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Abstract

The spin dynamics in optically excited paramagnetic diluted magnetic semiconductors is
investigated. To this end, a quantum kinetic density matrix theory which was developed
by Christoph Thurn is applied, analyzed and extended.

Earlier studies which mainly concentrated on the case of a vanishing magnetization of
the magnetic impurities revealed that the spin dynamics of optically excited electrons in
three-dimensional systems is well reproduced by rate equations, where the rates can be
derived from the Markovian limit of the quantum kinetic equations and coincide with the
result of Fermi’s golden rule. In two-dimensional systems, however, deviations between
quantum kinetic simulations and results of Markovian rate equations in the form of non-
monotonic overshoots of the carrier spin polarization below its asymptotic value for long
times have been discovered.

In the present thesis, first, Thurn’s quantum kinetic theory is applied to the case of
finite impurity magnetization and equations in the Markovian limit are derived which
reproduce well the quantum kinetic results and whose form has notable similarities to
Landau-Lifshitz-Gilbert equations. The derived effective equations are then applied to
study the competition between the spin-orbit coupling and the carrier-impurity exchange
interaction. For this purpose, the quantum kinetic equations are extended and in addition
to the exchange interaction, also k-dependent effective fields together with carrier and
impurity Zeeman energies are accounted for. This further enables the derivation of
explicit expressions for the magnetic-field dependence of the spin transfer rates from the
quantum kinetic equations. In contrast to the prevalent theories in the literature, the
rate equations obtained here conserve the single-particle energies.

The causes and conditions for the appearance of non-Markovian effects are investigated
more thoroughly. It is found that the non-Markovian behavior of the spin dynamics
is particularly pronounced if carriers are excited in close proximity to the band edge.
Accounting explicitly for the correlations between carriers and impurities in the quantum
kinetic theory enables a discussion of genuine many-body effects like a renormalization
of the precession frequency of the carrier spins for a finite impurity magnetization and a
build-up of correlation energy.

Subsequently, the optical excitation of diluted magnetic semiconductors is taken into
account on a quantum kinetic level in order to identify optimal excitation conditions
for the detection of non-Markovian effects. Furthermore, it is investigated whether an
efficient control of the spin dynamics in semiconductors with spin-orbit interaction by
excitation with light with orbital angular momentum (twisted light) is possible. However,
it is found that in extended systems, the spin dynamics after the optical excitation is
nearly independent of the orbital angular momentum of the light.

Finally, the quantum kinetic theory is extended to account also for the scattering of
carriers at a non-magnetic impurity potential which, in addition to the magnetic carrier-
impurity interaction, originates from the doping with magnetic ions. It is found that the
non-magnetic scattering leads to a redistribution of carriers in k-space, which can strongly
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suppress some of the non-Markovian effects. Simultaneously, the build-up of strong non-
magnetic correlations also results in a considerable enhancement of genuine many-body
effects and increases the regime of parameters in which a significant renormalization of
the carrier spin precession frequency can be expected.
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Kurzzusammenfassung

Die Spindynamik in optisch angeregten paramagnetischen verdünnt magnetischen Halb-
leitern wird untersucht. Zu diesem Zweck wird eine quantenkinetische Dichtematrixtheo-
rie, die von Christoph Thurn entwickelt wurde, verwendet, analysiert und erweitert.

Frühere Studien, die sich hauptsächlich auf den Fall verschwindender Magnetisierung
der magnetischen Dotieratome konzentrierten, ergaben, dass die Spindynamik optisch
angeregter Elektronen in dreidimensionalen Systemen gut mit Ratengleichungen repro-
duziert werden kann, wobei die Raten aus dem Markovschen Grenzfall der quantenkineti-
schen Gleichungen hergeleitet werden können und mit dem Ergebnis von Fermis Goldener
Regel übereinstimmen. In zweidimensionalen Systemen konnten jedoch Abweichungen
zwischen quantenkinetischen Simulationen und den Ergebnissen der Markovschen Ra-
tengleichungen in der Form eines nicht-monotonen Überschwingens der Ladungsträger-
spinpolarisation über ihren asymptotischen Wert für lange Zeiten aufgezeigt werden.

In dieser Arbeit wird zunächst Thurns quantenkinetische Theorie auf den Fall end-
licher Magnetisierung der magnetischen Ionen angewandt und Gleichungen im Mar-
kovschen Grenzfall hergeleitet, die die quantenkinetischen Ergebnisse gut reproduzie-
ren und deren Form deutliche Ähnlichkeiten mit Landau-Lifshitz-Gilbert-Gleichungen
aufweist. Die hergeleiteten effektiven Gleichungen werden anschließend benutzt, um die
Konkurrenz zwischen Spin-Bahn-Wechselwirkung und Austauschwechelwirkung zwischen
Ladungsträgern und magnetischen Dotieratomen zu untersuchen. Dazu werden die quan-
tenkinetischen Gleichungen erweitert und zusätzlich zur Austauschwechselwirkung auch
k-abhängige effektive Felder zusammen mit Zeeman-Energien für Ladungsträger und
magnetische Ionen berücksichtigt. Dies ermöglicht auch die Herleitung von expliziten
Ausdrücken für die Magnetfeldabhängigkeit der Spin-Transfer-Raten aus den quantenki-
netischen Gleichungen. Im Gegensatz zu den gängigen Theorien in der Literatur erhalten
die hier gewonnenen Ratengleichungen die Ein-Teilchen-Energie.

Zudem werden die Ursachen und Bedingungen für das Auftreten nicht-Markovscher
Effekte näher untersucht. Dabei ergibt sich, dass sich nicht-Markovsches Verhalten der
Spindynamik besonders deutlich zeigt, wenn Ladungsträger in unmittelbarer Nähe zur
Bandkante angeregt werden. Die explizite Berücksichtigung der Korrelationen zwischen
Ladungsträgern und Dotieratomen in der quantenkinetischen Theorie ermöglicht die Dis-
kussion reiner Vielteilcheneffekte, wie z.B. einer Renormierung der Präzessionsfrequenz
der Ladungsträgerspins für endliche Magnetisierungen der Dotieratome und den Aufbau
von Korrelationsenergie.

Danach wird die optische Anregung von verdünnt magnetischen Halbleitern auf der
Ebene der Quantenkinetik berücksichtigt, um optimale Anregungsbedingungen für den
Nachweis nicht-Markovscher Effekte zu identifizieren. Außerdem wird untersucht, ob ei-
ne effiziente Kontrolle der Spindynamik in Halbleitern mit Spin-Bahn-Wechselwirkung
durch Anregung mit Licht mit Bahndrehimpuls (Twisted Light) möglich ist. Jedoch zeigt
sich, dass in ausgedehnten Systemen die Spindynamik nach der optischen Anregung na-
hezu unabhängig vom Bahndrehimpuls des Lichts ist.
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Schließlich wird die quantenkinetische Theorie noch erweitert, um der Streuung von La-
dungsträgern an nichtmagnetischen Störpotentialen Rechnung zu tragen, die zusätzlich
zur magnetischen Ladungsträger-Dotieratom-Wechselwirkung durch die Doteriung mit
magnetischen Ionen zustande kommt. Dabei ergibt sich, dass die nichtmagnetische Streu-
ung zu einer Umverteilung von Ladungsträgern im k-Raum führt, die einige der nicht-
Markovschen Effekte in der Spindynamik deutlich unterdrücken kann. Gleichzeitig führt
der Aufbau starker nichtmagnetischer Korrelationen auch zu einer deutlichen Verstärkung
echter Vielteilcheneffekte und vergrößert den Parameterbereich, in dem eine signifikante
Renormierung der Ladungsträgerspinpräzessionsfrequenz zu erwarten ist.
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1. Introduction

1.1. Motivation

The idea behind the spintronics paradigm [1, 2] is to utilize the spin degree of freedom of
carriers instead of or in addition to the charge degree of freedom used in conventional elec-
tronic devices in order to enhance their properties with respect to, e.g., processing speed
or power consumption [2]. So far, technological applications of spintronics are mostly
confined to metallic magnetic devices [3], such as hard disk read heads based on the
giant magnetoresistance effect in ferromagnetic–non-magnetic–ferromagnetic sandwich
structures [4, 5]. This effect exploits the fact that the transmission of carriers through
a non-magnetic–ferromagnetic interface strongly depends on the direction of the carrier
spin with respect to the magnetization of the ferromagnet. Similar effects constitute the
basis for a number of proposals for more advanced spintronics devices, such as spin valves
and spin transistors [1, 3, 6] or magnetoresistive random access memories (MRAMs) [7].
However, some of these devices, in particular the spin transistors, require not only the
control of the number of spin-up and spin-down electrons, but also of the coherences be-
tween spin-up and spin-down states of the individual carriers. Due to the large number
of carriers in a metal, the carrier-carrier scattering leads to a fast dephasing of electron
spins, making spin transistors based on metallic devices unlikely [3]. This difficulty can
be overcome if the non-magnetic parts of the heterostructures are composed of semicon-
ductor materials, whose spin dephasing times can be up to 3 orders of magnitude longer
than in metallic systems [3].

However, the semiconductor spintronics approach faces a new problem: The electrical
spin injection from a metallic ferromagnetic to a semiconductor is very inefficient due to
the conductivity mismatch between the metal and the semiconductor [8]. One strategy
to circumvent the conductivity mismatch problem is to use magnetic semiconductors
instead of the ferromagnetic metal as a spin injector [9]. To make a semiconductor
magnetic, it can be doped with transition metal elements, which have a partially filled
d shell resulting in a strong magnetic moment. The systems obtained this way form the
material class of diluted magnetic semiconductors (DMS) [10]. While most DMS are
paramagnetic, ferromagnetism can be achieved in certain materials, e.g., Ga1−xMnxAs,
if the doping concentration x exceeds a few percent [11]. The reason for this is that the
substitutional incorporation of group-II Mn ions on lattice positions of group-III Ga ions
leads also to a strong p-doping of the DMS. These holes mediate an effective magnetic
impurity-impurity interaction responsible for the ferromagnetism [12]. The main obstacle
for commercial applications based on ferromagnetic DMSs is that the Curie temperatures
are usually well below room temperature [13]. To this day, the details of the microscopic
mechanism responsible for ferromagnetism in Ga1−xMnxAs are still debated [14] and
investigations in this direction continue [15].

While most proposals for applications rely on spin-dependent transport properties, a
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1. Introduction

more fundamental understanding of the spin physics of DMS is often obtained by optical
means: Information about the formation of exciton, trion and donor acceptor states
as well as the impurity magnetization via the carrier spin splitting can be obtained
by photoluminescense measurements [16] and the magnetization dynamics in DMS can
be extracted, e.g., from time-resolved magneto-optical Kerr rotation [17, 18], Faraday
rotation [19] or circular dichroism [20] experiments. Although the time evolution of
the carrier spin has been probed since the 90s, there is so far no microscopic theory
that can accurately predict such basic quantities as the carrier spin decay rate and its
magnetic field dependence, even in the simplest cases like in n-doped very dilute magnetic
Cd1−xMnxTe quantum wells [21].

In order to advance the theoretical understanding of the spin dynamics in DMS,
Christoph Thurn laid the grounds for a comprehensive quantum kinetic description based
on a density matrix theory taking into account the many-body correlations between car-
riers and impurities in DMS [22–24]. This theory enables the study of coherent optical
excitation of electrons from the valence to the conduction band and the onset of a pre-
cession of the carrier and impurity spins as well as spin-flip scattering mediated by the
carrier-impurity correlations. It was found that in certain situations, the carrier-impurity
spin transfer dynamics can deviate strongly from a simple exponential behavior [23, 24],
which is predicted by theories that do not take into account the finite memory due to
the build-up of carrier-impurity correlations, such as models based on rate equations
[21, 25–27] or on a projection operator method [28].

However, the accuracy of the microscopic approach entails the drawback that the de-
rived equations of motion are lengthy and numerically challenging. The complexity of
the equations makes it difficult to develop an intuition about the physical meaning of
the individual terms in the equations. The numerical demands impede a brute-force
approach to an exhaustive investigation of the dependence of the spin dynamics on the
material parameters and excitation conditions. Furthermore, so far, only the s/p-d ex-
change interaction between carriers and impurities as well as the light-matter interaction
for the description of the optical excitation has been considered, whereas in realistic sam-
ples a number of other interactions might influence the spin dynamics. These include
non-parabolicities and spin-orbit coupling terms in the crystal Hamiltonian [29, 30], con-
finement and strain effects in quantum wells and heterostructures [31], non-magnetic
impurity scattering [25], acceptor bound states, e.g., in GaMnAs [13, 15], Coulomb cor-
relations causing exciton and trion formation [32–34] and carrier-carrier exchange inter-
actions [35], effects due to the disorder in the distribution of impurity positions as well as
an inhomogeneous impurity magnetization [36] and, finally, the interaction with external
electric and magnetic fields used in experiments, e.g., in time-resolved magneto-optical
Kerr measurements [19].

Thus, Thurn’s work marks only the beginning of a comprehensive and systematic
investigation of a number of different aspects of the spin dynamics in DMS based on a
quantum kinetic description. In the present thesis, Thurn’s quantum kinetic theory is
analyzed in great detail and numerical simulations as well as analytical limiting cases
are presented that enable a more thorough understanding of the phyiscs captured in
the quantum kinetic theory. Besides investigating Thurn’s quantum kinetic equations in
cases which have been largely unexplored so far, the theory is extended to incorporate
other interactions, such as external magnetic fields, spin-orbit coupling effects and non-
magnetic impurity scattering on a quantum kinetic level.
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1.2. Outline

In particular, we discuss under which circumstances a Markovian description in terms
of rate equations is appropriate and when genuine quantum kinetic effects beyond the
Markovian approximation become important. In cases, where the Markovian picture is
justified, carrier-impurity spin transfer rates are derived, which is not straightforward in
the presence of an external magnetic field and non-zero impurity magnetization. Also,
non-perturbative many-body correlation effects are investigated which have a number
of different consequences, such as a renormalization of the precession frequencies in the
presence of an external magnetic field or the release of energy due to the build-up of
strong carrier-impurity correlations, which results in characteristic signatures in the spin
dynamics of optically excited DMS.

1.2. Outline

This thesis is based on 10 publications which can be found at the end of this document
in part IV. In order to make the subject of these publications more accessible, we first
provide the reader with a basic summary of the usual description of the spin dynamics
in non-magnetic semiconductors and DMS in the literature in chapter 2. Since the pub-
lications presented in this thesis rely heavily on the previous work by Christoph Thurn,
we recapitulate Thurn’s quantum kinetic theory to the necessary extent in chapter 3.

The publications are introduced in part II where, first, in chapter 4, the open questions
after Thurn’s work are summarized and, after the necessary concepts are introduced,
a more detailed overview of the publications is given. In chapter 5, Thurn’s quantum
kinetic theory is applied to the case of non-zero impurity magnetization and it is discussed
how effective equations can be derived in the Markov limit that reproduce well the full
quantum kinetic spin dynamics in bulk DMS. The Markovian equations are then used in
chapter 6 to study the interplay between the carrier-impurity interaction and spin-orbit
coupling in the form of Dresselhaus and Rashba fields. Subsequently, it is discussed in
chapter 7 under which circumstances the results of the quantum kinetic equations deviate
from the predictions of a Markovian effective single-particle description. In chapter 8, it
is studied how the spin dynamics can be controlled by the optical excitation conditions
such as the duration of a pump pulse or the orbital angular momentum of the light. After
that, the influence of the scattering of carriers at a spin-independent disorder potential
originating from the magnetic doping of the semiconductor is investigated in chapter 9.

Finally, the central findings of the publications are summarized and some suggestions
and preliminary results for further studies are presented in part III.
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2. Spin dynamics in DMS: state of the
art

2.1. Spin dynamics in non-magnetic semiconductors

Before discussing the spin dynamics in DMS, it is necessary to acquire a rough under-
standing about the basic notions and practices in the more general field of spin physics
in, in general, non-magnetic semiconductors. This topic has a long history and it is
beyond the scope of this thesis to cover it in detail. For a more comprehensive review,
the reader is referred to the review article of Wu et al. [37] which is the basis for the
following summary.

2.1.1. Basic band structure and optical excitation

The most frequently studied DMS are based on II-VI and III-V compound semiconduc-
tors [13], which typically crystallize in zinc-blende structure and have a direct band gap
at the Γ-point (k=0). There, the lowest conduction band states have s-type symmetry
and are two-fold degenerate, while the highest valence band is of p-type and contains 6
valence subbands in total [38]. At k = 0, the energy eigenstates of the crystal Hamilto-
nian can be written as Bloch states composed of plane waves and periodic Bloch functions
that are eigenstates of the total angular momentum operator j = l + s, where l is the
orbital angular momentum of the periodic Bloch function and s is the spin [39]. Further-
more, it can be shown that, in the absence of external fields, confinement and strain, the
valence band forms a set of 4 degenerate heavy- and light-hole subbands corresponding
to j = 3

2
and 2 split-off subbands with j = 1

2
, which are typically energetically far below

the heavy- and light hole states. For k 6= 0 or in the presence of a confinement potential
or strain, the symmetry is reduced and heavy- (jz = ±3

2
) and light holes (jz = ±1

2
) are

split from each other. This situation is depicted in Fig. 2.1.

In addition to the band structure, Fig. 2.1 also shows the allowed transitions between
the conduction band and the heavy- and light-hole subbands for optical excitation with
circularly polarized light. From these selection rules it is immediately clear how one
can, in principle, study the spin dynamics in semiconductors experimentally. If the
heavy- and light-hole bands are significantly split and the semiconductor is excited by
a laser beam with circular polarization, say σ−, which is tuned in resonance with the
heavy-hole–conduction-band transition energy, only conduction band electrons with spin
sz = +1

2
are excited and valence band electrons with jz = +3

2
are removed, i.e., holes

with total angular momentum jz = −3
2

are generated. This procedure is called optical
orientation [40] and also works to some degree in the case where heavy- and light-hole
bands are degenerate, since the heavy-hole–conduction-band and light-hole–conduction-
band transitions have different strengths.
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2. Spin dynamics in DMS: state of the art

Figure 2.1.: Schematic of a band structure of a direct band gap semiconductor in the presence of
confinement or stain. The states at k = 0 are eigenstates to the jz operator with eigenvalues ± 3

2 and
± 1

2 , respectively. The total-angular-momentum selection rule between the conduction band (highest
parabola) and the heavy- (second parabola) and light-hole band (third parabola) for optical excitation
with light with helicity σ± are depicted. Transitions from the split-off band (lowest parabola) are not
shown.

In the simplest case, information about the spin dynamics can be extracted by looking
at the polarization of the photoluminescence after a short circularly polarized pump
pulse. Alternatively, one can consider the change of certain response functions in the
presence of spin-polarized carriers, which can be tested experimentally, e.g. by probing
the system with a second light pulse that is delayed with respect to the pump pulse. Such
pump-probe experiments are the basis for most modern setups and enable a tracking of
the carrier spin polarization with time-resolutions of about 200 fs [18, 19].

2.1.2. k-dependent effective magnetic fields

The spin dynamics in semiconductors immediately after the optical orientation is de-
termined by contributions to the Hamiltonian which do not commute with the spin
operator. For the conduction band electrons, these terms can be written in the form of
a k-dependent effective magnetic field. To understand the origin of these effective fields,
one has to study the band structure beyond the parabolic approximation depicted in
Fig. 2.1. The effective field can be obtained directly from k.p-theory, which is exten-
sively covered in the books by Bastard [31] or Winkler [39]. Here, we only sketch the
essential steps that are necessary to understand the origin of the effective field.

In general, the electrons in a semiconductor are subject to the Coulomb interaction
with nuclei and other electrons. This leads to a complicated many-body problem that
requires some approximations in order to be solvable. Often, one tries to find a suitable
effective single-particle theory for semiconductor electrons, where the Coulomb interac-
tions are modeled by an effective single-particle crystal potential V0. The exact form of
the crystal potential is unknown, but it is assumed that the crystal potential has the
same symmetry as the crystal itself. The discrete translational invariance of the crystal
lattice has the consequence that, according to the Bloch theorem, the electronic energy

8



2.1. Spin dynamics in non-magnetic semiconductors

eigenstates of the crystal Hamiltonian can be written as products of plane waves and
periodic Bloch functions unk(r), i. e.,

ψnk(r) =
1√
V
eik·runk(r), (2.1)

where unk(r) has the same periodicity as the crystal lattice. Here, n labels the different
subbands.

In typical direct gap II-VI and III-V semiconductors, the Γ-point (k = 0) is a high
symmetry point, where the periodic Bloch functions unk=0(r) of bulk systems1 coincide
with the eigenstates of the jz operator (cf. situation depicted in Fig. 2.1). Together with
the degeneracies of the subbands known from symmetry considerations this enables a
description of the crystal Hamiltonian at k = 0 with only a few independent parameters,
which can be obtained in optical experiments. At k 6= 0, the periodic Bloch functions
unk 6=0 are not known, but since the periodic Bloch functions un0 at k = 0 form a complete
basis in the set of lattice-periodic functions, the states unk at k 6= 0 can be decomposed
into linear combinations of the periodic functions at k = 0.

With this in mind, we can formulate the idea of k.p-theory: The crystal Hamiltonian
is written in the form of a matrix in the basis of states similar to the Bloch states
in Eq. (2.1), except that the known periodic Bloch functions un0 at k = 0 are used
instead of unk. This yields an eigenvalue problem for every k-state in the form of a
matrix diagonalization. The matrix elements of the crystal Hamiltonian are, in general,
unknown, but they can be formally expanded in terms of polynomials in k. Group
theory is used to classify these polynomials according to their transformation properties.
Only a small subset of polynomials of a given order in k are compatible with the crystal
symmetry, which drastically reduces the number of free parameters in the off-diagonal
elements.

Usually [31, 39], only terms up to O(k2) are taken into account and one focuses on the
8 subbands depicted in Fig. 2.1. In the basis described above, the crystal Hamiltonian
has off-diagonal elements between conduction and valence band states. However, in many
situations it is sufficient to concentrate either on the conduction band or on the valence
band. To this end, it is useful to block-diagonalize the crystal Hamiltonian by a suitable
unitary transformation described by a matrix Uk which is chosen such that the interband
mixing terms vanish and the transformed effective conduction band and valence band
states are decoupled:

1Note that this is only the case for the three-dimensional k-vector in bulk systems. In confined sys-
tems, the decomposition of low-energy eigenstates of the confinement problem in plane waves has
contributions of states with significant wave vector components along the confinement directions,
which can lead to a significant mixing of bands [41].
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2. Spin dynamics in DMS: state of the art




∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗




−→




∗ ∗ 0 0 0 0 0 0
∗ ∗ 0 0 0 0 0 0
0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗ ∗




H0(k) U+
k H0(k)Uk

Since the crystal Hamiltonian is diagonal at k = 0, these band mixing terms are of the
order O(k1). Thus, the block-diagonalization can be done perturbatively in terms of k.
This procedure is known as Löwdin partitioning [42] and is mathematically equivalent
to a Schrieffer-Wolff transformation [43] or a Foldy-Wouthuysen transformation [44].

This has two major consequences: First of all, the unitary transformation changes
the basis states so that the new effective conduction band states have some contribu-
tions from the original valence bands. In particular, the new basis states are not exact
eigenstates of the total angular momentum operator jz. Second, the Löwdin partitioning
introduces new contributions to the Hamiltonian in the basis of the new conduction band
states. Because the conduction band consists of only two subbands, one can rewrite the
conduction band part Hc(k) of the crystal Hamiltonian U+

k H0(k)Uk in terms of a spin
independent part Ek and a Zeeman-like term with an k-dependent effective magnetic
field Ωk:

Hc(k) = Ek1 + ~Ωk · s, (2.2)

where 1 is the 2×2 identity matrix and s = 1
2
σ with the vector of Pauli matrices σ.

The general properties of the effective magnetic field Ωk follow from symmetry consid-
erations. For example, without external magnetic fields the total Hamiltonian is invariant
under time reversal. This leads to Kramers degeneracy, which means that the effective
field is antisymmetric with respect to the wave vector Ω−k = −Ωk. If the system is also
invariant under inversion, so that Ω−k = Ωk, the effective magnetic field vanishes. Thus,
the presence of Ωk requires some mechanism of breaking of the inversion symmetry. In
zinc-blende structures, this symmetry breaking is provided by the crystal structure. This
results in the Dresselhaus field [29]

ΩD
k =

2

~
γD




kx(k
2
y − k2

z)
ky(k

2
z − k2

x)
kz(k

2
x − k2

y)


 , (2.3)

where γD is a material parameter that describes the strength of the Dresselhaus field.
Other sources of inversion symmetry breaking are asymmetric confinement potentials in
semiconductor heterostructures or an external electric field. This leads to the Rashba
field [30], which in two dimensions reads

ΩR
k =

2

~
αR

(
ky
−kx

)
, (2.4)
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where αR is the Rashba parameter. In a more microscopic picture, the effective magnetic
fields can be related to spin-orbit coupling.

The consequences of k-dependent effective magnetic fields for the spin dynamics in
DMS are discussed in [Pub3], [Pub4] and [Pub5]. Their influence on the spin dynamics
in non-magnetic semiconductors is described next.

2.1.3. Spin relaxation mechanisms in non-magnetic semiconductors

A comprehensive review of the spin dynamics in non-magnetic semiconductors is given in
Ref. [37]. Here, we present a rough overview of the most important spin dephasing and
relaxation mechanisms in non-magnetic semiconductors that compete with the magnetic-
impurity-induced spin dynamics in DMS.

As shown in the previous section, several sources contribute to an effective k-dependent
magnetic field for the electron spins. When a non-equilibrium electron spin polarization
is induced by optical orientation, these spins start to precess about the effective field.
Since the effective magnetic field depends on the wave vector, spins of electrons with
different wave vectors precess, in general, about different axes with different frequencies.
This leads to a dephasing of the ensemble of electron spins [45].

During the precession and dephasing, the carriers in semiconductors are subject to scat-
tering at different sources, such as other carriers, impurities or phonons. In the literature
[37, 46–48], the spin dephasing is usually described in terms of a stochastic process in
which the wave vector of an electron is changed abruptly after a characteristic momentum
relaxation time τp. This, in turn, changes the effective magnetic field Ωk for the electron
spin. If the momentum relaxation rate τ−1

p is large compared with the typical precession
frequency, the electron spins do not have the time to precess significantly before they get
scattered again, which effectively freezes the spin. This motional-narrowing-type of be-
havior leads to a spin dephasing time inversely proportional to the momentum relaxation
time. This process is referred to as the D’yakonov-Perel’ (DP) mechanism [46].

Another process in which the spin is influenced by momentum scattering is the Elliot-
Yafet (EY) mechanism [47, 48]. This mechanism relies on the fact that, because of the
mixing between conduction and valence band states for k 6= 0, the states in the effective
conduction subbands after Löwdin partitioning are no longer spin eigenstates. Thus, the
scattering between energy eigenstates with different wave vectors has a finite chance of
inducing a flipping of the carrier spin, even if the interaction responsible for the scattering
is itself spin-independent, i.e., it commutes with the spin operator. In contrast to the
DP mechanism, EY predicts the spin relaxation rate to be proportional to the rate of
momentum scattering.

If there is a large number of holes in the semiconductor, electrons can also exchange
their spins with the holes, which is another relaxation channel for electron spins. This is
the essence of the Bir-Aronov-Pikus (BAP) mechanism [35].

Typically, the spin dynamics in non-magnetic semiconductors is dominated by DP and
is only challenged by BAP in strongly p-doped bulk systems [49].

For holes, the situation is much less clear, since in many cases the strong intraband
mixing leads to a very fast dephasing of hole spins, which is hard to resolve experimen-
tally. Also, the simple picture of a precessing spin vector is not applicable for the holes,
because the heavy and light holes form a spin-3

2
system, which cannot be represented

by a dipole alone. Instead, for the heavy and light holes the quadrupole and octopole
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parts have to be considered in the calculations [50]. On the other hand, in very narrow
quantum wells, where the heavy- and light-hole bands are substantially split, transitions
between them are energetically forbidden. Therefore, this splitting effectively pins the
spins of the heavy holes. Already this short discussion shows that the situation of the
valence band is complicated. Thus, for most of the thesis, we focus on the conduction
band.

2.2. Spin dynamics in DMS in the literature

Now, we introduce the DMS materials under investigation as well as the carrier-impurity
interaction, before we review the spin dynamics in DMS as it is usually covered in the
literature.

2.2.1. DMS materials

Diluted magnetic semiconductors are obtained when transition metal ions, which possess
a partially filled d shell, are incorporated into a conventional semiconductor.

The most frequently studied DMS are Mn-doped II-VI semiconductors, e.g., CdTe
or ZnSe, and III-V semiconductors, such as GaAs [13]. The main difference between
these two classes of DMS is that Mn can isoelectrically substitute the group-II elements
in II-VI semiconductors, while the incorporation of Mn at positions of the group-III
elements concurrently results in p-doping of the DMS. The excess holes in III-V ma-
terials can mediate a ferromagnetic interaction between different magnetic impurities.
The ferromagnetic order in Ga1−xMnxAs has been verified experimentally in the 1990s
[11]. However, the Curie temperature is way below room temperature, which is a major
impediment for technological applications of ferromagnetic Ga1−xMnxAs.

Although the ferromagnetism in Ga1−xMnxAs is an interesting property, we study
exclusively II-VI DMS in this thesis because III-V DMS are much harder to model
theoretically. The reason for this is that the large number of donors in III-V DMS and the
holes introduce many additional complications compared with II-VI based systems. For
example, the holes can be bound to the acceptors. If the wave functions of the carriers
bound to the acceptors overlap, an impurity band can form in the band gap [15]. Also,
a large number of holes enhances electron spin relaxation via the BAP mechanism [49]
and, in general, leads to screening effects as well as to scattering [51]. Nevertheless, one
can expect that the theory developed for II-VI DMS in this thesis can also be applied to
the case of Ga1−xMnxAs, if it is extended correspondingly.

The II-VI DMS considered here are usually paramagnetic with small antiferromagnetic
corrections due to the superexchange between Mn impurities at nearest-neighbor cation
sites [13, 52]. The Mn impurities in II-VI DMS effectively provide nearly independent
local magnetic moments which interact with the quasi-free carriers in the semiconductor.
In order to be able to treat the half-filled d-shell of a Mn impurity as a localized spin-5

2

system, two conditions have to be fulfilled. First, the lifting of the degeneracy of the
d-states caused, e.g., by a crystal field splitting must be much smaller than the Hund’s
rule coupling. For example, in the case of LaCoO3, the d-orbitals of Co are split into
sixfold degenerate t2g and fourfold degenerate eg states due to the tetragonal crystal
field splitting, so that for low temperatures, all of the six d-electrons of Co occupy the
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lower-energetic t2g states and form a state with a total magnetic moment of zero [53].
However, for the II-VI DMS considered here, the Hund’s rule coupling dominates and
the five d-electrons of Mn indeed form a spin-5

2
system [10]. Furthermore, the d-states

have to be energetically separated from the band edges. Otherwise, quasi-free carrier can
hop on and off the d-states, which again invalidates the picture of the d-states forming a
well-defined localized spin-5

2
system. This condition is also well met in II-VI DMS [10].

These findings allow us to describe the II-VI DMS in the present thesis by the band
structure of the non-magnetic II-VI material together with an effective interaction be-
tween the semiconductor carriers and localized spin-5

2
systems comprised of the d-shell

electrons of the Mn impurities.

2.2.2. Carrier-impurity interaction

The interaction between conduction band carriers and magnetic impurities in DMS is
modeled by [25, 54]

Hsd =Jsd
∑

iI

ŜI · ŝi δ(RI − ri), (2.5a)

Himp =J0

∑

iI

δ(RI − ri), (2.5b)

where Hsd is the spin-dependent part and Himp is the spin-independent part of the
interaction between the s-type conduction band electrons and the d-electrons of the Mn
impurities. Here, Jsd and J0 are the coupling constants, ŜI and ŝi are the impurity and
electron spin operators and RI as well as ri are the positions of the I-th impurity and
the i-th electron, respectively.

Similarly, for holes, the spin-dependent part of the effective Hamiltonian is:

Hpd =Jpd
∑

jI

ŜI · ŝhj δ(RI − rhj ), (2.6)

with valence band coupling constant Jpd and operators of the j-th hole spin and position
ŝhj and rhj .

The effective Hamiltonians describe a localized interaction between carriers and mag-
netic impurities. Since a Hamiltonian of the same form as the s-d interaction is also im-
portant in the discussion of the Kondo effect in magnetically doped metallic alloys [55],
Hsd is often referred to as the Kondo Hamiltonian.

A discussion of how the effective Hamiltonians can be derived from microscopic band
structure calculations is given in Ref. [56]. The coupling constants Jsd and Jpd have two
different contributions [56, 57]: First, the direct or potential exchange stems from the
exchange part of the Coulomb interaction between the quasi-free semiconductor carriers
and the d-electrons of the Mn impurities in the Hartree-Fock picture. Second, a hy-
bridization of the semiconductor band states and the Mn d-electrons enables a virtual
hopping between these states. The hopping is suppressed by the strong energetic penalty
involved in adding or removing an electron to and from the Mn d-tates. This allows for a
perturbative treatment of the hopping by a Schrieffer-Wolff transformation [43] yielding
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a contribution to the effective conduction and valence band Hamiltonians of the form of
Hsd and Hpd. This contribution is referred to as the kinetic exchange [58].

Note that the hybridization between s-type conduction band states and the d-states
of the impurities is forbidden by symmetry [56, 58]. This is the reason why the valence
band coupling constant Jpd is typically much stronger than the conduction band coupling
constant Jsd and has the opposite sign for most II-VI DMS [54].

The magnetic carrier-impurity interaction is always accompanied by the non-magnetic
impurity interaction Himp with similar microscopic origins [59]. Because Himp commutes
with the spin operators and therefore acts only indirectly on the carrier spin via scattering
in k-space, it is often not taken into account in theoretical studies of the spin dynamics
in DMS. For most of the publications in this thesis, we also neglect the spin-independent
part of the carrier-impurity interaction and adjourn the discussion of its effects on the
spin dynamics in DMS to [Pub10].

2.2.3. Mean-field and virtual-crystal approximation

Some effects of the s-d exchange interaction on the carrier spins can already be obtained
in the simple picture provided by the mean-field and virtual-crystal approximations. In
the mean-field approximation, it is assumed that, in the description of the quasi-free
carriers, the impurity spins are regarded as classical vectors, so that the electrons are
subject to an effective mean-field Hamiltonian

HMF
sd =Jsd

∑

iI

〈ŜI〉 · ŝi δ(RI − ri). (2.7)

In the virtual-crystal approximation, the impurities are assumed to be positioned regu-
larly in the crystal lattice instead of randomly. This is achieved by smearing out the
δ-function and replacing δ(RI − ri)→ 1

V
. Thus, the s-d Hamiltonian in mean-field and

virtual-crystal approximation reads

H
MF/VC
sd =

JsdNMn

V

∑

i

〈Ŝ〉 · ŝi, (2.8)

where NMn is the number of magnetic impurities and 〈Ŝ〉 is the average spin per impurity.
Recalling that the Zeeman energy of an electron in an external magnetic field B is

He
Z =

∑

i

geµBB · ŝi, (2.9)

with an effective g-factor ge, one can immediately see that, on this level of theory, the
impurity magnetization acts exactly like an external magnetic field. Thus, both contri-
butions, the mean-field/virtual-crystal s-d interaction and the Zeeman energy, can be
combined into a single term. The enhancement of the effective magnetic field for the
electrons due to the magnetic impurities is then referred to as the giant Zeeman effect
and can be measured experimentally by investigating the corresponding energetic shifts
between the spin-up and spin-down subbands [54].

The giant Zeeman effect has the immediate consequence for the spin dynamics that
the precession of carrier spins in the presence of an external magnetic field is enhanced
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the same way as the spin splitting, which is verified experimentally, e.g., in Ref. [19].
However, the simple picture of the giant Zeeman effect as an enhancement of the g-
factor is not always applicable. For example, after optical orientation of carrier spins in
DMS perpendicular to an external magnetic field, the impurity spins precess about the
field caused by the carrier spins. Thus, the impurity magnetization is tilted out of its
equilibrium direction. Then, the resulting finite component of the impurity magnetiza-
tion perpendicular to the external field starts to precess about the external field, which
produces characteristic oscillatory signatures in the signals of optical pump-probe exper-
iments [60]. Similarly, the precession of carrier and impurity spins about each other can
give rise to collective carrier-impurity precession modes [61], which are not captured by
a simple enhancement of the electron g-factor due to the giant Zeeman effect, but they
can be described in the mean-field and virtual-crystal approximation.

However, it is noteworthy that, on the level of the mean-field and virtual-crystal ap-
proximation, no changes in the spins are predicted if the impurity and carrier spins are
aligned parallel to each other. Therefore, this approximation is not capable of describ-
ing a genuine transfer of a non-equilibrium spin polarization from the carriers to the
impurities and vice-versa.

2.2.4. Rate equations for spin-flip scattering

Beyond the mean-field and virtual-crystal approximation, the Hamiltonian Hsd also de-
scribes a spin-flip scattering of electrons at the impurities, which is usually described in
the literature in terms of rate equations derived by Fermi’s golden rule [16, 25, 26, 62, 63].
There are also some other approaches which enable an extraction of the spin-flip scatter-
ing rates, such as the kinetic spin Bloch equations [27] or a theory based on a projection
operator method [28]. The results of the different approaches coincide with Fermi’s
golden rule for vanishing external magnetic field, but they differ for non-zero B. In the
case of B = 0, the carrier-impurity spin transfer rate τ−1

sd for a quantum well with width
d is [23]

1

τsd
=I

J2
sdNMnm

∗

~3V d
〈S2〉, (2.10)

where m∗ is the effective electron mass and I = d

d
2∫
− d

2

dz |ψ(z)|4 is a factor depending on

the form of the z-envelope of the carrier wave function in the quantum well.

It is expected that the spin-flip scattering is the dominant process for the decay of the
carrier spin in DMS quantum wells [27, 37]. This is supported by the fact that the carrier
spin decay measured in experiments is proportional to the impurity concentration [21].
However, the predicted rates are a factor of ≈ 5 too small to explain the experiments
quantitatively [21]. It was argued [18, 64] that if excitons are excited instead of uncorre-
lated electrons and holes, the effective mass m∗ that enters in the rate has to be replaced
by the exciton mass. Although this gives the right tendencies, a number of questions
remain. For example, for the experiments in Ref. [21], the DMS were actually n-doped
in order to suppress excitonic effects by screening.

Furthermore, for low temperatures of the order of 2 K, a minimum of the carrier spin
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decay time has been found experimentally [21]. This was attributed to inhomogeneity
effects resulting, e.g., from different local temperatures within the laser spot [21]. For
bulk DMS, where the spin-flip scattering time is rather large, it was argued [65] that
such spacial inhomogeneity effects lead to a dephasing of spins more than one order
of magnitude faster than the s-d spin transfer time predicted by Fermi’s golden rule.
Other effects related to spacial inhomogeneities in DMS are the formation of complexes
comprised of quasi-free carriers with wave functions within a finite volume that includes a
number of spin polarized magnetic impurities, the so-called magnetic polarons [36, 66–72].
However, these inhomogeneity effects strongly depend on the preparation and excitation
of the sample. In the present thesis, we focus on the spin dynamics of an on average
homogeneous DMS system and we do not account for the effects related to a spatially
varying local temperature or the formation of magnetic polarons.

2.2.5. Prospects of a quantum kinetic theory for the spin dynamics
in DMS

In the present thesis, a quantum kinetic theory for the description of the spin dynamics
in DMS is presented. The main reason for developing such a theory, which is much
more complicated than the Fermi’s-golden-rule-type rate equations described earlier, is
that it is also more accurate and requires less assumptions. In particular, the derivation
of the quantum kinetic theory does not rely on perturbative arguments in terms of the
carrier-impurity interaction and is applicable even if Hsd is strong.

In the absence of an external magnetic field and for vanishing impurity magnetization,
rate equations can be obtained in the Markov limit of the quantum kinetic theory. The
rates derived in this way also coincide with the golden rule value in Eq. (2.10). However,
in certain situations, such as in low-dimensional systems, the full quantum kinetic theory
yields results that can deviate from a simple rate-type exponential decay [23].

Furthermore, the Markov limit of the quantum kinetic theory can also be constructed
in the case of a non-vanishing impurity magnetization and a finite external magnetic field.
This makes it possible to extract the magnetic-field dependence of the rates from the
quantum kinetic theory. While Fermi’s golden rule only gives transition rates between
energy eigenstates, the Markov limit of the quantum kinetic theory also provides an
expression for the perpendicular spin transfer rate, i.e., the rate by which the carrier
spins perpendicular to the impurity magnetization are transferred to the impurity system.
For non-zero magnetic field we find an effective rate-like description that automatically
conserves the total single-particle energies in spin-flip scattering events, while the kinetic
spin Bloch equations approach in Ref. [27] and the projection operator method of Ref. [28]
end up with different rate equations that are not compatible with the conservation of
the total single-particle energy.

Also, the density matrix theory enables a fully coherent treatment of the optical exci-
tation. This allows us, e.g., to investigate the carrier-impurity spin transfer even within
the time frame of the pump pulse duration, which is relevant for developing protocols
for the optical control of the spins in DMS.

Furthermore, the quantum kinetic theory described in this thesis explicitly accounts
for correlations between carriers and magnetic impurities. Some hints towards why the
carrier-impurity correlations are indeed important in DMS can be found in the litera-
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ture: First of all, the s-d Hamiltonian also appears in the theory of the Kondo-effect [55].
There, the quantity of interest is the resistivity of metals with magnetic impurities for low
temperatures T . While a theoretical description based on perturbation theory predicts
a logarithmic divergence of the resistivity at T → 0 [55], measurements show that the
resistivity actually converges towards a finite value in this limit. This was later explained
by the formation of a many-particle state, where each impurity forms a spin-singlet with
a few carriers and is therefore screened from the other carriers in the metal. The fact
that this state is a real many-particle state that is not separable into single-particle
contributions reflects strong quantum mechanical correlations between the carriers and
impurities. Although the conditions in DMS are very different from those in metals with
magnetic impurities, the relation to the Kondo-effect is a strong motivation for studying
the carrier-impurity correlations in DMS. Moreover, Perakis et al. [73] studied the effects
of carrier-impurity correlations in ferromagnetic Ga1−xMnxAs within a theory based on
Green’s functions and found that the correlations indeed influence the spin stiffness and
Gilbert damping in this system. Note also that Morandi et al. [74] derived a third-order
perturbation theory based on Green’s functions in an Abrikosov pseudofermion formula-
tion for the investigation of the magnetization dynamics in ferromagnetic Ga1−xMnxAs.
The study came across uncontrolled Kondo-like divergences. This makes an application
of the theory questionable, but it also highlights the importance of carrier-impurity cor-
relations in DMS. In the quantum kinetic theory described in this thesis, we also find
Kondo-like divergences. These appear in the correlation energy and in a renormalization
of the carrier spin precession frequency when treated in the Markov limit. However, these
divergences are integrable and finite values are obtained when the carrier distribution
has a non-zero spectral width.

Another advantage of our quantum kinetic approach is that it can easily be extended
to incorporate other interactions. This allows us to study the interplay between the s-d
interaction and the spin-orbit coupling as well as the non-magnetic scattering of carriers
due to the interaction Himp on a quantum kinetic level.
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The present thesis is based on previous works conducted as part of Christoph Thurn’s
PhD thesis [75]. Therefore, it is necessary to summarize the central aspects of Thurn’s
quantum kinetic theory [22] and some first numerical results in the case of vanishing
impurity magnetization and zero magnetic field [23, 24], which is the subject of this
chapter.

3.1. General remarks

The goal of Ref. [22] was the development of a microscopic theory of the spin physics in
DMS in terms of a quantum kinetic theory. This approach starts with a given Hamilto-
nian and yields equations of motion for the relevant density matrices. It is motivated by
pump-probe measurements where the time evolution of quantities related to the density
matrices, e.g., the total carrier spin parallel or perpendicular to a quantum well plane,
can be monitored experimentally [19].

As is always the case in condensed matter physics, where a macroscopic number of
carriers can contribute to the observed signals, some approximations have to be applied
in order to establish a numerically feasible solution to the complicated many-body prob-
lem, while still maintaining the relevant physical features. In the case of Thurn’s quan-
tum kinetic theory, the many-body problem was tackled using a correlation expansion
scheme [76].

In a semiclassical mean-field treatment, where the impurity spins and the quasi-free
carriers in the DMS are treated as independent (uncorrelated) variables, the main effect
of the magnetic impurities is to provide an additional effective magnetic field for the
carriers. In contrast, the quantum kinetic treatment of Ref. [22] also accounts for the
correlations between the quasi-free carriers and the magnetic impurities beyond the mean-
field approximation. The central assumption for finding a closed set of equations of
motion in the quantum kinetic theory is that higher correlations, such as the carrier-
carrier as well as the impurity-impurity correlations, are negligible. Accounting for these
correlations is, in principle, straightforward, but blows up the complexity of the equations
of motion and the numerical demands even further.

One of the most important effects of the carrier-impurity correlations on the spin
dynamics, which is not captured by the mean-field approximation, is that the correlations
mediate spin-flip scattering processes between the carrier and impurity subsystems. In
contrast to rate equations, where the spin-flip scattering processes are assumed to be
instantaneous, accounting explicitly for the carrier-impurity correlations in the quantum
kinetic theory introduces a finite memory, i.e., a non-zero duration of spin-flip scattering
processes.
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3.2. Quantum kinetic theory

3.2.1. Hamiltonian and basis states

The first step in setting up quantum kinetic equations of motion is the choice of the model
Hamiltonian and the basis states in which the Hamiltonian is expressed. As usual in solid
state theory, a formulation in terms of creation and annihilation operators for Bloch
states in second quantization is employed for the description of a macroscopic number of
delocalized carriers in the DMS. As discussed earlier, the elementary interaction between
quasi-free carriers and magnetic impurities can be described by a Kondo-Hamiltonian
[cf. Eq. (2.5a)]. In second quantization for the carriers, the s-d interaction has the form:

Hsd =
Jsd
V

∑

I

∑

klk′l′

ŜI · sll′c†lkcl′k′ei(k
′−k)RI , (3.1)

where c†lk and clk are the creation and annihilation operator of Bloch electrons with
wave vector k in the conduction subband l and sll′ = 1

2
σll′ are the conduction band spin

matrices proportional to the vector of Pauli matrices σ.

Now, it is crucial to find a suitable representation of the magnetic impurity spins ŜI at
positions RI . In the spirit of the correlation expansion, the most obvious representation
is the average spin 〈ŜI〉 of the I-th impurity. However, one finds that terms of the form
〈ŜiI ŜjJ〉 enter in the equations of motion, so that this approach has the disadvantage that
second moments of the impurity spins cannot be expressed in terms of average values
(first moments) if the impurity spin is larger than 1

2
. Therefore, one would have to

derive equations of motion for the second moments, which, in turn, depend on the third
moments. Formally, there are only 36 degrees of freedom for a spin-5

2
system such as

Mn, but the factorization of higher moments is cumbersome.

Instead, Thurn used a representation for impurity spins comprised of the single-
particle impurity density operators P̂ I

n1n2
= |I, n1〉〈I, n2| in the basis |I, n〉 of the spin

states for the I-th impurity, which are eigenstates to the ŜzI operator with eigenvalues
n ∈ {−5

2
,−3

2
, . . . , 5

2
}. Neglecting the impurity-impurity correlations at different positions

RI and RJ enables a factorization according to [22]

〈P̂ I
n1n2

P̂ J 6=I
n3n4
〉 = 〈P̂ I

n1n2
〉〈P̂ J 6=I

n3n4
〉, (3.2a)

〈P̂ I
n1n2

P̂ I
n3n4
〉 = 〈I, n1|I, n2〉〈I, n3|I, n4〉 = δn2n3〈P̂ I

n1n4
〉, (3.2b)

which allows for a more compact notation of the equation of motion for the impurity
degrees of freedom. In other works [74], a pseudo-fermion approach was used to describe
the impurity spins in DMS. However the perturbative Green’s functions study of Ref. [74]
suffers from uncontrolled divergences, which inhibit a clear physical picture as well as a
direct comparison with Thurn’s quantum kinetic theory.

With the impurity spins expressed in terms of the operator P̂ I
nn′ and the carriers

described in second quantization, the s-d interaction takes the form [22]:

Hsd =
Jsd
V

∑

Inn′

∑

klk′l′

Snn′ · sll′c†lkcl′k′P̂ I
nn′e

i(k′−k)RI , (3.3)
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where Snn′ are the spin matrices of a spin 5
2

system, which can be found, e. g., in appendix
A of Ref. [22]. Hsd together with the corresponding term for the p-d interaction between
holes in the valence band, the parabolic free-carrier band structures and the light-matter
interactions form the starting point of the correlation expansion of Ref. [22]. For the
summary of Thurn’s quantum kinetic theory, we focus on the conduction band and
take the laser excitation into account by choosing corresponding non-equilibrium initial
values for carrier spins and occupations at t = 0, so that the total Hamiltonian in this
description is comprised of only Hsd and an effective mass Hamiltonian H0 for the two-
fold degenerate conduction band.

3.2.2. Correlation expansion

The carrier and impurity spin polarization can be extracted from the single-particle
density matrices 〈c†l1k1

cl2k1〉 and 〈P̂ I
n1n2
〉. From the Heisenberg equations of motion, one

finds for the carrier density matrix:

−i~ ∂
∂t
〈c†l1k1

cl2k1〉 =〈[H0, c
†
l1k1

cl2k1 ]〉+ 〈[Hsd, c
†
l1k1

cl2k1 ]〉, (3.4)

where the first commutator vanishes in the case of an effective mass Hamiltonian H0.
After inserting the expression for Hsd from Eq. (3.3), the second term of Eq. (3.4) yields

Jsd
V

∑

Inn′

∑

kl

Snn′ ·
(
sll1〈c†lkcl2k1P̂

I
nn′〉ei(k1−k)RI − sl2l〈c†l1k1

clkP̂
I
nn′〉ei(k−k1)RI

)
. (3.5)

It is now clear that the carrier-impurity correlations 〈c†l1k1
cl2k2P̂

I
n1n2
〉 influence the carrier

spin dynamics. To distinguish the mean-field contributions from the true correlation
effects, it is instructive to factorize [76] according to

〈c†l1k1
cl2k2P̂

I
n1n2
〉 = 〈c†l1k1

cl2k2〉〈P̂ I
n1n2
〉+ δ〈c†l1k1

cl2k2P̂
I
n1n2
〉, (3.6)

where the first term on the r.h.s. is the mean-field part and δ〈c†l1k1
cl2k2P̂

I
n1n2
〉 are the true

correlations or cumulants. Henceforth, when the term correlations is used, we refer to
the true correlations as opposed to the expressions of the form of the l.h.s. of Eq. (3.6).

