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Summary 

 

Land use and cover changes (LUCC) are complex phenomena- causing changes on ecosystem services (ES). 

The importance of LUCC and ES have widely been recognized by the human society and thus ES are 

increasingly considered in policy making. Land management policies should achieve policy objectives 

whilst minimizing side effects and to develop better management plans sustainably. Therefore, integrated 

modeling frameworks of LUCC and ES are useful policy support tools for sustainable management.  

This dissertation suggests an integrated modeling framework, which simulates spatial LUCC and the 

response of water-related ES in a mountainous watershed. The specific objectives are: (1) to quantify LUCC 

patterns and their natural-environment al and socio-economic driving factors; (2) to simulate LUCC and ES 

under different policy options through an integrated modeling framework of cellular automata (CA) and 

hydrological modeling; and (3) to simulate agricultural LUCC and ES via an agent-based model (ABM) 

reflecting farmers' decision-making processes in one hotspot sub-region.  

In the first chapter, patterns and factors of LUCC was analyzed in archetypical periods of LUCC in Soyang 

Watershed in South Korea. Dominant patterns of LUCC were urban and agricultural expansion from 1980-

90; in contrast, reforestation was advanced in 1990-2000. LUCC was mainly affected by slope and 

neighboring land composition for all types while agricultural land was more affected by rainfall and 

deregulation. Urban expansion was affected by land development plans, including dam and highway 

constructions. Agricultural areas were also affected by regional climate changes by dam construction and 

changes in crop price. Forest expansions occurred in areas with lower accessibility which worsen 

agricultural conditions, reflecting natural conversions of abandoned farms. 

In the second chapter, an integrated modeling framework was developed using CA and the hydrological 

model SWAT (Soil and Water Assessment Tool) for different policy scenarios. There were similar patterns 

of reforestation in marginal agricultural areas regardless of policy types while the magnitude of reforestation 
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was affected by the policy. Forest areas increase by 0.8% and dry fields decrease by 5% in the baseline 

scenario, while forest increase by 2.5% and dry fields decrease by 43% in the mixed policy of forest 

protection and reforestation. When these results are used to estimate water related ES, there was a decrease 

by up to 8% in sediment, the baseline scenario decreases sediment by 8%, total nitrogen (N) by 3%, and 

total phosphorus (P) by 1% while the combined policy decreases sediment by 48%, total N by 21%, and 

total P by 30%. 

In the third chapter, ABM was adopted to develop an integrated model for one sub-region considered as 

water pollution “hotspot”, which simulated agricultural land use and the resulting soil erosion. Farmers with 

large sized farms converted less of their land to perennial crops, whilst maintaining current field status (rice 

and annual crops), resulting in a moderate decrease in soil erosion. Fallow lands could expand by up to 7%, 

increasing soil erosion rate by 6%. In two different fallow land management scenarios (ginseng farm and 

perennial crop expansions), the ginseng expansion plan is more effective at reducing soil erosion than 

perennial crop expansions. 

In this dissertation, integrated modeling frameworks are developed using various models (CA, ABM, 

SWAT, and RUSLE) to estimate the spatial distribution of LUCC impacts on water quality-related ES under 

different land management policies. Based on the simulation results, agriculture and forest areas played an 

important role in improving or worsening water quality in the watershed area and thus should be controlled 

by appropriate management plans. Although these models still show a number of limitations, they could 

expand their spatial scale and help to update individual decision-making and interactions of all stakeholders.  
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Zusammenfassung 

 

Landnutzungswandel ist ein komplexes Phänomen, das Veränderungen von Ökosystemleistungen nach sich 

zieht. Die Bedeutung von Landnutzungswandel und Ökosystemleistungen wurde in der Gesellschaft weithin 

anerkannt, wodurch Ökosystemleistungen in zunehmendem Maße Berücksichtigung in politischen 

Entscheidungen gefunden haben. Landnutzungspolitik sollte demnach die politischen Zielvorgaben erfüllen 

und gleichzeitig Nebeneffekte minimieren sowie nachhaltige Managementstrategien entwickeln. Aus 

diesem Grund sind integrierte Modellierungssysteme, die sowohl Landnutzungsveränderungen als auch 

Ökosystemleistungen einbeziehen, nützliche Entscheidungshilfen für nachhaltiges Management. 

Diese Dissertation stellt ein integriertes Modellsystem vor, welches räumlich explizit 

Landnutzungsveränderungen und deren Folgen auf wasserqualitätsbezogene Ökosystemleistungen in einem 

gebirgigen Einzugsgebiet simuliert. Die Zielstellungen dieser Arbeit sind (1) die Quantifizierung von 

Landnutzungsmustern und deren naturräumlichen und sozio-ökonomischen Einflussfaktoren, (2) die 

Simulation von Landnutzungswandel und Ökosystemleistungen unter dem Einfluss verschiedener 

Politikinstrumente mithilfe eines integrierten Systems aus Cellular Automata (CA) und hydrologischer 

Modellierung und (3) die Simulation landwirtschaftlicher Nutzungsveränderungen und 

Ökosystemleistungen mithilfe eines Agenten-basierten Modells (ABM), welches die 

Entscheidungsprozesse von Landwirten abbildet.    

Für die erste Fragestellung wurden die räumlichen Muster des Landnutzungswandels in der 

Untersuchungsregion des Soyang-Einzugsgebietes untersucht, welche zwischen 1980 und 90 durch die 

Ausweitung urbaner und landwirtschaftlicher Flächen dominiert war, während zwischen 1990 und 2000 

eine Wiederaufforstung zu verzeichnen war. Die Landnutzungsveränderungen wurden in erster Linie durch 

die Hangneigung und die Zusammensetzung benachbarter Landnutzungseinheiten bestimmt, während 

landwirtschaftliche Flächen stärker durch Niederschlag und Deregulierung beeinflusst wurden. Die 

städtische Ausdehnung wurde durch Landentwicklungsplanungen, wie die Konstruktion von Staudämmen 

und Fernstraßen beeinflusst. Landwirtschaftliche Flächen wurden durch den regionalen Klimawandel, der 

im Zusammenhang mit Staudammkonstruktionen steht, und die veränderungen der Erntepreise. Die 
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Ausdehnung der Waldflächen fand in Gebieten mit geringer Zugänglichkeit statt, welches die 

landwirtschaftlichen Produktionsbedingen erschwerte, und war stärker ausgeprägt in der Nähe von 

bestehenden Waldflächen und reflektiert somit die natürliche Umwandlung von stellgelegtem Agrarland.   

Im zweiten Teil wurde ein Modellsystem aus CA und dem hydrologischen Modell SWAT (Soil and Water 

Assessment Tool) für unterschiedliche Politikszenarien entwickelt. Unabhängig von der Art der 

Politikinstrumente wurden ähnliche (räumliche) Muster von Wiederaufforstung auf marginalen 

landwirtschaftlichen Flächen gefunden, während allerdings das Ausmaß der Wiederbewaldung durch die 

Politik beeinflusst war. Für das Baseline-Szenario erhöhen sich die Waldflächen um 0.8% und verringern 

sich trockene (nichtbewässerte) Anbauflächen um 5%, während sich bei einer kombinierten Schutz- und 

Aufforstungspolitik die Waldfläche um 2.5% erhöhen und die Anbauflächen um 43% zurückgehen. Wenn 

diese Ergebnisse in wasserqualitätsbezogene Ökosystemleistungen übertragen werden, verringern sich für 

das Baseline-Szenario Sediment um 8%, Gesamt-Stickstoff (N) um 3% und Gesamt-Phosphor (P) um 1%, 

während die kombinierte Politik einen Rückgang von Sediment um 48%, Gesamt-N um 21% und Gesamt-

P um 30% zur Folge hat.  

Im dritten Teil wurde ein ABM verwendet, um ein integriertes Modell für eine Teilregion zu entwickeln, 

die als „Hotspot“ für Wasserverschmutzung gilt, um die landwirtschaftliche Nutzung und die daraus 

resultierende Bodenerosion zu simulieren. Landwirte mit großen Schlägen wandelten weniger Fläche ihres 

Landes in mehrjährige Kulturen um und behielten den gegenwärtigen Status (Reis und einjährige 

Feldfrüchte) bei, wodurch eine moderate Reduzierung der Bodenerosion erreicht wurde. Brachflächen 

konnten sich um bis zu 7% erhöhen, was die Bodenerosionsrate um 6% steigerte. In zwei verschiedenen 

Brachlandmanagementszenarien (Erweiterung des Ginseng-Anbaus und mehrjähriger Kulturen), zeigte sich, 

dass Ginseng-Anbau die Bodenerosion effektiver reduziert als die Ausweitung von mehrjährigen Kulturen. 

In dieser Dissertation wurden integrierte Modellsysteme aus verschiedenen Modellen (CA, ABM, SWAT 

und RUSLE) entwickelt, um die räumliche Verteilung von Landnutzungsveränderungen und deren 

Auswirkungen auf wasserqualitätsbezogene Ökosystemleistungen für verschiedene 

Landnutzungspolitikmaßnahmen zu untersuchen. Anhand der Modellergebnisse kann geschlussfolgert 

werden, dass Landwirtschafts- und Waldflächen eine entscheidende Rolle in der Verbesserung bzw. 

Verschlechterung der Gewässerqualität im Einzugsgebiet spielen und deshalb durch angemessene 
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Maßnahmenplanungen reguliert werden sollten. Obwohl diese Modelle einige Beschränkungen aufweisen, 

können sie auf größere Skalen ausgeweitet werden und helfen, individuelle Entscheidungsprozesse und 

Interaktionen zwischen allen Stakeholdern zu verbessern.    
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Chapter 1 Synopsis 

 

1.1 Background and Motivation 

1.1.1 Land use and cover change and ecosystem services in mountainous watershed 

Land use and cover changes (LUCC) are complex phenomena resulting from interactions between human 

activities and natural ecosystems at specific temporal and spatial scales (Rindfuss et al., 2004). Human 

activities affect land through management practices to accomplish certain objectives of human society, 

which change the biophysical status of land and are significant driving factors of environmental changes 

from global climate changes to regional functions of ecosystems related to human vulnerability (Lambin et 

al., 2001; Foley et al., 2005; Turner et al., 2007). These changes of environmental functions lead to changes 

in ecosystem services (ES), which are necessary to sustain human well-being (Daily, 1997). ES are defined 

as direct or indirect human benefits from ecosystem functions, which are classified as provisioning (food, 

raw materials, fresh water and medicinal resources), regulating (local climate and air quality, carbon 

sequestration and storage, moderation of extreme events, waste-water treatment, erosion prevention and 

maintenance of soil fertility, pollination and biological control), cultural (recreation, mental and physical 

health, tourism, aesthetic appreciation and inspiration for culture, art and design, spiritual experience and 

sense of place) and habitat or supporting (habitats for species and maintenance of genetic diversity) services 

from natural environments (TEEB, 2010). These ES are fundamentally important to maintaining human 

societies (MA, 2005; TEEB, 2010) and thus ES for human benefit should accompany an understanding of 

the targeted ecosystem (Brauman et al., 2007). Moreover, ES are not affected by specific ecosystem 

boundaries and their impacts also vary depending on the spatial and temporal characteristics of the regional 

environment (Fisher et al., 2009). 

 In particular, mountainous areas are spatially heterogeneous ecosystems due to the characteristics 

of LUCC and these areas have a higher capacity of ES than others (Grêt-Ragamey et al., 2012). Mountainous 

watersheds in upstream catchment provide various ES to the downstream areas such as a provision of fresh 

water, erosion regulation and regulation of water quality and quantity (MA, 2005; TEEB, 2010). However, 
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LUCC activities under land management plans (agriculture, forestation and urbanization) could alter the 

capacity of mountainous watersheds to deliver ES (Kremen, 2005; Vitousek et al., 1997). Especially, 

agricultural practices provide various resources (food, timber, and other goods) and also regulate ecosystem 

functions to human society (MA, 2005; Power, 2010), However, agricultural practices in upland watershed 

can alter ES capacity to regulate hydrological cycles and to provide fresh water to downstream areas due to 

growth in nutrients and sediment loads as a consequence of high fertilizer use and soil management in 

agricultural areas (Bennett et al., 2009; Bhaduri et al., 2000; Baker and Miller, 2013; Foley et al., 2005; 

Hascic and Wu, 2006; Montgomery, 2007). These impacts of agricultural activities also vary with types of 

agricultural systems beyond provisioning ES delivered by crops such as importance in perennial crops, 

which could regulate water quality and quantity (Power, 2010). Moreover, land abandonment in marginal 

farmlands decreases regulating ES due to severe soil erosion because abandoned areas have coarse 

vegetation covers than cultivated areas (Kosmos et al., 2000; Jain et al., 2001). Therefore, changes on ES 

resulting from LUCC should be considered in agricultural decision-making processes.    

 The importance of ES has widely been recognized by human society and thus ES are increasingly 

considered in policy making (Braat and de Groot, 2012; Daily and Matson, 2008; Kremen, 2005). However, 

ES management policies should consider the trade-off between different ES (Heal et al., 2001; Pereira et al., 

2005; Rodriguez et al., 2006). Trade-offs between ES arise when human interventions to increase one ES 

cause declines in another ES as a result of LUCC as mentioned above (Körner, 2000; Schröter et al., 2005; 

Rounsevell et al., 2006; Polasky et al., 2011). Understanding those trade-offs, including assessment and 

identification of drivers among ES, is a major consideration in management plans (Bennett et al., 2009). In 

mountain ecosystems, provision of ES such as fresh water provision and regulating water quality is strongly 

affected by LUCC and spatial characteristics in regional ecosystems (Power, 2010). Management in 

mountain watershed, therefore, should be preceded with a consideration of LUCC such as agriculture for 

better management plans (Viviroli et al., 2003). However, the magnitude of land use effects on ES is still 

difficult to estimate due to lack of sufficient indicators of ES (Balmford et al., 2002; MA, 2005; Nelson et 

al., 2009). Under such circumstances, estimating ES should be considered in land-use decision-making 

processes, which focus management to strengthen regional specific ES (Goldstein et al., 2012; Nelson et al., 

2009; Tallis and Polasky, 2009).  
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1.1.2 Estimating impacts of land management plans on land use and ecosystem services 

Land management is a human activity to utilize natural resources for human societies, which influence 

regional LUCC (Kremen et al., 2007; Verburg and Overrmas, 2009). In particular, land management 

practices based on environmental and LU policies set the direction of land resource utilization and thus 

cause changes in regional LUCC and ES (Fisher et al., 2009; Carpenter et al., 2009; von Haaren and Albert, 

2011; van Oudenhoven et al., 2012). Therefore, land management of stakeholders should be considered to 

understand ES (Heal, 2000; NRC, 2005; Daily et al., 2009). Land management plans and policies affect 

regional environmental systems where these plans are applied and thus cause changes of provisioning of ES 

(Chan et al., 2006; Naidoo and Ricketts, 2006; Fisher et al., 2009). However, human management plans 

such as LUCC can cause uncertain and unexpected responses of natural ecosystems intentionally and 

unintentionally due to complex and emergent characteristics of interactions between social and 

environmental systems, which cause trade-offs between ES (Fürst et al., 2013; Mohamed et al., 2000). 

Moreover, these trade-offs commonly occur at multiple scales and thus they may cause a dilemma in policy 

making, and even policy failure (Rodríguez et al., 2005; Taylor et al., 2012). To solve these problems, 

regional management plans for a specific policy purpose (e.g. regional development or conservation) should 

be based on an understanding of regional systems, which reflects interactions between human and natural 

systems to reduce trade-off among ES and optimize regional land management (Fürst et al., 2013).  

 Balance among ES is needed to achieve policy objectives whilst minimizing side effects arising 

from interactions within regional systems and to develop better management plans sustainably, which leads 

to both economic and environmental benefits (Lambin et al., 2001). However, benefits from ES outside the 

relevant political boundaries are often overlooked in the policy making process because these ES are less 

considered in current policy (Fürst et al., 2013). Therefore, integrated approaches are needed to support 

regional land management plans, which apply integrated concepts of LUCC and ES in regional systems and 

assess regional ES (de Groot et al., 2010; Fürst et al., 2013; Koschke et al., 2012; Pinto-Correira et al., 2006; 

Vejre et al., 2007). The development of policy support tools has several steps, such as establishment of 

indicators to assess ES provision, complexity of LUCC and ES, making a quantitative model of ES reflecting 

interactions with other ES, and spatial and temporal dimensions of ES (Turner and Daily, 2008; Carpenter 
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et al., 2009; van Strien et al., 2009; Villa et al., 2009; de Groot et al., 2010, Bastian et al., 2012; van 

Oudenhoven et al., 2012). 

 Quantification and valuation of ES are needed to develop a framework for assessing ES from LUCC 

and to achieve the aims of land management plans (de Groot et al., 2010). These integrated assessments of 

LUCC and ES usually adopt several methodologies such as spatial mapping, economic valuation and 

simulation models (de Groot et al., 2010). Spatial mapping is an approach to visualize the distribution of 

LUCC and ES to improve the recognition of ES as a useful policy support tool for sustainable management 

(Burkhard et al., 2009, 2012; Daily and Matson, 2008). Although this approach helps decision makers 

aggregate complex information on LUCC and ES, it is not clear what the optimal scale for mapping ES in 

regional systems is (Burkhard et al., 2012; Turner and Daily, 2008) and there is a limited adoption of socio-

economic information (Kienast et al., 2009). Economic valuation is the monetary estimation of the provision 

of ES for human societies in order to compare ES economically, such as cost-benefit analysis (Repetto et 

al., 1987; Daily et al., 2000; Arrow et al., 2004; Daily et al., 2009). However, the monetary estimation may 

overlook some ES, which are difficult to estimate in monetary terms and environmental and social aspects 

(Daily et al., 2009; de Groot et al., 2010). Models simulate change and quantify a spatio-temporal status of 

LUCC and related ES in specific regional systems and estimate the impact of environmental and human 

factors on ES (Briner et al., 2012; Grêt-Regamey et al., 2012, Huber et al., 2013). Although these models 

can reflect complex characteristics of the environmental systems, they normally focus on specific ES and 

are sensitive to the spatio-temporal scale of the systems (de Groot et al., 2010). To overcome the 

disadvantages and capitalize on the advantages of these approaches, they can be combined in an integrated 

framework. This thesis suggests integrated modeling framework, which simulates spatial changes of LUCC 

and their impacts on ES under the hydrological aspect of water quality at different scales of a mountainous 

watershed area, which could be adopted as a policy support tool.  

1.1.3 State-of-the-art and research gaps 

1.1.3.1 Introduction: framework of land use change and ecosystem services 

Because there are several challenges when analyzing LUCC and ES as mentioned above, it is necessary to 

develop a modeling framework to estimate the effects of LUCC on ES (Ostrom, 2009; Posthumus et al., 

2010; van Oudenhoven et al., 2012). These modeling frameworks is developed to estimate ES with a 
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comprehensive understanding of regional systems. A framework is a structure which simulates the 

assessment of ES provisions on various spatial scales as a consequence of LUCC through selected ES 

indicators (Carpenter et al., 2009; van Strien et al., 2009; Niemeijer and de Groot, 2008; de Groot et al., 

2010; Layke et al., 2012; van Oudenhoven et al., 2012). This type of framework provides a systematic 

understanding and quantification of regional environmental systems including LUCC and ES and thus it 

could be applied in decision-making processes for sustainable development (Layke, 2009; van Oudenhoven 

et al., 2012). To develop an integrated modeling framework, it is necessary to understand the current status 

of LUCC and ES models, which provide simulation outputs through an integrated modeling framework in 

mountainous watershed ecosystems. 

1.1.3.2 Simulation models of land use changes  

Simulation models are a useful approach to estimate spatial changes of LU by coupling human and 

environmental systems, thus capturing their complexity (Verburg et al., 2004b). The model estimates spatio-

temporal ES and trade-offs among ES as a result of LU management in the context of interactions between 

social and environmental systems (Seppelt et al., 2011). Simulations of LUCC models are combined with 

various scenarios for environmental management planning (Verburg and Overmas, 2009). These models 

apply different techniques and approaches to simulate LUCC resulting from spatio-temporal LUCC patterns 

and factors (Meiyappan et al., 2014). LUCC models adopt statistical or process-based approaches to 

simulate interactions between human and environmental systems (Turner II et al., 2007). Among various 

modeling approaches, Cellular Automata (CA) and Agent-based models (ABM) are widely used to simulate 

spatio-temporal LUCC processes, which reflect complex and emergent characteristics of LUCC. CA is a 

bottom-up approach which simulates the status of spatial cells in a given time step, which is suitable for the 

development of LUCC models (White et a., 2000; Verburg et al., 2004b). CA-based LUCC models are 

commonly used in LUCC studies because they reflect complex aspects of changes using transitional rules 

based on a mathematical framework (Clarke et al., 1997). ABM is also a computation model, which simulate 

the status and decisions of agents' behaviors resulting from their interactions with other agents and the 

system environment (Ferber, 1999; Matthews et al., 2007). ABM is adopted into LUCC studies since it 

allows simulating the effects of human decision-making and interactions with other on the spatial 

distribution of LUCC (Brown et al., 2005; Matthews et al., 2007). Because both modeling approaches 



6	
	

consider the spatial distribution of LUCC and can handle uncertain and complex characteristics of LUCC, 

they can easily be combined with spatial assessment models of ES. 

  However, development of these modeling approaches is accompanied by uncertainty and accuracy 

problems of model outputs. The uncertainty of LUCC model results arises in various ways during the 

development of LUCC models (Pontius and Neeti, 2010). Although these simulation methods reflect 

interactions between human and environmental systems, limited knowledge of real-world processes 

inevitably generate uncertainty (Pan et al., 2010; Ligmann-Zielinska et al., 2014). In CA models, these 

uncertainties arise from influences of individual stakeholders' decision as well as the spatial scale of input 

and output of models, such as data resolution and neighborhood configurations (Pan et al., 2010). To solve 

these problems, different scales need to be considered in a modeling framework and an understanding of 

neighborhood interactions is also needed. ABMs can reduce uncertainty about stakeholders' interventions 

but they also have the same problems regarding spatial scales and understanding of real-world processes. 

This could be resolved by an uncertainty and sensitivity analysis of model outputs, which reveal the 

influence of LUCC driving factors and their interactions on model outputs (Ligmann-Zielinska et al., 2014). 

Through these steps to control the uncertain influence of the model outputs, a well-designed and 

sophisticated estimation of ES from the simulation results of LUCC is possible. Because integrated 

modeling frameworks could validate model outputs with quantitative indicators (Bockstaller and Girardin, 

2003; Niemi and McDonald, 2004; van Oudenhoven et al., 2012), LUCC models are integrated into the 

modeling framework using various validation approaches according to model types.   

1.1.3.3 Assessment of hydrological ecosystem services 

Hydrological ES in mountainous watersheds (e.g. fresh water provision and water quality regulation) are 

related with other ES and LUCC within dynamic and complex systems (Brauman et al., 2007). Selection of 

indicators and analysis to assess these ES is essential for the development of a modeling framework because 

these indicators need to be able to accurately estimate provisions of regionally important ES under LUCC 

as well as trade-offs between ES as a result of regional planning (de Groot et al., 2010; van Oudenhoven et 

al., 2012). Assessment of hydrological ES is combined in various ways with quantification and visualization 

tools of these services and with hydrological models (Vigerstol and Aukema, 2011). Among them, the Soil 

and Water Assessment Tool (SWAT) is widely applied to assess and quantify hydrological ES (Arnold et 
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al., 1998; Neitsch et al., 2009; Vigerstol and Aukema, 2011; Logsdon and Chaubey, 2013), which reflect 

complex processes in water systems and to estimate changes in hydrological ES as a consequence of LUCC. 

Because SWAT can estimate temporal changes of hydrological ES at both watershed and sub-watershed 

levels, the model can estimate the regional importance of hydrological ES (Vierstol and Aukema, 2011). As 

mentioned above, spatial scale is essential when estimating and developing a model system of LUCC and 

ES. Application of SWAT can resolve the problems of spatial scales of ES in hydrological systems. As 

concerns about the importance of LUCC and hydrological ES are growing, several studies develop 

integrated models both to simulate LUCC and specific at ES in the regional scale. Regulation of soil erosion 

is a significant hydrological ES in watershed regions and is strongly affected by soil retention, which itself 

results from regional spatial and temporal LUCC (Fu et al., 2011). In particular, agricultural practices cause 

changes of regulation of soil erosion control because the magnitude of soil retention varies by vegetation 

type (Arnhold et al., 2014) and status of agricultural LU, such as cultivated or abandoned (Kosmos et al., 

2000; Jain et al., 2001). Therefore, assessment of soil erosion could be improved through evaluation of soil 

erosion control ES under LUCC. (Fu et al., 2011). The Revised Universal Soil Loss Equation (RUSLE) 

model by Renard et al.(1997) is widely applied to estimate annual soil erosion rate based on changes of 

vegetation status under various LU scenarios (Angima et al., 2003) and thus RUSLE is frequently used to 

simulate and predict spatio-temporal changes of soil erosion (Angima et al., 2003; Kouli et al., 2009; Yang 

et al., 2003). Because RUSLE simulates spatio-temporal changes in soil erosion rates under LUCC, the 

model can be integrated with LUCC models. 

1.1.3.4 Integrated models of land use change and ecosystem services under different land management 

scenarios 

These integrated models of LUCC and ES simulate spatial and temporal LUCC and assess changes in ES 

resulting from interactions between human and environmental systems on a regional scale. Assessment of 

ES provision using suitable indicators at optimal scales is a significant step towards incorporating ES due 

to regional LUCC into a modeling framework (van Oudenhoven et al., 2012; Burkhard et al., 2012). To 

quantify and assess ES under LUCC, some modeling frameworks are widely adopted, such as the Integrated 

Valuation of Ecosystem Services and Tradeoffs (InVEST) (Tallis and Polasky, 2009) and Artificial 

Intelligence for Ecosystem Services (ARIES) (Villa et al., 2009). Although these models are widely applied 
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in ES research, improved quantification of ES is needed to reflect the complex characteristics of ES in a 

modeling framework (de Groot et al., 2010; Logsdon and Chaubey, 2013). The importance of LUCC for ES 

has led to research on estimation of ES under LUCC, which focused on specific ES at a regional scale, such 

as pollination services (Kremen et al., 2007), carbon storage (Wu, 2003), water resource (Baker and Miller, 

2013), biodiversity (Martinez et al., 2009) and local climate change (Pielke et al., 2002). On the other hand, 

integrated estimation of ES and trade-offs between different ES with various assessment tools were also 

developed and adopted into ES research (Polasky et al., 2011). In particular, CA models are widely 

combined with hydrological modeling to estimate spatial changes of water-related ES as a result of LUCC 

(Deng et al., 2015; Kim et al., 2013; Marshall and Randhir, 2008; Memarian et al., 2014; Park et al., 2011; 

Zhang et al., 2013). ABM are also used to estimate specific ES such as carbon storage (Robinson et al., 

2013), species habitat and biodiversity (An et al., 2006; Brady et al., 2012), runoff control (Bithell and 

Brasington, 2009) and pollination services (Kremen et al., 2007) under LUCC.   

