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Abstract

We propose a variant in the definition of a second order shape derivative. The
result is a quadratic form in terms of one perturbation vector field that yields a second
order quadratic model of the perturbed functional. We discuss the structure of this
derivative, derive domain expressions and Hadamard forms in a general geometric
framework, and give a detailed geometric interpretation of the arising terms.
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1 Introduction

In this work we consider shape sensitivity analysis of functionals of the form∫
S

f(x) dx

with respect to perturbations of the smooth k-dimensional sub-manifold S ⊂ Rd by one-
parameter families φ(t, ·) : Rd → Rd of (orientation preserving) diffeomorphisms.

Since we are concerned here with issues of calculus, rather than questions of differentia-
bility, we assume that all quantities have sufficient smoothness. In particular, φ, S, and its
boundary ∂S are assumed to be smooth enough to guarantee that all used quantities are
well defined.

This question is classical in a couple of areas in mathematics. It is, for example, the the-
oretical basis of shape optimization, but also plays a role - with slightly different perspective
– in differential geometry, in particular in the study of geodesics and minimal surfaces (cf.
e.g. [7, Chapter XI] or [13, Chapter 9]).

In shape optimization we find several different approaches to shape sensitivity analysis.
They differ in the way, φ(t, ·) is constructed from a given vector field v. The oldest approach
seems to be the so called perturbation of identity method [8, 12, 4], where one defines
φ(t, x) = x + tv(x). More recently the velocity method was proposed (cf. e.g. [2] and for
a similar approach [16]) in which φ is given as a flow of v. Even more recently, in [10] it
was proposed to construct φ from v by geometrical considerations in an infinite dimensional
manifold of shapes, establishing also a framework for Newton methods in shape spaces.

While the first shape derivatives coincide in all approaches, the second shape derivatives
differ among the approaches. The reason is that for given vector fields v the corresponding
transformations φ(t, ·) differ up to second order. Moreover, in order to obtain a bilinear
form, definitions of shape hessians employ two vector fields vi and two temporal parameters
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ti, the combination of which defines φ. For example in the perturbation of identity method
the definition φ(t1, t2, x) = x+ t1v1 + t2v2 has been considered, for example, in [11, 9, 4].

For the velocity method φ(t1, t2, x) has been defined as the composition of two map-
pings [2, Sect. 9.6]. Consequently φ depends on v1 and v2 in a non-commutative way, which
leads to a non-symmetric shape hessian. A connection to the second Lie derivative has been
drawn in [6], applications in image segmentation can be found in [5]. Relations between
these variants and application of Newton’s method have been discussed in [15].

In the approach, proposed in this paper we start with a single family of transformations
φ(t, ·), use only a single vector field v = φt(0, ·) and look for a quadratic approximation of
the perturbed integral. We end up with a quadratic form q(v) in terms of a single vector
field, which contrasts with the approaches mentioned above which all yield bilinear forms
in two vector fields. In addition, we observe that a linear term arises that depends on an
acceleration field vt = φtt(0, ·) which depends on the chosen approach. This term vanishes
at critical points. A symmetric bilinear form can be derived by differentiating q with respect
to v. Our approach yields a unifying perspective on the shape hessian and a convenient
basis for a couple of applications, such as stability analysis (cf. e.g. [1]) and SQP-methods.

Concerning the geometric setting we choose a rather general setting, using the k-
dimensional measure tensor on S ⊂ Rd in a general way. This includes the well known
cases S = Ω, where Ω is an open domain in Rd and S = ∂Ω but also a couple of others,
such as hypersurfaces with boundaries and lines. Also any other combinations of k and d
are covered. Of course, S and its boundary ∂S have to be sufficiently smooth to obtain
a well defined tangent space at each point, and also (for the discussion of the Hadamard
form) to define the second fundamental form and notions of curvature, derived from it.

Much care is taken to the derivation and geometrical interpretation of the Hadamard
form of the second derivative. Here it is helpful to deal only with a quadratic form for a
single perturbation instead of a bilinear form for two perturbations. Finally, we sketch, how
our results can be applied and extended to settings with partial differential equations.

1.1 A general embedding

Consider a one-parameter family of orientation preserving diffeomorphisms

φ : I × Rd → Rd

(t, x)→ φ(t, x),

where I ⊂ R is an open interval, containing 0 and φ(0, ·) = Id. We define for t ∈ I the
vector fields

v(t), vt(t) : Rd → Rd

via v(t, x) := φt(t, x), vt(t, x) = φtt(t, x). For brevity, we will write v = v(0) and vt = vt(0).
Thus, local Taylor expansion around t = 0 yields:

φ(t, x) = x+ vt+
1

2
vtt

2 + o(t2).

For kinematic interpretation of this approach, we may think about t as (pseudo-)time, so
that v can be interpreted as a velocity field and vt as an acceleration.

Consider also two smooth functions f : I × Rd → R and F : I × Rd → R, such that

F (t, φ(t, x)) = f(t, x) ∀(t, x) ∈ I × Rd
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and thus consequently
F (0, x) = f(0, x) ∀x ∈ Rd.

We observe that F (t, ·) is defined on the codomain of φ, while f(t, ·) is defined on the
domain of φ.

By the relation of F (t, φ(t, x)) = f(t, x) and by the chain rule we easily derive relations
between the derivatives of F and f at t = 0:

Fx = fx, Ft + Fxφt = ft i.e. Ft = ft − fxv. (1)

The expression Ft is commonly called shape derivative of f (with respect to φ), while ft is
called the material derivative of f . This naming suggests a tacit identification of the two
different functions f and F . In fact, often they are identified, and one writes Ft = f ′ for
the shape derivative and ft = ḟ for the material derivative of f . In our paper, we will,
however, distinguish both functions, by using capital and lower case letters.

Denoting X := φ(t, x) we are interested in the time dependent integral:

I(t) :=

∫
φ(t,S)

F (t,X) dX, (2)

and in particular in its first and second derivatives with respect to t. Since

I(0) =

∫
S

f(0, x) dx

we will denote these derivatives as first and second order shape derivatives or shape sensi-
tivities of

∫
S
f(x) dx with respect to the embedding φ(t, x) and f(t, x). In classical shape-

optimization one chooses F (t,X) constant in time. In view of (2) this corresponds to
the geometrical intuition that the integrand is chosen fixed in the back-ground, while the
domain of integration evolves.

The basis of our considerations is the following integral transformation rule:

I(t) =

∫
φ(t,S)

F (t,X) dX =

∫
S

F (t, φ(t, x))J(t, x) dx =

∫
S

f(t, x)J(t, x) dx (3)

where we observe the occurrence of the well known measure tensor:

J(t, x) :=
√

det(B(x)Tφx(t, x)Tφx(t, x)B(x))

with B(x) ∈ Rd×k being a matrix that consists of k orthonormal tangent vectors to S.
Our task is now to compute the first and second derivative It(0) and Itt(0) of I(t) with

respect to time. This can be done via the right-most expression in (3), because it is defined
on a fixed domain.

Theorem 1.1. The first and second order shape sensitivities satisfy:

It(0) =

∫
S

ft + fJt dx (4)

Itt(0) =

∫
S

ftt + 2ftJt + fJtt dx. (5)

Proof. Straightforward application of the product rule to

I(t) =

∫
S

f(t, x)J(t, x) dx,

taking into account that J(0, x) = Id.
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The most difficult part of this paper will be the analysis of Jtt. We note that the case
k = d, where J = detφx is well understood. For the case k = d − 1 one also finds results
in the literature, where, however, a different representation of J , via a unit normal field is
employed. Our approach treats these cases in a unified way.

In addition to the computation of the terms involved it is common to rearrange and
analyse them further, in order to get some geometric understanding of the situation. For
example, we expect that I(t) = const, if F is constant in time and φ leaves S invariant.
As a consequence, only certain parts of the vector field v contribute to It(0) and Itt(0).
Such formulas are known as Hadamard forms of It and Itt. It is known that the derivation
of the Hadamard form requires higher regularity of the employed data, but yields useful
geometrical understanding.

1.2 General structure

Before we carry out our program in detail, we discuss the general structure that we expect,
in particular, concerning second derivatives.

In Section 2.3 we will see that Jt depends linearly on v and Jtt is quadratic in v and
linear in vt. Similarly, in the case F (t) = const, ft depends linearly on v and ftt contains
quadratic terms in v and linear terms in vt.

This yields that It(0) is a linear form in v = φt(0):

It(0) = l(v)

while Itt(0) is the sum of a quadratic form q(v), and a linear form l(vt):

Itt(0) = l(vt) + q(v).

Very often vt is given as a function of v so that l(vt(v)) is quadratic in v, so that we can
define the following quadratic form in v:

q̂(v) := l(vt(v)) + q(v)

Remark 1.2. Terms of the form l(vt) always occur when the composition of a function
g : X → R with a family of non-linear mappings φ : I ×X → X is differentiated at t = 0:

d

dt
g ◦ φ|t=0 = gxφt = gxv

d2

dt2
g ◦ φ|t=0 = gxx(φt, φt) + gxφtt = gxx(v, v) + gxvt

In that case, we would have q(v) = gxx(v, v), l(vt) = gxvt. We also observe that the second
term vanishes if gx = 0, i.e., at critical points of g ◦ φ.