Another problem that is evident from Eq. (3.5) is that the positions of the impurity
ions RI appear explicitly in the time evolution of the carrier density matrix. However,
the number of impurity ions is a macroscopic quantity, so that the impurities cannot be
taken into account individually. Rather, some distribution of impurity ions has to be
assumed and an averaging over this distribution has to be performed in order to enable
the calculation of the time evolution of the carrier spins. Thus, the impurity positions
become (classical) random variables that also have to be accounted for in a rigorous
correlation expansion scheme. Then, Eq. (3.5) becomes

Jsd
V

∑

Inn′

∑

kl

Snn′ ·
(
sll1〈c†lkcl2k1P̂

I
nn′e

i(k1−k)RI 〉 − sl2l〈c†l1k1
clkP̂

I
nn′e

i(k−k1)RI
)
〉, (3.7)

where the brackets now also include an averaging over the random impurity positions
RI . Note that the dependence on RI disappears for k = k1, so that in this case the
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3. Thurn’s quantum kinetic equations

factorization has to be performed as in Eq. (3.6). For k1 6= k2, the factorization of the
terms in Eq. (3.7) is [22]:

〈c†l1k1
cl2k2P̂

I
nn′e

i(k2−k1)RI 〉 = 〈c†l1k1
cl2k2〉〈P̂ I

nn′〉〈ei(k2−k1)RI 〉+ δ〈c†l1k1
cl2k2P̂

I
nn′〉〈ei(k2−k1)RI 〉

+ δ〈P̂ I
nn′e

i(k2−k1)RI 〉〈c†l1k1
cl2k2〉+ δ〈c†l1k1

cl2k2e
i(k2−k1)RI 〉〈P̂ I

nn′〉
+ δ〈c†l1k1

cl2k2P̂
I
nn′e

i(k2−k1)RI 〉. (3.8)

The first two terms on the r.h.s. of Eq. (3.8) vanish if an on average homogeneous distri-
bution of impurities with 〈ei(k2−k1)RI 〉 = δk2k1 is assumed and k1 6= k2. A non-vanishing
value of δ〈P̂ I

nn′e
i(k2−k1)RI 〉 implies a correlation between the spin and the position of impu-

rities. These correlations correspond to spin waves with wave vector (k2−k1). However,
the third term on the r.h.s. of Eq. (3.8) also vanishes for k1 6= k2 in an on average
spatially homogeneous system, where 〈c†l1k1

cl2k2〉 ∝ δk1,k2 is diagonal with respect to the
wave vector. Thus, only the last two terms of Eq. (3.8) remain. Note that correlations of
the type δ〈c†l1k1

cl2k2e
i(k2−k1)RI 〉 also build up when scattering at non-magnetic impurities

due to the Hamiltonian Himp defined in Eq. (2.5b) is considered. In the equations of mo-

tion for the correlations in Ref. [22], all correlations higher than δ〈c†l1k1
cl2k2e

i(k2−k1)RI 〉
and δ〈c†l1k1

cl2k2P̂
I
nn′e

i(k2−k1)RI 〉 have been dropped after the factorization. Special care
has to be taken that the fermionic antisymmetry in factorizations of electronic four-point
averages is fulfilled, so that, e.g.,

〈c†l1k1
c†l2k2

cl3k3cl4k4〉 → 〈c†l1k1
cl4k4〉〈c†l2k2

cl3k3〉 − 〈c†l1k1
cl3k3〉〈c†l2k2

cl4k4〉, (3.9)

where the true carrier-carrier correlations are neglected in the truncation scheme. Note
that, in order to obtain physical results in the limit V → ∞, the relation (3.2b) for
products of impurity operators at the same position (I = J) has to be applied before the
factorization.

In Ref. [22], the dynamical variables of the quantum kinetic equations for conduction
band electrons were defined as:

C l2
l1k1

=〈c†l1k1
cl2k1〉, (3.10a)

Mn2
n1

=〈P̂ I
n1n2
〉, (3.10b)

C̄ l2k2
l1k1

=V δ〈c†l1k1
cl2k2e

i(k2−k1)RI 〉, (3.10c)

K̄ l2n2k2
l1n1k1

=V δ〈c†l1k1
cl2k2P̂

I
n1n2

ei(k2−k1)RI 〉. (3.10d)

The factors V are introduced to keep the correlations finite in the limit V →∞. Note
also that the dynamical variables are independent of the impurity index I due to the
averaging over the impurity distribution. While the equations of motion in Ref. [22] were
explicitly written down for the correlations C̄ l2k2

l1k1
and K̄ l2n2k2

l1n1k1
, it turns out in [Pub1] that

the equations of motion can be simplified by summarizing the correlations to

Ql2n2k2
l1n1k1

= Mn2
n1
C̄ l2k2
l1k1

+ K̄ l2n2k2
l1n1k1

= V 〈c†l1k1
cl2k2P̂

I
n1n2

ei(k2−k1)RI 〉, k1 6= k2, (3.11)

since the mean-field contribution is exactly the term that is obtained from the average
〈c†l1k1

cl2k2P̂
I
n1n2

ei(k2−k1)RI 〉 for k1 = k2. Note that the factorization into the true correla-
tions in Ref. [22] was necessary for the correct identification of higher order correlations
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3.3. Theoretical findings

that are neglected.

The corresponding equations of motion for the density matrices and the correlations
in the conduction band are given in [Pub1].

3.3. Theoretical findings

The quantum kinetic equations of motion are the main result of Ref. [22]. However,
already at this point, it is possible to discuss some features of the theory.

First of all, it is found that the mean-field theory, which describes the giant Zeeman
effect and a precession of carrier and impurity spins about each other, is obtained from
the quantum kinetic theory if the correlations are set to zero. Furthermore, if the aver-
aging over the impurity distribution is performed on the level of the Hamiltonian, which
corresponds to the virtual-crystal approximation, the same result is obtained as in the
mean-field case. In particular, in the situation of a vanishing impurity magnetization,
the mean-field and virtual-crystal approximations predict no change of the initial carrier
spin at all.

A successful test of the soundness of the theory is that the equations of motion can
be shown to conserve the total number of electrons as well as the total energy including
the correlation energies. Also, the total spin comprised of carrier and impurity spins is
conserved.

A Taylor-expansion in terms of short times, i.e., a few time steps in the equations of
motion corresponding to a few fs, shows that, in the first step, the correlations are built
up, which, in turn, change the single-particle density matrices in the second step. Thus,
the change of the single-particle observables is quadratic in time as can be expected from
a time-reversible quantum kinetic theory. Also, a redistribution of carriers in k-space is
already indicated by such an analysis.

3.4. Markov limit

After the derivation of the quantum kinetic theory, it is instructive to compare it to rate
equations obtained from Fermi’s golden rule. This was done in Ref. [23] for the case of
vanishing impurity magnetization.

It turns out that the same rate equations can also be derived directly from the quantum
kinetic theory in the Markovian limit, i.e., if it is assumed that the memory provided by
the correlations is short. The procedure of deriving the Markov limit of the quantum
kinetic theory according to Ref. [23] is sketched schematically as follows:

First, assume that the equations of motion for the correlations have the form

−i~ ∂
∂t
Q = −~∆ωQ+ b, (3.12)

where (−~∆ωQ) is the homogeneous part and b is the source term, which only depends
on the single-particle density matrices C and M . If b is regarded as a function of time,
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3. Thurn’s quantum kinetic equations

Eq. (3.12) can be formally integrated. The Markov limit is established by

Q(t) =
i

~

t∫

−∞

dt′ ei∆ω(t′−t)b(t′) ≈ i

~
b(t)

t∫

−∞

dt′ ei∆ω(t′−t) =
i

~
b(t)
(
πδ(∆ω)− i

∆ω

)
. (3.13)

The l.h.s. of Eq. (3.13) has the form of a memory integral over the values of the single-
particle quantities contained in b at past times t′ ≤ t. The assumption of a short
memory means that only the value of the source term at t′ = t is relevant. Evaluating
b(t′) ≈ b(t) at t leads to the r.h.s. of Eq. (3.13), where the memory integral can be
calculated analytically. The correlations appearing in the equations of motion for the
single-particle density matrices can then be replaced by the Markovian expressions ac-
cording to Eq. (3.13). The real part of the memory integral yields a δ-function which,
when inserted into the equation for the carrier density matrix, leads to an expression
equivalent to Fermi’s golden rule. For zero impurity magnetization, the imaginary part
does not enter in the equations of motion for the single-particle density matrices.

A more formal and comprehensive derivation of the Markov limit for more general
situations is presented in [Pub5].

3.5. Results for zero impurity magnetization

In Ref. [23], the spin dynamics in a DMS at zero magnetic field and vanishing impurity
magnetization has been investigated in simulations in which the optical excitation has
been modeled by choosing the corresponding values for initial non-equilibrium carrier
spins and occupations.

Figure 3.1 shows the time evolution of the carrier spin polarization for an initially spin
polarized Gaussian spectral carrier distribution centered at the conduction band edge
in a Mn-doped ZnSe DMS in three, two and one dimensions. Note that the number of
magnetic impurities NMn is much larger than the number of optically induced carriers
Ne, so that the impurities act effectively as a spin bath for the carriers. Thus, the initial
carrier spin can be completely transferred to the impurity system so that the average
carrier spin polarization approaches zero at long times t→∞. The full quantum kinetic
theory predicts this decay to be exponential in a bulk system, whereas in lower dimensions
deviations from the exponential behavior can be found. These deviations show up as
overshoots or oscillations.

Some of the source terms in the quantum kinetic equations can be neglected in the
calculations while still virtually the same spin dynamics is obtained, as depicted by the
blue circles in Fig. 3.1. The remaining numerically relevant terms in the equations of
motion for the correlations yield equations of the form of Eq. (3.12) and make it possible
to formulate the Markov limit of the theory and to derive expressions for the carrier-
impurity spin transfer rates. The green squares in Fig. 3.1 depict an exponential decay
with these rates and serve as a point of reference for the discussion of the differences
between the quantum kinetic and the Markovian results.

In Ref. [23], the discussion of the origin of the non-Markovian behavior in lower-
dimensional samples focuses on the finding that a significant redistribution of carrier
occupations in k-space in the situation with pronounced non-Markovian features is found.
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Figure 3.1.: From Ref. [23]: Time evolution of an initial carrier spin in a Zn0.93Mn0.07Se DMS in a
bulk system (a), a quantum well (b) and a quantum wire (c) for vanishing impurity magnetization. The
red solid line shows the results of the full quantum kinetic theory, the green squares are the results of
rate equations according to Fermi’s golden rule and the blue circles correspond to calculations where
only a numerical relevant subset of terms in the quantum kinetic theory is accounted for. In particular,
the correlations C̄ as well as source terms QK̄ in the equations of motion for the correlations K̄ are
neglected, where QK̄ comprises all terms containing correlations or terms of higher than linear order in
the electron density [23]. Calculations where the shape of the carrier occupations in k-space are fixed
are shown as pink triangles in the case of the quantum well (b).

For example, manually enforcing the shape of the carrier distribution to remain the
same as at t = 0 [pink triangles in Fig. 3.1(b)] leads to the same spin dynamics as
the rate equations. The relation between the non-Markovian behavior and the carrier
redistribution can be understood as follows: While in the Markov limit, as in Fermi’s
golden rule, the redistribution of carriers is confined to final states within the same kinetic
energy shell as the initial state, deviations from the Markov limit are associated with a
finite broadening of the energy selection rule according to the energy-time uncertainty
relation.

Furthermore, in Ref. [23], an explanation for the fact that the deviations from the
Markovian rate equations are more pronounced in lower-dimensional systems is suggested
by a comparison with a quantum dot (zero dimensions): A quantum dot can be described
as a few-level system, where an interaction between the discrete states leads to a coherent
Rabi-flop behavior in the form of oscillations. Thus, the one- and two-dimensional cases
are regarded as intermediate situations between the zero-dimensional coherent case and
the incoherent bulk result.

It is shown analytically in Ref. [23] that the overall shape of the time evolution of
the carrier spin depends on the material parameters via a parameter F , which in two
dimensions takes the form F = m∗J2

sdNMn/V d, where m∗ is the effective mass in the
conduction band, Jsd is the s-d coupling constant, NMn is the number of magnetic impu-
rities and V and d are the volume and the width of the quantum well, respectively. The
deviations from the rate-like behavior of the spin dynamics are found to be stronger for
larger values of the parameter F .
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3. Thurn’s quantum kinetic equations

In contrast, the investigation of the dependence of the spin dynamics on the initial
spectral electron distributions, i.e., on the properties of the exciting laser pulse, relies on
the numerical integration of the quantum kinetic equations. It is found that, even if the
material parameters are chosen to maximize F while still being in a reasonable range for
realistic DMS, the non-Markovian features disappear if the initial carrier distribution is
either too broad (of the order of a few meV) or the center of the Gaussian peak is shifted
towards higher energies.

The fact that the non-Markovian effects depend on the properties of the exciting laser
beam is exploited in Ref. [24], where a two-color experiment with laser beams of different
central frequencies and opposite circular polarizations is proposed, where the total spin
optically induced into the sample is zero, but still pronounced oscillations in the time
evolution of the carrier spin polarization in a DMS quantum well are predicted. These
oscillations in the carrier spin polarization have a magnitude of the order of 1% and they
are visible even a few ps after the fs-pulses are gone. From a technical point of view, a
novelty of Ref. [24] compared with Ref. [23] is that the laser pulse and the valence band
were taken into account numerically. The results are very similar to those obtained by
calculations where the optical exciation is taken into account by the choice of suitable
initial values for the carrier spins and occupations. This justifies the procedure of using
the corresponding initial values in Ref. [23] and in the studies described in the present
thesis.
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Part II.

Quantum kinetic description of the spin
dynamics in DMS
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4. Open questions after Thurn’s work

The full set of Thurn’s quantum kinetic equations derived in Ref. [22] spans four pages.
Because of the sheer size and complexity of the quantum kinetic equations, many physi-
cal features that are already present in Thurn’s quantum kinetic theory are concealed in
some of the source terms. The large parameter space and the numerical demands make
it difficult to infer the physical content from brute-force calculations of the quantum ki-
netic equations for a vast number of different situations, material parameters and initial
conditions. This is also the reason why the numerical investigations in Refs. [23] and [24]
are confined to the relatively transparent case of zero impurity magnetization. Situations
with non-vanishing Mn spins are not addressed in these publications, although the quan-
tum kinetic theory of Ref. [22] is capable of describing these cases, too. Furthermore,
the explanation of the non-Markovian behavior in Ref. [23] is somewhat unsatisfactory,
because no clear criterion is provided for when to expect that golden-rule-like rate equa-
tions are a good approximation and under which circumstances they fail to accurately
reproduce the spin dynamics predicted by the quantum kinetic theory.

Moreover, the description of realistic DMS requires to take into account additional
interactions and Hamiltonians, such as the scattering at non-magnetic impurities, the
Zeeman energies in the presence of an external magnetic field or spin-orbit coupling
effects. The latter can be described by effective magnetic fields that lead to a non-
vanishing commutator between the crystal Hamiltonian and the carrier spin operators,
which complicates the analysis of the quantum kinetic equations even further.

These open questions are the starting point for the studies carried out within the
present thesis: First, the quantum kinetic theory of Ref. [22] is applied to the case of
non-zero impurity magnetization in [Pub1] and [Pub2] in a bulk system, where the com-
plications due to non-Markovian effects are negligible [23]. In this context, the different
source terms in the equations for the correlations are interpreted, which facilitates a
physical intuition about the processes described in the quantum kinetic theory. A more
thorough take on the origin of the non-Markovian effects in two-dimensional systems is
presented in [Pub6] and the correlation-induced renormalization of the carrier spin preces-
sion frequency is discussed in [Pub7]. Furthermore, the theory is extended to incorporate
spin-orbit coupling effects and an external magnetic field. The interplay between s-d and
spin-orbit interactions is investigated in [Pub3] and [Pub4] in the Markov limit and a
full quantum kinetic treatment of the s-d, the spin-orbit and the Zeeman interactions
is presented in [Pub5]. There, also expressions for the magnetic-field dependence of the
carrier-impurity spin transfer rates are derived and compared with the results of other
theories in the literature.

In these studies, the optical excitation is modeled by choosing corresponding initial
carrier occupations. In [Pub8], the optical excitation is taken into account on a quantum
kinetic level. On this level of theory, we work out for which excitation conditions, i.e.,
pulse durations and magnetic field strengths, the non-Markovian effects are particularly
pronounced.
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In [Pub9], we investigate the effects of the excitation of semiconductors with twisted
light, i.e., light with orbital angular momentum, on the subsequent spin dynamics induced
by the Rashba interaction. In particular, we discuss the possibility of spin control via
the orbital angular momentum of the impinging light beam.

Finally, in [Pub10], we study how the spin dynamics in DMS is modified if the non-
magnetic interaction between carriers and impurities is accounted for.
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5. Spin transfer dynamics for non-zero
impurity magnetization

In this chapter, we discuss the quantum kinetic theory in the case of a non-zero impurity
magnetization. We focus on a bulk system, where according to Ref. [23] no significant
non-Markovian effects are expected and rate equations derived using Fermi’s golden rule
provide a very good description of the spin dynamics for vanishing impurity magnetiza-
tion.

For a non-zero impurity magnetization, a distinction between the carrier spin com-
ponents parallel and perpendicular to the impurity magnetization arises naturally. It is
clear that in order to obtain the corresponding parallel and perpendicular spin transfer
rates, Fermi’s golden rule reaches its limits, in particular, because it only describes tran-
sitions between energy eigenstates and, thus, makes no statement about the dynamics
of the perpendicular carrier spin component, i.e., the loss of coherence between spin-up
and spin-down states.

This is, however, not a problem for the quantum kinetic theory, which describes the
dynamics not only of the spin-up and spin-down occupations, but also of their coher-
ences by accounting for the off-diagonal elements of the density matrices with respect to
the spin indices. The Markov limit of the quantum kinetic equations is established and
discussed in detail in [Pub1] and [Pub2]. The result is a set of effective rate equations for
both, the parallel and perpendicular carrier spins with respect to the impurity magneti-
zation and the corresponding rates are expressed in terms of the microscopic parameters
of the Hamiltonian.

Although the steps involved in the derivation of these equations are, in principle, very
similar to that in the case of vanishing impurity magnetization, which was sketched in
Eq. (3.13), a number of complications arise when the impurity spin is non-zero: First,
switching from the carrier density matrix to the carrier spin parallel and perpendicular
to the impurity magnetization as dynamical variables leads to effective equations where
higher moments of the impurity spin appear. For example, for the spin-5

2
Mn impurities,

the second moments

〈SiSj〉 =
∑

n1n2n3

Sin1n2
Sjn2n3

Mn1n3 (5.1)

cannot be expressed in terms of the averages 〈Si〉 alone.

In [Pub1], a number of algebraic manipulations are required to end up with relatively
simple equations that can be interpreted more intuitively and solved analytically. These
equations bear a striking resemblance to Landau-Lifshitz-Gilbert equations, which are
usually derived phenomenologically. However, the fact that the impurity and carrier
spins are quantum mechanical objects and not classical vectors has very important con-
sequences. For example, the classical version of the Landau-Lifshitz-Gilbert equations
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5. Spin transfer dynamics for non-zero impurity magnetization

predicts that the spins remain unchanged if impurity and carrier spins are aligned paral-
lel to each other. In contrast, the quantum corrections obtained in [Pub1] lead to a spin
transfer between the carrier and impurity systems even in this case.

Further complications that arise when a finite impurity magnetization is taken into
account are related to the importance of certain source terms in the equations for the
correlations. Concentrating on the conduction band and simplifying Thurn’s original
equations [22] by rewriting them in terms of the correlations Q defined in Eq. (3.11)
yields the following equations of motion, which are the starting point of [Pub1]:

−i~ ∂
∂t
Mn2

n1
=Jsd

1

V

∑

knll′

sll′

[
C l′
lk

(
Snn1M

n2
n − Sn2nM

n
n1

)

+
1

V

∑

k′

(
Snn1Q

l′n2k′
lnk − Sn2nQ

l′nk′
ln1k

)]
, (5.2a)

−i~ ∂
∂t
C l2
l1k1

=Jsd
NMn

V

∑

nn′l

Snn′
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Mn′

n

(
sll1C

l2
lk1
− sl2lC

l
l1k1

)

+
1

V

∑

k

(
sll1Q

l2n′k1
lnk − sl2lQ

ln′k
l1nk1

)]
, (5.2b)

(
− i~ ∂

∂t
+ Ek2 − Ek1

)
Ql2n2k2
l1n1k1

= bl2n2k2
l1n1k1

I.1
+ bl2n2k2

l1n1k1

I.2
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=:b
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I
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III

, (5.2c)

with source terms
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I.1
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)
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∑

k

C l′
lk

(
Snn1Q

l2n2k2
l1nk1

− Sn2nQ
l2nk2
l1n1k1

)
, (5.2g)

bl2n2k2
l1n1k1

III.1
=Jsd

∑

nl

{
1

V

∑

k

[
Snn1sll1Q

l2n2k2
lnk − Sn2nsl2lQ

lnk
l1n1k1

]}
, (5.2h)

bl2n2k2
l1n1k1

III.2
=− Jsd

∑

nll′

sll′

{
1

V

∑

k

C l′
l1k1

[
Snn1Q

l2n2k2
lnk − Sn2nQ

l2nk2
ln1k

]

+
1

V

∑

k

C l2
lk2

[
Snn1Q

l′n2k
l1nk1

− Sn2nQ
l′nk
l1n1k1

]}
. (5.2i)

The above subdivision of the source terms into the different bl2n2k2
l1n1k1

X
introduced in [Pub1]
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helps to bring order into this set of equations and makes an interpretation and an esti-
mation of the relative importance of the different terms easier.

The terms on the r.h.s. of Eqs. (5.2) are interpreted as follows: The first lines of
Eqs. (5.2a) and (5.2b) represent the mean-field contributions to the dynamics of the
single-particle density matrices. They describe the mutual precession of the carrier and
impurity spins about each other. The second lines of Eqs. (5.2a) and (5.2b) contain
the correlation-induced changes of the single-particle density matrices. Equation (5.2c)

suggests that, for small coupling constants Jsd, where the source terms bl2n2k2
l1n1k1

X
tend

to zero, the correlations oscillate with a frequency corresponding to the difference of
kinetic energies (Ek2−Ek1) of electronic states with wave vectors k1 and k2. The source

terms bl2n2k2
l1n1k1

I
are responsible for starting the dynamics of the correlations, since all other

terms are initially zero if the correlations are zero. The terms bl2n2k2
l1n1k1

I
are comprised of

bl2n2k2
l1n1k1

I.1
which is linear and bl2n2k2

l1n1k1

I.2
that is quadratic in the electron density matrix

C l2
l1k1

. As more thoroughly discussed in [Pub2], one important effect of bl2n2k2
l1n1k1

I.2
is to

ensure the correct Pauli blocking behavior. By comparison with the mean-field terms of

Eqs. (5.2a) and (5.2b), the source terms bl2n2k2
l1n1k1

II
are identified as terms which describe

a precession-type motion of the correlations about the total impurity (bl2n2k2
l1n1k1

II.1
) and

carrier (bl2n2k2
l1n1k1

II.2
) spins. bl2n2k2

l1n1k1

III
are terms that connect correlations with different

wave vectors.

In order to be able to apply the Markov approximation, it is necessary to write the
equations for the correlations in the form of Eq. (3.12), where the source terms b only
depend on the single-particle variables and not on the correlations themselves. Note

that only the source terms bl2n2k2
l1n1k1

I
have the desired form, while bl2n2k2

l1n1k1

II
and bl2n2k2

l1n1k1

III

contain correlations. Nevertheless, the Markov limit of the quantum kinetic theory can

be established by assuming that bl2n2k2
l1n1k1

II
and bl2n2k2

l1n1k1

III
are less important than bl2n2k2

l1n1k1

I
.

An argument in favor of this assumption is that the former are of higher order in the
coupling constant Jsd than the latter, since the correlations, which are zero before the
laser pulse, are built up over time and are linear in Jsd. Thus, the effects of the source

terms bl2n2k2
l1n1k1

II
and bl2n2k2

l1n1k1

III
on the carrier and impurity density matrices are of the order

O(J3
sd), whereas bl2n2k2

l1n1k1

I
causes changes in second order.

In the Markov limit of the quantum kinetic equations where bl2n2k2
l1n1k1

II
and bl2n2k2

l1n1k1

III
are

neglected, the equation of motion for the carrier spin sk1 =
∑
l1l2

sl1l2C
l2
l1k1

in the states

with wave vector k1 is:

∂

∂t
sk1 =

[
JsdNMn

~V
+
J2
sdNMn

~2V 2

∑

k

P 1

2

nk − 1

ωk1 − ωk

](
〈S〉 × sk1

)

+ π
J2
sdNMn

~2V 2

∑

k

δ(ωk1 − ωk)

[
〈S〉4s2

k1
− n2

k1
+ 2nk1

4

+ (sk × (sk1 × 〈S〉)) +
〈S×

(
S× sk

)
〉+ 〈

(
sk × S

)
× S〉

2

]
, (5.3)

where nk1 =
∑
l

C l
lk1

are the carrier occupations at wave vectors k1 and ωk = Ek

~ is the
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5. Spin transfer dynamics for non-zero impurity magnetization

frequency corresponding to the kinetic energy Ek of an electron with wave vector k.

The first line in Eq. (5.3) describes a precession of the carrier spin around the effective
field provided by the impurity magnetization. The precession frequency is renormalized
by contributions stemming from the carrier-impurity correlations. This renormalization
is discussed in more detail in [Pub7]. The second line is responsible for the transfer of
an excess impurity magnetization to the carrier subsystem, while the last line contains
damping terms, which are similar to the corresponding terms in the phenomenological
Landau-Lifshitz-Gilbert equation for the dynamics of a magnetization density M(r) in
an external field H [77]

∂

∂t
M = γM×H− λ

M2
M×

(
M×H

)
. (5.4)

In contrast to the original Landau-Lifshitz-Gilbert equation (5.4), where the magneti-
zation M is already a quantum-mechanically averaged quantity, the average in the term
〈S×

(
S× sk

)
〉+ 〈

(
sk×S

)
×S〉 in the Markovian effective equation (5.3) has to be taken

after the evaluation of the cross product. This has the consequence that this term is
non-zero in the case where 〈S〉 and 〈sk〉 are parallel to each other, whereas the original
Landau-Lifshitz-Gilbert equations (5.4) predict no change of the spins in this case.

However, the numerical calculations performed in [Pub1] show that the Markovian

rate equations obtained by neglecting bl2n2k2
l1n1k1

II
and bl2n2k2

l1n1k1

III
are not generally applicable,

because they produce significantly different results compared with the full quantum ki-
netic calculations, although they were performed for a bulk system, where it was shown
in Ref. [23] that finite-memory effects are of minor importance and both calculations
agree in the case of zero impurity magnetization. The results of the corresponding cal-
culations are shown in Fig. 5.1. In order to pinpoint the origin of these discrepancies,
a systematic study of the importance of the difference source terms is performed. It is

found that the source term bl2n2k2
l1n1k1

II.1
, which describes the precession-type motion of the

correlations about the impurity magnetization, is extremely important despite leading to

changes in the single-particle variables in the order O(J3
sd). If the term bl2n2k2

l1n1k1

II.1
is not

accounted for, in particular the asymptotic value of the carrier spin component parallel
to the impurity magnetization for large times is not correctly reproduced.

The central point of [Pub2] is that, after some further manipulations and introducing

suitable new dynamical variables for the correlations, it is possible to include bl2n2k2
l1n1k1

II.1

as a contribution to the homogeneous part of the differential equation (3.12). This
way, one obtains effective equations which produce almost the same results for the spin
dynamics as the quantum kinetic theory in bulk systems, even for non-vanishing impurity
magnetization. These effective equations are:

∂

∂t
n
↑/↓
k1

=
∑

k

{
Re(G

ωk1
ωk )

b‖

2

[
n
↑/↓
k − n

↑/↓
k1

]

+ Re(G
ωk1
±ωM

ωk )
[
b±n↓/↑k − b∓n

↑/↓
k1
∓ 2b0n

↑/↓
k1
n
↓/↑
k

]}
(5.5a)
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Figure 5.1.: From [Pub1]: Time evolution of the modulus (a), the parallel component (b) and the
perpendicular (c) component of the total carrier spin with respect to the impurity magnetization in
a Zn0.93Mn0.07Se bulk DMS with initial carrier spin polarization tilted 45◦ away from the direction
of the impurity magnetization and initial spectral carrier distribution modeled by a Gaussian with a
standard deviation of Es = 3 meV centered at the band edge. The red solid line (full QKT) depicts the
full quantum kinetic results, while the blue circles and pink triangles show the results of calculations
where only the source terms bI or bI.1 and bII.1, respectively, have been accounted for in the equation
of motion for the correlations. The green dashed line (ML) represents the results according to the
Markovian equation of motion obtained by considering only the source terms bI .

∂

∂t
s⊥k1

=−
∑

k

[
Re(G

ωk1
−ωM

ωk )
(b+

2
− b0n↑k

)
s⊥k1

+ Re(G
ωk1

+ωM
ωk )

(b−
2

+ b0n↓k
)
s⊥k1

+ Re(G
ωk1
ωk )

b‖

2

(
s⊥k + s⊥k1

)]

+
〈S〉
|〈S〉| ×

[
ωM −

∑

k

{
Im(G

ωk1
−ωM

ωk )
(b+

2
− b0n↑k

)

− Im(G
ωk1

+ωM
ωk )

(b−
2

+ b0n↓k
)}]

s⊥k1
, (5.5b)

where n↑k and n↓k are the spin-up and spin-down occupations of the states with wave
vector k and s⊥k is the corresponding perpendicular spin component with respect to
the impurity magnetization. The precession frequency of the carrier spins in the mean

field due to the impurity magnetization is ωM = JsdNMn

~V |〈S〉|. The factors b‖ = 〈S‖2〉,
b0 = 1

2
〈S‖〉 and b± = 〈S⊥2〉± 1

2
〈S‖〉 depend only on the impurity spin state. S‖ = Ŝ · 〈Ŝ〉|〈Ŝ〉|

is the component of the impurity spin operator parallel to the direction of its average

value and 〈S⊥2〉 = 1
2

(
〈S2〉 − 〈S‖2〉

)
. The memory function G

ωk1
ωk is defined by

G
ωk1
ωk =

J2
sdNMn

~2V 2

0∫

−t

dt′ ei(ωk−ωk1
)t′ (5.6)
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5. Spin transfer dynamics for non-zero impurity magnetization

and has to be regarded as an integral operator where the terms on the right of G
ωk1
ωk in

Eqs. (5.5) have to be evaluated at times t′. When this finite memory is kept, Eqs. (5.5)

are equivalent to Eqs. (5.2) without the terms bl2n2k2
l1n1k1

III
. As described earlier, the Markov

limit is easily established by neglecting the memory, i.e., evaluating the terms appearing
after G

ωk1
ωk at t and taking the limit t → ∞ in the lower limit of the memory integral.

Then, one obtains:

G
ωk1
ωk ≈

J2
sdNMn

~2V 2

{
πδ(ωk − ωk1)− P

i

ωk − ωk1

}
, (5.7)

where P denotes the principal value. In the Markov limit, Eqs. (5.5) become effective
rate equations. In addition, the imaginary part of the memory function acts like an
effective magnetic field about which the carrier spins precess. This correlation-induced
frequency renormalization is discussed in more detail later in the context of [Pub7].

It is instructive to compare the effective equations (5.5) in the Markov limit with rate
equations based on Fermi’s golden rule. The latter is concerned with transitions between
energy eigenstates and, thus, is only applicable for the transitions between spin-up and
spin-down states. Fermi’s golden rule does not make any prediction for the perpendicular
spin component similar to Eq. (5.5b). However, one can easily check that in the case of
zero impurity magnetization, Eqs. (5.5a) and (5.5b) coincide.

Indeed, Eq. (5.5a) for the spin-up and spin-down occupations predicts the same carrier-
impurity spin transfer rate as Fermi’s golden rule, if the splitting of the bands due to the
mean-field contribution of Hsd is taken into account for the basis states between which the
golden-rule transitions are formulated. This splitting enters in the effective equations via

the precession-type motion of the correlations described by the source terms bl2n2k2
l1n1k1

II.1
.

Thus, there is a correspondence between the precession of the correlations and energetic
shifts of the energy eigenstates. This finding leads us to the important conclusion that

the classification of the source terms bl2n2k2
l1n1k1

X
in terms of orders of Jsd in [Pub1] does not

reliably predict the relative importance of the source terms for the spin dynamics, since
this perturbative treatment does not capture the energetic shifts due to the mean-field
contribution of Hsd correctly.

With this insight, the argument that the bl2n2k2
l1n1k1

III
can be neglected because they are

of higher order in the coupling constant seems no longer valid. However, there is also

another argument for the insignificance of bl2n2k2
l1n1k1

III
: These terms describe the effects

of correlations on other correlations with different wave vectors. Since the correlations
oscillate fast with the frequency depending on the wave vector, the different contributions

from the different correlations in general interfere destructively, so that bl2n2k2
l1n1k1

III
will

usually be very small. Nevertheless, these arguments are only qualitative and the fact

that bl2n2k2
l1n1k1

III
are indeed of minor importance is best proven by comparing numerical

simulations of the quantum kinetic equations with and without accounting for bl2n2k2
l1n1k1

III

as was done in [Pub1].

Note that the source term bl2n2k2
l1n1k1

II.2
, which describes a precession of the correlations

about the total carrier spin, is not as important as bl2n2k2
l1n1k1

II.1
, since the number of carriers

is much smaller than the number of impurities. Furthermore, the quadratic term in the

electron variables n
↑/↓
k1
n
↓/↑
k , which originates from the source terms bl2n2k2

l1n1k1

I.2
in Eqs. (5.2),
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automatically gives the correct Pauli-blocking behavior, which otherwise has to be put
in by hand in golden-rule-type rate equations [28].

Furthermore, it is noteworthy that the energetic shift between spin-up and spin-down
states enforces a separate treatment of the spin-up/spin-down occupations and the per-
pendicular spin components. Thus, the effective equations (5.5) cannot be written in the
form of a single Landau-Lifshitz-Gilbert-like equation similar to Eq. (5.3). Nevertheless,
the Landau-Lifshitz-Gilbert-like equations can still be useful as an intuitive approxi-
mate picture for complicated cases where, e.g., the carrier and impurity spins are canted
with respect to each other, because Eq. (5.3) directly follows from Eqs. (5.5) if the spin
splitting ωM in the memory function are neglected.

To summarize, deriving effective equations of motion (5.5) not only allows a drastic
speed-up of the numerics and provides rates for the transfer of parallel as well as per-
pendicular carrier spins to the magnetic impurities, but also sheds light on the meaning
of the different source terms in the quantum kinetic description. In particular, we find
that the precession-type motion of the correlations corresponds to the energetic shifts
of the single-particle states due to the mean-field contribution of the s-d interaction.
Furthermore, we see that perturbative arguments with respect to the coupling constant
Jsd can give a wrong impression and have to be handled with care. While there are some
similarities between the effective equations and the Landau-Lifshitz-Gilbert equation, we
find also significant differences originating from the quantum mechanical nature of the
spins and the energetic shifts between spin-up and spin-down states.
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6. Spin dynamics in DMS with
spin-orbit coupling and external
fields

6.1. Interplay between s-d and spin orbit interactions

As described in chapter 2, the spin dynamics in non-magnetic semiconductors is often
dominated by the D’yakonov-Perel’ mechanism. This process requires a k-dependent ef-
fective magnetic field Ωk for the carrier spins which originates from spin-orbit coupling.
Here, we discuss the interplay between such spin-orbit coupling effects and the s-d ex-
change interaction for the spin dynamics in DMS, which is presented in [Pub3], [Pub4]
and [Pub5].

For typical DMS studied in the literature [21] with a Mn concentration of ∼ 0.1−10%,
the s-d interaction leads in general to a much faster spin dynamics than the dephasing in
the effective field. However, in [Pub3] we show how a regime can be reached where both
contributions are of comparable strength. In bulk systems with the Dresselhaus fields,
the effective field is proportional to k3. Thus, the effects of the spin-orbit interaction are
more pronounced when excitation schemes with laser frequencies larger than the band
gap are used. This leads to the excitation of carriers with large kinetic energies and wave
vectors. Another approach for enhancing the effects of the spin-orbit interaction is using
DMS materials with small band gaps. This is because the effective fields result from
mixing between conduction and valence band states, which is inversely proportional to
the band gap. In CdTe, the band gap can be very efficiently controlled by doping with
Hg [78].

The level of theory used for the calculations in [Pub3] and [Pub4] is that of the ef-
fective rate equations (5.5) in the Markov limit derived in [Pub2], where a k-dependent
precession of the carrier spins about the field Ωk is added to the equations:

∂

∂t

∣∣
SO

sk = Ωk × sk, (6.1)

where ∂
∂t

∣∣
SO

denotes to contribution to the time evolution of the spins due to the spin-
orbit coupling effects.

Figure 6.1 shows the main results of [Pub3] for the situation of a bulk Zn0.997Mn0.003Se
DMS with a Dresselhaus field and a Hg0.997−yCdyMn0.003Te quantum well with a Rashba
field, where y is tuned so that the Rashba coefficient has a value of αR = 4.87 meVnm.
The initial average impurity spin is set to 0.1~ and the initial carrier distribution is a
Gaussian peak centered at 10 meV above the band gap with a standard deviation of 3
meV. The initial carrier spins are polarized 45◦ with respect to the impurity magneti-
zation. For the quantum well, the growth direction coincides with the direction of the
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Figure 6.1.: After [Pub3]: Interplay of s-d and spin-orbit interactions in the dynamics of the modulus
of the parallel and perpendicular carrier spin components in a bulk (3D) DMS with a Dresselhaus field
and a quantum well (2D) with a Rashba field. Key: sd: including the s-d interaction, D: including the
Dresselhaus field, R: including the Rashba field, MF: mean-field approximation of the s-d interaction.

impurity magnetization.

It can be seen in Fig. 6.1 that the dynamics including the s-d interaction and spin-
orbit effects (red solid lines) is very different from the dephasing in the effective fields
alone (blue dotted lines). The s-d interaction alone (green dashed lines), on the other
hand, reproduces well the tendencies in the decay in most of the calculations where both
interactions are present. Only the perpendicular spin component in the three-dimensional
case decays on a time scale defined by the dephasing in the k-dependent field rather than
the s-d spin transfer rate.

In all situations presented in Fig. 6.1, one can find pronounced oscillations with ap-
proximately the mean-field precession frequency of the carrier spins superimposed on the
decay in the simulations accounting for both interactions, which is not reproduced when
only the s-d interaction is considered. These oscillations can be explained by considering
the total effective magnetic field Ω̃k = Ωk + ωM composed of the k-dependent field
Ωk and the mean-field carrier spin precession frequency ωM = JsdNMn

~ 〈S〉. Thus, in the

mean-field description, an electron spin precesses about the total effective field Ω̃k. This
mixes the contributions to the carrier spin parallel and perpendicular to the impurity
magnetization and thereby introduces the oscillations also in the parallel component. For
the perpendicular electron spin component, the mean field due to the impurity spins ωM
notably reduces the dephasing caused by the k-dependent fields, which can be seen by
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6.2. Precession of correlations in a k-dependent effective field

comparing the mean-field calculations (pink dotted lines) with the simulation considering
only the spin-orbit interaction (blue dotted lines).

In [Pub4], we investigate in more detail the spin dynamics caused by the s-d and the
Rashba interaction and study in particular the dependence of the time evolution of the
spin on the excess kinetic energy Ec, i.e., the center of the peak in the initial spectral
carrier distribution measured from the band edge. In this investigation we find that,
while the s-d interaction predicts an exponential decay of the carrier spin in the Markov
limit, the dephasing of carrier spins in the Rashba field leads to a time evolution of the
spins that can be fitted well by an oscillation with a Gaussian envelope. Thus, whether
the spin dynamics has a Gaussian or an exponential shape can help to distinguish the
regime of dephasing from the regime of spin transfer in the combined dynamics.

6.2. Precession of correlations in a k-dependent
effective field

The effective magnetic field Ωk depends explicitly not only on the modulus k = |k| of the
wave vector, but also on its angle ϕk. In particular, it follows from Kramers degeneracy
that Ω−k=−Ωk so that averaging over the angle ϕk would predict no effect on the spin
dynamics at all. Thus, the averaging over the angle in k-space, which was employed
before to enable a reduction of the space to be discretized from 4 to 2 dimensions for
quantum wells and from 6 to 2 in bulk systems, is no longer acceptable. This makes it
hard to use the full quantum kinetic theory for extensive studies of the interplay between
spin-orbit effects and the s-d interaction with a large number of parameters.

In the studies of the interplay between the s-d and the spin-orbit interaction in [Pub3]
and [Pub4], the precession of the carrier spins in the k-dependent effective field was added
by hand to the dynamics described by the effective equations (5.5), which were derived
in [Pub2] for the case without a k-dependent field. Thus, effects like the precession of
the correlations in the k-dependent effective field were not taken into account.

In [Pub5], the derivation of effective equations in the spirit of Eqs. (5.5) is gener-
alized in several aspects. Not only do we take into account the effects of a possibly
k-dependent field on the precession dynamics of the carrier-impurity correlations, but
we also consider an external magnetic field via the Zeeman terms for the carrier and im-

purity spins. If the impurity Zeeman energy is accounted for, the source term bl2n2k2
l1n1k1

II.2

is no longer negligible. Thus, the generalization complicates the theoretical descrip-
tion significantly. Most importantly, since the correlations possess two k-indices, two
different carrier spin precession frequencies enter in the dynamics for the correlations
Qαk2
lk1

=
∑

l1,l2,n1,n2

sαl1l2S
l
n1n2

Ql2n2k2
l1n1k1

. In [Pub5], we obtain the equation of motion for the

correlations

∂

∂t
Qαk2
lk1

=− i(ωk2 − ωk1)Q
αk2
lk1

+
∑

γ

(Ak1 + A∗k2
)αγQ

γk2

lk1
+
∑

i,j

εijlω
i
MnQ

αk2
jk1

+ bαk2
lk1

I
,

(6.2)

where bαk2
lk1

I
=

∑
l1,l2,n1,n2

sαl1l2S
l
n1n2

bl2n2k2
l1n1k1

I
. Note that in the above definition of the cor-
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6. Spin dynamics in DMS with spin-orbit coupling and external fields

relations the Latin indices run from 1 to 3 while the Greek indices include also the 0.
Furthermore we define s0

l1l2
= δl1l2 . The 4×4 matrices Ak1 are defined by

Ak1 =

(
0

(
iΩ′k1

)T
(
i
4
Ω′k1

)
1
2

[
Ω′k1

]
×

)
. (6.3)

([
Ω′k1

]
×
)
ij

=
∑
l

εijl
(
Ω′k1

)l
is the 3×3 cross product matrix. The total mean-field preces-

sion axes and frequencies are

ωe =
geµB
~

B +
JsdNMn

~V
〈S〉 (6.4a)

Ω′k =Ωk + ωe (6.4b)

ωMn =
gMnµB

~
B +

Jsd
~V

∑

k

sk. (6.4c)

In order to apply the same steps as in [Pub2] to derive an integral expression for
the correlations, the homogeneous part of Eq. (6.2) has to be solved. Determining the

solution including the inhomogeneities bαk2
lk1

I
requires the inversion of the homogeneous

solution. This step can be done straightforwardly only if one has to deal with simple
precessions where the time evolution can be described by rotation matrices. The pro-
cedure is more complicated in the present case where the precession-type motion of the
correlations in the k-dependent field Ω′k is described by the matrices Ak1 .

Nevertheless, we show in [Pub5] that it is possible to analytically calculate the matrix
exponential exp(Ak1t) and thereby its inverse exp(−Ak1t). This enables us to analyti-
cally solve the homogeneous part of Eq. (6.2) and to obtain integral expressions for the
correlations that can be integrated analytically in the Markov limit.

The results of the numerical simulations of the spin dynamics on this level of theory are
shown in [Pub5] to coincide with the predictions of the theory used in [Pub3] without
taking into account the precession of the correlations about the k-dependent effective
field Ωk. In fact, we were not able to find any set of realistic parameters and excitation
conditions for which a visible difference in the spin dynamics between the two levels of
theory is observable. This finding justifies retrospectively the application of the theory in
[Pub3] and [Pub4] for the discussion of the interplay between the s-d exchange interaction
and the spin-orbit coupling.

6.3. Magnetic-field dependence of the spin transfer rates

The generalization of the derivation of Markovian equations from the quantum kinetic
theory in [Pub5] allows us to fully include the Zeeman energies of carriers and impurities
in the derivation of Markovian expressions for the parallel and perpendicular spin transfer
rates in the presence of an external magnetic field B if spin-orbit fields are negligible.

In this case, the central difference between the theory of [Pub2] and [Pub5] is that the
Zeeman terms are accounted for in the latter which leads to a non-negligible precession of
the correlations around the impurity spin precession axis ωMn originating from the term

corresponding to bl2n2k2
l1n1k1

II.2
in the quantum kinetic equations (5.2). As a result, we obtain
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Figure 6.2.: Adapted from [Pub5]: Magnetic-field dependence of the parallel (1/T ‖) and perpendicular
(1/T⊥) spin transfer rates normalized to the Fermi’s golden rule value at B = 0. The Markovian results
derived from the full quantum kinetic theory in [Pub5] are represented by the red and blue lines. The
results of the projection operator formalism of Ref. [28] are depicted as pluses and crosses. Calculations
neglecting the impurity spin splitting ~ωMn, as is done, e.g., in Ref. [26], are show as orange and cyan
triangles. The level of theory in Ref. [27] corresponds to disregarding the impurity spin splitting as well
as the carrier spin splitting. The corresponding results are depicted as the orange and cyan lines. The
calculations were made for an 8 nm wide CdTe-based DMS quantum well with doping concentration x
and a thermal carrier distribution with temperature T = 4 K.

in the Markovian limit the same equations as Eqs. (5.5), except that the band splitting

~ωM in the memory functions has to be replaced by ~ωe − ~ω‖Mn, where ω
‖
Mn = ωMn · ωeωe .

The reason for this is that Hsd conserves the spin and therefore a spin-flip of a carrier
is necessarily accompanied with a flop of an impurity spin in the opposite direction. In
the presence of an external magnetic field B, this flop of the impurity spin results in
an energy penalty due to the impurity Zeeman term. Thus, in order to conserve the
spin as well as the total single-particle energies, the difference in kinetic energies of the
states involved in a spin-flip scattering process has to compensate the change of the total
magnetic energies of carriers and impurities ~ωe − ~ω‖Mn.

Interestingly, this correction of the kinetic energy difference due to the impurity Zee-
man energy is often disregarded in the literature [26], even if it is, in principle, accessible
by a golden-rule approach, at least for the parallel spin transfer. In Ref. [27], also the
conduction band spin splitting ~ωe has been neglected. In Ref. [28], a projection oper-
ator method was used to investigate the magnetic-field dependence of the spin transfer
rates in DMS. The equations obtained there also contain kinetic energy differences of
~ωe + ~ω‖Mn, which are not compatible with the conservation of the single-particle en-
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6. Spin dynamics in DMS with spin-orbit coupling and external fields

ergies. We attribute this to an error in Ref. [28], where only the positive frequency
component of the carrier spin precession is accounted for and the negative frequency
component is disregarded.

The results for the magnetic-field dependence of the spin transfer rates are shown
in Fig. 6.2 for a Cd1xMnxTe quantum well with doping concentration x = 1.7% and
x = 0.17%, respectively. Beside the spin transfer rates obtained in the Markovian limit
from the full quantum kinetic theory, also the rates obtained by the projection operator
formalism of Ref. [28] are presented in Fig. 6.2 as well as the rates calculated neglecting
either only the impurity spin splitting ~ωMn or the impurity and the carrier spin splittings
~ωMn and ~ωe, which corresponds to the levels of theory in Refs. [26] and [27], respectively.

It can be seen that neglecting the spin splittings can lead to quantitatively and quali-
tatively different behavior of the rates with increasing magnetic fields. The most striking
differences become obvious in the parallel spin transfer rate for large magnetic fields and
low doping concentrations.

Another aspect in which our theory is generalized in [Pub5] is that we do not regard
the DMS quantum well as an ideal 2D system, but as a quasi-two-dimensional system
with a non-constant envelope of the carrier wave function along the growth direction

ψ(z), which enhances the spin transfer rate by a factor of I = d
∫ d

2

− d
2

dz|ψ(z)|4. This

was also found in studies using other approaches to obtain the spin transfer rates, such
as in Refs. [28, 79] and [21]. Beside the enhancement of the rates, taking into account
the z-dependence of the correlations also allows for a connection of our theory to the
description of collective carrier-impurity precession modes discussed in the literature
[80–84]. There, the carrier-impurity correlations are neglected and the spin transfer is
modeled by a phenomenological rate. With the theory described in [Pub5], we are able
to extract an explicit expression for the spin transfer rate in the situation where the
collective precession modes are relevant.

To summarize, in [Pub3], [Pub4] and [Pub5], we derive effective equations for the
investigation of the interplay between the spin-orbit coupling and the s-d interaction in
the spin dynamics in DMS and we study numerically situations where both interactions
compete with equal strength. Our theory contains many features such as an enhancement
of the rate due to the form of the carrier wave function envelope and it can be used to
find expressions for the carrier-impurity spin transfer rates in the presence of an external
magnetic field. In contrast to most approaches found in the literature, our description
based on the Markov limit of a full quantum kinetic theory conserves the total single-
particle energy and allows not only a derivation of the transfer rate for the parallel
carrier spin component, but also for the perpendicular component of the carrier spin
with respect to the external magnetic field, which is not accessible by Fermi’s golden rule
but is relevant for the description of experiments in Voigt geometry.
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7. Quantum kinetic features and
correlation effects

7.1. Proximity to the band edge as origin of
non-Markovian effects

Already in the first numerical simulations of Thurn’s quantum kinetic equations [23]
genuine quantum kinetic features were found in the spin dynamics in DMS quantum
wells, which deviates visibly from an exponential decay. In particular, a non-monotonic
time evolution of the total carrier spin has been identified as a characteristic signature for
quantum kinetic effects. However, Ref. [23] does not provide a comprehensive explanation
of why these overshoots happen and what exactly the criteria for the appearance of
these effects are. The idea behind [Pub6] is to shed light on the origin of the quantum
kinetic effects by focusing on the smallest set of equations which is able to reproduce the
overshoots. This way, we can extract the mathematical essence of the quantum kinetic
effects.

The starting point are the effective equations (5.5) in the case of zero magnetic field
and impurity magnetization and low carrier concentration, so that Pauli-blocking effects
can be neglected. Taking the finite memory into account, i.e., interpreting the memory
function G

ωk1
ωk as an integral operator, we find:

∂

∂t
sω1(t) = −η

π

t∫

0

dt′
ωBZ∫

0

dω cos[(ω1 − ω)(t− t′)]
[
sω1(t

′) +
1

4
(sω(t′)− sω1(t

′))
]
, (7.1)

where η = 35
12

J2
sdm

∗NMn

~3V d is the spin transfer rate obtained in the Markov limit. Here, we
have performed the quasi-continuous limit and replaced the sum over the k-states in the
first Brillouin zone by an integral over the kinetic energy ~ω = ~2k2

2m∗ , where the finite
volume of the Brillouin zone translates into a cut-off frequency ωBZ . Furthermore, we
focus on the isotropic case in which the angle ϕk of the wave vector k is not important
and the carrier spins sω can be labeled by the frequency ω instead of the wave vector k.

We further assume that the spectral spin density sω is a smooth function of ω and,
as the Markov limit suggests, scattering only occurs between nearby states with similar
energies ~ω. This motivates us to simplify Eq. (7.1) even further by neglecting the
term 1

4

(
sω(t′)− sω1(t

′)
)
. Although there is no quantitative a priori justification for this

approximation, we find that the numerical solution of the integro-differential equation
(7.1) and the full quantum kinetic equation produce very similar results for the time
evolution of the total spin.

When the scattering to states with different values of ω is neglected, Eq. (7.1) becomes
an integro-differential equation with respect to the time, where ω1 only plays the role
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7. Quantum kinetic features and correlation effects

of a parameter instead of introducing a second dimension. In this approximation, the
ω-integral can be evaluated analytically. We obtain

∂

∂t
sω1(t) = −η

π

t∫

0

dt′
[

sin[(ωBZ − ω1)(t′ − t)]
t′ − t +

sin[ω1(t′ − t)]
t′ − t

]
sω1(t

′). (7.2)

The energy scale defined by the cut-off ωBZ is much larger than any other energy con-
sidered here. Therefore, the cut-off can be considered as infinite, which enables the
simplification

sin[(ωBZ − ω1)(t′ − t)]
t′ − t → πδ(t− t′) for ωBZ →∞. (7.3)

Note that the upper limit of the time integral in Eq. (7.2) coincides with the zero in the
argument of the δ-function, so that only half of the δ-function contributes to the time
integral.

In the limit ωBZ →∞, the only two time scales of the problem are the Markovian rate
η and the inverse frequency ω−1

1 . Thus, we can rewrite the problem in the form of an
integro-differential equation with a single dimensionless parameter ξ := ω1

η
, if the time is

also rescaled by τ := ηt:

∂

∂τ
Φξ(τ) = −1

2
Φξ(τ)− 1

π

τ∫

0

dτ ′
sin[ξ(τ ′ − τ)]

τ ′ − τ Φξ(τ
′). (7.4)

Since the dimensionless equation (7.4) is linear in Φξ, we can, without loss of generality,
set Φξ(0) = 1. This initial condition together with Eq. (7.4) defines the set of functions
Φξ(τ) which are at the core of the mathematical description of the quantum kinetic
effects.

A first step towards the evaluation of these functions is a Taylor-expansion of Φξ(τ)

at τ = 0. The i-th derivatives Φ
(i)
ξ at τ = 0 can be related to each other using the

integro-differential equation (7.4), which yields the recursion relation

Φ
(i)
ξ = −1

2
Φ

(i−1)
ξ − 1

π

∑

0≤2m≤i−2

(−1)m

2m+ 1
ξ(2m+1)Φ

(i−2−2m)
ξ . (7.5)

In order to see that the functions Φξ are indeed able to reproduce the physical effect of
the quantum kinetic overshoots and to confirm the validity of the recursion relation (7.5),
we compare the quantum kinetic calculations for the situation studied in Ref. [23] with

the results obtained by calculating the derivatives Φ
(i)
ξ to high orders (up to 300) using

the recursion relation (7.5) and evaluating Φξ(τ) by its Taylor expansion. The latter
method is similar to the so-called differential transform method (DTM) [85].