 Several studies have tried to estimate effects of land management plans on regional LUCC and 

provision of ES using modeling frameworks. Portela and Rademacher (2001) developed a model of forest-

related LUCC and valuation of regional ES under payment of ecosystem services (PES) scenarios. Chan et 

al. (2006) estimate the spatial distribution of changes in ES due to LUCC from diverse conservation plans. 

Egoh et al. (2008) evaluated ES spatially and extracted hotspots of ES provision for management planning. 

Brady et al. (2012) adopted ABM to simulate the spatial allocation of agricultural LU under different 

agricultural policies and estimate ES from LUCC. Nelson et al. (2009) developed a spatial model of LUCC 

and their impacts on the provision of ES with InVEST under urban and crop expansion scenarios. Lawler 

et al. (2014) simulated spatial LUCC from econometric models and their impacts on provision the of ES 

under future LU policies for management of different ES in the United States. Van Oudenhoven et al. (2012) 

developed a modeling framework of effects of land management plans on 9 selected regional ES. For water-

related ES, Fürst et al. (2010) developed a planning support tool, called GISCAME, for spatial assessment 

of LUCC and ES. This model was applied to assess hydrological ES in a watershed in Western Brazil under 

different types (development and conservation) of land management plans (Koschke et al., 2014) and a 

watershed in Germany under different agricultural land management (Frank et al., 2014).   
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 Although several studies have considered the effects of land management policies on conservation 

or development of land resources, they have so far neglected different types of instruments in land 

management policies to accomplish management purposes. Land management plans, especially for 

environmental conservation, are applied to different policy instruments such as PES and command-and-

control regulations (Engel et al., 2008). Although these policies have different approaches, the efficiency of 

policy instruments is still not considered for ES management issues (Engel et al., 2008) and it is difficult to 

estimate policies due to lack of criteria (Goulder and Parry, 2008), scale mismatches between political and 

ecological scales for valuation of ES (Turner and Daily, 2008; Luck et al., 2009) as well as scales of policy 

adoption on ES (Newig and Fritsch, 2009).  

1.1.3.5 Multiple scales on model development 

When developing an integrated modeling framework, spatial and temporal scale should be considered at all 

stages as mentioned above. Scale is an analysis dimension of a specific system under a given spatial, 

temporal, quantitative or analytic aspect (Gibson et al., 2000; Verburg et al., 2004b). The spatial and 

temporal scale is essential to develop simulation models on LUCC because LUCC patterns vary by spatial 

scale and thus driving factors of LUCC also vary (Verburg et al., 2004b). Assessment of ES is also sensitive 

to scale issues such as spatial scale in mapping ES (Burkhard et al., 2012; Turner and Daily, 2008), 

estimation of ES indicators and trade-offs between ES (de Groot et al., 2010; van Oudenhoven et al., 2012), 

spatial and temporal boundaries of environmental systems with complex and emergent phenomena (de 

Groot et al., 2010) and spatial range of policy analysis and instruments (Turner and Daily, 2008; Luck et al., 

2009; Newig and Fritsch, 2009). Although finding the optimal scale is essential to develop well-designed 

models and understand the relationship between LUCC and ES, optimization of scale is difficult under when 

understanding of regional systems is limited. To solve these scale problems, modeling frameworks should 

consider multi-scale systems (de Groot et al., 2010; van Oudenhoven et al., 2012). Consideration of scale 

could be expanded to consider hotspot areas of ES where severe degradation has occurred (Egoh et al., 

2008). Because hotspot areas often have different patterns with entire system boundaries, assessment of ES 

under different spatial scales, which consider both entire systems and hotspot areas, could reflect LUCC 

and ES within a modeling framework.  
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1.1.3.6 Model development 

Modeling frameworks have recently been applied to explain interactions between human and environmental 

systems, from properties of the natural environment to policy analysis (van Oudenhoven et al., 2012). In the 

previous chapter, several approaches to estimating LUCC and ES were described, which have been applied 

separately in specific analyses or collectively in integrated modeling approaches. However, as ICSU (2008) 

and de Groot et al. (2010) pointed out, integrated modeling frameworks of LUCC and ES cannot reflect 

effects of management plans and decision-making on the provision of ES because those approaches cannot 

quantify values of ES under different management directions at regional scales. Therefore, the modeling 

framework is adapted to assess LUCC impacts on ES under different land management scenarios in this 

thesis.  

1.1.3.7 Research gaps  

Although integrated modeling, which combines models of LUCC and assessment of ES, is widely used to 

quantify regional impacts of LUCC and their effects on ES, these modeling approaches could not capture 

LUCC and changes in ES resulting from by human land use decisions.  

Lack of understanding of mountainous LUCC  

Understandings of LUCC in mountainous areas are rarely considered in LUCC research despite their 

importance for the provision of regional ES. LUCC patterns and factors need to be identified to understand 

LUCC and develop LUCC models in mountainous areas with high socio-ecological heterogeneity. 

Development of spatial models to simulate LUCC and ES in mountainous watersheds 

Although several studies focused on the role of mountainous watershed areas, spatial simulation models of 

LUCC and ES are deficient to understand spatially different impacts of LUCC on regional ES. Integrated 

modeling frameworks for LUCC and ES could simulate LUCC and ES at different spatial scales in the 

mountainous watershed areas and help to understand these systems. 

Estimation of impacts of different types of policy instrument on regional ecosystems 

Although many researchers investigated different environmental policy scenarios, efficiency between direct 

regulation and PES policy instruments are still questionable. Comparisons of various policy scenarios could 
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be useful to find which policy instruments are useful in each region and to understand the advantages and 

disadvantages of different conservation policies. 

Spatial models of farmers' decision-making processes and their impacts on water quality 

Although earlier farmers' decision-making models tried to simulate their decision, these simulation models 

considered spatial aspects to a lesser extent. As spatial ABM is therefore adopted to reflect these factors in 

the model, to simulate spatio-temporal changes of LUCC and quantify soil erosion. 

1.1.3.8 Description of modeling framework  

Figure 1, which is adopted from Oudenhoven et al. (2012), shows which elements and processes of the 

modeling framework for LUCC and ES used in the thesis, such as driving factors, ecosystem components, 

service provision, human society and response. Driving factors influence ecosystem properties directly or 

indirectly through LUCC; in turn, ecosystem properties affect ecosystem functions (MA, 2005; van 

Oudenhoven et al., 2012). Through a set of ecosystem functions, ES are provided to human society (Kremen, 

2005). Human society derives benefits from ES and the impacts of these benefits are assessed by quantitative 

indicators (Nelson et al., 2009; van Oudenhoven et al., 2012). Through quantitative assessment of ES, 

stakeholders can change their perception of ES and these changes are applied in policy and decision-making 

processes (Fisher et al., 2009).  In the framework, direct effects are represented as dotted lines and feedbacks 

are represented as dash lines. 
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Figure 1. 1 An Integrated framework for assessing processes linking impacts of land use changes and 

ecosystem services to human society. 

 

1.2 Overview of this thesis 

1.2.1 Objectives and hypotheses. 

To understand LUCC processes and to simulate possible LUCC and resulting changes of ES under different 

management scenarios, the development of a modeling framework is a useful tool for quantitative 

simulations within environmental systems. The overall goal of the thesis is to develop a modeling 

framework which reflects the uncertainty and complex features of LUCC and the response of ES. The 

specific objectives of this thesis are: (a) to quantify LUCC patterns and their natural-environment al and 

socio-economic driving factors; (b) to simulate LUCC and ES under different policy options through a 

combined modeling framework of CA and hydrological modeling; and (c) to simulate agricultural LUCC 

and ES via ABM reflecting farmers' decision-making processes in one hotspot sub-region of the research 

area. 

Study 1: Driving forces of archetypical land-use changes in a mountainous watershed in East Asia 
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Quantifying spatio-temporal LUCC patterns and their driving factors is necessary to understand LUCC 

processes. Multinomial logistic regression (MNL) analysis was used to identify LUCC factors in the Soyang 

River Basin area in archetypical periods. Neighborhood land use factors were used to supplement 

understanding of LUCC, while socio-ecological underlying factors were revealed as explanatory factors, as 

well as to develop integrated LUCC models for estimation of LUCC and ES. 

Study 2: Land use change and ecosystem services in mountainous watersheds: Predicting the 

consequences of environmental policies with cellular automata and hydrological modeling 

LUCC in mountainous watersheds affects regional ES by controlling water quality in the downstream areas. 

Understanding the complex characteristics of LUCC processes and simulating LUCC is necessary to 

supplement regional environmental policies. Integrated modeling framework was developed, which 

combines CA with hydrological modeling to simulate LUCC and ES. This framework was applied to 

estimate regional impacts of different types of environmental policy scenarios based on PES and/or 

command-and-control regulations.  

Study 3: Simulation of agricultural land-use changes and ecosystem services in a mountainous 

agricultural region using an agent-based model (ABM) 

Farmers' decision-making about agricultural land uses and crop choices affect regional land systems and ES. 

In particular, farmers' decisions have emergent characteristics, which lead to different responses to policy 

directions depending on policy types. In such situations, understanding farmers' decision-making processes 

is necessary for devising management plans to maintain regional ES. To better understand farmers' decision-

making processes, an ABM was used to simulate possible changes of farmers' agricultural LUCC under 

various factors and scenarios. 

1.2.2 Study area 

The study area of this thesis is located in the Soyang River Basin (127' 43'' to 128' 35'' E and 37' 41'' to 38' 

29'' N), in the north-eastern part of South Korea close to the border with North Korea (Figure 2). This river 

flows into the Han River, which is the biggest river in South Korea and flows across the Seoul metropolitan 

area. The river is regarded as significant by a national government for environmental reasons, due to 

geographical features of the river area. Because the Soyang River is significant water source for residents 
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in the Seoul metropolitan area, its water quality and quantity are important issues to secure stabilized water 

resource. To protect water resource for residents and industry, the government constructed the Soyang Dam 

at downstream of the river prior to its confluence with the Northern Han River in 1974. After dam 

construction, various regulation policies were adopted for environmental reasons to maintain water quality 

in the Soyang Lake, which is formed by the dam (Kim, 2006).  The basin area of the river is a mountainous 

region with forest covering as much as 89% of the area. Forest is mainly public forest and thus it is strongly 

regulated by multiple regulations (Kim, 2006). The rest of the region is mainly covered by agricultural areas, 

with rice paddies covering 1.8% and dry fields covering 4.1% of the basin area.  Agricultural area is located 

in riverside and highland areas. Urban area only covers 1.2% of the watershed, mostly downstream of the 

dam, and belongs to Chun-cheon city, the biggest city of the province.  

	

Figure 1. 2 Research areas considered in this thesis 
	

 Due to various constraints, land use for agricultural activities is concentrated in riverside areas 

which lack regulatory constraints. These limitations have led to a decrease in regional population and 
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eventually a decline of regional economies in upstream areas of the basin, while urban areas expanded and 

tourism facilities grew in downstream areas. Residents in upstream areas immigrated to urban areas causing 

farmland fragmentation and abandonment (Yun, 2010). In this situation, highland agriculture in upstream 

areas was mainly cultivated commercial annual crops like cabbages, radishes, and potatoes as the main 

agricultural products. However, highland agriculture caused water pollution and devastation of the 

ecosystem due to soil erosion and chemical fertilizers, which worsened during monsoon periods and extreme 

rainfall events like typhoons, as experienced in 2006 (Lee, 2008; Park et al., 2011). In particular, highland 

farmland expansion via forest reclamation worsened soil erosion and increased environmental 

vulnerabilities in some agricultural sub-regions, which are called hotspots of water pollution (Park et al., 

2010).  

 After water quality problems became public concerns, national and regional governments adopted 

environmental policies to reduce water pollution, such as organic and perennial crop promotions and 

reforestation in marginal agricultural farmlands (Poppenborg and Koellner, 2013). However, these policies 

had unexpected effects such as the growth of abandoned farmlands instead of other perennial crops (Jun and 

Kang, 2010). Moreover, there have been various types of environmental policies, which have different 

policy effects according to regional characteristics. In the current situation, it is necessary to understand 

LUCC processes and to estimate possible impacts of different policies to inform the policy making process. 

1.2.3 Methods 

1.2.3.1 Development of land use simulation models 

Simulation modeling approaches were adopted to answer research questions to understand LUCC and 

impacts of environmental policies. These simulation models were developed as spatial models based on 

spatial data as tools to understand LUCC processes under different policy scenarios. Different simulation 

modeling approaches were adopted according to the spatial scale considered and according to data 

availability in the Soyang River Basin. A CA model was used to simulate LUCC in the Soyang Basin areas 

because CA reflects spatial interactions of LUCC as spatial and temporal simulation models based on 

mathematical transitional rules (Verburg et al., 2004a). In Haean catchment, an ABM is adopted to simulate 

agricultural LUCC based on farmers' decision, which reflects interactions of individual agents and their own 

decision-making processes (Clarke, 2014).  
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 To develop simulation models of LUCC, it is necessary to extract possible LUCC factors and their 

quantitative relations with LUCC (Verburg et al., 2002). MNL is widely used in land use studies to extract 

LUCC determinants, which estimates probabilities of LUCC and the effects of driving factors as explanatory 

variables (Rutherford et al., 2007). MNL estimates probabilities of LUCC and the intensity of driving factors 

as explanatory variables. The probability functions are described by Pij = exp(βiXj)/∑k=1 exp(βiXk). P is the 

probability of LUCC from land cover (LC) i to j, where k denotes the LC classes, β is a vector of estimation 

parameters and X are vectors of independent variables. To reflect human-environmental interactions, there 

were various independent variables (biophysical, distance, neighboring land use, regulation policy, 

population) to estimate driving factors of multi-directional LUCC for the main land use types (urban, forest, 

agriculture) across 10years of changes. Among these variables, neighboring land uses were estimated by 

functions of enrichment factors (EF) reflecting neighborhood interactions, as proposed by Verburg et al 

(2004a). The EF reflects the levels of spatial concentration of specific land types in the entire area, thus it 

can find optimal neighborhood boundaries (Verburg et al., 2004a). From the MNL and neighborhood EF, 

the CA model of LUCC was developed. Moreover, underlying LUCC factors were also extracted, which 

are difficult to estimate from statistical analysis, from literature reviews and stakeholders' interviews to 

understand socio-economic determinants of regional LUCC to construct possible policy scenarios for the 

simulation models.  

 CA-based LUCC models simulate the status of the cells in a land grid based on cellular dynamics 

reflecting the spatial interactions of cells (Verburg et al., 2004a). CA models consider the status of cells, 

neighborhood interactions, the initial conditions of cells, and the status of cells when they change (Clarke, 

2014). Each cell has a transitional probability function from land type i to j in a simulation time step as 

!"#
$%& = 	 (!"#

$ , Ω"#
$ , ,-., /) , where S is the status of the cell including local probabilities, Ω is the 

neighborhood evaluation function, Con is a factor constraining changes, N is the number of cells (Feng et 

al., 2011). Local probabilities are calculated from MNL and boundaries of neighborhood evaluation 

functions are set where EFs have the highest values. Constraint factors are considered in the phase of policy 

implementation for environmental policies to control agricultural expansions. The framework of CA model 

was implemented using NetLogo 5.3.1 software packages and simulate the model from 2006 to 2056 over 

10 year periods under various environmental policy options (business as usual, forest protection, 
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reforestation policy on marginal agricultural lands, mixed policy). Before running the model, calibration 

and validation the CA model were progressed with a three-map comparison method, which compares actual 

land use maps of 1995 and 2006 to a simulation result map of 2006 to quantify model accuracy (Pontius et 

al., 2008).  

 Since farmers' decision-making is more affected by personal characteristics, ABM approaches were 

adopted to develop farmers' agricultural LUCC models in the Haean catchment as a hotspot of water 

pollution. ABMs simulate agents' behaviors and interactions as well as the induced complex phenomena 

they induce within the system environment (Sun and Müller, 2012). ABMs specify agent types, decision-

making processes, learning or adaptive rules, agents' behaviors, and system boundary (Clarke, 2014). 

Individual farm households were used as agents and their characteristics were based on survey results of 

farmers' attitudes toward ES and socio-economic status, which was conducted by Poppenborg and Koellner 

(2013). The survey data was combined with spatial data to estimate decision-making processes using MNL 

and decision trees as decision-making heuristics. To develop adaptive rules from agent interactions', opinion 

dynamics and bounded confidence (BC) models were adopted (Hegselmann and Kraus, 2002). BC models 

reflect that agents tend to interact with agents whose opinions differ only slightly, called a BC situation 

(Kou et al., 2012). All agents connect with each other inside the system boundary, called small world 

network, and have higher connections with neighboring agents and lower connections with outside agents 

(Watts and Strogatz, 1998; Costa et al., 2006). The model was validated using an uncertainty and sensitivity 

analysis, which estimated the uncertainty of the ABM in reflecting complex human-natural systems 

(Ligmann-Zielinska et al., 2014). The ABM was also developed using NetLogo software, which simulates 

annual decisions about farmers' agricultural land use (rice, annual, perennial and fallow) for 10 years under 

different land use scenarios. Variance-based sensitivity analysis (VBSA) were used to estimate model 

performance variations in driving factors by estimating the contribution of individual and/or a combination 

of input factors (Ligmann-Zielinska et al., 2014). The sensitivity result of the model tested various model 

outputs within the simulation boundaries and found the contribution of input factors on model outputs 

(Ormerod and Rosewell, 2009). 
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1.2.3.2 Estimating ecosystem services under different modeling approaches 

LUCC in mountainous areas affects regional ES such as regulation of soil fertility and water provision while 

providing crop and bioenergy production (Schröter, 2005). In Soyang River Basin, which has undergone 

dynamic LUCC such as deforestation/reforestation, agricultural expansion around upper stream areas and 

urban expansion in downstream areas, agricultural LUCC is a significant cause of water pollution.  

 In the following step, models of LUCC and of ES were combined in the CA model for spatial 

simulations of LUCC with SWAT model for estimating ES related to hydrological cycling. The model first 

simulated possible LUCC under various policy scenarios to derive land use maps from the CA model, which 

were then used as input into SWAT. The SWAT model used various variables such as topographic, soil, 

and climate data, as well as interviews and investigation data from a field survey about land management 

(Arnhold et al., 2014; Shope et al., 2014). We quantified model uncertainty using a Sequential Uncertainty 

Fitting (SUFI-2) optimization algorithm (Abbaspour et al., 2007), which is also used to perform calibration 

and validation of the SWAT model. Once the model is set from data for the baseline period in 2006, which 

is also used as the initial period of a model simulation, we estimated changes in hydrological attributes until 

the year 2056. From this model, we simulate changes of regional ES like the quantity of water supply from 

water yield, soil erosion from sediment estimation and water quality from an amount of nitrogen (N) and 

phosphorus (P) loads reflecting uses of fertilizers on agricultural lands. The results quantified each related 

index for N, P and soil sediments for daily time steps, which were finally summarized to give annual results. 

We focused on changes of ES for the whole watershed area and in two agricultural hotspot areas to compare 

environmental policy impacts of different policies on spatial scales.  

 In comparison with the combined CA and SWAT modeling framework, we developed one 

integrated model to simulate agricultural LUCC and soil erosion in the ABM framework. This integrated 

model based on spatial simulation has the advantage of estimating ES systematically (Kubiszewski et al., 

2013). We adopted the Revised Universal Soil Loss Equation (RUSLE) to estimate the annual rate of soil 

erosion per unit area, especially from agricultural land use (Renard et al., 1997). Annual soil erosion is 

estimated from rainfall (R), erosion (K), slope-length and slope (LS), vegetation-cover (C) and support-

practice (P) factors. Among them, a spatial distribution of vegetation and support-practice factors are 

changed from the results of agricultural LUCC and others were estimated from currently available data. 
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From this model, we simulated annual soil erosion rate resulting from agricultural LUCC for next the 10 

years. 

 

1.3 Main results 

Dominant patterns of LUCC are urban expansion in downstream regions, agricultural expansion in highland 

agricultural regions, contrary to decrease in other regions. Urban areas have increased steadily in 

downstream regions due to urban sprawl, resulting from deregulation of development restriction zone. 

Agricultural areas have increased in highland agricultural regions due to highland agricultural promotion 

policies since the 1980’s. Overall agricultural expansion progressed from 1980-90; in contrast, reforestation 

was advanced in 1990-2000. Results of MNL indicated an explanatory power of the independent variables 

for different land use types in the two sub-periods. LUCC was mainly affected by slope and neighboring 

land composition in all land types. In comparison to other land types, agricultural land is more affected by 

rainfall and regulation (national conservation zone).  

 After extracting LUCC factors and neighborhood extents, we developed the CA model to estimate 

LUCC and ES under different policy scenarios across 50 years. The model was validated by comparing 

simulation maps and actual land use maps of 2006 to estimate the accuracy of simulation results and it 

turned out that the model had acceptable simulation accuracies compared to other CA models. In all 

scenarios, there were similar patterns of reforestation in marginal agricultural areas regardless of policy 

types. However, the magnitude of reforestation is affected by the policy type. In particular, current 

management scenario (NO) results in a 0.8% increase in forested area, while in the combined policy scenario 

of Reforestation and Protection (R+P) forest area increased by 2.5% by 2056. Dry fields decrease by 5% in 

the NO scenario, while they decrease by up to 43% in the R+P scenario, reflecting different impacts of types 

of policy interventions, whereas rice paddies decrease similarly regardless of policies. With respect to policy 

impacts on the hotspot regions, dry fields areas increase by 18% in the NO scenario while they decrease by 

up to 31% in the R+P scenario. When we used the result to estimate water related ES, differences in water 

qualities are found. Sediment and P and N loads vary by policy type, unlike stable maintenance of water 

yields. While there was a decrease by up to 8% in sediment, 3% in total N and 1% in total P in 2056 without 
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policy interventions, the combined policy decreases sediment by 48%, total N by 21% and total P by 30%, 

reflecting strong impacts which could help to maintain regional ES.  

 From the simulation of LUCC using the CA and SWAT framework, it can be concluded that LUCC 

in hotspot areas drive the impacts in the whole Soyang Watershed. We, therefore, adopted an ABM for 

Haean catchment, a dominant source of water pollutants, as a case study. We extracted influences of 

individual and combination values for each simulation output from a VBSA, which indicated that spatial 

characteristics of farmlands and farmers’ attitude toward water quality were a significant factor for perennial 

crops while the factor less influenced to annual crops. We simulated agricultural land use and soil erosion 

rates under different land management scenarios and compared spatial patterns of agricultural LUCC and 

soil erosion rate under different land management scenarios. Results showed that farmers with large-sized 

farms converted their lands to perennial crop farms less, whilst maintaining current field status (rice and 

annual crops), resulting in a moderate decrease in soil erosion. In fallow land expansion scenarios, fallow 

lands expanded by up to 7% of the research areas, increasing soil erosion rate by 6%, which reflects that 

fallow land expansions do not change annual soil loss more than expected although fallow lands have 

highest P-factor in RUSLE. In two different fallow land management scenarios (ginseng farm and perennial 

crop expansions), the ginseng farm expansion scenario is more effective at reducing soil erosion than 

perennial farm expansions. However, the magnitude of the reduction of soil loss is also lower, although 

fallow lands and annual crop areas decreased. 

 

1.4 Discussion 

1.4.1 Estimation process of regional LUCC and ES within modeling framework 

We identified patterns and driving factors of LUCC for two sub-periods in paper 1. The first decade (1980-

90), characterized by agricultural growth and deforestation, was affected by land development plans, 

including dam and highway constructions corresponding to results from the MNL, such as the impact of 

rainfall and biophysical factors on agricultural land conversions. Agricultural areas are affected by rainfall, 

which are in turn related to regional climate changes, by dam construction and by the monsoon period during 

summer, corresponding to hydrological aspects of the region (Kim, 2012). Elevation and slope have negative 
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effects on agricultural areas, reflecting agricultural land abandonments in mountainous marginal farm lands, 

a common phenomenon globally (Pingali, 1997; McDonald et al., 2000). In a similar context, forest 

expansions occur in areas with lower accessibility which worsen agricultural conditions. Distance factors 

are less significant because LUCC occurred in riverside; areas at a distance from the river and urban areas 

are maintained as forest, without land transitions. Existing land regulation policies had different effects on 

LUCC depending on the policy objectives. Because designations of national parks in South Korea have the 

twin aims of natural conservation and tourism promotions (Lee et al., 1998), urban growth from forest areas 

in the national park could be explained as expansions in tourism facilities while agricultural areas reduced. 

As for national conservation areas, which aim to protect regional natural ecosystems and resources, the 

regulation led to decrease in agricultural LUCC due to a restriction of land use activities (Kim, 2006). Forest 

expansion in agricultural areas was more influential in neighboring forest areas, reflecting natural 

conversions of abandoned farms. In contrast, deforestation near agricultural and urban lands also occurred 

in the region, and stemmed from an expansion in highland agriculture which removed marginal forest on 

areas with lower slope and elevations. 

 The later period (1990-2000), which saw some reforestation, has similar explanatory factors 

although different LUCC patterns were found. Agricultural area was converted to forest in higher summer 

rainfall areas to prevent flood damage (Kim and Lee, 2011). As for topographical factors, there is a different 

tendency compared to the earlier period, reflecting agricultural expansion in gentle sloped and smooth 

mountainous areas for highland agriculture, especially in the hotspot areas. In response, forest growth 

occurred at areas with higher elevation and slope within the boundary of natural conservation areas. Distance, 

neighborhood and regulation policies had patterns similar to those of the earlier period.  

 After extraction of LUCC driving factors and scenario development, we developed a model 

framework to combine CA and SWAT to estimate LUCC and water-related ES under different 

implementation of conservation scenarios in paper 2. We found that urban expansion is a common 

phenomenon regardless of policy instrument after deregulation of development restriction zones for local 

development plans (Jeon et al., 2013). The decrease in rice paddies is slow because they are cultivated in 

suitable agricultural areas that are not targets of conservation policies. Unlike rice paddies, dry fields are 

mainly located in steep slope areas, which are target areas of conservation policies. All policies enhance 
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water-related regulating ES (soil erosion and water quality) without trade-offs in provisioning ES (fresh 

water quantity) due to a maintenance of water balance in the region regardless of LUCC. However, we 

found different policy impacts on LUCC depending on the type of policy instruments. Increased erosion 

control and water quality stem from areas where the forest protection policy is in place rather than the 

reforestation policy. We also found that policy responses varied with spatial scale, especially in the highland 

agricultural sub-watershed which were hotspots of water pollution. Unlike the general pattern for the entire 

watershed area, with moderate forest regrowth and agricultural declines, two headwater catchments showed 

agricultural expansion, which decreases regulating ES. Efficiency of the policies is also different in those 

areas, while reforestation policy is more effective at restraining agricultural expansion and restoring water 

purification capacities and erosion prevention. When a strict protection policy (covering both reforestation 

and protection) is adopted, water-related ES are more significantly improved than under singular 

conservation policies, regardless of their spatial scale. Although our results demonstrate the efficiency of 

conservation policies, these policies have limited success in achieving conservation objectives. These 

policies result in only moderate improvement of LUCC and ES in the Mandae watershed, where the largest 

water quality degradation occurred than in another hotspot and across the entire watershed area. Although 

reforestation is more efficient than protection in the area as mentioned above, financial resources and 

farmers' participation are practical problems, which limit reforestation to 50 ha per year. To develop better 

management plans, it is necessary to concentrate reforestation incentives in the headwater catchment as a 

concentration strategy to improve policy efficiency. 