For a given family φ(t, ·) of transformations we can now predict the value of I(t) by

I(t) = I(0) + It(0)t+
1

2
Itt(0)t2 + o(t2)

= I(0) + l(v)t+
1

2
(q(v) + l(vt))t

2 + o(t2).

up to second order, as long as v and vt are available.
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If It(0) = 0, i.e., at a critical point of the above shape-functional, we can derive second
order optimality conditions, depending only on v (because then It = l = 0):

I(t)− I(0) =
1

2
(q(v) + l(vt))t

2 + o(t2) =
1

2
q(v)t2 + o(t2).

Once, the quadratic form q̂ has been computed, it is easy to construct a corresponding
bilinear form b(·, ·), such that

b(v, v) = q̂(v) ∀v.

Since q is quadratic, its second derivative q̂′′ is independent of the point of differentiation
and symmetric as a bilinear form by the Schwarz theorem. We thus set

b(v, w) :=
1

2
q̂′′(0)(v, w) =

1

2
q̂′′(0)(w, v) = b(w, v).

This may be useful in the context of SQP-methods for shape optimization. However, we
will not elaborate on this topic.

Special cases

Concerning the construction of φ(t, x) there are two approaches which are commonly used
and an additional, more recent approach. All of them construct φ(t, x) from a given velocity
field v0(x):

i) The perturbation of identity method [12, 4] chooses φ(t, x) := x+ tv0(x). This means
that φ(t, x) satisfies the initial value problem:

φt(t, x) = v0(x)

φ(0, x) = x.
(6)

Hence, φ(t, x) may be interpreted as the flow of a moving vector field. Each point
φ(t, x) evolves with constant velocity v0(x).

We see that v(t, x) = φt(t, x) = v0(x) and

vt = φtt(0, ·) = 0,

q̃(v) = q(v),

b(v, w) =
1

2
q′′(0)(v, w).

ii) The velocity method [2] defines φ(t, x) via the following modified initial value problem:

φt(t, x) = v0(φ(t, x))

φ(0, x) = x.
(7)

In this construction we may view w as a time-independent velocity field in the back-
ground and φ(t, x) as the trajectory of a particle that moves in this field.

It follows v(0, x) = v0(x) and

vt = v0(φ(t, ·))t|t=0 = v0,xφt = v0,xv0 = vxv,

q̃(v) = q(v) + l(vxv),

b(v, w) =
1

2
q′′(0)(v, w) +

1

2
l(vxw + wxv).
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The non-symmetric shape hessian discussed in [2] is given by

b̃(v, w) :=
1

2
q′′(0)(v, w) + l(vxw).

iii) Alternatively, an approach via Riemannian shape manifolds can be chosen [10]. We
only sketch this approach. A second order initial value problem of the following form
is used to define φ(t, x):

vt(t, x) = Bφ(t,S)(x, v(t, x), v(t, x))

φt(t, x) = v(t, x)

v(0, x) = v0(x)

φ(0, x) = x.

(8)

Here B is the spray (cf. e.g. [7, IV.§3]) associated with the given Riemannian metric
of the infinite dimensional shape manifold. Bφ(t,S) is for each φ a bilinear mapping
in v, which is assumed to have appropriate transformation properties with changes
of charts. We remark that this spray is the infinite dimensional analogue to the well
known Christoffel symbols and depends on the metric of the shape manifold. The
above initial value problem is used to define geodesics on an infinite dimensional
manifold of diffeomorphisms. We note

vt = φtt(0, ·) = BS(v, v),

q̃(v) = q(v) + l(BS(v, v)),

b(v, w) =
1

2
q′′(0)(v, w) +

1

2
l(BS(v, w)).

2 Domain expressions of shape derivatives

In the following, we consider Rd equipped with the standard scalar product

a · b :=

d∑
i=1

aibi

and a smooth submanifold of S ⊂ Rd. We denote by TxS the tangent space of S at x ∈ S
and by NxS its orthogonal complement, the normal space of S at x.

2.1 Projection onto the tangent space

A central quantity in the differential geometry of submanifolds is the orthogonal projection
to the tangent space at a given point x ∈ S. We associate to each s ∈ S an orthonormal
basis {b1, . . . , bk} of TxS, whose members form the columns of a matrix B = B(x). Then
we define the orthogonal projection onto TxS as follows:

P (x) : Rd → Rd

w 7→ P (x)w = B(x)BT (x)w.

We see that P (x) is independent of the choice of orthonormal basis B of TxS: if B is
replaced by BQ and Q ∈ Rk×k is an orthogonal matrix, then BQ(BQ)T = BBT . Recall
that P (x)P (x) = P (x), ranP (x) = TxS is the tangent space, and kerP (x) = NxS is the
normal space. By I − P (x) we obtain the projection onto NxS. Most of the time we will
drop the argument x and just write P instead of P (x).
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Splittings. Let v : S → Rd be a vector field on S. By Pv we denote the vector-field,
defined by (Pv)(x) = P (x)v(x) for all x ∈ S. In this way we can be split v orthogonally
into a tangential field s and a normal field n:

v = Pv + (I − P )v = s+ n.

Similarly, we can split the derivative fx of a function f : Rd → R as follows into a normal
and a tangential part:

fx = fxP + fx(I − P ) = fs + fn,

so that fsv = fxPv = fxs and fnv = fx(I − P )v = fxn.
Further, just as the gradient ∇f(x) ∈ Rd is defined as the unique vector, such that

∇f(x) · w = fx(x)w for all w ∈ Rd, we define the tangential gradient ∇sf(x) ∈ TxS via
∇sf(x) · w = fs(x)w.

Tangential trace. Consider the classical trace of a matrix A ∈ Rd×d:

trA :=

d∑
i=1

ei ·Aei (ei = ith unit vector in Rd).

The tangential trace of A can be defined as:

trS A := trAP = trBTAB =

k∑
i=1

bi ·Abi.

Obviously trS only depends on P and not on the particular choice of B and trS A = trS A
T .

With its help we define corresponding (in general only positive semi-definite) matrix scalar
products for linear mappings:

〈A1, A2〉S→S := trS(AT1 PA2) =

k∑
i=1

PA1bi · PA2bi,

〈A1, A2〉S→N := trS(AT1 (I − P )A2) =

k∑
i=1

(I − P )A1bi · (I − P )A2bi.

From the expressions on the right we immediately see symmetry and positive semi-definite-
ness. For 〈·, ·〉S→S we observe additional symmetries:

〈AT1 , A2〉S→S = tr(A1PA2P ) = tr(A2PA1P ) = 〈AT2 , A1〉S→S = 〈A1, A
T
2 〉S→S. (9)

Tangential divergence. Application of the tangential trace to the derivative vx of a
vector field v yields the tangential divergence:

divS v := trS vx.

By a straightforward computation we obtain the following well known product rule with a
scalar function f :

divS(fv) = fsv + f divS v. (10)
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2.2 Derivatives of the measure tensor

In view of Theorem 1.1 we need expressions for the derivatives Jt and Jtt of the measure
tensor

J(t, x) =
√

det(B(x)Tφx(t, x)Tφx(t, x)B(x)).

Lemma 2.1. The first and second order sensitivities of the measure tensor are given by:

Jt := Jt(0, ·) = divS v (11)

Jtt := Jtt(0, ·) = (divS v)2 − 〈vTx , vx〉S→S + 〈vx, vx〉S→N + divS vt. (12)

Proof. We abbreviate C(t, x) := φx(t, x)Tφx(t, x) (known as the right Cauchy-Green tensor
in elasticity) and A(t, x) = BT (x)C(t, x)B(x) so that J(t, x) =

√
detA(t, x).

(detA)t = tr((detA)A−1At) = detA tr(A−1At)

tr(A−1At)t = tr(−A−1AtA
−1At +A−1Att),

so at t = 0, where A = Ik and φx = Id we have, inserting

At = BTCtB = BT (φTxφxt + φTxtφx)B = BT (vx + vTx )B

and

Att = BTCttB = BT (φTxφxtt + φTxttφx + 2φTxtφxt)B = BT (vxt + vTxt + 2vTx vx)B

we get

Jt = ((detA)1/2)t =
1

2
(detA)−1/2 detA tr(A−1At)

=
1

2
(detA)1/2 tr(A−1At)

A=I
=

1

2
tr(At) =

1

2
tr(BT (vx + vTx )B) = divS v,

Jtt = ((detA)1/2)tt =
1

2
((detA)1/2)t tr(A−1At) +

1

2
(detA)1/2 tr(A−1At)t

=
1

4
detA tr(A−1At)

2 +
1

2
(detA)1/2 tr(−A−1AtA

−1At +A−1Att)

A=I
=

1

4
tr(At)

2 − 1

2
tr(AtAt) +

1

2
tr(Att)

= (divS v)2 − 1

2
trBTCtBB

TCtB +
1

2
trS(vxt + vTxt + 2vTx vx)

= (divS v)2 − 1

2
〈Ct, CTt 〉S→S + divS vt + trS v

T
x vx.

We continue

〈Ct, CTt 〉S→S = 〈vx + vTx , vx + vTx 〉S→S

(9)
= 〈vx + vTx , vx + vx〉S→S = 2 trS(vx + vTx )Pvx.