Figure 7.1(a) shows the direct comparison of the results of the spin dynamics according
to the quantum kinetic theory and the differential transform method. One can see that
the DTM method perfectly reproduces the results of the quantum kinetic theory as far as
the time evolution of the total spin is concerned. The spectral distribution of the spins,
however, is slightly different in the quantum kinetic theory [Fig. 7.1(d)] and the DTM
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Figure 7.1.: From [Pub6]: (a): Comparison of the spin dynamics simulated by the full quantum
kinetic theory (QKT) and the DTM method of [Pub6] for the case of the Zn0.93Mn0.07Se quantum well
studied in Ref. [23]. (b): Spin dynamics of electrons with a defined value of the kinetic energy ~ω,
which is expressed in terms of the parameter ξ = ω

η with Markovian rate η. (c)+(d): Time-resolved

spectral distribution of spins according to the quantum kinetic theory (d) and the differential transform
method (c).

[Fig. 7.1(c)] due to the scattering to different states in the full quantum kinetic theory
that is not included in the DTM calculation, because, there, the term proportional to
1
4
(sω(t′)− sω1(t

′)) in Eq. (7.1) is neglected.
Fig. 7.1(b) shows the results of the DTM calculations for electrons with defined ki-

netic energies and therefore fixed values of ξ, which corresponds to the functions Φξ

(
t
η

)
.

One can clearly observe that for large values of ξ the function Φξ

(
τ) approximates the

Markovian result, which is an exponential decay with the rate η. The reason for this
is that, for large values of the kinetic energy ω1 � η, the limit of ω1 → ∞ leads to a
second δ-function in Eq. (7.2), similar to that obtained in the limit ωBZ → ∞ for the
cut-off frequency. In the opposite limit ω1 → 0, the second term in Eq. (7.4) vanishes
and the solution of Eq. (7.4) is simply an exponential decay with half of the rate η. In
the intermediate regime, oscillations are superimposed on the decay. For a carrier distri-
bution with a finite width, these oscillations partially interfere destructively, producing
the overshoot in the time evolution of the total spin in Fig. 7.1(a).

Now, criteria for the appearance of quantum kinetic overshoots can be formulated:
Deviations from the Markovian behavior require an excitation of carriers very close to
the band edge, where the energy scale ~η is defined by the Markovian rate. We can now
also understand why the overshoots are only present in two and one dimensions, since in
three dimensions the density of states goes to zero for ω → 0 so that there are only very
few carrier states in the region of interest.

7.2. Mathematical considerations regarding finite
memory effects

In this section, we point out some interesting aspects from the mathematical physics
point of view, which are captured by the integro-differential equation (7.2) but are neither
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discussed in [Pub6] due to length restrictions of the proceedings format, nor published
elsewhere, since these aspects are rather formal and only qualitative conclusions are
reached. Nevertheless we believe that some general insights can be gained from these
considerations.

First, recall that applying Eq. (7.3) also for ω1 → ∞ yields the Markovian result,
which is equivalent to Fermi’s golden rule. In this sense, Eq. (7.2) can be used as a
model for studying deviations from the Markovian behavior in more general settings, not
only for the spin transfer in DMS. In particular, one can ask whether it is possible to
derive a general systematic approximation scheme for solutions of equations similar to
Eq. (7.2), which to first order gives the Markovian behavior predicted by Fermi’s golden
rule but provides corrections, if higher orders are taken into account. Such a systematic
approximation would be able to describe situations with short but finite memories.

The question of whether the memory in the situation considered in [Pub6] is short
or long is, in fact, quite tricky. Usually, a memory is called short when it decays expo-
nentially. An algebraic decay of the form 1

∆tn
is typically considered to be long. Thus,

the memory kernel in Eq. (7.2) formally belongs to the latter case. However, because
oscillations with frequency ω1 are superimposed on the decay of the memory, quantities
averaged over an interval of values for ω1 with a finite width are subject to dephasing.
This is also the reason why sin(ωt)

t
→ πδ(t) for ω → ∞, which is the shortest possible

kind of memory despite 1
t

being long-range. Thus, in this situation the decay is formally
algebraic suggesting a long memory, but average quantities effectively experience a de-
phasing and therefore a short memory. Such a dephasing can also affect the microscopic,
non-averaged quantities, if there is some kind of cross-talk between the sω for different
values of ω. In the situation considered here, the terms 1

4
(sω − sω1) in Eq. (7.1) mediate

such a cross-talk. Also phonons and non-magnetic impurity scattering provide sources
for an effective averaging of the microscopic quantities. However, the shortening of the
memory for the microscopic quantities is hard to capture quantitatively.

Despite the effective shortening of the memory due to dephasing, the fact that the
memory is formally long leads to complications regarding approximate solutions of Eq.
(7.2). For example, one could expect due to the effectively short memory that only
the values of sω(t′) around t′ ≈ t matter in the memory integral in Eq. (7.2) and a
Taylor-expansion of sω(t′) about t′ ≈ t is helpful. However, note that in

t∫

0

dt′
sin[ω1(t′ − t)]

t′ − t
(
sω1(t) + s(1)

ω1

∣∣
t
(t′ − t) +

1

2
s(2)
ω1

∣∣
t
(t′ − t)2 + . . .

)
, (7.6)

only the first term, which gives the Markovian result, has a converging asymptotic behav-
ior at t → ∞, while the second term results in an undamped oscillation and the higher
order terms diverge. Thus, one idea to solve this problem is to search for an infinite
subset of terms in this expansion that can be summed up analytically. This was the
original motivation for employing the differential transform method in [Pub6]. With the
recursion relation (7.5), it is possible to identify contributions to the solutions sω1(t) of
the form of sine and cosine integrals and higher integrals thereof. The recursion relation
also allows us to provide analytic results for the solutions Φξ(τ) of Eq. (7.4) up to an
arbitrary order in ξ. The results up to second order are shown as the black crosses in
Fig. 7.1(b) for a value of ξ = 0.5. However, we were not able to extract a subset of terms
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which reproduce significant parts of the dynamics found in the full numerical calculations
and also show the correct asymptotics at t→∞.

Another approach for the solution of Eq. (7.4) is a Laplace transformation, in partic-
ular, because Eq. (7.4) is linear in Φξ(τ). However, the Laplace transform of Φξ(τ) has
a complicated form with a complex logarithm in the denominator. We did not find any
reasonable approximation that enables an analytic inversion of the Laplace transforma-
tion.

Note also that studying Eq. (7.2) enables us to get some fundamental insights into
how the exponential solutions to rate equations, e.g., from Fermi’s golden rule, can be
reconciled with the microscopic time-reversibility of the Schrödinger equation. The full
quantum kinetic theory is time-reversible, which can be seen from the fact that the
dynamics starts quadratically in time [22]. However, the Markov limit predicts an expo-
nential decay, which starts linearly in time and thereby destroys the time-reversibility.
Here, we can pinpoint this loss of time-reversibility to the assumption of ωBZ → ∞,
since before this step, the solution to the integro-differential equation starts quadrati-
cally in time and after it, a non-zero value of the first derivative Φ

(1)
ξ is obtained. To

further understand this transition, we focus on the simplest case ω1 = 0. Then Eq. (7.2)
becomes

∂

∂t
s0(t) = −η

π

t∫

0

dt′
sin[(ωBZ)(t′ − t)]

t′ − t s0(t′). (7.7)

Assuming that ωBZ is very large, but finite, and that the memory is short enough so
that s0(t′) ≈ s0(t) is a good approximation, we find

∂

∂t
s0(t) ≈− η

2

[ 2

π
Si(ωBZt)

]
s0(t), (7.8a)

Si(x) =

x∫

0

dx′
sin(x′)

x′
, (7.8b)

with the sine integral Si(x), which is depicted in Fig. 7.2. There, one can see that the
sine integral starts linearly in x, reaches a maximum at x = π and starts to oscillate with
a decaying amplitude about an asymptotic value of π

2
. For the solution of Eq. (7.8a) this

means that, on a coarse-grained time scale t̄� 1
ωBZ

where the sine integral is essentially
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constant with Si(x) ≈ π
2
, one finds for the coarse-grained time evolution of the spin:

∂

∂t
s̄0(t̄) ≈− η

2
s̄0(t̄) =⇒ s̄0(t̄) = s̄0(0)e−

η
2
t̄ = s̄0(0)

(
1− η

2
t̄
)

+O(t̄2), (7.9a)

which starts linearly in time, whereas a formal Taylor expansion of Eq. (7.7) gives

∂

∂t
s0(t) ≈− η

2

(
t+O(t2)

)
s0(t) =⇒ s0(t) = s0(0) +O(t2), (7.9b)

which remains quadratic in time. Thus, the contradiction between the time-reversibility
in the microscopic picture and the exponential behavior predicted by rate equations is
resolved by the fact that the latter describe an approximate behavior on a coarse-grained
time scale, whereas, actually, oscillations with frequencies corresponding to the cut-off
ωBZ are superimposed on the decay in the microscopic picture.

7.3. Carrier-impurity correlation effects beyond spin-flip
scattering

Historically, one of the first investigations of solid state systems where magnetic impu-
rities play a key role were unintentionally magnetically doped metals. Already in the
1930s, measurements of the low-temperature conductivity in gold wires showed that the
resistivity first decreases with decreasing temperature, but then it reaches a minimum
and starts to increase logarithmically at even lower temperatures [86]. It was Kondo
who explained this logarithmic divergence in the resistivity with the presence of mag-
netic iron impurities in the gold wire [55], which is therefore called the Kondo effect.
This work, which uses a third-order perturbative treatment of the Kondo Hamiltonian
Hsd for the calculation of transition probabilities, appeared in the 1960s. Experiments
at even lower temperatures T show that the resistivity in these Kondo systems actually
reaches a constant value at T → 0 [87]. A satisfactory theoretical explanation of this
very-low-temperature regime was missing for quite some time. This was known as the
Kondo problem. Today, the Kondo problem is generally considered to be solved by a
non-perturbative description of strongly correlated many-particle states [59]: At very
low temperatures, a few of the quasi-free carriers in the metal form singlet spin states
with the magnetic impurities. This way, the magnetic interaction is effectively screened
for all the other quasi-free carriers. The singlet formation implies that the ground state
of this system is a state with strong correlations between the quasi-free carriers and the
magnetic impurities.

In the context of DMS, the Kondo-type correlations are rarely discussed. The reason
for this is that the number of free carriers in metals is much higher than in semiconduc-
tors. While for the magnetically doped metals the number of carriers is much larger than
the number of magnetic impurities Ne � NMn, the DMS are typically in the opposite
limit Ne � NMn. For this reason, it has been argued [88] that the Kondo physics is
of minor importance for the spin phyics in DMS. On the other hand, a perturbative
many-body description of the spin dynamics in DMS based on Green’s functions [74]
found Kondo-like logarithmic divergences, which makes this treatment ill-defined but
implies that carrier-impurity correlations can indeed be significant in DMS. Moreover, it
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was found that the carrier-impurity correlations can have a strong impact on, e.g., spin
stiffness and Gilbert damping in ferromagnetic Ga1−xMnxAs [73].

In this section, we discuss the importance of carrier-impurity correlations for the spin
physics in DMS as presented in [Pub7]. Beside the spin transfer between carriers and
impurities in spin-flip scattering processes mediated by the correlations, the correlations
renormalize the carrier spin precession frequency with respect to its mean-field value.
Furthermore, the formation of carrier-impurity correlations leads to a build-up of carrier-
impurity correlation energy, for which we derive analytic expressions in the Markovian
approximation in [Pub7]. For both quantities, we find Kondo-like logarithmic divergences
which are, however, integrable and do not lead to problems in the theory like in other
approaches [74].

The starting point of this discussion is the effective equation for the carrier spin com-
ponent perpendicular to the impurity magnetization derived in Ref. [Pub2]. For the sake
of clarity, we consider the case of low carrier densities, where only terms linear in the
electron variables s⊥k1

and n
↑/↓
k1

are important. Then, Eq. (5.5b) becomes

∂

∂t
s⊥k1

=−
∑

k

[
Re(G

ωk1
−ωM

ωk )
b+

2
s⊥k1

+ Re(G
ωk1

+ωM
ωk )

b−

2
s⊥k1

+ Re(G
ωk1
ωk )

b‖

2

(
s⊥k + s⊥k1

)]

+

[
ωM −

∑

k

{
Im(G

ωk1
−ωM

ωk )
b+

2
− Im(G

ωk1
+ωM

ωk )
b−

2

}]( ωM
|ωM |

× s⊥k1

)
, (7.10)

where ωM = JsdNMn

~V 〈S〉. While the real part of the memory function describes the decay
of the perpendicular carrier spin caused by spin transfer processes between carriers and
impurities, the imaginary part renormalizes the carrier spin precession frequency. In the
Markov limit, one finds

Im
(
G
ωk1
ωk

)
=
J2
sdNMn

~2V 2

0∫

−t

dt′ sin[(ωk − ωk1)t
′] ≈ −J

2
sdNMn

~2V 2
P 1

ωk − ωk1

. (7.11)

In the quasi-continuous limit, the k-sum in Eq. (7.10) can be replaced by an integral
over the density of states D(ω)

∑

k

. . . −→
ωBZ∫

0

dω D(ω) . . . , (7.12)

with a cut-off frequency ωBZ chosen so that ~ωBZ corresponds to the width of the con-
duction band.

In two dimensions, the spectral density of states D(ω) = Am∗
2π~ Θ(ω) is step-like, yielding

a renormalization ∆ω2D(k1) of the spin precession frequency for an electron with wave

51



7. Quantum kinetic features and correlation effects

vector k1

∆ω2D(k1) =
J2
sdNMn

~2V 2

Am∗

2π~

[
ln
∣∣∣ωBZ − (ωk1 − ωM)

ωk1 − ωM

∣∣∣
(

1

2
〈S⊥2〉+

1

4
〈S〉 · ωM|ωM |

)

− ln
∣∣∣ωBZ − (ωk1 + ωM)

ωk1 + ωM

∣∣∣
(

1

2
〈S⊥2〉 − 1

4
〈S〉 · ωM|ωM |

)]
. (7.13)

Thus, the Markovian expression for the renormalization of the spin precession fre-
quency of an electron with wave vector k1 diverges logarithmically for ωk1 → ωM and
ωBZ → ∞. If, however, a non-singular carrier distribution of carriers is considered, the
precession frequency of the total spin is always finite, since the logarithmic divergence
is integrable. Furthermore, the divergence is only present in the Markov limit, i.e., at
t → ∞. However, the perpendicular carrier spin component eventually decays to zero,
so that a diverging frequency renormalization can never be observed.

From Eq. (7.13) it can be seen that the frequency renormalization depends on the value
of the cut-off energy ~ωBZ . In typical semiconductors, the bandwidth of the conduction
band is on the order of a few eV. Accounting for the whole conduction band in the
integration of the full quantum kinetic equation is, however, not feasable. This can be
easily seen by the following estimation: The correlations oscillate approximately with
cos[(ωk1 − ωk2)t]. For ωk1 − ωk2 ≈ ωBZ , the oscillation period corresponds to hundreds
of attoseconds. On the other hand, the spin dynamics takes place on a scale of ∼ 10 ps,
which is 5 orders of magnitude larger. Conversely, the time scale of 10 ps for the spin
dynamics implies the necessity to resolve ωk1 − ωk2 on a scale of 10-100 µeV, which is
4 to 5 orders of magnitude smaller than the typical cut-off energy ~ωBZ . Moreover, the
solution of the full quantum kinetic equation is quadratic in the number of discretization
points Nk of the k-space.

Here, we solve this problem using a similar approach as the no-scattering-approxi-
mation in [Pub6]: We assume that the perpendicular carrier spin is a smooth function
of k and we replace s⊥k by s⊥k1

in Eq. (7.10). This approximation is justified for the
investigation of the renormalization of the precession frequency because s⊥k only appears
in a term that is also proportional to the real part of the memory function and it does
not influence the spin precession frequency. As a result, the equations of motion for s⊥k1

with different values of k1 decouple and become of the order O(N1
k ) for each value of

k1. Integrating over the results for different values of k1 can be done on a much coarser
energy scale, since the resulting functions s⊥k1

(t) are smooth in k1. Also a restriction to a
spectral region close to the conduction band edge is possible for the integration over k1.

In order to keep the memory effects, the memory function G
ωk1
ωk has to be regarded as a

time integral operator and the effective equations become integro-differential equations.
After applying the approximation s⊥k ≈ s⊥k1

, these integro-differential equations can be
transformed into ordinary differential equations by introducing auxiliary functions, which
mathematically play a similar role as the carrier-impurity correlations in the full quan-
tum kinetic theory. This procedure allows us to account for memory effects while still
spectrally resolving the full conduction band.

From the numerical calculations for δ-like initial carrier distributions shown in Fig.
7.3(a), it is found that the Markovian expression in Eq. (7.13) for the frequency renormal-
ization yields virtually the same result as a fit to the simulations including the memory,
even for carriers close to the divergences. The calculations shown in Fig. 7.3(b) using
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7.3. Carrier-impurity correlation effects beyond spin-flip scattering
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Figure 7.3.: Adapted from [Pub7] (sign according to the erratum): (a): Relative frequency renormal-
ization ∆ω/ωM as a function of the kinetic energy of a single electron for an average impurity spin of
0.5~ and 0.05~, respectively, in two- and three-dimensional systems. The lines represent the results of
the Markovian expressions, whereas the points show the results of fits to simulations including a finite
memory using Eqs. (15) of [Pub7]. (b): Relative frequency renormalization as a function of the average
impurity spin for a Gaussian electron occupation with standard deviation Es centered at the singularity
of the renormalization (cf. inset).

more realistic initial carrier distributions with finite widths predict a renormalization of a
few percent for small impurity magnetizations. Note that it is necessary for the detection
of the precession frequency that the impurity magnetization is finite and the oscillations
are not overdamped. Thus, there is a limited range of parameters for which a significant
detectable renormalization of the precession frequency is predicted in [Pub7].

Beside the frequency renormalization, also the carrier-impurity correlation energy is
extracted in [Pub7] from the quantum kinetic theory as a functional of the occupations
n↑k1

and n↓k1
. To this end, the Markovian expression for the correlations is inserted into

the definition of the correlation-energy:

〈Hcor
sd 〉 =〈Hsd〉 − 〈HMF

sd 〉︸ ︷︷ ︸
:=

∑
k

~ωM ·sk

=
JsdNMn

V 2

∑

k1k2

∑

i

Qik2
ik1
. (7.14)

The explicit expression for the correlation energy depends on the memory function G
ωk2
ωk1

only via its imaginary part. Thus, in two dimensions, one obtains the same kind of
logarithmic divergences in the correlation energy as in the frequency renormalization.
Numerical estimates yield values of the correlation energy per electron of several hun-
dred µeV, which is of the same order of magnitude as thermal energies in Helium-cooled
systems. Thus, the correlation energy might also be relevant for thermodynamic consid-
erations, such as for the formation of free or bound magnetic polarons that are mostly dis-
cussed in the literature in a semiclassical picture without accounting for carrier-impurity
correlations [36, 66, 72, 89, 90].

So far, we have summarized the logarithmic divergences found in the renormalization of
the carrier spin precession frequency and the correlation energy in two dimensions. The
three-dimensional case is also discussed in [Pub7]. Due to the difference in the density of
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7. Quantum kinetic features and correlation effects

states, also the expressions for the frequency renormalization and the correlation energy
are different in two and three dimensions. As can be seen in Fig. 7.3(a), there are no
divergences in three dimensions and, there, the correlation effects are, in general, weaker
than in lower-dimensional systems.
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8. Optical excitation

8.1. Quantum kinetic treatment of the light-matter
interaction

The predictions of genuine quantum kinetic effects, such as the non-monotonic dynamics
of the carrier-impurity spin transfer, are yet to be tested experimentally. In order to pave
the way to a future experimental confirmation of our predictions, it is useful to figure
out what excitation conditions lead to particularly pronounced quantum kinetic effects.

In [Pub8], we address the question of how the strength of the deviations from the
Markovian behavior depends on the duration of a pump pulse. Furthermore, we compare
two different materials, Cd1−xMnxTe and Zn1−xMnxSe, for the suitability for experiments
highlighting the non-Markovian features. Finally, the dependence of the strength of the
quantum kinetic effects on an external magnetic field is investigated.

An important difference between the theory in [Pub8] and the approaches studied
before in this thesis is that the optical excitation is taken into account on a quantum
kinetic level instead of resorting to initial-value calculations. Thurn’s original quantum
kinetic theory [22] already contains the light-matter interaction as well as the valence
band and the interband coherences. Also, the optical excitation has been taken into
account explicitly in a first quantum kinetic calculation in Ref. [24] for the case of the
same Zn0.93Mn0.07Se quantum well that was also studied in Ref. [23] using initial-value
calculations. These studies showed that the non-Markovian features in the results of
the initial-value calculation are indeed also predicted in calculations where the optical
excitation is treated on a quantum kinetic level.

However, only a single set of material parameters and excitation conditions was con-
sidered in Ref. [24]. In [Pub8], calculations for a number of different situations are
presented. First of all, a comparison is made between the spin dynamics in Cd1−xMnxTe
and Zn1−xMnxSe after an excitation with a circularly polarized pump pulse with pulse
duration τL = 1.7 ps. It is found that the non-Markovian features are more pronounced
in the case of Zn1−xMnxSe. This can be explained by the fact that the effective con-
duction band mass in ZnSe is about twice as large as the effective mass in CdTe and
the spin transfer rate η is proportional to the effective mass. As found in [Pub6], the
deviations from the Markovian behavior are particularly strong for an excitation close
to the band edge, where the spectral distance of the carriers to the band edge has to be
compared with the energy scale ~η corresponding to the spin transfer rate η. The optical
excitation of a similar electron distribution in Zn1−xMnxSe and Cd1−xMnxTe results in
an occupation of states which, in Zn1−xMnxSe, is closer to the band edge when measured
on the scale ~η. Since this closer proximity of the optically excited states to the band
edge in Zn1−xMnxSe leads to a deeper memory, the non-Markovian features, such as the
non-monotonicity in the spin dynamics, are more pronounced.

Second, we investigate the changes in the shape of the time evolution of the carrier
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Figure 8.1.: From [Pub8]: Time evolution of the total carrier spin in a 4 nm wide Zn0.93Mn0.07Se
quantum well after optical excitation with a pulse duration of τL = 1.7 ps in the presence of a magnetic
field of B = 10 mT (a) and B = 100 mT (b), respectively. (c): Occupations of spin-up and spin-down
electron states at different times t with respect to the center of the laser pulse. (d): Diagram depicting
the spin-flip scattering between spin-up and spin-down subbands.

spin polarization when lasers with different pulse durations τL are used for the optical
excitation. As expected from the results of the initial-value calculations, we find that, for
short pulse durations τL compared with the spin transfer time η−1, the optical excitation
leads to a spectrally broad carrier distribution with most of the electrons occupying
states with kinetic energies above ~η. Thus, the non-Markovian features are diminished.
For long pulse durations, the spin transfer is already active during the optical excitation
and one might expect that the non-Markovian effects are smeared out. However, the
characteristic non-monotonic time evolution of the non-Markovian dynamics can still be
found in calculations where the pulse duration τL is about three times longer than the spin
transfer time η−1. Our findings indicate that the optimal pulse duration for experiments
aimed at detecting the genuine quantum kinetic features in the spin dynamics in DMS
is slightly longer than the spin transfer time of the system under investigation.

Finally, in [Pub8], it is studied how an external magnetic field influences the quantum
kinetic features in the spin dynamics in DMS. To this end, the quantum kinetic theory
of Ref. [22] is extended to include not only the optical excitation on a quantum kinetic
level, but also the Zeeman energies for carriers and impurities. The effects of an exter-
nal magnetic field along the growth direction on the spin dynamics in a Zn0.93Mn0.07Se
quantum well are shown in Fig. 8.1.

Two effects of the external field on the quantum kinetic features are clearly seen in
Fig. 8.1: First of all, the non-monotonicity of the time evolution of the spin polarization
is suppressed when an external magnetic field is present. This is due to the fact that
the spin-flip scattering leads to an occupation of electronic states with kinetic energies

56



8.2. Optical excitation using twisted light

increased by ~ωe−~ωMn with respect to the original states. This drives the carrier distri-
bution away from the band edge, which according to [Pub6] reduces the non-Markovian
effects.

Second, the stationary value of the carrier spin obtained at long times t is drasti-
cally different in the quantum kinetic simulation compared with the Markovian result.
To understand this, it is useful to look at the spectral redistribution of carriers [cf.
Fig. 8.1(c)] after the optical excitation close to the band edge. While the distribution of
the scattered electrons is a replica of the original distribution at the band edge shifted
by ~ωe − ~ωMn according to the Markovian calculation, the quantum kinetic calculation
predicts a broadening of the distribution of the scattered electrons. A broadening of car-
rier distributions in quantum kinetic calculations is usually attributed to the energy-time
uncertainty [91, 92]. Interestingly, in the case studied here, the width of this distribution
does not contract with time, so that, here, the energy-time uncertainty is ruled out as the
main cause of the broadening. Instead, the reason for the broadening of the distribution
of scattered electrons in the present case is that the s-d interaction builds up strong
correlations between carriers and impurities so that the single-particle picture becomes
invalid. The quantum kinetic calculation conserves the total energy including, beside
the single-particle energies, also the many-body carrier-impurity correlation energy. The
latter is responsible for the apparent non-conservation of the single-particle energy in
spin-flip scattering processes.

The width of the distribution of scattered electrons has an influence on the dynamics of
the total spin mainly by the occupation of spin-down states with kinetic energies below
~ωe − ~ωMn. For these states, the backscattering to the spin-up subband is strongly
suppressed, since there are no states in the spin-up band with matching single-particle
energies to which they can scatter back. Thus, the scattering from the spin-up to the
spin-down band is preferred to the scattering in the opposite direction. In this sense, the
spin-flip scattering in the presence of an external field has some similarities to a quantum
ratchet [93].

To summarize, [Pub8] predicts that the non-Markovian effects are most likely observ-
able in ZnSe based DMS excited with pump pulses with pulse durations on the order of
or slightly longer than the spin transfer rate. For a non-zero external magnetic field and
in the absence of other relaxation and thermalization mechanisms, the quasi-stationary
value of the spin polarization at long times can serve as an indicator for genuine quantum
kinetic effects.

8.2. Optical excitation using twisted light

A relatively new area of research is the study of light with orbital angular momentum
or twisted light [94]. Earlier work by Quinteiro and Tamborenea [95] suggests that the
orbital angular momentum of twisted light can, in principle, be transferred to optically
induced carriers in semiconductors. In the context of DMS, it is an interesting ques-
tion whether this mechanism can be used to control the carrier spins and, via the s-d
interaction, the spins of magnetic impurities in DMS.

To understand the concept of twisted light, it is necessary to go beyond the picture
of a spatially homogeneous electromagnetic field of the laser beam. The propagation
of a monochromatic light beam is described by the Helmholtz equation [96] which can
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directly be derived from the homogeneous Maxwell’s equations. Considering a light beam
traveling along the z axis, one can apply the paraxial approximation to the Helmholtz
equation. Then, the transverse spatial part v(x, y) of an amplitude of the electromagnetic
field (E or B) has to obey

( ∂2

∂x2
+

∂2

∂y2
+ k2

⊥

)
v(x, y) = 0, (8.1)

A set of solutions to the paraxial Helmholtz equation (8.1) in polar coordinates is [96]

v(ρ, φ) = v0Jm(k⊥ρ)eimφ, (8.2)

where Jm(x) are Bessel functions and m is an integer. These solutions to the Helmholtz
equations are dispersionless, i.e., they do not change their form while propagating along
the z direction. The vector potential in Coulomb gauge corresponding to such a Bessel
beam in the paraxial approximation is [95]

A(r, t) = Re
{
A0e

i(qzz−ωt)ε±Jl(qrr)e
ilφ
}
, (8.3)

where l is the orbital angular momentum of the light, qz and qr are the linear momenta in
the z direction and the radial direction, respectively, and ε± = ex±iey is the polarization
direction of the light, where ex/y are the unit vectors in the x and y directions.

Most experiments involving optical excitation of semiconductors by laser beams use
classical light, which has an average orbital angular momentum of zero. In Ref. [95], the
matrix elements for the excitation of semiconductor quantum wells with twisted light
for arbitrary values of m were derived using the minimal coupling Hamiltonian together
with the expression for the vector potential in Eq. (8.3). It was also shown analytically
that light with orbital angular momentum l induces only transitions between valence
and conduction band states with envelope orbital angular momenta differing by l. This
orbital angular momentum selection rule follows directly from the conservation of the
linear momentum in the absorption process.

The goal of [Pub9] is to follow up on the advances made in Ref. [95] and present
numerical simulations of the optical excitation based on the transition matrix elements
derived in Ref. [95]. Besides simulating the optical excitation, also the subsequent spin
dynamics in the presence of a Rashba field is calculated in [Pub9], which enables an
investigation of the transfer of the envelope orbital angular momentum from the optically
excited carriers to the carrier spin degree of freedom.

Some technical difficulties arise when studying the optical excitation of quantum wells
with twisted light. First of all, the cylindrical symmetry of Bessel modes as well as
their spatial localization make it difficult to investigate the excitation in the commonly
used picture of an ideal quantum well with an infinite area and rectangular boundaries.
Instead, we consider cylindrical quantum disks with finite radii R and we are especially
interested in the limit R → ∞, which corresponds to an extended quantum well. The
electronic eigenstates of a finite-size quantum disk in zylindrical coordinates (r, φ, z) are

ψbmν(r, φ, z) = NmνJm(kmνr)e
imφΦb(z), (8.4)

where Nmν is a normalization constant, kmν = um,ν/R with um,ν being the ν-th root
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8.2. Optical excitation using twisted light

Figure 8.2.: From [Pub9]: Time evolution of the electron spin polarization after optical excitation with
light with orbital angular momentum l for quantum disks with radii R.

of the m-th Bessel function Jm and b comprises the spin and band indices. The term
NmνJm(kmνr)e

imφ plays the role of the envelope of the carrier wave function, which
corresponds to the plane wave 1√

A
ek·r in an infinite quadratic quantum well. Similarly,

Φb replaces the periodic Bloch function in the infinite well. It is noteworthy that the
states ψbmν comprise three different angular momenta, viz., the spin and the orbital
angular momentum within one unit cell contained in Φb as well as the envelope orbital
angular momentum m.

For the simulations in [Pub9], the matrix elements of the light-matter interaction as
well as the Rashba interaction in the basis of the orbital momentum eigenstates ψbmν have
to be calculated. This calculation reveals that the twisted light excites states with defined
envelope orbital angular momenta, i.e., only diagonal elements of the carrier density
matrix with respect to m. Furthermore, for each excited conduction band electron with
envelope orbital angular momentum m, also a hole is excited in the valence band with
envelope orbital angular momentum l−m. Thus, the orbital angular momentum of the
light l is completely transferred to the envelope orbital angular momenta of the carriers.

Focusing on the conduction band (b = c), the matrix elements of the Rashba interaction
HR in the orbital momentum eigenstate basis are

〈ψc′m′ν′|HR|ψc,m,ν〉 =
~αRkmνkm′ν′
R(k2

mν − k2
m′ν′)

(
s+
c′cδm′,m−1 − s−c′cδm′,m+1

)
, (8.5a)

which for large values of R becomes

〈ψc′m′ν′ |HR|ψc,m,ν〉 → ~αRkδ(k − k′)
(
s+
c′cδm′,m−1 − s−c′cδm′,m+1

)
. (8.5b)

Thus, the Rashba interaction increases the spin, while the envelope orbital angular mo-
mentum is decreased and vice versa. For R → ∞, k corresponds to the modulus of the
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8. Optical excitation

carrier wave vector and remains unchanged under the action of Rashba interaction.
Figure 8.2 shows the time evolution of the carrier spin polarization after the optical

excitation with a circularly polarized twisted light beam. Note that the spin dynamics
does not depend on the sign of the orbital angular momentum l of the exciting light pulse
and for large radii R also the dependence on the modulus of l becomes negligible. We
explain this behavior as follows: When the Rashba interaction acts on a spin-up electron
with envelope orbital angular momentum m, it flips its spin and increases m by 1. When
the Rashba interaction acts a second time on the electron, it can only flip its spin back to
the spin-up state and the envelope orbital angular momentum decreases again to m, so
that the initial state is restored. This behavior is almost independent of the value of m of
the initial state. The slight differences in the spin dynamics after optical excitation with
light with different orbital angular momenta originate from the irregularities of the roots
of the Bessel functions which determine the prefactor of the Rashba matrix element in
Eq. (8.5a) and are therefore only important if the radius of the quantum disk is so small
that the optical excitation spectrally resolves the individual states. This is consistent
with the findings of Ref. [97] that twisted light can, in principle, be used to control the
spin states in quantum dots.

However, in extended systems (R → ∞), the spin dynamics cannot be efficiently
controlled by tuning the orbital angular momentum of the exciting light. Therefore, it
is not very promising to try to control spins of magnetic impurities in extended DMS
by the twisted light via the cascade of the optical excitation of quasi-free carriers, the
subsequent transfer of angular momentum to the spin by the spin-orbit interaction and
the ensuing carrier-impurity spin transfer caused by the s-d interaction.
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9. Influence of non-magnetic impurity
scattering

If semiconductors are doped isoelectrically with non-magnetic impurities, the main effect
on the quasi-free carriers in the semiconductor is that they experience a change in the
local crystal potential. This local potential breaks the translational crystal symmetry
and leads to a coupling between states with different wave vectors. If the local potential
is small, it is instructive to consider the picture in which carriers in plane wave states
are scattered at the impurities and change their wave vectors. The goal of [Pub10] is to
understand how such a non-magnetic local potential affects the spin dynamics in DMS,
where both, the magnetic and non-magnetic potentials [cf. Eqs. 2.5 in section 2.2.2] are
present.

In the case of CdTe, the incorporation of Mn impurities leads concurrently to a non-
magnetic local potential with a coupling constant J0 which is about a factor of 7 larger
than the magnetic coupling constant Jsd [98]. Despite its strength, the non-magnetic
carrier-impurity interaction is usually neglected in the description of the spin dynamics
in DMS because it commutes with the spin-operators and therefore influences the spin
dynamics only indirectly. However, as discussed above, our quantum kinetic theory shows
that the spin dynamics in DMS can depend on the dynamical redistribution of carriers
in k-space. Since such a carrier redistribution is also facilitated by scattering at a non-
magnetic local potential, the latter might have an influence, e.g., on the non-Markovian
effects in the spin dynamics in DMS.

In [Pub10], the quantum kinetic theory is extended to incorporate beside the mag-
netic s-d interaction and the Zeeman energies of carriers and impurities in an external
field also the non-magnetic carrier-impurity interaction. Following the line of [Pub5], the
Markovian limit of the quantum kinetic theory is derived. Furthermore, the Markovian
expressions for the correlation energies and the renormalization of the carrier spin pre-
cession frequencies are presented, where, in contrast to [Pub7], also the non-magnetic
carrier-impurity correlations are taken into account.

Using this theory, numerical simulations are presented in [Pub10] for the case of a
Cd0.93Mn0.07Te quantum well where the optical excitation is modeled by choosing a spin
polarized Gaussian initial carrier distribution with a standard deviation of Es = 0.4
meV. The results of the calculations for the case of vanishing magnetic field are shown
in Fig. 9.1(a). While the quantum kinetic theory without the non-magnetic impurity
scattering predicts an overshoot of the spin polarization below its asymptotic value at
long times, accounting for non-magnetic impurity scattering in the quantum kinetic
theory leads to a monotonic time evolution of the spin polarization close to the Markovian
result.

In Fig. 9.1(b), the distribution of carriers in k-space at t = 10 ps is shown for calcu-
lations with and without impurity scattering. In the calculation without non-magnetic
impurity scattering, the initial carrier distribution is slightly broadened. If the non-
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Figure 9.1.: Form [Pub10]: (a): Spin dynamics in a 4 nm wide Cd0.93Mn0.07Te quantum well with
(J0 = 110 meVnm3) and without (J0 = 0) non-magnetic impurity scattering calculated using the
full quantum kinetic equations of [Pub10] (QKT1), using quantum kinetic equations neglecting source

terms for correlations similar to bl2n2k2

l1n1k1

III
(QKT2) and using the Markovian limit of QKT2. The inset

shows a magnification of the region where the simulation without non-magnetic scattering predicts a
non-monotonic behavior. (b): Spectral distribution of carriers at t = 0 and t = 10 ps.

magnetic impurity scattering is accounted for, the redistribution of carriers is very much
enhanced, so that states with kinetic energies of a few meV above the initial peak are
occupied. Since, as explained in [Pub6], the non-Markovian features in the spin dynamics
are only strong for carriers very close to the band edge, the redistribution of carriers to
states with much higher kinetic energy suppresses the non-Markovian behavior drasti-
cally.

The substantial redistribution of carriers in k-space for B = 0 is at odds with the
conservation of the single-particle energies. Note, however, that the strong non-magnetic
carrier-impurity interaction leads to the formation of correlations with a significant
amount of (negative) correlation energy, as depicted in Fig. 9.2. This correlation en-
ergy compensates the increase of the kinetic energy of the carriers. Furthermore, Fig. 9.2
shows that the analytic expressions for the correlation energies derived in [Pub10] in
the Markov limit reproduce the correlation energies obtained from the quantum kinetic
simulations very well after a quasi-stationary value of the correlation energy is reached.

The fact that the non-magnetic impurity scattering, which is always present in DMS,
suppresses the characteristic features of non-Markovian behavior in the case of the con-
duction band of Mn-doped CdTe raises the question whether there are actually situations
in which non-Markovian behavior can be expected to appear in real DMS samples. To
this end, we study in [Pub10] the spin dynamics in a degenerate valence band in a
Cd0.93Mn0.07Te quantum well and we simulate the spin dynamics using the material pa-
rameters for heavy holes. Since the magnetic coupling constant in the valence band of
Mn-doped CdTe is about 4 times larger than in the conduction band [54] and the non-
magnetic coupling constant is very small in the valence band [99], the non-Markovian
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effects are found to be more pronounced and no suppression due to the non-magnetic
impurity scattering is observable in the valence band. Of course, a more realistic valence
band structure requires to take into account the confinement potential, strain and the
spin-orbit coupling. These effects lead, e.g., to a splitting between the heavy-hole and
light-hole bands. Thus, the results of these calculations are not expected to describe
comprehensively the hole spin dynamics in a real DMS quantum well, but they show
that, in the valence band, the non-magnetic impurity scattering does not suppress the
non-Markovian effects in the spin dynamics in DMS.

Furthermore, the influence of the non-magnetic impurity scattering on the spin dy-
namics in DMS in the presence of an external magnetic field parallel and perpendicular
to the initial carrier spin polarization is discussed in [Pub10]. If the initial carrier spin
polarization is parallel to the external field, it was already shown in [Pub8] that the
quantum kinetic theory and its Markov limit predict very different stationary values of
the carrier spin polarization. This is related to a broadening of the distribution of scat-
tered carriers, which is enabled by the release of magnetic carrier-impurity correlation
energy. In [Pub10] it is found that the non-magnetic carrier-impurity interaction leads
to additional contributions to the carrier-impurity correlation energies, which enhances
the broadening of the scattered carrier distribution and thereby increases the difference
between the stationary values of the carrier spin polarizations according to the quantum
kinetic and the Markovian calculations.

If an external magnetic field is applied perpendicular to the initial carrier spin polar-
ization, the carrier spins precess about the effective magnetic field due to the external
field and the impurity magnetization. It was shown in [Pub7] that the carrier spin pre-
cession frequency is renormalized due to the magnetic carrier-impurity interaction. In
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[Pub10], we find that, when the non-magnetic interaction between carriers and impuri-
ties is considered, a new contribution to the frequency renormalization appears, which is
absent if either the magnetic or the non-magnetic interaction is disregarded. In the case
of the conduction band of Cd1−xMnxTe, the magnetic and non-magnetic coupling con-
stants have different signs, which results in a partial cancellation of the purely magnetic
contribution to the renormalization and the new contribution due to the non-magnetic
impurity scattering. In contrast to the purely magnetic contribution, which is only sig-
nificantly strong in a narrow regime of excitation conditions, the new contribution is
important in many more situations. Because the magnitude of the frequency renormal-
ization is of the order of a few percent of the mean-field value of the precession frequency,
it can be expected that the renormalization of the precession frequency is strong enough
to be observable in experiments.

In summary, non-magnetic scattering of electrons at the impurities in DMS leads to a
suppression of some non-Markovian effects in the spin dynamics in certain situations, such
as in the conduction band of Mn-doped CdTe. The non-magnetic interaction leads also
to the build-up of non-magnetic carrier-impurity correlations with significant correlation
energies facilitating a strong redistribution of carriers in k-space. In the presence of
an external magnetic field, the correlations are responsible for significantly modifying
the asymptotic value of the carrier spin polarization parallel to the external field at
long times. Furthermore, the magnetic and non-magnetic carrier-impurity correlations
renormalize the carrier spin precession frequencies about a few percent.
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10.1. Summary

In this thesis, a quantum kinetic description of the spin dynamic in diluted magnetic
semiconductors was presented including a number of interactions: the magnetic s-d ex-
change interaction between carriers and magnetic impurities, the Zeeman energies of car-
riers and impurities, spin-orbit interactions in the form of k-dependent effective fields,
the light-matter interaction as well as the non-magnetic interaction between carriers and
impurities.

Earlier studies [23, 24] focused on the s-d interaction and the case of zero magnetic
field and impurity magnetization and demonstrated that in some cases, such as in two-
dimensional diluted magnetic semiconductors, the quantum kinetic theory yields a spin
dynamics that cannot be captured by Markovian rate equations. In other cases, in
particular in bulk DMS, the quantum kinetic theory predicts an exponential decay of
the optically induced carrier spins, which, for the case of vanishing magnetic field and
impurity spin, agrees well with rate equations where the spin-transfer rate is obtained
by Fermi’s golden rule.

In [Pub1] and [Pub2], we showed how Markovian effective equations can be derived
from the quantum kinetic theory that reproduce well the dynamics predicted by the quan-
tum kinetic calculations for three-dimensional systems, even in the case with non-zero
impurity magnetization. In comparison with Fermi’s golden rule, the approach presented
here has the advantage that one obtains equations not only for the carrier spin component
parallel to the impurity magnetization, but also for the perpendicular component, which
is relevant for the description of experiments in Voigt geometry. The effective equations
show some similarities to the phenomenological Landau-Lifshitz-Gilbert equations. How-
ever, the effective equations contain corrections due to the quantum mechanical nature
of the impurity spins as well as energetic splittings and Pauli-blocking effects. The ener-
getic splittings in the Markov limit are found to be related to a precession-type motion of
the carrier-impurity correlations, which is important for a suitable description of the spin
dynamics, although the source terms responsible for the precession of the correlations
are higher than leading order in the coupling constant Jsd.

The effective equations derived in [Pub2] were applied to study the interplay between
the spin-orbit coupling and the s-d interaction in diluted magnetic semiconductors with
strong Rashba and Dresselhaus fields in [Pub3], [Pub4] and [Pub5]. It was found that
in narrow band gap materials and for optical excitations well above the band gap, the
spin-orbit coupling can compete with the exchange interaction. In this situation, the spin
dynamics can become quite complex. For example, in the presence of strong spin-orbit
fields, not only the spin component perpendicular to the impurity magnetization shows
oscillations with approximately the frequency corresponding to the precession in the
mean field of the impurity magnetization, but similar oscillations are also superimposed
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on the decay of the parallel carrier spin component. In many cases, the dephasing of
carrier spins in the k-dependent spin-orbit field is strongly suppressed by the effective
field originating from the impurity magnetization. Moreover, while the s-d interaction
leads to an exponential decay of the carrier spins in the Markov limit, we find that
the dephasing in an k-dependent effective field is better described by a Gaussian time
evolution than by an exponential decay.

Taking the Zeeman energies of carriers and impurities into account in [Pub5] allows us
to derive expressions for the magnetic-field dependence of the parallel and perpendicular
carrier-impurity spin transfer rates. In contrast to earlier works in the literature, our
approach yields results that conserve the total single-particle energies in individual spin-
flip scattering processes.

The origin of non-Markovian features in the spin dynamics in diluted magnetic semi-
conductors was investigated in [Pub6]. It turns out that for a vanishing magnetic field,
the shape of the time evolution of the spin of a single electron with a defined kinetic
energy depends approximately only on the spectral distance to the band edge, i.e., on
the ratio between the kinetic energy and the Markovian spin transfer rate. The non-
Markovian effects are important if the excited carriers are spectrally very close to the
band edge and the non-Markovian behavior disappears if the spectral distance to the
band edge is large.

Taking explicitly the carrier-impurity correlations into account in the quantum kinetic
theory enabled us to study many-body effects in diluted magnetic semiconductors in
[Pub7], such as a renormalization of the carrier spin precession frequency and the build-
up of correlation energy. In two-dimensional systems, logarithmic divergences similar to
those appearing in the Kondo effect were found. However, these divergences do not lead
to unphysical results in the spin dynamics, since, on the one hand, they are integrable
and yield finite values when weighted with a non-singular carrier distribution. On the
other hand, the divergences are predicted only in the Markovian limit assuming t→∞
while for finite times t finite values are obtained.

The theory was extended in [Pub8] to incorporate simultaneously the optical excita-
tion as well as the Zeeman energies on a quantum kinetic level. This study predicts
non-Markovian features in the spin dynamics as expected from the initial-value calcula-
tions presented in previous works. A non-monotonic time evolution of the carrier spin
polarization is found not only in situations where the laser pulse duration is comparable
to the Markovian spin transfer time, but signatures of non-Markovian behavior are also
obtained if the pulse duration is longer. Furthermore, in [Pub8], the optical excitation
in the presence of an external magnetic field was discussed. While the non-monotonic
behavior of the spin dynamics is suppressed in an external field, the external field opens
up another possibility to detect quantum kinetic features, because significantly different
stationary values of the carrier spin polarization at long times are obtained in simula-
tions using the quantum kinetic equations and in the Markovian calculations. This is a
consequence of a correlation-induced broadening of the distribution of spin-flip-scattered
carriers, which is not related to the energy-time uncertainty, but rather a genuine many-
body effect.

The investigation of the possibility to efficiently control the spins in semiconductors
via the spin-orbit interaction and optical excitation using twisted light in [Pub9] leads
to the conclusion that this is only possible in systems which are small enough so that
the individual energy levels of the carriers can be resolved. In contrast, towards the
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quasi-continuous limit, the spin dynamics becomes more and more independent of the
orbital angular momentum of the light.

Finally, the influence of non-magnetic scattering at impurities on the spin dynamics
in diluted magnetic semiconductors was discussed in [Pub10]. In the conduction band
of Mn-doped CdTe, the scattering at the spin-independent local potential caused by the
incorporation of the Mn impurities results in a strong suppression of the non-Markovian
effects in the spin dynamics. Model calculations show that this is not expected to be
the case in the valence band of Cd1−xMnxTe. The non-magnetic carrier-impurity inter-
action leads to the build-up of non-magnetic carrier-impurity many-body correlations
that are, in the case of the conduction band of Cd1−xMnxTe, much stronger than the
magnetic correlations. As a consequence, the redistribution of carriers in k-space, the
correlation energies, the renormalization of the carrier spin precession frequency as well
as the changes of the asymptotic values of the carrier spin polarization for long times
compared with the Markovian results in the presence of an external magnetic field are
significantly enhanced.

10.2. Outlook

Although a number of interactions are already included in the present quantum kinetic
description of the spin dynamics in diluted magnetic semiconductors, some important
effects that are present in real samples have not been discussed so far. Most of these
effects can, in principle, be incorporated into the quantum kinetic framework. For a few
of them, there is already work in progress at the time of the writing of this thesis.

10.2.1. Exciton spin dynamics

It is known [100] that the optical excitation of intrinsic semiconductors leads directly to
the creation of excitons rather than free electrons and holes. It is therefore interesting to
investigate the role of the Coulomb correlations between electrons and holes for the decay
of the spin polarization detected in experiments. For example, as a consequence of the
conservation of momentum, usually only excitons with center of mass momentum K ≈ 0
are optically excited, where strong non-Markovian effects are expected. Moreover, the
question arises whether the carrier-impurity interactions can induce transitions between
1s and 2s exciton states. Reformulating the quantum kinetic theory and simulating the
exciton spin dynamics in diluted magnetic semiconductors is a project that is currently
carried out by Florian Ungar. Some preliminary results show that a large part of the
quantum kinetic theory presented in the present thesis is relevant in the discussion of
the exciton spin dynamics, but there are also a number of new challenges, since, e.g., the
shape of the excitonic wave functions enters in the equations of motion. Understanding
the spin dynamics of excitons is crucial for connecting the quantum kinetic theory with
experiments. For example, in order to suppress exciton formation and to detect only
free conduction band electrons, some experiments used n-doped CdMnTe samples [21].
Other studies [33], however, indicate that upon optical excitation n-doped CdTe tends
to facilitate the formation of trions due to the relatively strong binding energies in CdTe.
Thus, experiments on the spin dynamics in diluted magnetic semiconductors are easier to
perform on excitons than on quasi-free conduction band electrons. Therefore, a quantum
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kinetic theory for the exciton spin dynamics could bridge the gap between the theory
presented in this thesis and experiments.

10.2.2. Spin dynamics in the valence band

The theoretical description of the valence band in diluted magnetic semiconductors is
both interesting and challenging. It is interesting, since ferromagnetism in DMS has
only been demonstrated in systems with a large number of holes, such as in GaMnAs
or strongly p-doped CdMnTe, whereas ferromagnetism mediated by conduction band
electrons could not be verified experimentally [13, 79]. This is due to the fact, that the
carrier-impurity interaction in the valence band is typically about a factor of 4 stronger
in the valence band than in the conduction band [54]. Furthermore, it was found in
[Pub10] that non-magnetic impurity scattering, which suppresses characteristic features
of non-Markovian behavior in the spin dynamics of conduction band electrons in Mn-
doped CdTe, is very inefficient in the valence band. Thus, non-Markovian signatures in
the spin dynamics are expected to be more clearly observable in the valence band than
in the conduction band. Furthermore, a comprehensive description of the spin dynamics
of excitons requires taking into account the hole spin dynamics.

However, the theoretical description of the hole spin is challenging, because, for a
realistic description, one has to account at least for the 4 subbands comprised of the
heavy-hole and light-hole bands, which can be significantly coupled for k 6= 0. In princi-
ple, it is straightforward to formulate a quantum kinetic theory for the spin dynamics in
the valence band by replacing the kinetic energy H0 and the k-dependent effective field
by a Luttinger Hamiltonian [37, 39, 101], but, as in the discussion of the k-dependent
effective spin-orbit fields, it is necessary to resolve the angles of the wave vector, which
increases the numerical demands enormously. A similar problem is faced in the mi-
croscopic quantum kinetic description of the D’yakonov-Perel’ mechanism, which is the
topic of Michael Cosacchi’s Bachelor thesis. There, he shows that the computation time
of quantum kinetic calculations can be strongly reduced when the corresponding density
matrices and correlations are Fourier decomposed with respect to the polar angles of
the wave vectors k. The calculations converge fast and only a few Fourier coefficients
have to be accounted for. We expect that a similar approach makes full quantum kinetic
calculations of the hole spin dynamics in DMS feasible.

In the conduction band, it is possible to derive Markovian equations, which enable a
more intuitive understanding of the processes involved in the spin dynamics in diluted
magnetic semiconductors. In order to derive the Markov limit, it is, however, necessary
to invert the mean-field dynamics. This is relatively easy for the conduction band, which,
in a mean-field description, can be decomposed into a set of decoupled effective two-level
systems, or, equivalently, one dipolar spin vector for each wave vector k. For the valence
band where the heavy and light holes have to be considered, obtaining the mean-field
dynamics of the hole spins involves calculating the exponential of a 4×4 matrix, which
is, in general, hard to do analytically.