 After the development of a modeling framework for the watershed, we focused on farmers decision-

making processes and agricultural LUCC in the Maendae stream area where most water pollution is 

generated. We develop an ABM of agricultural LUCC and crop choice based on farmers' and spatial 

characteristics and then we simulate annual soil erosion rate according to changes of agricultural LUCC in 

paper 3. When we integrated farmers' survey data, which was analyzed by Poppenborg and Koellner (2013), 

and spatial data, as driving factors of farmers' decision in model development, we found different driving 

factors of agricultural LUCC although we conducted the same MNL analysis, which leads to different 

simulation results. To control uncertainty of the ABM, we conducted uncertainty and sensitivity analyses to 

assess model performance for estimating driving factors (Ligmann-Zielinska et al., 2014). In our model, 
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simulation for rice paddies has lower uncertainty than for other crops, which are located in suitable areas 

for agriculture and guarantee stable incomes (Jun and Kang, 2010). This was also found in sensitivity 

analysis: while rice paddies are sensitive to changes in policy factors (subsidy, capacity building program 

(CBP), and legal legislation), annual and perennial crops have higher uncertainty, while rice paddies have 

stable outputs. Farmers' attitudes toward water quality is the dominant factor for perennial crop choice, more 

than their attitudes toward soil erosion, which is different from findings in other research (Poppenborg and 

Koellner, 2013). 

 We simulated annual soil erosion rate resulting from farmers' crop choice as the spatial impact of 

agricultural LUCC on regional ES in areas where water quality is the most important environmental issue. 

The annual soil erosion rate is 32.7 ton/ha/year in the baseline scenario, which is higher than indicated by 

earlier research (Poppenborg, 2014). This is because our model included fallow land areas, which cause 

more severe soil erosion than in cultivated farmlands. Our results also indicated that perennial crops could 

not reduce soil erosion as effectively as we expected, which is different from Poppenborg (2014). Because 

estimation by RUSLE is based on the values of input factors, we adopted empirical results for the site from 

Arnhold et al. (2014). The values for C factors, which reflect land and crop types, did not varied with crop 

types and thus it estimates similar soil erosion rates regardless of crop changes. However, we did not have 

site-specific C factor values for fallow lands and ginseng farms although they are significant change factors 

for soil erosion (Lee and Jeon, 2009; Jun and Kang, 2010). Moreover, effects of ginseng farms on soil 

erosion are still problematic because ginseng farms, which are regarded as a mitigating factor (Lee and Jeon, 

2009), could not reduce soil erosion due to lack of protection facilities on these farms (Cho, 2015). Because 

effects of ginseng farms on reducing soil erosion on the research site are still uncertain, we set higher 

variation values on ginseng farms, which increased the uncertainty of soil erosion results. 

 We applied an ABM based on different land management scenarios for the region and compared 

them to better understand spatial impacts of farmers' decisions on agricultural LUCC. We found that farmers' 

changes were not matched with a magnitude of spatial changes in the model although we did not include 

farm size in the model. Rice farmers with large farms tend to change their crops more than farmers with 

small farms, while annual crop farmers with large farms adhere to their current annual crops (Kim, 2014). 

Simulation results varied with fallow land management options, which caused more severe soil erosion than 
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cultivated areas. Annual farms near forests were converted to fallow lands when we applied a scenario of 

farm abandonment by farmers with low capacity to maintain their farmlands (Rhee et al., 2009). Although 

the magnitude of fallow lands decreases in the catchment, fallow lands in marginal forests with steeped 

slope areas remain as fallow lands, which causes severe soil loss unlike other areas. Therefore, it is necessary 

to manage these marginal lands without agricultural activities, such as the reforestation policy, which 

focused on conversion of these marginal lands to forests. In the case of ginseng farm expansion, expansion 

of ginseng into marginal fallow areas reduced soil erosion and led to an expansion of perennial crops because 

of neighboring effects of farmers' crop decisions. However, adoption of ginseng farm expansions should be 

applied carefully because ginseng farms have uncertainty to reduce soil loss due to lack of management 

facilities. 

1.4.2 Strengths and weaknesses of the modeling framework 

 We applied MNL to extract driving factors of LUCC from spatial data, which quantified the 

explanatory power of driving factors. However, this approach can not reflect underlying factors of LUCC. 

Apart from the driving factors of LUCC as quantified from MNL, there are underlying factors reflecting 

regional socio-economic characteristics. Because these factors are difficult to identify from a statistical 

analysis, we described these factors from literature reviews and qualitative research, which could be applied 

in policy scenarios (Abildtrup et al., 2006). Urban growth in the downstream area accelerated after 

deregulation and construction of roads and bridges to solve accessibility problems (Choi et al., 1998; Lee, 

2009), which are not found in MNL with distance and neighborhood factors. Land abandonment stemmed 

from various factors after the Soyang dam construction. Soyang Lake worsened agricultural conditions by 

generating local climate change and increasing the logistic cost of agriculture (Choi, 2001). Unlike farmland 

abandonment in the areas near the lake, highland agriculture accompanied with deforestation in upstream 

areas has increased for economic and political reasons (Choi et al., 1998). Although MNL only reflects 

limited socio-economic and political factors in the analysis processes, it quantifies possible driving factors, 

which could be adopted into our modeling framework and applied as alternative scenarios into the 

framework. We tried to estimate impacts of LUCC on regional ES through the integrated modeling 

framework in paper 2 with alternative conservation policy scenarios to improve provisioning and regulating 

ES in the watershed. To reflect real world changes, we validated both CA and SWAT performance and then 
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used both models to capture the spatial distribution of LUCC and their impacts on hydrological ES. 

Although our models still have output uncertainties due to large variability, they can reflect real-world 

changes from historical LUCC and water quality data. However, our models still have several problems 

such as limited incorporation of socio-economic LUCC driving factors and simplification issues in the 

model setup. Crop prices and farmers' perceptions are significant driving factors of agricultural LUCC (Lee 

et al., 2016), which were not considered here. Among various ES indicators, we only consider simplified 

water-related ES that cover fresh water provision, erosion prevention and water quality, which do not 

estimate other ES, such as food provision and their trade-offs with water-related ES (Maes et al., 2012; 

Nelson et al., 2009; Raudsepp-Hearne et al., 2010).  Besides these, simplification of crop types into dry field 

areas due to a limitation of data and spatial scale, cannot reflect trends on complex crop portfolios such as 

expansions in fruit orchards or ginseng farms (Jun and Kang, 2010; Lee et al., 2016; Seo et al., 2014).  

 To solve limitations on farmers’ decision-making and simplification of complex LUCC processes, 

we focused a hotspot sub-watershed and tried to develop a modeling framework for the decision-making 

processes and their effect on agricultural LUCC and soil erosion rate as a spatial response of LUCC. The 

model indicated the influence of farmers' individual decision-making based on personal perceptions and 

spatial characteristics of their farmlands. Because this model focused on the hotspot of water pollution, we 

could integrate farmers' decision-making processes into the model. We conducted a validation process with 

VBSA and used empirical data and values to develop a sophisticated model. However, our model still has 

several problems. We used land suitability index (LSI) values and farmers’ intent for fallow land decisions, 

but we use the same the LSI function and value regardless of crop types. Additionally, we underestimate 

slope effects because we adopted criteria from earlier research, which mostly did not emphasize slope 

steepness. In a decision-module on farmers' crop choice, we do not reflect economic factors properly 

because our MNL functions did not show any explanatory powers for the money availability. Moreover, we 

only consider local farmers' decision-making and ignore land owners from outside the region, although land 

ownership is a significant driving factor of agricultural LUCC. To reflect the realistic LUCC in the region, 

decision-making process on the fallow and ginseng farm changes should be improved. Although we have 

several tasks that need to be performed to improve model performance, the model is useful to estimate 
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spatial agricultural LUCC and soil erosion under different land management plans, which will help with the 

regional decision-making processes.  

 

1.5 Conclusion 

In this thesis, we developed a modeling framework to estimate LUCC impacts on regional ES under different 

land management policies in a mountainous watershed in South Korea. We found LUCC driving factors 

and neighborhood values and quantified explanatory powers on changes using the MNL method. From this 

analysis, we could explain spatial determinants of LUCC on major LC types. When we compared LUCC 

and their factors, we found causal relationships between LUCC and their factors. Furthermore, we found 

underlying factors of changes, which could not be extracted from statistical analysis. These extracted factors 

were used in simulation models of LUCC and then they were used to calculate transitional rules of LUCC 

models, while underlying factors are used to develop policy scenarios. We developed integrated modeling 

approaches, which combined LUCC and hydrological estimation of water-related ES. The model simulated 

and evaluated the efficiency of environmental policy instruments in a mountainous watershed. Although 

there are still several constraints, such as limited use of economic factors and simplification of ES and land 

use types, this modeling framework shows the efficiency of environmental policy instruments, primarily 

forest protection and reforestation policies to improve water-related ES in the region. Additionally, we 

focused on the sub-watershed where typical highland agriculture is conducted and water quality is severely 

degraded. We modeled the effects of individual farmers' decision-making processes on agricultural LUCC 

and estimated spatial impacts on regional ES under various land management scenarios. This model 

simulates spatial distribution of LUCC and their impacts on regional ES with respect to water-related issues. 

Agriculture and forest areas played an important role in improving or worsening water quality in the 

watershed area according to the simulation results of the model, and thus should be controlled by appropriate 

management plans. Environmental policies based on spatial regulation could encounter resistance from local 

stakeholders because the watershed areas are already heavily regulated for environmental and security 

purposes. As mentioned above, reforestation policies such as PES cannot achieve the aim of the policy, thus 

it is necessary to improve the range of the policy to match standards of local stakeholders. We need to better 

understand individual farmers' decision-making and their inducement to manage farmlands more 
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environmental-friendly. However, we still left an application of economic factors in the model although 

these factors are important in farmers' decision-making. Environmental policies should, therefore, be 

accompanied by economic compensation for agricultural LUCC and technical approaches to prevent soil 

erosion at the farm level under current agricultural systems in the watershed. Additional research is 

necessary to find economically and environmentally sustainable policies and to manage trade-offs between 

human and environmental systems to strengthen the model. Because LUCC in the watershed result in 

environmental impacts on downstream areas as benefiting areas of ES (Liu et al., 2015), integrated 

approaches should consider areas beyond the boundary of the watershed environment. These modeling 

frameworks thus could expand their spatial scale and update individual decision-making and interactions 

with stakeholders, including farmers, in upper stream areas and agricultural customers in downstream areas. 
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This thesis is composed of three studies, each in a separate manuscript. The first manuscript was published 
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publication. 
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Abstract 

Identifying patterns and drivers of regional land use changes is crucial for supporting land management and 

planning. Doing so for mountain ecosystems in East Asia, such as the So-yang River Basin in South Korea, 

has until now been a challenge because of extreme social and ecological complexities. Applying the 

techniques of geographic information systems (GIS) and statistical modeling via multinomial logistic 

regression (MNL), we attempted to examine various hypothesized drivers of land use changes, over the 

period 1980 to 2000. The hypothesized drivers included variables of topography, accessibility, spatial 

zoning policies and neighboring land use. Before the inferential statistical analyses, we identified the 

optimal neighborhood extents for each land use type. The two archetypical sub-periods, i.e., 1980–1990 

with agricultural expansions and 1990–2000 with reforestation, have similar causal drivers, such as 

topographic factors, which are related to characteristics of mountainous areas, neighborhood land use, 

and spatial zoning policies, of land use changes. Since the statistical models robustly capture the mutual 

effects of biophysical heterogeneity, neighborhood characteristics and spatial zoning regulation on long-

term land use changes, they are valuable for developing coupled models of social-ecological systems to 

simulate land use and dependent ecosystem services, and to support sustainable land management.  
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2.1 Introduction 

Land use and land cover change (LUCC) is regarded as one of the prime determining factors of global 

environmental change, with significant impacts on ecosystems, climate and human vulnerability (Foley et 

al., 2005; Verburg et al., 2011). Human impacts on ecosystems mainly occur via land-cover conversion, 

land degradation or land-use intensification (Lambin et al., 2003). The impacts of LUCC are probably most 

serious in mountain regions, which are centers of global biodiversity and provide essential services for at 

least half of the global population (Körner and Ohsawa, 2005). Despite the fact that mountain ecosystems 

are changing rapidly in response to diverse natural and anthropogenic drivers and are characterized by high 

social-ecological heterogeneity, so far LUCC studies have not been as focused on mountain regions when 

compared to other areas for LUCC process (Körner and Ohsawa, 2005). Many LUCC researches for 

mountain regions focused on the land abandonment in upland areas, though other phenomena are also 

important LUCC processes in mountainous areas (Monteiro et al., 2011). 

 In land-use studies, the main goals include finding the biophysical and human drivers of land-use 

and land-cover change, and understanding how they affect the structure and function of terrestrial systems 

(Rindfuss et al., 2004). Drivers of LUCC are defined as proximate and underlying factors (Geist and Lambin, 

2002). Underlying driving factors such as the systemic and structural conditions of human-environmental 

relations, reflecting accessibility to land, labor, capital, technology and information, lead to proximate 

causes (human activities and immediate actions) of LUCC at specific levels (Lambin et al., 2003). However, 

the make-up of driving factors for LUCC differs across specific regions (Kasperson et al., 1996; Schneider 

and Pontius, 2001). Moreover, the same driving factors may generate different LUCC patterns in different 

locations. Studies on LUCC therefore need to account for spatial characteristics at the landscape scale 

(Verburg et al., 2010). Consequently, one pertinent research question is how various driving forces and 

actors cumulatively affect LUCC in a given spatial context. 
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 Models of LUCC could represent various aspects of complexity of land-use systems. These models 

analyze the causes and consequences of LUCC to better understand the functioning of the land use system, 

thereby supporting land use planning and policies (Verburg et al., 2004c; Anselme et al., 2010, Perez-Vega 

et al., 2012). These models make it possible to understand LUCC by using selected variables, while trying 

to predict both the location and magnitude of changes (Veldkamp and Lambin, 2001). In particular, 

descriptive LUCC models, based on spatially explicit influential statistics using regression analysis, explain 

relations between LUCC and driving factors to understand underlying causalities assuming existing theories 

and hypotheses (Schneider and Pontius, 2001). Multinomial logistic regression (MNL) analysis is a widely 

used statistical approach to identify significant causal factors of LUCC with various types of independent 

variables reflecting socio-economic and environmental factors (Rutherford et al., 2007; Müller and Zeller, 

2002; Monroe et al., 2004). Once validated empirical statistical models can predict future LUCC patterns in 

response to different changing scenarios of selected driving factors, these models are helpful for informing 

land use planning practice and policy (Veldkamp and Lambin, 2001; Serneels and Lambin, 2001; 

Washington et al., 2010). 

 Given the high social-ecological heterogeneity and diverse natural-anthropogenic drivers of 

changes in mountain ecosystems (Körner and Ohsawa, 2005), a comprehensive understanding of the 

potential drivers of LUCC is currently lacking in existing studies of mountainous areas. While much 

research focuses on specific land-use transitions such as urbanization, urban sprawl, or (de)forestation, 

analyses of multi-directional land-use conversions are comparably rare, despite their importance for guiding 

integrated regional planning. In a heterogeneous mountain environment, spatial interactions, such as the 

effects of neighborhood land-use patterns on LUCC at particular locations, are important drivers (Verburg 

et al., 2004a). To our knowledge no LUCC studies in Asia-Pacific mountainous areas have considered these 

spatial interactive effects. So far there have been only a few LUCC studies in the European Alps that have 

considered neighborhood effects (e.g., Rutherford et al. (2007)). However, these studies are still limited to 

the assumption of a fixed neighborhood extent (i.e., 5 × 5 pixels) given that the optimal extent may vary 

according to land-use types and regional conditions (Verburg et al., 2004a; Verburg et al., 2004b). 

 So far, research on LUCC in South Korea has focused on spatio-temporal patterns and causal factors 

of urban expansion, in part due to rapid urbanization since the 1960’s. Mountainous areas, which cover over 
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60% of the country, were excluded from these studies, with the exception of some forest cover change 

research. These studies were conducted with the aim of identifying the probable causes of LUCC using 

logistic regression analysis (Kim, 2002; Kim et al., 2007b), or to predict future LUCC based on existing 

prediction models that were built on the identified causation patterns of urban areas (Kim et al., 2007a; Lee 

et al., 2011). Land-use studies in rural areas mainly focused on patterns of spatio-temporal changes to 

understand urbanization processes at rural scales (Hwang and Ko, 2007; Ji and Yeo, 2007; Gao and Kim, 

2011). However, LUCC in rural mountainous areas are significant and relevant issues in South Korea, 

leading to significant effects on ecosystem functioning through, e.g., soil and water pollution by chemical 

fertilizers (Kim et al., 2001). Rural mountainous areas have experienced spatially concentrated LUCC and 

forest transitions due to various driving forces such as regional policies, population migration and changes 

in rural industrial structures (Bae et al., 2012). Moreover, mountainous areas in East Asia have experienced 

reforestation phenomenon based on governmental planning and zoning policies since the 1970’s (Bae et al., 

2012; Fang et al., 2001). Although these policies were helpful in maintaining forest resources, there were 

some environmental problems from intensive agricultural activities in these regions. Currently, although 

understanding of LUCC processes in agricultural mountainous areas in East Asia are necessary to solve 

environmental problems based on human-induced land-use, such issues are often poorly covered or missing 

in land-use studies. 

 This paper aims to quantify spatio-temporal patterns of LUCC and their driving factors in a 

mountainous watershed of South Korea during archetypical periods of land transition (in sensu Foley et al., 

2005). The period 1980–1990 is characterized by agricultural expansion, deforestation and moderate 

urbanization. In contrast the period 1990–2000 shows an agricultural contraction, reforestation but severe 

urbanization. These two periods represent typical land transitions of the region along an economic 

development path. To fill the gaps in current understanding of such LUCC in mountainous areas, we 

examined the effects of neighborhood land-use and environmental factors on LUCC along with a wide range 

of other socio-ecological explanatory factors. The general aim is to support regional land-use planning 

policy and practice, as well as the development of integrated LUCC in the case study region or other similar 

areas. 
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2.2 Method 

2.2.1 Study area 

 The So-yang River is located in the north-eastern part of the Gangwon province, near the border 

between South and North Korea (Figure 2.1). This river is a major tributary of the Han River which 

originates in North Korea and flows across from North Korea to Chun-cheon in South Korea. The river is 

regarded as an important source of drinking water for the Seoul metropolitan area and as an important 

military site near the border of North Korea. 

 It is difficult to utilize land resources in an efficient way due to geographical characteristics of the 

region as it is also strongly regulated for environmental (water regulation) and security reasons. Forests, 

which cover 90% of the land area in the region, although mainly publicly owned, have been excluded from 

regional development plans. Due to natural (mountainous topographic) and social (regulation policies) 

constraints, land-uses activities have focused on riverside areas where there are more opportunities to 

develop agricultural and industrial facilities than forest areas with overlapping land regulations (Kim, 2006). 

These limitations on regional development made people immigrate to other urban areas, to find income 

sources and jobs, and eventually have withered regional economies (Kim, 2006). Moreover, dam 

construction in the So-yang River worsened agricultural conditions, with local climate changes and 

accessibilities to infrastructures adding further to the difficulties (Choi, 2001). Population in the region 

decreased following the dam’s construction and urban migration trend in South Korea since 1960’s, this has 

generated fragmented land use, such as abandoned houses and farm areas (Yoon, 2010). While population 

and residential areas have decreased in rural upstream counties, there has been urbanization of residential 

areas and increased sprawl of tourism facilities downstream in Chun-cheon city (Yoon, 2010). Highland 

farming has expanded since the 1970’s to produce commercial crops in agricultural areas and has become a 

major income source for farm households (Choi, 2001). One of the most serious environmental problems 

related to LUCC by human activities arose in the summer of 2006. During that summer, typhoons and heavy 

downpours of rain lead to a significant decrease in water quality by siltation and water pollutants from 

agricultural land. Highland agriculture, where soil is reconditioned to retain soil fertility, is considered as a 

major source of soil erosion, soil degradation and water pollution (Lee, 2008; Thanh Nguyen et al., 2012). 

In recent years, regional governments have tried to foster organic management of fields, wary of soil and 
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water pollution caused by highland-farming. They offered incentives to people that returned to organic 

farming (Hoang and Thanh Nguyen, 2013). By efforts to improve housing and recreational facilities in the 

area, some towns have recently experienced population growth (Yoon, 2010). In this situation, it is necessary 

to understand the characteristics of underlying LUCC and to identify solutions for future environmental and 

land-use plans. 

	

Figure 2. 1 So-yang River Basin in South Korea, Study area (128°19′22″~128°12′11″ N, 

37°53′53″~37°58′50″ E). 

 

 

2.2.2 Multinomial logistic regression modeling of land-use changes 

MNL is an extended form of binary logistic regression used widely in LUCC studies (Rutherford et al., 

2007; Müller and Zeller, 2002). MNL allows multiple categories as dependent variables that reflect land-

use types, while independent variables that reflect LUCC determinants are normally continuous variables 

(Lesschen et al., 2005). The results from parameter estimation indicate probabilities of change for specific 
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land-use types related to a reference category of unchanged areas, the sum of probabilities for each LUCC 

are 1 (Overmas et al., 2007). MNL models estimate the direction and intensity of the dependent variables 

used as explanatory variables by predicting a probability outcome associated with each category of the 

dependent variable. The probability that Y = h can be stated as: 

1 2 = ℎ = 45′678

45′679:
9;<

                            (2.1) 

where m denotes the LC classes used for analysis, β is a vector of estimation parameters and xl are the 

exogenous variables for all Y and at all locations l. This equation holds, if the error terms are independently 

and identically distributed as log Weibull (Lesschen et al., 2005; McFadden, 1973). Normalizing all 

probabilities yields a log-odds ratio (Lesschen et al., 2005; Greene, 2012): 

ln ?78
?79

= @ ′A(BC − BE)                                         (2.2) 

The dependent variable is expressed as the log of the odds of one alternative, relative to a base alternative. 

If model assumptions hold, the maximum likelihood estimators are asymptotically normally distributed, 

with a mean of zero and a variance of one for large samples. The significance of estimators is tested with z-

statistics, which are reported in the output tables. Likelihood-ratio (LR) tests compare the log likelihood 

from the full model with that of a reduced model omitting explanatory variables. To test the hypothesis with 

(m-1) parameters, a likelihood-ratio and Wald test can be used (Müller and Zeller, 2002). 

 We used MNL models of multi-directional conversions of urban, forest and agricultural types 

during the periods of 1980-1990 and 1990-2000 to determine patterns and factors of LUCC phenomena 

reflecting human-environmental interactions (Figure 2.2). Urbanizations and agricultural expansions are 

typical examples of human-driven LUCC that have altered the landscape and ecosystems drastically 

(Guerschman et al., 2003). Forest change is also regarded as a significant LUCC process because it is the 

dominant cover type in the region and central to the artificial LUCC in the marginal areas.  

 Validations of models are evaluated using the area under relative operating characteristics (ROC). 

The area under the ROC curve (AUC) is an index of discrimination accuracy that can validate possibilities 

of LUCC independent of any specified quantity of LUCC. The index is 1 when the model has perfect 
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assignments to probability of LUCC. If ROC is 0.5 the model has random probability. If the index is higher 

than 0.5 the model performs better than chance (Pontius and Schnieder, 2001; Temme and Verburg, 2011). 

 

Figure 2. 2 Three types of multi-directional conversions for three corresponding multinomial logistic 

regression (MNL) models (Note: Each model will be considered in two periods: 1980–1990 and 1990–2000. 

(Category with * is used as reference category reflecting unchanged land). 

 

2.2.3 Explanatory factors, their causal hypotheses and data sources 

Land-use maps of 1980 produced from Landsat MSS with a 60 m × 60 m resolution and 1990 and 2000 

produced from Landsat TM satellite imagery with a 30 m × 30 m resolution are obtained from the website 

of the Korean Water Management Information System (WAMIS, 2012). To determine patterns and factors 

of LUCC, urban, forest and agriculture land-cover types are selected in this research. Pixels that are 

classified as water are excluded prior to LUCC analyses to simplify extraction of correct land-use types. 

Variables on LUCC are diverse and often selected differently according to their expected effect on LUCC 

(Corbello-Rico et al., 2012). Environmental variables are mapped at a resolution of 90 m and produced by 

DIGEM 2.0 software (Conrad, 1998). Rainfall data are interpolated from weather stations data using an 

Inverted Distance Weight (IDW) method. Distance variables are calculated based on digital base maps, all 

done by ArcGIS 9.3’s spatial analyst tool. In this research, the environment, distance, neighborhood and 

population variables reflecting various characteristics of the region are hypothesized as explanatory factors 

of LUCC. 

 Rainfall is selected as an expected climate LUCC factor, because rainfall fluctuation and amounts 

generate changes in crop yields and land-use practices (Veldkamp and Fresco, 1996). In this research, we 
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used summer rainfall, because rainfall is centered in the summer monsoon and typhoons, generating 

significant flood damage to agricultural and urban areas. Among independent variables, geomorphologic 

factors reflecting topographic conditions are important for determining LUCC. Elevation is regarded as a 

significant LUCC factor, as while lower elevation areas along rivers are generally more suitable for human 

settlements and agricultural activities than higher areas (Hall et al., 1995). Slope is important for determining 

factors of LUCC especially in mountainous areas, because residential areas are characterized by lowest 

slope and agricultural lands are organized around the residential areas with gentle slopes (Mottet et al., 

2006). Upslope contributing area, reflecting runoff and flow of water, is selected as a factor representing 

potential and risk of agricultural production (Le et al., 2008). Wetness index is also an important variable 

and represents temporary spatial flow of water bodies in the event of rain. It is selected to determine 

hydrological influences on LUCC and interactions between hydrology, soil, climate, and land-use 

(Blanchard and Lerch, 2000). Distance to urban areas, roads, and streams as natural and artificial LUCC 

factors are set as LUCC factors because anthropogenic land-uses largely take place near roads and existing 

urban areas (Millington et al., 2007), as well as near river systems. Interactions between neighboring land-

use types are major LUCC factors in many land-use models which influence decision-making processes of 

land-users and land-use policies. As patterns of LUCC have self-organizing characteristics, such as 

urbanization, neighborhood interactions are considered as major factors of LUCC (Verburg et al., 2004a). 

Moreover, phenomena of LUCC such as urbanization, forestation and agricultural expansion are likely to 

occur in boundary areas. For these reasons, enrichment factors (EF) to reflect neighborhood interactions are 

selected as expected driving factors. Human population is also a significant driving factor of LUCC. 

Urbanization and agricultural expansion are driven by population growth, while population changes affect 

regional socio-political and economic conditions (Meyer and Turner, 1992). Land regulation policies as a 

form of land zoning are significant LUCC factors, causing land use and environmental changes such as 

mitigation of deforestation (Dewi et al., 2013). In the So-yang River Basin, there exist many overlapping 

zoning policies to protect mountain and water sources (Kim, 2006). We selected two zoning policies, one is 

a national conservation area, which was set to protect water sources and mountainous ecosystems and the 

other is a national park which was established to manage mountain resources under strong regulation. These 

two zoning policies are merged into one regulation variable as a categorical variable in our model, where a 

value of 1 is natural conservation areas designated in 1975 and value of 2 is Sol-ak National Park designated 
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in 1970, which means stronger land regulation to protect forest resources. These expected driving factors 

are hypothesized as expected determinants of LUCC (Table 2.1). 