Hence,

−1

2
〈Ct, CTt 〉S→S + trS v

T
x vx = − trS(vx + vTx )Pvx + trS v

T
x vx

= − trS vxPvx + trS v
T
x (I − P )vx = −〈vTx , vx〉S→S + 〈vx, vx〉S→N .

Summing up, this yields the claimed representation of Jtt.
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As a short hand notation we introduce the bilinear form:

Q(v, w) = divS v divS w − 〈vTx , wx〉S→S + 〈vx, wx〉S→N , (13)

which is symmetric by (9) and by symmetry of 〈·, ·〉S→N and write:

Jtt = Q(v, v) + divS vt.

2.3 First and second shape derivative

Inserting the results from Lemma 2.1 into the formulas of Theorem 1.1 yields:

It(0) =

∫
S

ft + f divS v dx

Itt(0) =

∫
S

ftt + 2ft divS v + f
(
Q(v, v) + divS vt

)
dx.

Next we formulate the second derivative in terms of F and its temporal derivatives. Since
ft = Ft + fxv we obtain

It(0) =

∫
S

Ft + fxv + f divS v dx.

If we define

l(f, v) :=

∫
S

fxv + f divS v dx (14)

we can write

It(0) =

∫
S

Ft dx+ l(f, v). (15)

Differentiating Ft + Fxv = ft once more with respect to t we obtain at t = 0:

Ftt + 2Ftxv + Fxxv
2 + Fxvt = ftt. (16)

where again Fx = fx and Fxx = fxx. This yields a volume formulation of the second
derivative:

Itt(0) =

∫
S

Ftt + 2(Ftxv + Ft divS v) + (fxvt + f divS vt) dx

+

∫
S

fxx(v, v) + 2fxv divS v + fQ(v, v) dx.

If we define q(f, v) as the integral in the second line of this equation:

q(f, v) :=

∫
S

fxx(v, v) + 2fxv divS v + f
(
(divS v)2 − 〈vTx , vx〉S→S + 〈vx, vx〉S→N

)
dx (17)

and l is given by (14) we obtain:

Itt(0) =

∫
S

Ftt dx+ 2l(Ft, v) + l(f, vt) + q(f, v). (18)

The representation of (15) is sometimes called domain expression of the shape derivative.
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3 Concepts from differential geometry

Our next aim is to analyse (14) and (17) further by deriving the Hadamard form of these
expressions. This will yield a deeper geometrical understanding of It and Itt. It will turn
out that only certain parts of v enter into the shape derivatives. Further the curvature of
S and its boundary ∂S will play an important role.

To carry out our program we need some concepts from differential geometry of subman-
ifolds. For convenience of the reader (the notation varies in the literature) we will give a
rather self contained exposition, based on the projection P : Rd → TxS at a point x onto
the tangent space and its derivative TxP . Readers familiar with these concepts may want
to browse quickly over this section.

We assume that the mapping:

P : S → L(Rd,Rd)
x 7→ P (x)

is differentiable. The derivative of P at x is a linear mapping

TxP : TxS → L(Rd,Rd).

Thus, for b ∈ TxS we obtain a linear mapping TxP (b) ∈ L(Rd,Rd). We write TxP (b)v ∈ Rd
to denote the derivative of P at x ∈ S in direction b ∈ TxS, applied to v ∈ Rd. From the
product rule, we obtain for any vector field v : S → Rd at x ∈ S and b ∈ TxS:

(Pv)xb = TxP (b)v + Pvxb. (19)

Lemma 3.1. Let b ∈ TxS be arbitrary. Let s be a tangential and n a normal vector field
on S. Then the following relations hold:

TxP (b)s = (I − P )sxb ∈ NxS, (20)

TxP (b)n = −Pnxb ∈ TxS. (21)

The following symmetries are valid:

s1, s2 ∈ TxS ⇒ TxP (s1)s2 = TxP (s2)s1 (22)

v1, v2 ∈ Rd ⇒ v1 · (TxP (b)v2) = v2 · (TxP (b)v1) (23)

i.e. TxP (b) = (TxP (b))T

s1, s2 ∈ TxS ⇒ s1 · nxs2 = s2 · nxs1. (24)

Proof. Since Ps = s, (19) yields sxb = TxP (b)s + Psxb and thus (20). Similarly, we use
Pn = 0 to deduce (21). For (22) we compute for two tangent vector fields:

TxP (s1)s2 − TxP (s2)s1 = (I − P )(s1,xs2 − s2,xs1) = (I − P )[s1, s2] = 0,

since the Lie-Bracket [s1, s2] of two tangent vector fields lies again in the tangent space
TxS. Next, (23) follows from differentiating the following identity w.r.t. x in direction b:

0 = v1 · P (x)v2 − v2 · P (x)v1,

which expresses the symmetry of the orthogonal projection P (x). Finally, we show (24):

s1 · nxs2 = s1 · Pnxs2
(21)
= −s1 · TxP (s2)n

(23)
= −n · TxP (s2)s1

(22)
= −n · TxP (s1)s2

(23)
= −s2 · TxP (s1)n

(21)
= s2 · nxs1.
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For any vector field v̂ of constant norm, we have the identity:

0 =
1

2
(v̂ · v̂)xw = v̂xw · v̂ ⇒ v̂xw ⊥ v̂ ∀w ∈ Rd. (25)

In particular, if dimS = k − 1 and n̂ is a unit normal field, we obtain

n̂xs ⊥ n̂ ⇒ n̂xs ∈ TxS ∀s ∈ TxS ⇒ ran n̂x ⊂ TxS.

3.1 Second fundamental form

By (22) we see that the second fundamental form:

h : TxS × TxS → NxS

(s1, s2) 7→ h(s1, s2) := −TxP (s1)s2

(26)

is well defined as a symmetric bilinear vector valued mapping (cf. e.g. [7, XIV §1]). We
have chosen the sign of h(·, ·), such that the corresponding curvature vector points outward,
if S is a sphere.

If {bi}i=1...k is an orthonormal basis of TxS, we define a curvature vector κ on S:

κ :=

k∑
i=1

h(bi, bi) = −
k∑
i=1

TxP (bi)bi ∈ NxS. (27)

We will see that κ · n locally approximates the change of k-volume of S, if S is moved in
normal direction n.

Proposition 3.2. For any normal vector field n we have the formula:

n · κ = divS n. (28)

For any scalar function α : S → R it holds divS αn = α divS n.

Proof. We compute:

divS n = trS nx = trS Pnx = − trS TxP (·)n

= −
k∑
i=1

bi · TxP (bi)n = −
k∑
i=1

n · TxP (bi)bi =

k∑
i=1

n · h(bi, bi) = n · κ.

With this we get α divS n = α(n · κ) = (αn) · κ = divS αn.

Hypersurfaces and principal curvatures

If S is an orientable k = d − 1 dimensional manifold (a hypersurface), then NxS has
dimension 1. Thus we can define (up to sign) a unit normal field n̂ on S with n̂ · n̂ = 1.
Moreover, h(s1, s2) is collinear with n̂. In this case, the second fundamental form can also
be defined as a scalar function:

ĥ(s1, s2) := n̂ · h(s1, s2).

Since this is a symmetric bilinear form, we get an orthonormal basis of eigenvectors with
eigenvalues κ1 . . . κk, the principal curvatures. These are the eigenvectors and eigenvalues
of the mapping −TxP (·)n̂ : TxS → TxS (which is known as the shape operator).
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Further, we can define the (scalar valued) additive curvature,

κ̂ := n̂ · κ = divS n̂ = trS ĥ(·, ·) =

k∑
i=1

κi ∈ R

and the mean curvature H := κ̂/k.

3.2 Gaussian curvature and Laplace-Beltrami operator

In this section we indicate the geometrical meaning of some expressions that arise in the
Hadamard form, derived below.

Concerning (12) we observe that for purely normal fields v = n and vt = 0:

Jtt = Q(n, n) =
(
(divS n)2 − 〈nTx , nx〉S→S

)
+ 〈nx, nx〉S→N .

We will see that the sum of the first two terms

K(n, n) := (divS n)2 − 〈nTx , nx〉S→S (29)

and also the last term 〈nx, nx〉S→N have a clear interpretation.

Gaussian curvature. The first part of Jtt can be seen as a generalization of the Gaussian
curvature. Taking into account that Tx(b)n ∈ TxS for all b ∈ TxS we observe:

〈nTx , nx〉S→S

(24)
= 〈nx, nx〉S→S

(21)
= 〈TxP (·)n, TxP (·)n〉S→S =

k∑
i=1

TxP (bi)n · TxP (bi)n

we observe
K(n, n) = (κ · n)2 − 〈TxP (·)n, TxP (·)n〉S→S.

Thus, K(n, n) does not depend on the derivatives of the normal field n.
The following proposition gives K(n, n) a geometric interpretation:

Proposition 3.3. For the term K(n, n) we distinguish the following special cases:

i) for k ∈ {0, 1, d} we have K(n, n) = 0.

ii) for k = d − 1 let n = ηn̂, where n̂ is a unit normal field. Then with the principal
curvatures κ1 . . . κk and

K̂ :=
∑

1≤i<j≤k

κiκj

we have
K(n, n) = η2K(n̂, n̂) = η2 2K̂.

In particular, K̂ = κ1κ2 is the Gaussian-curvature for k = 2 and K̂ = 0 for k = 1.