One idea to retain an intuitive rate-type description also for the hole spin dynamics is
to use the fact that in narrow quantum wells the heavy- and light-hole bands are often
split considerably. Thus, by tuning the laser frequency correspondingly, one can selec-
tively excite, e.g., lower-energetic heavy holes. This led Merkulov et al. [102] to consider
the heavy and light holes separately as effective pseudospin-1

2
systems with anisotropic g-
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factors. However, this treatment neglects the k-dependent coupling between heavy and
light holes contained in the Luttinger Hamiltonian, which can cause a fast dephasing
of the hole spins. Thus, we propose a more rigorous derivation of the effective heavy-
and light-hole subsystems: If the heavy-hole–light-hole splitting is large, the effects of the
coupling to the light holes can be treated perturbatively by a Schrieffer-Wolff transforma-
tion. Preliminary calculations show that this procedure yields corrections to the effective
heavy-hole Hamiltonian of the order O

(
ω3
hk

0
)

+ O
(
ω1
hk

2
)

in third order in the inverse
band splitting, where ωh is the magnitude of the effective magnetic field for the valence
band holes comprised of an external field and the field due to the impurity magnetization
in mean-field approximation. This way, the dynamics of the hole spins is described by an
effective two-level system for each value of the wave vector and one can derive Markovian
equations from the quantum kinetic theory, from which effective heavy- and light-hole
spin transfer rates can be extracted.

10.2.3. Modified inhomogeneous g-factor mechanism in DMS

In three-dimensional diluted magnetic semiconductors, the decay of the carrier spin after
optical excitation is experimentally found to be much faster than predicted by the spin
transfer rates according to Fermi’s golden rule [65]. To explain these findings, it was
assumed that the impurity spin polarization in the sample is inhomogeneous. When
the carriers move through the semiconductor, the carrier spins therefore experience a
dephasing. Since the carrier-impurity spin transfer times in three-dimensional systems
are rather large, the dephasing can be more efficient and can dominate the decay of the
total carrier spin polarization. This picture was also used to explain qualitatively the
non-monotonic magnetic-field dependence of the spin relaxation times measured in some
experiments [21] in DMS quantum wells.

It is noteworthy that a non-monotonic spin relaxation time is also found in non-
magnetic GaAs [103]. There, the effect was explained by invoking the inhomogene-
ous-g-factor mechanism: The Schrieffer-Wolff transformation which has been used to
derive the k-dependent effective fields for the description of spin-orbit coupling effects
mixes conduction and valence band states. Due to the conduction-band–valence-band
mixing, the effective electron g-factor becomes k-dependent. This leads to a dephasing
of the carrier spins that has its origins in k-space and not in real space.

In the case of diluted magnetic semiconductors, the mixing between the conduction
and valence bands results in a contribution to the carrier-impurity interaction in the
effective conduction band originating from the p-d interaction in the valence band.
Thus, the carrier-impurity interaction for the effective conduction band electrons be-
comes k-dependent. Because the carrier-impurity interaction in DMS is usually much
stronger than the Zeeman term, the dephasing in the k-dependent field for electrons
caused by the impurity magnetization is expected to be much more efficient than the
original inhomogeneous-g-factor mechanism for a k-dependent g-factor alone. It is an
interesting question what contribution to the fast dephasing of carrier spins in three-
dimensional diluted magnetic semiconductors reported in Ref. [65] comes from such an
inhomogeneous-g-factor-type mechanism in DMS.

In narrow quantum wells where the lowest confinement state has a significant value of

〈k2
z〉 ≈

(
π
d

)2
, the strongly k-dependent band mixing has been shown to lead to a signif-

icant change of the effective coupling constant measured by spin-flip Raman scattering
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and by the giant Zeeman splitting of excitons [57]. However, this study only considered
static quantities at the band edge (kx = ky = 0) and made no predictions regarding the
influence on the spin dynamics.

We now present preliminary results for the effects of the inhomogeneous-g-factor-type
mechanism mentioned above on the spin dynamics in DMS, where we employ a second
order Schrieffer-Wolff transformation as in Ref. [57], but we allow for non-zero val-
ues of kx and ky: We apply the transformation matrix that block-diagonalizes an 8×8
Kane Hamiltonian up to second order in k to the spin matrices se and sh in the s-d
and p-d carrier-impurity exchange interactions for conduction and valence band elec-
trons and restrict ourselves to the effective conduction band block obtained after block-
diagonalization of the crystal Hamiltonian H0. In the mean-field approximation, the
effective carrier-impurity interaction Heff

sd comprised of contributions from the original
Hamiltonians Hsd and Hpd reads:

Heff
s/p−d

MF≈ NMn

V

∑

σσ′k

∑

ij

〈Si〉Jij(k)sjσσ′ c̃
†
σkc̃σ′k, (10.1)

where c̃†σk now creates effective conduction band electrons with pseudospin-index σ.
Thus, the effective coupling constant Jij(k) is now a matrix

Jij =
[
Jsd + (−Jsdλ1 + γJpdλ2)k2

]
δij − γJpdλ32kikj, (10.2a)

λ1 =
2P 2

3E2
g

+
P 2

3(Eg + ∆0)2
≈ 0.279 nm2, (10.2b)

λ2 =
4P 2

9E2
g

+
P 2

9(Eg + ∆0)2
+

4P 2

9Eg(Eg + ∆0)
≈ 0.268 nm2, (10.2c)

λ3 =
P 2

9E2
g

+
P 2

9(Eg + ∆0)2
− 2P 2

9Eg(Eg + ∆0)
≈ 0.005 nm2, (10.2d)

where the standard parameters for CdTe [39] have been used. A large part of the valence
band coupling constant Jpd stems from virtual hopping and depends on the energy dif-
ference between the valence band electrons and the energy levels corresponding to a Mn
impurity occupied with 4 and 6 electrons, respectively. For effective conduction band
electrons, one has to replace the valence band energy by the conduction band energy, i.e.,
the energy difference is changed by a value corresponding to the band gap Eg. This leads
to a modification of the value of Jpd by the factor γ ≈ 1.36 for effective conduction band
electrons [57]. It is noteworthy that the factor λ3, which determines the anisotropic part
of the coupling constant Jij, is about two orders of magnitude smaller than the factors
λ1 and λ2, so that the anisotropy can be neglected.

To estimate the effects of the band mixing on the spin dynamics, we calculate the spin
dynamics after optical excitation of a Gaussian electron distribution centered at k = 0
with a standard deviation of Es = 3 meV with initial spin polarization perpendicular
to an external magnetic field with B = 100 mT in the quantum well plane. For the
calculations, the Markovian rate equations according to [Pub5] are used where Jsd is
substituted by the isotropic part of Jij at kx = ky = 0 in the expression for the rates.
For the precession of the carrier spins, the dependence of the isotropic part of Jij on kx
and ky is accounted for.
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Figure 10.1.: (a): Time evolution of the spin polarization perpendicular to an external magnetic field
B = 100 mT with (red solid line) and without (blue dashed line) accounting for dephasing due to the
dependence of the isotropic part of Jij on kx and ky in a quantum well with width d = 5 nm. The initial
carrier occupation is a Gaussian with a standard deviation Es = 3 meV centered at the band edge. (b):
Dependence of the isotropic part of Jij on the quantum well width (purple solid line). The value for
d = 5 nm used in the calculation in (a) is highlighted by the cyan cross in (b).

The results for the spin dynamics are shown in Fig. 10.1(a). It is found that the
spin decays about 40% faster if the dephasing due to the k-dependence of the effective
coupling constant is accounted for. In Fig. 10.1(b), the dependence of the effective
coupling constant at kx = ky = 0 on the width of the quantum well is presented, where it

is assumed that the width defines the wave vector in the growth direction via
√
〈k2
z〉 ≈ π

d
.

While the bulk value of the effective coupling constant for the conduction band in CdTe
is negative, the coupling constant crosses the zero and eventually becomes positive for
very narrow quantum wells.

Even on this level of theory, we find that an inhomogeneous-g-factor-type mechanism in
DMS can indeed significantly influence the spin dynamics in DMS. However, more work
is needed to describe this mechanism on a quantum kinetic level. One major challenge is
that, in Hsd and Hpd, creation and annihilation operators with two different wave vectors
k and k′ appear, so that a unitary transformation of these Hamiltonians actually leads
to a dependence of the effective coupling constant on two wave vectors, which makes the
bookkeeping and interpretation more difficult. For this reason, the problem of rigorously
deriving a quantum kinetic description of this mechanism is beyond the scope of this
thesis and will be addressed in the future.

An interesting aspect in this context is that the mechanism proposed above predicts
a particularly strong dephasing if the carrier distribution in k-space is rather broad.
In [Pub10], it was found that the non-magnetic carrier-impurity interaction leads to a
significant redistribution of carriers in k-space that results in very broad distributions
and therefore promotes such a spin dephasing. Thus, it can be expected that quantum
kinetic effects such as the build-up of correlation energy, which facilitates the scattering
to states with higher kinetic energy, are indeed necessary for an accurate description of
the dephasing of carrier spins due to the k-dependent mixing of conduction and valence
band states.

73



10. Summary & Outlook

10.2.4. Further investigations

A number of other extensions to the quantum kinetic theory can be thought of. For
example, the correlation expansion can be truncated at a higher level. This enables an
investigation of the formation of impurity-impurity correlations, or the description of
carrier-carrier scattering in diluted magnetic semiconductors. Furthermore, it is inter-
esting to consider disorder effects like the clustering of magnetic impurities and the direct
interaction between impurities at neighboring cation sites. For large magnetic fields, it
is desirable to consider the effects of Landau quantization.

Another promising line of research is to reformulate the quantum kinetic theory so
that it can be used to describe also spin transport phenomena, which is a topic that is
particularly interesting for applications of diluted magnetic semiconductors in spintronics
devices.

Furthermore, as can be seen by the analogies of the spin physics in diluted magnetic
semiconductors to the Kondo effect in metals with magnetic impurities, there is no
fundamental limitation of the quantum kinetic theory to the usual II-VI diluted magnetic
semiconductors. Thus, the theory can, in principle, also be applied to other materials
like graphene or transition metal dichalcogenides provided that technological advances
enable a magnetic doping of these materials. In particular, it is interesting to study the
effects of magnetic doping on the spin dynamics in HgTe/CdTe quantum wells, since
they are, on the one hand, compatible with magnetic doping, on the other hand, they
can form topological insulators [104, 105].

Thus, the quantum kinetic description of the spin dynamics in diluted magnetic semi-
conductors presented in this thesis not only yields results for the cases studied in this
work but also enables further studies for other systems and situations.
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We investigate the transfer between carrier and Mn spins due to the s-d-exchange interaction in a Mn-doped bulk
semiconductor within a microscopic quantum kinetic theory. We demonstrate that the spin transfer dynamics is
qualitatively different for components of the carrier spin parallel and perpendicular to the Mn magnetization. From
our quantum kinetic equations we have worked out the corresponding Markov limit, which is equivalent to rate
equations based on Fermi’s golden rule. The resulting equations resemble the widely used Landau-Lifshitz-Gilbert
equations, but also describe genuine spin transfer due to quantum corrections. Although it is known that the
Markovian rate description works well for bulk systems when the initial Mn magnetization is zero, we find
large qualitative deviations from the full quantum kinetic theory for finite initial Mn magnetizations. These
deviations mainly reflect corrections of higher than leading order in the interaction, which are not accounted for
in golden-rule-type rates.

DOI: 10.1103/PhysRevB.90.035206 PACS number(s): 75.78.Jp, 75.50.Pp, 75.30.Hx, 72.10.Fk

I. INTRODUCTION

Diluted magnetic semiconductors (DMS) have been studied
intensively in the past decades, since they combine the
versatility of semiconductors with the spin degree of freedom,
which promises future applications in spintronics [1–5]. The
magnetic properties of DMS arise from the s/p-d exchange
interaction [4,6,7] between carriers and magnetic impurities,
which typically consist of Mn ions acting as localized spin- 5

2
systems. Especially for short timescales and high Mn doping
concentrations the exchange interaction can dominate the spin
dynamics [8,9]. The description of the resulting spin transfer
dynamics in DMS is usually based on rate equations, where
the rates are computed using Fermi’s golden rule [9,10]. The
standard derivation of the golden rule involves a Markov
approximation [8,11] and is perturbative with respect to the
exchange coupling constant. In Ref. [12] a projection operator
method was applied to derive spin relaxation rates for DMS
quantum wells. There, also a Markovian assumption as well
as a perturbative argument were used. Another approach to
the description of the macroscopic magnetization dynamics
is the use of the phenomenological Landau-Lifshitz-Gilbert
equations [13,14].

Recently, starting from a Kondo-like interaction Hamilto-
nian a density matrix approach based on correlation expansion
was developed [15] in order to describe the spin dynamics in
the ultrafast regime. Until now, this quantum kinetic theory
(QKT) has only been applied to the case of an initially zero
Mn spin. There, it has been found that in three-dimensional
systems, the time evolution of the carrier spin is exponentially
decreasing, where the decay rate coincides with its value
according to Fermi’s golden rule [16]. The latter was shown
by performing the Markov limit (ML) of the QKT using
only terms in second order of Jsd . In lower-dimensional
systems, excitation conditions can be found where significant
differences between the ML and the QKT become visible
although the memory induced by the exchange interaction
is orders of magnitude shorter than the time scale for the
evolution of the carrier and Mn dynamics [16]. In particular,

quantum kinetic effects are most pronounced when suitably
tuned oppositely circular polarized two-color laser pulses are
used for the excitation [17].

In this article, we study the spin dynamics of conduction
band electrons in a bulk ZnMnSe semiconductor for the
case of a nonzero initial Mn spin where electron spins can
precess around the Mn magnetization. It turns out that the
spin transfer dynamics that is superimposed to the precession
is qualitatively different for electron spins aligned parallel
or perpendicular to the Mn magnetization. Starting from
our quantum kinetic equations we derive the corresponding
Markov limit for finite Mn magnetization. The resulting
equations can be interpreted as modified Landau-Lifshitz-
Gilbert equations. Assuming Mn concentrations much larger
than the itinerant electron density analytical solutions of these
Markovian equations are presented. The resulting analytical
expressions also exhibit a different dynamics for perpendicular
and parallel spin transfer, which, however, quantitatively and
qualitatively disagrees with the prediction of the full QKT.
Here, the failure of the Markovian approach can be traced back
to contributions of higher than leading order in the exchange
coupling constant.

The outline of this paper is as follows: In a first step, we
briefly summarize the QKT [15] that was used as a basis for
our numerical calculation and introduce the model used in
this paper. Then, we derive the Markov limit of the QKT
along the lines described in Ref. [16] for an initially zero
Mn magnetization 〈S〉, but allow for a finite value of 〈S〉
and an arbitrary angle between the conduction band electron
spin and the Mn spin. In a subsequent section we present
numerical results of our QKT for the spin transfer dynamics of
the parallel and perpendicular components and compare them
with the ML. The analytical solution of the ML equations in
combination with a rearrangement of the contributions to our
QKT allows for a clear physical interpretation of the pertinent
source terms. By selectively studying the impact of different
source terms we are able to demonstrate the importance of
contributions of higher than leading order in the coupling
constant.
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II. QUANTUM KINETIC EQUATIONS

In Ref. [15], a quantum kinetic density matrix approach
for the spin dynamics in Mn-doped semiconductors was
developed starting from the Hamiltonian:

H = H0 + Hsd + Hpd + Hem, (1)

where H0 describes the single particle band energies, Hsd

accounts for the exchange interaction between the s-type
conduction band electrons and the spins of the d-type electrons
of the Mn dopands, while Hpd stands for the interaction of the
latter with p-type holes. Finally, Hem comprises the dipole
coupling to an external laser field. The exchange interactions
Hsd + Hpd as well as the random spatial distribution of Mn
atoms give rise to a hierarchy of higher-order correlation
functions. In order to obtain a finite set of dynamical variables
a specially adapted correlation expansion has been worked out
in Ref. [15].

Since the aim of the present paper is to investigate the spin
transfer between conduction band electrons and Mn dopands,
the model can be reduced to:

H = H0 + Hsd. (2)

H0 now accounts only for electrons in a single spin degenerate
conduction band:

H0 =
∑
lk

Ekc
†
lkclk, (3)

where c
†
lk (clk) are the creation (annihilation) operators of

conduction band electrons with k vector k and spin index
l = 1,2. For simplicity we shall assume parabolic bands Ek =
�2k2

2m∗ , with an effective mass m∗. The exchange interaction is
given by [18,19]:

Hsd = Jsd

∑
I i

ŜI · ŝe
i δ(ri − RI ), (4)

where Jsd is the exchange constant and ŜI (ŝe
i ) are operators

for the spin of the Mn atom (conduction band electron) in units
of � at the position RI (ri). As in Ref. [15] we assume an on
average spatially homogeneous distribution of Mn positions
RI .

According to the analysis in Ref. [15] the relevant dynam-
ical variables for this reduced model are:

C
l2
l1k1

= 〈
c
†
l1k1

cl2k1

〉
, (5a)

Mn2
n1

= 〈
P̂ I

n1n2

〉
, (5b)

K
l2n2k2
l1n1k1

= δ
〈
c
†
l1k1

cl2k2 P̂
I
n1n2

ei(k2−k1)RI
〉
, (5c)

C̄
l2k2
l1k1

= δ
〈
c
†
l1k1

cl2k2e
i(k2−k1)RI

〉
, (5d)

where P̂ I
n1n2

:= |I,n1〉〈I,n2| describes the spin state of the I th
Mn ion (n = − 5

2 , . . . , 5
2 ). The expectation value represented

by the brackets involves a quantum mechanical average as
well as the disorder average over the randomly distributed
Mn positions. C

l2
l1k1

and Mn2
n1

are the electron and Mn density

matrices. K
l2n2k2
l1n1k1

and C̄
l2k2
l1k1

are the correlated parts of the
corresponding density matrices, i.e., in these quantities all parts
that can be factorized into products of lower-order correlations
functions are subtracted from the expectation values. The

explicit but lengthy definitions of K
l2n2k2
l1n1k1

and C̄
l2k2
l1k1

can be
found in Ref. [15].

It turns out that the resulting equations of motion can
be simplified by introducing the following new correlation
functions:

Q
l2n2k2
l1n1k1

:= K
l2n2k2
l1n1k1

+ Mn2
n1

C̄
l2k2
l1k1

. (6)

Rewriting the equations of motion from Ref. [15] in terms of
these functions we obtain:

−i�
∂

∂t
Mn2

n1
= Jsd

1

V

∑
k

∑
nll′

sll′

[
Cl′

lk

(
Snn1M

n2
n − Sn2nM

n
n1

) + 1

V

∑
k′

(
Snn1Q

l′n2k′
lnk − Sn2nQ

l′nk′
ln1k

)]
, (7a)

−i�
∂

∂t
C

l2
l1k1

= JsdnMn

∑
nn′l

Snn′

[
Mn′

n

(
sll1C

l2
lk1

− sl2lC
l
l1k1

) + 1

V

∑
k

(
sll1Q

l2n
′k1

lnk − sl2lQ
ln′k
l1nk1

)]
, (7b)

(
−i�

∂

∂t
+ Ek2 − Ek1

)
Q

l2n2k2
l1n1k1

= b
l2n2k2
l1n1k1

I + b
l2n2k2
l1n1k1

II + b
l2n2k2
l1n1k1

III
, (7c)

with source terms

b
l2n2k2
l1n1k1

I = Jsd

∑
nl

{
Snn1 sll1C

l2
lk2

Mn2
n − Sn2nsl2lC

l
l1k1

Mn
n1

}
︸ ︷︷ ︸

=:b
l2n2k2
l1n1k1

I.1

−Jsd

∑
nll′

sll′C
l2
lk2

Cl′
l1k1

(
Snn1M

n2
n − Sn2nM

n
n1

)
︸ ︷︷ ︸

=:b
l2n2k2
l1n1k1

I.2

, (7d)

b
l2n2k2
l1n1k1

II = Jsd

∑
nn′l

Snn′Mn′
n nMn

(
sll1Q

l2n2k2
ln1k1

− sl2lQ
ln2k2
l1n1k1

)
︸ ︷︷ ︸

b
l2n2k2
l1n1k1

II.1

+ Jsd

∑
nll′

sll′
1

V

∑
k

Cl′
lk

(
Snn1Q

l2n2k2
l1nk1

− Sn2nQ
l2nk2
l1n1k1

)
︸ ︷︷ ︸

b
l2n2k2
l1n1k1

II.2

, (7e)
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b
l2n2k2
l1n1k1

III = Jsd

∑
nl

{
1

V

∑
k

[
Snn1 sll1Q

l2n2k2
lnk − Sn2nsl2lQ

lnk
l1n1k1

]}
︸ ︷︷ ︸

b
l2n2k2
l1n1k1

III.1

−Jsd

∑
nll′

sll′

{
1

V

∑
k

Cl′
l1k1

[
Snn1Q

l2n2k2
lnk − Sn2nQ

l2nk2
ln1k

] + 1

V

∑
k

C
l2
lk2

[
Snn1Q

l′n2k
l1nk1

− Sn2nQ
l′nk
l1n1k1

]}
︸ ︷︷ ︸

b
l2n2k2
l1n1k1

III.2

, (7f)

where Sn1n2 and se
l1l2

are the Mn and electron spin matrices, V

is the volume of the DMS, and nMn = NMn
V

is the density of the
Mn ions. We have subdivided the sources on the right-hand
side of Eq. (7c) for later reference. The physical meaning of
these terms and their respective importance will be discussed
later.

In order to study the dynamics of the spin transfer we
consider initial conditions where the electrons are initially spin
polarized and the Mn magnetization corresponds to a thermal
distribution while the correlations Q

l2n2k2
l1n1k1

are assumed to be
zero. This is a situation typical for a system immediately after
an ultrafast optical excitation has induced a finite electron spin
polarization.

III. MARKOV LIMIT

It turns out to be instructive to derive the Markov limit
of our QKT, first of all, because this greatly simplifies the
theory as the higher-order correlation functions are formally
eliminated in favor of the variables of most interest, i.e., the
electronic densities and spins. Furthermore, the Markov limit
provides a relevant reference for our QKT. In particular for bulk
systems it has been found previously [16] that the memory of
the exchange interaction is short and therefore it is tempting to
think that the Markovian equations should yield valid results
in our case.

In order to be able to work out the Markov limit starting
from Eqs. (7), we follow the procedure that in Ref. [16] led to
rates in accordance with Fermi’s golden rule and neglect in a
first step the source terms of higher than leading order in the
exchange coupling Jsd . Due to the initial condition Q

l2n2k2
l1n1k1

= 0

the correlations Q
l2n2k2
l1n1k1

are of first order in Jsd and thus we see

from Eqs. (7) that b
l2n2k2
l1n1k1

II
and b

l2n2k2
l1n1k1

III
are of second order

in Jsd and yield third-order contributions to the electron spin
dynamics. Thus, we keep in Eq. (7c) only the first-order term

b
l2n2k2
l1n1k1

I
. This allows us to formally integrate the correlations:

Q
l2n2k2
l1n1k1

(t) = i

�

∫ t

0
dt ′ei(ωk2 −ωk1 )(t ′−t)b

l2n2k2
l1n1k1

I
(t ′), (8)

with frequency ωk = Ek
� = �k2

2m∗ . Substituting Eq. (8) back

into the equations for C
l2
l1k1

and Mn2
n1

we have to perform a
k summation, which, due to interference resulting from the
k-dependent phases ei(ωk2 −ωk1 )(t ′−t), leads to a finite memory.
The Markov limit is established by assuming that the sources

b
l2n2k2
l1n1k1

I
change on a much slower time scale than the memory

and can therefore be drawn out of the integral. The memory has
been found to decay on a fs time scale while the spin dynamics
evolves on a ps time scale [16]. Therefore, the lower limit of
the integral can be extended to −∞ resulting in the following
approximation for the correlations:

Q
l2n2k2
l1n1k1

(t) ≈ i

�
b

l2n2k2
l1n1k1

I
(t)

∫ 0

−∞
dt ′′ei(ωk2 −ωk1 )t ′′

= i

�
b

l2n2k2
l1n1k1

I
(t)

(
πδ

(
ωk2 − ωk1

) − P i

ωk2 − ωk1

)
,

(9)

where P denotes the Cauchy principal value.
Starting from Eq. (7b) for the electron density C

l2
l1k1

we
can set up an equation of motion for the average electron spin
〈sk1〉 = ∑

l1l2
se
l1l2

C
l2
l1k1

in the state with k vector k1. Feeding

back the correlations Q
l2n2k2
l1n1k1

from Eq. (9) into these equations
we finally obtain:

∂

∂t

〈
sk1

〉 = JsdnMn

�
(〈S〉 × 〈

sk1

〉)
+ J 2

sdnMn

�2V

∑
k

{
1

2
P nk − 1

ωk1 − ωk

(〈S〉 × 〈
sk1

〉)

+πδ
(
ωk1 − ωk

)[〈S〉4
〈
sk1

〉2 − n2
k1

+ 2nk1

4

+ (〈sk〉 × (〈
sk1

〉 × 〈S〉))
+ 〈S × (S × 〈sk〉)〉 + 〈(〈sk〉 × S) × S〉

2

]}
. (10)

Applying the same procedure to the electron occupations nk1 =∑
l C

l
lk1

at a given k vector k1 we find that on this level of theory
nk1 is time independent. It should be noted, that in the full QKT
this is not the case. Instead it was shown in Refs. [15–17] that
redistributions in k space take place, which are responsible for
a number of features of the magnetization dynamics that are
not expected in the Markovian theory.

The different terms in equation (10) can easily be inter-
preted. The first term describes the precession of the electron
spin in an effective magnetic field due to the Mn magnetization
〈S〉, which is also the result of a mean-field calculation [15].
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The second term represents a renormalization of the precession
frequency that depends on the density of states and therefore
on the dimensionality of the system as well as the k

vector, which can possibly lead to dephasing of the electron
spin.

The magnitude of the renormalization for a bulk semicon-
ductor can be estimated in the continuum limit by approximat-
ing the Brillouin zone (BZ) as a sphere with radius kBZ and
assuming a parabolic band structure as follows:

�ωM = ω0
M

Jsd

�(2π )2

2m∗

�

∫ kBZ

0
dk

k2

k2 − k2
1

(1 − nk)︸ ︷︷ ︸
≈kBZ

, (11)

where ω0
M = JsdnMn

� |〈S〉| is the mean-field precession fre-
quency. The order of magnitude of the integral on the right-
hand side of Eq. (11) can be determined by noting that the
optically excited carriers occupy only very few states near
the center of the BZ and therefore for the most part of the
BZ nk ≈ 0 holds, which also implies k1

k
� 1 for the occupied

states. Approximating nk ≈ 0 and k1
k

≈ 0 the integral yields
the value kBZ. For the parameters used in our study (see below)
the renormalization is estimated in this way to be of the order of
≈1% of the mean-field precession frequency.1 The third term
in Eq. (10), which is proportional to the Mn spin, describes
a transfer of spin from the Mn to the electron system. The

prefactor
4〈sk1 〉2−n2

k1
+2nk1

4 is zero for nk1 ∈ {0,2}. For nk1 = 0
no transfer can occur because there are no electrons that can
exchange their spins with the Mn atoms; for nk1 = 2 the
transfer vanishes due to Pauli blocking.

The term proportional to 〈sk〉 × (〈sk1〉 × 〈S〉) has the form
of the relaxation term of a Landau-Lifshitz-Gilbert (LLG)
equation and describes the tendency of a spin in a given
effective magnetic field to align along the direction of the field.
Unlike in the LLG equation, here, the prefactor is determined
by the parameters of the microscopic model and is not a
phenomenological fitting parameter.

The last term in Eq. (10) resembles a relaxation term
that would be expected in the LLG equation for the Mn
magnetization 〈S〉. Here, it arises in the equation for the
electron spin reflecting the conservation of total spin which
is a feature also of the full QKT [15]. However, there is a
crucial difference between the last term in Eq. (10) and the
LLG relaxation term for the Mn magnetization: while the cross
products in the LLG equation involve classical vectors, we
are dealing here with vector operators. Here, the expectation
value has to be taken after constructing the cross product
in a symmetrized form. The physical consequences of this
difference become most obvious by rewriting the last term in

1For lower-dimensional systems this crude approximation leads
to a divergence of the frequency renormalization at k → k1. This
fact supports the findings of Refs. [16,17] that the Markov limit
is not a good approximation in systems with dimensions lower
than 3.

Eq. (10) as follows:

〈S × (S × 〈sk〉)〉 + 〈(〈sk〉 × S) × S〉
2

= −(〈S2〉 − 〈S‖2〉)〈s‖
k〉 − 1

2
(〈S2〉 + 〈S‖2〉)〈s⊥

k 〉, (12)

where 〈s‖
k〉 and 〈s⊥

k 〉 describe the electron spin of the states
with k vector k in the direction parallel and perpendicular to
the Mn spin vector 〈S〉 and S‖ = S · 〈S〉

|〈S〉| .
It is seen from Eq. (12) that even when the electron spin

is aligned parallel to the Mn spin, a spin transfer can occur,
and it was already noted in Ref. [16] that the corresponding
parallel spin transfer rate coincides with the result of Fermi’s
golden rule. In contrast, the corresponding term in the standard
LLG equation would be zero. This transfer is enabled because
the factor 〈S2〉 − 〈S‖2〉 is nonzero as quantum mechanically
the maximal value of 〈S‖2〉 is �2S2, while 〈S2〉 = �2S(S + 1),
which reflects the uncertainty between the respective spin com-
ponents. For classical vectors, as considered in the standard
LLG equation, this factor would always be zero. Furthermore,
in general the contribution in Eq. (12) is different for the
parallel and perpendicular components of the electron spin.
It is noteworthy that if the Mn spin had been represented by a
pseudospin 1

2 , this feature would be lost as then independent

of the Mn spin configuration we find 〈S2〉 = 3
4 and 〈S‖2〉 = 1

4

resulting in the same prefactors for 〈s‖
k1

〉 and 〈s⊥
k1

〉 in Eq. (12).
In order to use Eq. (10) in practical calculations we have

to know the values of the average Mn spin 〈S〉 and according
to Eq. (12) the second moment 〈S‖2〉, which appear on the
right-hand side of Eq. (10). The average Mn spin can be
calculated from the knowledge of the electron spin and the
initial total spin by using the total spin conservation [15].
Setting up an equation of motion for the second moment is
cumbersome and not necessary for the cases that we shall
discuss in this paper where it is assumed that the number of
Mn ions by far exceeds the number of photo induced electrons
(NMn 
 Ne). In this case, the change of the average Mn spin
as well as its second moment can be neglected and thus the
second moment essentially coincides with its initial thermal
value. Furthermore, for nearly constant Mn magnetization, the
equations of motion for electron states with different energies
�ωk are decoupled in the Markov limit due to the δ distribution
in Eq. (10) and the fact that nk remains constant which allows
using the initial occupation for the evaluation of the frequency
renormalization.

The decoupling of the equations of motion in the Markov
limit enables us to find analytical solutions for Eq. (10). To
this end we split the electron spin into its components parallel
and perpendicular to the Mn spin according to:

〈
sk1

〉 = s
‖
k1

〈S〉
S

+ s⊥
k1

(
sin(ωMt)

〈S〉 × 〈
sk1 (0)

〉∣∣〈S〉 × 〈
sk1 (0)

〉∣∣
+ cos(ωMt)

(〈S〉 × 〈
sk1 (0)

〉) × 〈S〉∣∣(〈S〉 × 〈
sk1 (0)

〉) × 〈S〉∣∣
)

, (13)

where ωM accounts for the precession of the perpendicular
component that results from Eq. (10). With this decomposition,
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FIG. 1. (Color online) Time evolution of the total electron spin polarization (a) and its components parallel (b) and perpendicular (c) to the
Mn spin assuming the electrons to be initially spin polarized along a direction at an angle of 45◦ relative to the Mn magnetization. The solid red
line describes the spin dynamics according to the full quantum kinetic theory, the dashed green line shows its Markov limit (analytic solutions,
cf. Appendix). Blue circles and purple squares correspond to approximate quantum kinetic calculations where only a subset of source terms
for the correlations (as indicated in the key of the figure) has been accounted for.

Eq. (10) can be rewritten as:

∂

∂t
s
‖
k1

= γk1S
(
s‖

k1

)2 + γk1S
nk1

(
2 − nk1

)
4

− γk1 (〈S2〉 − 〈S‖2〉)s‖
k1

, (14a)

∂

∂t
s⊥

k1
= γk1s

‖
k1

s⊥
k1

S − 1

2
γk1 (〈S2〉 + 〈S‖2〉)s⊥

k1
, (14b)

with

γk1 = J 2
sdnMn

�2V
π

∑
k

δ
(
ωk1 − ωk

)
, (15a)

ωM = JsdnMn

�
S

(
1 + 1

2

Jsd

�V

∑
k

P nk − 1

ωk1 − ωk

)
, (15b)

and S = |〈S〉|. Equation (14a) is a Riccati differential equation
with constant coefficients, which can be solved analytically.
Its solutions can then be fed back into Eq. (14b) for the
perpendicular electron spin. The explicit solutions are listed in
Appendix.

It is noteworthy that by a rescaling of the time axis according
to τ := γk1 t all material parameters can be eliminated from
Eqs. (14) for the moduli s‖

k1
and s⊥

k1
. Therefore, with this choice

of time units and given initial conditions we obtain the same
universal solution for all material parameters. Reinserting the
solutions for s

‖
k1

and s⊥
k1

into Eq. (13) and choosing again
1/γk1 as the unit of time, we conclude that for given initial
conditions the time trace of the electron spin 〈sk1〉 is affected
by the material parameters only via the ratio ωM/γk1 .

IV. NUMERICAL RESULTS

The quantum kinetic equations of motion (7) have been
solved numerically and compared with their Markov limit
(10) for different initial conditions in a three-dimensional bulk
DMS. The initial electron distribution over the single-particle

energies Ek is taken to be Gaussian with its center at Ek=0 and
a standard deviation of σ = 3 meV while the initial magnitude
of the Mn spin is set to 1

2 � (i.e., 20% of its maximal value).
The material parameters used were the same as in Ref. [16] for
Zn0.93Mn0.07Se with Jsd = 12 meVnm3 and me = 0.21m0.

First, we shall discuss results where at the beginning of
the simulation the electron spins are assumed to be totally
polarized in a direction with an angle of 45◦ with respect
to the Mn magnetization vector. Displayed in Fig. 1 is the
corresponding time evolution of the electron spin; (a) shows
the total electron spin, while in (b) and (c) the components
parallel and perpendicular to the Mn magnetization are plotted,
respectively. The full quantum kinetic results are plotted as
solid red lines whereas curves derived from the analytical
solutions of the Markov limit equations are depicted as dashed
green lines.

As seen from Fig. 1(a), the dynamics predicted by the full
theory is qualitatively different from the Markovian result.
On a short time scale (for our parameters t < 5 ps), the
electron spin decays much faster for the full solution than
in the Markov limit. Subsequently, the quantum kinetic curve
exhibits a nonmonotonic time dependence and the electron
spin eventually approaches a finite value. In contrast, in the
Markov limit, we find a monotonic, almost exponential decay
for all times. From the explicit analytical expression (cf.
Appendix) it is seen that the long time limit of the electron
spin in the Markov limit is zero.

The origin of the nonmonotonic behavior can be understood
by splitting the total electron spin into its components parallel
[Fig. 1(b)] and perpendicular [Fig. 1(c)] to the Mn spin. Both
spin components decrease almost exponentially in the ML as
well as in the full QKT. The time evolution of the perpendicular
spin component essentially yields the same results for the full
quantum kinetic calculation and the Markov limit. In the full
QKT, however, the parallel spin component changes its sign
and converges to a finite negative value, whereas both spin
components in the ML and the perpendicular spin component
of the QKT drop to zero. When the parallel spin component in
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FIG. 2. (Color online) Dynamics of the electron spin polarization
for initially unpolarized electron spins. Line styles and symbols have
the same meaning as in Fig. 1.

the full QKT crosses the zero line, its modulus has a minimum,
which leads to a minimum in the total spin.

The obvious discrepancy between the different levels of
theory with regard to the dynamics of the parallel spin
component does not arise due to the assumption of a short
memory in the ML. This can be seen from calculations, where

only the source terms b
l2n2k2
l1n1k1

I
, i.e., the terms used to derive the

ML in the first place, have been taken into account but the finite
memory expressed by the retardations in Eq. (8) are still kept
[blue circles in Fig. 1]. The resulting curves almost coincide
with the Markovian calculation. The main difference between
the full QKT and the ML is due to the source term b

l2n2k2
l1n1k1

II.1
,

which is demonstrated by simulations that incorporate only

b
l2n2k2
l1n1k1

I.1
and b

l2n2k2
l1n1k1

II.1
[purple squares in Fig. 1]. The results

of these calculations agree very well with the predictions
of the full theory, suggesting that all other source terms
are of minor importance, at least for the parameters used here.

It should be noted, that especially the term b
l2n2k2
l1n1k1

II.1
, like

b
l2n2k2
l1n1k1

II.2
and b

l2n2k2
l1n1k1

III
, gives contributions to the reduced

electron density matrices in the order of O(J 3
sd ) while the

leading-order contributions of the correlations are of O(J 2
sd ).

Thus, our results imply that a proper description of the coupled
electron and Mn spin dynamics requires a treatment beyond
perturbation theory.

The effect of these higher-order contributions on the
dynamics is particularly dramatic in the case of initially unpo-
larized electron spins. Corresponding results are displayed in
Fig. 2. Here, even the sign of the spin polarization is opposite
for the QKT and ML calculations. Furthermore, also the
predictions concerning the magnitude of the spin polarization
deviate significantly.

V. INTERPRETATION OF THE SOURCE TERMS

By the numerical analysis in the last section, we were able
to trace back the difference between the full quantum kinetic
theory and its Markov limit to a few selected source terms
for the correlations in Eqs. (7). In this section, we shall give
a physical interpretation to the individual source terms which

will enable us to understand what determines their relative
importance.

First of all, b
l2n2k2
l1n1k1

I.1
is the most important source term,

because it starts the correlation dynamics, i.e., without these
sources the correlations would stay zero for all times. In the

Markov limit, b
l2n2k2
l1n1k1

I.1
yields a Landau-Lifshitz-Gilbert-like

damping term described in Eq. (12) and a spin transfer term

proportional to the Mn spin 〈S〉. b
l2n2k2
l1n1k1

I.2
provides corrections

for Pauli blocking to the transfer term and yields another LLG-
like damping term, where the electron spin appears twice in
the double cross product [cf. Eq. (10)]. As seen above, the

quantum kinetic b
l2n2k2
l1n1k1

I
contributions act similarly to their

Markov limit counterparts. The dominant role of these terms
is further emphasized by the fact that they are the leading
terms in a perturbative treatment with respect to the exchange
coupling constant Jsd .

In order to understand the meaning of the b
l2n2k2
l1n1k1

II
terms,

it is instructive to reformulate the equations of motion of the
QKT by introducing new correlation functions according to:

Q
αk2
βk1

:=
∑
l1 l2

n1n2

Sβ
n1n2

sα
l1l2

Q
l2n2k2
l1n1k1

, (16)

which are summed over the electron band and Mn state indices.
Here, we use the conventions α = 0,1,2,3 with s0

l1l2
= δl1l2 and

β = 1,2,3. From Eq. (7c), we obtain the following equations
of motion for the summed correlations:

∂

∂t
Q

0k2
βk1

= −i
(
ωk2 − ωk1

)
Q

0k2
βk1

+ b
0k2
βk1

Res
(17a)

∂

∂t
Q

αk2
βk1

= −i
(
ωk2 − ωk1

)
Q

αk2
βk1

+ b
αk2
βk1

Res

+
∑
κλ

εακλω
κ
MQ

λk2
βk1

+
∑
κλ

εβκλω
κ
EQ

αk2
λk1

, (17b)

where

ωα
M = Jsd

�
nMn〈Sα〉, (18a)

ωα
E = Jsd

�
1

V

∑
k

〈
sα

k

〉
, (18b)

b
αk2
βk1

Res =
∑
l1 l2

n1n2

Sβ
n1n2

sα
l1l2

[
b

l2n2k2
l1n1k1

I + b
l2n2k2
l1n1k1

III ]
(18c)

and εαβγ is the Levi-Civita symbol. We note in passing

that the residual sources b
αk2
βk1

Res
contain a term resulting

from b
l2n2k2
l1n1k1

III.1
, which cannot be expressed by the summed

correlations. Thus, Eqs. (17) are numerically advantageous

only if b
l2n2k2
l1n1k1

III.1
is disregarded. The point here is that the two

terms in Eq. (17b) originating from b
l2n2k2
l1n1k1

II.1
and b

l2n2k2
l1n1k1

II.2

both involve the Levi-Civita symbol and can therefore be
interpreted as describing precessions. This can be made more
explicit, e.g., by introducing a vector with components α

according to (
Q k2

βk1

)
α

= Q
αk2
βk1

. (19)
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Then, the first of these terms, which stems from b
l2n2k2
l1n1k1

II.1
, can

be written as a cross product:

ωM × Qk2
βk1

(20)

indicating a precession of the vector Qk2
βk1

around the direction
ωM of the Mn magnetization with the same frequency as the
mean-field precession of the electron spin. Likewise, the term

originating from b
l2n2k2
l1n1k1

II.2
has a similar structure. It can also

be written as a cross product

ωE × Qαk2
k1

, (21)

where now the index β is associated with the components of a
vector Qαk2

k1
formed from the correlations according to(

Qαk2
k1

)
β

= Q
αk2
βk1

, (22)

i.e., now we are dealing with a precession around the direction
ωE of the electron spin. Thus, not only the average spins of
the electrons and Mn atoms exhibit a precession dynamics, but
also their correlations, which is represented in the equations

of motion by the b
l2n2k2
l1n1k1

II
terms.

Finally, the physical meaning of the b
l2n2k2
l1n1k1

III
source terms

becomes clear by noting that their structure is analogous

to the structure of the b
l2n2k2
l1n1k1

I
terms, where the products

of electron and Mn density matrices are replaced by the
corresponding unfactorized correlation functions. Thus, the

b
l2n2k2
l1n1k1

III
sources provide the correlated parts of the b

l2n2k2
l1n1k1

I

sources, which represented a Landau-Lifshitz-Gilbert-like
dynamics including Pauli blocking.

Now that all source terms have been physically interpreted,
let us come back to the question of their relative importance
in the case considered numerically in Sec. IV. As already

noted, the sources b
l2n2k2
l1n1k1

I
always play a pivotal role, since no

correlations would build up without these terms. The impor-
tance of the remaining terms depends on the physical situation.
Looking at the definition Eqs. (7d)–(7f) of the sources, it is

seen that the terms b
l2n2k2
l1n1k1

X.2
, with X ∈ {I,II,III }, comprise

similar factors as the corresponding contributions b
l2n2k2
l1n1k1

X.1
,

except that the former contain an additional factor proportional
to the electron density matrix C

l2
l1k1

. From this observation

we can conclude that the b
l2n2k2
l1n1k1

X.2
sources should be less

important than the b
l2n2k2
l1n1k1

X.1
terms, if the electron density

is moderate, as it is the case here. A criterion for being in
the low density limit is particularly easy to formulate for

the b
l2n2k2
l1n1k1

II
terms, since Eq. (7e) implies that b

l2n2k2
l1n1k1

II.2
is

negligible compared with b
l2n2k2
l1n1k1

II.1
if NMn 
 Ne, which is

fulfilled in our simulations. However, it is more challenging to

give a condition for the negligibility of the b
l2n2k2
l1n1k1

I.2
term, as it

strongly depends on the electron distribution in k space.

Finally, since the b
l2n2k2
l1n1k1

III
sources have the same structure

as the b
l2n2k2
l1n1k1

I
term, except that the correlations Q

l2n2k2
l1n1k1

take the

place of the product Cl2
l1k1

Mn2
n1

, they will be of minor importance

if the relation
Q

l2n2k2
l1n1k1

C
l2
l1k1

M
n2
n1

� 1 is satisfied. The latter relation is

expected to hold, when the conditions for the applicability
of the correlation expansion are fulfilled. The numerical

results shown in Fig. 1 indicate that the b
l2n2k2
l1n1k1

III
terms

provide insignificant quantitative corrections, which confirms
the consistency of the correlation expansion approach.

The fact that a source contains correlations is, however, not
sufficient for concluding that it can be neglected compared

with the b
l2n2k2
l1n1k1

I
terms, which do not involve correlations.

In particular, the b
l2n2k2
l1n1k1

II.1
term was shown to qualitatively

modify the spin dynamics (cf. Figs. 1 and 2). In view of our

interpretation of the b
l2n2k2
l1n1k1

II.1
term, this implies physically

that accounting for the precession of the correlations around
the Mn magnetization is essential for a correct description of
the spin dynamics. This also explains why previous studies
in Refs. [16,17] reported a negligible contribution from the

b
l2n2k2
l1n1k1

II.1
term, since there a situation was considered, where

the average Mn spin was initially set to zero which suppresses
the precession.

The features of the spin dynamics predicted in this
article manifest themselves in the time evolution of the spin
polarization which is a quantity accessible experimentally,
e.g., by time- and polarization-resolved photoluminescence or
Faraday-/Kerr-rotation measurements [20]. Favorable for the
observation of such effects should be experiments measuring
the time dependence of the spin polarization as well as
the its equilibrium value where the angle between the Mn
magnetization and the initial electron spin polarization induced
by a circularly polarized laser beam is varied. For our purposes
bulk materials are preferable compared with, e.g., quantum
wells, since for heterostructures the anisotropy with respect
to growth axis as well as structure inversion asymmetry can
play a role [21], which would make it hard to separate the
angular dependence predicted by our theory from anisotropy
effects. Furthermore, II-VI DMS should be better suited for
the proposed experiment than III-V DMS, since they have
the advantage of isoelectrical doping. In III-V materials, the
Bir-Aronov-Pikus interaction [22] between electron and hole
spins can dominate the spin dynamics [9], while for II-VI DMS
with sufficiently high Mn doping the s-d-exchange interaction
is typically the most important spin relaxation mechanism [23].

VI. SUMMARY

In this article, we have analyzed the spin dynamics of
conduction band electrons in Mn doped bulk DMS induced
by the s-d-exchange interaction. In contrast to our previous
studies [16,17], we now assume a nonzero Mn magnetization.
This naturally leads to a distinction between the electron spin
dynamics of the components parallel and perpendicular to the
Mn spin which introduces an anisotropy in the spin relaxation.
Starting from a microscopic quantum kinetic theory based
on correlation expansion we have derived the Markov limit
yielding equations similar to the widely used phenomenolog-
ical Landau-Lifshitz-Gilbert equations. Our derivation yields
microscopic expressions for the parameters in the Landau-
Lifshitz-Gilbert equations and allows us to identify some
quantum corrections. The resulting rate equations were solved
analytically.
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Numerical simulations within the quantum kinetic theory
revealed that, while the dynamics of the perpendicular electron
spin component can be well described by the Markovian
theory, the parallel component exhibits qualitative deviations
between the full quantum kinetic and the corresponding
Markovian results. The differences between both levels of
theory manifest themselves in a nonmonotonic temporal
behavior of the total spin in the quantum kinetic theory as
opposed to an almost exponential monotonic decay predicted
by the Markovian theory. Moreover, for certain excitation
conditions, even the sign of the spin polarization differs
between these levels of theory.

A detailed analysis allowed us to assign a physical
interpretation to all source terms for the correlations and to
understand their relative importance found in our numerical
studies. With the help of this analysis and our numerical
results, the deviations between the full quantum kinetic theory
and its Markov limit were traced back to the neglect of a
precession dynamics of the correlations in the Markov theory.
This precession is missing in the Markov limit not because of
the assumption of a short memory but due to the perturbative
treatment that is implicit in this approach.
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APPENDIX: ANALYTICAL SOLUTIONS OF THE
MARKOV EQUATIONS

Equation (14a) is a Riccati differential equation

∂

∂t
s
‖
k1

= f s
‖2
k1

− gs
‖
k1

+ h, (A1)

with f = γk1S, g = γk1 (〈S2〉 − 〈S‖2〉) and h = γk1S
nk1 (2−nk1 )

4 .
For f = 0, which is the case if S = 0, the solution of Eq. (A1)
is simply:

s
‖
k1

(t) =
(

s
‖
k1

(0) − h

g

)
e−gt + h

g
. (A2)

For f �= 0, the Riccati equation can be rewritten in terms of a
linear differential equation with eigenvalues:

λ1/2 = − g

2︸︷︷︸
=:μ

±
√

g2

4
− f h︸ ︷︷ ︸

=:ν

. (A3)

The solution of Eq. (A1) is then given by:

s
‖
k1

(t) = μ

f
− ν

f
tanh

(
ϕ

2
+ νt

)
(A4)

where ϕ is determined by the initial value of s
‖
k1

.
Eq. (14b) for the perpendicular spin component assumes

the form:
∂

∂t
s⊥

k1
= (−ξ + f s

‖
k1

)
s⊥

k1
, (A5)

where ξ = 1
2γk1 (〈S2〉 + 〈S‖2〉). Eq. (A5) is solved by

s⊥
k1

(t) = s⊥
k1

(0)e−ξ t e
f

∫ t

0 s
‖
k1

(t ′)dt ′︸ ︷︷ ︸
=:I

. (A6)

For f = 0, I = 1 and the perpendicular spin component
decreases exponentially. Inserting the solution for the parallel
spin component from Eq. (A4) for nonzero f yields:

I = eμt
cosh

(
ϕ

2

)
cosh

(
ϕ

2 + νt
) . (A7)
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[11] L. Cywiński and L. J. Sham, Phys. Rev. B 76, 045205 (2007).
[12] Y. G. Semenov, Phys. Rev. B 67, 115319 (2003).
[13] M. D. Kapetanakis, J. Wang, and I. E. Perakis, J. Opt. Soc. Am.

B 29, A95 (2012).
[14] O. Morandi, Phys. Rev. B 83, 224428 (2011).
[15] C. Thurn and V. M. Axt, Phys. Rev. B 85, 165203 (2012).
[16] C. Thurn, M. Cygorek, V. M. Axt, and T. Kuhn, Phys. Rev. B

87, 205301 (2013).
[17] C. Thurn, M. Cygorek, V. M. Axt, and T. Kuhn, Phys. Rev. B

88, 161302 (2013).
[18] C. Zener, Phys. Rev. 81, 440 (1951).
[19] J. Kossut, Diluted Magnetic Semiconductors, edited by

J. Furdyna and J. Kossut, Semiconductors and Semimetals,
Vol. 25 (Academic Press, San Diego, 1988), p. 185.
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Abstract
Starting from a quantum kinetic theory for the spin dynamics in diluted magnetic
semiconductors, we derive simplified equations that effectively describe the spin transfer
between carriers and magnetic impurities for an arbitrary initial impurity magnetization. Taking
the Markov limit of these effective equations, we obtain good quantitative agreement with the
full quantum kinetic theory for the spin dynamics in bulk systems at high magnetic doping. In
contrast, the standard rate description where the carrier–dopant interaction is treated according to
Fermi’s golden rule, which involves the assumption of a short memory as well as a perturbative
argument, has been shown previously to fail if the impurity magnetization is non-zero. The
Markov limit of the effective equations is derived, assuming only a short memory, while higher
order terms are still accounted for. These higher order terms represent the precession of the
carrier–dopant correlations in the effective magnetic field due to the impurity spins. Numerical
calculations show that the Markov limit of our effective equations reproduces the results of the
full quantum kinetic theory very well. Furthermore, this limit allows for analytical solutions and
for a physically transparent interpretation.

Keywords: spin dynamics, diluted magnetic semiconductors, correlation expansion, Kondo
Hamiltonian

(Some figures may appear in colour only in the online journal)

1. Introduction

Diluted magnetic semiconductors (DMS), in particular Mn
doped II–VI and III–V materials, have been studied for sev-
eral decades [1–19]. However, the theoretical description of
the ultrafast spin dynamics of the magnetic impurities and
carriers is, so far, mostly limited to a single-particle mean-
field picture, where transfer rates are calculated perturbatively
by Fermi’s golden rule. Interesting features of the spin
dynamics in DMS that have been demonstrated in recent
time-resolved Kerr measurements [20], like the non-
monotonous magnetic field dependence of the transverse spin
dephasing time in extremely diluted −Cd x1 MnxTe quantum
wells or the mismatch between the theoretically predicted and

experimentally measured dephasing times for zero magnetic
field, still lack a satisfactory theoretical explanation. To pro-
vide a more elaborate theoretical framework for the discus-
sion and quantitative calculation of the spin dynamics in
DMS, a quantum kinetic theory based on a correlation
expansion has been introduced [21] where the exchange
interaction between free carriers and the d electrons of the Mn
impurities was modelled by a Kondo Hamiltonian. The full
quantum kinetic theory is, however, numerically challenging
and the physical interpretation requires some effort. Hence, it
is a difficult task to efficiently implement other mechanisms
of spin exchange and dephasing into the theory in order to
account for effects that are in many cases needed for a proper
description of real experiments like, e.g., the D’yakonov–
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Perel’ [22], Elliot–Yafet [23, 24] and Bir–Aronov–Pikus [25]
mechanisms. However, it was already shown that for three-
dimensional systems in which the number of Mn impurities
NMn exceeds the number of free carriers Ne, a simplification of
the quantum kinetic theory can be established that reasonably
reproduces results in the case of a vanishing initial Mn
magnetization [26]. This was achieved by a perturbative
treatment of the carrier–impurity interaction as well as the
assumption of a short memory. This procedure yielded the
same rate equations as Fermi’s golden rule. In contrast, for a
nonzero average Mn spin these rate equations were shown to
describe only the electron spin component perpendicular to
the Mn spin well, while a discrepancy in the dynamics of the
parallel electron spin component could be attributed to
neglected terms of higher than leading order in the coupling
constant Jsd of the Kondo Hamiltonian (1) in the perturbative
derivation of the rate equations in [27].