	

Table 2. 1 Selected explanatory variables, their hypothesized effects, and data sources. 

Variables 
Abbreviation Hypothesized effect on conversion to Data Source 

Urban Forest Agri 

Biophysical      

Summer rainfall (mm) S_RAIN ― + ― WAMIS1 

Altitude (m) ALT ― + ― Aster GDEM 

Slope (°) SLO ― + ― Conrad (1998) 

Upslope contributing area (m2/m) UPS ― + ― Conrad (1998) 

Wetness index (= in (UPS/tan(SLO))) WET ― + ― Conrad (1998) 

Distance      

Distance to road (m) D_ROAD ― + ― ITS2 

Distance to stream network (m) D_STR ― + ― WAMIS 

Distance to urban area (m) D_URBAN ― + ― WAMIS land-use maps 

Neighboring land-use3      

Enrichment factors of urban EF_URBANi4 + ― ― LUCC maps 

Enrichment factors of others EF_OTHERi + ― + LUCC maps 

Enrichment factors of forest EF_FORESTi ― + ― LUCC maps 

Enrichment factors of agriculture EF_AGRIi ― ― + LUCC maps 

Land regulation policy      

Regulation Zone REG5 ― + ― WAMIS 

Population       

Population density (people/km2) P_DENS + ― + Statistical data 

1. WAMIS (Water Management Information System) in South Korea 

2. ITS (Intelligent Traffic System) in South Korea 

3. see section 2.4 for detailed explanation 

4. where i = optimal neighborhood size of each land-use type (see section 2.4 for detailed calculation procedure) 

5.REG=0 is no protection mode applied as a redundant variable, REG=1 is natural conservation code applied from 

1971, REG=2 is national park code applied from 1970 
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2.2.4 Neighborhood interactions of land-use 

Neighborhood relationships to land-uses are regarded as important LUCC factors. Neighborhood relations 

are spatial interactions with adjacent areas who’s influence diminishes with distance (Barredo et al., 2003; 

Geertman et al., 2007). To analyze and quantify neighborhood characteristics of LUCC, we used the 

concepts and methods of land-use EFs, as proposed by Verburg et al. (2004b). The EFs refer to the 

abundance of a land-use type in the neighborhood of a specific raster cell, determined by the occurrence of 

the specific land-use type in the entire area (Verburg et al., 2004b; Hallin-Pihlatie, 2009; Pan et al., 2010). 

The equation for EFs is as follows: 

F",G,H =
IJ,K,L/IK,L
NJ/N

                             (2.3) 

where Fi,k,d characterizes the enrichment of neighborhood d at location i with land-use type k. The shape and 

distance of the neighborhood from the central cell i is identified by neighborhood d (Figure 2.3). The result 

for each cell i means enrichments factors for the different land-use types k. This calculation is repeated for 

varying neighborhood sizes at different distances d. After this calculation, the average neighborhood 

characteristic for a specific land-use type l is calculated by extracting the average of the EFs for all grid cells 

into a certain land use type l. 

F",G,H =
&
N

F",G,H"∈P                              (2.4) 

where L is the set of all locations with land-use type l and Nl, the total number of grid cells within this set. 

In this study, we used ArcGIS based calculations of EFs as done by Hallin-Pihlatie (2009). The EFs are 

presented on logarithmic scales to obtain equal scales for land-use types that occur more than average in the 

neighborhood (EF > 1) and less than average in the neighborhood (EF < 1). When the values are close to 0, 

there are no neighborhood effects for land-use and land cells are randomly distributed compositions of a 

random selection of grid-cells regardless of neighborhood effects. After calculating neighborhood EFs, 

optimal neighborhood extent to give highest level of neighborhood explanation is selected for each land-

use type (Verburg et al., 2004b). As optimal neighborhood sizes are varied for each land-use type, different 

neighborhood sizes are considered in this model. 
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Figure 2. 3 Configuration of neighborhood size (advised from Verburg et al., 2004b). 
 

2.3 Results 

2.3.1 Temporal land cover changes between 1980 and 2000 

In the first period from 1980 to 1990, the study area experienced growth in urban and agricultural areas as 

well as loss in forest areas. Although urban classes had low shares in the region, the rate of change in these 

classes is higher than for other land-use classes. Agricultural land-use increased in this period where forest 

remained constant as can be seen in (Table 2.2). LUCC patterns between 1990 and 2000 show differences 

when compared to the earlier period. While urban and forest areas have increased, agricultural land 

decreased in the later period. These LUCC mainly occurred due to urban expansions in the Chun-cheon area. 

Forest changed to a small degree under the influence of zoning of national protection areas, which made it 

difficult to utilize forest resources. 

Table 2. 2 Land-use changes between 1980 and 2000. 

Land-cover 
Area (km2) Net Change 80-90 (% of 

initial area 

90-00 (% of 

initial area 1980 1990 2000 80-90 (km2) 90-00 (km2) 

Urban 8.16 11.41 19.33 3.25 6.71 39.78 52.87 

Forest 2428.68 2411.70 2430.82 -16.97 19.10 -0.70 0.79 

Agriculture 108.01 119.81 113.03 11.80 -6.78 10.93 -5.66 

Others 18.15 20.08 16.81 1.93 -6.24 10.62 -27.12 
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2.3.2 Neighborhood factors of land-use changes 

To understand interactions of EFs with LUCC, we calculated neighborhood EFs of pixels with land-cover 

changes in ArcGIS. EFs of changing areas of specific land-use types between 1980 and 1990 are presented 

in Figure 2.4. Most land-use types with neighborhood factors tend to become less influenced with increasing 

distance to the central cell. From this result, it was apparent that urban and agricultural LUCC in these 

regions are related to existing urban areas, while forest expansion is mostly situated near land-use types 

such as grasslands and bare soil. All considered land-use types show negative correlations with forest EFs, 

which are reflected in LUCC. These occur less frequently in mountainous areas with forest, and also for 

forest expansions. These tendencies are also present in the next period between 1990 and 2000. New urban 

areas are located near the neighboring areas of existing urban lands, while forest and agricultural growths 

occur in the neighborhood of other land types and urban areas as seen in Figure 2.5. LUCC in this period 

also appeared in the areas dominated by forest, which have similar EFs of distance and neighboring areas 

in comparison with the earlier period. 



54	
	

	

Figure 2. 4 Temporal land-use changes between 1980-1990(a) and 1990-2000(b) in the So-yang River Basin. 

 

 Compared to urban and agricultural land-use, new forest areas are more easily affected by the 

neighboring land-use as seen in Figure 2.5. Hence, EFs of all land-use types to new forest areas reach 

threshold points with drastic decreases of neighboring EFs. The EFs with the highest values for each land-
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use are used as boundaries determining neighborhood land-use variables in logistic regression analysis. In 

many cases, neighborhood relations are visible for the immediate neighbors. With these nearest neighbors, 

EFs with neighborhood size (7 × 7 grid size) are used in logistic regression to represent influences of 

neighboring urban lands to new urban and agricultural areas, and the influence of neighboring forest to new 

agricultural areas in the first decade. In the later period, EFs with neighborhood size (5 × 5 grid size) are 

added to represent influences of both neighboring forest and agricultural areas to new agricultural areas and 

neighboring urban areas to new urban areas. 

 

	

Figure 2. 5 Enrichment factors (EF) of land-use changes between 1980-1990 (a) and 1990-2000 (b) 
 

2.3.2 Land-use change factors from logistic regression 

To extract LUCC factors and quantify the influence of explanatory variables, MNL models are applied. The 

statistical analyses are conducted for all grid cells in the region. The results of logistic models are illustrated 

for each land-use type in Table 2.3, Table 2.4, Table 2.5, Table 2.6, Table 2.7 and Table 2.8. These models 

are applied to areas with a high probability of LUCC between two time periods. Odds ratio values indicate 

changes in odds of LUCC upon changes on independent variables (explanatory variables) (Verburg et al., 
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2004a). The values between 0 and 1 indicate that an increase in the values of independent variables leads to 

a decrease in possibility of LUCC. On the contrary to this, values above 1 indicate that an increase in values 

of independent variables leads to an increase in possibility of LUCC. (Verburg et al., 2004a). In statistical 

results, environmental and neighborhood variables have higher or lower odds ratio values than distance 

variables with values around 1. This result could be interpreted as LUCC are more likely influenced by 

changes on environmental and neighborhood variables. These logistic models have good explanatory ability 

with high degrees of AUC values with 0.751–977 (see Table 2.3, Table 2.4, Table 2.5, Table 2.6, Table 2.7 

and Table 2.8), which mean that LUCC could be explained by independent variables (Schneider and Pontius, 

2001; Verburg et al., 2004a). These results make it possible to simulate locations of LUCC areas based on 

the independent variables used in this study.  

 Results of urban change models are shown in Table 2.3 and Table 2.4. Major driving factors 

affecting urban conversion are elevation and neighboring urban areas with significant probabilities. Urban 

areas with high elevation and small patches are easily converted to other land-use types. In the case of urban 

LUCC, environmental factors like elevation and slope are less affected by urban changes when compared 

with other LUCC. 

Table 2. 3 Factors of urban land-use changes using logistic regression (1980-1990) 

Variable Urban to others Urban to forest Urban to agriculture 

 Coefficient (B) Odds ratio Coefficient (B) Odds ratio Coefficient (B) Odds ratio 

S_RAIN .013** 1.013 -.002 .998 -.005 .995 

ALT .010** 1.010 .011** 1.011 .005* 1.005 

SLO .005 1.005 .084** 1.088 .015 1.015 

UPS -.766* .465 -.364 .695 -.598* .550 

D_RIV .001* 1.001 .000* 1.000 .001** 1.001 

D_STR .000 1.000 .001 1.001 -.001 .999 

P_DENS .000 1.000 .000 1.000 .000** 1.000 

EF_URBAN7 -.019** .981 -.024** .976 -.012** .988 

EF_FOREST7 -4.875** .006 -.401 669 .416 1.515 

EF_AGRI7 -.122** .865 -.155** .856 -.019 .982 

Constant -6.647  1.162  5.492  

AUC 0.765  0.886  0.790  

*Significant at p < 0.05, **Significant at p < 0.01. 



57	
	

 

Table 2. 4 Factors of urban land-use changes using logistic regression (1990-2000) 

Variable Urban to others Urban to forest Urban to agriculture 

 
Coefficient 

(B) 
Odds Ratio Coefficient (B) Odds Ratio Coefficient (B) Odds Ratio 

S_RAIN .016* 1.016 .020** 1.009 .006 1.006 

ALT .000 1.000 .003** 1.003 -.001* .999 

SLO -.094* .910 .007 1.007 -.058** .944 

D_STR .002** 1.002 .000 1.000 .001 1.001 

D_URBAN -.009 .991 .016** 1.016 .014** 1.014 

P_DENS -.003* .997 -.004* .996 -.002** .998 

EF_URBAN5 -.024** .977 -.016** .983 -.014** .986 

EF_FOREST5 -2.974* ..051 3.979** 53.458 1.313** 3.717 

EF_AGRI7 -.073 .930 .132** 1.141 .044 .1.045 

REG=1 -1.070 .343 1.185** 3.272 .378 1.459 

REG=2 .406 1.500 16.804 19859902.0 16.422 13555256.2 

REG=0 0  0  0  

Constant -11.841  -18.684  -3.787  

AUC 0.751  0.901  0.804  

*Significant at p < 0.05, **Significant at p < 0.01. 

 

 Results of LUCC models in relation to forests are shown in Table 2.5 and Table 2.6. Forest LUCC 

are related to environmental factors and neighboring forest areas. In the case of forest changes, forest 

neighborhood variables show different correlation directions according to size of forest and neighboring 

urban areas. 

Table 2. 5 Factors of forest land-use changes using logistic regression 

Variable Forest to urban Forest to others Forest to agriculture 

 Coefficient (B) Odds Ratio Coefficient (B) Odds Ratio Coefficient (B) Odds Ratio 

S_RAIN -.001 .999 .000 1.000 -.009** .991 

ALT -.001** .999 .000 1.000 -.003** .997 

SLO -.150** .860 -.117** .890 -.098** .907 

UPS -.010 .990 .298 1.347 .219** 1.245 

D_STR -.001* .999 .001 1.001 -.001** .999 
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D_URBAN -.002** .998 -.001** .999 -.001** .999 

P_DENS .000 1.000 .000 1.000 -.001** .999 

EF_FOREST3 1.815* 6.143 2.005** 7.423 .737* 2.089 

EF_FOREST7 -6.513** .001 -6.137** .002 -3.583** .028 

EF_AGRI7 .036 1.037 .042 1.043 .103** 1.108 

REG=1 -1.125 .325 .988* 2.685 -.410** .664 

REG=2 1.936* 6.934 -18.356 1.067E-8 -.856* .425 

REG=0 0  0    

Constant 3.091  .130  7.996  

AUC 0.977  0.953  0.950  

*Significant at p < 0.05, **Significant at p < 0.01. 

 

Table 2. 6 Factors of forest land-use changes using logistic regression 

Variable Forest to urban Forest to others Forest to agriculture 

 Coefficient (B) Odds Ratio Coefficient (B) Odds Ratio Coefficient (B) Odds Ratio 

ALT -.002 .998 -.003** .997 -.005** .995 

SLO -.093** .911 -.076** .927 -.066** .936 

UPS .061 1.063 .103 1.109 .369** 1.446 

D_STR -.003* .997 .000 1.000 -.001** .999 

D_ROAD -.001 .999 .000 1.000 .000** 1.000 

D_URBAN -.003* .999 .000* 1.000 -.001** .999 

EF_FOREST3 2.981 19.704 4.794** 120.751 -.528 .590 

EF_FOREST5 -4.849* .008 -8.733** .000 -.457 .633 

EF_AGRI7 .086 1.089 -.068* .934 .162** 1.175 

Constant -.429  1.504  -.330  

AUC 0.951  0.939  0.942  

*Significant at p < 0.05, **Significant at p < 0.01. 

 

 Agricultural land-use models are shown in Table 2.7 and Table 2.8. Agricultural land-use changes 

have similar environmental driving factors as urban growth. These environmental factors reflecting 

topographical conditions are less influential to agricultural changes than forest. 
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Table 2. 7 Factors of agricultural land-use changes using logistic regression (1980-1990) 

Variable Agriculture to urban Agriculture to others Agriculture to forest 

 Coefficient (B) Odds Ratio Coefficient (B) Odds Ratio Coefficient (B) Odds Ratio 

S_RAIN .001 1.001 .010** 1.009 -.002** .998 

ALT .001* 1.001 .002** 1.002 .003** 1.003 

SLO -.050** .951 .013 1.013 .096** 1.100 

UPS .043 1.044 .386** 1.471 .096* 1.101 

D_STR .001** 1.001 .001** 1.001 .000 1.000 

P_DENS .001** 1.001 .001** 1.001 .000 1.000 

EF_URBAN7 .014** 1.014 -.006* .994 -.013** .987 

EF_FOREST3 .156 1.169 -.759** .468 -.610** .544 

EF_FOREST7 -1.013 .363 -2.091** .124 .958** 2.606 

EF_AGRI7 -.016 .985 -.030 .970 -.085** .919 

REG=1 .793* 2.209 1.535** 4.642 .018 1.018 

REG=2 -.713 .490 .300 1.350 .274 1.315 

REG=0 0  0  0  

Constant -2.996  -9.419  -.365  

AUC 0.821  0.778  0.785  

*Significant at p < 0.05, **Significant at p < 0.01. 

	

Table 2. 8 Factors of agricultural land-use changes using logistic regression (1990-2000) 

Variable Agriculture to urban Agriculture to others Agriculture to forest 

 Coefficient (B) Odds Ratio Coefficient (B) Odds Ratio Coefficient (B) Odds Ratio 

S_RAIN -.001 .999 .017** 1.017 .015** 1.015 

ALT .000 1.000 -.003** .997 .002** 1.002 

SLO -.020** .980 .022** 1.022 .052** 1.054 

D_STR .000 1.000 .001** 1.001 .000** 1.000 

D_URBAN -.003** .997 .000 1.000 .001** 1.001 

P_DENS .000** 1.000 .000 1.000 -.001** .999 

EF_URBAN5 .021** 1.022 -.013** .987 -.002 .998 

EF_OTHER5 .014** 1.014 -.002 .998 .008** 1.008 

EF_FOREST5 -.363 .695 -2.386** .092 1.851** 6.368 

EF_AGRI3 .019 1.019 -.039* .962 .061** 1.063 

EF_AGRI7 -.027 .974 -.131** .877 -.071** .932 

REG=1 -.062 .940 .382** 1.465 .478** 1.612 

REG=2 -247 1.280 .904 2.469 .380 1.463 
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REG=0 0      

Constant -1.126  -13.526  -14.193  

AUC 0.798  0.785  0.781  

*Significant at p < 0.05, **Significant at p < 0.01. 

 

2.4 Discussion 

2.4.1 Driving factors of land-use changes 

In this study, we identified LUCC patterns in the region, which could be compared with archetypical periods 

of land transition. After that, we extracted variables, which were used as independent variables in 

multinomial logistic models to analyze LUCC in the So-yang River Basin. Our statistical analysis suggests 

that LUCC factors and EFs show different patterns for the two different time decades, where the degree of 

some results of the relations of correlation coefficients and directions of effects vary. Although most results 

correspond with the research hypothesis of factors of LUCC, some results were unexpected. 

2.4.1.1 Driving factors of land-use changes between 1980-1990 

Biophysical drivers: The first decade was characterized by agricultural expansions, deforestation and 

urbanization. During the period after a highway to Seoul was constructed in 1975, commercial highland 

agriculture increased in the Gangwon province, because it was regarded as a new economic income source 

in rural mountainous areas (Lee, 1990). During this period, the impacts of environmental factors like 

summer rainfall, elevation and slope are in accordance with our hypotheses. We hypothesized that summer 

rainfall has negative explanatory power in relation to urban and agricultural land-use. This is due to the 

environmental characteristics of the research site, as people in this region have experienced flood damage 

frequently due to monsoon periods and typhoons. From the analysis, we could find that agricultural areas 

are easily changed into other land type areas with lower summer rainfall. Topographic factors, specifically 

elevation and slope have negative correlations to human induced LUCC, as expected. Areas with low 

elevations and gentle slopes are easily converted to agricultural and urban areas, while forest expansions 

occurred in areas with low accessibility due to topographic limitations. This result is in concurrence with 

other studies on agricultural abandonment of mountainous areas in Europe (McDonald et al., 2000) and Asia 
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(Pingali, 1997). As for upslope contributing areas and wetness index reflecting hydrological and 

geomorphologic aspects, areas with low upslope contributing area index were converted to agricultural land 

in the first time period, which does not coincide with our research hypothesis. This result could be explained 

with rainfall characteristics in the region. Areas with less rainfall intensity during monsoon periods are 

preferred for new agricultural areas, reflecting the importance of water inflows at upper slopes. 

 Distance factors and population density: Distance factors and population density have low 

explanatory powers compared to other variables. This result can be attributed to the fact that LUCC occur 

in the narrow basin area of the river, which make it difficult to clarify distance effects. Previous research on 

forest transition in South Korea concluded that the population factor is one of the major LUCC factors in 

mountainous areas (Bae et al., 2012). However, population density shows insignificant explanatory power 

to explain LUCC from our statistical analysis. 

 Neighboring land use: Forest areas highly were correlated with neighboring forest factors, 

especially neighborhood factors of 7 × 7 grid cells. This suggests that LUCC in the region resulted from 

spatial policies to restrain urban and agricultural changes near forest areas for security and environmental 

reasons. Agricultural land in areas dominated by forest is easily converted to forests, which might in addition 

reflect natural conversions of abandoned fields. However, areas nearest to forest also experienced LUCC to 

both urban and agricultural lands. These LUCC led to highland agriculture occurring in the marginal forest 

areas. These results show that factors that affect LUCC differ for each land-use class due to their spatial 

relations. However, differences between the causal patterns of LUCC in the two periods (1980–1990 and 

1990–2000) are relatively low, with the exception of changes of agricultural land-use, meaning that similar 

driving factors and mechanisms affect LUCC constantly. 

 Land regulation policies: Land regulation policies during this phase did not affect urban LUCC 

because there already were a few urban areas located in regulation areas. Sol-ak National Park was 

designated within the Tae-baek mountain range and had been managed strictly since then because it is one 

of the most famous national parks and sightseeing areas in South Korea. The national park did not affect 

LUCC directly after 1980’s. However, forest changes next to urban areas in the 1980’s could be interpreted 

by the way that tourism facilities in the park areas were increased more than other urban land use types in 

this period. Comparing national parks and national conservation areas, the latter are more influential with 
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respect to agricultural LUCC. Since national conservation areas are designated to protect water quality in 

So-yang Lake, farmlands and farmers were directly affected by this policy and this led to agricultural 

contraction. 

2.4.1.2 Driving factors of land-use changes between 1990-2000 

Most LUCC factors hypothesized in this research have consistent explanatory powers between the two 

different time periods. Although similar factors affect to LUCC steadily, there are some differences of 

LUCC patterns between earlier and later stemming from the decrease of agricultural areas in the second 

phase. During this period, agriculture decreased all over the catchment except centralized highland 

agriculture areas such as Haean Myeon and Jawoon Ri. This change also generated different results in 

statistical analysis of LUCC factors. 

 Biophysical drivers: The explanatory power of rainfall is opposite for forest and agricultural LUCC. 

Agricultural areas with higher summer rainfall are easily converted to forest areas because of problems 

derived from an increase of summer rainfall (Kim and Lee, 2011), which could generate planned forestation 

in the agricultural areas to prevent flood damages in the region. In the earlier period, topographic variables 

of elevation and slope explain urban and agricultural expansions. However, these tendencies have changed 

in the subsequent period from 1990 to 2000 indicated by influences of slope factors on agricultural lands. 

In the later period, areas with gentle slope were more easily converted to agricultural lands. This result 

reflects expansions of highland farming into smooth mountainous areas. In contrast to urban and agricultural 

expansions, forest expansion occurs at higher elevations and with increased slope, typically abandoned lands 

with limited use, especially those within national conservation areas. Due to the land regulations at these 

sites, forest growth occurred in the processes of natural conversion. This difference stems from 

geomorphologic characteristics of mountainous areas.  

 Distance factors, population density, and neighborhood land-use: These factors are similar to their 

results of MNL analysis when compared with the earlier period of 1980-1990. Distance and population 

factors are still less affected LUCC. Neighborhood factors in the later period affect LUCC similarly to those 

of the earlier period. 
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 Land regulation policies: Land-use in urban areas affected by land regulation in the later period, 

barely changes for the entire period. 

2.4.2 Underlying factors of land-use changes in the So-yang River Basin 

We tried to find driving factors of LUCC. However, LUCC are affected by various factors because of the 

complex characteristics of human-environmental systems, which are difficult to derive from statistical 

results. In this chapter, we described underlying factors from literature reviews and briefly compare them 

with the statistical results which are suggested as major LUCC factors in the local communities. 

 With respect to urban areas, deregulation in green belt areas to ease local development and improve 

accessibility by constructing roads and bridges are important LUCC factors (Lee, 2009). In particular, policy 

changes in 1994 to utilize lands surrounding water sources generated expansions of urban areas in the 

marginal forest (Choi et al., 1998). However, results of statistical analysis with distance and neighboring 

factors could not support these findings. 

 Land abandonment with population migration after zoning policies and dam constructions since 

1970’s generated growth of natural forest. So-yang Lake generates local climates changes, such as increased 

days with fog and frost, which worsen agricultural conditions and productivity as well as residential health 

status (Choi, 2001; Lee, 1990). Moreover, dam constructions brought about a raise of agricultural and living 

costs by worsening accessibility, and while zoning policies made it more difficult to utilize lands efficiently 

and get higher income (Choi, 2001; Kim, 2006). These underlying factors could be linked with the results 

for topographic variables. 

 Although overall agricultural areas decreased during the period, agricultural expansions occurred 

in highland farming areas influenced by socio-economic factors such as income improvement in highland 

crops and support policies for agriculture, which expand cultivation areas of household and reclamation of 

forest areas (Choi et al., 1998). Apart from this reason, political factors affected agricultural LUCC. Korean 

agricultural households and societies faced economic crisis after the launch of WTO systems in 1995. To 

solve this problem, the central government tried to introduce various policies to maintain agricultural sectors, 

such as farm subsidies and deregulations in agricultural land uses. The Korean government introduced a 

direct payment system for aged farmers’ early retirement and environmentally friendly farming practice 
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since the late 1990’s to preserve the income of rural households and promote environmentally friendly 

farming as a new income source (Im and Lee, 2007). Regulation policies, such as maximum holdings of 

farmland and lands to the tillers principle regulating landholdings of no-till farmers, were regarded as 

troublesome factors for agricultural activities in agricultural areas. After the government eased these 

regulations, land owners could easily increase their land extent with advanced technologies. Aside from 

these political factors, recent climate changes brought about agro-environmental changes such as 

temperature rise, intensive rainfall in summer monsoon periods, reduced sunshine hours and fruit cultivation 

areas advancing north, in the Tae-back mountain range as well as other high elevation areas (Kim and Lee, 

2011). 

2.4.3 Limitations and the way forward 

The challenge of this study is related to acquisition of spatial data for LUCC, population data for driving 

factors and land use regulation maps for the research site. Land use maps used in the research were produced 

by an institution of the Korean government as explained in the earlier chapter. Although they had higher 

reliability compared to other maps, these also had problems with accuracy of classification because they 

were produced based on different Landsat satellite images. Maps of 1980 were built on Landsat MSS with 

60 m resolution, however other maps of 1990 and 2000 were based on Landsat TM with 30 m resolution. 

This resolution differences may reduce accuracies of “trace” LUCC (i.e., the LUCC areas with only a few 

30 m × 30 m pixels. As these differences could affect data accuracy, we used these data by merging pixel 

resolution, thereby reducing this problem. 

 Data acquisition significantly affects the accuracy of the land use model (Verburg et al., 2004c). In 

our study, it was especially problematic to get socio-economic data for detailed administrative areas and to 

convert these data into spatial data. Although some policy factors like zoning area have spatial dimensions 

for policy implementations, such low spatial differences of this variable within the study area weakened the 

measurement of its effect on LUCC when using the spatial statistical models. Moreover, many underlying 

LUCC factors, such as expansions of highland farming, are difficult to find from this quantitative approach 

due to data limitations. The same limitation might extend to population density as the population data 

obtained was based on administrative areas, which means all areas or cells in an administration unit have 
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the same numbers. The weak or null effects of these less spatially distributed variables do not necessarily 

mean lower importance of these variables in reality (Bae et al., 2012). 

 The problems of these socio-economic drivers could be moderated through some actor-based 

follow-up studies reflecting land use decisions. To do so, we could use household surveys to acquire socio-

economic data and develop decision models for land use actors. Otherwise, it is necessary to develop 

methods for spatial disaggregation of statistical data in mountainous regions. 