Proof. If k = 0, then TxS = {0} and all terms vanish, if k = 3, then n = 0 and all terms
vanish.
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For the remaining terms we recall that TxP (·)n : TxS → TxS is symmetric, and thus
there is an orthonormal basis {bi}i=1...k of TxS, consisting of eigenvectors of TxP (·)n with
eigenvalues λ1, . . . , λk. Further, we compute

−n · κ =

k∑
i=1

n · TxP (bi)bi =

k∑
i=1

bi · TxP (bi)n =

k∑
i=1

bi · λibi =

k∑
i=1

λi,

〈TxP (·)n,TxP (·)n〉S→S =

k∑
i=1

TxP (bi)n · TxP (bi)n =

k∑
i=1

λibi · λibi =

k∑
i=1

λ2
i .

Thus we obtain:

K(n, n) =
( k∑
i=1

λi

)2

−
k∑
i=1

λ2
i =

∑
1≤i<j≤k

2λiλj .

For k = 1 this sum is empty, for k = d − 1 and n = ηn̂ we have TxP (·)n = ηTxP (·)n̂ and
thus λi = ηκi, with the principal curvatures κi. Hence in this case

K(n, n) = (n · κ)2 − 〈TxP (·)n, TxP (·)n〉S→S =
∑

1≤i<j≤k

2λiλj = 2η2
∑

1≤i<j≤k

κiκj = 2η2K̂.

The scalar quantity K̂ that is defined for hypersurfaces thus adds up products of pairs
of principal curvatures. In other words, K̂ is the sum of second order minors of ĥ(·, ·). For

k = 2 there is only one such minor, namely det ĥ(·, ·) = K̂. Later K̂ helps to approximate
to second order how much S is stretched, if moved in direction n̂.

Laplace-Beltrami Operator. Next, we relate the term 〈nx, nx〉S→N to the Laplace-
Beltrami operator on S in weak form.

Proposition 3.4. For the term 〈nx, nx〉S→N we distinguish the following special cases:

i) for k ∈ {0, d} it holds 〈nx, nx〉S→N = 0.

ii) for k = 1 we have 〈nx, nx〉S→N = (I − P )ns · (I − P )ns.

iii) for k = d− 1 let n = ηn̂, where n̂ is a unit normal field. Then:

〈nx, nx〉S→N = ∇sη · ∇sη (Laplace-Beltrami Operator) .

Proof. If k = 0 or k = 3, 〈nx, nx〉S→N is an empty expression. The case k = 1 follows simply
from the definition of 〈·, ·〉S→N and the relation ns = nxb1, where b1 is the only basis vector
of TxS.

Consider the case k = d− 1. Let b ∈ TxS. Then we compute:

n̂ · nxb = (ηn̂)xb = n̂ · ηxbn̂+ ηn̂ · n̂xb
(25)
= ηxb.

With this we get for an orthonormal basis {bi}i=1...k:

〈nx, nx〉S→N =

n∑
k=1

(I − P )nxbi · (I − P )nxbi =

n∑
k=1

(n̂ · nxbi)n̂ · (n̂ · nxbi)n̂

=

n∑
k=1

(ηxbi)
2 = ∇sη · ∇sη.
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3.3 The boundary ∂S of S

Since we need the Gauss-theorem we will also consider the boundary ∂S of S. We will
assume that ∂S is either empty or a k−1 dimensional submanifold of Rd. In the latter case
there exists a unique field of outer unit-normals ν̂, where ν̂(x) ∈ Nx∂S ∩ TxS. This yields
orthogonal splittings:

TxS = span {ν̂} ⊕ Tx∂S, Nx∂S = span {ν̂} ⊕NxS, Rd = NxS ⊕ span {ν̂} ⊕ Tx∂S.

Of course, also ∂S has, as any smooth k − 1-dimensional submanifold of Rd, a projection
P∂S : Rd → Rd with range Tx∂S and kernel Nx∂s, a tangential trace tr∂S A = trAP∂S , a
divergence div∂S v = tr∂S vx, a second fundamental form:

h∂S : Tx∂S × Tx∂S → Nx∂S

h∂S(σ1, σ2) = −TxP∂S(σ1)σ2,

and a curvature vector (here {βi}i=1...k−1 is an orthonormal basis of Tx∂S):

κ∂S :=

k−1∑
i=1

h∂S(βi, βi) ∈ Nx∂S.

Since ∂S has a unique outer normal field ν̂ ∈ Nx∂S ∩ TxS it is reasonable to define an
additive curvature of ∂S relative to S as above by:

κ̂∂S := ν̂ · κ∂S ∈ R.

Lemma 3.5. For any n ∈ NxS and x ∈ ∂S we have the relations:

κ · n = (κ∂S + h(ν̂, ν̂)) · n (30)

divS v = div∂S v + ν̂ · vxν̂. (31)

Proof. If n ∈ NxS is a normal vector and σ1, σ2 ∈ Tx∂S, then

n · h(σ1, σ2) = −n · (I − P )σ1,xσ2 = −(I − P )n · σ1,xσ2 = −(I − P∂S)n · σ1,xσ2

= −n · (I − P∂S)σ1,xσ2 = n · h∂S(σ1, σ2).
(32)

The third step is possible, because n ∈ NxS ⊂ Nx∂S and so n = (I − P )n = (I − P∂S)n.
With the orthonormal basis {β1, . . . , βk−1, ν̂} of TxS = Tx∂S ⊕ span {ν̂} we compute:

κ · n =

k−1∑
i=1

h(βi, βi) · n+ h(ν̂, ν̂) · n

(32)
=

k−1∑
i=1

h∂S(βi, βi) · n+ h(ν̂, ν̂) · n = κ∂S · n+ h(ν̂, ν̂) · n.

Similarly we obtain

divS v =

k−1∑
i=1

βi · vxβi + ν̂ · vxν̂ = div∂S v + ν̂ · vxν̂.



3.4 A lemma on nested divergence 15

If s is a tangential vector field, divS s is the intrinsic divergence on the manifold S and
we have the Gauss integral theorem∫

S

divS s dx =

∫
∂S

ν̂ · s dξ, (33)

where ν̂ is the outer unit-normal field of ∂S.

Proposition 3.6. For any vector field v = s+n = Pv+(I−P )v on S we have the formula:∫
S

divS v dx =

∫
S

κ · ndx+

∫
∂S

ν̂ · s dξ =

∫
S

κ · v dx+

∫
∂S

ν̂ · v dξ. (34)

If f is a scalar function on S then we have∫
S

f divS v dx =

∫
S

fκ · v − fsv dx+

∫
∂S

fν̂ · v dξ. (35)

Proof. (34) follows from (28) by linearity of divS and (33). For the second identity in (34)
we note that κ ∈ NxT , so v · κ = n · κ and ν̂ ∈ TxP , so that v · ν̂ = s · ν̂. Finally, (33)
follows from (34) and the product rule (10).

The theorem of Gauss can be used to connect the weak and the classical form of the
Laplace-Beltrami operator of a scalar function η : S → R:∫

S

∇sϕ · ∇sη dx =

∫
S

ϕs(∇sη) dx =

∫
S

divS(ϕ∇sη)− ϕ(divS ∇sη) dx

=

∫
S

ϕ(−divS ∇sη) dx+

∫
∂S

ϕ∇sη · ν̂ dξ ∀ϕ ∈ C∞(S,R).

3.4 A lemma on nested divergence

In the derivation of the Hadamard form we will observe the occurrence of nested divergence.
The following lemma yields a useful formula:

Lemma 3.7. For a vector field v and a tangential vector field s we have:

Q(v, s) = divS v divS s− 〈vTx , sx〉S→S + 〈vx, sx〉S→N = divS((divS v)s− vxs).

Proof. By the product rule (10) we obtain:

divS(divS vs− vxs) = divS v divS s+ (divS v)xs− divS vxs.

Now we analyse (divS v)xs− divS vxs further:

(divS v)xs = (trPvx)xs = tr(TxP (s)vx + Pvxx(s, ·)) = tr(vxTxP (s)) + trS vxx(s, ·)),
divS vxs = trS(vxs)x = trS vxx(s, ·) + trS(vxsx).

We observe that vxx cancels out:

(divS v)xs− divS(vxs) = tr(vxTxP (s))− trS(vxsx)

= tr(vxTxP (s)(I − P )) + trS(vx(TxP (s)− sx)).
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For the first term of the right hand side we compute:

tr(vxTxP (s)(I − P ))
(21)
= tr(vxPTxP (s)(I − P )) = tr(TxP (s)(I − P )vxP )

= 〈TxP (s)T , vx〉S→N

(23)
= 〈TxP (s), vx〉S→N = 〈(I − P )sx, vx〉S→N = 〈sx, vx〉S→N .

For the second term we obtain:

trS(vx((I − P )sx − sx)) = − trS(vxPsx) = 〈vTx , sx〉S→S.

Adding everything up yields the desired result.

4 Hadamard forms of shape derivatives

To derive Hadamard forms we split our perturbation field v on S into a tangential part s
and a normal part n, i.e.,

v = s+ n = Pv + (I − P )v.

We stress that this is only possible on the manifold S and not on all of Rd. Consequently,
while expressions like sxs, nxs, or vxn are well defined, expressions like sxn would require
an extension of s beyond S, which is not available in a canonical way.

