack location and is 



defined as  
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Q f  is the flexibility matrix and is defined as 
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where 10(1 ) / (12 11 )α = +ν + νs  is the shear coefficient rectangular cross-section of the 

beam.  
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where /κ = cd b  and / 2= cb b . h  is the thickness of the beam. IF  and IIF  are the 

empirical boundary calibration factors accounted for tension [47] and shear [48] for the 

semielliptical surface crack, respectively. They are functions of crack depth cd  and 



crack width cb . The details of the IF , IIF  and H  are summarised in Appendix A.  

 

3 Bayesian approach for multiple cracks identification 

In order to identify multiple cracks, the proposed Bayesian approach contains two 

stages. In stage-one the number of cracks (i.e., the most suitable model class) is 

determined using Bayesian model class selection method. The crack parameters are then 

identified using Bayesian statistical framework in stage-two. 

 

3.1 Stage-one: Bayesian model class selection 

In stage-one of the proposed methodology a series of model classes 

{ : 1,2,..., }≡ =M j MM j N , which represent beams with different number of cracks, are 

considered. The procedure is shown in Figure 3.  

 

[Figure 3. Framework of Bayesian model class selection] 

 

Using the Bayesian model class selection method [41][42], the plausibility of the 

considered model classes can be assessed based on their posterior probability from the 

Bayes’ Theorem, i.e. the probability of the model class conditional on the set of 

measurements D , as 

 ( ) ( ) ( )
( ) ( )

1

,
| |

=

=

∑ M
M

M
MN

i i
i

j j
j

P

P D M P M
P

D M P M
M D  (22) 

where jM  denotes a model class with j  cracks, 1,...,= Mj N . MN  is the maximum 

number of cracks considered. ( )MjP M  is the prior probability of the model class 



jM  and  ( )MN

1
 1

=
=∑ M

j jP M . As there is no available prior information about the 

number of cracks, the prior probability ( )MjP M  is set to be 1 N
jM
 for each model 

class in this study. The evaluation of ( | , )MjP M D  requires determination of the 

evidence ( )jP D M , which can be expressed as 

 ( ) ( ) ( )∫ j jj j j jM M MP D = P D , P dθ θ θ  (23) 

where jθ  is a vector containing the uncertain crack parameters, such as locations, 

widths and depths of the cracks, to be identified for the model class jM  (a beam with 

j  cracks). However, Equation (23) involves a multi-dimensional integral, it is too 

complex to analytically integrate this equation. Laplace’s method of asymptotic 

approximation can be used for model class that is globally identifiable. In multiple 

cracks identification, it involves model classes with different number of cracks from 

less than to more than the true number of cracks. For a given measured data, the model 

updating problem becomes unidentifiable when the model class (model class with more 

number of cracks) is too complex. In this situation, stochastic simulation methods, such 

as TMCMC [43] and Subset simulation methods [49][50][51], are practical for 

calculating the evidence value of theses model classes. In this paper, the TMCMC 

method will be used to calculate the evidence value in Equation (23) and the details will 

be discussed in Section 4. 

 

In the Bayesian model class selection method, the penalty against complexity can 

be obtained by considering the evidence from an information-theoretic point of view, 

consider the log of the evidence as [52] 
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The left side of Equation (24) is the log evidence of the model class jM . It can be 

decomposed into two different terms on the right hand side of the equation. The first 

term is the log-likelihood function, which is a data-fit term, indicating the plausibility of 

the model class jM . The model class with more number of cracks has larger 

log-likelihood value. The second term is relative entropy between the prior and 

posterior distribution, which is a measure of the information gained about jθ  from the 

data D . It provides a penalty against more ‘complex’ model class, i.e. model class with 

more number of cracks in this study. Thus the log evidence ln[ ( | )]jp D M  

automatically implements a quantitative Ockham’s razor in term of a trade-off between 

a data-fit measure and a complexity measure for each model class. If the selection of the 

model class is based purely on the log-likelihood function, i.e. the data-fit term in 

Equation (24), then model class with more number of cracks will be preferred over 

model class with less number of cracks and this is the case for most of the damage 

detection methods based on the maximum likelihood approach or error minimisation 

approach. In Bayesian model class selection method, the model class with the maximum 

value of the log evidence value will be selected and this provides a robust identification 

of the number of cracks in the beams.  

 

3.2 Stage-two: Bayesian approach for identifying crack parameters 

The stage-two of the Bayesian approach is to determine the optimal value of the crack 



parameters jθ . Given a Bayesian model class jM , the model response data D  

defined by the model parameters jθ  can be used to update the corresponding 

plausibility of each model. The posterior probability density function (PDF) of 

uncertain crack parameters conditional on the measurement D  and the model class 

jM  can be estimated as follows: 

 ( ) ( ) ( ) ∝jj jj j jP D,M P D ,M P Mθ θ θ  (25) 

where ( )j jP Mθ  is the prior probability of the crack parameters based on the initial 

engineering judgement about the damage parameters. ( )j jP D ,Mθ  is the likelihood 

function indicating the probability of getting the response data D  based on the crack 

parameters jθ . Based on the Principle of Maximum information Entropy [53], this 

paper assumes the likelihood function follows the Gaussian distribution with zero mean 

and standard deviation of prediction error jσ  as 
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where J  is the goodness-of-fit function and is given as follows 
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j jt; = q t - q t;θ θJ  (27) 

where ( )mq t  is the response displacement measured from experiment at t -th time 

step. ( )jq t;θ  is the simulated response displacement from the chosen model class 

jM  defined by the uncertain parameters jθ . tN  and oN  denote the numbers of 

measurement time steps and the measured DoF, respectively. The variance of the 

prediction error 2
jσ  can be treated as an uncertain parameter in the analysis [43]. Since 

2
jσ  is always positive, its prior distribution can be modelled by an inverse Gamma 

distribution, and hence, 2
jσ  can be sampled from (0.5 1,0.5 ( ; ))+t o jIG N N t θJ  [54] 



where IG  is the inverse Gamma distribution. 