 

2.5 Conclusions 

In this study, we aimed to find LUCC patterns and factors using MNL methods to develop statistical models 

of LUCC. We extracted neighborhood variables as an index of EFs and various environmental data used as 

independent variables in multinomial logistic models. After calculating these factors, we quantified 

relationships between LUCC and their driving factors to urban, forest, and agricultural lands in the So-yang 

River Basin using three types of MNL. From this statistical analysis, it was concluded that driving factors 

and EFs showed similar patterns for two different time periods, meaning that similar processes affect LUCC 

constantly in Asian mountainous watershed areas. Statistical results indicate that topographic and 

neighborhood factors are major driving factors in urban, forest and agricultural LUCC, corresponding with 

most hypothesized effects on LUCC. Although major LUCC factors consistently affect all LUCC, these 

specific models could help to understand spatial determinants of LUCC processes. It turned out that LUCC 

models should be subdivided into specific land-use types to utilize driving factors of different land-use types. 

Driving factors reflecting spatial relations could define transition rules in the LUCC models. In particular, 

simulation models for future LUCC could be developed based on the results of our research. When we 

compared two models for different time periods, there were some similarities among LUCC factors. On the 

other side, they represent two archetypical situations. In the earlier period, agricultural expansion, 

deforestation and moderate urbanization were dominating, while the later was characterized by agricultural 

contraction, reforestation and severe urbanization. These factors can be used in simulation models (e.g. 

cellular automata (CA) models) for LUCC changes by quantifying transitional rules and land conversion 

probabilities of LUCC for specific pixels (e.g. ES models), and by setting neighborhood thresholds for 
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neighborhood interactions. Moreover, we described various underlying factors which are difficult to be 

found in statistical results, but are relevant for constructing socio-economic and policy scenarios. These 

land-use simulation models potentially could contribute to enhance policy making with land-use plans and 

regional environmental management. 
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Abstract 

Land use and cover change (LUCC) altered the capacity of mountain watersheds to provide ecosystem 

services (ES) for downstream water users. Policies aiming at the conservation of ES sometimes fail due to 

a lack of understanding of the complex dynamics of LUCC and its ecological consequences. We present a 

modeling framework that predicts both LUCC and ES through a combination of cellular automata (CA) and 

the Soil and Water Assessment Tool (SWAT). We employed this framework to assess the efficiency of 

alternative policy instruments including direct payments and command-and-control regulations. The 

framework successfully captures spatial patterns of LUCC, hydrological processes, and the associated gains 

and losses in ES. Our results reveal that the performance of policy instruments is highly site-specific and 

scale-dependent, which may lead to negative externalities (“leakage” effects). Integrated LUCC-ES 

modeling provides valuable information to assess the efficiency and targeting of proposed policies to 

achieve future conservation goals. 
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3.1 Introduction 

Mountainous watersheds provide a wide range of essential ecosystem services (ES) to human society, most 

notably through the supply of purified fresh water from upstream headwater catchments (MA, 2005; TEEB, 

2012). Land use and cover change (LUCC), however, has altered the capacity of these natural “water towers” 

to regulate the hydrologic cycle and to control downstream water quantity and quality (Allen, 2004; Bhaduri 

et al., 2000). Deforestation and clearance of natural vegetation through agricultural expansion has increased 

the supply of provisioning ES such as food, fiber, and bioenergy (Power, 2010; Zhang et al., 2007), but has 

caused dramatic environmental degradation through losses of major regulating ES (Maes et al., 2012; 

Schröter et al., 2005). Particularly in mountains, LUCC causes severe soil erosion and water quality 

degradation through sediments in combination with excessive nutrient exports due to high fertilizer use 

(Foley et al., 2005; Montgomery, 2007). Because the provision of ES is increasingly considered in policy 

making (Daily and Matson, 2008), environmental policies and management programs must therefore take 

into account the various potential outcomes involved in land use decisions and require a-priori balancing of 

multiple region-specific ES indicators (Kremen, 2005; Viglizzo et al., 2012). Dynamic LUCC models such 

as cellular automata (CA), which reflect complex systems of LUCC, could be adopted to assess hydrological 

responses from LUCC impacts such as water management plans to gain insight into the dynamics and 

patterns of LUCC within a landscape and their hydrological impacts (Deng et al., 2015). CA based models 

are widely used for LUCC predictions as they can capture complex emergent behavior using a set of simple 

transitional rules (Clarke and Hoppen, 1997). CA simulates spatio-temporal patterns of LUCC of grid cells 

depending on their current status and their interactions with the neighborhood (Verburg et al., 2004; 

Veldkamp and Lambin, 2001; Wu, 1996). Because CA models simulate spatial and temporal LUCC 

quantitatively (Balzter et al., 1998), they can be used together with other models to simulate the impacts of 

possible LUCC on regional and local ES provisioning. LUCC in an upland catchment does not only impact 

local ES, but can have immense consequences for remote water users, e.g., through pollution of downstream 

drinking water aquifers and reservoirs. Hydrological models such as the Soil and Water Assessment Tool 

(SWAT) (Arnold et al., 1998; Gassman et al., 2007) account for the upstream-downstream connectivity 
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within complex watersheds and allow the prediction of LUCC impacts on water related ES remote from 

their sources. SWAT is widely used to estimate LUCC impacts on water resources (Arnold et al., 2012; 

Gassman et al., 2007) and has been coupled with LUCC models (e.g., Deng et al., 2015; Kim et al., 2013; 

Marshall and Randhir, 2008; Memarian et al., 2014; Park et al., 2011a; Zhang et al., 2013; Zhang et al., 

2016). These studies focused on LUCC under climate change (Deng et al., 2015; Kim et al., 2013; Park et 

al., 2011a; Zhang et al., 2016) or environmental policy scenarios (Zhang et al., 2013). However, the adoption 

of different types of policy instruments such as payments for ecosystem services (PES) (e.g., Engel et al., 

2008) or command-and-control regulations still raise questions about their efficiency and targeting to 

achieve the proposed conservation goals (Engel et al., 2008). We present a modeling framework that 

simulates LUCC and ES as a consequence of different types of environmental policy instruments through a 

combination of CA based LUCC and hydrological modeling. We developed the CA model based on 

multinomial logistic regression (MNL) and neighborhood interactions to simulate possible LUCC for the 

next 50 years (2006-2056) under four different types of policy scenarios. We combined the output of the 

CA with SWAT to simulate water related ES (Francesconi et al., 2016) as a response of the policy-induced 

LUCC.  

 

3.2 Materials and methods 

3.2.1 Study area 

We applied our modeling framework to the Soyang Reservoir watershed located in Gangwon Province in 

the North Eastern mountain range of South Korea (Figure 3.1). LUCC in the watershed through 

de/reforestation, agricultural expansion, and a steadily growing urbanization has led to severe water quality 

degradation of the country’s largest drinking water reservoir, which is the main fresh water provider for half 

of the population including the Seoul metropolitan area (Kim et al., 2000; Maharjan et al., 2016). Therefore, 

several environmental regulation and protection zones have been established, such as natural conservation 

areas around the Soyang Reservoir and national parks in the Seorak and Odae Mountains (Figure 3.1) (Kim, 

2006). However, to invigorate local economic development and income in the Gangwon Province, highland 

agriculture, especially the production of commercial crops, has expanded into mountainous areas due to 

governmental support (Lee, 1990). Water pollution through sediment and nutrient loads originating from 
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agricultural land have been identified as the main source of declining water quality since the 1980s (Park et 

al., 2010). Highland agricultural activities in upstream catchments such as the Mandae and Jawoon Stream 

watersheds have intensified during the last decades, now covering about 54% of the total dry field area 

(Figure 3.1) (Kim et al., 2014a). These highland production “hotspots” are the main contributors of sediment 

and nutrient loads with substantial impacts on downstream ecosystems and the trophic state of the reservoir 

(Park et al., 2010). Especially for the Mandae Stream watershed (often referred to as Haean catchment), 

high erosion rates and nitrogen losses have been reported during heavy rainstorm events during the East 

Asian Summer Monsoon (e.g., Arnhold et al., 2013; 2014; Kettering et al., 2012; Kim et al., 2014b; Ruidisch 

et al., 2013). After extreme weather events such as Typhoon Ewiniar in 2006 have caused severe damages 

through erosion and water supply problems (Park et al., 2011b), the Korean government implemented a set 

of comprehensive countermeasure programs including a reforestation program for marginal agricultural 

lands in 2008 to mitigate water erosion and pollutant exports from highland areas. However, the long-term 

effects of those programs are difficult to estimate due to the various social-economic drivers of LUCC. Thus, 

the CA-SWAT modeling framework presented here aims at providing insights in the LUCC dynamics and 

the efficiency of different policy scenarios to restore ES in the watershed.    
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Figure 3. 1 Location and land use and land cover classification of the Soyang Reservoir watershed including 
subbasin configuration and climate and monitoring stations required for the hydrological modeling with 
SWAT. The Mandae and Jawoon Stream watersheds are the two major agricultural production “hotspots” 
mainly responsible for water quality degradation of the Soyang Reservoir (Arnhold et al., 2014; Park et al., 
2010). 

 

3.2.2 Conservation policy scenarios 

Among the environmental policy instruments, land use zoning is a widely used command-and-control 

regulation tool, which involves setting zones where LUCC is prohibit or promoted (Le et al., 2010). Another 

important instrument aims at providing economic incentives to farmers (or other land use actors) to change 

their behavior, referred to as PES (Engel et al., 2008; Tomich et al., 2004). We assess three possible policy 

intervention scenarios proposed by the Korean government to conserve future ES in the watershed: a 

reforestation program through direct payments to farmers (REF), a forest protection program for high-slope 

areas (PRO), and a combined policy of reforestation and protection (R+P) for a 50-year time period, i.e. 
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from 2006 to 2056, with 10-year time intervals (Table 3.1). We compare simulated LUCC results of those 

scenarios with the current development trend assuming the continuation of past LUCC patterns from 1995 

to 2006 under no policy intervention (scenario NO). Under REF, the currently ongoing direct payments to 

farmers for purchasing marginal agricultural land at elevations above 400 m and slopes higher than 15° for 

reforestation are continued (Jun and Kang, 2010), randomly assigned 500 ha per 10-year time interval. This 

policy program has reconverted agricultural areas of up to 50 ha every year due to limited financial resources 

and farmers' participation. Although PES are efficient tools to conserve ES compared to other policy 

instruments (Engel et al., 2008), they can result in externalities by private actors’ behaviors (Jack et al., 

2008). To complement and/or modify this PES policy, we also consider command-and-control regulation 

as an alternative option. PRO restricts marginal forest areas from conversion to agriculture on slopes higher 

than 15°, which have been identified as areas most vulnerable to soil erosion. It is a direct regulation policy 

for forest areas to prevent agricultural conversion and human interventions, which can show more efficient 

results over a long term (Miteva et al., 2012). The R+P scenario combines reforestation payments with strict 

enforcement of forest protection, which complement both PES and regulation policies. 

 

Table 3. 1 Description of the four conservation policy scenarios 

Policy scenario Description 

No intervention (NO) Continuation of current land cover change trend from 1995 to 2006 without 
policy intervention 

Reforestation (REF) 
Reforestation policy for highland agricultural areas with high slopes (> 15°) 
and elevation (> 400 m) up to 500 ha for reforestation based on current 
reforestation policy 

Forest protection (PRO) Forest protection with high slope areas under current land cover change trend 
(> 15°) 

Reforestation and protection 
(R+P) Both reforestation and protection implemented 

 

3.2.3 Modeling LUCC with CA 

CA models simulate the spatial interactions of various LUCC processes (White and Engelen, 2000) and 

endogenous changes of status and numbers of cells for each time step based on cellular dynamics (Verburg 

et al., 2004). CA models are based on transitional rules that change the state of cells based on the spatial 

characteristics of the current cells and their interactions with the neighborhood (Wu, 1996). Transition rules 

in the CA are calculated as transitional probabilities of changing a cell’s land cover (LC) type. We calculated 
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the transitional probability of a cell from LC type i to LC type j at time step t as follows (Feng et al., 2011; 

Liao et al., 2016; White and Engelen, 1993; Wu, 2002):  

!"#
$%& = 	 (!"#

$ ,Ω"#
$ , ,-., /)                                                                                                                        (3.1)         

In the transition function ʃ, states of cell ij for the next time period with t + 1(!"#
$%&) are determined by the 

states of cell ij during a specific time t (!"#
$ ), neighborhood function of cell (Ω"#

$ ), LUCC constraint factors 

(Con), and cells number (N) (Feng et al., 2011).  

 We developed our CA model using the NetLogo software (Ver. 5.3.1). Figure 3.2 shows the 

structure of the CA model and Table 3.2 lists the input parameters used to calculate the transition 

probabilities. LC states of each cell based on local transitional probabilities are calculated from results of a 

MNL between 1995 and 2007 (Kim et al., 2014a). For neighborhood functions, we calculated neighborhood 

enrichment factors (EF) proposed by Verburg et al. (2004) with the neighborhood extent having the 

strongest neighborhood effect. As Kim et al. (2014a) calculated the factors for major LC types (urban, forest, 

agriculture), we adopted the neighborhood extent with the highest enrichment values as neighborhood 

boundaries. Spatial ranges of local interactions between neighboring cells are set by these EFs and values 

are calculated based on White and Engelen (2000). We use the circular neighborhood size to calculate 

neighborhood factors within their radius boundary, which is adopted in many CA-based LUCC models (e.g., 

Barredo et al., 2003; Cheng and Masser, 2004; He et al., 2008; Li and Yeh, 2000; Mao et al., 2013; White 

and Engelen, 1993). Because the circular neighborhood considers all neighborhood directions equally, it 

can perform neighborhood effects effectively (Li and Yeh, 2000). The neighborhood conversion probability 

of a cell from interactions with neighboring cells is calculated by the proportion of the sum of specific LC 

(k) cells to the total number of cells within the circular neighborhood range r, which is adapted from 

rectangular neighborhood probability functions defined by Feng et al. (2011) and Liu et al. (2008). We 

defined eight LC classes for the watershed (forest, dry (non-paddy) fields, rice paddies, grassland, residential 

areas, wetland, bare soil, and water) (Figure 3.1). However, transition was only allowed for six LC classes. 

Water bodies and wetland areas are fixed in the model and were not allowed to be converted. Residential 

areas are set as constraint areas because urbanization is a common pattern in sub-urban areas of South Korea 

and reconversion to forest or agriculture is very unlikely to occur. Once cells are converted to residential 

areas, they cannot be converted to other LC types anymore. Constraint factors are also set for forest areas 
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designated as conservation or reforestation areas. In these areas, LC transition processes are stopped and 

they maintain their LC type after they are converted by policy effects.  

 The model is calibrated and validated to generate optimal simulation results under current 

parameters and probability functions. The calibration of the model was performed by adjusting model 

parameters and transitional change rules (Torrens, 2011). To reflect urban expansion and remaining large-

scale farm and forest areas, we keep current urban areas and clustered forest and agricultural areas as fixed 

areas (White and Engelen, 2000). Validation of the CA model is conducted by assessing the performance 

of the output of models quantitatively by assessing location accuracy, which estimates the similarity and 

difference between model outputs and the actual status (Al-Ahmadi et al., 2013; van Vliet et al., 2016). To 

validate the CA model with the location accuracy method, we used the three-map comparison method, which 

quantifies the model’s accuracy in simulating persistence and changes in pixel state (Pontius et al., 2008). 

This method allows comparisons between the actual map as reference 1 and simulation maps as reference 2 

by calculating agreement levels from correctly simulated persistence and changes as well as disagreement 

levels from errors in persistence and changes (Pontius et al., 2011). The output quality of LUCC simulation 

models should be carefully assessed before adopting models to real world conditions because of the complex 

phenomena of LUCC processes and the associated high uncertainty (van Vliet et al., 2016). As an additional 

measure of model performance, we calculated the figure of merit, which compares observed and simulated 

changes to estimate the ratio of their intersections (Pontius et al., 2008). Once model validation has been 

performed, we simulated four different future LUCC trajectories from 2006 to 2056 with 10-year time 

intervals representing the four policy scenarios (NO, REF, PRO, and R+P) based on the LC configuration 

of the year 2006. 

Table 3. 2 Description of variables of local probability used in the CA model 

Variable Computation method Data source 

Biophysical  

Summer rainfall 

14-19a precipitation station data on annual mean 

values of summer rainfall (year 1995-2005), 

monthly resolution (Summer Monsoon period 

from June to August) 

Korea Meteorological Administration 

(KMA), http://www.kma.go.kr 



79	
	

Elevation 
Digital elevation model (DEM) with 90 m 

resolution (resampled from 30 m) 

National Geographic Information 

System (NGIS), https://nsic.go.kr/ndsi 

Slope 
Extracted from DEM using SAGA (System for 

Automated Geoscientific Analyses) software 
Conrad et al. (2015) 

Upslope 

contributing area 
Extracted from DEM using SAGA  software Conrad et al. (2015) 

Wetness Index Extracted from DEM using SAGA software Conrad et al. (2015) 

Distance  

Distance to river 
Path distance to main Soyang River using 

ArcGIS 9.3 

Water Resources Management 

Information System (WAMIS), 

http://www.wamis.gr.kr 

Distance to stream 
Path distance to tributary streams of Soyang 

River using ArcGIS 9.3 
WAMIS 

Distance to road Path distance to road using ArcGIS 9.3 
Intelligent Traffic System (ITS), 

http://www.its.go.kr 

Distance to rural 

office 
Path distance to rural office using ArcGIS 9.3 

Google Maps, 

http://www.google.co.kr/maps 

Distance to urban 

area 

Path distance to existing urban areas using 

ArcGIS 9.3 from land cover maps (year 2006), 90 

m resolution 

Korea Ministry of Environment (KME), 

http://egis.me.go.kr 

Population   

Population density Population density of Rib region (year 2006) 
Korean Statistical Information Service 

(KOSIS), http://kosis.kr 

Land zoning areas  

Natural conservation 

area 

National conservation areas to conserve the 

natural environment (1 = zoning area, 0 = no 

zoning area) 

Digitizing map data from Kim (2006) 

National park  
National park (1 = zoning area, 0 = no zoning 

area) 
WAMIS 

a Some monthly data is not possible in specific period due to technical 

and meteorological reasons in observation station. 
b Ri is to the smallest administrative unit in South Korea 
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Figure 3. 2 Structure of the CA model. Local probability is calculated based on spatial data of summer 

rainfall (SRAIN), elevation (ELEV), slope (SLOP), wetness index (WETN), upslope contributing area 

(UPS), distance to roads (D_RD), distance to tributary streams of Soyang River (D_STR), distance to main 

Soyang River (D_RV), distance to rural offices (D_OF), distance to urban areas (D_UR), population density 

(POP), natural conservation area (NCA), and national parks (N_PARK). Neighborhood variables are 

calculated as proportion of urban (N_UR), forest (N_FO), and agriculture (N_AG) (rice paddies and dry 

(non-paddy) fields) cells within the neighborhood range. 

 

3.2.4 Modeling changes in ES with SWAT 

Once LUCC for the policy scenarios was quantified and its spatial distribution estimated with the CA model, 

the simulated LC maps were used as inputs to SWAT (Arnold et al., 1998) to evaluate the restoration 
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potential of water related ES. SWAT is a process-based simulation model developed to simulate the impact 

of land use and management on water, sediment, and agricultural chemicals (Gassman et al., 2007). 

Although SWAT was not explicitly designed as an ES tool, its output variables can be directly related to a 

number of provisioning and regulating ES (Francesconi et al., 2016; Vigerstol and Aukema, 2011). We 

computed four biophysical indicators as proxies for fresh water provisioning, erosion prevention, and waste 

water treatment services (Qiu and Turner, 2013; TEEB, 2012): water yield, sediment yield, total nitrogen 

(N), and total phosphorus (P) (see below). In addition to its capability to quantify multiple ES indicators, 

SWAT was selected because it accounts for the spatial distribution of ES production and beneficiary units 

through the hydrologic connectivity between upstream and downstream areas (Fisher et al., 2009; Vigerstol 

and Aukema, 2011). A watershed in SWAT is partitioned into multiple sub-basins which are further 

subdivided into Hydrologic Response Units (HRUs) that comprise a combination of unique LC, soil, and 

management conditions (Neitsch et al., 2011). SWAT first computes the land phase processes including 

hydrology, erosion, nutrient cycling, and plant growth at the HRU level and calculates for each sub-basin 

the amount of water, sediment, and nutrients transported to the channel (Neitsch et al., 2011; Strauch and 

Volk, 2013). The routing phase then computes the downstream transport of water, sediment, and nutrients 

through the channel network to the watershed outlet taking into account instream changes and 

transformation processes (Neitsch et al., 2011). 

 We used the ArcSWAT 2012 interface with SWAT 2012 (Rev. 622) to set up and parameterize the 

model for the Soyang Reservoir watershed using the input datasets listed in Table 3.3. We divided the 

watershed into 45 sub-basins using a drainage threshold value of 3400 ha. This threshold resulted in an 

average sub-basin area of approximately 2% of the entire watershed area, which was considered adequate 

for the simulation of sediment, N, and P (Jha et al., 2004). The dam of the Soyang Reservoir and a 

monitoring station near the outflow of the dam were added for later model calibration and validation (Figure 

3.1). To represent the hydrologic conditions of the reservoir, we used the following parameter values 

provided by the Korea Water Resources Corporation (K-water). We set the surface area to 65.9 km2 and 

61.8 km2 and the water volume to 2900 · 106 m3 and 2550 · 106 m3 for the emergency and principal spillway, 

respectively. Initial water volume at the beginning of the simulation was set to 1483 · 106 m3 and for 

reservoir outflow we used observed daily release records. After parameterization of the sub-basins and the 
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reservoir, we further subdivided the watershed into 3270 HRUs by overlaying the soil with the LC map of 

the year 2006 (BL scenario) without further partitioning into slope classes. The full number of HRUs was 

used without threshold definitions and refinements to account for the entire landscape heterogeneity of the 

watershed. Once HRUs were defined, we applied the following management modifications for the different 

LC types. We removed the harvest and kill operation for forest, wetland, grassland, residential, and barren 

land and replaced it with a harvest only operation for grassland and residential areas. For dry (non-paddy) 

agriculture and rice paddies, we created new operation schedules to reflect the typical local agricultural 

management practices (Table 3.4). We selected cabbage as a representative crop for dry agriculture because 

it covers the largest area of dry fields in the Gangwon Province after soybean (Lee et al., 2016). In contrast 

to soybean, cabbage, with its short growing period and high fertilization requirements, reflects also other 

locally important cash crops such as radish. Type, number, and timing of operations listed in Table 3.4 were 

adopted from Shope et al. (2014) and Maharjan et al. (2016) who compiled local management information 

for different crop types from various sources including interviews, field observations, published literature, 

and governmental reports. Fertilizer N and P application rates were calculated from total N fertilizer inputs 

for local crops reported by Kettering et al. (2012) and typical N to P ratios of commonly used fertilizers 

(Berger et al., 2013a;b; Kettering et al., 2013). To accurately reflect biomass development and crop yields, 

we adjusted the number of heat units to maturity, the radiation use efficiency, and the harvest index for 

cabbage and rice. Biomass and yields were obtained from plot experiments conducted in the study area 

described by Arnhold et al. (2014), Kettering et al. (2012), and Lindner et al. (2014). Observed average 

aboveground biomass and yields were 8.0 t ha-1 and 5.6 t ha-1 for cabbage and 17.1 t ha-1 and 8.1 t ha-1 for 

rice (Arnhold et al., 2014; Kettering et al., 2012). To approximate these values, we applied 1200 and 1800 

heat units to maturity, 34 kg ha-1 megajoule (MJ) m-2 and 65 kg ha-1 MJ m-2 radiation use efficiency, and 

harvest indices of 0.7 and 0.5 for cabbage and rice, respectively. Another modification made for cabbage 

was the adjustment of the initial Universal Soil Loss Equation (USLE) cover-management (C) factor, which 

was set to 0.13 based on the work of Arnhold et al. (2014) who studied local vegetation characteristics of 

cash crops and their impacts on soil erosion. For rice, we additionally changed the initial Soil Conservation 

Service (SCS) Curve Number to 78 and the USLE support practice (P) factor to 0.1 to account for the terrace 

structure of paddy fields (Jung et al., 2004; Kim et al., 2008).   
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Table 3. 3 Principle SWAT input datasets for the baseline Soyang Reservoir watershed model. 

Data type Description and resolution Data sources 

Digital elevation 

model 
90 m resolution (resampled from 30 m) 

National Geographic Information System 

(NGIS) 

Stream network 
National rivers and local tributary 

streams 

Water Resources Management Information 

System (WAMIS), http://www.wamis.gr.kr  

Reservoir 
Dam outflow and storage volume, daily 

resolution 

Korea Water Resources Corporation (K-

water), https://www.kwater.or.kr 

Soil map National soil map, 1:25 000 resolution  
Korea Rural Development Administration 

(KRDA), http://www.rda.go.kr 

Land use and cover 

map 

8 land cover types (year 2006), 90 m 

resolution 

Korea Ministry of Environment (KME), 

http://egis.me.go.kr 

Climate 

19 precipitation stations and 6 climate 

stations (years 2003-2007), daily 

resolution 

Korea Meteorological Administration (KMA), 

http://www.kma.go.kr 

Cropland 

management 

Type and timing of tillage, fertilization, 

planting, and harvest 

Berger et al. (2013a,b), Kettering et al. (2012), 

Kettering et al. (2013), Maharjan et al. (2016), 

Shope et al. (2014) 

Crop biomass and 

yield 

Dry weight of aboveground biomass 

and yield of cabbage and rice 

Arnhold et al. (2014), Kettering et al. (2012), 

Lindner et al. (2014) 

Observation data 

Discharge (inflow into reservoir), 

sediment, total N, and total P, daily 

resolution 

WAMIS, National Institute of Environmental 

Research (NIER), http://www.nier.go.kr 

 

Table 3. 4 Management schedules for dry (non-paddy) agriculture and rice paddies used for the Soyang 
Reservoir model (Sources: Berger et al., 2013a;b; Kettering et al., 2012; Kettering et al., 2013; Maharjan et 
al., 2016; Shope et al., 2014). 

Land cover  Date Operation 

Dry (non-paddy) 

fields 

1 May Tillage: moldboard plow (200 mm depth) 

13 May Tillage: furrow out cultivator (25 mm depth) 

 13 May Fertilizer application: 104 kg N ha-1, 46 kg P ha-1 

 15 May Planting/begin of growth: cabbage (1200 heat units) 

 15 June Fertilizer application: 192 kg N ha-1, 84 kg P ha-1 

 30 July Harvest and kill 

Rice paddies 
1 May Tillage: moldboard plow (200 mm depth) 

13 May Tillage: rice roller (50 mm depth) 

 13 May Fertilizer application: 139 kg N ha-1, 61 kg P ha-1 
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 15 May Planting/begin growing: rice (1800 heat units) 

 15 June Fertilizer application: 46 kg N ha-1, 20 kg P ha-1 

 15 July Fertilizer application: 46 kg N ha-1, 20 kg P ha-1 

 15 October Harvest and kill 

 

 After setup and parameter adjustments, we ran SWAT for five years from January 2003 to 

December 2007 with a two-year warm-up period using daily recorded climate data of 19 precipitation and 

6 climate stations located within and surrounding the Soyang Reservoir watershed (Figure 3.1). We 

performed semi-automated model calibration and validation following the procedure given by Arnold et al. 