Further, let s tangential vector field s on S. Then on ∂S we split s as follows:

s = σ + ν = P∂Ss+ (I − P∂S)s

into a normal part ν and tangential part σ with respect to the boundary ∂S. Thus on ∂S
we can write v = σ + ν + n.

4.1 First shape derivative

Application of the Gauss theorem (34) immediately yields the well known Hadamard form
of the first shape derivative. Recall the definition of the curvature vector κ in (27) and the
outer unit vector ν̂ of ∂S.

Theorem 4.1. The first shape derivative is given by the following formulas:

It(0) =

∫
S

Ft dx+ l(f, v) (36)

where

l(f, v) =

∫
S

(fn + fκ·)v dx+

∫
∂S

fν̂ · v dξ. (37)

Proof. We compute straightforwardly, using the product rule for divS and the Gauss theo-
rem:

It(0) =

∫
S

ft + fJt dx =

∫
S

Ft + fxv + f divS v dx

(10)
=

∫
S

Ft + fxv + divS fv − fsv dx =

∫
S

Ft + fnv + divS fv dx

(34)
=

∫
S

Ft + fnv + fκ · v dx+

∫
∂S

fν̂ · v dξ.
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Taking into account that fnv = fxn, κ · v = κ · n, and v · ν̂ = ν · ν̂ we can write
alternatively:

It(0) =

∫
S

Ft + (fx + fκ·)ndx+

∫
∂S

fν̂ · ν dξ. (38)

4.2 Second shape derivative

We recall that the second shape derivative in volume form reads:

Itt(0) =

∫
S

Ftt dx+ 2l(Ft, v) + l(f, vt) + q(f, v).

Since the Hadamard form of the linear term l is already known, it remains to analyse the
quadratic part:

q(f, v) =

∫
S

fxx(v, v) + 2fxv divS v + fQ(v, v) dx.

Our strategy is the same as for the first shape derivative. First, we use the product rule to
write as many terms as possible as tangential divergence of some vector fields. Second we
apply the Gauss theorem on S to interpret them as boundary terms. Finally, an additional
application of the Gauss theorem on ∂S yields further information.

Recall the definition of the symmetric bilinear form Q(·, ·) in (13) and the discussion of

Q(n, n) = K(n, n) + 〈nx, nx〉S→N , (39)

in Section 3.2. We have seen that K(n, n) generalizes the Gauss curvature, and 〈nx, nx〉S→N

is a generalization of the Laplace-Beltrami Operator.
Now we derive a form of q(f, v) that is amenable to the application of the Gauss theorem.

Lemma 4.2. The following formula holds:

fQ(v, v) + 2fxv divS v + fxx(v, v) = fQ(n, n) + 2fxn(κ·n) + fxx(n, n)

+ divS
(
f(divS(s+ 2n)− (s+ 2n)x)s+ fx(s+ 2n)s

)
− fn(s+ 2n)xs.

(40)

Proof. By Lemma 3.7 we compute (taking into account the symmetry of Q):

divS(divS(s+ 2n)s− (s+ 2n)xs) = Q(s+ 2n, s) = Q(v + n, v − n) = Q(v, v)−Q(n, n).

and thus
fQ(v, v) = f divS

(
divS(s+ 2n)s− (s+ 2n)xs

)
+ fQ(n, n).

To pull f into the divergence term we compute by the product rule:

f divS(divS(s+ 2n)s− (s+ 2n)xs)− divS
(
f(divS(s+ 2n)− (s+ 2n)x)s− fxss

)
(10)
= −fs(divS(s+ 2n)s− (s+ 2n)xs) + fxsdivS s+ (fxs)ss

= fs(s+ 2n)xs+ fxx(s, s) + fxsxs− divS(2n)fxs

= (fs + fx)sxs+ 2fs(nxs) + fxx(s, s)− divS(fxs 2n)

and conclude

fQ(v, v) = divS(f(divS(s+ 2n)− (s+ 2n)x)s) + fQ(n, n)

− divS(fxs(s+ 2n)) + (fs + fx)sxs+ 2fs(nxs) + fxx(s, s).
(41)
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The terms in the first line of (41) can already be found in (40). Next, we compute:

2fxv divS v=2 divS(fxvv)−2(fxv)sv=2 divS(fxvv)− 2fxvxs− 2fxx(v, s). (42)

To show (40) we have to add (41), (42), and fxx(v, v), and then simplify the expression. In
particular, we observe:

− divS(fxs(s+ 2n)) + 2 divS(fxvv) = divS(−fxs(s+ 2n) + 2fxsv + 2fxnv)

= divS(fxss) + 2 divS(fxns) + 2 divS(fxnn) = divS(fx(s+ 2n)s) + 2fxn(κ · n),

(fs + fx)sxs+ 2fs(nxs)− 2fxvxs = (−fn + 2fx)sxs− 2fxvxs+ 2fs(nxs)

= −fnsxs− 2fx(nxs) + 2fs(nxs) = −fnsxs− 2fnnxs = −fn(s+ 2n)xs,

fxx(s, s)− 2fxx(v, s) + fxx(v, v) = fxx(v, n)− fxx(n, s) = fxx(n, n).

Taking all this into account finally yields (40).

We will now apply the Gauss theorem on S to the first line of (40) and then, in
Lemma 4.4, a second time to some terms on ∂S. This yields the main result of this paper:

Theorem 4.3. The second shape derivative is given by the formula

Itt(0) =

∫
S

Ftt dx+ 2l(Ft, v) + l(f, vt) + q(f, v) (43)

where

l(f, v) =

∫
S

(fn + fκ·)v dx+

∫
∂S

fν̂ · v dξ

and

q(f, v) =

∫
∂S

fν̂·
(
h∂S(σ, σ)− 2(n+ ν)xσ

)
+ (fx + fκ∂S ·)(ν + 2n)(ν·ν̂) dξ

+

∫
S

(fn+fκ·)(h(s, s)−2nxs)+f
(
K(n, n)+〈nx, nx〉S→N

)
+2fxn(n·κ)+fxx(n,n) dx.

(44)

Proof. We apply the Gauss theorem to the divergence term in the second line of (40) and
obtain: ∫

S

divS
(
f(divS(s+ 2n)− (s+ 2n)x)s+ fx(s+ 2n)s

)
dx

=

∫
S

−f((s+ 2n)xs) · κ dx+ I∂S

(45)

with the boundary term

I∂S =

∫
∂S

f
(

divS(s+ 2n)(s·ν̂)− ((s+ 2n)xs)·ν̂
)

+ fx(s+ 2n)(s·ν̂) dξ.

Adding the second line of (40) to the first integral in the second line of (45) we can also
define a full term:

IS =

∫
S

−(fn + fκ·)((s+ 2n)xs) + fQ(n, n) + 2fxn(κ·n) + fxx(n, n) dx (46)



4.2 Second shape derivative 19

and thus split (40) as follows:
q(f, v) = I∂S + IS .

We will prove that I∂S and IS are equal to the first and the second line in (44), respectively.

We begin with IS . Taking into account (39) the last three terms of the integrand in (46)
can easily be identified in the second line of (44). Concerning the first term, we note that
for any vector field w

(fn + fκ·)w = (fn + fκ·)(I − P )w

and thus may compute

(fn + fκ·)sxs = (fn + fκ·)(I − P )sxs = (fn + fκ·)TxP (s)s = −(fn + fκ·)h(s, s),

and conclude∫
S

−(fn + fκ·)((s+ 2n)xs) dx =

∫
S

(fn + fκ·)(h(s, s)− 2nxs) dx.

Summing up yields the integral terms over S as stated in (44).

Let us turn to I∂S . First, we regroup terms as follows:

I∂S =

∫
∂S

f
(

divS(s+ 2n)(s·ν̂)− ((s+ 2n)xs)·ν̂
)

+ fx(s+ 2n)(s·ν̂) dξ

=

∫
∂S

f
(

divS(s)− sxs·ν̂
)
dξ +

∫
∂S

2f
(
(κ · n)(ν·ν̂

)
− (nxs)·ν̂

)
+ fx(s+ 2n)(ν·ν̂) dξ.

Now we apply the Gauss theorem is to the first integral of the second line, which is performed
in Lemma 4.4, below. In the second integral we split κ ·n = (κ∂S+h(ν̂, ν̂))·n by Lemma 3.5.
By these two operations and subsequent reordering of terms we get:

I∂S =

∫
∂S

(fκ∂S ·ν)(ν·ν̂) + fν̂ ·
(
h∂S(σ, σ)− 2νxσ

)
− (fxσ)(ν · ν̂) dξ

+

∫
∂S

2f
((

(κ∂S + h(ν̂, ν̂))·n
)
(ν·ν̂)− (nx(ν + σ))·ν̂

)
+ fx(σ + ν + 2n)(ν·ν̂) dξ

=

∫
∂S

fν̂ ·
(
h∂S(σ, σ)− 2(n+ ν)xσ

)
+ (fx + fκ∂S ·)(ν + 2n)(ν·ν̂) dξ

+

∫
∂S

2f
(
(h(ν̂, ν̂) · n)(ν·ν̂)− (nxν)·ν̂

)
dξ.

We observe that the third line of this computation coincides with the first line of (44). To
show that the fourth line vanishes, we compute, taking into account that ν̂ ∈ TxS:

nxν · ν̂ = Pnxν · ν̂
(21)
= −TxP (ν)n · ν̂ (23)

= −TxP (ν)ν̂ · n = h(ν, ν̂) · n = (ν · ν̂)h(ν̂, ν̂) · n.