 

For identifiable cases, the posterior PDF in Equation (25) can be approximated by a 

multivariable Gaussian PDF based on the global optimal model parameter ˆ jθ  [40]. 

However, in multiple cracks identification cases, the problem may become 

unidentifiable for more complex model, i.e. model with more number of cracks. This 

make the multivariable Gaussian PDF cannot accurately approximate the posterior PDF. 

In this regard the Equation (25) is estimated alternatively using stochastic sampling 

method with a set of parameter samples ( )h
jθ , 1,...,= sh N , drawn from target 

distribution, where mN  is the number of samples at the m -th stage (final stage). In 

this paper the samples are drawn using the TMCMC sampler adapted from [43] and the 

details are described in the Section 4. At the final stage of TMCMC, the samples drawn 

from TMCMC sampler are asymptotically distributed as ( )j jP D ,Mθ , the identified 

crack parameters can be estimated by the sample means. The marginal posterior PDF of 

the i -th uncertain parameter can be obtained by adaptive kernel density estimation with 

Gaussian distribution being the kernel PDF [55][56] as 

 ( )( ) ( ) ( ) ( ) ( )( )
1

1 , ,
=

= Ν∑ C
sN

h h
j j

hs

k i W i i i
N

θ θ  (28) 

where ( , )Ν Σµ  is the Gaussian distribution with mean µ  and covariance matrix Σ . 

( )hW  is the weighting of the h -th sample. ( , )C i i  is the i -th diagonal element of the 

sample covariance matrix calculated by the samples at the final stage of TMCMC. In 

details of the adaptive kernel density estimation can be found in [55][56]. 

 



4 Transitional Markov Chain Monte Carlo algorithm  

Accurate estimation of the posterior PDF ( )j jP D ,Mθ  and evidence ( )jP D M  

requires samples drawn from the target distribution. In general samplers generate 

samples from prior PDF, which is quite different from the posterior PDF in an 

unidentifiable situation. In this aspect conventional Markov Chain Monte Carlo 

(MCMC) sampler is inefficient as a large number of samples will be rejected until it 

converges to the stable distribution of the samples. The TMCMC sampling method is 

more efficient than conventional MCMC as it generates samples from a series of stages, 

which gradually approximates the final PDF in Equation (24). Other sampling methods, 

such as Subset Simulation [49][50][51], also have been recently developed to address 

this problem and they are found to be robust regardless of the dimension of parameters. 

Since TMCMC has many successful applications, this study employs the TMCMC in 

the Bayesian approach. The schematic framework for TMCMC algorithm is shown in 

Figure 4. 

 

[Figure 4. Framework of TMCMC algorithm] 

 

In the beginning stage, the TMCMC sampler generates samples ( )
1 1{ : 1,..., }=h h Nθ  for 

from the prior PDF where 1N  is the number of samples at 1=s  stage. The prior PDF 

is chosen based on engineering experience, and in this study a uniform distribution is 

employed. In step two the TMCMC sampler uses a series of intermediate stages 

2, ,= …s m  to generate samples gradually converging to the PDF region with high 

probability. Specifically, the samples are generated twice at each stage. First, it 

generates samples from the transitional PDFs 1( )( | , ) + −s sT Th
sP D M θ  using a resampling 



technique. For example, given sN  samples ( ){ , 1, , }= … s
h
s h Nθ  generated from the 

previous stage, redraw r
kN  samples ( ),{ 1 }, , ,= …h r

ss h Nθ  from the sN  samples with 

the resampling probability ( ) ( ) ( )
1

( ) ( ) ( )
=

= ∑ sNh h h
re s s sh
P W Wθ θ θ  for each sample. It should 

be noted that the same sample ( ),h r
sθ  can be drawn repeatedly and the repeating number 

of this sample is recorded as ( )h
sR . ( )( )hsW θ  is the 'plausibility weight' of each of the 

sN  samples and it has the following expression  
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and the intermediate PDF ( )sP θ  in the stage s  is expressed as  

 ( ) ( ) ( ) 1 2 m| , | ,  1,..., and 0 1∝ = = < <…< =s

j j

T

sP PP D M M s m T T Tθ θ θ  (30) 

where sT  is the temperature variable determining the smoothness of transition between 

two adjacent PDFs. If the sT  value increases slowly, more stages of resampling are 

applied. However, the convergence of the sampling is slow and more computational 

resources are required. The value of temperature variable sT  can be determined 

automatically in the TMCMC algorithm by setting the coefficient of variation (c.o.v.) of 

the 'plausibility weight' ( )( )hsW θ  at each stage s  to a prescribed threshold, where the 

c.o.v. is the standard deviation of the sample vectors over their mean. It is found that 

100% is a preferable choice for the prescribed threshold in usual case. As it can be seen 

from the Equation (29), each intermediate PDF is calculated interactively based on the 

PDF from last stage. This leads to the high performance of TMCMC in the high 

dimensional situation as the PDF converges gradually. 

 



After the procedure of resampling, r
sN  MCMC chains are generated to draw 1+sN  

( 1+ = ssN N ) new samples { }( )
1, 1, ,+ = … s
h
s h Nθ  from the next intermediate PDF 1( )+sP θ . 