(2012). For this, we used the SUFI-2 (Sequential Uncertainty Fitting Ver. 2) (Abbaspour et al., 2007) 

optimization algorithm implemented in the SWAT Calibration and Uncertainty Procedures (SWAT-CUP) 

(Ver. 5.1.6.2) (Abbaspour, 2014). We divided our three-year period of interest (without warm-up) into a 

calibration (January 2005 to December 2006) and a validation (January to December 2007) period and 

performed a global sensitivity analysis to identify the most sensitive parameters with respect to discharge, 

sediment, total N, and P. The preselection of the input parameters was based on literature reviews and 

previous SWAT exercises in the study area (Arnold et al., 2012; Maharjan et al., 2016; Shope et al., 2014). 

After sensitive parameters had been identified, we calibrated the model using recorded daily discharge into 

the Soyang Reservoir and measured sediment, total N, and P at the stream monitoring station near the 

reservoir outflow (Figure 3.1). We performed 500 model simulations for the calibration period (2005-2006) 

using initial uncertainty estimates for 32 selected input parameters (Table 3.5). Within these initially defined 

ranges, the SUFI-2 optimization algorithm performed Latin Hypercube sampling and identified the best 

parameter combinations for a given objective function between observed and simulated datasets (Abbaspour 

et al., 2007; 2015). We used Nash-Sutcliffe efficiency (NSE) as the objective function, as it is one of the 

best and most widely used performance indicators for hydrological models (Arnold et al., 2012; Moriasi et 

al., 2007; Schuol et al., 2008). The initial parameters were then iteratively updated to produce narrower 

uncertainty ranges centered on the best simulation until no further improvements could be achieved 

(Abbaspour et al., 2007; 2015; Schuol et al., 2008). Tab. 5 lists the 32 parameters that were adjusted during 

the SUFI-2 calibration procedure with their initial and final uncertainty ranges. After the optimum parameter 

ranges had been identified for the calibration period, we ran the model again 500 times for the validation 
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period (2007) using the same ranges. To evaluate the model performance for both calibration and validation 

periods, we calculated the P-factor and R-factor for each of the output variables (discharge, sediment, total 

N, and P). The P-factor describes the percentage of observed data bracketed by the 95 percent prediction 

uncertainty (95PPU) band and the R-factor indicates the average thickness of the 95PPU (Abbaspour et al.; 

2007; 2015; Arnold et al., 2012; Schuol et al., 2008).  

 Once calibration and validation for the 2006 LC configuration (BL) had been performed, we set up 

four SWAT models for the Soyang Reservoir watershed representing the potential future LC for the four 

environmental policy scenarios (NO, REF, PRO, and R+P). For each of the four models, we replaced the 

LC map of the year 2006 with those simulated by the CA model for the year 2056. All other input parameters 

including sub-basin and reservoir configuration, management schedules, and plant parameter modifications 

were assumed to be identical to the BL scenario and were adopted accordingly (see description above). The 

four future models were run with the SWAT-CUP SUFI-2 algorithm, each with 500 simulations, using the 

final input parameter ranges obtained during the calibration procedure for the BL scenario as listed in Tab. 

5. For each of the scenarios, we computed water yield, sediment yield, total N, and P (expressed with their 

medians and 95PPU bands) that were transported into the Soyang Reservoir as well as the exports from the 

two agricultural “hotspot” watersheds (Mandae and Jawoon). Finally, the four output variables were used 

to estimate ES that describe the watershed’s capacity to supply fresh water, erosion prevention, and waste 

water treatment (TEEB, 2012). A positive change in water yield for 2056 compared to 2006 represents an 

increase in fresh water provisioning while a negative change indicates a decline. Negative changes in 

sediment yield normalized by the upstream contributing area indicate prevented erosion per unit area. 

Negative changes of N and P expressed as concentrations represent waste water treatment per volume of 

water. Conversely, positive changes in sediment, N, and P can be interpreted as continued soil and water 

quality degradation or regulating “dis-services” (Leh et al., 2013). 

 

Table 3. 5 SWAT parameters adjusted during semi-automated calibration with the SWAT-CUP SUFI-2 
algorithm with their initial and final uncertainty ranges (Sources: Abbaspour, 2014; Arnold et al., 2011; 
Neitsch et al., 2011). 

SWAT Parametera Description and units 
Initial range 

Min.    Max. 

Final range 

Min.    Max. 
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CN2.mgtb (r) SCS Curve Number (-) -0.3 0.3 -0.3 0.3 

SOL_AWC.sol (r) Available water capacity of the soil (mm mm-1) -0.5 0.5 -0.5 0.5 

SOL_K.sol (r) Saturated hydraulic conductivity of the soil (mm hr-1) -1.0 1.0 -1.0 1.0 

ESCO.bsn (v) Soil evaporation compensation factor (-) 0.01 1.00 0.36 1.00 

EPCO.bsn (v) Plant uptake compensation factor (-) 0.01 1.00 0.01 0.60 

ALPHA_BF.gw (v) Baseflow alpha factor (d) 0.00 1.00 0.00 0.64 

GW_DELAY.gw 
(v) 

Groundwater delay time (d) 0.0 100.
0 

42.5 127.
7 

GWQMN.gw (v) Threshold water depth in the shallow aquifer required for 
return flow (mm) 

0 5000 0 3043 

GW_REVAP.gw (v) Groundwater revap coefficient (-) 0.02 0.20 0.02 0.12 

SURLAG.bsn (v) Surface runoff lag coefficient 0.0 24.0 0.0 13.2 

CH_N2.rte (v) Manning’s roughness coefficient for the channel (-) 0.00 0.30 0.00 0.17 

USLE_C.plant.datb 
(r) 

USLE cover management (C) factor (-) -0.3 0.3 -0.3 0.3 

USLE_K.solc (r) USLE soil erodibility (K) factor (0.013 t m2 hr m-3 t-1 cm-1) -0.5 0.5 -0.5 0.5 

HRU_SLP.hru (r) Average slope steepness of the HRU (m m-1) -0.3 0.3 -0.3 0.3 

SLSUBBSN.hru (r) Average slope length of the HRU (m) -0.3 0.3 -0.3 0.3 

ADJ_PKR.bsn (v) 
Peak rate adjustment factor for sediment routing in the sub-
basin (-) 

0.50 2.00 0.88 1.65 

PRF_BSN.bsn (v) Peak rate adjustment factor for sediment routing in the 
channel (-) 

0.00 2.00 0.00 1.15 

SPCON.bsn (v) Linear parameter for calculating re-entrained sediment in 
the channel (-) 

0.00
01 

0.01
00 

0.00
01 

0.00
65 

SPEXP.bsn (v) Exponent parameter for calculating re-entrained sediment in 
the channel (-) 

1.00 2.00 1.37 2.00 

CH_COV1.rte (v) Channel erodibility factor (-) 0.00 1.00 0.11 0.70 

N_UPDIS.bsn (v) Nitrogen uptake distribution parameter (-) 0.0 
100.
0 

29.2 87.8 

NPERCO.bsn (v) Nitrate percolation coefficient (-) 0.01 1.00 0.40 1.00 

PSP.bsn (v) Phosphorus availability index (-) 0.01 0.70 0.01 0.46 
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PHOSKD.bsn (v) Phosphorus soil partitioning coefficient (m3 t-1) 
100.
0 

200.
0 

133.
2 

199.
8 

P_UPDIS.bsn (v) Phosphorus uptake distribution parameter (-) 0.0 
100.
0 

0.0 50.3 

PPERCO.bsn (v) Phosphorus percolation coefficient (10 m3 t-1) 10.0 17.5 11.4 15.5 

RS4.swq (v) Organic nitrogen settling rate in the channel (d-1) 0.00
1 

0.10
0 

0.00
1 

0.05
8 

RS5.swq (v) Organic phosphorus settling rate in the channel (d-1) 0.00
1 

0.10
0 

0.00
1 

0.06
2 

RES_NSED.res (v) 
Equilibrium sediment concentration in the reservoir (mg L-

1) 
1 100 25 75 

RES_D50.res (v) Median particle diameter of sediment in the reservoir (µm) 1 100 5 50 

PSETLR1.lwq (v) Phosphorus settling rate in the reservoir (m yr-1) -10 500 0 300 

NSETLR1.lwq (v) Nitrogen settling rate in the reservoir (m yr-1) -
10.0 

10.0 -27.2 -21.5 

a The suffix (r) refers to relative and (v) to absolute changes of the parameter values 
b Parameter values were varied separately for forest, cabbage, rice, and residential areas  
c Parameter value was varied only for the first (upper) soil layers 
 

3.3 Results 

3.3.1 Model validation and performance 

After LUCC driving factors were calibrated from results of MNL as statistical analysis and by the threshold 

of changes as conditional transitional rules, the CA model was validated using a three map comparison 

method to quantify model outputs for different LC types (Table 3.6). Results for forest simulation had the 

highest accuracy values in the CA model in calibration processes, while agricultural lands have lower values. 

The CA model simulates rice paddies as persistent areas in contrast to other LC types while their change 

areas are less correctly simulated. Dry field areas have higher accuracy in the agreement of pixels due to 

higher accuracy in change areas, although persistent areas are less correctly estimated. When accuracy of 

change prediction is estimated as figure of merit, dry fields have higher values with higher prediction 

accuracy than other LC types, while forest and rice paddies have lower prediction accuracy of change areas. 
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Overall, the figure of merit shows values acceptable to other CA models, as estimated by Pontius et al. 

(2008), although we simulated various LUCC processes. 

 

Table 3. 6 Three map comparison among actual land cover maps from 1995 as reference 1 (t), maps of 
2006 as reference 2 (t+1), and maps of the simulation output of 2006 (t+1). 

Names of component Forest Rice paddies 
Dry (non-

paddy) fields 
Overall 

Persistence simulated correctly 95.5% 45.7% 36.1% 91.7% 

Change simulated correctly 0.6% 7.4% 21.6% 1.5% 

Total agreement 96.1% 53.1% 57.6% 93.2% 

Change simulated as persistence 3.2% 39.1% 34.6% 5.6% 

Persistence simulated as change 0.6% 2.6% 5.7% 0.9% 

Change simulated as change to wrong category 0.1% 5.2% 2.0% 0.3% 

Total disagreement 3.9% 46.9% 42.4% 6.8% 

Figure of merit 13.5 13.7 33.7 18.4 
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Figure 3. 3 Model performance for calibration and validation of discharge, sediment, total nitrogen, and 
total phosphorus. The shaded areas indicate the 95% prediction uncertainty (95PPU) band and the lines 
show the observed data for the total reservoir inflow (discharge), and the monitoring station near the 
reservoir outflow (sediment, nitrogen, and phosphorus). Note that for better readability, 95PPU and 
observed data are plotted for monthly time steps while performance statistics P-factor, R-factor, and Nash-
Sutcliffe Efficiency (NSE) refer to daily calibration and validation. 

 

 The SWAT model shows an overall satisfactory performance as indicated by the P-factor, R-factor, 

and NSE values for the different output variables (Figure 3.3). The P-factor (observed data bracketed by the 

95PPU) should ideally have a value close to 1, indicating that all observed data are captured by the 

uncertainty range, and the R-factor (thickness of the 95PPU) should be near 0, indicating that the simulated 

data coincide with the observed (Abbaspour et al., 2007; 2015; Arnold et al., 2012; Schuol et al., 2008). In 
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practice, a P-factor of 0.7 or greater and R-factor of 1.5 or smaller are considered as satisfactory (Abbaspour 

et al., 2015; Schuol et al., 2008). The NSE (goodness of fit between observed values and best simulation) 

indicates satisfactory model performance when it exceeds a value of 0.5 and very good performance for 

values greater than 0.75 (Arnold et al., 2012; Moriasi et al., 2007). For both the calibration and the validation 

period, the P-factors and R-factors in Fig. 3 indicate reasonable performance for almost all variables except 

sediment and P, where R-factors exceed the threshold for validation. Also, the NSE indicates satisfactory to 

very good model performance for both periods and all variables, except for sediment validation. We attribute 

the large R-factor and low NSE mainly to exceptionally high sediment and nutrients records due to Typhoon 

Ewiniar hitting the Korean peninsula in 2006 (Arnhold et al., 2014; Park et al., 2011b). The high peaks in 

the summer of 2006 limited the narrowing of the parameter ranges during calibration and resulted in wide 

uncertainty bands relative to the observed data for the validation period 2007 (Figure 3.3).  

3.3.2 Impact of conservation policies on LUCC 

Because of the highly mountainous topography and limited accessibility of a large proportion of the 

watershed, LUCC is concentrated primarily in relatively small areas mainly along the rivers and in the 

lowlands. For all policy scenarios, we simulated an increase in residential areas and forest regrowth for the 

year 2056 and a decrease of agricultural area including dry cash crop plantations and rice paddies (Table 

3.7, Figure 3.4). Regardless of environmental policy, residential areas will continuously grow until 2056 by 

about 25% while fallow (bare soil) and grassland areas will decrease by more than 50%. Although forest 

regrowth was simulated for all scenarios, its magnitude is clearly controlled by the implemented policy. The 

current trend scenario without intervention (NO) will result in only 0.9% increase while the combined 

reforestation and protection scenario (R+P) will achieve 2.7% forest regrowth by 2056. Forest protection 

(PRO) shows a much higher efficiency in forest regeneration than the reforestation program (REF). 

Simulated forest regeneration will occur at the expense of cropland, where primarily dry crops show distinct 

policy effects between only 5% decrease for NO and up to 43% for the R+P policy. Rice paddies will lose 

relatively similar areas under all scenarios, between 19% (NO) and 23% (R+P). 
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Table 3. 7 Simulated land use and land cover changes between 2006 and 2056 in the entire Soyang Reservoir 
watershed for the different policy scenarios, no policy (NO), reforestation (REF), forest protection (PRO), 
and reforestation and protection (R+P), compared to the baseline (BL) scenario. 

Land cover 
2006 (BL) 2056 (NO) 2056 (REF) 2056 (PRO) 2056 (R+P) 

Area (ha) Change (%) Change (%) Change (%) Change (%) 

Forest 233295.4 +0.88% +1.83% +2.04% +2.70% 

Dry (non-paddy) 

fields 
10615.86 -4.80% -24.02% -28.75% -42.99% 

Rice paddies 4536.81 -19.35% -22.24% -21.51% -22.74% 

Grassland 1767.42 -55.09% -55.91% -57.01% -53.99% 

Residential areas 3143.61 +25.46% +26.08% +25.33% +24.22% 

Bare soil 1088.64 -46.98% -49.78% -47.69% -46.80% 

 

 

Figure 3. 4 Simulated land use and land cover changes from 2006 to 2056 for the whole Soyang Reservoir 

watershed for the different policy scenarios, no policy (NO), reforestation (REF), forest protection (PRO), 

and reforestation and protection (R+P). 

 

 Although the magnitudes of LUCC follow a common trajectory towards forest regrowth and 

cropland contraction under all policy scenarios, the spatial distribution reveals more distinct patterns for 

individual sub-regions. We found that the currently agriculturally dominated headwater catchments, i.e., the 

Mandae Stream and Jawoon Stream watersheds will show the most pronounced differences between the 
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policies (Figure 3.5 and 3.6). In contrast to simulated LUCC in the entire watershed, dry (non-paddy) fields 

in these production “hotspots” will steadily increase by 18% through expansion of existing farms into 

neighboring forest and grassland areas, if no policy interventions interrupt the current LUCC trend (NO 

scenario). This is especially the case for agricultural areas with high elevations of about 900 m in the Jawoon 

Stream watershed (Figure 3.6b). Under these circumstances, no forest regeneration will occur and existing 

natural vegetation may be further degraded. On the contrary, if reforestation programs are implemented 

(REF scenario), dry fields in Mandae and Jawoon will decrease by 13% until 2056. In combination with 

strict protection of existing forests (R+P scenario), dry field contractions would increase to 31% while 

forests will experience up to 10% regeneration. Forest protection alone (PRO scenario) shows only little 

effects on cropland areas. Dry fields will be reduced by only 3% and rice paddies show almost the same 

pattern as under the NO scenario (Figure 3.5). However, rice paddy areas will decrease under all policy 

scenarios which is consistent with the results for the whole watershed. 

 

Figure 3. 5 Simulated changes in forest, rice paddies, and dry (non-paddy) field areas from 2006 to 2056 

for the Mandae Stream (a) and Jawoon Stream (b) watersheds for the different policy scenarios, no policy 

(NO), reforestation (REF), forest protection (PRO), and reforestation and protection (R+P). 
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Figure 3. 6 Spatial distribution of changes in forest, rice paddies, and dry (non-paddy) field areas between 

2006 and 2056 under the different scenarios, no policy (NO), reforestation (REF), forest protection (PRO), 

and reforestation and protection (R+P) for the Mandae Stream (a) and Jawoon Stream (b) watersheds. 

 

3.3.2 Impact of conservation policies on LUCC 

The simulated LUCC did not translate into a considerable change in fresh water provision between 2006 

and 2056 regardless of the policy implemented, while proxies for regulating ES, most notably sediment 

yields, show clear differences between scenarios (Figure 3.7 and 3.8). While the median simulated annual 

water yield of the Soyang Reservoir (Figure 3.7a) remains stable at 1988 to 1989 Mm3 yr-1 between 2006 

and 2056 across all scenarios, median sediment inflow decreases by between 8% (NO) to 48% (R+P) from 

currently 1104 kt yr-1. These changes correspond to between 0.3 (NO) and 2.0 (R+P) t ha-1 yr-1 of prevented 

soil erosion in the upstream area of the Soyang Reservoir (Figure 3.8a). Median total N inflow decreases by 

between 3% (NO) to 21% (R+P) from currently 2013 t yr-1, and total P inflow shows a slight increase of 1% 

for NO, but reductions for the other scenarios of up to 30% under R+P, from currently 418 t yr-1. The lower 

N and P inflows are equivalent to 0.03 (NO) to 0.27 (R+P) mg L-1 of nutrient (both N and P) removal per 

volume of water throughout the watershed (Figure 3.8a). 
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 Median annual discharge of the Mandae Stream (Figure 3.7b) and Jawoon Stream watersheds 

(Figure 3.7c) also remain stable, while sediment, total N and P consistently increase for NO and decrease 

for the three conservation scenarios. Median sediment outflow of Mandae under the NO scenario increases 

by 9% while conservation policies yield reductions of up to 31% under R+P. The sediment reduction for 

R+P corresponds to 9.7 t ha-1 yr-1 of prevented erosion, while the NO scenario leads to losses in erosion 

prevention of 2.9 t ha-1 yr-1 of additional soil loss (i.e., “dis-service”) (Figure 3.8b). Total N and P exports 

increase by 5% and 8% under NO respectively, which is equivalent to a “dis-service” of 0.5 mg L-1 of 

additional water pollution (Figure 3.8b). On the contrary, R+P reduce total N and P up to 17% and 19% 

respectively, which corresponds to 1.6 mg L-1 of water treatment (Figure 3.8b). Similarly to Mandae, Jawoon 

experiences increases of 11%, 6%, and 12% without intervention (NO) and reductions of up to 53%, 44%, 

and 51% under stringent conservation (R+P) for sediment, N, and P, respectively. Correspondingly, the NO 

scenario results in losses of erosion prevention (-1.3 t ha-1 yr-1) and waste water treatment (-0.13 mg L-1), 

while conservation policies, particularly R+P, prevent erosion (6.1 t ha-1 yr-1) and water pollution (0.78 mg 

L-1) (Figure 3.8c).  

 In addition to NO, REF and PRO also show clearly distinct patterns for the agricultural “hotspots” 

compared to the entire watershed. While sediment and nutrient loads under PRO are consistently lower for 

the total Soyang Reservoir inflow, REF tends to be more efficient for ES restoration in the Mandae and 

Jawoon Stream watersheds. The combined policy (R+P) however shows the greatest regulating effects for 

both “hotspots” as well as for the whole watershed. Although the median simulations indicate clear 

improvements in regulation ES for all three conservation scenarios (REF, PRO, R+P), the uncertainty ranges 

(depicted with the 95PPU in Figure 3.7) show large variabilities in sediment and nutrient loads between 

values close to zero to up to multiples of the medians. However, Figure 3.7 also illustrates that absolute 

uncertainty ranges decrease for the conservation policies indicated by a reduction of the upper boundary of 

the 95PPU band, most notably for sediment as well as N and P loads of the Jawoon Stream watershed 

(Figure 3.7c).  
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Figure 3. 7 Simulated average annual water yield, sediment, total nitrogen, and total phosphorus for the 

Soyang Reservoir (a), the Mandae Stream watershed (b), and the Jawoon Stream watershed (c) under the 

different scenarios, baseline (BL), no policy (NO), reforestation (REF), forest protection (PRO), and 

reforestation and protection (R+P). The bars indicate the 95% prediction uncertainty (95PPU) band and the 

dots show the absolute values of the median simulations (black numbers) and the percent changes compared 

to the baseline scenario (white numbers). 
 

 Among the two agricultural “hotspots”, the Mandae Stream watershed shows consistently higher 

sediment and nutrient loads than the Jawoon Stream watershed, although it generates only a fraction of the 

water yield. Under the BL and NO scenarios, average annual concentrations of sediment, total N, and total 

P in the Mandae Stream exceed those of Jawoon by more than five times and those of the Soyang Reservoir 

inflow by between seven (total N) and ten times (sediment and total P). Monthly sediment and nutrient 

concentrations show even greater differences between the two watersheds (Figure 3.9). During peak events, 
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maximum sediment, total N, and P concentrations (indicated by the upper boundary of the 95PPU) in the 

Mandae Stream can exceed more than ten times those of Jawoon. Figure 3.9 demonstrates that conservation 

policies, especially combined reforestation and protection (R+P) will reduce sediment and nutrient 

concentrations remarkably for Jawoon compared to no intervention (NO), while values for the Mandae 

Stream remain relatively high. Concentrations for R+P will decrease to less than half of the values for NO 

for the Summer Monsoon period but also for months of lower precipitation (Figure 3.9b). Moreover, the 

probability of the occurrence of extreme erosion and water pollution will be substantially lower for Jawoon, 

while the differences between NO and R+P for Mandae will be only moderate. Thus, the relative 

contribution of the Mandae Stream watershed to the total sediment and nutrient loads of the Soyang 

Reservoir will increase. Although conservation policies generate greater absolute erosion prevention and 

water treatment services for Mandae (Figure 3.8b and c), they tend to be more efficient for Jawoon with 

regards to overall soil protection and water quality improvement. 

 

 

Figure 3. 8 Fresh water provision, erosion prevention, and waste water treatment services (according to 

TEEB, 2012) for the Soyang Reservoir watershed (a), the Mandae Stream watershed (b), and the Jawoon 

Stream watershed (c) for the different policy scenarios. The current trend scenario (NO) is displayed in red, 

and the three conservation policies in blue colors, from left to right: reforestation (REF), forest protection 

(PRO), and reforestation and protection (R+P). Services and “dis-services” are expressed as differences to 
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the baseline scenario (BL), shown in gray boxes, and refer to the median simulation runs. Note the different 

scales between Soyang and the Mandae and Jawoon watersheds. 

 

 

Figure 3. 9 Simulated monthly sediment, total nitrogen, and total phosphorus concentrations for the Mandae 

Stream watershed (a) and the Jawoon Stream watershed (b) under the no policy (NO) and reforestation and 

protection (R+P) scenarios. The colored shaded areas indicate the 95% prediction uncertainty (95PPU) band, 

colored lines show the median simulation, and the bars on the secondary y-axes refer to monthly 

precipitation. Note the different scales for sediment, N, and P concentrations between Mandae and Jawoon. 

 

3.4 Discussion 

3.4.1 Efficiency of conservation policies to restore ES 

We found a number of LUCC developments that would occur independently of environmental conservation 

policies, namely the continuous decrease of fallow area (bare soil) and grassland and the steady growth of 

residential areas in the watershed. Regardless of the policy instrument, the size of residential areas will 

continuously increase until 2056 while the total population size is stagnating in downstream areas contrary 
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to upstream agricultural areas. This development commonly known as “urban sprawl” have been fostered 

through rural development initiatives since 2001 by the Korean government (Jeon et al., 2013). Also, rice 

paddies will continuously decrease and show only relatively small responses to the type of conservation 

policy. Because rice cultivation has been traditionally performed primarily on suitable soils in the lowlands 

and on relatively gentle slopes, most paddy areas do not fall under the target area of the conservation policies. 

Environmental conservation policies affect primarily dry (non-paddy) fields and forest areas, which is not 

surprising, as these are located to a large degree mainly on steep hillslopes at high elevations that match the 

proposed conservation goals and standards.  

 All conservation policies (REF, PRO, and R+P) will result in an increase of forest cover and a 

contraction of existing dry field areas. As a consequence, we found that all policies show a clear tendency 

to enhance future regulating ES (erosion prevention and waste water treatment) in the watershed while 

conserving fresh water provisioning without considerable “trade-offs”. The stable water provision under all 

policies is not surprising as the total magnitude of forest regrowth (even under R+P) will be too small to 

considerably alter the watershed’s water balance through changes in evapotranspiration. In addition, the 

simulated urbanization did not cause any considerable shifts in the reservoir’s inflow hydrograph or water 

balance components. However, we primarily found strong increases in erosion prevention and water quality 

regulation only when forest protection was in place (PRO and R+P), while reforestation alone (REF) results 

in only moderate improvements. Although REF will cause forest regeneration on sloping land and at forest 

frontiers due to economic incentives to farmers, for instance in agriculturally dominated catchments (i.e., 

Mandae and Jawoon), cropland loss will be compensated by clearing and conversion of fallow and grassland 

or other marginal forest areas elsewhere in the watershed. Thus, these “leakage” effects can only be avoided 

if reforestation programs are accompanied by stringent protection regulations as simulated for R+P. 

 In addition, we found that the efficiency of the conservation policies is strongly site-specific and 

varies with spatial scale. While we simulated a consistent moderate decline of agricultural areas and a forest 

regrowth for all scenarios (including NO) across the entire watershed, our results reveal a strong divergence 

between the scenarios for the two headwater catchments Mandae and Jawoon. Under the development trend 

without policy intervention (NO), these production “hotspots” would further lose their erosion prevention 

and water purification capacities (regulating “dis-services”) while we identified a high restoration potential 
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of ES for the conservation policies, in particular for reforestation combined with strict protection (R+P). 

Although prediction uncertainties for the ES proxies are relatively high, we could show that the likelihood 

of extreme conditions that would lead to the strongest losses in ES (i.e., the upper boundary of the 95PPU) 

will markedly decrease under conservation policies.  

 However, our results also demonstrate that the efficiency of the proposed policy programs is limited 

and may not necessarily meet the intended goals. The Mandae Stream watershed, which is the largest 

contributor of water quality degradation for the Soyang Reservoir, shows only moderate improvements. 

Although erosion prevention and waste water treatment services would be restored, the relative impact will 

still be low compared to the Jawoon Stream watershed, where substantial water quality improvements were 

simulated. The main reason for the low efficiency for Mandae is given by the currently limited financial 

resources available and lower famers’ participation in the reforestation program, which allows only 50 ha 

per year to be reconverted. Better targeted and site-specific allocation of the available funds, for instance 

through PES programs (e.g., Engel at al., 2008), which concentrate reforestation incentives particularly in 

degraded headwater catchments, could improve the environmental performance of the conservation policies.  