In the present article, we derive approximate equations of
motion for the electron spins in the spirit of the equations in
[27], but take the higher order corrections into account. These
equations describe the effects of the precession of the electron
spins around the effective magnetic field due to the Mn
magnetization and effectively account for a precession-type
dynamics of the electron–Mn correlations that has been
identified previously in [27]. The resulting precession of
electron spins and correlations (PESC) equations are then
discussed and their Markov limit is established which can be
solved analytically. Numerical calculations show that for

≫N NeMn these analytical solutions coincide with the results
of the full quantum kinetic theory, at least in three-dimen-
sional systems. The simplicity of the PESC equations makes
it possible to easily interpret the basic physical processes
involved in the quantum kinetic theory and allows the PESC
equations to provide a suitable framework for further studies
of non-Markovian effects as well as of the interplay between
the s–d interaction and other mechanisms of spin relaxation
and dephasing. In particular, it was shown in [29] on the basis
of the PESC equations that in some materials the Dresselhaus
[30] or Rashba [31] spin–orbit interactions can compete with
the s–d exchange interaction.

It is noteworthy that the derived effective equations are
expected to be applicable not only for the spin dynamics in
DMS, but they can easily be extended to describe more
generally any system, in which a continuum of states is
coupled to localized magnetic impurities via a Kondo-like
Hamiltonian

∑ δ= −( )H J S s R rˆ · ˆ , (1)
Ii

I i
I isd sd

where in the case of DMS Ŝ
I
and ŝi are the spin operators of

the Ith Mn ion and the ith electron, respectively, and R I as
well as ri are the corresponding positions. Similar magnetic
interactions can also arise from nuclear spins due to the Fermi
contact interaction or an effective interaction between
conduction band electrons and localized states, such as in
quantum dots, or quasi-particles, e.g. excitons, in a huge
variety of systems ranging from semiconductor

heterostructures to novel materials such as graphene or
dichalcogenides, since the main difference between these
systems lies in the details of the single-particle band
structures. Therefore, the equations of motion studied here
are of prototypical character for the spin dynamics of
extended systems.

The article is outlined as follows: first, we summarize the
quantum kinetic theory and reproduce the basic equations of
motion where we restrict ourselves to the terms that were
shown in [27] to be numerically important in the case

≫N NeMn . In a next step, we apply a rotating-wave-like
approximation and derive the PESC equations of motion for
the electron spins and occupations. Then, the Markov limit of
the PESC equations is introduced, and the thereby described
physical effects are discussed; in particular the spectral
redistribution of electrons as well as Pauli blocking effects are
shown to arise naturally on this level of theory. Subsequently,
analytical solutions to the Markov limit of the PESC
equations are presented and compared with numerical results
of the full quantum kinetic theory.

2. Method: derivation of effective equations

We will give a short overview of the quantum kinetic theory
for the spin dynamics in DMS developed in [21]. There, a
systematic derivation of equations of motion for the spins of
interacting carriers and Mn impurities in DMS has been
presented accounting for conduction and valance band car-
riers, their coherences, the Mn impurity spins, the correlations
between carriers and impurities as well as the effect of an
external laser field, where a disorder average over the random
distribution of the impurities in the semiconductor was per-
formed. Apart from the corresponding band energies, the
theory accounts for the exchange interaction between carriers
and Mn impurities as well as for the dipole coupling to a
classical laser field.

We want to focus our study on the spin dynamics in
isoelectrically doped bulk DMS starting from a non-equili-
brium state. Such kind of situation can be prepared, e.g., by
optical excitation with circularly polarized light. Since in bulk
systems, the typical timescale of the hole spin relaxation is of
the order of 100 fs [28] due to the strong spin–orbit interac-
tion, we can neglect the valence band and the interband
coherences when concentrating on a ps timescale. The
assumptions and parameters used in the present article can be
realized best in II–VI DMS, whereas in III–V based DMS the
situation can be more involved, e.g., the Mn doping usually
leads to a p-doping in GaMnAs as a side effect. Furthermore,
while the impurities in II–VI DMS are typically found in the
spin- 5

2
configuration of the +Mn2 state, substitutionally

incorporated +Mn3 ions, e.g., in GaMnN can form spin- 4

2
systems [19].

When only the conduction band electrons and the
impurities together with their correlations are considered, the
resulting equations of motion can be simplified as it was
shown in [27]. As dynamical variables we can choose the
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spins sk and occupations nk of conduction band electrons
with wave vector k and average impurity spin 〈 〉S and second
moments 〈 〉γ γS S1 2 as well as the carrier–impurity correlations

β
αQ k

k
1
2 defined by:

∑=
σ

σ σ
= ↑ ↓

n c c a, (2 )
{ }

k k k

,

†
1

1

1 1 1 1

∑=γ

σ σ
σ σ
γ

σ σ
= ↑ ↓

s s c c b, (2 )
{ }

k k k

, ,

†
1

1 2

1 2 1 1 2 1

∑=γ γ

=−

S S P cˆ , (2 )
n n

n n n n
I

,1 2
5
2

5
2

1 2 1 2

∑=γ γ γ γ

=−

S S S S P dˆ , (2 )
n n n

n n n n n n
I

, ,

1 2

0 1 2
5
2

5
2

0 1
1

1 2
2

0 2

∑ ∑=

× −

β
α

σ σ
σ σ
α β

σ σ σ σ

= ↑ ↓ =−

−

Q V s S

c c P c c P

e

ˆ e ˆ ,

(2 )

{ }

( )

n n

n n

k n n
I

n n
I

k
k

k
k k R

k k

, , ,

† i †I

1
2

1 2 1 2
5
2

5
2

1 2 1 2

1 1 2 2 1 2
2 1

1 1 2 2 1 2

⎡
⎣⎢

⎤
⎦⎥

where σc k
†
1 1

and σc k1 1 are the electron creation and annihilation

operators, = ∣ 〉〈 ∣P I n I nˆ , ,n n
I

1 21 2
is the density operator for the

spin-5

2
state of the d electrons of the Ith Mn ion, and the

indices σi as well as ni represent spin indices of the
conduction band electrons and Mn spin states, respectively.
The indices γ and β in equation (2) correspond to the three
space components of the spin. In the definition of the
correlations β

αQ k
k
1
2 the index α runs from 0 to 3. σ σ

αs
1 2

are the
electron spin matrices and the identity matrix (for α = 0),
respectively, and βSn n1 2

are the spin- 5

2
matrices for the Mn

ions. The brackets symbolize the quantum mechanical
average as well as the disorder average over the random
distribution of the Mn positions R I (see [21] and [27] for the
details of the correlation expansion and the truncation
scheme). The equations of motion for the dynamical variables
are then given by [21, 27]:


I∑∑∂

∂
=

=
( )

t
n

J
n

V
Q a

1
2 , (3 )

i

i
i

k

k
k
ksd

Mn

1

3

1 1


I R∑ ∑

ω

ϵ

∂
∂

= ×

+ +

α
α

α α
=

( ) ( )

( )
t
s

J n

V
Q Q

b

s

1

2
,

(3 )

M

i j

ij i
j

k k

k
k
k

k
ksd Mn 0

, 1

3

1 1

1 1

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥



∑ω ω ϵ ω∂
∂

= − − +

+ +

β
α

β
α

γ δ
αγδ

γ
β
δ

β
α

β
α

=

( )
t
Q Q Q

J b b c

i( )

i
, (3 )

M

I

k
k

k k k
k

k
k

k
k

k
k

, 1

3

sd
Res

1
2

2 1 1
2

1
2

1
2

1
2

where V represents the volume of the sample, =n
N

VMn
Mn is

the Mn density and the k-sum has to be performed over all
states in the first Brillouin zone. In equations (3b) and (3c),
the mean field precession frequency and axis of the electrons

around the Mn magnetization ω = 〈 〉n S:M
J

Mn
sd has been

introduced.


ω = =
*

E

m
k

k

2

k
2

describes the single-particle

frequencies of the quasi-free conduction band electrons
assuming a parabolic band structure with effective mass m*

without the electron–Mn exchange interaction. β
αb k

k Res
1
2

comprise residual source terms that were identified in Ref.
[27] to be insignificant if ≫N NeMn and V is large. Therefore,

we will henceforth neglect β
αb k

k Res
1
2 . The relevant source terms

β
αb

I
k
k
1
2 for the correlations, which are given explicitly in

appendix, describe the build-up of correlations between the
impurities and the carriers [27]. The precession-type
dynamics of the carrier–Mn correlations around the effective
magnetic field due to the Mn magnetization are incorporated
via the term proportional to ωM in equation (3c). The neglect
of the latter has been found to be the reason for the failure of
the golden rule-type rate equations of [27] in describing the
parallel spin transfer between the carriers and the magnetic
impurities.

It is, however, possible to account for this precession and
to integrate equation (3c) formally. This is particularly easy if
we use the assumption ≫N NeMn that allows us to regard the
Mn density matrix as nearly constant in time. If the z-axis is
defined to point in the direction of the Mn magnetization, the
correlations are given by:

 ∫= ′ ′β β
ω ω− ′−{ }( )Q J t b t a

i
d ( )e , (4 )

t I t t
k
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k
k0

sd
0
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2 2 1
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In order to simplify equations (4), we follow the line of [27]
and identify fast and slowly changing terms. To this end, we
express the electron spin in the state with wave vector k1

ω φ

ω φ=

+

+

⊥

⊥

∥

( )
( )

s t

s t

s

s :

cos

sin , (5)

M

Mk

k k

k k

k

1

1 1

1 1

1

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

in terms of the spin component parallel to the Mn
magnetization ∥sk1

, the perpendicular spin component ⊥sk1
and

the phase φk1
. A rotating-wave-like approximation is

established, by assuming that these variables ∥sk1
, ⊥sk1

and φk1
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as well as the electron occupation nk1 of the states with k-
vector k1 change only slowly in time, since they are constant
in the mean field approximation. When they are drawn out of
the integrals in equation (4) and the resulting expressions for
the correlations are inserted in the equations of motion (3a)
and (3b) for the electron occupations and spins, we get:

R

R
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∂

= −

+ − ∓
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↑ ↓
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where in favor of a compact notation, the variables for the
occupations and spins have been transformed into the
occupations of the spin-up and spin-down band, i.e., the
diagonal elements of the reduced electron density matrix,
according to:

= ±↑ ↓ ∥n
n

s:
2

. (7)k
k

k1

1

1

The coefficients used in equation (6) are given by

= 〈 〉 ±± ⊥ 〈 〉∥
b S: S2

2
, = 〈 〉∥

b : S0
2

as well as = 〈 〉∥ ∥b S:
2
, where

=∥ 〈 〉
∣ 〈 〉 ∣

S S: ˆ · S

S

ˆ

ˆ is the Mn spin operator component parallel to

the average Mn spin and 〈 〉 = 〈 − 〉⊥ ∥S S S
2 1

2
2 2

. The remaining
integral together with some prefactors are subsumed into the
memory function


∫= ′ω

ω ω ω
−

− ′( )G
J n

V
t: d e . (8)

t

tsd
2

2

Mn 0
i

k
k k k1 1

Equation (6) together with the memory in equation (8)
describe the spin dynamics of the conduction band electron,
where the precession of the electron spins and electron–
impurity correlations are accounted for and will henceforth be
referred to as the PESC (precession of electron spins and
correlations) equations. Note that to account for finite
memory effects, the memory ω

ωG
k
k1 has to be regarded as an

integral operator and the spins and occupations in the rhs of
equation (6) have to be evaluated at the time + ′t t .

3. Results and discussion

3.1. Markov limit of effective equations

Equations (6) are written in terms of dynamical variables that
depend on the k-vector including the angles. This is important
for possible extensions of the theory with k-dependent
effective magnetic fields resulting from, e.g., Dresselhaus [30]
—and Rashba [31]—terms. Without such extensions, angle-
averaged equations can be obtained after going over to the
Markov limit from which the physical meaning of the indi-
vidual terms in the PESC equation (6) will become most
obvious. Technically, this is done by letting the lower integral
bound −t go to −∞ in the memory function ω

ωG
k
k1. The

memory is then given by:


πδ ω ω

ω ω
≈ − −

−ω
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i
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The memory ω
ωG

k
k1 contains a Dirac delta distribution with

respect to the frequencies ωk. This allows us to derive from
the PESC equation (6) closed equations for dynamical
variables that depend only on the frequencies. To this end,
we define the following averaged quantities:

∑
∑
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Due to the delta distribution in equation (9), it becomes clear
that the first term in equation (6a) for the spin-up and spin-
down occupations disappears. Therefore, performing the
Markov limit of equation (6) and averaging over the angles,
we obtain the following equations for the averaged variables

ω
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where ω ω ω= −: M0 1 and ω ω ω= +: M2 1 . Here, we have
used that in the quasi-continuum limit ∑ ∫ ω ω→ Dd ( )

k
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with ωD ( ) being the density of states (DOS), and thus:
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Therefore, it can be seen from equations (11a) and (11b) that
in the Markov limit of the PESC equations, the only
dynamical variables entering the equation of motion for the
spin-up electrons ω

↑n
1
with frequency ω1 are ω

↓n
2
and ω

↑n
1
itself.

Equally, the time evolution of ω
↓n

2
only depends on ω

↑n
1
and

ω
↓n

2
, so that this pair of occupations is completely decoupled

from the rest of the dynamical variables. Furthermore, the
total number of electrons in the pair of occupations ω

↑n
1
and

ω
↓n

2
is conserved, since from equations (11a) and (11b) it

follows:

∂
∂

=ω
t
z a0, (13 )1

where

ω ω= +ω ω ω
↑ ↓z D n D n b: ( ) ( ) . (13 )1 21 1 2

Equation (13a) allows us to merge equations (11a) and (11b)
into a one-dimensional differential equation:
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for the spectral electron density in the spin-up subband
ω=ω ω

↑x D n: ( )11 1
.

The last term in equations (11a) and (11b), respectively,

is a consequence of the source terms β
αb

I
k
k .2
1
2 in [27] which

were associated with Pauli blocking in the golden rule-type
rate equations that did not account for the precession of the
correlations. This fact is also visible here, since for ≈ω

↑n 1
1

,
equation (11a) yields
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while without the last term of equation (11a), the limit would
be
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Since the minimal value of 〈 〉⊥S
2

is 35

12
which is greater than

the maximal value of 〈 〉∥S

2
of 5

4
, the rhs of equation (15a) is

always non-positive, so an over-occupation of ω
↑n

1
with values

greater than 1 is averted. In contrast, in equation (15b) the
occupation ω

↑n
1
can exceed the physically reasonable limit of

1, e.g., in the case ≈ω
↓n 1

2
. Thus, again, the terms resulting

from β
αb

I
k
k .2
1
2 in [27] are shown to provide for Pauli blocking

effects.
The equation of motion (11c) for the electron spin

component perpendicular to the Mn magnetization suggest an
almost exponential decay to zero, but the occupations of the
spin-up electrons at ω ω− M1 and spin-down electrons at
ω ω+ M1 enter in the effective decay rate. The appearance of

the occupations is also due to the β
αb

I
k
k .2
1
2 terms Here, they do

not represent Pauli blocking, but are a remnant of the
Landau–Lifshitz–Gilbert-like damping term structure in the
Markov limit in [27], since:
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In fact, comparing the derivation of the Markov limit
with and without accounting for the precession of the corre-
lations it can easily be seen that the PESC Markov
equation (12) lead to the Markov equation (10) of [27], when
ωM is set to zero in the memory terms ω

ω ω±G M1 .

3.2. Analytical solutions

The Markov limit of the PESC equations allows us to find
analytic solutions which we will derive in the following.

3.2.1. Without Pauli blocking. If the terms resulting from

β
αb

I
k
k .2
1
2 are neglected, equations (11a) and (11b) yield:

ω ω ω∂
∂

= − + +ω ω ω
+ − +( )

t
x c D b D b x cD b z( ) ( ) ( ) .

(18)

1 2 11 1 1

The solution of equation (18) decays exponentially:

ξ ξ= − +ω ω ω
η

ω
− ω( )x t x a( ) (0) e , (19 )t

1 1 1
1

1

with

η ω ω= +ω
+ −( )c D b D b b: ( ) ( ) , (19 )1 21

ξ
ω

ω ω
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+ω ω

+

+ −
D b

D b D b
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( ) ( )
. (19 )1

1 2
1 1

It should be noted that for ω ω→D D( ) ( )2 1 , the rate ηω1

reaches the same value as for the rate equations of [27] and
Fermi’s golden rule [1, 26] when only the parabolic band
energy is accounted for the initial and final states. Here, ηω1

describes rates that can be derived with Fermi’s golden rule,
when the mean field energy difference between electrons in
the spin-up and spin-down subbands ωM is substituted into
the band structure and transitions between these now non-
degenerate subbands are considered.
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Furthermore, without the terms originating from β
αb

I
k
k .2
1
2 ,

the perpendicular component of the electron spin changes
according to

ω ω ω

∂
∂

= − + +

ω

γ

ω

⊥

⊥

∥

=

⊥

ω
⊥

  

( )

t
s

c D D
S

D S s( ) ( )
2

( )

(20)
0 2

2

1
2

:

1

1

1

⎧
⎨⎪

⎩⎪

⎫
⎬⎪

⎭⎪

which is solved by

=ω ω
γ⊥ ⊥ − ω

⊥
s t s( ) (0)e . (21)t

1 1
1

It should be noted that neglecting the β
αb

I
k
k .2
1
2 terms in the

rate equations without accounting for the precession of the
correlations yielded the same expression for the rate that can
also be obtained by letting ωD ( )0 and ωD ( )2 go to ωD ( )1 in
equation (20). In [27] it was found that including the
precession of the correlation in the calculation did not
significantly change the spin dynamics of the perpendicular
component. Now, this can be understood by Taylor-expand-
ing the DOS. Since in three dimensions, the DOS is
proportional to the square root of ω, we find:

ω ω ω
ω
ω

± = ±D D a( ) ( ) 1 (22 )M
M

1 1
1

and therefore

ω ω ω
ω
ω

+ = + D D D b( ) ( ) 2 ( ) . (22 )M
0 2 1

1

2⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

Since the difference between the rates for the perpendicular
component with and without accounting for the precession of
the correlations is of second order of the ratio ω

ω
M

1
, significant

deviations can only be expected for small values of ω1. There,
however, the DOS is rather small.

3.2.2. With Pauli blocking. Equation (14) is a Riccati
differential equation with constant coefficients. Also in the
case of golden rule-type rate equations derived from the
original quantum kinetic theory, where the precession of the
correlations around the Mn magnetization is neglected, we
found an equation for the parallel electron spin component of
this form [27]. The solutions of equation (14) can be obtained
along the line of the appendix in [27]:

μ ν φ
ν= − +ω

ω ω ω
ωx t

cb cb
t a( )

2 2
tanh

2
, (23 )

0 01

1 1 1

1

⎛
⎝⎜

⎞
⎠⎟

with

μ ω ω

ν μ ω

= + +

= −

ω ω

ω ω

+ −

+

c
D b D b b z

c D b b z b

2
( ) ( ) 2 ,

2 ( ) , (23 )

1 2
0

2 2
1

0

1 1

1 1

⎡⎣ ⎤⎦

where ωz 1 and φω1
are determined by the initial values of ω

↑n
1

and ω
↓n

2
.

Finally, the time dependence of the perpendicular spin
component can be calculated using the analytical expressions
for ω

↑n
0
and ω

↓n
2
and reads:

∫=ω ω
γ ω ω⊥ ⊥ − − ′ ′ − ′ω ω ω

⊥ ↑ ↓( )s t s( ) (0)e e .

(24)

t b c t D n t D n td ( ) ( ) ( ) ( )
t

1 1
1

0

0
0 0 2 2

In order to explicitly give the corresponding analytical
expressions we have to distinguish two cases:

For ω ω< M1 , ωD ( )0 vanishes and we find from
equation (24):

=ω ω
γ μ

ν

φ
⊥ ⊥ − −

+
ω ω ω

φω
ω

ω

⊥ ( )( )s t s a( ) (0)e e , (25 )t b cz t
tcosh

cosh
2

1 1
1

0
1

1
2 1

1

2 1

1⎛
⎝⎜

⎞
⎠⎟

and for ω ω> M1 we obtain:

=

×

ω ω
γ μ μ

ν ν

φ

⊥ ⊥ − − −

+ +

ω ω ω ω

φω
ω

φω

φω
ω

ω

⊥

( )
( )

( )

( )s t s

b

( ) (0)e e

. (25 )

t b cz t

t t

1
2

1
2

cosh

cosh

cosh

cosh
2

1 1
1

0
1 0 1

1

2 1

1

2

0

2 0

0⎛
⎝⎜

⎞
⎠⎟

3.3. Numerical studies

The validity of the approximations used to derive the Markov
limit PESC equation (11) is now checked by comparing the
predicted spin dynamics with the results of the full quantum
kinetic theory of [21] including also the residual terms that are

denoted as β
αb k

k Res
1
2 in equation (3c). We modeled a bulk DMS

of Zn0.93Mn Se0.07 with the following parameters: the Kondo
coupling constant =J 12sd meVnm3, the effective mass

=m m0.21e 0 and an initial average Mn spin of 1

2
along the

z-axis. These parameters are chosen as a compromise
between, on the one hand, realistic parameters to model
situations that could be explored experimentally, and on the
other hand to provide a resonable test for the derived
equation: a particularly large effective mass and a relatively
high doping concentration lead to strong effects of the s–d
interaction on the spin dynamics [26]. The coupling constant
does not vary drastically between the different DMS materi-
als. Furthermore, the difference between the different levels
of theory, especially the role of the Pauli blocking terms, can
be particularly highlighted by choosing initial non-equili-
brium conditions, where the initial electron occupations are
modeled by step functions (cf figure 1)1.

In a first calculation, the spin-up subband occupation was
initially a step function with a cut-off energy at μ = 3 meV
for electrons in the spin-up subband, while the spin-down
subband was totally unoccupied for t = 0. The results are

1 If the Pauli blocking terms are neglected, the equations are linear in sk and
nk. Therefore, the solutions of the equations for other initial occupations can
be written as linear combinations of the solutions for the step functions.
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shown in figure 1(a) where we plot the modulus of the total
spin polarization

∑ ∑=
−

ns s
1

2
. (26)

k

k

k

ktot

1⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

There, the spin polarization is shown to decrease almost
exponentially from the initially completely polarized config-
uration to a negative value according to the full quantum
kinetic theory. While the calculation without accounting for
the precession of the correlations deviates from the full
quantum kinetic theory significantly, as it was already found
in [27], the Markov limit of the PESC equations is able to
reproduce the results of the full quantum kinetic theory almost
perfectly. By comparison with the calculation neglecting the

source terms β
αb

I
k
k .2

2
1 it can be seen that for the initial values

used in this calculation, Pauli blocking effects are of minor
importance.

Figure 1(b) depicts the energetic redistribution of the
electrons: the initial step-like spin-up occupation evolves into
a structure with two peaks; one in the spin-down and one in
the spin-up band. The spin-up electrons with energy ω1 are
redistributed to states with energy  ω ω+ M1 which is pre-
dicted by the Markov limit of the PESC equation (6) due to
terms proportional to δ ω ω ω− ±( ( ))Mk k1 . In contrast, when
the precession of the correlations are neglected, the spin-down
peak builds up at the same energetic position as the spin-up
peak as the shift by ωM , which accounts for the precession-
like dynamics of the Mn-carrier correlations, is missing in the
delta distribution. The skewness of the peaks in figure 1(b)
arises from the square-root dependence of the DOS on the
energy in a three-dimensional system. The fact that a small

tail is found below the spin-down peak representing occu-
pations of states with energies lower than ωM as well as a
build-up of a high energy tail of the spin-up peak demonstrate
slight non-Markovian deviations from the Dirac delta-like
memory in the Markov limit of equation (9). These effects
are, however, too small to influence the time dependence of
the total spin polarization significantly.

Figure 2 displays the time evolution of the electron spin
polarization for a situation where the initial conditions were
chosen as in the calculations for figure 1, except that the
average Mn spin is now turned ◦90 away from the electron
spin. Unlike the case discussed before, the spin polarization
vector stot now has components parallel and perpendicular to
the Mn magnetization. Figure 2(a) shows a build-up of the
spin polarization parallel to the Mn magnetization according
to the full quantum kinetic theory which coincides with the
calculations in the Markov limit of the PESC equations and
the simulations without accounting for Pauli blocking. As in
the previous calculations, the solution of the golden rule-type
rate equation of [27] deviates significantly from the other
calculations, since the energetic redistribution of the electrons
is neglected. The time evolution of the perpendicular electron
spin shown in figure 2(b), however, is almost the same in all
of the above calculations which can be understood by con-
sidering equation (22).

In the following, we want to discuss the effects of Pauli
blocking. To this end, we study a case, where both subbands
are initially partly occupied and where the spin dynamics is
especially clear: we use initial conditions that describe a
situation, where the spin polarization is expected to be nearly
constant if Pauli blocking is taken into account. Then, if we
calculate the spin dynamics while neglecting the terms

Figure 1. (a) Time evolution of the electron spin polarization of an initially step-like electron occupation in the spin-up subband. The red solid
line is the result of a calculation using the full quantum kinetic theory (QKT) (see [21]). The green dashed line is derived from the rate
equations without taking the precession of the correlations (w/o Prec. Corr.) into account (see [27]). The black crosses represent calculations

of the quantum kinetic theory where the Pauli blocking terms β
αb

I
k
k .2
2
1 are neglected. The blue circles describe the spin dynamics according to

the Markov limit of the PESC equation (11). (b) Electron distributions at times t = 0 ps and t = 15 ps calculated using the full quantum kinetic
theory and the Markov limit PESC equations, respectively.
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responsible for Pauli blocking effects, we can attribute the
non-constant behavior to these effects. If the Hamiltonian (1)
is treated on the mean field level, the equilibrium occupations
at T = 0 of the spin-down and spin-up subbands follow spin-
split Fermi distributions, i.e., step-functions, whose cut-off
energies, measured from the respective band edge, differ by
ωM . The results of the calculations with these initial con-
ditions are given in figure 3. Since the full quantum kinetic
theory also accounts for the correlation energies, very small
changes in the electron spin polarization are found, which are
due to the build-up of correlations over the course of time.

Figure 3(a) shows that the Markov limit of the PESC
equations again yields nearly the same spin dynamics as the
full quantum kinetic theory, while the rate equations without
precession of the correlations fail to describe the spin polar-
ization, since different states are coupled due to the neglect of
ωM in the Dirac delta function of the memory. The calcula-
tions involving the quantum kinetic theory without the Pauli
blocking terms lead to surprisingly small deviations from the
full quantum kinetic theory concerning the total spin polar-
ization displayed in figure 3(a), despite the unphysical build-
up of occupations >ω

↑n 1 for some values of ω seen in

Figure 2. Time evolution of the spin polarization parallel (a) and perpendicular (b) to the Mn magnetization. The initial electron distribution is
the same as in figure 1, except that the Mn magnetization was rotated 90° into a direction perpendicular to the initial electron spin (key as in
figure 1(a).

Figure 3. Time evolution of the spin polarization (a) and electron redistribution (b) of an initially step-like occupation of electrons where the
difference of the cut-offs of the spin-up and spin-down subband occupations is ωM . In (b), the occupations are plotted for calculations based

on the full quantum kinetic theory with and without the terms β
αb

I
k
k .2
2
1 accounting for Pauli blocking.
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figure 3(b). The electron occupations after t = 15 ps depicted
in figure 3(b) essentially follow the original step functions for
the two spin orientations, but since the edges are smoothed
due to the non-Markovian deviations from the delta dis-
tribution in the memory, they resemble Fermi distributions
with an finite effective temperature.

4. Conclusion

We have derived effective equations of motion
(cf equation (6)) for the conduction band electron spins and
occupations starting from a microscopic quantum kinetic
theory using a rotating-wave-like ansatz. These equations
account for the precession of the electron spins around the
effective magnetic field due to the Mn magnetization as well
as for a precession-like dynamics of the electron–Mn corre-
lation functions. Therefore, in this article they are referred to
as PESC equations. The PESC equations can be more easily
interpreted as the original quantum kinetic equations. They
also provide an important speed-up of the numerics, in par-
ticular, when the Markov limit of the PESC equations is used.
The spin dynamics for high Mn doping in three-dimensional
systems derived from our effective equations in the Markov
limit are demonstrated by numerical calculations to agree well
with the corresponding results of the original quantum kinetic
theory. This resolves the deficiency of the golden rule-type
rate equations of [27] for the case of a finite initial impurity
magnetization. Even though the PESC equations can in
principle describe non-Markovian effects as well as Pauli
blocking, the numerical studies suggest that these are of
minor importance for the time evolution of the total electron
spin polarization, at least for the situations studied in this
paper.

The Markov limit of the PESC equation (11) can be
readily interpreted: for a positive coupling constant Jsd, spin-
up electrons can gain energy in the mean field due to the Mn
magnetization by a spin-flip process to the spin-down sub-
band. Due to the total energy conservation, this energy is
transformed into kinetic energy. Therefore, a spin-up state
couples effectively only to a spin-down state with a kinetic
energy ωM greater than the spin-up state energy and vice-
versa. The resulting equation can be solved analytically
yielding a time dependence of the electron spin polarization
following a tanh-function. If the Pauli blocking terms are
neglected, the equations are solved by a simple decaying
exponential function with a rate that can also be obtained by
applying Fermi’s golden rule, if the mean field energy of an
electron in the effective field of the Mn magnetization is
included into the single particle energies.

Numerical studies of the energetic redistribution of the
electrons in the full quantum kinetic theory support the
findings of the delta-like coupling of states in energy space in
general, but slight deviations from this Markovian prediction
can be seen especially in the smoothing of sharp edges of the
initial electron occupations. It is expected that the non-Mar-
kovian features will be more important in two-dimensional
systems [26, 32]. The PESC equations in the Markov limit

derived in this paper can provide a suitable framework for
further investigations of these effects. In addition, their
numerical simplicity allows for the introduction of other
mechanisms of spin relaxation to study reliably their com-
petition with the s–d exchange interaction which would be a
demanding task within the original quantum kinetic theory.
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Appendix. Source terms for the carrier–impurity
correlations

The source terms β
αb

I
k
k
1
2 for the carrier–impurity correlations

β
αQ k

k
1
2 in equation (3c) are

∑= −β
α

γ

γ β γ α β γ α γ( )b S S s s S S s s , (A.1)
I

k
k

k k k k1
2

2 1 1 2

where for α = {1, 2, 3}
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We study theoretically the ultrafast spin dynamics of II-VI diluted magnetic semiconductors in the presence of
spin-orbit interaction. Our goal is to explore the interplay or competition between the exchange sd coupling and the
spin-orbit interaction in both bulk and quantum-well systems. For bulk materials we concentrate on Zn1−xMnxSe
and take into account the Dresselhaus interaction, while for quantum wells we examine Hg1−x−yMnxCdyTe
systems with a strong Rashba coupling. Our calculations were performed with a recently developed formalism
which incorporates electronic correlations beyond mean-field theory originating from the exchange sd coupling.
For both bulk and quasi-two-dimensional systems we find that, by varying the system parameters within realistic
ranges, either of the two interactions can be chosen to play a dominant role or they can compete on an equal footing
with each other. The most notable effect of the spin-orbit interaction in both types of system is the appearance
of strong oscillations where the exchange sd coupling by itself causes only an exponential decay of the mean
electronic spin components. The mean-field approximation is also studied and an analytical interpretation is
given as to why it shows a strong suppression of the spin-orbit-induced dephasing of the spin component parallel
to the Mn magnetic field.

DOI: 10.1103/PhysRevB.91.195201 PACS number(s): 75.78.Jp, 75.50.Pp, 75.70.Tj, 75.30.Hx

I. INTRODUCTION

Diluted magnetic semiconductors (DMSs) are multifunc-
tional materials that combine the outstanding electronic and
optical properties of semiconductors with highly controllable
magnetic properties [1,2]. With the prospect of spintronic
applications of DMSs in mind, much effort has focused
recently on the study of ultrafast spin dynamics and control
[3–9]. At the same time, spin-orbit interaction (SOI) effects
have been intensely studied in nonmagnetic bulk and nanos-
tructured semiconductors [10–15]. The interplay between the
exchange interaction characteristic of DMSs and the more
generic SOI can lead to new possibilities for applications and
basic research [16–21]. In particular, the spin-orbit torque
effect in DMSs has attracted much interest in recent years
[22–29].

In this article we explore this interplay theoretically by
studying the ultrafast spin dynamics of a nonequilibrium
electron distribution in the conduction band of II-VI Mn-doped
semiconductors. Our work is based on a microscopic density-
matrix theory that models on a quantum-kinetic level the
spin precession and the spin transfer between electrons in the
conduction band of such semiconductors and the manganese
electrons, and which accounts for exchange-induced correla-
tions beyond the mean-field level and considers the localized
character of the Mn spins [30]. This recently developed
formalism is quite general and can be computationally costly
to apply in some circumstances. For this reason, in the present
study we consider a particular situation which is nevertheless
experimentally relevant and theoretically interesting: the limit
of high Mn density compared to the electron density, which
is normally realized in photoexcitation experiments. In this
particular regime we can apply a simplified formalism which
captures the essential physics that is relevant here and which
greatly reduces the numerical effort [31].

The purpose of our study is to determine under which con-
ditions, if any, the spin-orbit-interaction mechanisms present
in semiconductors can become relevant or even dominant in
the picosecond-time-scale spin dynamics in DMSs. As will be
seen here, for both bulk and quasi-two-dimensional systems,
depending on the choice of material parameters and excitation
conditions, there can be a strong interplay or competition
between the two types of interaction. This rather unexplored
combined effect between exchange and SOI in DMS could
lead in principle to new forms of spin control suitable for
spintronic applications.

This article is organized as follows. In Sec. II A we present
the model Hamiltonian of the DMSs with spin-orbit interaction
and in Sec. II B we review the equations of motion that
describe the spin dynamics in the formalism adopted here.
In Secs. III and IV we present and discuss our results for
bulk Zn1−xMnxSe and for Hg1−x−yMnxCdyTe quantum wells,
respectively. Finally, we provide some concluding remarks.

II. QUANTUM-KINETIC FORMALISM

A. DMS Hamiltonian

The theoretical model of DMSs for our work includes the
exchange sd coupling between electrons in the conduction
band and d electrons of the doping Mn atoms and the SOI of
conduction-band electrons expressed in the envelope-function
approximation. The Hamiltonian has the form

H = H0 + Hsd + HSO, (1)

where H0 = ∑
i p2

i /2m∗, with conduction-band effective mass
m∗, and the Kondo-like Hamiltonian [30]

Hsd = Jsd

∑
iI

si · SI δ(ri − RI ) (2)

describes the coupling due to the exchange interaction between
the conduction-band electrons and the Mn electrons. The spin
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operator and position of the I th Mn atom (ith conduction-band
electron) are denoted as SI and RI (si and ri), respectively.
The coupling constant Jsd is negative here, corresponding to a
ferromagnetic coupling [32]. In the present work the negative
Landé factor of Mn will always be combined with the negative
sign of the coupling constant Jsd. In addition, all spin variables
will be considered dimensionless and the coupling constant
accordingly modified.

For bulk materials, the SOI Hamiltonian HSO of zinc blende
semiconductors is the Dresselhaus Hamiltonian [33]

HD = γD

∑
i

[
σi,xki,x

(
k2
i,y − k2

i,z

) + cyclic perm.
]
, (3)

where σ is the vector of Pauli matrices and k is the
operator p/�. For quasi-two-dimensional systems, we consider
asymmetric quantum wells which display the Rashba SOI [34]

HR = αR

∑
i

(ki,yσi,x − ki,xσi,y). (4)

These effective spin-orbit couplings can be thought of as
interactions of a spin with k-dependent magnetic fields.

B. Equations of motion

In Refs. [30,31,35], the Heisenberg equations of motion
of the density matrix for DMSs without SOI were posed
and analyzed in terms of a correlation hierarchy which
includes averaging of the Mn-atom positions, thus rendering
the problem spatially homogeneous. In this work we follow
that formalism and extend it in a simple fashion in order to
study the effects of the SOI on the electronic spin degree of
freedom.

When the number of Mn atoms (NMn) is much larger than
the number of conduction-band electrons (Ne), i.e. in the
limit NMn � Ne, the quantum-kinetic equations established
in Ref. [30] can be significantly simplified. This assumption
can be easily fulfilled for intrinsic semiconductors in which
the Mn2+ ions are incorporated isoelectronically, as in the
case of II-VI semiconductors [36]. Unlike the situation
in, for example, III-V-based DMSs, where the Mn doping
results in a large number of holes, in isoelectronically doped
systems the density of free carriers is controlled solely by
the photoexcitation and thus can be kept much smaller than
the Mn density simply by using low laser intensities. Here we
consider electrons excited with typical narrowband laser pulses
with near-band-gap energies and low intensities. Employing
the approximation of low electron density as compared to the
Mn doping density, we have developed a simplified formalism
[31] based on the full model of Ref. [30], which allows

a numerically efficient handling of electronic correlations.
Here we adopt the low-electron-density limit and follow the
formalism of Ref. [31].

FIG. 1. (a) Schematic representation of the conduction band (CB)
and the spectrum of the circularly polarized Gaussian laser pulse that
excites electrons from the valence band to a Gaussian distribution of
spin-up electrons in the conduction band (centered at an energy EC

above the band edge and with standard deviation �). (b) The electron
spin and its components 〈s⊥

k 〉 and 〈s‖
k〉, perpendicular and parallel

to the Mn magnetic field (or equivalently angular frequency ωM),
respectively. Also represented is �k, the angular frequency associated
with the k-dependent spin-orbit effective magnetic field. The electron
spin precesses about ωM + �k.

In the regime NMn � Ne the Mn density matrix can be
considered stationary and we take the z axis along the mean
Mn magnetization 〈S〉. The assumption of a stationary Mn
density matrix has been numerically tested under conditions
comparable with our present case in Refs. [31,35,37,38]. We
introduce a precession frequency for the conduction-band
electrons in the effective magnetic field of the Mn atoms:

ωM = Jsd

�
nMnS, (5)

where nMn is the Mn density and S = |〈S〉|, with 0 � S � 5
2 .

We study the time evolution of the mean value of the spin
operator associated with the state with wave vector k,

〈sk〉 =
∑
σσ ′

sσσ ′ 〈c†σkcσ ′k〉 = (〈s⊥
k 〉,〈s‖

k〉), (6)

where 〈s⊥
k 〉 and 〈s‖

k〉 are the mean spin components perpendic-
ular and parallel to the mean Mn magnetization, respectively
[see Fig. 1(b)]. We take as system variables 〈s⊥

k 〉 and the
populations nσ

k = 〈c†σkcσk〉. The parallel mean spin can be
obtained from the latter as

〈s‖
k〉 = 1

2 (n↑
k − n

↓
k). (7)

Leaving aside for the moment the SOI, the time evolution of
these variables induced by H0 and the sd interaction is given
by [31]

∂

∂t
n

↑/↓
k

∣∣∣∣
sd

=
∑

k′

[
Re

(
Gωk

ωk′
)b‖

2

(
n

↑/↓
k′ − n

↑/↓
k

) + Re
(
Gωk±ωM

ωk′
)(

b±n
↓/↑
k′ − b∓n

↑/↓
k ∓ 2b0n

↑/↓
k n

↓/↑
k′

)]
, (8)

∂

∂t
〈s⊥

k 〉
∣∣∣∣
sd

= −
∑

k′

{[
Re

(
Gωk−ωM

ωk′
)(b+

2
− b0n

↑
k′

)
+ Re

(
Gωk+ωM

ωk′
)(b−

2
+ b0n

↓
k′

)]
〈s⊥

k 〉 + Re
(
Gωk

ωk′
)b‖

2
(〈s⊥

k′ 〉 + 〈s⊥
k 〉)

}

+
{

ωM −
∑

k′

[
Im

(
Gωk−ωM

ωk′
)(b+

2
− b0n

↑
k′

)
− Im

(
Gωk+ωM

ωk′
)(b−

2
+ b0n

↓
k′

)]}
〈S〉
S

× 〈s⊥
k 〉 . (9)
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The constants in Eqs. (8) and (9) depend only on the setting
of the Mn magnetization and are given by b± = 〈S⊥2〉 ± b0,
b0 = 〈S‖〉/2, b‖ = 〈S‖2〉, where S‖ = S · 〈S〉/S, and 〈S⊥2〉 =
〈S2 − S‖2〉/2. We also set ωk = Ek/� = �k2/2m∗.

The function Gωk
ωk′ can be interpreted as a memory function

and has the form

Gωk
ωk′ (t) = J 2

sd nMn

V �2

∫ 0

−t

dt ′ei(ωk′ −ωk)t ′

≈ J 2
sd nMn

V �2
πδ(ωk′ − ωk), (10)

where in the last step we neglected the imaginary part and the
finite memory, i.e., we applied a Markov limit which is a good
approximation for not too large values of J 2

sd and excitations
not too close to the band edge [38].

The spin-orbit Hamiltonians of Eqs. (3) and (4) introduce,
to a first approximation, an additional k-dependent spin
precession. If the contribution of a single electron with wave
vector k to the spin-orbit Hamiltonian is written in the form

HSO = �
2


̂k · σ , (11)

then the mentioned spin precession is described by the
Heisenberg equation of motion of the mean value of the spin
operator introduced in Eq. (6),

∂

∂t
〈sk〉

∣∣∣∣
SO

= 
k × 〈sk〉. (12)

Note that while 
̂k is an operator, we introduced 
k as the
corresponding regular vector where k is interpreted simply as
a wave vector and not as an operator as in Eqs. (3) and (4)
[see Fig. 1(b)]. In the present study we take into account the
influence of the spin-orbit interaction at this level, in order
to elucidate how this added k-dependent precession alters the
quantum spin dynamics in bulk and quasi-two-dimensional
DMSs.

III. BULK Zn1−xMnxSe

In this section we present results for ultrafast spin dy-
namics in bulk semiconductors. For concreteness we focus
on Zn1−xMnxSe which is currently one of the best studied
II-VI DMSs, and, as we will see, it can display an interesting
interplay between exchange and SOI. We first examine numeri-
cally and analytically the dephasing caused by the Dresselhaus
spin-orbit coupling and then we proceed to calculate and
analyze the full dynamics under the influence of both exchange
coupling and SOI.

A. Dresselhaus-induced dephasing

As mentioned in Sec. II A, the spin-orbit interaction in the
envelope-function approximation plays the role of an effective
k-dependent magnetic field around which the electron spin
precesses. This spin precession in the case of an electron
gas leads to global spin dephasing and decay, which is at
the root of the D’yakonov-Perel spin-relaxation mechanism
[39]. As initial condition for the conduction-band electrons
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FIG. 2. (Color online) Dephasing after isotropic Gaussian exci-
tation of the spin-up band (standard deviation � = 3 meV) without
exchange sd coupling in an effective Dresselhaus spin-orbit magnetic
field with prefactor γD , specified in ps−1 nm3. Three of the curves
correspond to a Gaussian excitation centered at the band edge
(EC = 0), while the fourth, marked with (*), corresponds to a
displacement of the excitation to EC = 10 meV above the band edge.

we assume a Gaussian distribution caused by a pulsed optical
excitation, similar to the one illustrated in Fig. 1(a). For
the moment we consider a Gaussian distribution centered
at EC = 0 (the band edge) and later we will consider an
excitation centered at EC = 10 meV, always with standard
deviation � = 3 meV. We assume that the optical excitation
populates only the spin-up conduction-band states thanks to
its appropriate circular polarization. In Fig. 2 we plot the
spin polarization, 〈sz〉(t) = 2N−1

e

∑
k〈sk,z〉(t) (normalized to

1), of the initially spin-up electron population (the z axis
coincides with the main axis of the zinc blende lattice) in
the conduction band versus time for different values of the
Dresselhaus spin-orbit coupling constant γD .

The accepted standard value of γD/� = 13.3 ps−1 nm3

is included [10], and two artificially high values (40 and
100 ps−1 nm3) are added to explore the tendencies of the
decay behavior. We use for the conduction-band effective
mass of ZnSe the value m∗ = 0.134m0 [40], where m0 is
the bare electron mass. The expected dephasing and decay
mentioned above are clearly observed, with faster decay
obtained for increasing SOI coupling constant. Note that the
decay, however, is not exponential from the beginning, but
rather quadratic at short times. Another interesting feature is
that for an excitation 10 meV above the band edge the evolution
displays a nonmonotonic behavior. Below we shall indicate the
origin of this incipiently oscillatory behavior.

The long-time limit of the spin polarization seen in Fig. 2,
which corresponds to the equilibrium distribution caused by
the SOI effective field dephasing, is given by the value 1/3:

lim
t→∞〈sz〉(t) =: 〈seq〉 = 1

3 〈sz〉(t = 0). (13)

This equilibrium value can be understood analytically as
follows. The equation of motion for the spin under the SOI
effective magnetic field, ∂

∂t
〈sk〉|SO = 
k × 〈sk〉, can be cast in
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the matrix form ∂
∂t

〈sk〉|SO = Mk〈sk〉, where

Mk =
⎛
⎝ 0 −
k,z 
k,y


k,z 0 −
k,x

−
k,y 
k,x 0

⎞
⎠ , (14)

and has the formal solution

〈sk〉(t) = exp(Mkt) 〈sk〉(0). (15)

The Taylor expansion of the matrix exponential can be
simplified using that M3

k = −
2
k Mk and M4

k = −
2
k M

2
k,

with 
k = |�k|. One obtains

exp(Mkt) = 1 + sin(
kt)
Mk


k
+ [1 − cos(
kt)]

(
Mk


k

)2

.

(16)

The diagonal elements of this matrix are given by

exp(Mkt)|ii = 
2
k,i


2
k

+
(

1 − 
2
k,i


2
k

)
cos(
kt). (17)

Assuming that initially only the ith spin component is
nonzero, from Eqs. (15) and (17) we obtain 〈ski〉(t) =
exp(Mkt)|ii 〈ski〉(0). Thus, for large times t , this spin compo-
nent, averaged over the isotropically occupied k states, tends
to 〈si〉 = 
2

i /
2 = 1/3 since the effective field is isotropic
(the overbar denotes the average over k states).

Note again that in Fig. 2 the curve corresponding to the
excitation above the band edge displays a nonmonotonic
behavior which is the precursor of an oscillation that can be
seen under stronger SOI. These oscillations will be observed
later in the quantum-well situation, and originate from the
cosine term in Eq. (17), appropriately averaged over the
occupied k states.

B. Interplay between exchange and Dresselhaus interactions

Having verified the dephasing caused by the k-dependent
Dresselhaus effective magnetic field, we now wish to study the
interplay between the exchange sd (sd) and Dresselhaus (D)
couplings. The material parameters of Zn1−xMnxSe related
to the Mn doping used in our simulations are as follows.
The exchange coupling constant of Zn1−xMnxSe is N0α =
260 meV [41], where N0 is the number of unit cells per unit
volume, and α = Jsd in our notation. The lattice constant of
ZnSe is 0.569 nm, the volume of the primitive unit cell is
0.0455 nm3; thus N0 = 22 nm−3, and then Jsd ≈ 12 meV nm3.
We assume a relatively low percentage of Mn doping of 0.3%
which gives a Mn density of 6.6 × 10−2 nm−3. The density of
photoexcited electrons is assumed to be 5 × 10−5 nm−3, i.e.,
three orders of magnitude lower than the Mn density.

We first consider a Gaussian distribution for the conduction-
band electrons centered at the band edge, and take an average
Mn magnetization of S = 0.5. The Mn magnetization can
be simply tuned by applying an external magnetic field in
the desired direction and waiting for the Mn spin to reach
its thermal equilibrium. Thus, we envision an experiment
where the magnetic field is turned off before the pump
laser pulse arrives. Note that the Mn spin-lattice relaxation
time is of the order of 0.1 μs [42], which suffices to carry
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FIG. 3. (Color online) Influence of the Dresselhaus spin-orbit
coupling (D) on the spin dynamics in bulk Zn1−xMnxSe with ex-
change sd coupling (sd) for an initially Gaussian electron occupation
centered at the band edge with standard deviation � = 3 meV and
initial spin polarization rotated 45◦ with respect to the z axis. The Mn
concentration is xMn = 0.3% and the net Mn magnetization S = 0.5.
Red solid lines correspond to the full calculation (sd + D) and green
dotted lines to the calculation leaving out the Dresselhaus coupling
(only sd).

out the ensuing optical excitation experiment studied here
under almost constant Mn magnetization. Figure 3 shows
the time evolution of the parallel, 〈sz〉(t), and perpendicular,
|〈s⊥〉(t)| = 2N−1

e | ∑k〈s⊥
k 〉(t)|, mean spin components. From

now on we use only the realistic value γD/� = 13.3 ps−1 nm3

for the Dresselhaus constant and for concreteness we take
the initial spin polarization rotated 45◦ with respect to the
z axis. The specific choice for this angle is not very relevant,
but it is important to set it to a value different from zero
in order to have spin precession about the Mn field. Since the
Dresselhaus Hamiltonian is cubic in the wave vector, we expect
it to have a relatively weak effect, as compared to the exchange
coupling, on electrons populating low-energy states around
the band edge, and Fig. 3 confirms this expectation. Indeed,
we see that for the parallel spin component the presence
of the Dresselhaus coupling does not modify the dynamics
noticeably [the red solid line (sd + D) and the green dots (only
sd) are superimposed]. For the perpendicular components
there is a noticeable difference, but the two curves are still
qualitatively similar. We have checked that if the Mn concen-
tration and/or the Mn magnetization are increased the effect
of the spin-orbit coupling becomes rapidly negligible also
for the perpendicular spin component. Roughly speaking, the
exchange sd coupling can be thought of as causing two main
effects: a spin precession about the mean Mn magnetization
and spin transfer between conduction-band and Mn electrons.
On the other hand, as seen above, the Dresselhaus spin-orbit
Hamiltonian, by providing a k-dependent effective magnetic
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FIG. 4. (Color online) Influence of the Dresselhaus spin-orbit
coupling (D) on the spin dynamics in bulk Zn1−xMnxSe with ex-
change sd coupling (sd) for an initially Gaussian electron occupation
centered at EC = 10 meV above the band edge with standard
deviation � = 3 meV and initial spin polarization rotated 45◦ with
respect to the z axis. The Mn concentration is xMn = 0.3% and the
net Mn magnetization S = 0.1. Red solid lines, full calculation with
sd + D interactions; green long-dashed lines, only sd; blue short-
dashed line: only D; pink dotted lines, mean-field approximation
with sd + D.

field, induces a global dephasing in the electron population.
The decay seen in both spin components in Fig. 3 is thus a
result of both exchange-induced spin transfer and spin-orbit
dephasing, but the former dominates the dynamics for the
chosen set of parameters.

This raises the question of whether a parameter regime
can be reached experimentally in which the dephasing caused
by the spin-orbit effective field has a considerable influence
on or even dominates the spin dynamics. As mentioned
above, shifting the optical excitation away from the band
edge to higher k values should enhance the effect of the
SOI on the spin dynamics. Furthermore, the influence of
the exchange sd coupling can be reduced by lowering both
the Mn concentration and/or the average Mn magnetization.
Thus, in Fig. 4 we show the time evolution of the parallel
and perpendicular spin components as in Fig. 3, but centering
the Gaussian occupation 10 meV above the band edge and
reducing the Mn magnetization to S = 0.1. The Mn doping
is kept at xMn = 0.3% as before, and for the conduction-band
electrons we choose again an initial spin orientation rotated 45◦
away from the z axis. In the parallel spin component there is
now a noticeable difference between the full calculation (sd +
D) (red solid line) and the sd-only case (green long-dashed
line). A qualitatively new feature is that the combination of
sd and Dresselhaus couplings now produces not only a decay

but also oscillations, revealing a combined spin precession.
In the perpendicular component the spin-orbit coupling has
now an enormous effect, greatly accelerating the decay and
causing superimposed oscillations. The oscillations seen in
Fig. 4 have a frequency close to the precession frequency
associated with the mean Mn magnetic field (ωM = ωMẑ),
ωM = 0.124 Thz (period TM = 50.7 ps). We come back to this
issue after discussing the mean-field approximation which we
now introduce.