These chains start from each of the 1+sN  samples ( ),{ 1 }, , ,= …h r
ss h Nθ  and the sample 

number of each chain is ( )h
sR . The proposal samples are generated using Gaussian PDF 

with the covariance matrix ∑s , which has the form 
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where sc  is the step factor that influences the distance between samples in each 

Markov Chain at stage s . The accepting probability of each proposed sample ( )
1+
h
sθ  is 

( ) ( ) 1( ) ( )| , / | , +⎡ ⎤⎣ ⎦
sTh h

s j s jP D M P D Mθ θ . Step two is repeated until the value of temperature 

1+sT  has reached 1, where concurrently the PDF has converged to the target PDF. 

 

In the final stage ( m -th stage), ( ) : 1,.. ,{ }.=h
m mh Nθ  samples are asymptotically 

distributed as ( )j jP D ,Mθ  and evidence ( )| jp DM  of the model class jM  can be 

estimated using ( )

1 1

( )
= =

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∏ ∑

sNm
h
s s

s h

S w Nθ . They are proven an asymptotically unbiased 

estimation [43]. Therefore, the crack number can be determined by comparing the 

model evidence of each model class. 

 

5 Numerical case studies  

The performance of the Bayesian multiple cracks identification method is studied in this 

section. This section has four subsections that focus on different scenarios, i.e., 1) GW 



mode selection, 2) different crack numbers, 3) measurement noise levels and 4) cracked 

locations, as shown in Table 1. Aluminium beams with length 500 mm, depth 6 mm and 

width 12 mm were considered to investigate the capability of the proposed multiple 

crack identification method. The 3D explicit FE model was built based on the crack 

parameters described in Table 1 and the simulated signals were treated as synthetic 

experimental data.  

The proposed time-domain SFE model described in Section 2 was used to model the 

GW propagation in the beams with cracks as described in Section 3. The uncertain 

crack parameters are the locations ( cL ), depths ( cd ) and widths ( cb ) of the cracks. In 

the SFE model, 25 spectral elements with 8 GLL nodes were used for modelling the 

beam. The Young’s module, density and Poisson’s ratio of the beam are 70 GPa, 2700 

kg/m3 and 0.3, respectively. Damping was considered to obtain the same ratio between 

amplitude changes of GW response for simulated and experimental data [21] and the 

damping coefficient η  was chosen at 550 s-1 in this paper. The interval Δt  of each 

time step was 10-7 sec to guarantee a converged solution of the dynamic equilibrium 

Equation (4) solved by central difference method. The excitation signal is a 100 kHz 

narrow-band six-cycle sinusoidal tone burst pulse modulated by a Hanning window and 

it was applied to the left beam end to generate GW response. The response signal was 

calculated at the same location. In the FE model, the commercial software 

ABAQUS/Explicit v6.12-1 was used to simulate the synthetic experimental GW 

response. Eight-node 3D reduced integration solid brick elements (C3D8R) were used 

to model the cracked beam. The enhanced hourglass control was enabled for FE 

simulation and the mesh size are 0.4×0.4×0.4 mm3 to ensure the numerical stability of 

GW simulation. The dynamic explicit solver, which applies the central difference 

scheme, was employed to solve the FE simulation of GW propagation. The time step 



used in the SFE is 71 10−×  sec and the time step of the FE is automatically controlled 

by ABAQUS/Explicit. Measurement error was considered in the study and simulated by 

applying a percentage of root mean square (RMS) white noise the time-domain 

response of the GW calculated by the FE model. 

The Bayesian statistical framework with TMCMC sampler was used to identify the 

crack parameters, i.e. locations, widths and depths of the cracks. Since the guided wave 

based crack identification focuses on early damage detection, it is assumed that the 

crack widths and depths are not larger than half of the width and depths of the beam 

cross-section. Thus the assignment of the prior PDF for jθ  is independently uniformly 

distributed over [0.02mm 0.48mm], [0mm 3mm] and [0mm 6mm] for crack locations, 

widths and depths, respectively. 500 samples were drawn at each stage in the TMCMC 

sampling. The threshold of the c.o.v. of the ‘plausibility weight’ ( )( )hsW θ  was chosen 

to be 100% and the step factor sc  was set as 0.1.  

 

5.1 Selection of GW mode for damage identification  

This section is to investigate the performance of S0 and A0 GW and the mode 

conversion effect in identifying the cracks. Two cracks were assumed in the aluminium 

beam and there are four cases, i.e., Case S1, S2, S3 and S4 as shown in Table 1. As the 

focus of this section is to determine the most suitable wave mode based on the accuracy 

and uncertainty of the identified crack parameters, we assumed the number of cracks is 

known, and hence, only the crack parameters are identified in this section. 

The mode-conversion effect was studied first by comparing the identified crack 

parameters using the numerical model without (Case S1) and with (Case S1) 

considering the GW mode coupling effect. Specifically, two different time-domain SFE 

models were employed to simulate the response data. In the first model, the normal 



cracked beam element without coupling the longitudinal and flexural displacement was 

employed. The second model with the proposed SFE cracked beam element was 

implemented to simulate the mode-coupled GW signals. In both cases, A0 GW was 

excited and only the out-of-plane displacement was measured. The signal was 

normalised by the maximum absolute amplitude of the indecent wave. Table 2 shows 

the sample means and sample c.o.v.s of the uncertain crack parameters. The sample 

c.o.v. equals the ratio of the sample standard deviation to the sample mean. The value of 

the sample means indicate the identified crack parameters. The percentages of error of 

the identified crack parameters are shown in the brackets in Table 2. Compared the 

results of Cases S1 and S2, it indicates that the signal accounted the mode-conversion 

effect provides additional crack information, and hence, it enables more accurate crack 

identification. 