3.4.2 Strengths and limitations of the modeling framework 

The presented modeling framework attempts to give insight into the range of consequences of alternative 

future environmental policies for a set of provisioning and regulating ES in the Soyang Reservoir watershed. 

The validation exercises demonstrate that both model components, CA and SWAT, can realistically mirror 

the observed LUCC patterns and water quality changes in the watershed. The modeling framework 

successfully captures the major drivers and spatial distribution of LUCC in headwater catchments and their 

role for water provisioning and regulation of downstream areas. Our findings confirm observations of 

previous studies that indicate the Mandae Stream watershed as the main contributor of agricultural pollution 

within the Soyang Reservoir watershed (e.g., Maharjan et al., 2016; Park et al., 2010). We could show that 

the modeling framework was able to account for a variety of impacts that can result from environmental 

policy programs, including unintended effects such as “leakage”. It can be used to predict and evaluate 

performance and efficiency of proposed conservation programs and thus guide decision-making. 

Consequently, the quantification of model uncertainty (here given by the 95PPU bands) (Abbaspour et al., 

2007) is essential in particular for decision-making. Our results demonstrate that output uncertainties can 
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be large due to the variability of input parameters and error propagation, but provide valuable estimates of 

the expected ranges of impacts.  

 However, the presented modeling framework involves a number of limitations and simplifications. 

LUCC simulation was based primarily on historical LUCC trajectories and their major driving factors, but 

future LC and management decisions might be driven by more recent socio-economic developments in the 

watershed. One of these developments is the replacement of traditional crops by perennials such as fruit 

orchards and, more importantly, large scale ginseng cultivations by companies from outside of the watershed 

(Jun and Kang, 2010; Seo et al., 2014). Motivations and drivers of this trend could only be insufficiently 

captured by our model, but may play an important role in shaping the future LC of the watershed. Moreover, 

besides assumptions of the CA model, these different crop types require management practices and 

scheduling (e.g., fertilization, irrigation, planting and harvesting) that may be entirely different from those 

assumed in the presented SWAT setup. In addition, the diversity of crops in the headwater catchments, such 

as Mandae, is usually higher (Lee et al., 2016; Seo et al., 2014) than the assumed rice and cabbage 

representatives. The classification of the presented LC types, dry fields in particular, must be further refined 

to account for the variability of cropping systems, from monocultures to more complex multiple crop 

portfolios (Lee et al., 2016). Fluctuating crop prices and the elimination of protection policies for domestic 

rice growers (Lee et al., 2016) will become important driving factors that shape future LUCC. Changing 

climate will additionally affect crop choice and management decisions, but also growth patterns and yields 

(Ko et al., 2014), and thus, the overall future provisioning of ES in the watershed. Besides these 

simplifications, one major limitation of the presented work is that it covers only one provisioning (i.e., fresh 

water) and two regulating services (i.e., erosion prevention and waste water treatment) (TEEB, 2012), which 

are primarily related to water quality of the Soyang Reservoir. However, as the watershed is one of the key 

production areas in the Gangwon Province, future assessments must integrate the role of food provisioning, 

which may reveal a more pronounced trade-off with regulating ES, as in most human dominated landscapes 

(e.g., Maes et al., 2012; Nelson et al., 2009; Raudsepp-Hearne et al., 2010). 
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3.5 Conclusion 

Our results demonstrate that integrated modeling that combines the dynamics of LUCC with biophysical 

processes within a watershed can successfully predict a variety of impacts that may result from political 

decisions and allows evaluating the efficiency of conservation instruments. However, the presented 

modeling approach requires additional refinements, in particular with respect to crop choice and 

management diversity (Lee et al., 2016). Moreover, the model should be complemented with additional ES 

indicators, most importantly food provisioning, to account for a wider range of potential synergies and trade-

offs that could arise from different policy options (Nelson et al., 2009). The presented policy scenarios focus 

primarily on forest protection and recovery in order to restore water-regulating ES in the watershed. 

However, especially the role of cash crop cultivation as the main income source for local residents but also 

for the region’s economy requires stronger consideration. As a large proportion of those cash crops in South 

Korea is harvested in the Mandae Stream watershed (Jun and Kang, 2010), cultivation restrictions or their 

replacement through stringent top-down regulations may lead to socio-economic problems and increase the 

resistance of farmers. Environmental policies should therefore propose a larger catalogue of measures 

(besides reforestation and protection) including technical approaches for on-farm erosion prevention or 

nutrient retention. Further research is required to assess alternative policy options for this region to achieve 

both environmental and social sustainability, for instance through farmers’ participation. Future work should 

also address the effects that locally designed policy programs may cause outside their target areas. LUCC 

in one watershed can induce a number of impacts such as market and crop price changes that may trigger 

LUCC in other regions, also referred to as “telecoupling” (Liu et al., 2015). Thus, the “real” dimensions of 

the social-ecological consequences of environmental policies can only be assessed if one looks beyond the 

watershed’s boundary and takes into account the full range of LUCC drivers. 
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Abstract 

Agricultural activities provide various ecosystem services and dis-services such as agricultural productions, 

which generate soil erosion problems in mountainous regions. In the Haean catchment in South Korea, 

which suffers from severe soil erosion because of agriculture, the government tried promotion policies to 

encourage farmers to adopt perennial crops. However, perennial crops expanded less than fallow lands and 

ginseng farms. Under the circumstances, understanding farmers’ land use and crop decisions are necessary 

to solve rural environmental problems. Farmers’ decision-making is affected by personal characteristics, 

which are affected by other farmers as well as spatial attributes of their lands. We develop Agent-Based 

Models (ABM) to simulate changes in agricultural land use reflecting agents' decision-making and their 

interactions and to estimate related ecosystem services (soil erosion). The model is composed of two sub-

models. One is a decision module of crop types (rice, annual, perennial) based on a multinomial logistic 

regression including different factors reflecting farmers’ perceptions and spatial characteristics of their 

farmlands. The other is a fallow land decision modules based on decision trees reflecting farmers’ intent 

and suitability values for agricultural lands. We simulate agricultural land use changes and soil erosion 

under four different scenarios (Baseline, fallow land expansions, ginseng farm expansions, and perennial 

expansions). As for crop conversion, farmers with large-sized farms convert less land to perennial crops, 

while others do convert to perennial crops, reflecting policies have been ineffective at promoting perennial 
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crops. Agricultural areas with lower value cultivation conditions are easily converted to fallow lands, which 

generates more severe soil erosion than other land cover types. The fallow land expansion scenario generates 

more soil erosion by 18% compared to the baseline scenario while the ginseng farm scenario reduces soil 

erosion by 20%. Based on these results, we could understand spatial patterns and farmers' decision-making 

for better management plans for regional agriculture. 

 

Keywords: NetLogo, soil erosion, crop decision, scenario assessment, agent-based modeling (ABM). 

 

4.1 Introduction 

Changes in agricultural land use and management activities by human intervention such as conversion to 

fallow land, crop changes and reforestation are major driving factors in land use and cover change (LUCC) 

(Lambin et al., 2000). Agricultural land use directly affects ecosystems and their diverse services. 

Agricultural land use activities are mainly carried out to produce agricultural products for human well-

beings, such as food, energy and raw materials. Agricultural activities also provide unintended other 

functions such as regulating nutrient cycles and providing habitat areas (Zhang et al., 2007; Power, 2010; 

Van Zanten et al., 2014). However, agricultural activities can also generate ecosystem dis-services such as 

habitat loss due to crop expansion as well as pesticides and nutrient runoff depending on the physical-

environmental and socio-economic characteristics of the region and the cultivation system (Power, 2010). 

In mountainous regions, intensive agricultural activities lead to soil erosion problems, which decrease 

agricultural productivity and water quality across the region and water quality in downstream areas. In these 

regions, crop and vegetation types which provide high levels of surface soil retention are significant factors 

for erosion control (Arnhold et al., 2014). Especially, fallow or abandoned farmland with coarse vegetation 

covers can generate more soil erosion than areas with other crop types (Kosmos et al., 2000; Jain et al., 

2001). Fallow lands without any cultivation or management activities are normally located in areas not 

suitable for agricultural activities due to their physical or economic conditions (McDonald et al., 2000; 

Prishchepov et al., 2013). Haean catchment, a typical mountainous catchment located in South Korea 

characterized by monsoon climate and highland agriculture, has experienced soil erosion and water quality 

problems due to agricultural land uses (Park et al., 2010). Cultivation of commercial annual crops (cabbages, 
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radish and potatoes) in highland agriculture areas has caused severe soil erosion during monsoon periods 

(Jun, 2008). To reduce this problem, the government has implemented various policies, such as the 

application of slope management techniques to protect soil erosion from farmlands, and subsidies to convert 

annual farms to perennial and organic farms. The policy to promote perennial crops did indeed increase 

perennial farming in the region, while ginseng farms, a perennial crop but not promoted by government, 

and fallow land also increased due to farmers’ land abandonment. Some farmers who do not have the 

capacity to cultivate perennial crops abandoned or sold their farmland to outsider ginseng farmers (Jun and 

Kang, 2010). This phenomenon of ginseng and fallow land growth could generate other problems for 

regional environmental sustainability. Under the circumstance, understanding of land use and crop choice 

processes could be used to estimate and simulate various LUCC and related ecosystem service (ES) (Mottet 

et al., 2006).  

Models based on farmers’ decision-making should reflect farmers’ personal preference opinions 

and experience as well as spatial characteristics of farm areas (Rounsevell et al., 2003; Dury et al., 2012). 

Spatial modeling is an approach to understand farmers’ decision-making with regards to crop and land use 

decisions, as well as to simulate LUCC arising from alternative land management plans (Lambin et al., 

2000). In particular, simulation models can estimate LUCC under different policy interventions, which 

combine socio-economic and environmental interactions in agricultural systems (Parker et al., 2003). Agent-

based models (ABM) model interactions between human and natural systems. These agents can have 

different characteristics and strategies for their decisions and interact with other agents and their 

environment (Bonabeau, 2002; Valbuena et al., 2010). Because ABMs are based on the decision-making of 

agents, ABMs are a bottom-up approach that simulates emergent phenomena of their decisions, and their 

interactions with each other and with their environment (An et al., 2005). Moreover, ABMs cannot only 

reflect temporal changes within agents' framework, but also spatial changes by generating spatial features 

from spatial data (Brown et al., 2005). To find out policy effects on agricultural practices, it is necessary to 

understand the factors influencing farmers' decision-making processes with regards to crop choice and land 

use. ABMs are also a useful tool to estimate spatial impacts on ecosystems because they simulate the agents’ 

behavior under different policy options and different LUCC scenarios. Because of these advantages, ABMs 

are increasingly used to study social and other influences on individual decision-making in LUCC. Famers' 
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land conversions to and from fallow lands are determined by the characteristics of farmers’ preferences, 

which are influenced by preferences of other farmers in the network. Moreover, farmers are affected by the 

spatial characteristics of their farmlands (Rounsevell et al., 2003; Dury et al., 2012). Under these 

circumstances, it is necessary to develop an ABM of LUCC in agricultural areas to reflect conversions to 

and from fallow lands and to estimate possible impacts of policy scenarios on regional ecosystems. 

 Understandings interactions between human decision-making and natural ecosystems within a 

system boundary are needed to develop an ABM integrated with an assessment of ES (Matthews et al., 

2007). Assessment of ES could be integrated with simulation models of LUCC and management decisions 

to estimate potential trade-offs between LUCC and ES (Nelson et al., 2010). Although development of 

integrated ABMs of LUCC and ES is still challenging, several studies exist, which mainly estimated impacts 

of LUCC on regionally specific ES such as carbon storage (Robinson et al., 2013), habitat provision (An et 

al., 2006), pollination services (Kremen et al., 2007), water supply (Bithell and Brasington, 2009) and 

biodiversity (Brady et al., 2012; Villamor et al., 2014). These integrated models simulate LUCC and 

estimate related changes in ES using existing indicators. However, water-related ES affected by agricultural 

LUCC do not receive a lot of attention in earlier ABM studies, although these ES are mainly affected by 

agricultural LUCC, which can cause soil erosion, as well as input of chemical fertilizers and pesticides 

(Foley et al., 2005; Montgomery, 2007; Hascic and Wu, 2006). In particular, water quality problems in the 

Soyang River stemmed from soil erosion due to agricultural LUCC in a mountainous watershed (Jun and 

Kang, 2010; Arnhold et al., 2014). Agricultural practices, which vary by crop types, cause changes of ES 

with regards to regulation capacity of soil erosion in the region (Arnhold et al., 2014). An assessment of soil 

erosion is needed to quantify changes of ES as a result of agricultural LUCC and crop choices (Angima et 

al., 2003). Therefore, the Revised Universal Soil Loss Equation (RUSLE; Renard et al., 1997), which is 

widely applied to estimate quantitative soil erosion potential, could be integrated with an ABM of 

agricultural LUCC. 

 Another challenge to ABMs to estimate LUCC and ES is to solve difficulties in the implementation 

of realistic decision-making processes which reflect agents' land use choice (Nelson and Daily, 2010). 

Farmers' decision-making is not only decided by socio-economic factors and spatial features of farmland, 

but it is also affected by opinions of other farmers (Sun and Müller, 2013). To reflect these factors, various 
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factors and models are applied to agents' decision-making processes and social interactions. ABM studies 

consistently applied several factors on farmers' decision-making processes such as economic factors (tax, 

income, crop price) (Hoffman et al., 2002; Milner-Gulland et al., 2006), spatial features of farmlands 

(Matthews, 2006; Magliocca et al., 2014) and social influence of other farmers (Deffuant et al., 2002; Chen 

et al., 2014; Sun and Müller, 2013). Moreover, recent studies focused on farmers' decision-making with 

regards to adoption of payments for ecosystem service (PES) as policy scenarios (Chen et al., 2014; Sun 

and Müller, 2013; Villamor et al., 2014). So far, however, there has been little consideration given to 

farmers' attitudes toward ES, which could be a significant driving factor in their decision, since several 

agricultural studies emphasized the importance of farmers' perception of ES (Bryan et al., 2010; Hatton 

McDonald et al., 2013; Plant and Ryan, 2013; Smith and Sullivan, 2014). 

 In the current situation, we developed an ABM to simulate possible LUCC and their impacts on ES 

by estimating soil erosion volumes. The ABM included different driving factors of farmers' decision-making, 

including farmers' perception of ES. To develop the model, we used farm household survey data to 

understand farmers' decision-making processes with regard to crop and agricultural land use choices. From 

the model, we estimate possible soil erosion under different LUCC processes and scenarios. The ABM, 

therefore, simulated regional changes of agricultural systems and their impacts on ecosystems under various 

scenarios, and identified conversion areas where areas vulnerable to soil erosion are located.   

 

4.2 Methodology 

4.2.1 Study area and background 

The research area is the Haean catchment area in South Korea (Figure 4.1), which is designated as a water 

pollution source areas of Han River and Seoul Metropolitan area (Jun, 2008; Lee, 2008; Ruidish et al., 2013). 

The flatland of the basin is mainly used for agriculture and the surrounding areas are covered by forest. Rice 

paddy areas are located in flat areas. Annual dry crops are widespread and perennial crops are cultivated on 

comparably steeper sloped areas (Poppenborg and Koellner, 2013). Typical annual agricultural crops are 

radish, beans, potatoes and cabbages, called highland crops, which are major income sources for farmers. 
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Among perennial crops, bellflowers and fruit orchards are mainly cultivated by local farmers, while ginseng 

farms are mainly cultivated by outsiders and have rapidly grown since 2005 (Jun and Kang, 2010). Because 

of on the prevalence of annual crops and extreme rainfall in the monsoon period, the catchment area 

generates more severe soil erosion than other areas in the Soyang River Basin (Park et al., 2010; Ruidish et 

al., 2013).  

 

Figure 4. 1 Land-use and crop type classification in the Haean catchment. The LUCC map is produced by 

original survey data (Seo et al., 2014). 

 

 Since the area has been identified as a water pollution hotspot, the government has tried out various 

policy various programs to reduce water pollution, such as promoting perennial crops and fruit orchards, 

restricting addition of new soils into farms, adoption of slope management techniques and conversion of 

marginal farms to forests. Among these policy programs, the orchard promotion policy was received 

favorably and effectively by the local community (Jun and Kang, 2010). This policy could reduce soil 

erosion and stabilize soil conditions under recently improved cultivation conditions due to climate change. 

As highland annual farms decreased in extent due to recent growth in perennial crops, these areas 
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experienced various transitional agricultural land uses. Some farmers who did not have the capacity to 

convert from annual to perennial crops abandoned their farmland to fallow lands. Some of this farmland has 

been sold to outsiders, who wanted to use it for ginseng farms and therefore ginseng farms have increased 

rapidly in the catchment since 2002 (Jun and Kang, 2010). Because it is necessary to estimate the impacts 

in these changes of land use and crop choices on regional ecosystems, we developed agricultural LUCC 

models for different scenarios and estimated the impacts of LUCC.  

 

Table 4. 1 Land use and crop changes in Haean catchment between 2009 (column) and 2010 (row) (km²) 
based on land use maps based on field survey data on a yearly basis (Seo et al., 2014). 

2009 

2010 
Other land 

Rice 

paddy 
Annual  Perennial  Ginseng Undefined  

Fallow 

land 

Other land 45.16 0 0.10 0 0 0.01 0.11 

Rice paddy 0 5.17 0.06 0 0.07 0 0.19 

Annual 0.23 0.01 4.63 0.36 0.52 0.28 1.47 

Perennial 0.01 0 0.16 0.92 0.03 0.16 0.06 

Ginseng 0 0 0.01 0 0.70 0 0.07 

Undefined  0.08 0 1.41 0.09 0.16 0.70 0.29 

Fallow land 0 0 0.18 0.01 0.11 0 0.83 

 

4.2.2 Agent-based model for decision-making of agricultural household 

4.2.2.1 Farmers' data 

 A farm household survey was conducted in 2010 to investigate farmer' perception of ES and 

economic factors influencing their agricultural land management (Poppenborg and Koellner, 2013). The 

survey had 220 respondents, which corresponds to 33% of all farmers in the catchment. The survey collected 

farmers' behaviors related to crop choices, such as their attitudes to ES, behavioral control factors and social 

factors that influence crop choices, and the farmers' cultivation intent for crops (rice, annual, perennial 

crops). In addition to this, information on farmers’ social and economic status was also gathered such as 

subsidy support and participation in the farmers' capacity building program (CBP). The survey was 

combined with spatial data on agricultural land use and crop status as well as physical data (slope, elevation, 

soil properties, neighborhood land use status) using geographic information system (GIS). Then we used 
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these farmers as agents in an ABM, which created 238 agents and duplicated them, resulting in a total of 

441 random agents to realize similar numbers of farm households in the catchment. Agents have personal 

attitudes toward specific ES (biomass production, water quality and soil erosion) and behavioral control 

factors (agricultural skill and knowledge and legal legislation) with regards to each crop type (rice, annual 

and perennial crops) (Poppenborg and Koellner, 2013). They also have their own intend values to make a 

particular crop decision, which reflects their preference and willingness. These agent' features are quantified 

from 1 to 5 according to personal importance and consideration. Spatial features of the farmlands are also 

applied quantitatively through grid-cell based spatial data and LUCC maps based on field survey data, as 

seen in Table 4.1, to understand LUCC and crop change patterns based on Seo et al.(2014). In the ABM 

framework, we developed two sub-model of decision-making process of agricultural land use and crop 

choices based on these agent' data. 

4.2.2.2 Sub-model of farmers' crop decision 

We developed a sub-model of farmers' decision-making with regards to crop choice among rice, annual and 

perennial crops. To develop this decision module, we applied a stochastic approach using multinomial 

logistic regression (MNL), which estimates the transitional probability of crop choice from various input 

factors from survey and spatial data. MNL can estimate the conditional probability of agents' decisions in a 

multinomial logistic form (Benenson and Torrens, 2004; Le et al., 2008). We, therefore, extracted 

coefficients (β) of each factor from the MNL analysis, then they were applied as explanatory factors. In the 

model, probability functions of crop choice are described as  

Pij = exp(βiXj)/∑k=1 exp(βiXk)                                                                                                                      (4.1) 

where Pij is the probability of crop i to be converted to crop j, βi is a set of coefficients and Xk is a set of 

explanatory variables. From this calculation, each farmer has different probability values (P) of crop choice 

and we, therefore, have a probability range for each crop choice, which sums to 1 in total. Next, farmers 

will choose their crops based on the probability and generation of random values to reflect uncertainty in 

the agents' decision. Farmers' crop-choice for the next cultivation year (t +1) will be simulated and their 

land use types will be changed accordingly. For the next simulation period (t + 2), farmers update their 

perception of ES, control factors of crop choice and their individual intent on updated crop types using 
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actual survey results. As for spatial variables, physical factors are fixed in all simulation steps while 

neighborhood land use will be updated after simulation results are applied to spatial land use maps.  

4.2.2.3 Social influence module 

We developed a social influence sub-model, which reflects the effect of social networks and interactions 

between agents on farmers' intent because agent behavior is normally influenced by others in a local 

community, either directly or indirectly (Figure 4.2). Direct interactions occur when agents communicate 

with other agents directly, while indirect interactions reflect agent behavior within the system environment 

which affect agents' perceptions (Sun and Müller, 2013). The social influence module consisted of two parts. 

One is an opinion exchange model to reflect interactions between individual agents, and the other is a 

network model which sets the social network boundary and links it to the environment. To develop the 

social influence model, we adopted an opinion dynamics and bounded confidence (BC) model (Hegselmann 

and Krause, 2002) to simulate each agent's interaction, and a small world network model (Watts and Strogatz, 

1998) to set the network group and boundary. 

 

 

Figure 4. 2 Different types of agent' interactions (source: adapted from Sun and Müller, 2013). 

 

 Opinion dynamics under BC is an agent's interaction model, which considers characteristics of 

agents' interactions in the real world (Lorenz, 2007). Although agents could interact with all other agents in 

their networks theoretically, agents tend to interact with those who do not have significant difference in their 

opinions, called the BC situation (Kou et al., 2012). BC model can set an opinion threshold for the agent's 
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interactions so that two agents have interactions. Only their opinion differences are lower than a threshold 

value. In particular, the Hegeselmann and Krause BC model assume that agents are affected by all other 

agents within the BC situation in their community network at the same time (Hegselmann and Krause, 2002; 

Kou et al., 2012). The model can be applied in the ABM of agricultural LUCC in the catchment for agent' 

interactions with regards to farmers' intent. The BC model has a formula as follows: 

@ Q + 1 = |U V, Q @ |W& 	 @# Q 		for	Q	 ∈ [,#	∈	\(",] $ )                                                                             (4.2) 

where 	U	 V, @ = 	1	 ≤ _	 ≤ .	 	@" − 	@# ≤ 	 `"} 

In this formula, agent i has a confidence level of `" reflecting opinion gaps without agent interactions, and 

agent i's interaction with agent j ( 	@" − 	@# ) are calculated and then all agent i's interactions with other 

agents are summed. We used farmers' intent as agents' tendency in the BC model, which reflects farmers' 

preference and farmers, therefore, change their intent when they communicate with other farmers.  

 To set the network boundaries, we applied a small world network model, which can be combined 

with opinion dynamic models (Stauffer and Meyer-Ortmanns, 2004; Suo and Chen, 2008: Sun and Müller, 

2013). Our model hypothesized a small world network, i.e., most nodes are linked by a small number of 

edges. Each agent has higher levels of random links with other agents in the network and lower levels of 

links with agents outside the network (Watts and Strogatz, 1998; Costa et al., 2007). Unlike other studies, 

we created the farmers' network based on the location of their farmlands and distance from others instead 

of administrative division because the catchment is one administrative and settlement area. To model the 

opinion network, we estimated the network through path length and clustering coefficients as described in 

Appendix 4.4, which quantifies network properties. Lower path length and higher clustering coefficient are 

regarded as better clustering network (Watts and Strogatz, 1998). 

4.2.2.4 Development and adoption of LUCC scenarios 

The ABM simulated changes in crop choice and their impacts on regional ES by estimating soil erosion. As 

mentioned above, land use and crop choice have been changed from a few dominant highland crops to 

diverse crops for economic, political and environmental reasons. We developed three different policy 

scenarios for crop choice and land management plans based on current LUCC patterns and policy directions: 
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business as usual (BAU), fallow land growth (S1), perennial crop growth (S2) and ginseng farm growth 

(S3). The BAU scenario is a baseline scenario, which simulates crop changes under current change patterns 

without changes in fallow lands and ginseng farms. The fallow land growth scenario (S1) consider the 

situation in which fallow lands increase in areas with lower agricultural suitability. This reflects actual 

agricultural LUCC in the region between 2009 and 2010, which also occurred in other regions in South 

Korea for economic reasons (Rhee et al., 2009). From the scenario, we hypothesized the environmental 

aggravation in the catchment with growth in fallow lands and soil erosion. The perennial crop growth 

scenario (S2) assumes the conversion of fallow lands to perennial crops on land with comparably higher 

agricultural suitability and farmers' intent to cultivate perennial crops. This scenario hypothesizes an 

effective government policy for regional farmers to adopt perennial crops instead of promoting ginseng. 

The ginseng growth scenario (S3) reflects fallow land conversion to ginseng farms. Part of currently fallow 

land could be converted to ginseng farms depending on land characteristics and suitability because ginseng 

farms are expanding on marginal lands with lower agricultural suitability (Mok, 2005). Based on these 

scenarios, we simulated agricultural LUCC and crop choice and soil erosions. 

 To implement LUCC scenarios, we model farmers' decisions to leave land fallow based on their 

agricultural intent to cultivate crops and agricultural suitability of their farmlands. As agricultural 

abandonment normally occurs on unproductive lands in developed countries (Ramankutty and Foley, 1999), 

abandoned lands in South Korea also occur on areas with lower agricultural suitability, which demand 

higher levels of agricultural labor costs (Kim, 1996; Rhee et al., 2009). To estimate land suitability, we 

adopted agricultural land suitability index (LSI) based on multi-criteria evaluation (MCE) and fuzzy 

membership functions, which is widely used in land suitability evaluation from various environmental 

properties depending on various spatial characteristics of farm lands (Tang et al., 1991; Van Ranst et al., 

1996; Sicat et al., 2005; Nguyen et al., 2015). According to types of input variables, the S-shaped 

membership function (S-MF) and the Kendal membership function (K-MF) are used to calculate LSI. 

K − MF	 = 	

1
1 +	 @ − 	e& f g 																			x < 	 e&

														1																																			e& 	< 	@	 < 	 eg
1

1 +	 @ − 	eg f g 																			x > 	 eg

                                                                         (4.3) 
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																		0																																				χ	 ∈ (	γ, +∞)
2	[	 	χ − 	γ	 ∕ 	γ − 	α	]g												χ	 ∈ [β, γ]
1 − 2	[	 	χ − 	γ	 ∕ 	γ − 	α	]g					χ	 ∈ [α, β]

																						1																																χ	 ∈ (	−∞, α)

                                                                      (4.4) 

where each threshold value for sustainability classes (b1, b2, α, γ) determines optimal conditions, d is b1 - b2 

or cross point value (0.5), and β = ( α + γ ) / 2. Threshold values are derived from Nguyen et al. (2015) as 

shown in Appendix 4.1. We combined farmers' intent values and LSI to develop decision-tree modules on 

fallow lands decisions under different scenarios. From the sub-modules on farmers’ decision-making 

processes, we develop the ABM of agricultural land use and crop choices described in Figure 4.3.  