Thus, also I∂S is equal to the boundary integral that appears in (44), as claimed.

Lemma 4.4.∫
∂S

f
(

divS(s)(ν · ν̂)− (sxs) · ν̂
)
dξ

=

∫
∂S

f(κ∂S ·ν)(ν · ν̂) + fν̂·
(
h∂S(σ, σ)− 2νxσ

)
− (fxσ)(ν · ν̂) dξ.

(47)
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Proof. Application of (31) and the Gauss-theorem (35) on ∂S, using ∂(∂S) = ∅ yields:∫
∂S

f(ν · ν̂) divS s dξ =

∫
∂S

f(ν · ν̂) (div∂S s+ (ν̂ · sxν̂)) dξ (48)

=

∫
∂S

f(ν · ν̂)(ν · κ∂S + ν̂ · sxν̂)− (f(ν · ν̂))σs dξ.

Here κ∂S ∈ Nx∂S is the curvature vector of ∂S and (f(ν · ν̂))σ is the tangential derivative
of f(ν · ν̂) in ∂S. Now

(f(ν · ν̂))σs = (f(ν · ν̂))xσ = f
(
(νxσ) · ν̂ + ν · ν̂xσ

)
+ fxσ(ν · ν̂).

Since ν and ν̂ are collinear we have ν · ν̂xσ = 0 by (25) and also ν = (ν · ν̂)ν̂, implying
(ν · ν̂)ν̂ · sxν̂ = ν̂sxν. So we obtain∫

∂S

f divS s(ν · ν̂) dξ =

∫
∂S

f
(
(ν · ν̂)(ν · κ∂S) + ν̂ · (sxν − νxσ)

)
− fxσ(ν · ν̂) dξ.

Taking into account the term −sxs · ν̂ in the left hand side of (47) we compute:

ν̂ · (sxν − νxσ − sxs) = −ν̂ · (sxσ + νxσ) = −ν̂ · (σxσ + 2νxσ) = ν̂ · (h∂S(σ, σ)− 2νxσ).

Inserting this into our previous computation yields the desired result.

Extension to piecewise smooth boundaries

In applications one sometimes encounters domains S with non-smooth boundaries, such as
polygons. Let us discuss briefly changes of our formula in the case that ∂S is only piecewise
smooth. It is well known that the Gauss theorem on a smooth manifold S can still be
applied, under relatively weak assumptions on the smoothness of ∂S. By and large, ∂S is
allowed to be non-smooth on a set of ∂S-measure zero. Under this assumption, our first
application of the Gauss-theorem in the proof of Theorem 4.3 is still feasible.

However, the second application of the Gauss theorem in the proof of Lemma 4.4 has to
be done with care. Assume that ∂S is the finite union of smooth manifolds ∂Si with unit
outer normal fields ν̂i. Assume further that each ∂Si has a boundary ∂∂Si = ∂(∂Si) with
unit outer normal field n̂i. Then the left hand side in (48) can be replaced by:∫

∂S

f
(

divS(s)(ν · ν̂)− (sxs) · ν̂
)
dξ =

∑
i

∫
∂Si

f
(

divS(s)(ν · ν̂)− (sxs) · ν̂
)
dξ

Separate application of the Gauss theorem to each of the summands yields the following
sum of boundary terms in addition to (48):∑

i

∫
∂∂Si

f(s · ν̂i)(s · n̂i) dx.

This sum then has to be added to (44). If two parts ∂Si and ∂Sj share part of their
boundary, then one can summarize the contribution of this part to q(f, v) as follows:∫

∂∂Si∩∂∂Sj

f
(
(s · ν̂i)(s · n̂i) + (s · ν̂j)(s · n̂j)

)
dx.

If the transition between ∂Si and ∂Sj is smooth, then this contribution vanishes, because
then ν̂i = ν̂j and n̂i = −n̂j .

Similarly, if S itself is non-smooth, but can be decomposed into finitely many smooth
parts Si, then the results of Theorem 4.1 and Theorem 4.3 still apply to each Si and can
be summed up.
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5 Geometric Interpretation and Applications

This section is devoted to the geometrical interpretation of our formulas for It and Itt. It
turns out that each term of the Hadamard form models a distinct effect that occurs during
deformation of S.

5.1 Sensitivity of k-volumes

Of special interest is the case F = f ≡ 1 = const, which captures changes in the pure
k-dimensional volume of S. First of all we note that all terms with derivatives of f and F
drop out in (44) and we obtain the shorter formulas:

It(0) =

∫
S

κ · ndx+

∫
∂S

ν̂ · ν dx, (49)

Itt(0) =

∫
S

κ · (h(s, s) + vt − 2nxs) +K(n, n) + 〈nx, nx〉S→N dx

+

∫
∂S

ν̂ · (h∂S(σ, σ) + vt − 2(n+ ν)xσ) + κ∂S · (ν + 2n)(ν·ν̂) dξ.

(50)

The first shape derivative is rather straightforward to interpret. The first part of It(0)
reveals that S expands or shrinks in the presence of curvature κ 6= 0 by moving in normal
direction, because normals spread or converge due to curvature. This is also reflected by the
identity κ·n = divS n. Second, S expands or shrinks by moving across ∂S in direction of the
outer unit normal ν̂ of ∂S. This change is approximated by the second part of It(0). While
∂S is moving, it sweeps over a certain k-dimensional submanifold of Rd, a “boundary strip”.
The integrand ν̂ ·ν can be interpreted the rate of change of the local width of this boundary
strip, thus the corresponding integral approximates the rate of change of its k-volume.

Also the second shape derivative consists of a full part that covers stretching and shrink-
ing of S and a boundary part that describes how the k-volume of S changes if ∂S moves.
We observe purely normal, purely tangential and mixed terms that we will discuss in detail
in the following.

By Proposition 3.3 we can interpret K(n, n) as a sum of increase of two-dimensional
area. Recall that K describes the Gauss curvature for d = 3 and k = 2. Together with its
counterpart κ ·n the term K(n, n) captures stretching of S due to curvature and movement
in normal direction n to second order.

The term 〈nx, nx〉S→N is present even for flat S and has been identified in Proposition 3.4
as the Laplace-Beltrami operator on S if k = d− 1. It captures stretching of S that occurs
due to changes in curvature. A spatially varying normal field may produce “wrinkles“ in
S, increasing its k-volume.

The last term in the boundary integral κ∂S · (ν+ 2n)(ν·ν̂) describes change of k-volume
of S that is caused by a combination of moving ∂S in direction ν̂ and at the same time
stretching ∂S. The quantities κ∂S ·n and κ∂S · ν describe the change of k− 1-volume of ∂S
to first order when ∂S is moved in direction n and ν, respectively. This is then multiplied
by ν · ν̂, the rate of change of width of the boundary strip. The effect of n on the k-volume
of S is twice as large as the effect of ν.

Modified acceleration. Finally, we consider the mixed term κ · (h(s, s) + vt − 2nxs)
(and its counterpart on the boundary ν̂ · (h∂S(σ, σ) + vt − 2(n+ ν)xσ)). As we will explain
in the following, this term describes a stretching of S that is induced by curvature and
simultaneous acceleration of the movement of S into normal direction.
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This statement is obviously true for vt = φtt(0, ·), the acceleration of each point.
In addition, the presence of the term h(s, s) indicates that straight movement along a

purely tangential field in total may result in an acceleration of S into normal direction. The
resulting change of k-volume is reflected by the term κ · h(s, s). Later we will see that in
the velocity method tangential fields satisfy h(s, s) + vt = 0.

Let, for example S ⊂ R2 be a circle around 0 with radius r0 and unit tangent field
ŝ. Its second fundamental form is known as h(αŝ, βŝ) = αβ/r0. Consider the tangential
field s(x) = τ ŝ(x) of constant velocity τ and the deformation φ(t, x) = x + ts(x). Since
x · s(x) = 0 we may compute:

r(t, x) :=
√
φ(t, x) · φ(t, x) =

√
x · x+ ts(x) · ts(x) =

√
r2
0 + t2τ2.

Thus, r(t, x) is independent of x and so φ(t, S) is again a circle that expands as time
progresses. Differentiation of this formula with respect to time yields rt(0) = 0 as expected,
but also a radial acceleration rtt(0) = τ2/r0 = h(s, s). This is the acceleration in normal
direction, predicted by our formulas.

Next we illustrate the occurrence of the third term −2nxs, which describes tangential
transport of a non-constant normal velocity, by an example. Consider S = R × {0} in R2

so TxS = R × {0} and n̂ ≡ e2. We introduce cartesian coodinates x = pe1 + qe2, where
e1, e2 are the unit vectors. Set s = s(x) := τe1, i.e., tangential transport with constant
speed, and n(x) = ηpe2, i.e., a normal velocity that depends linearly on the first coordinate.
Setting φ(t, x) := x + t(s + n(x)) we notice that φ(t, S) is the graph of the linear function
q(t, p) = (p − τt)ηt. We observe acceleration of the graph in negative normal direction:
qtt(0, p) = −2τη = −2nxs, as predicted.