 

[Table 2. Sample means and c.o.v.s of crack parameters calculated using TMCMC 
samples for Cases S1-S3 (error of the identified crack parameters are shown in the 

bracket)] 

 

[Figure 5. Signal measured at excitation location for Case S3, incident wave: A0 GW, a) 

out-of-plane, and b) in-plane displacement measurement] 

 

[Figure 6. Signal measured at excitation location for Case S4, incident wave: S0 GW, a) 

in-plane, and b) out-of-plane displacement measurement] 

 

The accuracy of the crack identification utilising A0 GW (Case S3) and S0 GW 

(Case S4) as excitation signal was investigated. Figure 5 shows the SFE simulated GW 

signals used in Case S3, in which the incident wave is A0 GW. Figures 5a and 5b show 

the out-of-plane and in-plane measurement, respectively. Similarly Figure 6 shows the 



simulated GW signal of Case S4. The indicate wave is S0 in Case S4. Figures 6a and 6b 

show the in-plane and out-of-plane measurement, respectively. Both Cases S3 and S4 

consider the mode conversion effect. Figures 5 and 6 show that the mode converted 

signals provide additional information of the cracks. The results in Table 2 show that 

the crack parameters are identified accurately in both Cases S3 and S4. In generally, the 

case using the incident A0 GW (Case S3) has better performance than the case using 

incident S0 GW (Case S4). Comparing the results of the Cracks 1 and 2, the error and 

c.o.v. of the identified location, width and depth of Crack 2 are small than that of Crack 

1. This is because the width and depth of Crack 2 are smaller than Crack 1, and hence, 

the amplitude of the scattered waves from Crack 2 is smaller than that from Crack 1. 

Based on the aforementioned findings, the use of incident A0 GW with both in-plane 

and out-of-plane measurements could provide better accuracy in identifying the crack 

parameters. Hence, the rest of the numerical case studies use the A0 GW as the incident 

wave signal and both in-plane and out-of-plane data as the measurements. 

 

5.2 Multiple cracks identification 

In this section the capability of the proposed multiple crack identification method in 

determining the number, locations, widths and depths of the cracks is investigated. 

Three cases (Cases D1, D2 and D3 as shown in Table 1) with different number of 

cracks and crack parameters for multiple damage identification are considered in this 

section. Four SFE model classes , 1,..., 4=jM j  were considered in each case, where 

the subscript j  denotes the number of cracks in the model class.  

 

The identified number of cracks is presented in Table 3. The table shows the 

log-likelihood, information gain, log-evidence factor and probability of model classes. 



The log-likelihood factor shows the ability of the model class in fitting the measurement. 

It increase when the complexity of the model class increase (beam with more cracks). 

The results in Table 3 shows that the log-likelihood factor increases with the model 

complexity, and hence, it is not possible to determine the crack number based on the 

log-likelihood factor only. However, the information gain factor also increases with the 

model complexity, which penalises the complexity of the model class in the 

log-evidence factor. Hence, the log-evidence factor can be used to determine the 

optimal modal class, i.e. the number of cracks in the beam. As shown in Table 3, the 

probability of the model classes is also calculated from the log-evidence and it is closed 

to 1 for the correct model class (i.e. correct number of cracks) in each case.  

The identified crack parameters for each case are summarised in Table 4. It is 

found that the performance of the TMCMC sampler is reliable in each case as the errors 

and the c.o.v.s of the identified results are reasonably small. It is also found that 

TMCMC algorithm is robust in term of the dimension of crack parameters as the c.o.v. 

of the identified results increases slightly from Cases D1 to D3. Table 4 also shows that 

Crack 3 in Case D3 has the smallest crack depth and width, and hence, the 

corresponding identified crack parameters have largest value c.o.v. This indicates that 

the accuracy of identifying the crack size will decrease when the crack becomes smaller. 

One possible solution to further improve the crack identification results is to use A0 GW 

with shorter wavelength as it is more sensitive to smaller cracks. This can be achieved 

by increasing the frequency of the excitation signal in practice. 

 

[Table 3. Bayesian model class selection results of Cases D1- D3] 

 

[Table 4. Sample means and c.o.v.s of crack parameters calculated using TMCMC 
samples for Cases D1-D3 (error of the identified crack parameters are shown in the 

bracket)] 



 

The evolution of the TMCMC samples of the width of Cracks 1 and 1 at different stages 

in Case D2 is shown in Figure 7. When the stage number increases, the TMCMC 

samples converge to the target PDF quickly and finally concentrate in the global 

optimal region. This shows that the proposed Bayesian approach with TMCMC sampler 

is efficient in crack identification. Figure 8 shows the posterior marginal PDFs 

calculated by kernel density estimation (Equation (28)) based on the set of samples in 

the final stage of the TMCMC sampling as shown in Figure 7. Comparing the posterior 

marginal PDFs shown in Figure 8, the drop in PDF value away from the peak for the 

width in Crack 1 is much faster than that for Crack 2. This implies that the uncertainty 

of the identified width of Crack 2 is higher than that of Crack 1 and this is consistent 

with the c.o.v.s in Table 4. 