 

4.2.3 Assessment of ecosystem services 

Changes of farmers’ crop decision could generate changes in ES. To simulate LUCC impacts on the regional 

ecosystem, we estimate changes in regional ES under different scenarios. The spatially explicit functional 

modeling is a systematic approach which incorporates spatially explicit models and quantitative valuation 

of ecosystems services (Kubistzewski et al., 2013, Costanza et al., 2014). Valuation of ES could be used to 

estimate impacts of land management policies and implementation of those policies under different 

scenarios (Costanza et al., 2014). We here estimate soil erosion control based on changes in farmers’ crop 

decision, which is regarded as a serious environmental issue related to agricultural LUCC in the region. We 

used the RUSLE to estimate average soil erosion per unit area (tons/ha) per year (Renard et al., 1997). The 

model calculates annual soil loss from a climate factor (R-factor), erosion factor (K-factor), slope-length 

and slope factor (LS-factor), vegetation-cover factor (C-factor), and support-practice factor (P-factor) as 

follows: 

Annual soil loss = R * K * LS * C * P                                                                                                      (4.5) 

The R-factor reflects annual surface runoff due to annual rainfall and maximum rainfall intensity, which is 

calculated from precipitation data. The K-factor indicates resistance to soil erosion as a result of soil 

characteristics and structure as calculated from soil data. The LS-factor is determined by slope-length and 

slope-degree. The C-factor depends on the degree to which surface cover types prevent surface erosion. The 

P-factor depends on land-cover types of farmlands and upward and downward slope (Renard et al., 1997). 
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We only calculated agriculture-related soil erosion under farmers' decision-making on crop choice using 

different C-factors derived from earlier research. For fallow areas, we used the median values of values 

reported for fallow lands and grassland because fallow lands could convert to natural vegetation partially. 

Data for input variables and indicators are obtained from empirical observation in the research area (Arnhold 

et al., 2014) and literature on other regions of South Korea. The input value for each factor is detailed in 

Appendix 4.3. 

 

4.2.4 Uncertainty and sensitivity analyses 

ABMs necessarily have modeling uncertainty due to their complex characteristics and limited 

understandings of factors and processes in the human-natural systems (Ligmann-Zielinska et al., 2014). To 

develop ABMs, it is necessary to evaluate the model by quantifying variability and sensitivity of model 

outputs. The uncertainty of model outputs is normally estimated by comparing results of several model runs 

based on random sampling, such as Monte Carlo simulations. Sensitivity analyses are conducted by running 

multiple simulations of the model using extreme values of model input factors (An et al., 2005; Guzy et al., 

2008; Ligmann-Zielinska et al., 2014). We conducted an uncertainty analysis based on multiple simulations 

of the model with random numbers in the steps of crop choice and estimates soil erosion. Sensitivity analysis 

is also conducted by applying random values of input factors based on their distributions in farmers' 

decision-making processes such as attitude towards ES and perceptions on agricultural control factors. We 

used a variance-based sensitivity analysis (VBSA) to estimate individual and/or combination factors' 

influences on model performance in socio-ecological ABMs (Ligmann-Zielinska et al., 2014). The VBSA 

estimates the total variance of input factors reflecting their influences and interactions by quantifying the 

partial variance of factors, called the first-order sensitivity index (S), and interactions between a specific 

factor and others, called the total effect sensitivity index (ST) (Homma and Saltelli, 1996). The VBSA helps 

strengthen model performance and reflect real-world changes under different scenarios (Filatova et al., 

2013). In our study, we used values of ST in VBSA to estimate overall influences of the input factors, 

including their interactions from 14000 model runs for 12 factors. To estimate ST values, we used Sobol’s 

sequence with quasi-random sampling and Monte Carlo integrals, which is suitable to estimate ST indices 

for complex and non-linear environmental models (Saltelli et al., 2010). 
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Figure 4. 3 Flow chart of ABM framework, which integrates crop decision module with multinomial logistic 

regression and other land uses (fallow land and ginseng) decision module with decision tree. 

	

 The overall procedure of the model is described in Figure 4.3, farmer' crop decision is the first 

decision module and fallow land decision is the second module based on transitional probability of crop 

choice by MNL and interactions with other farmers in the network. Then, the model updates regional land 

use and crop types and estimate possible soil erosions rates under different scenario. The development of 

the ABM for LUCC and crop choices was carried out using NetLogo (Wilensky, 1999). This software can 

simulate spatial changes in crop choice and LUCC under different scenarios and reflects agents' interaction 

in the system boundary. Changing model input variables in different run is used to calibrate and validate the 

model, and then the model simulates each scenario several times to estimate the impacts of crop choice and 



123	
	

LUCC. For the analysis of VBSA, we used R software including RNetlogo (Thiele, 2014) and sensitivity 

packages (Martinez, 2011). 

 

4.4 Result 

4.3.1 Development of farmers' decision-making model 

Our model simulates changes of agricultural land use and crop choices, which are used to estimate the effects 

of agricultural policy scenarios. To develop the decision-making procedures, we extracted driving factors 

of crop choices and their coefficient values from MNL, as shown in Appendix 4.5. Attitude toward biomass 

production, soil erosion and water quality affected farmers’ crop choices. Agricultural skills and knowledge 

and legal legislations were behavioral control factors of crop decisions. Elevation, slope, soil organic carbon 

and bulk density, as well as neighboring crop status, were extracted as spatial driving factors of crop choices. 

The decision model simulated conversion on farmers' crop choice on farm patches on a site-by-site basis. 

In the BAU scenario, rice and annual crop farmers are decreasing slowly and perennial crop farmers are 

increasing. However, spatial changes are different to these patterns: farmlands under annual crops expanded 

perennial and rice farmlands decrease, although the numbers of farmers choosing annual crops decrease. 

Farmers’ perceptions and attitudes toward ES were also extracted as driving factors of changes from MNL.  

 We conducted uncertainty analysis to estimate the variability of the ABM outputs and a sensitivity 

analysis each factor within the ABM from multiple simulation outputs. Estimates of agricultural area is a 

spatial output of the model and depend on farmers’ decision-making processes. And then, annual soil erosion 

rate is also simulated as estimates of ES. In the crop choice models, estimates of rice area and farmers have 

lower variability than estimates for other crops, which reflects regional change patterns. When we compare 

simulation results for farmers and farmland, similar levels of result variations are estimated in the model. 

There are differences in estimates of soil erosion rates, according to small levels of changes of crop types 

and their variation. Then, we examine uncertainty analysis through variability of model output of 

agricultural LUCC and soil loss as described in Figure 4.4. When we compare the variance of the simulation 

outputs in the BAU scenario, we can find that simulation outputs of rice and soil loss are less varied than 

results of annual and perennial crops.  
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Figure 4. 4 Distribution of model outputs in the baseline scenario for uncertainty analysis: (a) is a 

distribution of farmer’ numbers, (b) is a distribution of farmland areas, (c) is a distribution of annual soil 

erosion 

 

 To understand the explanatory powers of variables, we calculated ST indices for farmers’ crop 

choice for each crop type of the model (Figure 4.5). For the rice crops, all variables have similar influences 

and spatial characteristics of the farmlands affect crop choices to a lower degree compared to annual and 

perennial crops because simulation outputs are less varied as shown in Figure 4.4 and thus single factor do 

not have strong influence on model outputs. As for annual crops, attitudes to ES (water quality and soil 

erosion) have the smallest influence on the model’s output while topographic factors (elevation and slope) 

and neighborhood factors are most important for farmers' decisions with regards to annual crops. Decisions 

about perennial crops are influenced more by attitudes toward water quality while perennial farmers are less 

influenced by attitudes toward biomass production and perceived control factors (skill and knowledge and 

legal legislation). As for policy factors, rice farmers are more sensitive to subsidies while annual and 

perennial farmers are more sensitive to CBP. Among spatial features of farmlands, topographic factors 

(elevation and slope) are important while soil factors (organic carbon and bulk density) are less important 

for field crops. Neighboring crop status was extracted as a sensitive factor of crop choice in all crop decisions, 

which reflects the importance of spatial interactions of agricultural LUCC. 
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Figure 4. 5 Pie chart of ST (Total effect sensitivity) indices from sensitivity analysis for each output variable 

of crop choice (AttB1 = attitude toward biomass production, AttB2 = attitude toward soil loss reduction, 

AttB3 = attitude toward water quality improvement, PBC1 = skills and knowledge, PBC2 = legal legislation, 

SUB = subsidy, CBP = capacity building program, ELE = elevation, SLO = slope, SOC = soil organic 

carbon, SBD = soil bulk density, NLU = neighborhood land use %). 

 

4.3.2 Scenario assessment 

Our model simulated LUCC over the next 10 years under different scenarios (S1-3), compared to a baseline 

scenario (BAU) as shown in Figure 4.6-8. The simulation results indicate that common patterns are found 

in all scenarios, with rice and annual crops decreasing and perennial crops increasing, though change rates 

differ between scenario types. Another feature of the simulation results is different changes of farmers and 

their farmland, as the numbers of farmers adopting a given crop changes at a higher rate than the 

corresponding farmland area. Rice and annual crop farmers decrease more than rice farmlands in its' change 

rate while perennial farmers and farmlands show the opposite pattern. When we compare the BAU and S1 

scenario, it is found that farm abandonments mainly occur in annual crop fields, while perennial farmers are 

less converted while rice and perennial crops have similar patterns between two scenarios (Figure 4.6 and 

4.8). In the scenario, annual farms decrease by 170 ha while fallow lands increase by 130 ha as 7% of total 

agricultural areas. When we consider the S2 and S3 scenario for fallow land management, the ginseng farm 

expansion scenario (S3) is more effective in reducing soil erosion, which stably reduces annual soil loss. As 

for the S2 scenario, annual farms decrease with a higher variance than other scenarios although annual 

farmers decrease stably. In the S3 scenario, perennial crops increase higher than other scenarios while rice 

and annual crops decrease similarly with the S1 scenario, which reflects ginseng farm expansion by 180 ha 
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as 109%. Because ginseng farms are expanded by outsiders, which is not considered in the ABM, perennial 

farmers increase less than farmland areas.   

 

	

Figure 4. 6 Changes of a number of rice farmers (left) and their farm areas (right) by scenarios. BAU is a 
baseline, S1 is a fallow lands growth, S2 is a ginseng farm expansion, S3 is a perennial growth scenario. 

 

	

Figure 4. 7 Changes of a number of annual crop farmers (left) and their farm areas (right) by scenarios. 
BAU is a baseline, S1 is a fallow lands growth, S2 is a ginseng farm expansion, S3 is a perennial growth 
scenario. 
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Figure 4. 8 Changes of a number of perennial crop farmers (left) and their farm areas (right) by scenarios. 
BAU is a baseline, S1 is a fallow lands growth, S2 is a ginseng farm expansion, S3 is a perennial growth 
scenario. 

 

 We also analyzed the impact of different agricultural land management scenarios on ES by 

estimating agricultural soil erosions loss (ton/ha/year) to assess ES. To estimate effects of agricultural LUCC, 

we simulated the RUSLE model to estimate soil erosion in the different scenarios. Soil erosion from 

agricultural LUCC changes little in the BAU scenario, which comes from different soil erosion rates of 

spatial features of farmlands (Figure 4.9). When considering the S1 scenarios, soil erosion rates increase by 

6%, which is similar with in proportion to variability in fallow lands. To reduce soil erosion, we apply 

perennial and ginseng farm expansions, which cause reduction of annual soil loss compared to the S1 

scenario. However, their effects on reduction of soil loss are less than expected, while perennial crop 

expansion decrease by 3% and ginseng farm expansion decrease by 6%.  
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Figure 4. 9 Changes in annual soil erosion by scenario. BAU is a baseline, S1 is a fallow lands growth, S2 
is a ginseng farm expansion, S3 is a perennial growth scenario. 

 

4.4 Discussion 

4.4.1 Crop choice and agricultural land use in the ABM 

We developed an ABM of agricultural LUCC and crop choices based on farmers’ attributes and spatial 

features of farmlands to simulate possible agricultural LUCC and its impacts on soil erosion. ABMs of 

agricultural LUCC have high levels of uncertainty due to limited information on agents and their decision-

making process (Ligmann-Zielinska et al., 2014). Moreover, driving factors of crop choice extracted here 

are also different compared to those found in earlier research (Poppenborg and Koellner,2013), which did 

not consider spatial factors in MNL analysis. Therefore, we conducted uncertainty and sensitivity analyses 

to assess model outputs and inputs. Because output variables have diverse values due to different impacts 

of driving factors even in a single model (Ligmann-Zielinska et al., 2014), we estimated levels of uncertainty 

and sensitivity to estimate model performance. The model has different levels of variance of outputs 

depending on crop type and output factor while the rice model has a lower uncertainty than other crop types. 

This stems from features of rice paddies in rural areas, which are supported by the government for instance 

by direct payments. Additionally, older farmers tend to maintain their rice paddies because of suitable 

incomes and lower skills and knowledge (Jun and Kang, 2010), which also matches our results in Appendix 
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4.5. It is also found in the sensitivity analysis of the policy factors (subsidy and CBP) when rice is compared 

with other crops. Rice is comparatively more sensitive to subsidy and farmers’ perception on legal 

legislation, unlike other crops. Annual and perennial crops, which change up to 10-15% annually (Table 

4.1), have higher uncertainty of model outputs and their simulation results are interrelated with each other. 

Among farmers’ perception factors, attitudes toward soil erosion and water quality have lower impacts on 

model outcomes while attitude on water quality has higher impacts than other perception factors, which is 

different compared with findings in other research (Poppenborg and Koellner, 2013). 

 

4.4.2 Assessment of ecosystem services from ABM 

The ABM simulates annual soil erosion rates from changes in agricultural area based on farmers' decision-

making processes. From the simulation, we estimate possible changes in soil erosion at the watershed scale, 

which is linked to agricultural LUCC and related ES. Contrary to our expectations, soil erosion rate has low 

uncertainty. Mean values of annual soil erosion rates from all agricultural lands are estimated to be 32.7 

ton/ha/year in the BAU scenario and 34.6 ton/ha/year in the S1 scenario. The value is less compared to 

earlier research (Poppenborg, 2014), which is estimated differently with regards to types of crops and 

management system (27-37 ton/ha/year). Our model includes fallow lands areas which cause severe soil 

loss than cultivated farmlands. Although the model could simulate agricultural LUCC and a typical ES in 

the research area, there are several challenges to developing a sophisticated modeling approach. In particular, 

quantification of soil erosion factors resulting from agricultural lands is a very significant reason to adopt 

RUSLE into LUCC simulation models due to uncertainty of the model and characteristics of land cover 

types. In the model, we adopt empirical results from Arnhold et al.(2014), who estimated regional specific 

C-factors according to crop type across the research site. Because C-factors differ by crop types, differences 

in soil erosion between crop choices have a lower impact unlike with simulation results from Poppenborg 

(2014). However, when we considered scenarios on fallow areas and ginseng farms without any empirical 

data in the region, values of C-factors could be problematic for estimating soil erosion. As for fallow lands, 

which varies from bare soils to natural vegetation cover. Panagos et al.(2015) estimated C-factors for 

specific land cover types from literature reviews, arriving at a 0.5 value for fallow lands. Because fallow 

lands have various forms from intermediate stages on bare soil to natural grasslands, we used median values 
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between fallow lands and natural grasslands with 100% variance to reflect the uncertainty of model outputs. 

Although recent research reported that ginseng farms in the region could reduce soil erosion (Lee and Jeon, 

2009; Jun and Kang, 2010), effects on ginseng farms are still problematic because most ginseng farms in 

the region do not have enough facilities to prevent soil erosion and caused severe soil erosion in the 

catchment (Cho, 2015). Because the effect of ginseng farms on reducing soil erosion on the research site is 

still uncertain, we set higher variation values on ginseng farms, which increased the uncertainty of the soil 

erosion results. 

 

4.4.3 Policy implications on ES management 

After the development of the model, we simulated farmers' agricultural LUCC and soil erosion under 

possible LUCC scenarios. Although the model simulates changes in agricultural land uses and ES by current 

status crop decisions, the results could help stakeholders to develop sustainable environmental and 

agricultural management plans. When we simulated scenarios (S1-S3), there was a possibility of a slight 

decrease in rice and annual crop farmers and increase in perennial farmers. However, spatial patterns of 

changes are different to the changes in farmers' status, which reflect smaller changes in farm area than 

farmers. This result could stem from features of farmers and their farm sizes. Rice farmers with larger farms 

have tendencies to change their farms to other crops, which explains the conversions from large rice farms 

due to lower income than field crops, while rice is cultivated by low-income and older farmers generating 

up to €750 per hectare for rice and €200 Euro per hectare for field crops. Highland farmers with capital 

strength and capacity increased their farmland size and adhered to annual crops (Kim, 2014). Annual crops 

are more sensitive to scenario changes, which could be related to farmers’ intent in the region. Annual crop 

farmers have lower intent values than other farmers and could convert their crops when they have enough 

motivation to convert, such as economic and environmental factors. However, rice farmers are older than 

other farmers and have less capacity convert to other crops due to lack of information, skills and knowledge. 

Moreover, rice farmers receive stable government subsidies for cultivation in proportion to their farm size, 

which incentivizes them to cultivate rice as a stable source of income compared to field crops (Park and 

Seung, 2013). 
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 The simulation results also indicate the importance of fallow land management, which generates 

higher soil erosion, for management plans. Many annual crop farms, called highland farms, are located on 

steep slope areas and are regarded as major water pollutant source. These areas have low suitability for 

cultivation and are easily converted to fallow lands when farmers have low capacity to change to other crops 

(Jun and Kang, 2010). Additionally, annual crops are sensitive to crop price changes due to market status 

and lower direct payment than rice, which resulted in increasing fallow land in dry field areas (Rhee et al., 

2009). Fallow lands could increase by up to 85% in South Korea and cause ecocide and worsen agricultural 

conditions (Rhee et al., 2009). Our ABM can estimate possible changes in ES due to such changes in fallow 

lands. Ginseng farm expansions occur on fallow lands with lower LSI, whereas perennial farm expansion 

occurs where fallow lands have higher LSI, which are expected to reduce soil loss in the scenarios involving 

ginseng farm expansion. Although the magnitude of fallow lands decreases in the catchment, fallow lands 

in marginal forest areas with steep slopes remains as fallow lands, which causes severe soil loss than in 

other areas. Therefore, it is necessary to manage these marginal lands without agricultural activities such as 

reforestation policy, which focuses on conversion of these marginal lands to forest areas. From the 

simulation results, it turned out that ginseng farm expansions are more suitable for fallow land management 

plans, which generate less soil erosion than other crops because it stabilizes soils for cultivation periods of 

up to six years as Lee and Jeon (2009) estimated. In the ginseng expansion scenario, perennial farmland 

increased due to ginseng farm expansions, which are a typical type of perennial crop in the region. Although 

ginseng is mainly cultivated by outsiders in the region, who have less impact on farmers’ interactions than 

local farmers in the network, changes in the regional landscape affect other farmers’ decisions as indirect 

interactions, as explained in Figure 4.2. These changes in the environment lead to perennial expansions by 

local farmers who are affected by the land use status of neighboring land surrounding their farm areas. 

4.4.4 Challenges to developing ABM integrated with ES models 

We developed an ABM to simulate farmers' decision-making processes in an intensive agricultural area 

where severe soil erosion has occurred. To develop more sophisticated ABMs, several improvements are 

still possible. The first task is decision-making in fallow land conversions. We assumed that farmlands with 

lower LSI and lower farmer's intent values determine fallow land conversions in the region. To simulate 

them, we calculated LSI for agricultural practices and hypothesized that farmlands with lower LSI are easily 
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converted to fallow lands, which reflect characteristics of farmers’ land abandonment. Although LSI is 

useful to estimate agricultural capability and suitability, calculation of the values should be improved by 

combining field observation and stakeholder interviews because LSI could vary with regional characteristics 

and crop types (Reshmidevi et al., 2009; Liu et al., 2013). In particular, LSI values for rice paddies have 

different factors and thresholds to field crops in previous studies (Nguyen et al., 2015; Zhang et al., 2015) 

because there is a spatial difference of research areas enabling two or three-cultivation farming in rice in 

sub-tropical regions. These researches underestimate the effects of slope where bench terrace cropping is 

used. Rice farmers in South Korea, however, are more affected by spatial restraints like elevation and slopes, 

which affect the accessibility of labors and machinery to farmlands (Park and Kim, 2005). Although LSI 

has limitations, the value could imply various criteria for a decision on agricultural land management plans. 

Decision-making processes of land abandonment should be improved to reflect realistic changes of farmers' 

decisions. Most land abandonment progresses normally over a long period of time due to diverse factors 

(Brändle et al., 2015). However, fallow land in the catchment is occurs prepare ginseng farms in a short 

period as an intermediate stage of LUCC (Seo et al., 2014). To reflect realistic changes of regional LUCC, 

decision-making processes and scenario development of fallow and ginseng farm changes should be 

improved, although we already adopt a land abandonment decision-module by scenario types and estimate 

its impacts on soil erosion to comprehend possible changes. 

The model has a limitation for the decision-making process of agricultural LUCC because it cannot 

consider economic factors due to limitations on farm households' economic data, such as agricultural costs 

and profits, as well as other income. Because of this limitation, we could not expand our model to combine 

agricultural policy and economic scenarios. We also cannot reflect land ownership in our ABM, although 

agricultural land use and fallow land transition in the region are strongly affected by land ownership status, 

which affects take-up of subsidies and direct payment (Jun and Kang, 2010). Although the model cannot 

reflect economic decision-making factors, it uses different spatial data to simulate possible agricultural 

changes where physical conditions are significant LUCC factors. We simulated changes in agricultural land 

management under different land use scenarios reflecting current characteristics of transitional periods of 

agricultural land use. The model also simulates farmers' direct and indirect communication, which could be 
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converted to social opinion. i.e. social norms. Social interaction among farmers lead to the emergence of 

social norms and affect other farmers' opinions on agricultural land management plans (Chen et al., 2013).  

 

4.5 Conclusion 

The purpose of this study was to develop an ABM which capture various agricultural decision-making 

process and LUCC scenarios in the Haean catchment, where rapid agricultural LUCC as occurred, and their 

impacts on regional ecosystems. The model combines farmers’ survey data on crop decision-making and 

fallow land conversions with spatial data reflecting physical constraints of agricultural activities. Farmers’ 

decision regarding fallow land management are modeled based on spatial characteristics such as topography 

and soils, as well as farmers’ intent, which reflects farmers’ communications. The model focuses on spatial 

characteristics, farmers' perception and their social interactions, although there are limitations on modeling 

processes due to a lack of accessible data. From these results, we examined agricultural LUCC and related 

ES based on farmers’ perceptions and spatial characteristic. Moreover, the model simulates possible changes 

in agricultural land use which could be a useful resource in policy making for environmental and agricultural 

management plans in the catchment. 
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Appendix 4.1. Input factors and their fuzzy classification of agricultural suitability index (LSI)  

Indicator Type of 

function  

Type of suitability class/level  

S1  S2  S3  N  

Slope (%)  S-shaped  x <=8  8 < x <=16  16 < x <=30  30 < x  

Dist to road  S-shaped X <= 500  500< x <=1000  1000 < x  

<= 2000  

2000 < x  

Organic carbon  Kendal  x >= 1  1 > x    

Soil texture  Class  Clay, sandy clay, 

sandy clay loam  

Sandy loam   Loamy sand  Sand   

Drainage class Class Good Moderate Imperfect Poor 

 

Appendix 4.2. Spatial distribution of agricultural land suitability index (LSI) 

 

 

 Appendix 4.3. Input factors and their values on RUSLE model 

Factors Values Source 

R-factor 6599.1 in whole catchment area Arnhold et al., 20141 



142	
	

K-factor Calculated from soil maps Lee et al, 20082 

LS-factor Calculated from DEM Lee et al, 2008 

C-factor Normally distributed with mean = 0.13, variance = 0.0013 

for rice paddies; mean = 0.1417, variance = 0.0045 for 

annual crops; mean = 0.1257, variance = 0,0101 for 

perennial crops and ginseng farms; mean = 0.25, variance 

= 0.125 for fallow land 

Lee et al., 2008; Arnold et al., 

2014  

P-factor 0.1 for rice paddies, 0.6-0.9 for annual crops, 0.6-0.9 for 

perennial crops and ginseng farms, 1 for fallow land  

Lee et al, 2008 

1 Arnhold, S., Lindner, S., Lee, B., Martin, E., Kettering, J., Nguyen, T. T., Koellner, T., Ok, Y. S., Huwe, B., 2014. 
Conventional and organic farming: Soil erosion and conservation potential for row crop cultivation. Geoderma 219–
220, 89–105. 
2 Lee, M. B., Kim, N. S., Jin, S., Kim, H. D., 2008. A Study on the soil erosion by landuse in the Imjin River Basin, 
DMZ of Central Korea. Journal of Korean Geographical Society 43(3), 263-275. 
 

Appendix 4.4. Results of estimation on structures on social network model 

Farmers type Numbers of network / farmers Mean Clustering coefficient Mean Path length 

Rice 4.79 0.225869 3.880547 

Annual 3.62 0.179257 4.360535 

Perennial 3.34 0.112857 5.065457 

 

Appendix 4.5. Results of Multinomial Logistic Regression (MNL) 

   Rice      Annual crops     

   β (std.err.)  Exp(β)  β (std.err.)  Exp(β)  

Intercept  -27.854  -  -20.876     

Attitude toward behavior  

Biomass production  -0.271(0.072)**  0.762  -0.126(0.057)*  0.881  

Soil loss reduction  0.104(0.215)  1.423  -0.021(0.053)  0.979  

Water quality improvement  -0.007(0.234)  0.982  -0.106(0.056)  0.900  

Perceived behavioral control  

Skills and knowledge  -0.278(0.261)**  0.757  -0.089(0.043)*  0.914  

Legal legislation  0.128(0.054)*  1.137  .0.071(0.045) 1.074 

Support  

[ Subsidies = 1 ]  -1.362(0.604)  0.256  -0.008(0.684)  0.992  

[ Subsidies = 0 ]  0     0     

CBP      
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[CBP=0]  0.940(0.927)  2.561  1.740(0.819)*  5.698  

[CBP=0]  0   0   

Spatial characteristics      

Elevation (416 -673m) -0.052(0.014)**  0.950  -0.026(0.010)*  0.974  

Slope (0-22.7) -0.336(0.162)*  0.715  -0.266(0.137)  0.767  

Soil organic carbon 

(0.522-3.409)  

1.743(2.235)  5.715  3.944(1.857)*  51.640  

Soil bulk density 

(894.8-1281.46)  

0.043(0.018)*  1.044  0.028(0.016)  1.028  

Neighboring land use%  11.313(2.044)**  81879.821  5.645(1.741)**  282.975  

(Cox and Snell  R2 = 0.667, Chi2 = 212.416, **p < 0.01, *p < 0.05*) 
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Appendix 4.6. Process of ABM model 
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