In the same way we can interpret the summands in the corresponding boundary term
ν̂ · (h∂S(σ, σ) + vt − 2(n + ν)xσ). This term describes the change of k-volume of S due to
acceleration effects into direction ν̂ at ∂S. Let us point out the perfect analogy of these
two terms:

nxs = ((I − P )v)xPv and (n+ ν)xσ = ((I − P∂S)v)xP∂Sv

and remark the interesting identity:

nxσ · ν̂
(21)
= Pnxσ · ν̂

(23)
= −TxP (σ)n · ν̂ = −TxP (σ)ν̂ · n = h(ν̂, σ) · n, (51)

which shows that no derivatives of v are needed to evaluate this term.
To reflect these considerations in our formulas, we introduce a modified acceleration field

ṽt on S × ∂S as follows:

ṽt(x) :=

{
h(s, s) + vt − 2nxs : x ∈ S \ ∂S

h∂S(σ, σ) + vt − 2(n+ ν)xσ : x ∈ ∂S. (52)

With that notation we can write the second shape derivative in the following way:

Itt(0) = l(1, ṽt) +

∫
S

K(n, n) + 〈nx, nx〉S→N dx+

∫
∂S

κ∂S · (ν + 2n)(ν·ν̂) dξ.

5.2 Sensitivity of general integrals

Also for general integrands, we will give an interpretation of the arising terms. We start
with the first shape derivative and split it into three parts:

It(0) =

∫
S

Ft dx+

∫
S

fnv dx+
[ ∫

S

fκ · v dx+

∫
∂S

fν̂ · v dξ
]
.
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The first integral captures the temporal change of F on S. The second integral models
how I(t) changes for spatially non-constant f due to a slight shift of S in space. The two
integrals in square brackets are known from Section 5.1. They approximate the change of
I(t) that is caused by a change of k-volume of S, scaled by f .

In full detail, the second shape derivative looks as follows:

Itt(0) =

∫
S

Ftt dx+

∫
S

2(Ftn + Ftκ·)v dx+

∫
∂S

2Ftν̂ · v dξ

+

∫
S

(fn+fκ·)(h(s, s) + vt−2nxs)+f
(
K(n, n)+〈nx, nx〉S→N

)
+2fxn(n·κ)+fxx(n,n) dx

+

∫
∂S

fν̂·
(
h∂S(σ, σ) + vt − 2(n+ ν)xσ

)
+ (fx + fκ∂S ·)(ν + 2n)(ν·ν̂) dξ.

In the first line we recognize the second order model Ftt for F and the mixed term 2l(Ft, v),
where l is given by (37). This term combines first order temporal changes of F and the
change of I(t) due to deformation of S. Further, the first parts of the second and the
third line are modified acceleration terms, discussed in Section 5.1. Using the modified
acceleration field ṽt from (52) they can be summarized by l(f, ṽt). Now our formula looks
much more concise:

Itt(0) =

∫
S

Ftt dx+ 2l(Ft, v) + l(f, ṽt)

+

∫
S

f
(
K(n, n) + 〈nx, nx〉S→N

)
+ 2fxn(n·κ) + fxx(n, n) dx

+

∫
∂S

(fx + fκ∂S ·)(ν + 2n)(ν·ν̂) dξ.

This form can be related to the structure theorem of the hessian, presented in [9].
Having discussed the first line of this expression, let us consider the integral over S in

the second line. It consists of three parts. The first part is a second order model for the
k-volume of S, scaled by f . We have already discussed this term in Section 5.1. The second
term 2fxn(n·κ) is a mixed term that combines first order change of f due to shifts of S in
normal direction and first order change of the k-volume of S. Finally, by fxx(n, n) second
order changes due to shifts of S in normal direction are captured.

The integrand (fx + fκ∂S ·)(ν + 2n)(ν·ν̂) in the third line is the product of two factors.
The two summands of the first factor (fx + fκ∂S ·)ν and (fx + fκ∂S ·)n approximate to
first order the change of

∫
∂S
f dξ, when ∂S moved in direction ν and n, respectively. As in

Section 5.1 the second factor (ν·ν̂) can be interpreted as rate of change of local width of the
boundary strip. Their product gives us a second order term for the change of I(t) caused
by movement of ∂S. At first glance, the factor of 2 in ν + 2n looks surprising. However,
below we will give an example that illustrates its significance.

5.3 Special cases

In the following we consider a couple of special cases to relate our results to existing formulas
and to illustrate some effects. Throughout this section we consider the case that F is
constant in time (so Ft = Ftt = 0) for the sake of brevity.
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Tangential fields. If v = s, i.e, n = 0 on S our shape derivatives simplify to:

It(0) =

∫
∂S

fν̂ · ν dξ

Itt(0) =

∫
S

(fn + fκ·)(h(s, s) + vt) dx+

∫
∂S

fν̂·(h∂S(σ, σ) + vt − 2νxσ) + (κ∂S ·ν)(ν̂·ν) dξ.

If additionally v = σ, i.e., ν = 0 on ∂S, then It(0) = 0 and

Itt(0) =

∫
S

(fn + fκ·)(h(s, s) + vt) dx+

∫
∂S

fν̂ · (h∂S(σ, σ) + vt) dξ

For the perturbation of identity method, where vt = 0, we observe a second order change
of I that depends on the curvature of S and ∂S. This reflects, as described above, that
straight movement along tangential directions induces a normal acceleration.

For the velocity method we have vt = sxs on S and thus (h(s, s) + vt) ·κ = 0. Similarly,
on ∂S we have vt = σxσ and thus (h∂S(σ, σ) + vt)·ν̂ = 0. Hence, for the velocity method
we obtain in Itt(0) = 0 in the fully tangential case. This fits to our expectation: if φ(t, ·) is
the flow of a field that is tangential to S and ∂S, then S should not change and thus I(t)
should be constant.

Volume integrals. Consider the case that S is a smoothly bounded open subset of Rd.
This implies that TxS = Rd and thus v = s and n = 0. Moreover, h(·, ·) = 0 and
κ = 0. Consequently, the integral over S in It and Itt vanishes. On ∂S we can write
s = ν + σ = θν̂ + σ with θ = ν · ν̂ and compute (κ∂S ·ν)(ν·ν̂) = θ2(κ∂S ·ν̂) = θ2κ̂∂S . From
(25) we obtain ν̂xσ · ν̂ = 0 and thus:

νxσ · ν̂ = (θν̂)xσ · ν̂ = ((θxσ)ν̂ + θν̂xσ) · ν̂ = θxσ.

Abbreviating fν̂ := fxν̂ we thus obtain the formulas:

It(0) =

∫
∂S

fθ dξ, (53)

Itt(0)=

∫
∂S

f(ĥ∂S(σ, σ) + vt · ν̂ − 2θxσ) + θ2(fν̂ + fκ̂∂S) dξ. (54)

In Itt(0) we observe a modified acceleration term and a purely normal contribution. If v = ν
is purely normal on ∂S, F = const, and vt = 0, we retrieve the well-known formula:

Itt(0) =

∫
∂S

θ2(fν̂ + fκ̂∂S) dξ.

Hypersurface integrals. In the case of closed orientable hypersurfaces, where ∂S = ∅,
we have a distinguished outer unit normal field n̂. Then we can write our splitting v = ηn̂+s
on S where η : S → R is a scalar function. The curvature vector can now be written as
κ = κ̂n̂, and thus

nxs · κ = κ̂(η ˆ̂n)xs · n̂ = κ̂(ηxsn̂ · n̂+ ηn̂xs · n̂)
(25)
= κ̂ηxs.

Moreover, by Proposition 3.4 〈nx, nx〉S→N = ∇sη · ∇sη is the Laplace-Beltrami Operator in

weak form on S. Using the notations ĥ(·, ·) = h(·, ·) · n̂, fn̂ := fxn̂ and fn̂n̂ := fxx(n̂, n̂) we
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obtain the following formulas:

It(0) =

∫
S

η(fn̂ + fκ̂) dx,

Itt(0) =

∫
S

(fn̂+fκ̂)(ĥ(s, s) + vt·n̂−2ηxs) + η2(2K̂f + 2fn̂κ̂+ fn̂n̂) + f(∇sη · ∇sη) dx.

The first term in Itt(0) is again a modified acceleration term. In Proposition 3.3 the role of
K̂ has been discussed. It is the sum of the second order minors of the second fundamental
form and thus 2η2K̂ describes the second order change of local area by normal translation.
For d = 2 we have K̂ = 0, while K̂ is the Gauss curvature for d = 3.

The Laplace-Beltrami term ∇sη · ∇sη takes into account changes of curvature due to
non-constant normal velocity. It is still present if S is flat and then reduces to the classical
Laplace operator.

A similar formula for Itt has been derived in [6]. However, the Laplace-Beltrami term
seems to be missing there. For normal fields v = n this formula simplifies to

Itt(0) =

∫
S

η2(fn̂n̂ + 2fn̂κ̂+ 2K̂f) + f(∇sη · ∇sη) dx.