 

[Figure 7. Evolution of the TMCMC samples for the width of Crack 1 and Crack 2 in 
Case D2] 

 

[Figure 8. Posterior marginal PDFs for the width of Crack 1 and Crack 2 in Case D2] 
 

5.3 Influence of noise level 

This section investigates the robustness of the proposed Bayesian approach under 

different measurement noise levels. Three cases (i.e. Cases N1, N2 and N3) with 

increasing level of measurement noise (0%, 3% to 6% of the RMS of the measured 

signal) are considered. The results in Table 5 shows that the numbers of cracks in all 

cases are correct identified under different measurement noise levels. The probability of 

model class with the correct number of cracks is prominent (i.e., almost equals to 1) for 

the Cases N1 and N2, in which measurement noise level 0% and 3% are considered. 

However, the probability of the optimal model class drops to 0.832 for the measurement 



noise level 6%. The sample means and sample c.o.v.s of the crack parameters are shown 

in Table 6. The results show that errors and c.o.v.s increase with the measurement noise 

level. Specifically, the c.o.v. of the smaller crack (Crack 2) increases notably in the case 

of the 6% measurement noise level. This indicates that measurement noise increases the 

uncertainties in the crack identification. 

 

[Table 5. Bayesian model class selection results for Cases N1-N3] 

 

[Table 6. Sample means and c.o.v.s of crack parameters calculated using TMCMC 
samples for Cases N1-N3 (the error of the identified crack parameters are shown in the 

bracket)] 
 

5.4 Influence of crack location 

This section investigates the influence of the location of the crack in the proposed 

Bayesian crack identification method. Two damage cases (Cases L1 and L2) 

considering two cracks are studied in this section. The details of the cracks are 

summarised in Table 1. The location of Crack 2 is the same in both cases while the 

location of Crack 1 in Case L2 is closer to the measurement position (left beam end) 

than that in Case L1. 

 

[Table 7. Bayesian model class selection results for Cases L1 and L2] 

 

[Table 8. Sample means and c.o.v.s of crack parameters calculated using TMCMC 
samples for Cases L1 and L2 (error of the identified crack parameters are shown in the 

bracket)] 

 

The identified crack number is shown in Table 7 and the proposed method 

correctly identifies the number of cracks based on the probability of the model class.  



The sample means and sample c.o.v.s of the crack parameters are summarised in Table 

9. The results show that the identified crack parameters for Crack 1 has smaller errors 

and sample c.o.v.s in Case L2 than in Case L1. This is because Crack 1 is closer to the 

measurement point in Case L2, and hence, there are more reflected wave pulses from 

the Crack 1 than that in Case L1 as shown in Figure 9. Figures 9a and 9b show the GW 

data in out-of-plane and in-plane direction for Cases L1 and L2, respectively, in which 

Figure 9a is zoomed-in to focus on the reflected wave pulses only for the out-of-plane 

GW data.  

 

[Figure 9. Signal measured at excitation location for Cases a) L1 and b) L2] 

 

6 Experimental case studies 

6.1 Experimental setup 

Two aluminium beams (Grade 6060-T5) with length 500 mm, width 12 mm and depth 6 

mm were utilised to experimentally demonstrate the effectiveness of the proposed 

Bayesian multiple cracks identification method. The experimental setup is shown in 

Figure 10. As shown in Figure 11, a 12×6×2 mm3 rectangular PZT was bonded to the 

surface at the left end of each beam using the silver loaded epoxy adhesive. A 12×6×4 

mm3 brass mass was attached on the top of the PZT to increase the excitability of the 

GW. The excitation signal is a narrow-band 7.5-cycle sinusoidal tone burst modulated 

by a Hanning window. The excitation signal was synthetised by a central computer and 

generated by a junction box with maximal 10V output voltage. It was then amplified to 

the voltage ranged from 10-50V using a signal amplifier (SERVO AMP). Afterward, 

this amplified signal was applied to the piezoceramic transducer installed on the beam 

to excite the GW at the left end of the beam. 



 

[Figure 10. Schematic diagram of the experimental setup] 

 

The response displacement was recorded using a 1D laser Doppler vibrometer 

(PSV-400) head with Laser controller (OFV5000), and hence, only the out-of-plane 

displacement can be measured in the experiment. Signal averaging and band-pass filter 

were used to reduce the noise from environmental influence. The measured GW signal 

data was finally transferred back to the central computer through the data acquisition 

unit. The measurement location was chosen at 50 mm from the left beam end as shown 

in Figure 11. For measuring the A0 GW, the laser measurement position was located at 

the centre of the longer side of the beam cross-section as shown in Figure 11a. For the 

S0 GW the laser measurement position was located at the shorter side of the beam 

cross-section, and hence, the S0 GW can be measured through the out-of-plane motion 

due to the Poisson effect [7]. The cracks were manufactured in the aluminium beams 

using electric drill, which produced a tolerance of ±1 mm for the crack location and 

±0.5 mm for the crack depth and width. The locations and cracks manufactured in the 

beams are shown in Figure 12. 

 

[Figure 11. Installed piezoceramic transducers and measurement locations in Cases 

E1-E3 for measuring a) A0 and b) S0 incident wave] 

 

[Figure 12. a) The crack in a) Cases E1 and E2 and b) the Cracks 1 and 2 in Case E3] 

 

6.2 Experimental results and discussions 

The proposed SFE model with GW mode conversion effect was used to simulate the 



numerical data for identifying the cracks in the beams. Cases E1, E2 and E3 were 

conducted to experimentally verify the proposed multiple cracks identification method. 

Case E1 used S0 mode GW as the excitation signal while Case E2 employed A0 GW. 

The excitation frequency was 80 kHz and a single crack was considered in both cases. 

Case E3 considered two cracks in the beam and the excited signal was a 110 kHz A0 

GW. 