It is interesting to elucidate whether a similar spin dynamics
would also be obtained in a simpler scenario combining the
Dresselhaus SOI with a constant magnetic field of appropriate
strength. (This type of problem has been studied recently
from the point of view of impurity entanglement [43] and
spin relaxation [44].) We can readily answer this question by
intentionally leaving the correlation terms out of the equations
of motion [keeping in the right-hand side of Eq. (9) only the
first term of the second line] thus reverting to a mean-field ap-
proximation, which for a given Mn magnetization is equivalent
to adding a constant magnetic field. The result is given by the
pink dotted lines in Fig. 4. For the perpendicular component
we see that the mean-field calculation resembles the full one,
although there is a clearly distinguishable difference between
them. On the other hand, both results are far away from the
sd-only result, and we have to conclude that in this sense
the mean-field approximation does capture an important part
of the interplay between the exchange and spin-orbit couplings.
For the parallel component the mean-field approximation
radically modifies the dynamics. We see here that when the
sd correlations are removed the spin-orbit dephasing is not
capable by itself of inducing a decay in the presence of the spin
precession about the Mn magnetization. In other words, the
longitudinal component does not decay since its Dresselhaus
dephasing is in a sense prevented by the “naked” (without
exchange-induced correlations) precession about the Mn
magnetization. To confirm this point we show in Fig. 4 the spin
dynamics with only the Dresselhaus SOI (no sd coupling) with
blue dotted lines. These curves show the strong decay induced
by spin-orbit dephasing in the absence of both the spin preces-
sion and the spin transfer caused by the exchange coupling.

The origin and frequency of the oscillations mentioned
above, which appear when both interactions are present, and
in both the full and mean-field calculations, can be interpreted
with the help of Eq. (17). For a given k state the precession
frequency is now 
 ≡ 
k + ωMz. In the limit ωM � 
k we
can assume that 
z ≈ 
 ≈ ωM, and using Eqs. (15) and
(17) we obtain 〈sz〉(t) = 〈sz〉(0). This argument applies to
every k state and thus can be extended to the whole electron
population. Then, the precession about the spin-orbit effective
magnetic field of the longitudinal component is suppressed
by the dominant precession about the Mn magnetic field, a
feature that can be seen clearly in the mean-field result of
Fig. 4. If the spin-orbit angular frequency is not completely
neglected we obtain oscillations in the parallel component
with frequency |
k + ωM| and small amplitude proportional
to 1 − (
k,z + ωM)2/|
k + ωM|2, as seen in Fig. 4. We have
verified that increasing the Dresselhaus coupling increases the
amplitude of the oscillations (not shown here). Oscillations of
the same frequency are also present in the perpendicular spin
component.
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IV. Hg1−x− yMnxCd yTe QUANTUM WELLS

We now turn to the study of the influence of the spin-
orbit coupling in II-VI semiconductor quantum wells. In this
case the SOI that we consider is the Rashba coupling (R),
which is present when the quantum-well confinement lacks
inversion symmetry. As explained in the Introduction, the role
of the spin-orbit coupling is conceptually similar in bulk and
in quantum wells, since in both cases it can be thought of
as a k-dependent Zeeman Hamiltonian which induces global
dephasing in an electron gas. However, quantum wells offer
greater flexibility to control the SOI and also display high
electron mobilities in high-quality modulation-doped samples.
High mobilities amount to longer momentum-scattering times
and therefore to more coherent quantum dynamics.

In line with the bulk studies discussed above, we first
tested the spin dynamics in Zn1−xMnxSe quantum wells.
For realistic parameters for this material, it turned out that
the Rashba coupling was too weak to modify the dynamics
driven by the exchange sd coupling. The root of this difficulty
seems to be the large band gap (about 2.8 eV) of ZnSe,
which results in a small Rashba coupling constant. Thus
for the quantum-well calculations we looked for a family
of materials with stronger and more controllable Rashba
interaction. Hg1−xMnxTe is a good candidate since the energy
gap Eg of this ternary compound depends strongly on the
Mn concentration [45], going to zero at x � 6.5%, while its
spin-orbit valence-band splitting � is insensitive to it [46]. This
interesting combination leads to flexible spin-orbit properties,
which are generally controlled by the ratio �/Eg . By choosing
a Mn concentration slightly above 6.5% we can select a very
low energy gap, which leads in turn to a strong Rashba coupling
[47]. However, this lower limit for the Mn concentration is still
too high and leads again to a completely dominant exchange
interaction even for as low a Mn magnetization as S = 0.01
(with sd-coupling-induced spin relaxation times below 5 ps).
This drawback can be overcome by considering instead the
compound Hg1−x−yMnxCdyTe in which the nonmagnetic Cd
atoms replace some of the Mn dopants. This change maintains
the gap tunability via the doping fraction x + y giving full
flexibility regarding the concentration of magnetic ions [46].
The Rashba coupling constant can be calculated with the
expression [16,47]

αR = �2

2m∗
�

Eg

2Eg + �

(Eg + �)(3Eg + 2�)

Vqw

d
. (18)

We work with the effective mass of HgTe m∗ = 0.093 m0

[40], and take the spin-orbit valence-band splitting as
� = 1.08 eV [48]. Assuming Eg = 300 meV, a quantum-
well width d = 200 Å, and a potential energy drop of
Vqw = 50 meV across the quantum well, we obtain αR =
4.87 meV nm (αR/� = 7.4 ps−1nm). Note that for ZnSe one
obtains αR = 0.015 meV nm (αR/� = 0.023 ps−1 nm), a very
low value which leads to negligible spin-orbit effects, as
mentioned before. For the exchange sd coupling constant
of HgMnTe we take N0α = 400 meV [49], and the lattice
constant of 0.645 nm leads to Jsd = 26.8 meV nm3. We keep
the previous Mn concentration of x = 0.3%.

In Fig. 5 we show the time evolution of the parallel and
perpendicular spin components for quantum wells, where now
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FIG. 5. (Color online) Influence of the Rashba spin-orbit cou-
pling (R) on the spin dynamics in a Hg1−x−yMnxCdyTe quantum
well with exchange sd coupling (sd) for an initially Gaussian electron
occupation centered 10 meV above the band edge with standard
deviation of 3 meV and initial spin polarization rotated 45◦ with
respect to the z axis. The Mn concentration is xMn = 0.3% and the
net Mn magnetization S = 0.1. Red solid lines, full calculation with
sd + R; green long-dashed lines, only sd; blue short-dashed lines,
only R; pink dotted lines, mean-field approximation with sd + R.

the parallel component corresponds to the growth direction
of the quantum well (z axis). The Gaussian occupation is
centered 10 meV above the band edge and we consider a
Mn magnetization of S = 0.1. The initial spin orientation is
rotated 45◦ away from the z axis.

Figure 5 shows that while the sd-only curve (green long-
dashed line) follows the usual exponential decay, the full
dynamics with sd + R displays clear oscillations in both
components. We have verified that the amplitude of these
oscillations increases with increasing Rashba coefficient,
which in turn is obtained by lowering the energy gap. The
pink dotted lines in Fig. 5 show the mean-field approximation
results with both sd and R interactions. Here the decay seen
in the perpendicular component is due to the Rashba-induced
dephasing since exchange correlations are absent. The parallel
component maintains an approximately constant mean value
in agreement with the analysis done in the previous section,
and shows a slight decrease of the oscillation amplitude due
to the dephasing induced by the Rashba SOI. We verified
that this amplitude reduction is accelerated by increasing the
Rashba coupling constant. The blue short-dashed lines show
the evolution of the spin with only the Rashba interaction
present (no sd). Here we see the full-fledged oscillations
that had been anticipated in the discussion of Fig. 2. These
oscillations are the collective result of the individual spin
precessions about the effective k-dependent Rashba magnetic
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field. There appears to be no analytical expression or simple
interpretation for the frequency of these oscillations at present.
This frequency depends on many factors such as the Rashba
coefficient, the electron density, and the electronic distribution
(which in our simulations is determined by the mean value
and the standard deviation of the initial Gaussian population).
We have checked numerically that there is a roughly linear
dependence of this frequency on the Rashba coefficient for an
excitation 10 meV above the band edge.

It is unexpected and noteworthy that, in the quantum-well
case, the addition of the spin-orbit interaction to the DMS
produces strong oscillations while at the same time leaves
fairly unchanged the decay rate for our parameters, as can be
seen in Fig. 5 (“only sd” versus “sd + R” curves). Finally,
we point out that the main qualitative difference between the
results shown in Fig. 4 for bulk and Fig. 5 for a quantum well is
that, for the perpendicular spin component in the quantum well,
the sd-only curve stays near the full result and the mean-field
curve moves strongly away, while the opposite behavior occurs
in bulk.

V. CONCLUSION

We studied theoretically the combined effects of the
exchange sd coupling and the spin-orbit interaction in II-
VI diluted magnetic semiconductors, both in bulk and in
quantum wells. Although our results can be considered
generally valid in zinc blende semiconductor systems, we
focused on particular materials that show clearly the interplay
between the two mechanisms: Zn1−xMnxSe for bulk and
Hg1−x−yMnxCdyTe for quantum wells. In our calculations we
employed a recently developed formalism which incorporates
electronic correlations originating from the exchange sd
coupling. The main conclusion of our study is that for both
bulk and quasi-two-dimensional systems there can be a strong
interplay or competition between the two types of interaction,
leading to experimentally detectable signatures (for example
in time-resolved Faraday and Kerr rotation experiments) of
the spin-orbit interaction in DMSs. In bulk we find that the

spin components parallel and perpendicular to the net Mn
magnetization have rather different responses to the presence
of the spin-orbit (Dresselhaus) interaction, the latter being
much more affected by it. Indeed, coherent oscillations—with
a frequency reflecting the precession around a combination of
the Mn magnetization and the Dresselhaus field—develop as
a consequence of the interplay between the two interactions,
which are completely absent when the exchange interaction
dominates. In addition, the decay rate is greatly enhanced
for the perpendicular component by the presence of the
Dresselhaus interaction in the studied regime. Regarding
quantum wells, we find that the exchange interaction tends
to be more dominant over the spin-orbit interaction (Rashba
coupling in this case), which led us to consider a family of
materials with large valence-band-splitting spin-orbit constant
and tunable energy gap. For these DMS materials we obtained
again a strong effect of the spin-orbit interaction, manifesting
itself in the occurrence of oscillations which are not seen
when the exchange interaction acts alone. Remarkably, even
though the combination of exchange and spin-orbit interaction
leads to clearly visible oscillations, the decay of the spin
polarization is practically unaffected by the presence of the
Rashba interaction. These signatures should be detectable
experimentally in pump-and-probe experiments. Finally, for
both bulk and quantum wells we find that in the mean-field
approximation treatment of the exchange interaction there is
a strong suppression of the spin-orbit-induced dephasing of
the spin component parallel to the Mn magnetic field. The
studied interplay between the spin-orbit interaction and the
exchange coupling could improve spin control and thereby
facilitate potential spintronic applications of DMSs.
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Abstract. We study theoretically the ultrafast spin dynamics of II-VI diluted magnetic
quantum wells in the presence of spin-orbit interaction. We extend a recent study where it
was shown that the spin-orbit interaction and the exchange sd coupling in bulk and quantum
wells can compete resulting in qualitatively new dynamics when they act simultaneously.
We concentrate on Hg1−x−yMnxCdyTe quantum wells, which have a highly tunable Rashba
spin-orbit coupling. Our calculations use a recently developed formalism which incorporates
electronic correlations originating from the exchange sd-coupling. We find that the dependence
of electronic spin oscillations on the excess energy changes qualitatively depending on whether
or not the spin-orbit interaction dominates or is of comparable strength with the sd interaction.

Ultrafast spin dynamics in semiconductors is attracting nowadays a great deal of attention.
In a recent article we explored the interplay between the exchange sd interaction (EXI) and the
spin-orbit interaction (SOI) in II-VI diluted magnetic semiconductors (DMS) [1]. In that study
we found that the EXI and the SOI can be tuned to overrun each other or to compete on an
equal level in realistic bulk and quantum well systems. Importantly, we found that the inclusion
of the SOI introduces oscillations in the spin dynamics which are completely absent when only
the EXI is relevant. In the present article, we characterize systematically the decay and the
periods of oscillations seen in the spin dynamics in quantum wells, as functions of the excess
energy of the electron population in the conduction band (mean energy of a Gaussian occupation
of spin-polarized photoexcited electrons). We employ a microscopic density-matrix theory that
models on a quantum-kinetic level the spin dynamics, taking into account the exchange-induced
correlations and the localized character of the Mn spins [2, 3]. For the sake of brevity we shall
only sketch the model here and refer the reader to Refs. [1] and [3] for a complete description.

We consider conduction band electrons in Mn-doped II-VI DMS coming from low-intensity
optical excitations. We work in the regime of electron densities ne much lower than the Mn
density nMn, in which the Mn spin variables are nearly stationary [3, 4, 5, 6]. The spin dynamics

is described by 〈s⊥k 〉(t) and 〈s‖k〉(t), the mean electronic spin components, perpendicular and
parallel to the Mn magnetization, respectively, corresponding to the conduction-band state k.

In this study we concentrate on Hg1−x−yMnxCdyTe quantum wells, since this alloy offers
great flexibility in the control of the Rashba SOI. This control is achieved thanks to the
strong dependence of the band gap on the doping fraction x + y [7]. With this material,
Rashba coefficients of the order of αR ≈ 10 ps−1nm can be obtained for realistic quantum
well specifications [1]. Throughout the paper we shall assume the Mn magnetization to be
perpendicular to the quantum well. Furthermore, we take a Gaussian electron occupation
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Figure 1. Electron spin dynamics in a Hg1−x−yMnxCdyTe quantum well with Rashba
interaction and no exchange sd coupling for a Gaussian electron distribution centered at Ec.
Lines: simulations for different values of αR expressed in units of ps−1nm. Red dots: simple fits
to the first oscillation of the curves with αR = 4 ps−1nm (see text for details).

centered at an energy Ec above the conduction-band edge with a standard deviation of
Es = 3 meV and initial spin-polarization rotated 30◦ with respect to the Mn magnetization.

It is instructive to examine first the spin dynamics resulting only from the Rashba spin-orbit
interaction (i.e., no exchange sd coupling is accounted for). In this case the Mn magnetization
does not enter the dynamics. For later comparison we used, however, the above described
initial condition where the direction of the initial electronic spin is related to direction of the
Mn magnetization. Figure 1 shows the time evolution of the summed parallel spin component,

〈s‖〉(t) =
∑

k〈s
‖
k〉(t), for three different values of the Rashba coupling constant αR. The cases

Ec = 0 (Gaussian occupation centered at the band edge) and Ec = 8 meV are shown. We see
that the Rashba interaction produces well-defined oscillations and decay. Note that without the
EXI, the time evolution of the total spin is given by coherent precessions of individual electron
spins around the k-dependent magnetic Rashba field, which are collectively responsible for the
decay. Red dots in both panels of Fig. 1 are fits to the initial oscillations of the αR = 4 ps−1nm
evolutions, done with a function f(t) ∝ exp [−(t/τ)2] cos (2πt/T ). For a Gaussian electron
distribution with spins pointing in the growth direction, we find from Eq. (17) of Ref. [1]:

〈s‖(t)〉 = C

∫ ∞

0
dk k exp

[
−
(
~2k2 − 2m∗Ec

)2

(2m∗Es)2

]
cos(2αRkt), (1)

where m∗ is the effective mass and C is a constant determined by the initial value of the total
spin. The integral in Eq. (1) is close to the (half-sided) Fourier transform of a function with
a single central peak indicating in time regime a damped oscillation with roughly the peak
frequency. An initially exponential decay of 〈s‖(t)〉 would require a Lorentzian decay in the
energy domain. However, the function in Eq. (1) decays much faster for large k explaining
why the initial behavior of 〈s‖(t)〉 is much better approximated by a Gaussian than by an
exponential. Indeed, Fig. 1 reveals that the Gaussian fit is almost perfect at early times but
worsens somewhat later. Applying the Gaussian fit to a number of different cases we find
that for given Ec both τ ∝ α−1R and T ∝ α−1R hold to a very good approximation. A similar
behavior is observed for |〈s⊥〉(t)| = |∑k〈s⊥k 〉(t)|, whose initial evolution can be well fitted with
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f(t) ∝ exp [−(t/τ)2] cos (2πt/T ) + 1, with the same values of τ and T as for 〈s‖〉(t). We found
that τ and T can be precisely fitted as functions of Ec with parabolas, as seen in Fig. 2. The
decrease of T and the increase of τ with rising Ec reflect the fact that the effective Rashba field
is k dependent becoming stronger for larger k.

Let us now look at the spin dynamics under the influence of the EXI only (no Rashba SOI).
For the EXI coupling constant we take the value Jsd = 26.8 meV nm3 [1]. The effects of the
EXI on the carrier spins can be controlled via the Mn concentration, xMn, and the initial net
Mn magnetization, S = |〈S〉| [1]. The dynamics of the electron spin component parallel to the
Mn magnetization is shown in Fig. 3. As found previously, it is approximately described by an
exponential decay to an in general non-zero equilibrium value with a decay time [cf. Eq.(19)

of Ref. [3]] τ‖ = (J2
sdnMnm

∗/~2d)〈S2 − S‖2〉, where d is the width of the quantum well and

〈S2 − S‖2〉 is a second moment of the spin-52 Mn system. In particular, τ‖ is linear in xMn and
independent of the excess energy Ec. Note that no oscillations appear in the time evolution of
the parallel spin component when only the EXI is present. The perpendicular component decays
to zero with a slightly different rate while it precesses around the Mn magnetization [3].

We now come to the combined effects of the Rashba SOI and EXI. Figure 4 shows the spin
dynamics for xMn = 0.3%, S = 0.1, αR ≈ 4 ps−1nm, and three different values of Ec. Note the
semilog scale chosen to better visualize the long time behavior. This set of parameters defines
a “strong sd” and “weak Rashba” situation. Accordingly, the initial decay is exponential (not
Gaussian like in Fig. 1), with an Ec-independent decay rate, like in Fig. 3. However, at later times
fairly regular oscillations appear, with essentially constant, Ec-dependent amplitude, due to the
presence of the Rashba interaction. We note that the frequency of the oscillations depends only
slightly on Ec, becoming higher for higher Ec, which indicates a slight dependence on the Rashba
mechanism. The frequency of the oscillations (period of about 35 ps) is close to the precession
frequency about the net Mn magnetic field, which is independent of Ec. The oscillations do not
decay because all electrons precess with nearly the same frequency governed mainly by the Mn
magnetization and thus do not dephase. The fact that the amplitude of the oscillations does not

EDISON’19 IOP Publishing
Journal of Physics: Conference Series 647 (2015) 012010 doi:10.1088/1742-6596/647/1/012010

3

Pub 4



 0.001

 0.01

 0.1

 1

0 50 100 150 200

P
ar

al
le

l 
m

ea
n

 s
p

in

Time (ps)

Ec = 0 meV
4 meV
8 meV

Figure 4. Evolution of the mean parallel
electron spin under exchange sd and Rashba
interactions. Parameters: xMn = 0.3%, S =
0.1, αR ≈ 4 ps−1nm, and three values of Ec.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0 50 100 150 200 250 300

P
er

p
en

d
ic

u
la

r 
m

ea
n
 s

p
in

Time (ps)

xMn = 0 %
0.1 %
0.3 %

Figure 5. Evolution of the mean perpen-
dicular electron spin component under ex-
change sd and Rashba interactions. Parame-
ters: αR = 16 ps−1nm, Ec = 8 meV, S = 0.1,
and three values of xMn.

decay with time and the near independence of the period on Ec distinguish qualitatively these
oscillations from the ones observed with Rashba coupling alone. Also note that again there is a
saturation value different from zero as seen above in the sd-only case. However, a new feature
produced by the presence of the Rashba interactions is that the perpendicular spin component
does not go to zero as in the sd-only evolution (not shown for brevity).

Finally, Fig. 5 shows the time evolution of the mean perpendicular spin component under
EXI and SOI for fixed Rashba constant αR = 16 ps−1nm, Ec = 8 meV, and three different values
of xMn. This figure shows the effect of an increasing EXI coupling in the presence of a strong
Rashba coupling on the perpendicular spin component. We see that as the Mn concentration
increases, starting from a Rashba-only situation in which the equilibrium value 〈s⊥k 〉 is half its
initial value [1], a decay to zero sets in. At the same time, the frequency of the oscillations
increases and their amplitude goes down.

In conclusion, we have studied theoretically the effects of the Rashba spin-orbit interaction in
II-VI diluted-magnetic-semiconductor quantum wells. We characterized the dependence of the
spin dynamics on the excess energy of a Gaussian population of electrons in the conduction band.
Our findings provide qualitative signatures that could aid experimentalists in distinguishing the
relative importance of spin-orbit and exchange interactions in DMS quantum wells.
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Quantum kinetic equations of motion for carrier and impurity spins in paramagnetic II-VI diluted magnetic
semiconductors in a k-dependent effective magnetic field are derived, where the carrier-impurity correlations
are taken into account. In the Markov limit, rates for the electron-impurity spin transfer can be derived for
electron spins parallel and perpendicular to the impurity spins corresponding to measurable decay rates in Kerr
experiments in Faraday and Voigt geometry. Our rigorous microscopic quantum kinetic treatment automatically
accounts for the fact that, in an individual spin flip-flop scattering process, a spin flip of an electron is necessarily
accompanied by a flop of an impurity spin in the opposite direction and the corresponding change of the impurity
Zeeman energy influences the final energy of the electron after the scattering event. This shift in the electron
energies after a spin flip-flop scattering process, which usually has been overlooked in the literature, turns out to
be especially important in the case of extremely diluted magnetic semiconductors in an external magnetic field.
As a specific example for a k-dependent effective magnetic field the effects of a Rashba field on the dynamics of
the carrier-impurity correlations in a Hg1−x−yCdyMnxTe quantum well are described. It is found that, although
accounting for the Rashba interaction in the dynamics of the correlations leads to a modified k-space dynamics,
the time evolution of the total carrier spin is not significantly influenced. Furthermore, a connection between the
present theory and the description of collective carrier-impurity precession modes is presented.

DOI: 10.1103/PhysRevB.93.205201

I. INTRODUCTION

Diluted magnetic semiconductors (DMSs) have attracted a
great deal of interest [1–11] as their highly tunable magnetic
properties are ideally suited for adding spintronic function-
alities to otherwise well-established semiconductor technolo-
gies [12–14]. Particularly promising for future technological
applications is the fact that some DMSs, such as Ga1−xMnxAs,
exhibit a ferromagnetic phase [2,15]. The convenient optical
properties also allow, e.g., for the optical switching of the
magnetization [16] in Ga1−xMnxAs. While a comprehensive
unified theoretical description of the magnetism in DMS is
still missing, it is generally accepted that a carrier-mediated
impurity-impurity spin interaction plays a key role [1,17].
Thus, it is crucial to understand the spin physics not only
of the magnetic impurities, but also of the carriers as well
as the details of the spin transfer between carriers and
impurities.

Experimentally, the carrier spins in DMSs are often
investigated optically using time-resolved magneto-optical
Kerr effect (MOKE) measurements [3,10,18], a pump-probe
technique that makes it possible to extract the carrier spin
dynamics with a temporal resolution of ∼100 fs. The experi-
mentally obtained carrier spin dephasing and relaxation rates,
which also include the effects of the spin transfer between
carriers and impurities, can then be used as an input for,
e.g., the theoretical description of spin-wave excitations in
ferromagnetic DMSs [8].

However, a quantitative theoretical explanation for the
values of the carrier spin relaxation rates measured in
MOKE experiments, even in the simplest possible case of
conduction-band electrons in an intrinsic II-VI DMS, has
yet to be found. For example, even such basic quantities

as the magnetic field dependence of the spin transfer rate
between the carrier and impurity systems in paramagnetic
DMSs is still not satisfactorily explained [3]. This is, on the one
hand, due to the large number of factors that simultaneously
play a role in DMSs, like the spin-dependent s-d interaction
between magnetic impurities and carriers, spin dephasing due
to spin-orbit coupling mechanisms [19–21], carrier-carrier
interaction [22], and disorder effects [23]. On the other hand,
even the typically dominant s-d interaction is usually treated
only on the level of the mean-field approximation [24–26],
neglecting the effects of carrier-impurity correlations, which
can be important [8,27,28]. The spin transfer between carriers
and impurities is commonly described by rate equations
where the rates are calculated using Fermi’s “golden rule”
[25,26,29–31].

One problem of this approach is that it is a priori not
clear under which circumstances the perturbative scheme,
which is implicit in the derivation of Fermi’s golden rule,
is applicable. For example, at the band edge, where the band
energies, described by the Hamiltonian H0 of an undoped
semiconductor, are negligible, the s-d interaction cannot be
thought of as a small perturbation to H0. A second deficiency of
the golden-rule treatment is that it gives, by construction, only
the transition rate between energy eigenstates of the system.
However, optical orientation also allows for an injection of
carrier spins perpendicular to an external magnetic field (Voigt
geometry) or the impurity magnetization, respectively [10],
which corresponds to the excitation of superpositions of energy
eigenstates. Thus, the relaxation rate of the transverse carrier
spin component is not provided by Fermi’s golden rule.

A more elaborate treatment of the s-d exchange interaction,
which is also capable of deriving a rate for the spin transfer
of the perpendicular electron-spin component, was given
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by Semenov in a study based on a projection operator
method [32]. Another notable approach to the spin dynamics
in DMS has been provided by the group of Wu [22], which
has developed the kinetic spin Bloch equations (KSBEs)
that account not only for rates for the spin transfer due
to the s-d exchange interaction, but also for a number
of other effects, such as carrier-carrier and carrier-phonon
interaction.

In the present paper, we describe the electron-spin dynamics
in the conduction band, where we focus on paramagnetic
intrinsic II-VI DMSs. We work with a quantum kinetic theory
starting from the s-d exchange Hamiltonian Hsd , where a
correlation expansion scheme was used to formulate equations
of motion for the carrier and impurity density matrices as
well as the carrier-impurity correlation functions [33]. This
approach allows a nonperturbative description of far-from-
equilibrium situations. The golden-rule rate equations can be
deduced from the quantum kinetic theory as a Markovian
limit [34,35]. In the same limit, also the rates for the carrier
spin component perpendicular to the impurity magnetization
can be derived [36]. Furthermore, the applicability of the
Markovian limit and therewith the golden-rule rate equations
can be checked by direct comparison of the full quantum
kinetic theory with its Markovian limit [36]. It was found
that for an agreement between the quantum kinetic and
the Markovian predictions, it is essential to account for a
precessionlike motion of the carrier-impurity correlations.
Therefore, effective equations which capture the essential
features of the full quantum kinetic equations that also include
the correlation dynamics were called precession of electron
spins and correlations (PESCs) equations [37].

For vanishing external magnetic field and impurity mag-
netization, all of the above theories contain the same rate
equations that can also be found with Fermi’s golden rule
as a special case. In contrast, in the presence of an external
magnetic field which leads to a finite impurity magnetization
in the equilibrium of a paramagnetic DMS, the predictions
of the different theories deviate from each other. In order to
compare these theories, we extend the quantum kinetic theory
of Ref. [33] to take into account the Zeeman interaction of
carriers and impurities in a magnetic field.

We also allow for a k dependence of an effective magnetic
field, which makes it possible to discuss the effects of
Dresselhaus [20] or Rashba [19] spin-orbit coupling or a
k-dependent g factor on the spin dynamics in DMSs. In
contrast to previous treatments [21] where the PESC equations
were extended by adding a k-dependent precession term to
the time evolution of the carrier spins, in the present paper
the k-dependent effective magnetic field is incorporated on
a microscopic quantum kinetic level which also leads to a
modification of the equations of motion for the carrier-impurity
correlations. Another point of view is that, while the approach
of Ref. [21] accounts for the k-dependent field between
carrier-impurity spin-flip scattering events, in the present
theory the effective magnetic field also acts during the spin-flip
scattering. Formally this situation is similar to that of, e.g., the
intracollisional field effect [38], where the effects of an external
field that acts during a scattering event (phonon-emission in the
case of Ref. [38]) can indeed change the optical and transport
properties qualitatively.

Furthermore, here we account for the fact that the impurity
spin is a z-dependent (growth direction of the quantum
well) dynamical variable which can change over time. This
connects the present theory to the description of collective
carrier-impurity precession modes [11,39,40].

The paper is outlined as follows: First, we derive the Markov
limit of quantum kinetic equations accounting for the s-d
interaction, a possibly k-dependent effective magnetic field
and the z dependence of the carrier envelope function. Then,
we present results for the magnetic field dependence of the
carrier-impurity spin transfer rates and compare it with the
results predicted by several other theories. Next, we answer
the question to what extent spin-orbit couplings that lead to a
k-dependent effective magnetic field influence the spin transfer
dynamics, in particular with respect to the dynamics of the
carrier-impurity correlations. Finally, we show how the theory
of the present paper can be related to the theory employed
in the discussion of collective carrier-impurity precession
modes [39].

II. THEORY

A. DMS Hamiltonian

The Hamiltonian for electrons and impurities in DMS can
be modelled by

H = H0 + He
Z + HMn

Z + Hsd, (1)

where H0 describes the conduction band of a semiconductor
crystal and can be written as

H0 =
∑

k

∑
σ

�ωkc
†
kσ ckσ +

∑
k

∑
σ,σ ′

��k · sσσ ′c
†
kσ ckσ ′ . (2)

c
†
kσ and ckσ are the creation and annihilation operators for

electrons with wave vector k in the spin subband σ ∈ {↑,↓}.
ωk describes the diagonal, i.e., the spin independent, part of
H0 while �k is the k-dependent effective magnetic field, e.g.,
due to spin-orbit interactions. The electron-spin matrix vector
sσσ ′ = 1

2σ σσ ′ is proportional to the vector of Pauli matrices
σ σσ ′ .1

He
Z and HMn

Z are the Zeeman energies for carriers and
impurities, respectively:

He
Z =

∑
kσσ ′

ge(k)μBB · sσσ ′c
†
kσ ckσ ′ , (3)

HMn
Z =

∑
Inn′

gMnμBB · Snn′ P̂ I
nn′ , (4)

where ge and gMn are the electron and impurity g factors
and B is the externally applied magnetic field. In general,
ge may depend on the electron wave vector which, e.g.,
gives rise to the imhomogeneous-g-factor spin dephasing
mechanism [41,42] which is essential for the description of
the magnetic field dependence of the spin decay time in
nonmagnetic semiconductors [43]. Snn′ are the spin matrices

1Here, we use the convention that the factor � which appears in
the spin matrices in the SI system is instead included in μB and Jsd ,
respectively.

205201-2

Pub 5



CARRIER-IMPURITY SPIN TRANSFER DYNAMICS IN . . . PHYSICAL REVIEW B 93, 205201 (2016)

for the impurities with, in the case of manganese, S = 5
2 , so

that n,n′ ∈ {− 5
2 , − 3

2 , . . . , 5
2 }. The impurity spin is described

by the operator P̂ I
nn′ = |I,n〉〈I,n′| where |I,n〉 is the nth spin

state of the I th impurity ion.
The most important part of the Hamiltonian for the spin

dynamics in DMSs is the s-d exchange interaction which, in
real space, has the form

Hsd = Jsd

∑
I,n,n′,
i,σ,σ ′

(
Snn′ P̂ I

nn′
) · sσσ ′ψ†

σ (ri)ψσ ′(ri)δ(RI − ri), (5)

where RI and ri are the position vectors of the I th impurity and
ith electron and ψ†

σ (ri) as well as ψσ (ri) are the corresponding
real-space field operators for the electrons. Since most experi-
ments on DMSs are performed on two-dimensional structures,
we choose a single-particle basis comprised of product states
of a z-dependent envelope, where z is defined to point along
the growth direction, and an in-plane part described by plane
waves. When restricting to the lowest confined state of the
envelope function ψ(z), we can formulate the effective s-d
Hamiltonian for the in-plane part as

Hsd = Jsd

V
d
∑

I

|ψ(ZI )|2Snn′ · sσσ ′c
†
kσ ck′σ ′ P̂ I

nn′e
i(k′−k)R‖

I , (6)

where V is the volume of the sample, d is the quantum well
width, ZI is the z component of the I th impurity position
vector, and R‖

I is the in-plane part of the position vector of the
I th impurity. Assuming infinitely high barriers, the envelope
is given by

ψ(z) =
√

2

d
cos

(π

d
z
)
, (7)

for z ∈ [− d
2 ; d

2 ] and zero otherwise. Thus, due to the factor
|ψ(ZI )|2, magnetic impurities at the border of the quantum
well couple much more weakly to the electrons than impurities
at the center of the well.

B. Quantum kinetic equations of motion

In Ref. [33], a set of quantum kinetic equations of motion
based on a correlation expansion scheme has been developed
for the carrier and impurity density matrix as well as the
carrier-impurity correlations in the case of zero external and
effective-spin-orbit magnetic fields. In the present paper, we
additionally consider an in general wave-vector-dependent
effective magnetic field for the carriers and the Zeeman energy
term for the magnetic impurities to the Hamiltonian. Since
all of the terms that are added are effective single-particle
contributions, they do not lead to a buildup of a new hierarchy
of correlations, but only connect the density matrices and
the correlations with themselves. Therefore, the truncation
scheme and the factorization of higher correlations laid out
in Ref. [33] can still be applied when the aforementioned

additional Hamiltonians are accounted for. If an on-average
homogeneous distribution of magnetic impurities in the
quantum-well plane is assumed, equations of motion can be
formulated for the dynamical variables [36]

C
σ2
σ1k1

= 〈c†k1σ1
ck1σ2〉, (8a)

Mn2
n1

(z) = d

NMn

∑
I

δ(z − ZI )
〈
P̂ I

n1n2

〉
, (8b)

Q
σ2n2k2
σ1n1k1

(z) = V

NMn

d
∑

I

δ(z − ZI )

× 〈
c
†
k1σ1

ck2σ2 P̂
I
n1n2

ei(k2−k1)R‖
I

〉
, (8c)

where C
σ2
σ1k1

and Mn2
n1

(z) are the electron and impurity density

matrices and Q
l2n2k2
l1n1k1

(z) (for k1 
= k2) represent the carrier-
impurity correlations, where the mean-field part has been
subtracted. NMn is the number of impurity ions in the DMSs.

Instead of the density matrices, also the average carrier sk1

and impurity spins 〈S(z)〉 as well as the electron occupations
nk1 can be used as dynamical variables [36] which helps
to understand the dynamics of the physical variables and
simplifies the equations of motion,

〈S(z)〉 =
∑
nn′

Snn′Mn′
n (z), (9a)

nk1 =
∑

σ

Cσ
σk1

, (9b)

sk1 =
∑
σ1σ2

sσ1σ2C
σ2
σ1k1

, (9c)

Q
αk2
jk1

:=
∑
σ1σ2
n1n2

Sj
n1n2

sα
σ1σ2

Q
σ2n2k2
σ1n1k1

. (9d)

From now on, we will use the convention that σ indices
describe spin-up and spin-down subbands, n indices enumerate
the impurity states, while all other Latin indices represent
three-dimensional geometric directions, e.g., j ∈ {1,2,3}, and
Greek indices range from 0 to 3, where the 0 describes
occupations. In this notation, the zeroth spin matrix is defined
to be the 2×2 identity matrix s0

σ1σ2
= δσ1σ2 . Furthermore, we

adopt the Einstein notation, so that when the same index
appears twice, a summation is implied. Sub- and superscripts
are used, e.g., to distinguish the carrier and impurity degrees
of freedom of the correlations, and do not represent a covariant
formulation. Sums over k vectors, on the other hand, will be
stated explicitly and no sum is implied, if an index ki appears
twice in an expression.

In this notation, the equations of motion of Refs. [36,37],
extended by terms due to the k-dependent effective magnetic
field and the impurity and carrier Zeeman energies, are

∂

∂t
〈Sl(z)〉 = (ωMn(z) × 〈S(z)〉)l − Jsd |ψ(z)|2d

�V 2

∑
kk′

εij lRe
(
Q

jk′
ik (z)

)
, (10a)

∂

∂t
nk1 =

∫ d/2

−d/2
dz

Jsd |ψ(z)|2NMn

�V 2

∑
k

2Im
(
Qik

ik1
(z)
)
, (10b)
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∂

∂t
sl

k1
= (�′

k1
× sk1 )l +

∫ d/2

−d/2
dz

Jsd |ψ(z)|2NMn

�V 2

∑
k

Im

[
1

2
Q0k

lk1
(z) + iεij lQ

jk
ik1

(z)

]
, (10c)

∂

∂t
Q

αk2
lk1

(z) = −i(ωk2 − ωk1 )Qαk2
lk1

(z) + (
Ak1 + A∗

k2

)
αγ

Q
γ k2

lk1
(z) + εij lω

i
Mn(z)Qαk2

jk1
(z) + b

αk2
lk1

(z) + c
αk2
lk1

(z), (10d)

b
αk2
lk1

(z) = i

�
Jsdd|ψ(z)|2[〈SiSl(z)〉〈sisα〉k1

k2
− 〈SlSi(z)〉〈sαsi〉k2

k1

]
, (10e)

where the mean-field precession frequencies for impurities and
carriers are defined as

ωMn(z) := gMnμB

�
B + Jsd |ψ(z)|2d

�V

∑
k

sk, (11a)

�′
k := �k + ωe(k), (11b)

ωe(k) := ge(k)μB

�
B +

∫ d/2

−d/2
dz

Jsd |ψ(z)|2NMn

�V
〈S(z)〉.

(11c)

The k-dependent precessionlike movement of the electron
degree of freedom of the correlations is described by the 4 × 4
matrix

Ak1 :=
(

0
(
i�′

k1

)T(
i
4�′

k1

)
1
2

[
�′

k1

]
×

)
, (11d)

where [�′
k1

]× is the 3 × 3 cross-product matrix with
[�′

k1
]×v = �′

k1
× v.

The source terms b
αk2
lk1

(z) involve electron variables nk and
sk in the form

〈sisj 〉k2
k1

:= δij

[
1

4

(
1− nk2

2

)
nk1 + 1

2
sk1·sk2

]
− 1

2
si

k1
s
j

k2

− 1

2
s
j

k1
si

k2
+ i

2
εij l

[(
1 − nk2

2

)
sl

k1
+ nk1

2
sl

k2

]
,

(12a)

and

〈sis0〉k1
k2

:=
(

1 − nk1

2

)
si

k2
− nk2

2
si

k1
− iεij ls

j

k1
sl

k2
, (12b)

〈s0si〉k2
k1

:=
(

1 − nk2

2

)
si

k1
− nk1

2
si

k2
− iεij ls

j

k1
sl

k2
. (12c)

Also, b
αk2
lk1

(z) contains second moments of the impurity
variables:

〈SiSj (z)〉 = 〈S⊥2
(z)〉δij + 〈S‖2

(z) − S⊥2
(z)〉

× 〈Si(z)〉〈Sj (z)〉
〈S(z)〉2

+ i

2
εij l〈Sl(z)〉, (13)

where S‖ := S·〈S〉
〈S〉2 is the spin operator projected onto the di-

rection of the average impurity spin and 〈S⊥2〉 = 1
2 〈S2 − S‖2〉

is the perpendicular second moment, with 〈S2〉 = S(S+1)
4 = 35

4

for a spin- 5
2 system.

By going over from the density matrices in Eqs. (8) as
dynamical variables to the variables defined in Eqs. (9), one
ends up with a set of equations that is not closed. Thus, some
approximations have to be employed to evaluate the right-hand
side of Eqs. (10): First of all, it is necessary to evaluate the
second moments of the impurity magnetization, for which the
equations of motion can in principle be calculated, but they
involve even higher moments. We reduce the complexity of
the equations by calculating a quasithermal impurity density
matrix in each time step, which is consistent with the average
spin 〈S(z)〉. Furthermore, the source terms c

αk2
lk1

(z)2 contain
degrees of freedom of the original correlation functions
Q

σ2n2k2
σ1n1k1

that are not expressible in terms of Q
αk2
lk1

. However,

the terms c
αk2
lk1

(z) were shown to be irrelevant in numerical
calculations in the situation described in Ref. [37]. Since
these terms are proportional to some correlation functions
Qσ ′n′k′

σnk , they mainly renormalize the frequencies with which
the correlations oscillate. As will be seen later, the values of
these frequencies determine the difference in kinetic energies
of the initial and final states of carriers scattered due to the
s-d interaction. On the other hand it will be shown that
neglecting the terms c

αk2
lk1

(z) leads to equations that conserve
the mean-field energies of the carriers, so that the role of these
terms is mainly to ensure energy conservation including the
carrier-impurity correlation energy. However, this correlation
energy is typically of the order of a few μeV [28], so that it
is typically a good approximation to neglect the source terms
c
αk2
lk1

(z), as we will henceforth do.
With these approximations, it seems straightforward to

solve the coupled system of ordinary differential equa-
tions (10) numerically. However, this task is very challenging,
since the correlations are indexed by two k vectors, where
each one is an element of a two-dimensional continuum
in the case of a quantum well. The problem therefore has
the complexity O(N4

k NzNt ), where Nk , Nz, and Nt are
the numbers of discretization points of the k-space (linear
dimension), the growth direction in real space, and the time,
respectively. Our strategy to make the calculation tractable
follows Ref. [37]: The computation time can be strongly
reduced, if the correlations are eliminated and only their
effects on the electron and impurity variables are kept. This
can be achieved by formally integrating the equations of
motion for the correlations at the cost of introducing a memory
integral. This memory integral can in turn be eliminated by a

2The source terms c
αk2
lk1

are given by c
αk2
lk1

:=∑
σ1σ2n1n2

Sl
n1n2

sα
σ1σ2

b
σ2n2k2
σ1n1k1

III
with b

σ2n2k2
σ1n1k1

III
being defined in

Ref. [36].
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short-memory or Markov approximation, which is established
in the next section.

C. Derivation and applicability of the Markov limit

Before we discuss the Markov limit of the correlations
including the precessionlike movement of the correlations, we
briefly recapitulate the standard way [36,44] of deriving the
Markov limit of quantum kinetic equations in the simplest
possible situation with �′

k = 0 and ωMn(z) = 0. There, the
equation of motion (10d) for the correlations becomes

∂

∂t
Q

αk2
lk1

= −i(ωk2 − ωk1 )Qαk2
lk1

+ b
αk2
lk1

. (14)

If the source term b
αk2
lk1

is regarded as a time-dependent
inhomogeneity, one can first solve the homogeneous part of
the equation and take the inhomogeneity into account by a
variation of constants, which yields

Q
αk2
lk1

(t) = e−i(ωk2 −ωk1 )t

[
Q

αk2
lk1

(t0)

+
∫ t

t0

dt ′ ei(ωk2 −ωk1 )t ′b
αk2
lk1

(t ′)
]
. (15)

We assume that the carriers stem exclusively from optical
excitation and therefore also the correlations are zero before
the laser pulse is applied. Therefore, Q

αk2
lk1

(t0) = 0 for t0 →
−∞. The correlations act back on the carrier and impurity
variables only via sums over correlations with respect to at
least one k index. Thus, we consider, e.g.,∑

k2

Q
αk2
lk1

(t) =
∫ ωBZ

0
dω D(ω)

∫ t

−∞
dt ′ ei(ω−ωk1 )(t ′−t)b

αk(ω)
lk1

(t ′),

(16)

with the quasicontinuous limit∑
k

· · · →
∫

BZ

dk D(k) · · · =
∫ ωBZ

0
dω D(ω) . . . , (17)

where �ω are the spin-independent single-particle energies
of H0 and �ωBZ is a cutoff energy corresponding to the
upper end of the conduction band. Although this expression
is valid also for nonparabolic band structures, we simplify the
discussion by first assuming an effective-mass approximation
in two dimensions, so that D2D := D(ω) = Am∗

2π� is constant.
Now, the Markov or short-memory approximation can be

applied to Eq. (16) as follows: Assuming that, because of the k
sum, the effects of the correlations on the carrier and impurity
dynamics dephase fast for not too small values of t ′ − t in the
integral kernel, the largest contribution of the integrals stems
from source terms b

αk(ω)
lk1

(t ′) with t ′ ≈ t . Then, Eq. (16) can be
approximated by∑

k2

Q
αk2
lk1

(t) ≈ D2D

∫ ωBZ

0
dω b

αk(ω)
lk1

(t)
∫ t

−∞
dt ′ ei(ω−ωk1 )(t ′−t).

(18)

Using the Sokhotski-Plemelj formula∫ 0

−∞
dt ′eixt ′ = π

(
δ(x) − P i

πx

)
=: πδ̄(x), (19)

where P denotes the Cauchy principal value, allows us to
express the correlations solely in terms of carrier and impurity
variables evaluated at t ′ = t . For the real part of δ̄, the k
sum reduces to an integration over a single energy shell.
The imaginary part has been shown to lead to a small
renormalization of the precession frequencies [28] that can
only reach values over 1% for a small range of realistic material
parameters and excitation conditions, so that we consider only
the real part of δ̄ in the further discussion of the Markov limit.

In the above treatment, it was postulated that the memory
induced by the correlations is short. To see in which cases this
is indeed a good approximation and how the time scale of the
memory can be defined, we briefly summarize the findings
of Ref. [45]: The source terms b

αk2
lk1

that enter, e.g., in the
dynamics for the carrier spin sk1 , involve the variables nk1 , sk1 ,
nk2 , and sk2 . For the parts that only contain variables at k1,
which we will refer to as bα

lk1
, the real part of the integral on

the right-hand side of Eq. (16) yields

Re
∫ t

−∞
dt ′

∫ ωBZ

0
dω ei(ω−ωk1 )(t ′−t)bα

lk1
(t ′)

= Re
∫ 0

−∞
dt ′′

sin[(ωBZ−ωk1 )t ′′]+sin(ωk1 t
′′)

t ′′
bα

lk1
(t+t ′′).

(20)

Since sin �ωt
t

→ πδ(t) for �ω → ∞, this way of expressing
the integral now shows that the memory has two time scales,
one corresponding to (ωBZ − ωk1 )−1, which is typically of the
order of a few fs due to values of ωBZ in the eV range, and
the other one at ω−1

k1
. This can explain why, for a δ-like initial

electron occupation at k1 = 0, the spin transfer rate extracted
from the quantum kinetic calculations in Ref. [45] is exactly 1

2
of the Markovian expression for the rate. Thus, non-Markovian
effects are found to be mainly due to the spectral proximity of
the electrons to the band edge. Therefore, if the initial carrier
distribution has a width of a few meV, the Markovian results
coincide with the quantum kinetic calculations [45].

For the other parts of the source terms b
αk2
lk1

which depend
also on the electron variables at k2, a new time scale emerges
which corresponds to the inverse of the frequency difference
τk1,k2 for which the electron variables sk2 (nk2 ) start to differ
notably from sk1 (nk1 ).

In summary, it can therefore be said that the correlation
time τcor, i.e., the time scale of the memory induced by the
correlations, depends on the details of the spectral carrier
distributions. Thus, in order to obtain meaningful results by
using the Markov approximation, it is of key importance that
the dynamics of the source terms takes place on a much slower
time scale than the buildup of correlations τcor. If this is not
the case, e.g., due to a fast precession of the electron spins
with a frequency ωe, it is necessary to split this precession off
of the correlation induced spin transfer, yielding a modified
integral kernel ei(ωk2 −ωk1 ±ωe)t ′ and therefore a shift of ±ωe in
the respective δ functions [37]. Therefore, the identification
of fast and slowly changing parts of the source terms b

αk2
lk1

is
crucial for the derivation of the Markov limit of the quantum
kinetic equations of motion (10).
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D. Markov limit of the quantum kinetic equations

In the last section, the standard procedure of deriving a
Markov limit was summarized starting from a simple set of
equations where all the relevant spin precessions in DMSs
were neglected. Now, for the more general theory of the present
paper, we repeat the same steps while accounting for all terms
in Eqs. (10). As above, first of all, the homogeneous part of
the differential equation for the correlations has to be solved,

∂

∂t
Q

αk2
lk1

hom = −i(ωk2 − ωk1 )Qαk2
lk1

hom

+ (
Ak1 + A∗

k2

)
αγ

Q
γ k2

lk1

hom + εij lω
i
MnQ

αk2
jk1

hom
.

(21)

Equation (21) can be represented in a more abstract form, if

Q
αk2
lk1

hom
is rewritten as a single vector Qhom with respect to

the set of indices l, α, k1, and k2. Then, Eq. (21) becomes

∂

∂t
Qhom = MQhom, (22)

where the matrix M is defined by the terms on the right-hand
side of Eq. (21). The formal solution of Eq. (22) is the time-
ordered exponential:

Qhom(t0 + �t) = T e
∫ t0+�t

t0
dt ′M(t ′)Qhom(t0) (23)

However, since in the Markov limit the solution of the
homogeneous differential equation is only required on a time
scale comparable to τcor in the fs range, we can assume that
neither the precession frequencies nor the precession axes will
change significantly on this time scale. This assumption makes
it possible to approximate M(t ′) ≈ M(t0) in Eq. (23) so that
the time-ordering operator T can be dropped.

The expression for the solution for Qhom can be further
simplified, because the different contributions to the right-hand

side of Eq. (21) act on different degrees of freedom of Q
αk2
lk1

hom

and therefore commute. As also Ak1 and A∗
k2

commute, which
can be checked directly using the explicit expression for those
matrices in Eq. (11d), the homogeneous part of the equation
of motion for the correlation is solved by

Q
αk2
lk1

hom
(t0 + �t) = e−i(ωk2 −ωk1 )�t

(
eAk1 �te

A∗
k2

�t
)
αγ

× (e[ωMn]×�t )ll′Q
αk2
lk1

hom
(t0). (24)

The exponential e[ωMn]×t of the cross product matrix
[ωMn]× is

e[ωMn]×t = RωMn
(ωMnt), (25)

where Rn(α) is the 3×3 matrix describing a rotation around
the axis n with an angle α. Similarly, it is possible to calculate
an exponential of the matrices Ak:

Ek1 (t) := eAk1 t

= cos

(

′

k1

2
t

)
1 + sin

(

′

k1

2
t

)⎛⎜⎝ 0 2i
�′

k1
T


′
k1

i
2

�′
k1


′
k1

[
�′

k1

′

k1

]
×

⎞
⎟⎠,

(26)

with the inverse [Ek1 (t)]−1 = Ek1 (−t).