This formula can also be found in [5] for the special case d = 2 (so K̂ = 0).
If S is not closed, then the boundary term in (44) must be added. However, no significant

simplifications arise in this case.
Let us illustrate the role of K̂ with an example: let S be the sphere in R3 around 0 with

radius r0. Define φ(t, x) := x+ v(x) with v(x) = ηn̂(x) and η = const on S. Since n̂ points
in radial direction, the radius r(t) of the sphere changes linearly in time as r(t) = r0 + tη.
Further, we have for the surface area I(t):

I(t) =

∫
S

dx = 4πr(t)2 = 4π(r0 + tη)2 = 4πr0 + t 8πηr0 +
t2

2
8πη2,

which coincides with its own second order expansion. It is known that the principal curva-
tures of the sphere satisfy κ1 = κ2 = 1/r0 so κ = κ1 + κ2 = 2/r0 and K̂ = 1/r2

0. Now we
can evaluate our formulas:

It(0) =

∫
S

κ̂η dx = κ̂η 4πr2
0 = 8πηr0,

Itt(0) =

∫
S

2K̂η2 dx = 2K̂η2 4πr2
0 = 8πη2,

and confirm that they coincide with the exact result.

Line Integrals. In this case we have (up to sign) a unit tangent field ŝ and we may write
v = n + τ ŝ, where τ = (s · ŝ). Now ∂S consists of just two points, say x1 and x0 and it
holds ν̂ = ±ŝ, depending on the direction of ŝ. Assuming that ŝ(x1) = ν̂(x1) we obtain the
opposite at x0. With this we can compute

It(0) =

∫
S

fxn+ f(n · κ) dx+ fτ
∣∣x1

x0
.

To write down Itt concisely, we define nŝ := nxŝ, so that nxs = τnxŝ = τnŝ By Proposi-
tion 3.3 we get K(n, n) = 0 and by Proposition 3.4 we obtain, setting ñŝ := (I − P )nŝ.

〈nx, nx〉S→N = (I − P )ns · (I − P )ns = ñs · ñs.
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Further, we observe κ = h(ŝ, ŝ) and thus h(s, s) = τ2h(ŝ, ŝ) = τ2κ. We end up with the
formula:

Itt(0) =

∫
S

(fn + fκ·)(τ2κ+ vt − 2τnŝ) +
(
fñs·ñs + 2fxn(κ·n) + fxx(n, n)

)
dx

+
(
fx(ν + 2n)τ + vt · ŝ

)∣∣x1

x0
.

As usual we observe the modified acceleration term and the contribution of the normal field
in the full integral.

Let us illustrate here the occurrence of the factor 2 in the term fx(2n + ν) with an
example. Let S = [0, e1] be a straight line in R2 with end-points 0 and e1, so ŝ = e1.
Let also F (t, x) = f(x) = fxx be a linear function on R2. We shift and stretch S by the
transformation φ(t, x) = x+ t(n+ s(x)), where n = e2 and s(x) = τ(x)e1 = (e1 · x)e1. We
observe that 0 is mapped to tn and e1 is mapped to tn + (1 + t)e1. Further we observe
ν(0) = −s(0) = 0 and ν(e1) = s(e1) = e1. Exact computation of I(t) yields:

I(t) =

∫
φ(t,S)

F (t, x) dx =

∫
[tn,tn+(1+t)e1]

fxx dx =

∫ 1+t

0

fx(tn+ λe1) dλ

= fx

(
(1 + t)tn+

(1 + t)2

2
e1

)
=

1

2
fxe1 + t(fxn+ fxe1) +

t2

2
fx(2n+ e1)

=
1

2
fxe1 + t

(∫
S

fxndx+ fτ |e10

)
+
t2

2
fx(2n+ ν)τ |e10 = I(0) + tIt(0) +

t2

2
Itt(0).

So in this case I(t) coincides with its second order expansion, which coincides with our
computations.

Point evaluations. For completeness we also consider the trivial case k = 0, so S = {x0}
is a single point, ∂S = ∅, TxS = {0}, NxS = Rd and v = n. In this case our formulas read,
as expected:

It(0) = Ft + fxv,

Itt(0) = Ftt + 2Fxtv + fxx(v, v) + fxvt,

to be evaluated at x0.

5.4 Integrands involving derivatives of functions

In this section we extend our study of sensitivity to integrals of the form∫
S

f(x) dx =

∫
S

l(x, u(x), ux(x)) dx,

where u : Rd → R and l : S × R × Rd → R. Again, we construct an embedding of that
problem, first defining pairs of functions:

U(t, φ(t, x)) = u(t, x)

L(t, φ(t, x), u, g) = l(t, x, u, g)

and then consider again the integral

I(t) :=

∫
φ(t,S)

F (t,X) dX =

∫
S

f(t, x)J(t, x) dx
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where
F (t,X) := L(t,X,U(t,X), UX(t,X)) and f(t, x) = F (t, φ(t, x)).

Since U(t, φ(t, x)) = u(t, x) we obtain by the chain-rule:

ux(t, x) = (U(t, φ(t, x)))x = UX(t, φ(t, x))φx(t, x).

Thus, we have to define

f(t, x) := l(t, x, u(t, x), ux(t, x)φ−1
x (t, x))

to achieve:
F (t, φ(t, x)) = f(t, x).

With these definitions, our previous results are applicable straightforwardly.

Sensitivity of solutions of a semi-linear elliptic equation

As a simple application and illustration we consider the following equation with Dirichlet
boundary conditions:

0 =

∫
Ω

∇u(x) · ∇w(x)− d(x, u(x))w(x) dx ∀w ∈ C∞0 (Ω).

The following sensitivity results (at least to first order) are well known (cf. e.g. [12]), the
aim of this discussion is rather to demonstrate the ease of derivation of these formulas with
the help of our general results. Here it is helpful that Ft and Ftt are still present in (36)
and (43). Again, questions of differentiability are excluded here (for a discussion cf. e.g. [2,
Chapter 10] and [14, 3]). We focus only on the formal derivation of the sensitivity equation.

Here, as usual ∇u = uTx , and we can write the above equation as follows:

0 =

∫
Ω

f(x) dx=

∫
Ω

l(x, u(x), ux(x), w(x), wx(x)) dx=

∫
Ω

ux(x)wTx (x)− d(x, u(x))w(x) dx.

We establish a sensitivity result for any solution u with respect to small perturbations of
S = Ω. Hence, we would like to compute to first and second order the change in U(t,X),
if Ω is transformed slightly.

To establish an embedding of this integral for a family of deformations, we have to give
∇u, or better ux sense in the deformed region. Here the physically meaningful embedding
is to use the derivative w.r.t X = φ(t, x):

∇XU(t,X) := UTX(t,X) = φ−Tx (t, x)uTx (t, x).

This leads us to the embedding:

I(t)=

∫
φ(t,Ω)

∇XU(t,X)·∇XW (t,X)−D(t,X,U(t,X))W (t,X) dX ∀W (t, ·) ∈ C∞0 (φ(t,Ω))

so that our integrand is given by

F (t,X) := ∇XU(t,X) · ∇XW (t,X)−D(t,X,U(t,X))W (t,X).

Its first time-derivative at t = 0 reads:

Ft := ∇XUt · ∇XW +∇XU · ∇XWt − (DtW +DuUtW +DWt).
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Classically, D(t,X, u) = D(X,u) is constant in time for fixed argument u, so that DtW = 0.
Our embedded equation now is 0 = I(t) and thus 0 = It(0) = Itt(0).

Since W has compact support on Ω this yields in general:

It(0) =

∫
Ω

Ft dx+

∫
∂Ω

f(v · ν̂) dξ =

∫
Ω

Ft dx = 0. (55)

The boundary term vanishes, because f has compact support in Ω.
To compute the shape derivatives Ut and Utt it is easiest to choose the testfunction

W (t,X) = W (X) independent of time, since W has compact support in Ω which is inherited
for small t to φ(t,Ω). Then Wt ≡ 0 and most terms in Ft drop out so that we obtain:

Ft = ∇XUt · ∇XW +DuUtW.

From (55) we conclude the first order sensitivity equation:

0 =

∫
Ω

∇Ut · ∇W +DuUtW dx ∀W ∈ C∞0 (Ω). (56)

As for the second time derivative of F we compute (taking into account Dut = Dtu = 0):

Ftt = ∇XUtt · ∇XW + (DuuU
2
t +DuUtt)W.

Similarly, the second order sensitivity equation (54) becomes a quite simple expression,
because all boundary terms drop out due to compactness of the support of f :

0 = Itt(0) =

∫
Ω

Ftt dx =

∫
Ω

∇Utt · ∇W +DuUttW +DuuU
2
tW dx ∀W ∈ C∞0 (Ω).

The Dirichlet boundary conditions read u(t, x) := u0(x) for all x ∈ ∂Ω, which implies
ut(x) = utt(x) = 0 for all x ∈ ∂Ω. By the relation between U and u we obtain the following
boundary conditions (the second via (16)):

Ut = ut − uxv = −uxv = −uνv on ∂Ω,

Utt = utt − 2Uxtv − uxxv2 − uxvt = −2(Ut)xv − uνxv2 − uνvt on ∂Ω.

= 2uνxv
2 + 2uνvxv − uνxv2 − uνvt = uνxv

2 + uν(2vxv − vt).

For the velocity method vt = vxv we compute Utt = uνxv
2 + uνvxv = (uνv)xv = −(Ut)xv.

If v = σ is purely tangential on ∂Ω, then Ut ≡ 0 on Ω. For vt = vxv this implies Utt =
−(Ut)xσ = 0, for vt = 0 we have in contrast Utt = −uνxσ2 = uνσxσ = −uνh∂Ω(σ, σ) 6= 0.
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