 

The identified numbers of cracks are summarised in Table 9. It is shown that the crack 

number is correctly identified and the probability of the correct crack number is closed 

to 1 in all cases. This proves that the proposed Bayesian approach is able to identify the 

correct number of cracks in practice situation. The sample means and sample c.o.v.s of 

the identified crack parameters are shown in Table 10. For Cases E1 and E2, the 

identified crack parameters and corresponding sample c.o.v.s are compared to determine 

a suitable excitation GW signal. Specifically, it is found that the Case E2 using A0 GW 

as the incident wave has smaller errors and sample c.o.v.s than Case E1, in which S0 

GW is used as the incident wave. This experimentally confirms that using A0 GW as the 

incident wave is superior to using S0 GW as the incident wave in identifying small 

cracks, i.e. Crack 2. The sample c.o.v. of the identified crack parameters increases as the 

smaller amplitude of the GW reflected from the crack with smaller size, and hence, less 

information is available for the crack identification. To illustrate how well the simulated 

signals, which is calculated by the SFT beam model with the identified crack 

parameters, matches the experimental results, a comparison between the simulated and 

measured time-domain response for Cases E1, E2 and E3 are shown in Figure 13. 

 

[Table 9. Bayesian model class selection result for Cases E1-E3] 

 



[Table 10. Sample means and c.o.v.s of crack parameters calculated using TMCMC 
samples for Cases E1-E3 (error of the identified crack parameters are shown in the 

bracket)] 

 

 [Figure 13. Comparison of the simulated and measured time-domain GW signals for 
Cases a) E1, b) E2 and c) E3] 

 

7 Conclusions 

In this paper the GW Bayesian identification of multiple cracks using TMCMC 

algorithm in beams has been presented. This study has extended the crack identification 

using GW model based approach to identify the number of cracks and the crack 

parameters (i.e., crack location, depth and width). The time-domain SFE method based 

on Mindlin-Herrmann rod and Timoshenko beam theory has been presented and a 

spectral cracked beam element simulating the mode conversion effect when the GW 

interacting with the cracks has been proposed for crack identification. 

 

Numerical case studies have been conducted to study the performance of different 

GW modes in identifying the crack parameters. Also, the influences of mode conversion 

effect, measurement noise level and distance between the cracks and the excitation 

location on the accuracy of the crack identification results have been investigated in 

detail. The uncertainties associated with the identified crack parameters have been 

indicated by the sample c.o.v.s of the identified crack parameters. It is found that the A0 

GW performs better than S0 GW as the sample c.o.v.s of the identified crack parameters 

is smaller, which shows that the A0 GW is more sensitive for identifying the cracks with 

smaller sizes. Furthermore, it has demonstrated that the proposed Bayesian approach is 

robust to the different measurement noise and location. The findings have indicated that 

the use of the mode conversion effect could effectively improve the accuracy of the 



crack identification. 

 

Different crack scenarios have been studied numerically to investigate the 

performance of the proposed Bayesian multiple cracks identification method. The 

Bayesian model class selection method has been used to determine the number of the 

cracks and the uncertainties of identified crack parameters have been indicated by the 

sample c.o.v.s of the crack parameters. The results are encouraging as the number of 

crack and the crack parameters in each scenario have been accurately identified. Finally, 

this Bayesian damage identification algorithm has been experimentally verified to 

demonstrate the practicability of the proposed method.  
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Appendix A 

This appendix presents the details of the  FI ,  FII  and H  required for calculating the 

Ic1 , Ic2 , Ic3  and Ic4  in Equation (21). The details of derivations can be found in 

[47] and [48]. The  FI  and  FII  shown in Equation (21) are defined as 

 
2 4

1 2 3
⎛ ⎞ ⎛ ⎞+ +

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎦⎠
c c

I w
d dF f gf
h h φγ γ γ   (32) 

 1 42 2 2
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d h

B d
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h

β φ
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  (33) 

where 21β = −κ ,  



 
/2 /22

1 20 0

1( ) 1 sin
1 sin

π π
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−β
φ

φ
φ φ∫ ∫B d d   (34) 

 1 1.13 0.09= −γ κ   (35) 

 2
0.890.54
0.2

= − +
+

γ
κ

  (36) 

 ( )243
1.00.5 14 1.0

0.65
− −

+
= + −γ κ

κ
  (37) 
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2

21 0.1 0.35 1 sin
⎡ ⎤⎛ ⎞+ + −⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

= cdg
h

φ   (38) 

The angular function fφ  for the half elliptical crack in  FI  is  

 
1 42 2 2cos sin⎡ ⎤= +⎣ ⎦fφ φ φκ   (39) 

The finite width calibrated function  fw  is  

 
1 2

sec
4

⎡ ⎤⎛ ⎞
= ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

c c
w

b df
b h

π   (40) 

The function FI  is the boundary-correction factor for tension. The product of  H  and 

 FI  shown in Equation (21) is the boundary-calibration factor for bending, where  H  is 

expressed 

 ( )( )
0.60.2

1 2 1 sin
⎛ ⎞+ +⎜ ⎟⎝ ⎠+ −=

cd
hH H H H κφ   (41) 

where 

 1 1 0.34 0.11 ⎛ ⎞= − − ⎜ ⎟⎝ ⎠
c cd dH
h h

κ  and 
2

2 1 21 ⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
c cd dH G G
h h

 (42) 

 1 1.22 0.12= +G κ  and 0.75 1.5
2 0.55 1.05 0.47= − +G κ κ  (43) 
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Table 1: Summary of all numerical and experimental case studies 

Scenario 

Numerical case studies 
Experimental case 

studies GW mode 
selection 

Multiple cracks 
identification 

Measurement 
noise 

influence 

Crack 
location 
effect 

Damage case S1 S2 S3 S4 D1 D2 D3 N1 N2 N3 L1 L2 E1 E2 E3 
Incident wave  A0 S0 A0 A0 A0 S0 A0 
Measurement 

direction* 
y-dir. 

x-dir. & 
y-dir. 

x-dir. & y-dir. x-dir. & y-dir. 
x-dir. &  

y-dir. 
z-dir.# y-dir. 