Now, the solution to the inhomogeneous equation can be
found by a variation of constants yielding

Q
αk2
lk1

(t0 + �t)

= e−i(ωk2 −ωk1 )�t
[
Ek1 (�t)E∗

k2
(�t)

]
αγ

× [
RωMn

(ωMn�t)
]
ll′

[
Q

αk2
lk1

(t0) +
∫ t0+�t

t0

dt ′ ei(ωk2 −ωk1 )t ′

× [
Ek1 (−t ′)E∗

k2
(−t ′)

]
γ κ

[
RωMn

(−ωMnt
′)
]
l′l′′b

κk2
l′′k1

(t ′)
]
(27)

Equation (27) can be further simplified by decomposing the
matrices RωMn

(ωMnt) and Ek1 as well as E∗
k2

in components
oscillating with different frequencies:

Rn(ωt) = R0
n + R+

n eiωt + R−
n e−iωt , (28a)

Ek1 (t) = E0
k1

+ E+
k1

e
i(1/2)
′

k1
t + E−

k1
e
−i(1/2)
′

k1
t
, (28b)

E∗
k2

(t) = (
E∗

k2

)0 + (
E∗

k2

)+
e
i(1/2)
′

k2
t + (

E∗
k2

)−
e
−i(1/2)
′

k2
t
,

(28c)

where the components of Ek can directly be read off from the
definition in Eq. (26) and the decomposition of Rn(α) is

(
R0

n

)
ij

= ninj

|n|2 , (29a)

(
R±

n

)
ij

= 1

2

(
δij − ninj

|n|2 ± iεijk

nk

|n|
)

. (29b)

For the components defined in Eq. (28), an important
relation is

Rχ1
n Rχ2

n = δχ1χ2R
χ1
n , (30a)

E
χ1
k1

E
χ2
k1

= δχ1χ2E
χ1
k1

, (30b)

(E∗
k2

)χ1 (E∗
k2

)χ2 = δχ1χ2 (E∗
k2

)χ1 , (30c)

where from now on we assume χi ∈ {−1,0,1} for any χ index.
As stated earlier, it is necessary to identify fast oscillating

and slowly changing contributions to the source terms b
αk2
lk1

. To

this end, we consider the dynamics of b
αk2
lk1

in the mean-field
approximation, where

〈SiSj (t0 + �t)〉 ≈ [
RωMn

(ωMn�t)
]
ii ′

× [
RωMn

(ωMn�t)
]
jj ′ 〈Si ′Sj ′

(t0)〉, (31a)

nk(t0 + �t) ≈ nk(t0), (31b)

si
k(t0 + �t) ≈ [

R�′
k
(
′

k�t)
]
ii ′s

i ′
k (t0). (31c)

With these approximations, the source terms can be
decomposed into

b
αk2
lk1

(t0 + �t) ≈
∑
m

b
αk2
lk1

(ωm)
(t0)eiωm�t , (32)

where m counts all the possible oscillation frequencies ωm

which consist of combinations of the frequencies ωMn(z) and

′

k.
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Now, the Markov limit of Eqs. (10) can be established
by using the Markov approximation in Eq. (18) with the
Sokhotski-Plemelj formula in Eq. (19) on the expression for

the time evolution of the correlations in Eq. (27), simplifying
the products of exponential matrices with the relations (30)
and decomposing the source terms according to Eq. (32):

Q
αk2
lk1

≈ π
∑
m

∑
χMn,χk1 ,χk2

δ̄

[
ωk2 −

(
ωk1 + χMnωMn + 1

2
χk1


′
k1

+ 1

2
χk2


′
k2

− ωm

)][
E

χk1
k1

(
E∗

k2

)χk2
]
αγ

(
RχMn

ωMn

)
ll′b

γ k2

l′k1

(ωm)
(t ′) (33)

or more explicitly

Q
αk2
lk1

(z) ≈ π
i

�
Jsd |ψ(z)|2d

∑
χk1 ,χ ′

k1
,χk2 ,χ ′

k2
,χMn

δ̄

{
ωk2 −

[
ωk1 +

(
1

2
χk1 − χ ′

k1

)

′

k1
+
(

1

2
χk2 − χ ′

k2

)

′

k2
− χMnωMn(z)

]}

×
{[

E
χk1
k1

(E∗
k2

)χk2
]
α0

( 〈SlSj ′
(z) + Sj ′

Sl(z)〉
2

(
R

χMn

ωMn(z)

)
jj ′

[
δχ ′

k1
,0

(
R

χ ′
k2

�′
k2

)
jk′

sk′
k2

− δχ ′
k2

,0

(
R

χ ′
k1

�′
k1

)
jk′

sk′
k1

]

+ i

2
εj ′li ′′ 〈Si ′′ (z)〉(RχMn

ωMn(z)

)
jj ′

[
δχ ′

k1
,0(1 − nk1 )

(
R

χ ′
k2

�′
k2

)
jk′

sk′
k2

+ δχ ′
k2

,0(1 − nk2 )
(
R

χ ′
k1

�′
k1

)
jk′

sk′
k1

− 2iεjki

(
R

χ ′
k1

�′
k1

)
kk′

(
R

χ ′
k2

�′
k2

)
ii ′

sk′
k1

si ′
k2

])
+ [

E
χk1
k1

(
E∗

k2

)χk2
]
αk

((
R

χMn

ωMn(z)

)
kj ′δχ ′

k1
,0δχ ′

k2
,0

×
[ 〈SlSj ′

(z) + Sj ′
Sl(z)〉

2

nk2 − nk1

4
+ i

2
εj ′li ′′ 〈Si ′′ (z)〉

(
nk2 + nk1 − nk1nk2

4

)]

+ i

2
εj ′li ′′ 〈Si ′′ (z)〉(δjkδk′k′′ − δjk′δkk′′ − δjk′′δkk′)

(
R

χMn

ωMn(z)

)
jj ′

(
R

χ ′
k1

�′
k1

)
k′i

(
R

χ ′
k2

�′
k2

)
k′′i ′

si
k1

si ′
k2

+ i

2
εjki

〈SlSj ′
(z) + Sj ′

Sl(z)〉
2

(
R

χMn

ωMn(z)

)
jj ′

[(
R

χ ′
k2

�′
k2

)
il′

δχ ′
k1

,0s
l′
k2

+
(
R

χ ′
k1

�′
k1

)
il′

δχ ′
k2

,0s
l′
k1

]

− 1

4
εjkiεj ′li ′′ 〈Si ′′ (z)〉(RχMn

ωMn(z)

)
jj ′

[(
R

χ ′
k2

�′
k2

)
il′

δχ ′
k1

,0(1 − nk1 )sl′
k2

−
(
R

χ ′
k1

�′
k1

)
il′

δχ ′
k2

,0(1 − nk2 )sl′
k1

])}
, (34)

Finally, inserting the expression for Q
κk2
lk1

of Eq. (34) into
the quantum kinetic equations of motion (10a)–(10c) for the
carrier and impurity variables yields the desired set of ordinary
differential equations for nk, sk, and 〈S〉 where the correlations
are eliminated, but their effects are still accounted for.

E. Numerical implementation of the Markovian
equations of motion

The numerical advantage of the Markov limit over the
original quantum kinetic equations is mainly that, because
of the δ function in Eq. (34), only those electronic states with
wave vectors k2 contribute to the time evolution of electron
variables with wave vector k1 that are allowed by energy
conservation. Here, the total energy consists of the kinetic
energy as well as Zeeman-like spin-dependent energies due to
the impurity magnetization, the external magnetic field, and
the k-dependent effective magnetic field due to the Rashba or
Dresselhaus terms as well as the impurity Zeeman energy.

The complicated interplay of the different contributions to
the total energy makes it hard to find the roots of the argument
of the δ function in Eq. (34), which is necessary in order to
identify the wave vectors k2 of the electronic states which are
relevant for the calculation of the time evolution of electronic
states with wave vector k1. In particular, the k dependence of
the energies, the dimensionality of the k vector, and the fact

that the number of roots is in general not known turn out to be
major obstacles for the direct numerical solution of Eq. (34).

Here, we solve this problem by rediscretizing the electron
variables. The roots of the argument of the δ function in
Eq. (34) are given by

ω̄k2 (ξ2) = ω̄k1 (−ξ1) − χMnωMn(z) (35a)

with

ω̄k(ξ ) := ωk − ξ
′
k, (35b)

ξ ∈
{
−3

2
, − 1

2
,
1

2
,
3

2

}
. (35c)

After the space of ω̄ is discretized into small intervals, we
create a list of discretization points in k space which contribute
to the corresponding interval with respect to ω̄. Since the
construction of this list has the complexity O(N2

k ), where Nk

is the number of discretization points of a linear dimension in
the two-dimensional k space, and the correlations

∑
k2

Q
αk2
lk1

which enter in the equation for a single electron variable with
wave vector k1 become of the order of O(N0

k ) due to the δ

function, the problem of solving the Markovian equations in
the full k space isO(N2

k ). This provides a significant advantage
over the full quantum kinetic theory which has the complexity
O(N4

k ) for a quantum well.

205201-7

Pub 5



M. CYGOREK, P. I. TAMBORENEA, AND V. M. AXT PHYSICAL REVIEW B 93, 205201 (2016)

F. Case NMn � Ne without spin-orbit fields

The Markov limit (34) of the equations of motion (10)
yields quite lengthy expressions. However, these can be
simplified dramatically in a case which is very common
for experimentally studied DMS samples: If the number of
the magnetic impurities NMn exceeds largely the number of
quasifree carriers Ne, such as in the case of optically excited
intrinsic DMSs, the impurity spin 〈S〉 only changes marginally
due to the influence from the quasifree carriers. One can
therefore assume that the impurity spin will approximately
be defined by its thermal equilibrium value in the external
magnetic field. In particular in the paramagnetic regime,
the impurity spin will be parallel (σB

S = +1) or antiparallel
(σB

S = −1) to the magnetic field,

〈S〉 = σB
S |〈S〉| B

|B| . (36a)

Since usually the Zeeman contribution to the energy of the
magnetic ions is much stronger than the mean-field s-d term
due to the carrier spins [39], we assume that

ωMn = σB
MnωMn

B
|B| (36b)

and that ωMn is independent of z. If only electrons with
small wave vectors are excited, no electric field is applied,
and the sample has a rather high impurity concentration, the
s-d interaction usually dominates over spin-orbit coupling
effects, so that one can neglect the latter [21]. Here, we shall
first concentrate on this case and defer the discussion of the

interplay between s-d interactions and spin-orbit coupling to
Sec. III B. Since the external magnetic field as well as the
effective s-d field due the impurity spins are parallel, we find
also

�k = ωe = σB
e ωe

B
|B| . (36c)

Because of the k independence of the effective magnetic
field for the carriers, the matrix Ek1E

∗
k2

can be simplified to

Ek1E
∗
k2

=
(

1 0
0 Rωe

)
. (37)

Additionally, comparing Eq. (13) with Eq. (29) yields

〈Si ′Sj ′ 〉 = 〈S‖2〉(R0
〈S〉
)
i ′j ′ + 〈S⊥2〉(R+

〈S〉 + R−
〈S〉)i ′j ′

+ |〈S〉| 1
2

(
R+

〈S〉 − R−
〈S〉
)
i ′j ′ . (38)

Now, the products of matrices in Eq. (34) can be evaluated
using

R
σB

S χ

〈S〉 = R
σB

Mnχ
ωMn

= R
σB

e χ
ωe

= R
χ

B , (39)

and the relation (30a). After a lengthy but straightforward
calculation, we arrive at the Markov limit of the equations of
motion for the occupations of the spin-up and -down subbands
with respect to the direction of the external magnetic field
n

↑/↓
k := nk

2 ± B
|B| · sk and the perpendicular spin component

s⊥
k := sk − B

|B| (
B
|B| · sk):

∂

∂t
n

↑/↓
k1

|cor ≈
∫ d/2

−d/2
dz π

J 2
sd |ψ(z)|4NMnd

�2V 2

∑
k2

{
δ(ωk2 − ωk1 )

〈S‖2〉
2

(n↑/↓
k2

− n
↑/↓
k1

) + δ
(
ωk2 − [

ωk1 ± (
σB

e ωe − σB
e ωMn

)])

×
[(

〈S⊥2〉 ± σB
S

|〈S〉|
2

)
(1 − n

↑/↓
k1

)n↓/↑
k2

−
(

〈S⊥2〉 ∓ σB
S

|〈S〉|
2

)(
1 − n

↓/↑
k2

)
n

↑/↓
k1

]}
, (40a)

∂

∂t
s⊥

k1

∣∣
cor ≈

∫ d/2

−d/2
dz π

J 2
sd |ψ(z)|4NMnd

�2V 2

∑
k2

{
− δ(ωk2 − ωk1 )

〈S‖2〉
2

(s⊥
k2

+ s⊥
k1

)

− δ
(
ωk2 − [

ωk1 + (
σB

e ωe − σB
e ωMn

)])[1

2

(
〈S⊥2〉 − σB

S

|〈S〉|
2

)
+ n

↑
k2

σB
S

|〈S〉|
2

]
s⊥

k1

− δ
(
ωk2 − [

ωk1 − (
σB

e ωe − σB
e ωMn

)])[1

2

(
〈S⊥2〉 + σB

S

|〈S〉|
2

)
− n

↓
k2

σB
S

|〈S〉|
2

]
s⊥

k1

− 1

π

1

ωk2 − [
ωk1 + (

σB
e ωe − σB

e ωMn

)][1

2

(
〈S⊥2〉 − σB

S

|〈S〉|
2

)
+ n

↑
k2

σB
S

|〈S〉|
2

]
B
|B| × s⊥

k1

+ 1

π

1

ωk2 − [
ωk1 − (

σB
e ωe − σB

e ωMn

)][1

2

(
〈S⊥2〉 + σB

S

|〈S〉|
2

)
− n

↓
k2

σB
S

|〈S〉|
2

]
B
|B| × s⊥

k1

}
, (40b)

where ∂
∂t

n
↑/↓
k1

|cor and ∂
∂t

s⊥
k1

|cor describe the contributions to the time derivative of the respective quantities beyond the mean-field
dynamics. In the case studied here, the total time evolution is given by

∂

∂t
n

↑/↓
k1

= ∂

∂t
n

↑/↓
k1

∣∣
cor, (41a)

∂

∂t
s⊥

k1
= ωe × s⊥

k1
+ ∂

∂t
s⊥

k1

∣∣
cor, (41b)

∂

∂t
〈S〉 = ωMn × 〈S〉 + ∂

∂t
〈S〉∣∣cor, (41c)
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where ∂
∂t

〈S〉|cor can be obtained by replacing NMn

∫ d/2
−d/2 dz

by −d
∑

k1
on the right-hand side of Eq. (40b). This follows

directly from the fact that the s-d interaction conserves the
total spin.

Note that Eqs. (40) generalize Eqs. (6) of Ref. [37] by
incorporating a k-dependent precession frequency for the
electrons, an external magnetic field and the z dependence
of the coupling due to the form of the envelope function of the
quantum well.

Equation (40a) can be interpreted like equations resulting
from Fermi’s golden rule: A spin-up electron is scattered either
to another spin-up state with the same value of the kinetic en-
ergy �ωk [term proportional to δ(ωk2 − ωk1 )] or to a spin-down
state with kinetic energy �ωk2 = �ωk1 + �(σB

e ωe − σB
e ωMn)

and vice versa. To understand the latter term it is important
to keep in mind that the total mean-field energy of a spin-up
electron is �(ωk + 1

2σB
e ωe) while for a spin-down electron

one finds �(ωk − 1
2σB

e ωe). Also, since the s-d interaction
conserves the sum of the electron and impurity spins, a flip
of an electron spin in one direction is always accompanied by
a flip of an impurity spin in the opposite direction. Thus, in
order to fulfill the conservation of the total mean-field energy,
the energy �(σB

e ωe − σB
e ωMn) that is freed by an impurity

mediated flip of an electron from the spin-up to the spin-down
state has to be compensated by a difference of the kinetic
energies of the electronic states ωk2 − ωk1 .

Although Eq. (40a) for the spin-up and spin-down occupa-
tions can also be derived by Fermi’s golden rule, the energy
shifts in the δ functions are often not correctly accounted for
in the literature [22,32]. The consequences are discussed in
Sec. III A. Here, the spin-flip terms of Eq. (40a) also correctly
account for Pauli-blocking effects by the terms proportional to
(1 − n

↑/↓
k ) which are usually put in by hand in a golden-rule

derivation. Furthermore, a golden-rule treatment only allows
us to derive transition rates between energy eigenstates and
does not provide equations governing the dynamics of the
coherences between those eigenstates, i.e., the components of
the electron and impurity spins perpendicular to the direction
of the external magnetic field, which is given in our derivation
by Eq. (40b). As in the equations for the spin-up and spin-down
occupations, we find that the equations for the perpendicular
spin components connect states whose difference in kinetic
energies �(ωk2 − ωk1 ) is either zero or ±�(σB

e ωe − σB
MnωMn).

Note that in contrast to the equations for n
↑/↓
k1

, here we find
terms proportional to the imaginary part of δ̄. While the real
part leads to a ratelike damping of the perpendicular electron
spin, the imaginary part yields an additional contribution to the
precession frequency. Such frequency renormalizations have
been extensively discussed in Ref. [28].

From Eqs. (40) one can also find decay rates for spin-up
[(τ↑

k0
)−1] and spin-down [(τ↓

k0
)−1] electron states as well as the

spin components parallel [(τ ‖
k0

)−1] perpendicular [(τ⊥
k0

)−1] to
the external magnetic field, if it is assumed that only very few
quasifree carriers are excited, so that one can regard only single
electrons by setting n

↑/↓
k2

= δωk1 ,ωk2
n

↑/↓
k1

and s⊥
k2

= δωk1 ,ωk2
s⊥

k1
:(

τ
↑
k0

)−1 = �−�
[
ωk0 + (

σB
e ωe − σB

MnωMn

)]
, (42a)(

τ
↓
k0

)−1 = �+�
[
ωk0 − (

σB
e ωe − σB

MnωMn

)]
, (42b)

(
τ

‖
k0

) = (
τ

↑
k0

)−1 + (
τ

↓
k0

)−1
, (42c)

(
τ⊥

k0

)−1 = �0 + 1

2

[(
τ

↑
k0

)−1 + (
τ

↓
k0

)−1]
, (42d)

with

�0 = IπD2D J 2
sdNMn

�2V 2
〈S‖2〉, (42e)

�± = IπD2D J 2
sdNMn

�2V 2

(
〈S⊥2〉 ± σB

S

|〈S〉|
2

)
, (42f)

I = d

∫ d/2

−d/2
dz |ψ(z)|4, (42g)

where �(x) is the Heaviside step function.
Thus, the main effect of the frequency shifts due to the

precession of the correlations is the opening and closing of
decay channels due to the corresponding step functions which
originate from the step of the two-dimensional density of states
at ωk=0.

III. RESULTS

A. Magnetic field dependence of the spin transfer rates

Now, we compare the theory derived in the present paper
with the different treatments of the s-d interaction presented
by other groups. To this end, we focus on the case without
spin-orbit interactions and NMn � Ne, so that the correlation
induced changes in the carrier variables can be described by
Eqs. (40). Often in the literature rates for the carrier-impurity
spin transfer dynamics are obtained from Fermi’s golden
rule [25,29–31]. In two-dimensional systems one finds in the
absence of magnetic fields:

∂

∂t
si
ω1

= −Iπ
J 2

sd

�2

NMn

V 2

2

3
[S(S + 1)]

×
∫

dω D2D(ω)δ(ω − ω1)si
ω = −τFGRsi

ω1
, (43a)

τFGR = Iπ
J 2

sd

�2

NMn

V 2

2

3
[S(S + 1)]

Am∗

2π�
, (43b)

where we assume isotropy so that the carrier spin variables
are independent of the angle of the wave vector and can
equivalently be described by si

|k| or si
ω, with the kinetic energy

�ω = �2|k|2
2m

. τFGR is Fermi’s golden-rule spin-transfer rate at
B = 0. In contrast, if an external magnetic field is applied, the
conduction band is energetically split by σB

e ωe. This leads to
the appearance of an additional energy offset in the δ function.
In our treatment, we also find an energy offset corresponding
to the impurity Zeeman splitting σB

MnωMn which is necessary
for the simultaneous conservation of the total carrier and
impurity energy as well as the total spin. Furthermore, Fermi’s
golden rule is only able to predict transitions between energy
eigenstates, whereas it makes no statement about the transfer of
the carrier spin components perpendicular to the quantization
axis. The distinction between parallel and perpendicular
components does not arise for B = 0, since in this case all
directions are equivalent. Additionally, the factor S(S + 1) has
to be modified in the presence of a magnetic field that causes
a nonzero paramagnetic impurity magnetization.
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In particular, the energetic offset caused by the impurity
Zeeman splitting is often overlooked in studies based on
the golden-rule approach [22,29]. In Ref. [22], which is
based on the kinetic spin Bloch equations (KSBEs), even
the band splitting σB

e ωe is disregarded, but the magnetic field
dependence of the second moments of the impurity spin, which
enters in the rates, was kept. There are also studies [25,26,30]
that explicitly include the band splitting as well as the impurity
Zeeman terms, but since there the rates are derived by Fermi’s
golden rule, no expression for the perpendicular spin transfer
component was given.

In this context, one particularly notable theoretical deriva-
tion of magnetic field dependent carrier-impurity spin transfer
rates was given by Semenov in Ref. [32], which is based on
a projection operator method. There, the electron spins are
treated as a subsystem which interacts with a bath of impurity
ions. In Ref. [32], it was assumed that the electron density
matrix can be factorized into one part accounting for the spin
degree of freedom and the k-dependent part, which is described
by a Fermi distribution. Tracing out the k-dependent part of
the carrier density matrix as well as the impurity system, rates
were obtained for the spin degree of freedom of the carriers. In
contrast to the theory of the present paper, where only energetic
shifts associated with the spin-flip-flop processes of the form
|σB

e ωe − σB
MnωMn| appear, the projection operator method of

Ref. [32] also finds terms proportional to |σB
e ωe + σB

MnωMn|.
As mentioned earlier, such energy shifts are in conflict with
the conservation of the total carrier and impurity energy. We
trace the appearance of the energy nonconserving terms in
Ref. [32] back to the fact that, there, only the positive frequency
component of the electron-spin precession was regarded,
whereas the negative frequency component explicitly shows
up in the theory of the present paper and leads to a cancellation
of terms in the expression for the correlations which oscillate
with ±(σB

e ωe + σB
MnωMn).

Having discussed the different expressions for the magnetic
field dependence of the carrier-impurity spin transfer rates that
can be found in the literature, we compare them at the example
of the situation discussed in Ref. [32]. There, it was assumed
that the spectral electron distribution is

n↑(ω) = n↓(ω) ∝ e−ω/T (44)

for some carrier temperature T , irrespective of the spin-split
subband. With this assumption, the decay rate of the total
parallel (T −1

1 ) and perpendicular (T −1
2 ) carrier spin with

respect to the magnetic field direction can be obtained from
Eqs. (42) of the present theory:

T −1
1 ∝

∫ ∞

0
dω e−ω/T [τ ‖(ω)]−1 ∝ T −1

↑ + T −1
↓ , (45a)

T −1
2 ∝

∫ ∞

0
dω e−ω/T [τ⊥(ω)]−1 ∝ �0 + 1

2
(T −1

↑ + T −1
↓ ),

(45b)

T −1
↑ ∝

∫ ∞

0
dω e−ω/T [τ↑(ω)]−1 ∝ �−

× min(1,e(σB
e ωe−σB

MnωMn)/T ), (45c)

T
i(
0)
/T

i(
B
)

x = 1.7%

i = 1
i = 2
i =↑
i =↓
i
i

i = 1, ωMn = 0
i = 2, ωMn = 0

i = 1, ωe = ωMn = 0
i = 2, ωe = ωMn = 0

= 1
= 2

FIG. 1. Magnetic field dependence of the parallel (i = 1) and
perpendicular (i = 2) spin transfer rates normalized with respect to
B = 0 in a 8-nm-wide Cd0.983Mn0.017Te quantum well at temperature
T = 4 K. Red and blue lines (PESC) represent rates according
to the theory of the present article [Eqs. (45)] and red and blue
crosses show the rates calculated by the projection operator method
(proj.) of Ref. [32]. Furthermore, cyan and orange triangles and lines
show the results of Eqs. (45), when the energetic shifts due to the
Zeeman impurity splittings in spin-flip-flop processes (ωMn = 0) or
additionally the spin splittings (ωe = ωMn = 0) are neglected. T↑ and
T↓ are the relaxation rates of spin-up and spin-down occupations,
respectively.

T −1
↓ ∝

∫ ∞

0
dω e−ω/T [τ↓(ω)]−1 ∝ �+

× min(1,e−(σB
e ωe−σB

MnωMn)/T ), (45d)

where also the values for the decay rate of the spin-up (T −1
↑ )

and spin-down occupations (T −1
↓ ) are given explicitly. For

B = 0, the rates T −1
1 = T −1

2 = 2T −1
↑ = 2T −1

↓ coincide with
the rate calculated by Fermi’s golden rule τFGR, which defines
the normalization of the rates in Eq. (45).

Figure 1 shows the magnetic field dependence of the parallel
and perpendicular spin transfer rates according to Eqs. (45)
with the parameters of Ref. [32], where a d = 8-nm-wide
Cd0.983Mn0.017Te quantum well was considered at T = 4 K.
The value for the coupling constant is Jsd = 15 meV nm3 and
the electron and Mn g factors are ge = −1.77 and gMn = 2.0
respectively. The present theory predicts that the parallel spin
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FIG. 2. Magnetic field dependence of the electron (red solid
line) and impurity Zeeman energy (green dashed line) as well as
their difference (blue dotted line) for a DMS quantum well (same
parameters as for Fig. 1).

transfer rate T −1
1 first decays fast from B = 0 to B ≈ 1 T,

then levels off. The perpendicular spin transfer rate T −1
2 first

decays with increasing magnetic field, reaches a minimum
at B ≈ 1 T, and finally increases again. This behavior of
T −1

1 and T −1
2 can be explained by considering the rates T −1

↑
and T −1

↓ separately, together with the values of the energy
shifts σB

e ωe − σB
MnωMn presented in Fig. 2. The mean-field

impurity energy �σB
e ωMn is mainly dominated by its Zeeman

energy and therefore increases linearly with B. In contrast,
the mean-field carrier energy �σB

e ωe is strongly modified by
a contribution proportional to a S = 5

2 Brillouin function due
to the impurity magnetization, which starts linearly in B but
begins to saturate at B ≈ 2 T. For high magnetic fields (B > 6
T), �σB

e ωe decreases again, when the impurity magnetization
is fully saturated and the negative electron g factor becomes
important. Although σB

e ωe − σB
MnωMn eventually becomes

negative for very high magnetic fields (not shown in Fig. 2), for
typical experimentally accessible fields, it is mostly positive
and increases linearly up to B ≈ 2 T, just like σB

e ωe.
It follows from Eq. (45c) that T −1

↓ decreases approximately
exponentially with B in the regime where σB

e ωe − σB
MnωMn

increases linearly. Therefore, we find that the spin-splitting
introduced by the external magnetic field closes the transfer
channel T −1

↓ . In the case studied here, the magnetic field

dependence of the rate T −1
↑ comes exclusively from the

prefactor, since due to the positive value of σB
e ωe − σB

MnωMn

the corresponding transfer channel is maximally open. Noting
that

�0(B → ∞) → 15
14τFGR, (46a)

�+(B → ∞) → 0, (46b)

�−(B → ∞) → 3
7τFGR, (46c)

we find that T −1
1 approaches 5

8τFGR and T −1
2 → 9

7τFGR ≈
1.29τFGR for large values of B.

The magnetic field dependence of rates predicted from the
projection operator method of Ref. [32] is qualitatively similar
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FIG. 3. Magnetic field dependence of spin transfer rates for a
Cd0.9983Mn0.0017Te quantum well (cf. Fig. 1).

to that of the present theory, as can be seen in Fig. 1. However,
they suggest quantitatively smaller values for the rates, with
deviations of the order of ∼0.2τFGR. In the case studied here,
the offset due to the impurity Zeeman splitting σB

MnωMn plays
a less significant role, so that the rates calculated neglecting
these terms (triangles in Fig. 1) coincide with the calculation
which conserves the total energy. However, neglecting the spin
splittings σB

MnωMn is found to lead to the correct rates only for
large values of the magnetic field while for smaller magnetic
fields qualitative features, such as the minimum in T −1

2 , are
not obtained.

In our analysis of the magnetic field dependence of the
spin transfer rates it was important that σB

e ωe − σB
MnωMn > 0.

The situation can change significantly, if this is not the case.
In order to study this regime of parameters, we repeat the
same calculations shown in Figs. 1 and 2 but we assume a Mn
concentration x = 0.17% which is smaller by a factor of 10
than in the previous calculations. The results are displayed in
Figs. 3 and 4 respectively. We find in Fig. 4 that now also the
electron spin splitting is dominated by the Zeeman term and
the mean-field contribution from the impurity magnetization
is rather small. In particular, one finds that σB

e ωe − σB
MnωMn is

now negative for all values of B > 0. This fact has immediate
consequences on the magnetic field dependence of the spin
transfer rates. The main qualitative difference between the
rates shown in Fig. 3 and in the previous case is that now
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FIG. 4. Magnetic field dependence of the Zeeman energies for a
Cd0.9983Mn0.0017Te quantum well (cf. Fig. 2).

the parallel spin transfer rate T −1
1 decays to zero for large

values of B. Here, the spin transfer channel corresponding
to T −1

↑ is closed due to the energy splitting, whereas T −1
↓

decreases to zero, because the prefactor �+ tends to zero for
B → ∞. The physical reason for this behavior is that due to
the negativity of σB

e ωe − σB
MnωMn spin flips from the spin-

up to the spin-down band face an energy penalty, while a
flip from the spin-down to the spin-up band would require a
corresponding decrease of an impurity spin in order to satisfy
the spin conservation. However, for B → ∞ the impurity spins
are already fully aligned antiparallel to the magnetic field,
so that this spin flip is also forbidden. The magnetic field
dependence of the perpendicular spin transfer rate T −1

2 for
x = 0.17% is quantitatively similar to the case of x = 1.7%.
However, here, the asymptotic value for strong magnetic fields
is T −1

2 (B → ∞) → 15
14τFGR.

For the smaller impurity concentrations, the projection
operator method of Ref. [32] overestimates the spin transfer
rates. Figure 3 also shows that, in this case, neglecting the
impurity Zeeman terms leads to significant deviations from
the energy-conserving rates.

In order to establish a connection between the theories dis-
cussed above and the experimentally determined electron-spin
relaxation rates, it has to be noted that in most magneto-optical
experiments on II-VI DMS quantum wells so far (cf. Ref. [3]
and references therein) the pump laser is tuned to the electron-
heavy-hole exciton energy. To model these experiments also
the Coulomb correlations between electrons and holes have
to be taken into account, which is beyond the scope of the
present paper. It was found in Ref. [3] that different groups
consistently measured perpendicular electron-spin relaxation
rates T −1

2 which are about five times larger than τFGR at
B = 0. This discrepancy can be understood by the fact that
the effective electron mass has to be replaced by the exciton
mass in the expression for the rate τ−1

FGR [46], which yields an
increase of the rate by a factor of ∼4.6 in the case of CdMnTe.
Nevertheless, the finding of the present paper that the rate T −1

2
varies only weakly with the magnetic field and stays essentially
within 30% of τ−1

FGR is consistent with the tendency of most of
the experimental results summarized in Ref. [3]. However,
especially for samples with low impurity concentration at

low temperatures, there are also some experiments which
measured a maximum (instead of a minimum predicted by
the present theory) of the magnetic field dependence of the
perpendicular spin transfer rate as well as changes in the
rate which span about one order of magnitude of its value at
B = 0, which was suggested [3] to stem from local fluctuations
of the impurity magnetization. In order to distinguish these
imhomogeneity effects from Coulomb correlation effects we
suggest experiments where the pump pulse is tuned to energies
well above the exciton resonance.

B. Interplay between s-d and Rashba interactions

The fact that in the derivation of Eq. (34) the k dependence
of an effective magnetic field was taken into account makes
it possible to discuss the interplay between the spin-orbit
coupling and the s-d interaction on a rigorous microscopic
basis, where the spin-orbit interaction also acts during s-d
scattering events. In earlier works, the interplay between
these effects was studied [21,47], where only the direct
effects of the spin-orbit coupling on the electron spins was
considered, yielding an additional k-dependent contribution
to the mean-field precession frequency, whereas the dynamics
of the correlations was not modified, i.e., the spin-orbit
interaction was only accounted for between s-d scattering
events. It was found that already on a mean-field level,
the carrier spin dephasing due to the k dependence of
the precession frequencies can be strongly suppressed by a
motional-narrowing-type mechanism caused by the precession
in the mean field of the impurity magnetization. Furthermore,
it was argued that both mechanisms can be tuned in a wide
range, especially in Hg1−x−yCdyMnxTe quantum wells with
applied electric fields. In this material, the strength of the s-d
interaction is determined by the Mn concentration x, while the
Cd concentration y can be used to change the gap between
conduction and valence bands which controls the strength of
the Rashba [19] field. When both types of interaction are
similarly important, a complex oscillatory time evolution of
the carrier spin was found, which is absent when either one of
the interactions dominates.

Now, the question arises whether neglecting the effects of
the Rashba field on the dynamics of the correlations is indeed
a good approximation or if qualitative changes have to be
expected if they are accounted for. We study this question
in a case in which the strengths of the Rashba and the s-d
interactions are comparable. We consider a d = 20 nm wide
Hg1−x−yCdyMnxTe quantum well with electric and magnetic
fields applied along the growth direction z. The voltage drop
between the barriers of the quantum well leads to a strong
Rashba interaction of the form

HR = 2�αR

∑
kσσ ′

(
kys

x
σσ ′ − kxs

y

σσ ′
)
c
†
kσ ckσ ′ , (47)

where we assume a value of αR = 4.87 meV nm [21].
Further parameters that enter the calculation are the

effective mass m∗ = 0.093m0, the s-d coupling constant Jsd =
15 meV nm3, the lattice constant a = 0.645 nm and the Mn
concentration x = 7%. The initial Mn state is modelled by a
thermal equilibrium state following a Brillouin function with
temperature T = 4 K in an external magnetic field pointing in
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the −z direction with |B| = 50 mT. The g factors for impurities
and conduction-band electrons are gMn = 2. and ge = −1.5,
respectively. Furthermore, as we consider an intrinsic DMS
where the quasifree carriers originate purely from optical
excitation, NMn � Ne is clearly fulfilled, so that we can
neglect the back action of the carriers on the impurities.
Thus, the Mn magnetization remains homogeneous, which
allows us to integrate along the growth direction yielding a
factor of I = 1.5. The initial electron spin was modelled by a
Gaussian distribution in the spin-up band centered at the band
edge with standard deviation Es = 1 meV corresponding to
a σ− polarized laser with pulse duration (full width at half
maximum) ∼140 fs. For these parameters, the mean-field
energy splitting caused by the impurity magnetization is
∼ − 0.75 meV (the spin-up-subband is energetically favored),
while the strength of the Rashba interaction for an electron with

kinetic energy �2k2
0

2m∗ = 1 meV is 2�αRk0 ∼ 0.89 meV. Here,
the Zeeman terms yield significantly smaller contributions of
geμB |B| ≈ −0.004 meV and gMnμB |B| ≈ 0.006 meV to the
respective spin splittings.

Figure 5 shows the results of numerical simulations for
this set of parameters. As reported earlier [21], the Rashba
interaction alone (blue dashed line) leads to a fast dephasing
of the carrier spins. If additionally magnetic impurities with a
finite magnetization are present, already a mean-field treatment
(purple circles) can lead to a strong suppression of the
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FIG. 5. Time evolution of the total electron-spin polarization after
spin-polarized optical excitation in a magnetic field perpendicular
to the quantum well plane (cf. text for parameters). The red solid
line describes the results according to Eqs. (10b) and (10c) with the
Markovian expression for the correlations from Eq. (34). The green
dashed line corresponds to a calculation without Rashba coupling,
where only the s-d interaction is considered. The blue dotted line
presents the results of the case in which only the Rashba interaction
is present. The mean-field calculation, which is obtained by dropping
the correlations completely, is shown as the purple circles. The cyan
crosses describe the results where the effects due to the Rashba
interaction on the dynamics of the carrier-impurity correlations are
neglected, so that in addition to the mean-field terms, the time
derivative of the carrier variables obtains the correlation induced
contribution of Eqs. (40).
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FIG. 6. Time evolution of the total electron-spin polarization after
spin-polarized optical excitation in a magnetic field parallel to the
quantum-well plane (cf. Fig. 5).

dephasing by motional narrowing caused by the precession of
the carrier spin in the mean field of the impurity magnetization.
Without the Rashba interaction, the s-d interaction causes a
spin transfer from the carriers to the impurities which can
be seen in Fig. 5 as an exponential decay to a nonvanishing
equilibrium value. In the previous studies [21], the correlation
induced spin transfer was combined with the mean-field
precession, but the effects of the Rashba interaction on the
dynamics of the correlations were neglected (here shown
as cyan crosses). In Fig. 5, also the complete carrier spin
dynamics is shown, where the Rashba interaction is explicitly
accounted for in the calculation of the correlations (red solid
line). By comparing both calculations, it can be seen that the
total carrier spin is hardly influenced by the effects of the
Rashba spin-orbit coupling on the correlation dynamics.
The same result is also obtained for the situation where the
magnetic field is applied parallel to the quantum well plane,
as shown in Fig. 6.

Similar to the fact that the precession-type motion of
the correlations discussed so far leads to changes in the
kinetic energy of scattered carriers, also the Rashba inter-
action enforces a precession of the correlations resulting in
corresponding changes in the electron energies. In Fig. 7 the
carrier occupations at t = 0 and t = 50 ps are shown for
calculations with and without accounting for the Rashba effect
on the correlation dynamics for the situation described in Fig. 5
with magnetic field parallel to the growth direction. Without
the Rashba interaction, the kinetic-energy dependence of the
occupations at t = 50 ps shows a distinctive step at �ωk =
|�σB

e ωe − �σB
MnωMn| which corresponds to a redistribution of

carriers with an excess energy in the spin degree of freedom
to states with higher kinetic energies. When the Rashba
coupling is turned on, the step shifts towards slightly higher
kinetic energies. This can be explained by the fact that in the
configuration with a magnetic field along the growth direction
and a Rashba field in the quantum well plane the energy
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h̄ωk

B ez

t = 0
t = 50
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FIG. 7. Kinetic-energy dependence of the occupation of carrier
states at times t = 0 ps and t = 50 ps for the calculations shown in
Fig. 5.

eigenvalues of an electron with wave vector k are

E± = �ωk ± 1
2 �
√

(2αR|k|)2 + (
σB

e ωe

)2
. (48)

Including the shifts due to the impurity Zeeman splittings,
the step in the kinetic-energy dependence of the occupation

is therefore shifted to �
√

(2αR|k|)2 + (σB
e ωe − σB

MnωMn)2.
However, the shift of the energy splitting is too small to cause
a significant impact on the time evolution of the total spin.

C. Connection to the theory of collective carrier-impurity
precession modes in DMSs

In the derivation of the theory, the z dependence of the
carrier envelope function was taken into account. We see from
Eqs. (42) that one effect of this z dependence is that the spin
transfer rate obtains the prefactor I . Assuming a constant
linear impurity density NMn

d
, a constant z envelope yields a

value of I = 1 while the extreme case of a quantum well with
infinite barriers yields I = 3

2 . This effect has also been found
in previous studies of DMSs [3,15,32].

Like the spin transfer rates, also the electron-spin precession
is influenced by the z dependence of the envelope of the
electron wave function. In particular, it can be seen from
Eq. (11c) that the contribution to the electron-spin precession
frequency from the impurity spin is proportional to

∫ d/2

−d/2
dz |ψ(z)|2〈S(z)〉.

Thus, the impurity spin as a function of z can be decomposed
into this mode which couples to the electron-spin precession
and NMn − 1 orthogonal modes, which do not influence
the electron spins directly on a mean-field level. In the
parameter regime where the precession frequencies of the
electron and impurity spins almost coincide, the coupling
between the above impurity mode and the electron spin is
particularly large, leading to an avoided crossing indicating
a collective motion of impurity and carrier spins. This
fact has been discussed in a number of recent papers by
different groups [6,11,39,40,48,49]. In these works, however,
the carrier-impurity correlations have been disregarded.

In the following, we will derive equations describing the
situation studied, e.g., in Ref. [39] taking the effects due to the
correlations into account. There, an n-type CdMnTe quantum
well in an external magnetic field parallel to the quantum well
plane (x direction) was considered, leading to equilibrium
values of the impurity and carrier spins antiparallel to the
magnetic field. A circularly polarized pump beam induces
electron-hole pairs with spin polarization along the z direction.
During the decay of the hole spins on a time scale of ∼5 ps, the
impurity magnetization precesses around the p-d exchange
field of the holes, causing a small tilt of the impurity spins
away from the equilibrium x axis into the y axis. The optically
induced electron spins contribute to the z component of the
total carrier spin. Thus, after the holes are decayed, one ends
up with a situation where the impurity and carrier spins precess
around each other.

The fact that the spin components perpendicular to the
equilibrium values are small compared with the parallel
components allows one to linearize Eqs. (40) and (41) with
the expression for the rates from Eq. (42):

∂

∂t
s⊥
>/< = geμB

�
B × s⊥

>/< + JsdNMn

�V
Sx,(1) × s⊥

>/< − JsdNMn

�V
sx
>/< × S⊥,(1) − 1

d

∫ d/2

−d/2
dz �>/<(z)s⊥

>/<, (49a)

∂

∂t
S⊥,(j ) = gMnμB

�
B × S⊥,(j ) − Jsd

V �
Sx,(j+1) × (s⊥

> + s⊥
<) + Jsd

V �
(sx

> + sx
<) × S⊥,(j+1)

+ dj−1
∫ d/2

−d/2
dz |ψ(z)|2j [�>(z)s⊥

> + �<(z)s⊥
<], (49b)

�(k,z) := π
Am∗

2π�
J 2

sdNMn

�2V 2
d2|ψ(z)|4

[
〈S‖2〉 +

(
〈S⊥2〉

2
− σB

S

|〈S〉|
4

)
�
{
ωk + [

σB
e ωe − σB

e ωMn(z)
]}

+
(

〈S⊥2〉
2

+ σB
S

|〈S〉|
4

)
�
{
ωk − [

σB
e ωe − σB

e ωMn(z)
]}]

(49c)
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with

sx/⊥
>/< :=

∑
k

>/<
sx/⊥

k , (50a)

�>/<(z) :=
∑

k

>/<
�(k,z), (50b)

Sx/⊥,(j ) := dj−1
∫ d/2

−d/2
dz |ψ(z)|2j 〈Sx/⊥(z)〉, (50c)

where the indices x and ⊥ denote the spin components parallel
and perpendicular to the equilibrium axis x and

∑
k
>/<

describes the sum over all wave vectors k with ωk > ω0 or
ωk < ω0, respectively, where ω0 = |σB

e ωe − σB
MnωMn|. The

distinction between states with higher or lower kinetic energy
than ω0 is a direct consequence of the steplike k dependence
of the spin transfer rates.

Equations (49) of the present paper differ mainly from
Eqs. (4) and (5) of Ref. [39] in that carriers with ωk < ω0

are distinguished from carriers with ωk > ω0 and in that the
terms proportional to the rate �>/<(z) are omitted in the
mean-field treatment of Ref. [39]. Instead, a phenomenological
relaxation rate τ−1

e was added manually in Ref. [39]. Another
difference is the appearance of the corresponding spin transfer
term in the equations for the impurities. This is due to the
fact that the s-d interaction is spin conserving so that the
electron spin that is removed from s⊥

>/< has to be transferred
to the impurity system. Taking these corrections with respect
to the description of Ref. [39] into account would lead to
a more accurate modelling of the collective carrier-impurity
precession modes. However, as discussed earlier, the variation
of the perpendicular spin transfer rate in the presence of an
external magnetic field is limited to � 30% of the golden rule
value at B = 0, so that the spin transfer rate remains in the same
order of magnitude. Thus, the phenomenological treatment of
the rate can be justified for the purpose of the discussion in
Ref. [39].

IV. CONCLUSION

A quantum kinetic description of the carrier spin dynamics
in paramagnetic intrinsic II-VI DMSs was presented which,
in contrast to previous works [33,36,37], also accounts for
a wave-vector-dependent effective magnetic field as well as
Zeeman terms for carriers and impurities. The Markov limit
of the quantum kinetic equations allow us to extract rates
for spin transfer processes between carriers and magnetic
impurities. From the rigorous treatment of a precession-type
dynamics of the carrier-impurity correlations it is found that
the redistribution of carriers in k space is not only influenced
by the spin splitting of the electron subbands due to the
Zeeman energy enhanced by the impurity magnetization, but
also acquires an energetic shift corresponding to the Zeeman
level splitting of the magnetic impurities. This shift accounts
for the fact that a spin flip of an electron involves a spin flop of
the magnetic impurity in the opposite direction and the total
energy of the magnetic impurity and the electron spin has to
be conserved. The energetic shifts in the description of the

spin-flip-flop processes are often not correctly accounted for
in the literature.

The impact of these energy shifts was investigated using
the example of the magnetic-field dependence of the carrier-
impurity spin transfer rates parallel and perpendicular to the
impurity magnetization. Two distinct parameter regimes were
identified, one for rather high doping concentrations of the
order of x ∼ 1% and one for extremely diluted systems with
x � 0.1%. These regimes correspond to cases where the total
change of the kinetic electron energy as given by (σB

e ωe −
σB

MnωMn) is mainly positive or negative. In both situations the
perpendicular spin transfer rate T −1

2 varies within ∼30% of
the value for B = 0, which also coincides with the results for
T −1

1 obtained by Fermi’s golden rule. However, in the first
case, the parallel spin transfer rate T −1

1 decays monotonically
for an increasing magnetic field to 5

8 of the golden-rule value
at B = 0, while in the extremely diluted case, T −1

1 eventually
vanishes. In calculations where the carrier spin splitting �ωe or
the impurity Zeeman splitting �ωMn is neglected, as is often
done in the literature, the magnetic field dependence of the
spin transfer rates deviates significantly from that predicted
by the accurate description involving both energetic shifts.
Accounting for the impurity Zeeman splitting for the spin-
flip-flop processes turns out to be particularly important in the
very dilute case.

Furthermore, the interplay between the s-d interaction
between carrier and impurities and the Rashba interaction in
a Hg1−x−yCdyMnxTe quantum well was investigated. In the
standard rate description approach one usually calculates for
each interaction a corresponding scattering rate and ignores
that other interactions might change the dynamics during the
scattering process. This was the point of view adopted in
previous studies of the combined dynamics of s-d and Rashba
couplings [21,47]. However, such mutual dependencies of
different interactions have been shown in the literature to be
of importance, e.g., in the case of a static electric field acting
during phonon-scattering process known as intracollisional
field effects [38]. Technically, the dynamics during an ongoing
interaction process is represented by correlation functions. In
the present paper, we presented a quantum kinetic description
where s-d and Rashba interactions have been fully accounted
for in the combined dynamics of the single-particle density
matrices and the carrier-impurity correlations, thus fully
covering all mutual cross effects between these interactions.
While it is a priori difficult to predict how important these cross
effects actually are, we have demonstrated for the present case
that the total carrier spin is hardly affected by this mechanism.

Finally, taking into account also the z dependence of the
carrier envelope function makes it possible to show how
the phenomenological treatment of the spin transfer rate
in the description of collective carrier-impurity precession
modes in Ref. [39] can be based on a solid microscopic
foundation.

In summary, our microscopic treatment of the effects of
a k-dependent magnetic field and the impact of the shape
of the carrier envelope function justifies the approximations
made in earlier studies of the dynamics of the total electron
spin [21,39]. Apart from this insight, the present theory further
contributes to the progress in the field of spin physics in

205201-15

Pub 5



M. CYGOREK, P. I. TAMBORENEA, AND V. M. AXT PHYSICAL REVIEW B 93, 205201 (2016)

DMS by not only deriving rates for carrier spins parallel
but also perpendicular to the impurity magnetization in the
presence of an external magnetic field. The latter are expected
to be the dominant contribution to the carrier dephasing
time in time-resolved magneto-optical Kerr measurements
in Voigt configuration. In contrast to earlier approaches
found in the literature [22,32], the rates derived in this
paper are fully compatible with the energy conservation
of an individual spin-flip-flop process. Our study reveals
that the difference between the predictions of the discussed

theories is most prominent for extremely diluted magnetic
semiconductors.
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Abstract. The non-Markovian effects in the spin dynamics in diluted magnetic semiconduc-
tors found in quantum kinetic calculations can be reproduced very well by a much simpler effec-
tive single electron theory, if a finite memory is accounted for. The resulting integro-differential
equation can be solved by a differential transform method, yielding the Taylor series of the
solution. From the comparison of both theories it can be concluded that the non-Markovian
effects are due to the spectral proximity of the excited electrons to the band edge.

1. Introduction
Diluted magnetic semiconductors (DMS) are a class of workhorse materials in the field of
semiconductor spintronics, since they combine the magnetic degree of freedom with the
versatility and highly developed fabrication schemes of the semiconductor technology. Usually,
Mn doped II-VI or III-V semiconductors are studied and a localized s-d interaction between
the carrier and Mn spins modelled by a Kondo-like Hamiltonian has been found to describe the
magnetic properties and the spin dynamics of DMS very well.

A numerical calculation based on a quantum kinetic theory (QKT) for the spin dynamics in
DMS governed by the s-d interaction[1] showed that, among other phenomena, non-Markovian
effects, such as overshoots or oscillations of the total spin polarization, can be found in one-
and two-dimensional systems[2, 3]. The quantum kinetic theory can be presented in a more
easy-to-use and intuitive way, by eliminating the correlations at the cost of a memory integral.
Because it was found that, in doing so, it is crucial to account for a precession-like dynamics
of the carrier-impurity correlations, the equations are referred to as precession of electron spins
and correlations (PESC) equations[4]. In the present article, we show that the non-Markovian
spin dynamics in DMS, found in the quantum kinetic theory, can be well described by an
approximation of the PESC equations. The resulting integro-differential equation can be solved
by a differential transform method (DTM)[5]. An analysis based on this simplified approach
reveals that the non-Markovian effects are due to the proximity of the electronic excitations to
the band edge.

2. Equation of motion
In Ref. [4] effective equations of motion for the correlation-induced spin dynamics in DMS were
derived. For initially vanishing magnetization of the magnetic impurities, the time evolution of
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the conduction band electron spin polarization in a DMS quantum well structure can be found
from Eq. (7a) of Ref. [4]:

∂

∂t
sω1(t) = −η

π

t∫

0

dt′
ωBZ∫

0

dω cos[(ω1 − ω)(t− t′)]
[
sω1(t′) +

1

4
(sω(t′)− sω1(t′))

]
, (1)

where sω1 is the mean electron spin of electrons with energy ~ω1 (relative to the band minimum),
η is the spin transfer rate in the Markov limit and ~ωBZ is the energy at the end of the first

Brillouin zone. If we assume a parabolic band structure, we find ω1 =
~k21
2m∗ with effective mass m∗

for an electron with wave vector k1 and η = 35
12
J2
sdm

∗nMn

~3d with coupling constant Jsd, magnetic
ion density nMn and quantum well width d.

It is noteworthy that in the time derivative for the total spin, where Eq. (1) is integrated over
ω1, the term (sω(t′)−sω1(t′)) cancels. Since this term can be expected to lead to an insignificant
contribution to the total spin, we henceforth neglect this term which simplifies the analysis of
the spin dynamics drastically. Despite this argument being valid only for the total spin, we
shall show by numerical calculation that also the individual spin dynamics for an electron at
the energy ω1 is reasonably well described by this approximation (cf. Fig 1(c) and (d)). Thus,
Eq. (1) can be reduced to

∂

∂t
sω1(t) = −η

π

t∫

0

dt′
[

sin((ωBZ − ω1)(t′ − t))
t′ − t +

sin(ω1(t′ − t))
t′ − t

]
sω1(t′) (2)

The phyiscal meaning of Eq. (2) becomes most obvious when the Markov limit is regarded,
which assumes that sω1 changes on a much slower timescale than the oscillations of the integral
kernel. Then, on the r. h. s. of Eq. (2), sω1(t′) can be evaluated at t′ = t and drawn out of
the integral. Keeping in mind that limω→∞ sin(ωt)/t = πδ(t) and that the integral ranges only
over one half of the sin(ωt)/t peak, one finds: ∂

∂tsω1 = −ηsω1 , which shows a simple exponential
decay of sω1 with the rate η. This corresponds to a golden rule-type transfer of the electron spin
to the impurity system.

However, the condition for the applicability of the Markov limit was η � ω1 and η � ωBZ−ω1.
For realistic parameters (e. g., the parameters used in Ref. [2, 3] yield ~η ≈ 0.45 meV) and
excitations far away from the end of the first Brillouin zone, only the latter condition is fulfilled,
while for excitations close to the band edge, ω1 can be of the same order of magnitude as η.
Thus, we apply the Markov limit (ωBZ → ∞) only on the first term of Eq. (2). The number
of parameters can be reduced by substituting τ := ηt and ξ := ω1/η. Then, the problem is
transformed to:

∂

∂τ
Φξ(τ) = −1

2
Φξ(τ)− 1

π

τ∫

0

dτ ′
sin(ξ(τ ′ − τ))

τ ′ − τ Φξ(τ
′), Φξ(0) := 1, (3)

where sω1(t) = sω1(0)Φω1/η(ηt). Thus, the shape of the time evolution depends only on the ratio
between ω1 and η.