Mode 
conversion 

effect  
N Y Y Y Y Y 

Measurement 
noise (%) 

3 3 0 3 6 3 3 

Crack number 2 1 2 3 2 2 1 2 

Crack 
1 

(mm)  

Lc 200 250 200 200 200 100 250±1 200±1 
dc 3 3 2 3 3 3±0.5 
bc 6 6 6 6 6±0.5 

Crack 
2 

(mm) 

Lc 350 
  

350 300 350 350 
  

350±1 
dc 2 2 3 2 2 2±0.5 
bc 5 5 6 5 5 5±0.5 

Crack 
3 

(mm) 

Lc 
    

400   
  
  

dc 2 
bc 4 

* The measurement direction is consistent with the coordinate system in Fig. 2. 

# The S0 is measured from z-dir. through the Poisson’s effect in experiment. 

Lc = crack location, dc = crack depth, bc = crack width. 

 

 

Table 2: Sample means and c.o.v.s of crack parameters calculated using TMCMC samples for Cases S1-S3 (errors of 
the identified crack parameters are shown in the bracket) 

Case  
Crack1 (mm) Crack 2 (mm) 

Lc dc bc Lc dc bc 
Actual 200 3 6 350 2 5 

S1 
Sample mean 

200.21 2.73 5.91 350.51 1.62 5.40 
(0.11%) (8.97%) (1.53%) (0.15%) (19.15%) (7.96%) 

Sample c.o.v (%) 0.0446 0.3749 0.3193 0.0352 6.7854 4.1015 

S2 
Sample mean 

200.12 2.84 5.98 350.31 1.80 5.19 
(0.06%) (5.33%) (0.33%) (0.09%) (9.85%) (3.79%) 

Sample c.o.v (%) 0.0175 0.2142 0.1299 0.0258 4.5132 3.0037 

S3 
Sample mean 

200.03 2.99 5.99 350.02 2.01 4.79 
(0.02%) (0.08%) (0.07%) (0.01%) (0.05%) (4.17%) 

Sample c.o.v (%) 0.0016 0.2196 0.1153 0.0157 0.3367 0.1534 

S4 
Sample mean 

200.09 2.99 5.99 350.49 1.90 5.09 
(0.05%) (0.21%) (0.17%) (0.14%) (4.88%) (1.82%) 

Sample c.o.v (%) 0.0331 0.6404 0.3498 0.1550 5.0371 4.4294 
 

 



Table 3. Bayesian model class selection results of Cases D1-D3 

Case Model class Log-likelihood Information gain Log-evidence Probability 

D1 
M1 3447.43 17.08 3430.35 0.9289 
M2 3448.42 20.62 3427.80 0.0711 

D2 
M1 3458.31 11.52 3446.79 0 
M2 3815.65 12.37 3803.28 0.9998 
M3 3816.28 21.28 3795.00 0.0002 

D3 

M1 3345.90 11.52 3334.38 0 
M2 3940.62 29.80 3910.82 0 
M3 4160.19 65.69 4094.50 1 
M4 4202.60 125.63 4076.97 2.43e-8 

 
 

 
Table 4. Sample means and c.o.v.s of crack parameters calculated using TMCMC samples for Cases D1-D3 (errors of 

the identified crack parameters are shown in the bracket) 

 Case 
 Crack 1 (mm) Crack 2 (mm) Crack 3 (mm) 

Lc dc bc Lc dc bc Lc dc bc 

D1 

Actual 250 3 6  - - - - - - 
Sample 
mean 

250.09 
(0.04%) 

2.71 
(9.67%) 

5.99 
(0.17%) 

- - - - - - 

Sample 
c.o.v (%) 

0.0125 0.6450 0.2990 - - - - - - 

D2 

Actual 200 3 6 350 2 5 - - - 

Sample 
mean 

200.20 
(0.10%) 

2.99 
(0.07%) 

5.71 
(4.83%) 

350.50 
(0.23%) 

2.09 
(4.50%) 

4.99 
(0.19%) 

- - - 

Sample 
c.o.v (%) 

0.0784 0.3251 0.3982 0.0515 1.1788 0.9194 - - - 

D3 

Actual 200 2 6 300 3 6 400 2 4 

Sample 
mean 

200.20 
(0.10%) 

1.99 
(0.49%) 

5.90 
(1.67%) 

300.50 
(0.16%) 

2.99 
(0.07%) 

5.99 
(0.18%) 

401.01 
(0.25%) 

1.12 
(43.51%) 

3.13 
(21.75%) 

Sample 
c.o.v (%) 

0.0071 0.0330 0.0480 0.0079 0.0250 0.0059 0.0288 1.5149 3.9409 

 

 
Table 5. Bayesian model class selection results for Cases N1-N3 

Case Model class Log-likelihood Information gain Log-evidence Probability 

N1 
M1 3605.23 10.71 3594.52 0 
M2 4156.31 21.07 4135.24 0.9589 
M3 4156.75 24.66 4132.09 0.0411 

N2 
M1 3458.28 10.52 3447.76 0 
M2 3815.82 12.37 3803.45 0.9999 
M3 3816.17 22.08 3794.09 0.0001 

N3 
M1 3126.59 10.50 3116.09 0 
M2 3307.80 18.87 3288.93 0.8468 
M3 3309.17 21.95 3287.22 0.1532 

 

 



Table 6. Sample means and c.o.v.s of crack parameters calculated using TMCMC samples for Cases N1-N3 (errors of 

the identified crack parameters are shown in the bracket) 

Case   
Crack 1 (mm) Crack 2 (mm) 

Lc dc bc Lc dc bc 
Actual 200 3 6 350 2 5 

N1 

Sample 
mean  

200.01 
(0.01%) 

2.99 
(0.07%) 

5.99 
(0.09%) 

350.09 
(0.03%) 

1.97 
(1.49%) 

4.98 
(0.41%) 

Sample 
c.o.v (%) 

0.0015 0.0542 0.0292 0.0126 0.172 0.132 

N2 

Sample 
mean 

200.5 
(0.25%) 

2.99 
(0.13%) 

5.90 
(1.67%) 

350.81 
(0.23%) 

1.91 
(4.52%) 

4.98 
(0.40%) 

Sample 
c.o.v (%) 

0.0016 0.2196 0.1153 0.0157 0.3367 0.1534 

N3 

Sample 
mean 

200.9 
(0.45%) 

2.99 
(0.32%) 

5.80 
(3.33%) 

350.1 
(0.03%) 

1.89 
(5.47%) 

5.49 
(9.79%) 

Sample 
c.o.v (%) 

0.0106 0.2431 0.1612 0.0234 2.7934 2.4198 

 

 
Table 7. Bayesian model class selection results for Cases L1 and L2 

Case Model class Log-likelihood Information gain Log-evidence Probability 

L1 
M1 3458.33 10.52 3447.81 0 
M2 3815.79 12.37 3803.42 0.9999 
M3 3816.21 22.08 3794.13 0.0001 

L2 
M1 3602.14 13.30 3588.84  0 
M2 4432.05 15.14 4416.91  0.8375 
M3  4432.13 16.86  4415.27  0.1625 

 
 
Table 8. Sample means and c.o.v.s of crack parameters calculated using TMCMC sample for Cases L1 and L2 (errors 

of the identified crack parameters are shown in the bracket) 

Case 
 

Crack 1 (mm) Crack 2 (mm) 
Lc dc bc Lc dc bc 

L1 

Actual 200 3 6 350 2 5 

Sample mean 
200.51 

(0.26%) 
2.99 

(0.31%) 
5.91 

(1.50%) 
350.79 

(0.23%) 
1.90 

(5.00%) 
4.99 

(0.19%) 

Sample c.o.v (%) 0.0274 0.2274 0.2425 0.0499 0.1629 0.1199 

L2 

Actual 100 3 6 350 2 5 

Sample mean 
100.01 

(0.01%) 
2.99 

(0.03%) 
5.99 

(0.06%) 
350.01 

(0.01%) 
1.98 

(0.11%) 
4.98 

(0.42%) 
Sample c.o.v (%) 0.0210 0.0839 0.0461 0.0655 0.1513 0.0702 

 



Table 9. Bayesian model class selection for the experimental results 
Case Model class Log-likelihood Information gain Log-evidence Probability 

E1 
M1 485.69 7.75 477.95 0.9989 
M2 483.80 24.63 471.17 0.0011 

E2 
M1 1099.90 -6.89 1093.01 1 
M2 1106.21 -24.88 1081.33 8.46e-06 

E3 
M1 1050.02 -10.37 1039.65 1.07e-57 
M2 1193.21 -22.47 1170.74 0.9183 
M3 1203.59 -35.27 1168.32 0.0817 

 
 
Table 10. Sample means and c.o.v.s of crack parameters calculated using TMCMC sample for Cases E1-E3 (errors of 

the identified crack parameters are shown in the bracket) 

Case 
 

Crack 1 (mm) Crack 2 (mm) 
Lc dc bc Lc dc bc 

E1 

Actual 250 3 6 - - - 

Sample mean 
260.10 

(4.04%) 
2.80 

(6.67%) 
5.71 

(4.83%) 
- - - 

Sample c.o.v (%) 0.0148 0.9735 3.3643 - - - 

E2 

Actual 250 3 6 - - - 

Sample mean 
250.31 

(-0.12%) 
2.81 

(6.33%) 
5.80 

(3.33%) 
- - - 

Sample c.o.v (%) 0.0094 0.2051 1.5048 - - - 

E3 

Actual 200 3 6 350 2 6 

Sample mean 
200.53 

(0.27%) 
2.42 

(19.33%) 
5.03 

(16.17%) 
349.92 

(0.02%) 
1.33 

(33.5%) 
5.89 

(1.83%) 
Sample c.o.v (%) 0.0169 0.3504 0.3389 0.0278 0.6413 0.4152 
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Figure 2. Schematic diagram of the cracked element for simulating a part-through 
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Figure 3. Framework of Bayesian model class selection 

 
 

 
Figure 4. Framework of TMCMC algorithm 

 
 

  



 

Figure 5. Signal measured at excitation location for Case S3, incident wave: A0 GW, a) 
out-of-plane, and b) in-plane displacement measurement 

 
 

 

Figure 6. Signal measured at excitation location for Case S4, incident wave: S0 GW, a) 
in-plane, and b) out-of-plane displacement measurement 

 
  



 

Figure 7. Evolution of the TMCMC samples for the width of Crack 1 and Crack 2 in 
Case D2 
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Figure 9. Signal measured at excitation location for Cases a) L1 and b) L2 
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Figure 12. a) The crack in a) Cases E1 and E2 and b) the Cracks 1 and 2 in Case E3 
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Cases a) E1, b) E2 and c) E3 
 

 