3. Numerical Evaluation of the non-Markovian Spin Dynamics
We solve the integro-differtial equation (3) by a technique similar to Zhou’s differential transform
method (DTM)[5], which consists of Taylor-expanding all terms in Eq. (3) at τ = 0. This yields
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Figure 1. (a): Spin dynamics in a 4 nm wide Zn0.93Mn0.07Se quantum well with η ≈ 0.67 ps−1

with Gaussian excitaton at ~ω = 0 and standard deviation ∆ = 0.4 meV (same as in Ref. [2])
according to the full quantum kinetic theory (QKT), the differential transform method (DTM,
from Eq. (4)) and the Markov limit. (b): Time evloution of the spin of single electrons with
fixed energies ~ω = ~ηξ, compared with the Markov limit and the expression in Eq. (5) for the
low-ξ approximation. The spectrally resolved time evolution of the spin polarization is shown
in (c) for the DTM calculation, and in (d) for the QKT (cf. Ref. [2]).

a recursion relation between the derivatives of Φξ:

Φ
(i)
ξ = −1

2Φ
(i−1)
ξ − 1

π

∑
0≤2m≤i−2

(−1)m

2m+1 ξ
(2m+1)Φ

(i−2−2m)
ξ , (4)

where Φ
(i)
ξ is the i-th derivative of Φξ evaluated at τ = 0. The numerical evaluation of Eq. (4)

is very efficient and Φξ(τ) can be calculated to high orders by substituting the derivatives into
the Taylor expansion. We refer to this algorithm as the DTM calculation.

It is noteworthy that from the recursion relation (4) closed expressions can be derived for

Φξ(τ) to a certain order in the ratio ξ by combinatoric analysis of the paths from Φ
(0)
ξ = 1 to

Φ
(n)
ξ and comparing the Taylor series with that of known functions. E. g., to second order in ξ,

we find:

Φξ(τ) = e−
τ
2 + ξ

π [(2τ + 4)e−
τ
2 − 4] +

(
ξ
π

)2[
(2τ2 + 16τ + 48)e−

τ
2 + 8τ − 48

]
+O(ξ3) (5)

which should be valid for excitations near the band edge where ξ � 1 can be fulfilled.

4. Results
To check the validity of the approximation of neglecting the last term of Eq. (1), we compare the
DTM calculation with the results of a full quantum kinetic treatment. Fig. 1(a) shows that the
non-Markovian dynamics of the total spin given in Fig. 1(b) of Ref.[2] can be reproduced almost
perfectly with the DTM calculation. Also, the time evolution of an individual spin of an electron
with energy ~ω1 is very similar in both calculations except for a high-energy tail appearing in the
full quantum kinetic result, as can be seen from the spectrally resolved time evolution presented
in Figs. 1(c) and (d) for DTM and QKT calculations, respectively. This finding confirms that
Eq. (3) indeed captures the main non-Markovian features of the full quantum kinetic theory.
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Fig. 1(b) shows the results of the DTM calculation for different values of ξ. For ξ = 0, the
dynamics is given by an exponential decay with half the rate η, as can be seen also in the low-ξ
approximation in Eq. (5). For larger values of ξ, the decay rate approaches η and oscillations
start to appear whose amplitudes eventually decrease for even larger values of ξ, where the
time evolution converges to the exponential decay of the Markov limit (ω1 → ∞). Thus, the
non-Markovian features are only present if the approximation ξ � η breaks down, i. e., if the
excited electrons are spectrally close to the band edge, where the characteristic energy scale is
given by ~η.

This can easily be understood if another derivation of the Markov limit starting from Eq. (1)
is considered. If the assumption of a vanishing memory is made and on the r. h. s. the functions
sω(t′) are evaluated at t′ = t, we can first integrate over dt′ and then over dω. Calculating the
first interal gives

∂

∂t
sω1(t) = −η

π

ωBZ∫

0

dω
sin[(ω1 − ω)t]

ω1 − ω

[
sω1(t) +

1

4
(sω(t)− sω1(t))

]
. (6)

Using again the fact that limt→∞
sin[∆ωt]

∆ω → πδ(∆ω), one again ends up with the Markov limit.
For finite time t, however, the integral kernel is not yet contracted to a δ-distribution and the

finite integral limits cut off tails of the sin[∆ωt]
∆ω function. This cut-off is particularly significant,

if the peak of the integral kernel, which is given by ω1 is close to one of the integral limits.
Furthermore, it can be seen in Fig. 1(b) that the low-ξ approximation in Eq. (5) yields

reasonable results for ξ = 0.5 for the initial exponential decay while it fails to reproduce the
long-term oscillations.

5. Conclusion
The non-Markovian overshoots and oscillations in the time evolution of the carrier spins in DMS
found in a quantum kinetic theory can be reproduced by integro-differential equation of a much
simpler form that also simplifies the interpretation considerably. A differential transform method
(DTM) is employed to solve the resulting equation and allows to find closed-form expressions
for low excitation energies of electrons.

It is found that a non-exponential behaviour of the time evolution of the electron spin is
only present for electrons excited close to the band edge, where the decay predicted by the
rate and the oscillations with frequency corresponding to the electron energies take place on
the same time scale. Technically, this is due to the fact that a sinc-function that converges to
a δ-distribution in the Markov limit is cut off by the band edge. It is noteworthy that similar
time evolutions have also been found in different setups, e. g., for the hole spin dynamics due
to phonon scattering in a GaAs quantum well when the scattering rate is close to the phonon
frequency[6].
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The effects of carrier-impurity correlations due to a Kondo-like spin-spin interaction in diluted magnetic
semiconductors are investigated. These correlations are not only responsible for a transfer of spins between the
carriers and the impurities, but also produce nonperturbative effects in the spin dynamics such as renormalization
of the precession frequency of the carrier spins, which can reach values of several percent in CdMnTe quantum
wells. In two-dimensional systems, the precession frequency renormalization for a single electron spin with
defined wave vector shows logarithmic divergences similar to those also known from the Kondo problem
in metals. For smooth electron distributions, however, the divergences disappear due to the integrability of
the logarithm. A possible dephasing mechanism caused by the wave-vector dependence of the electron spin
precession frequencies is found to be of minor importance compared to the spin transfer from the carrier to the
impurity system. In the Markov limit of the theory, an expression for the stationary carrier-impurity correlation
energy can be deduced indicating the formation of weakly correlated carrier-impurity states with binding energies
in the μeV range.

DOI: 10.1103/PhysRevB.93.035206

I. INTRODUCTION

A perturbative treatment of the interaction between
quasifree electrons in a metal with localized magnetic im-
purities predicts logarithmic divergences in several quantities
such as resistivity and entropy at zero temperature [1,2]. This
finding, the Kondo effect, is a famous example of a situation
where perturbation theory leads to unphysical conclusions,
whereas the measured values of the resistivity assume finite
values. The Kondo problem, i.e., the question of how to
properly describe the low-temperature limit of a system with
a spin dependent carrier-impurity interaction theoretically,
has opened up a wide field of physics. Although the Kondo
problem, as it was originally formulated, has been solved
[2], the Kondo physics experienced a revival since it has
become possible to study experimentally similar problems in
other systems, e.g., structures where quantum dots play the
role of the magnetic impurities [3–12]. The common feature
in these systems is that a microscopic exchange coupling
gives rise to an effective Kondo Hamiltonian that assumes the
form of a spin-spin contact interaction between the quasifree
carriers and the localized magnetic impurities, or quantum
dots, respectively.

Other systems which are usually modeled by a Kondo-like
Hamiltonian are diluted magnetic semiconductors (DMS)
where typically II-VI or III-V semiconductors are doped with
magnetic impurities, usually Mn which effectively forms a
spin- 5

2 system. These materials have been studied extensively
in the last decades [13–34] due to their optical and magnetic
properties which make them promising candidates for future
spintronics devices [35–37]. However, quantum mechanical
correlations between the carriers and impurities in DMS,
which are crucial for the Kondo effect, have so far not
been investigated thoroughly, since a vast number of inter-
esting effects, such as collective modes in the coherent spin
precession of carriers and impurities [38], carrier mediated
RKKY interaction [39] leading to a ferromagnetic order in

DMS [35], and bound or free magnetic polarons [40–47],
can already be found using a semiclassical or mean-field
approximation, where the carrier-impurity correlations are
disregarded. It has been argued in the literature [48] that
Kondo-type correlation effects are different in DMS than in
magnetically doped metals because in the latter only a few
magnetic impurities and a huge number of quasifree carriers
are present in the metal, whereas in the former case, in
particular in the case of (intrinsic) II-VI DMS, the number
of impurities usually exceeds the number of carriers. On the
other hand, a third-order many-body perturbation theory based
on the pseudofermion formalism [49] reveals Kondo-like
divergences in the propagator for the spin dynamics in DMS
due to the hole-impurity exchange interaction. From this it was
concluded that the carrier-impurity correlations should in fact
be important for the dynamics in DMS.

The main goal of the present article is to calculate and
discuss the magnitude of the additional effects arising in the
description of DMS, when the carrier-impurity correlations
are explicitly accounted for. It is assumed that only optically
induced spin polarized carriers are present, which interact
with magnetic impurities via the s-d exchange interaction.
This assumption is particularly well met in II-VI DMS like
CdMnTe, whereas the correlation effects might be modified in
other DMS materials like GaMnAs due to Coulomb effects.
We base our study on a microscopic quantum kinetic theory
derived by a correlation expansion scheme [50] that is capable
of a nonperturbative description of highly nonequilibrium
situations. One aspect of the effects of the carrier-impurity
correlations on the spin dynamics has already been found in
previous works [51–55]: The correlations mediate the transfer
of spins between the carriers and the impurities. Since in
the Markovian limit the quantum kinetic theory contains the
special case of rate equations which can also be derived by
a Fermi’s golden rule approach [51], this spin transfer can,
in fact, be treated perturbatively [56]. Note that in some
situations, e.g., for excitations close to the band edge in two-

2469-9950/2016/93(3)/035206(10) 035206-1 ©2016 American Physical Society

Pub 7



M. CYGOREK, P. I. TAMBORENEA, AND V. M. AXT PHYSICAL REVIEW B 93, 035206 (2016)

and lower-dimensional DMS [57], the Markov limit is not a
good approximation so that deviations from a golden-rule-like
exponential decay are predicted.

In the present study we show that the carrier-impurity
correlations are also responsible for another effect in the spin
dynamics that is not predicted by a perturbative method: a
renormalization of the precession frequency of carrier spins
compared with its mean-field value. It is shown that the
frequency renormalization contains logarithmic divergences in
the Markov limit in two-dimensional systems similar to those
known from diluted magnetic metallic alloys [58]. However,
here we find that these divergences never lead to unphysical
results in the spin dynamics. This is, first of all, due to the
fact that the singularities are integrable and yield finite values
for a nonsingular spectral electron distribution. Moreover, the
divergence in the frequency renormalization is only found
for t → ∞ where the amplitude of the precessing electron
spin has already decayed to zero. The Markov limit of the
quantum kinetic theory also allows to find an expression
for the carrier-impurity correlation energy which shows a
similar behavior as the frequency renormalization, including
Kondo-like logarithmic divergences in the two-dimensional
case.

The article is structured as follows: First, the quantum
kinetic theory is briefly reviewed as well as effective PESC
(precession of electron spins and correlations) equations [54]
based on the quantum kinetic theory. Then, the frequency
renormalization described by the PESC equations is calculated
and compared with the result of a Markovian approximation to
the PESC equations in two and three dimensions. A possible
electron spin dephasing mechanism due to the wave vector
dependence of the frequency renormalization is discussed.
Finally, we investigate the mean carrier-impurity correlation
energy.

II. THEORY

A. System

The Hamiltonian for conduction band electrons in DMS is
modeled by

H = H0 + Hsd, (1a)

H0 =
∑
kσ

�ωkc
†
σkcσk, (1b)

Hsd = Jsd

V

∑
Inn′kk′σσ ′

Snn′ · sσσ ′c
†
σkcσ ′k′ei(k′−k)RI P̂ I

nn′ , (1c)

where H0 describes the band structure and Hsd is the Kondo
Hamiltonian which originates from the exchange interaction
between the s-type conduction band electrons and the d

electrons of the magnetic ions. Throughout this article we
assume a parabolic band structure with ωk = �k2

2m∗ , where m∗
is the effective mass. Jsd and V are the coupling constant
and volume of the DMS and c

†
σk and cσk are the creation

and annihilation operators for electrons with spin index σ

and wave vector k. RI is the position of the I th magnetic
impurity and P̂ I

nn′ = |I,n〉〈I,n′| are the projection operators
corresponding to the spin state of the I th impurity, e.g., for

spin- 5
2 Mn impurities, n = {− 5

2 , − 3
2 , . . . , 5

2 }. Snn′ and sσσ ′ are
the spin matrices for spin- 5

2 and 1
2 systems, respectively.

B. Equations of motion

A microscopic quantum kinetic theory based on a corre-
lation expansion scheme was constructed in Ref. [50], where
equations of motion have been derived for the electron and
impurity density matrices C

σ2
σ1k and Mn2

n1
as well as their

correlations which are defined by

C
σ2
σ1k = 〈

c
†
σ1kcσ2k

〉
, (2a)

Mn2
n1

= 〈
P̂ I

n1n2

〉
, (2b)

Q
σ2n2k2
σ1n1k1

= V
〈
c
†
σ1k1

cσ2k2e
i(k2−k1)RI P̂ I

n1n2

〉(
1 − δk1,k2

)
, (2c)

where the brackets denote the quantum mechanical average as
well as an average over spatially homogeneously distributed
impurities [59]. From the assumption of a homogeneous
distribution it also follows that off-diagonal elements of the
carrier density matrix with respect to k average out, so that
the electron density matrix in Eq. (2a) can be addressed by a
single k index. The fact that the localized s-d interaction breaks
the translational invariance of the system manifests itself in the
theory, e.g., in a redistribution of carriers in k space [50]. The
equations of motion for these dynamical variables are given in
Ref. [53].

The full quantum kinetic equations are lengthy and their
solution requires considerable numerical effort. However, it
was found in Ref. [54] that they can be drastically simplified
in the case where the number of impurity ions NMn is much
larger than the number of the quasifree electrons Ne. This is
usually fulfilled especially in II-VI DMS where the magnetic
doping with Mn does not simultaneously lead to p or n doping
and the carriers stem exclusively from optical excitation. To
understand the effective equations derived in Ref. [54] it is
instructive to first consider the mean-field dynamics for the
spin sk = ∑

σ1σ2
sσ1σ2C

σ2
σ1k of electrons with wave vector k

and the impurities 〈S〉 = ∑
n1n2

Sn1n2M
n2
n1

. In the mean-field
approximation, i.e., if the correlations are neglected, one finds

∂

∂t
sk

∣∣∣∣
MF

= ωM × sk, (3a)

∂

∂t
〈S〉

∣∣∣∣
MF

= − 1

NMn

∑
k

∂

∂t
sk

∣∣∣∣
MF

, (3b)

where ωM := Jsd
� nMn〈S〉. Equation (3b) follows from the total

spin conservation of the Kondo Hamiltonian. In the case
NMn � Ne, the change of the impurity spin is marginal and
can therefore be neglected. The precession of the electron
spin around the mean field due to the impurity magnetization,
on the other hand, is in general important. Equation (3a) is
solved by

sk = R〈S〉(ωMt)s′
k, (4)

where Rn(α) is the matrix describing a rotation around the
vector n with angle α and the precession frequency ωM =
ωM · 〈S〉/|〈S〉| is defined so that it has the same sign as the
coupling constant Jsd. In the mean-field approximation s′

k is
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constant. However, if we also account for the carrier-impurity
correlations, s′

k changes slowly in time and constitutes the
electron spin in a rotating frame. If the correlations are formally
integrated and inserted into the corresponding equations of
motion for the electron variables, the effective equations for
the electron spin component s′⊥

k1
perpendicular to the impurity

magnetization can be given as [54]

∂

∂t
s′⊥

k1
= −

∑
k

[
Re

(
G

ωk1 −ωM

ωk

)(b+

2
− b0n

↑
k

)
s′⊥

k1

+ Re
(
G

ωk1 +ωM

ωk

)(b−

2
+ b0n

↓
k

)
s′⊥

k1

+ Re
(
G

ωk1
ωk

)b‖

2

(
s′⊥

k + s′⊥
k1

)]

− 〈S〉
|〈S〉|

∑
k

[
Im

(
G

ωk1 −ωM

ωk

)(b+

2
− b0n

↑
k

)

− Im
(
G

ωk1 +ωM

ωk

)(b−

2
+ b0n

↓
k

)]
s′⊥

k1
. (5)

The coefficients in Eq. (5) are given by b± := 〈S⊥2〉 ± 〈S‖〉
2 ,

b0 := 〈S‖〉
2 , and b‖ := 〈S‖2〉, where the component of the

impurity spin operator in the direction of the mean impurity

spin is S‖ := Ŝ · 〈Ŝ〉
|〈Ŝ〉| , and the relevant second moments of the

impurity spin operator can be separated into parallel 〈S‖2〉
and perpendicular parts 〈S⊥2〉 = 1

2 〈S2 − S‖2〉. The memory
function

G
ωk1
ωk := J 2

sd

�2

nMn

V

∫ 0

−t

dt ′ei(ωk−ωk1 t ′) (6)

has to be interpreted as an integral operator and the time-
dependent variables that appear after G

ωk1
ωk in Eq. (5) are

evaluated at t ′. Finally, n
↑/↓
k are the occupation numbers of

the states with wave-vector k, i.e., the diagonal elements of
the density matrix with respect to the spin indices. Equation
(5) together with the corresponding equations for n

↑/↓
k given

in Ref. [54] are called precession of electron spins and cor-
relations (PESC) equations, since besides the electron spins,
also the correlations Q

αk2
βk1

:= ∑
σ1σ2

∑
n1n2

sσ1σ2 · Sn1n2Q
σ2n2k2
σ1n1k1

exhibit a precessionlike movement around the mean field due
to the impurity magnetization. Note that Eq. (5) is equivalent
to the full quantum kinetic theory of Ref. [50] except that
some source terms for the correlations are neglected that are
numerically insignificant (cf. Ref. [54] for details).

Equation (5) is only complicated and numerically challeng-
ing due to the time integral induced by the memory function
G

ωk1
ωk . Now, working in the rotating frame allows us to assume

that the electron variables change only slowly in time and
can equally well be evaluated at t instead of t ′. The memory
integral consists then only of

0∫
−t

dt ′ ei(ωk−ωk1)t
′ ≈ πδ(ωk − ωk1) − iP 1

ωk − ωk1

, (7)

where P is the Cauchy principal value. The Markov approx-
imation (7) was established by letting t → ∞ in the lower

limit of the integral and using the Sokhotski-Plemelj theorem.
The validity of the Markovian approximation can in general
depend on the values of k, k1, t as well as the time scale of
the change of the electron variables and therefore has to be
checked numerically.

If only the real part of the memory function is used in
Markov approximation and the imaginary part is neglected,
the PESC equations assume a golden-rule-type form, where the
spin transfer dynamics follows approximately an exponential
decay to the equilibrium value with rate

(τ⊥)−1 ≈J 2
sdnMn

�2V
π

[
D(ω1 − ωM )

b+

2
+ D(ω1 + ωM )

b−

2

+ D(ω1)b‖
]

(8)

for an electron with kinetic energy ω1, if the terms of second
order of the electron variables in Eq. (5) are neglected [54]. In
the expression for the rate, D(ω) describes the spectral density
of states and depends on the dimensionality of the system.

C. Frequency renormalization in the Markov limit

One issue that we would like to focus on in the present work
is the change in the precession frequency described in Eq. (5)
by the terms proportional to the imaginary part of the memory
function. Such a renormalization of the precession frequency
would be absent in any truncated perturbative approach [60].
It originates, like the spin transfer described by the real part of
the memory function, from the carrier-impurity correlations.

It is noteworthy that the frequency renormalization is
singular in the Markov limit described in Eq. (7), i.e., the
imaginary part of the memory function G

ωk1
ωk diverges if

ωk = ωk1 . However, this divergence does not lead to an
unphysical behavior. First of all, the divergence is a feature
of the Markovian limit. For finite times t , the left-hand side
of Eq. (7) is a finite integral over an analytic function and is
therefore itself analytic. For ωk = ωk1 , the value of the integral
is t which only goes to infinity in the Markov limit. As only
the electron spin component perpendicular to the impurity
magnetization is affected by the frequency renormalization
and this component decays approximately exponentially to
zero, an infinite precession frequency is never observable.

Similar to the Markovian spin transfer rate in Eq. (8), an
expression for the frequency renormalization 
ω can be given
in the Markov limit of Eq. (5), if the imaginary part of Eq. (7)
is used:


ω(ω1) = J 2
sd

�2

nMn

V

∫ ωBZ

0
dω D(ω)

×
[
b+

2

1

ω − (ω1 − ωM )
− b−

2

1

ω − (ω1 + ωM )

]
,

(9)

where, for the sake of simplicity, the terms proportional to n↑/↓
in Eq. (5) were neglected, since they only matter if a large
number of carriers is present. In two-dimensional systems,
the spectral density of states D2D(ω) = Am∗

2π� �(ω) is constant,
where A is the sample area and �(x) is the step function. In

three dimensions, D3D(ω) = V
4π2 ( 2m∗

� )
3/2√

ω �(ω) is propor-
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tional to the square root of ω. The corresponding frequency
renormalizations are


ω2D(ω1) = −J 2
sd

�2

nMn

d

m∗

2π�

{
b+

2
ln

∣∣∣∣ ω1 − ωM

ωBZ − (ω1 − ωM )

∣∣∣∣
− b−

2
ln

∣∣∣∣ ω1 + ωM

ωBZ − (ω1 + ωM )

∣∣∣∣
}
, (10a)

where d = V/A is the quantum well width, and


ω3D(ω1) = J 2
sd

�2

nMn

4π

(2m∗

�

)3/2
∫ ωBZ

0
dω

×
{

b+

2

√
ω

ω − (ω1 − ωM )
− b−

2

√
ω

ω − (ω1 + ωM )

}
,

(10b)

with ∫ ωBZ

0
dω

√
ω

ω − ω0

=
{

2
√

ωBZ − √
ω0 ln

∣∣ω0+ωBZ
ω0−ωBZ

∣∣, ω0 > 0,

2
√

ωBZ − 2
√|ω0| tan−1

(
ωBZ
|ω0|

)
, ω0 < 0.

(10c)

It should be noted that in two and three dimensions the
frequency renormalization depends explicitly on the frequency
ωBZ, which corresponds to the energy at the end of the
first Brillouin zone, and diverges in the limit ωBZ → ∞.
For typical pump-probe experiments with diluted magnetic
semiconductors, carriers are optically excited relatively close
to the band edge. For the excited electrons, one can safely
assume ω1 ± ωM � ωBZ. In this case, we find a logarithmic
dependence on ωBZ in the two-dimensional frequency renor-
malization.

With the same assumption also the integral in Eq. (10c) for
the three-dimensional renormalization can be simplified to∫ ωBZ

0
dω

√
ω

ω − ω0
≈ 2

√
ωBZ − π

√
|ω0|�(−ω0). (11)

Thus, we find a square-root dependence of the frequency
renormalization on the cut-off frequency ωBZ, as well as
a square-root dependence on ω0 = ω1 ± ωM which only
contributes if ω0 is negative.

The divergence in the limit ωBZ → ∞ is similar to the
metallic Kondo effect where the divergence in the resistivity
is also logarithmic in the bandwidth [2]. An effective spin-
dependent Hamiltonian leading to a carrier spin precession
which diverges logarithmically with the bandwidth has also
been derived in Ref. [58] in the formulation a theory of
spin resonance in diluted magnetic metallic alloys which is
based on a Kadanoff-Baym-like gradient expansion combined
with a Markovian approximation and the assumption of
a thermal electron distribution. The fact that the metallic
problem resembles rather the two-dimensional than the three-
dimensional case in DMS originates from both systems being
modeled by a constant density of states.

It is noteworthy that the divergence of the frequency renor-
malization at ω0 = ω1 ± ωM vanishes in the three-dimensional

case due to the integral over the density of states. In two-
dimensional systems, a diverging frequency renormalization
remains, but only for electrons with a unique value of the
kinetic energy. For realistic optical excitation, however, a
smooth spectral electron distribution can be expected so that
the change of the total precession frequency comprises an
averaging over frequency renormalizations of nearby states.
Since the logarithmic divergence is integrable, the total
frequency renormalization remains finite.

III. NUMERICAL CALCULATIONS

In order to check the validity of the Markov approximation
for the renormalization of the precession frequency of the
electrons, we compare the Markov result with calculations,
where the memory is taken into account explicitly. It seems
straightforward to use Eq. (5) with the time-integral operator
G

ωk1
ωk defined in Eq. (6) and solve the integrodifferential

equations numerically. This is, however, a very challenging
problem for the following reasons.

From the Markovian expression for the frequency renor-
malization, we find the explicit dependence on the value of
the cut-off energy �ωBZ. Therefore, also oscillations with
frequencies close to ωBZ have to be resolved, which are on
the time scale of a few femtoseconds since �ωBZ is in the
eV range. On the other hand, relevant changes of the total
electron spin takes place in the 10–100 ps range. Furthermore,
for each time step the calculation of each s′⊥

k1
requires a

sum over all possible k states so that the problem has the
complexity O(N2

k ), where Nk is the number of discretization
points for the k space. Note that also in k space, the details
of excitations close to the band edge in the meV range as
well as the full Brillouin zone up to energies of a few eV
have to be resolved. Such a problem also arises in the metallic
Kondo effect where numerical procedures, such as the famous
renormalization group [61], have been developed to deal with
the large value of the bandwidth [2]. Note that solving the inte-
grodifferential equation by finding an auxiliary variable, so that
the problem can be transformed into an ordinary differential
equation, is equivalent to using the original quantum kinetic
theory [54].

Here we solve this problem by using approximations that
allow a separation of electron spins with different wave vectors,
so that we find a O(Nk) problem for an individual electron with
wave vector k1. First of all, it is noteworthy that s′⊥

k1
in Eq. (5)

couples to the occupations n
↑/↓
k of states with different wave

vectors k. These terms, however, are of second order in electron
variables and have a marginal effect on the dynamics of the
perpendicular spin component [54], especially if the electron
density is small, as is usually the case for optically excited
carriers. Neglecting these terms, we can formulate equations
of motion for the complex perpendicular electron spin variable
(in the rotating frame):

s ′
k1

:= s ′x
k1

+ is
′y
k1

, (12)

where it is assumed that the impurity magnetization points
in the z direction. Then, the PESC-equations (5) assume the
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form

∂

∂t
s ′

k1
(t) = −J 2

sd

�2

nMn

V

∑
k

∫ t

0
dt ′

×
{

b+

2
ei[ωk−(ωk1 −ωM )](t ′−t)s ′

k1
(t ′)

+ b−

2
e−i[ωk−(ωk1 +ωM )](t ′−t)s ′

k1
(t ′)

+ b‖

2
cos

[(
ωk − ωk1

)
(t ′ − t)

][
s ′

k(t ′) + s ′
k1

(t ′)
]}

.

(13)

It can be seen immediately from Eq. (13) that in the equation
for s ′

k1
, electron variables of states with other wave vectors

only enter in the last term, i.e., the term proportional to s ′
k(t ′) +

s ′
k1

(t ′). Note that a time integration of cos[(ωk − ωk1 )(t ′ − t)]

yields
sin[(ωk−ωk1 )t]

(ωk−ωk1 )t which has a pronounced peak at ωk = ωk1 .
Thus, if the electron spin distribution is assumed to be a smooth
function in k space, the main contribution of the last term in
Eq. (13) will be approximately the same if we set

s ′
k(t ′) ≈ s ′

k1
(t ′). (14)

This approximation was shown to reproduce the non-
Markovian features of the spin transfer in Ref. [57]. Also,
in contrast to the other terms, the last term of Eq. (13), where
the approximation is used, does not influence the frequency
renormalization, due to the absence of an imaginary part of
the oscillating prefactor cos[(ωk − ωk1 )(t ′ − t)]. Now, with
the help of approximation (14), we end up with completely
decoupled equations for the spins s ′

k1
of electrons with different

wave vectors k1.
Finally, it is useful for the numerical solution of the inte-

grodifferential equation (13) to transform it into an ordinary
differential equation using auxiliary variables G

j

k1k:

∂

∂t
s ′

k1
= −J 2

sd

�2

nMn

V

4∑
j=1

∑
k

D(k)Gj

k1k, (15a)

∂

∂t
G

j

k1k = σj i
(
ωk − ωk1 + χjωM

)
G

j

k1k + bj

2
s ′

k1
, (15b)

with

σj = {1, − 1,1, − 1}, (15c)

χj = {1, − 1,0,0}, (15d)

bj = {b+,b−,b‖,b‖}, (15e)

and initial conditions G
j

k1k = 0 for t = 0. This reflects the fact
that before the preparation (e.g., optical excitation) there are
no free carriers available and therefore the carrier-impurity
correlations should initially be zero. Calculating the dynamics
of a single electron spin using Eqs. (15) has the complexity
O(Nk) and can be done without the need for a numerical
renormalization group procedure.

IV. RESULTS FOR THE FREQUENCY
RENORMALIZATION

The parameters used for the numerical calculations de-
scribe a Cd0.93Mn0.07Te sample with coupling constant Jsd =
−15 meV nm3, effective mass m∗ = 0.093m0 [62], where m0

is the free electron mass, and, in the case of a two-dimensional
system, a quantum well width of d = 5 nm. The cut-off
energy was taken to be �ωBZ = 3 eV. The initial impurity
magnetization was modeled to be thermally distributed and
is therefore completely defined by the mean value 〈S‖〉 ∈
[− 5

2 ; 5
2 ].

We assume that electrons have been spin selectively
prepared by optical excitation with circularly polarized light
so that the initial electron spin is perpendicular to the initial
impurity magnetization (Voigt geometry). Equations (15) are
used to calculate the finite-memory spin dynamics for electrons
with a defined wave vector k1 or, equivalently, kinetic energy

�ω1 = �2k2
1

2m∗ . An exponentially decaying cosine

s ′x
ω1

(t) ≈ s ′x
ω1

(0)e−t/τ⊥ cos(ω′
Mt) (16)

is fit to the non-Markovian spin dynamics in order to find a
value for the effective decay rate τ−1

⊥ (ω1) and the precession
frequency ω′

M (ω1). The relative renormalization of the preces-
sion frequency is given by 
ω

ωM
with 
ω = ω′

M − ωM .
Figure 1 shows the relative frequency renormalization

obtained from a fit to the non-Markovian calculation and the
corresponding Markovian result for a δ-like initial spectral
electron distribution as a function of the kinetic energy �ω1.
First of all, it can be seen that in three-dimensional as well as in
two-dimensional systems the Markovian and non-Markovian
results coincide. In the three-dimensional case, the square-root
energy dependence of the renormalization for ω1 < ωM can
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FIG. 1. Dependence of the relative frequency renormalization 
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on the kinetic electron energy for two- and three-dimensional systems
according to the calculation including a finite memory [Eqs. (15)]
(points) and in the Markov limit [Eqs. (10)] (lines) for different values
of the average impurity spin |〈S〉| (in units of �).
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⊥ in Markov approximation (line)

according to Eq. (8) and exponential fit to the calculation including
a finite memory (crosses) using Eqs. (15) for |〈S〉| = 0.05 in a two-
dimensional system.

be seen clearly, while in two dimensions, the logarithmic
divergence at ω1 = ωM is apparent. The positive relative
frequency renormalization in three dimensions describes an
increase in the modulus of the precession frequency. In
two dimensions, the slightly positive background of the
renormalization is overcompensated by a negative value in
the region around the divergence.

In Fig. 2 the spin transfer rate according to the Markov
approximation is compared with the value obtained by the
exponential fit to the non-Markovian result for a calculation
with |〈S〉| = 0.05 in two dimensions. The step in the rate τ−1

⊥ at
ω1 = ωM , which is predicted in the Markov limit [cf. Eq. (8)],
is found to be slightly rounded off in the non-Markovian
calculation, but the deviations between both results are rather
small.

In order to find an estimate for the strength of the change
of the precession frequency for a more realistic electron
distribution, Fig. 3 shows the relative precession frequency
renormalization as a function of the average impurity spin
where the initial spectral electron distribution [cf. inset of
Fig. 3] was assumed to be Gaussian with center at Ec = �ωM

and standard deviation Es = 1 meV (0.1 meV) corresponding
to a full width at half maximum (FWHM) of ≈2.35 meV
(0.235 meV) or a Gaussian envelope of an exciting laser pulse
with a duration (FWHM) of ≈140 fs (1.4 ps). The calculations
for Fig. 3 were performed using the 2D Markovian expression
for the rates in Eq. (8) and the renormalized precession
frequencies in Eq. (10a). It can be seen that the magnitude
of the frequency renormalization can reach values of several
percent of the mean-field precession frequency and is negative
for small values of |〈S〉|. For larger values of the impurity
magnetization, the frequency renormalization approaches a
small positive value. One could expect that the narrower
electron distribution (Es = 0.1 meV) is closer to the δ-like
case than the wider distribution (Es = 1 meV) and therefore
the frequency renormalization should be more pronounced.
However, it can be seen from Fig. 3 that this is only the
case for very low values of |〈S〉| (below 0.01 in the case
studied here). For higher values of the impurity magnetization,
the relative frequency renormalization approaches the positive
background much faster in the calculations with the narrower
electron distribution.
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FIG. 3. Relative frequency renormalization 
ω

ωM
in a two-

dimensional system for a Gaussian spectral electron distribution
centered at Ec = �ωM with standard deviations of Es = 1 meV and
Es = 0.1 meV, respectively. The initial electron distribution as a
function of the kinetic energy is visualized in the inset as the blue
dash-dotted line (Es = 1 meV) and green dotted line (Es = 0.1 meV)
together with the corresponding frequency renormalization for δ-like
excitations (red line) for |〈S〉| = 0.05.

Note that in order to be able to measure or fit a precession
frequency, at least one period of the oscillations should be vis-
ible before the spin polarization is decayed. Thus, the minimal
value of the impurity magnetization, where one can reasonably
deduce a precession frequency from the time evolution of the
spin polarization, is given by |ωM | � τ−1

⊥ which yields, for the
parameters above, |〈S〉| � 0.01. Therefore, we find that short
laser pulses with pulse durations of the order of 100 fs provide
the most promising configuration for experiments to measure
the frequency renormalization. Under these conditions the
precession frequency of the average spin could be directly
measured, e.g., by time-resolved Kerr or Faraday rotation.
According to our results, the precession frequency should be
reduced by about a few percent compared with the mean-field
value. We note in passing that Ref. [63] reported a measured
enhancement of the spin transfer rates by roughly a factor
of 5 compared with the value predicted theoretically for free
carriers. This increase can be attributed to the excitation of
excitons which implies that the total exciton mass replaces
the effective electron mass m∗ in the density of states [31,64].
While an explicit simulation involving excitonic effects is out
of the scope of the present paper, a similar enhancement of the
frequency renormalization should be expected recalling that
also the latter is proportional to the density of states.

Since the frequency renormalization depends on the kinetic
energy and therefore the wave vector of an electron, the
question arises, whether this dependence leads to a dephasing
of spins of electrons with different k vectors. To address
this question, we show in Fig. 4 the value of the rate τ−1

⊥
obtained by an exponential fit to the time evolution of the
total carrier spin polarization, where the same Gaussian initial
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precession frequency.

electron distributions are used as in Fig. 3. It can be seen
that calculations, where the correlation induced frequency
renormalization is neglected, produce very similar decay rates
as calculations that account for this renormalization for most
of the possible values of the impurity magnetization. Only in
a regime where the impurity spin is small we find a slightly
larger value (�1%) of the rate at |〈S〉| ≈ 0.05 for Es = 1 meV
and |〈S〉| ≈ 0.005 for Es = 0.1 meV. This increasing decay
is the consequence of the dephasing of electron spins due to

the k dependence of the frequency renormalization. Since the
expression for the rate in the Markov limit [cf. Eq. (8)] and the
frequency renormalization [cf. Eq. (10a)] depend on the same
parameters, this dephasing mechanism is always accompanied
by a genuine spin transfer between impurities and carriers that
is typically much faster than the dephasing itself.

V. CORRELATION ENERGY

Most studies on DMS which probe the energies of electrons
in DMS use the mean-field approximation [24] and describe
the effects of the impurity magnetization as a renormalization
of the electron g factor which is known as the giant Zeeman
effect [65]. If, however, the buildup of carrier-impurity correla-
tions is taken into account, the mean s-d exchange interaction
energy 〈Hsd〉 will deviate from the mean-field value. The
correlation energy can, in principle, have an impact on the
thermodynamic properties of DMS which could help, e.g.,
in the description of the paramagnetic-ferromagnetic phase
transition in GaMnAs.

Since the derivation of the PESC-equations in Ref. [54] re-
quired finding explicit expressions for the correlations, we can
use this theory to get the correlation induced correction 〈H cor

sd 〉
to the mean-field exchange interaction energy analytically:

〈Hsd〉 = Jsd

V

∑
Inn′

σσ ′kk′

Snn′sσσ ′
〈
c
†
σkcσ ′k′ei(k′−k)RI P̂ I

nn′
〉

=:
∑

k

�ωM · sk + 〈
H cor

sd

〉
. (17)

Using the time-integral form of the correlations from
Ref. [54] we find

〈
H cor

sd

〉 = Jsd

V
nMn

∑
kk′

3∑
α=1

Qαk′
αk = −�

∑
k1k2

(
Im

{
G

ωk1 +ωM

ωk2

}[b+

2
n

↓
k2

− b−

2
n

↑
k1

− b0

2

(
n

↑
k1

n
↓
k2

+ n
↑
k2

n
↓
k1

)]

+ Im
{
G

ωk1 −ωM

ωk2

}[b−

2
n

↑
k2

− b+

2
n

↓
k1

+ b0

2

(
n

↑
k1

n
↓
k2

+ n
↑
k2

n
↓
k1

)] + Im
{
G

ωk1
ωk2

}{b‖

4

[(
n

↑
k2

+ n
↓
k2

) − (
n

↑
k1

+ n
↓
k1

)]})
. (18)

To understand Eq. (18) it is important to recall that the correlations typically build up on the time scale of a few femtosecond
[57], while the spin-up and spin-down occupations change on a picosecond time scale [51,54]. Thus, 〈H cor

sd 〉 is the stationary
value of the correlation energy for given values of adiabatically changing occupations n

↑/↓
k1

.
As in the discussion of the frequency renormalization, we neglect terms of second order in the electron variables and apply

the Markov approximation to find for the two-dimensional case

〈
H cor

sd

〉 ≈ −J 2
sd

�
nMn

V

Am∗

2π�
∑

k1

{
ln

∣∣∣∣ωBZ−(
ωk1 +ωM

)
ωk1 + ωM

∣∣∣∣b−n
↑
k1

+ ln

∣∣∣∣ωBZ − (
ωk1 − ωM

)
ωk1 − ωM

∣∣∣∣b+n
↓
k1

+ ln

∣∣∣∣ωBZ−ωk1

ωk1

∣∣∣∣b‖

2

(
n

↑
k1

+n
↓
k1

)}
.

(19)

The mathematical structure of the correlation energy 〈H cor
sd 〉 in

Eq. (19) is very similar to that of the frequency renormalization
in Eq. (9). To see this relation, it is helpful to express the
occupations n

↑/↓
k1

of the spin-up and spin-down subbands
in terms of the occupation nk1 of both bands and the
spin component s

‖
k1

parallel to the impurity magnetization

(quantization axis) via

n
↑/↓
k1

= nk1

2
± s

‖
k1

. (20)

As it is common for spin-dependent single particle energies
like the Dresselhaus [66] or Rashba terms [67], one could

035206-7

Pub 7



M. CYGOREK, P. I. TAMBORENEA, AND V. M. AXT PHYSICAL REVIEW B 93, 035206 (2016)

expect that the spin-dependent part of the correlation energy
can be written as an effective magnetic field in which the
electron spins precess. This additional precession movement
could be made responsible for the frequency renormalization
discussed above. However, although the corresponding effec-
tive field due to the correlation energy has the same form
as the frequency renormalization, it is larger by a factor of
2. We attribute this to the fact that the correlation energy is
not an average over a Hermitian single particle operator, but
comprises multiparticle effects, where the naive identification
of an effective magnetic field can lead to incorrect predictions.

A particularly interesting and transparent case is that where
the impurity magentization 〈S〉 vanishes. Then, the correlation
energy takes the form

〈
H cor

sd

〉 = −J 2
sd

�
nMn

V
〈S2〉Am∗

2π�
∑

k1

ln
∣∣∣ωBZ − ωk1

ωk1

∣∣∣nk1 . (21)

Thus, for 〈S〉 = 0, we find a logarithmic divergence of the
correlation energy with respect to ωBZ → ∞ and ωk1 → 0. In
both limits, the correlation energy is negative and independent
of the sign of the coupling constant Jsd. Note that this is
different from the mean-field contribution to the interaction
energy which is proportional to Jsd and therefore has a
different sign for a ferromagnetic or antiferromagnetic s-d
coupling. The negative correlation energy suggests that the
formation of correlated carrier-impurity states is energetically
favored, similar to the situation in metallic Kondo systems [2].
Again, we find that the divergence at ωk1 → 0 in Eq. (21) is
integrable so that the total correlation energy always assumes
finite values. To estimate the magnitude of the correlation
energy in the case where 〈S〉 = 0 we consider a Gaussian
spectral electron distribution centered at the band edge with
standard deviation Es = 1 meV. For the parameters of the
Cd0.93Mn0.07Te quantum well discussed above, we find from
Eq. (21) a value of 〈H cor

sd 〉 ≈ −1.8 μeV per electron. Thus, the
correlations can be destroyed by thermal fluctuations when the
temperature T exceeds 20 mK.

Note that, here, we describe the dynamic buildup of Kondo-
type correlated carrier-impurity states that takes place on a
short time scale after an initial preparation of a nonequilibrium
spin distribution. On a longer time scale (∼100 ps) the
thermalization of excited carriers in DMS may lead to the
formation of, e.g., bound (BMP), free (FMP), or exciton (EMP)
magnetic polarons [30,40,46,47,68,69]. These states comprise
carriers whose wave functions are limited to a finite volume in
which the impurities are spin polarized. They become relevant,
if their total free energy is lower than that of free carriers in a
bath of homogeneously polarized ions. The treatment of such
effects is beyond the scope of the present study. However, from
the fact that the s-d interactions leads to correlation energies
in the μeV range, while typical values of polaron binding
energies are several tens of meV [30], we can conclude that
a semiclassical treatment of Hsd, which is usually the case
in the literature [30,40,46,47,68,69], is indeed justified for
thermodynamic considerations that become relevant on time
scales longer than those considered in this paper.

VI. CONCLUSION

A microscopic quantum kinetic theory is employed to
describe the spin dynamics of carriers and magnetic impurities
in diluted magnetic semiconductors (DMS) accounting also for
the dynamics of the carrier-impurity correlations. The role of
the correlations is examined to shed light into the controversy
about their importance: While some authors assume that the
Kondo physics due to carrier-impurity correlation is of minor
importance [48], others [49] find divergences in a perturbative
treatment of the spin dynamics in DMS, similarly to the
appearance of divergences found in the metallic Kondo effect
[1,58]. In the present study, we find that the correlations,
besides mediating the spin transfer between carriers and
impurities, are also responsible for a renormalization of the
precession frequency.

We find by numerical simulations that simple Markovian
expressions reproduce well the frequency renormalization
obtained by using the quantum kinetic theory. The numerical
calculations as well as the Markovian expressions predict that
the frequency renormalization is small in three-dimensional
DMS but diverges logarithmically in two-dimensional systems
for electrons with a specific kinetic energy. However, we
find that these divergences are integrable when a nonsingular
electron distribution is considered, so that for realistic optical
excitation scenarios the average frequency renormalization can
reach values of up to a few percent. Since in these cases the
relative frequency renormalization is negative, the precession
frequency of the electron spin is reduced.

Although the k dependence of the frequency renormal-
ization can in principle lead to a dephasing of carrier spins,
the spin transfer from the carriers to the impurities is usually
much faster, so that this dephasing mechanism yields only
very small corrections to the total decay of the carrier
spin.

In order to experimentally probe the correlation induced
frequency renormalization, the spectral features of the laser
pulse have to be precisely controlled. Furthermore, it was
reported [70] that an antiferromagnetic impurity-impurity
interaction influences the thermal equilibrium value of the
Mn magnetization, which in turn changes the measured
electron spin precession frequency. Therefore, it is common to
introduce a fitting parameter T0 and to describe the equilibrium
Mn magnetization by a Brillouin function with effective
temperature Teff = T0 + T , where T is the temperature of
the sample. This complicates the identification of correlation
induced changes in the precession frequency. To distinguish
both effects it is useful that in addition to the dependence
on the spectral position and shape of the exciting pulse,
the relative frequency renormalization due to the correlations
is independent of the impurity density, while the impurity-
impurity interaction depends on the mean distance between the
impurity ions and is not influenced by the excitation conditions.
Because of this and from the different parameters entering
the prefactor of the frequency renormalization, we find that
the most promising samples for experimentally accessing
the correlation induced frequency renormalization are very
narrow quantum wells with large effective masses and a large
coupling constant Jsd while the impurity concentration should
be relatively low. Also, we find that the spectral properties of
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ultrashort pulses with durations in the 100 fs range suit this
purpose.

The explicit expressions for the correlations in the Markov
limit also allow us to find a quasiequilibrium value for the
correlation energy in terms of carrier and impurity variables.
The form of the correlation energy is similar to the expression
for the frequency renormalization and hints towards the
appearance of Kondo-type correlated carrier-impurity states,
independent of the sign of the coupling constant, which builds
up dynamically on a femtosecond time scale after preparing an

initial nonequilibrium spin distribution which is initially not
correlated.
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[21] K. Edmonds, G. van der Laan, and G. Panaccione, Semicond.

Sci. Technol. 30, 043001 (2015).
[22] M. D. Kapetanakis, J. Wang, and I. E. Perakis, J. Opt. Soc. Am.

B 29, A95 (2012).
[23] J. Kossut, Phys. Status Solidi B 72, 359 (1975).
[24] J. K. Furdyna, J. Appl. Phys. 64, R29 (1988).
[25] H. Krenn, K. Kaltenegger, T. Dietl, J. Spałek, and G. Bauer,

Phys. Rev. B 39, 10918 (1989).
[26] J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett. 80, 4313

(1998).

[27] A. V. Akimov, A. V. Scherbakov, D. R. Yakovlev, I. A.
Merkulov, M. Bayer, A. Waag, and L. W. Molenkamp, Phys.
Rev. B 73, 165328 (2006).

[28] K. E. Rönnburg, E. Mohler, H. G. Roskos, K. Ortner, C. R.
Becker, and L. W. Molenkamp, Phys. Rev. Lett. 96, 117203
(2006).

[29] M. D. Kapetanakis, I. E. Perakis, K. J. Wickey, C. Piermarocchi,
and J. Wang, Phys. Rev. Lett. 103, 047404 (2009).

[30] J. Kossut and J. Gaj, Eds., Introduction to the Physics of Diluted
Magnetic Semiconductors, Springer Series in Materials Science
No. 144 (Springer, Berlin, 2011).

[31] C. Camilleri, F. Teppe, D. Scalbert, Y. G. Semenov, M.
Nawrocki, M. Dyakonov, J. Cibert, S. Tatarenko, and T.
Wojtowicz, Phys. Rev. B 64, 085331 (2001).

[32] R. C. Myers, M. H. Mikkelsen, J.-M. Tang, A. C. Gossard, M.
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The starting point of this paper is the equation of motion (5) for the carrier spin component perpendicular to the impurity
magnetization, which has been derived in Ref. [1]. In Eq. (5), a cross-product sign is not printed accurately. Furthermore, in
the derivation of this equation in Ref. [1], it was assumed that the effective magnetic field ωM for the carrier spins caused by
the impurity magnetization is parallel to the total impurity spin, i.e., the coupling constant Jsd is positive. In the present paper,
however, this equation has been applied to the conduction band of CdTe where this condition is not fulfilled. To correct this error,
the corresponding equation of motion needs to be derived for an arbitrary sign of Jsd. Toward that end, it is useful to define the
quantization axis (z) as pointing in the direction of ωM . Then, also the spin-up and spin-down occupations n

↑
k and n

↓
k as well as

the parallel impurity spin operator S‖ = Ŝ · ωM

|ωM | in the definition of the factors bi in Eq. (5) should be defined with respect to the
direction of ωM . In this coordinate system, Eq. (5) should be replaced by [2]

∂

∂t
s′⊥

k1
= −

∑
k

[
Re

(
G

ωk1 −ωM

ωk

)(b+

2
− b0n

↑
k

)
s′⊥

k1
+ Re

(
G

ωk1 +ωM

ωk

)(b−

2
+ b0n

↓
k

)
s′⊥

k1
+ Re

(
G

ωk1
ωk

)b‖

2

(
s′⊥

k + s′⊥
k1

)]

−
∑

k

[
Im

(
G

ωk1 −ωM

ωk

)(b+

2
− b0n

↑
k

)
− Im

(
G

ωk1 +ωM

ωk

)(b−

2
+ b0n

↓
k

)](
ωM

|ωM | × s′⊥
k1

)
. (5′)

As a consequence, using the equation derived in Ref. [1] with a negative value of Jsd led to the wrong sign of the relative
frequency renormalization �ω

ωM
in Figs. 1 and 3. Actually, the correlation-induced renormalization enhances the precession

frequency instead of decreasing it, independently of the sign of Jsd. The magnitude of the renormalization, however, is not
influenced.

Also, Eq. (6) has an error with parentheses. It should read

G
ωk1
ωk := J 2

sd

�2

nMn

V

0∫
−t

dt ′ ei(ωk−ωk1)t ′ . (6′)

Furthermore, a factor 1
2 is missing in Eq. (21). The corrected version of Eq. (21) is

〈
H cor

sd

〉 = −J 2
sd

�
nMn

V

〈S2〉
2

Am∗

2π�
∑

k1

ln
∣∣∣ωBZ − ωk1

ωk1

∣∣∣nk1 . (21′)

Also, due to an error in the computer program, the evaluation of the correlation energy according to Eq. (21) led to a wrong
value. For the situation described in this paper, the value of the average correlation energy per electron, 〈H cor

sd 〉/(
∑

k nk), is not
−1.8 μeV, but rather −0.34 meV, which corresponds to a temperature of T ≈ 4 K.

The above errors have little influence on the conclusion about the frequency renormalization. While the sign of the frequency
renormalization has to be changed, the magnitude remains the same. However, the relatively large corrected value of the
correlation energy indicates that the carrier-impurity correlations are strong in low-temperature experiments and should therefore
not be neglected, as is usually done by invoking a semiclassical approximation [3–7].
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ABSTRACT

Non-Markovian quantum kinetic features, that cannot be captured by rate equations, have been predicted the-
oretically in the spin dynamics in diluted magnetic semiconductors excited with a circularly polarized laser. In
order to identify situations which are most promising for detecting the genuine quantum kinetic effects in future
experiments, we study numerically the strength of these effects for a number of different excitation conditions.
In particular, we show that laser pulse durations of the order of the spin-transfer rate or longer are well suited
for studying the non-Markovian effects. Furthermore, in the presence of an external magnetic field, the quantum
kinetic theory predicts a significantly different stationary value for the carrier spin polarization than Markovian
rate equations, which can be attributed to the build-up of strong carrier-impurity correlations.

Keywords: Spintronics, diluted magnetic semiconductors, spin dynamics, optical excitation, quantum kinetics

1. INTRODUCTION

Diluted magnetic semiconductors (DMS) provide the possibility to investigate novel physical features caused by
magnetic impurities in the well-studied field of semiconductor optics and transport.1–8 In particular, DMS het-
erostructures have been in the focus of investigations in recent years.9–12 Some of the static magnetic properties
in DMS, such as the giant Zeeman effect and the corresponding spin-splitting of carrier levels, can be explained
in the mean-field approximation, where the effects of the magnetic impurities on the carriers are regarded as a
homogeneous effective magnetic field.13 The spin dynamics in DMS is usually experimentally accessed by time-
resolved magneto-optical Kerr or Faraday measurements.7,14,15 These time-resolved experiments are typically
described theoretically in terms of rate equations15–18 where the rates are calculated from Fermi’s golden rule.

In a series of papers,19–26 we have developed a quantum kinetic description of the spin dynamics in DMS where
the carrier-impurity correlations, which build up because of the s/p-d carrier-impurity exchange interaction, are
explicitly taken into account. For zero magnetic field, the Markov limit of the quantum kinetic theory was
shown to coincide with rate equations that can be obtained using Fermi’s golden rule.20,23,26 While in some
cases the full quantum kinetic treatment yields a spin dynamics very similar to that predicted by a golden-rule-
type description, pronounced deviations from the exponential time evolution of the spin have been identified in
some situations, especially in two dimensions for optical excitations very close to the band edge.20,21,27 Thus,
these non-Markovian effects are sensitive to the details of the optical excitation. However, due to the numerical
demands, most of the quantum kinetic studies so far focus on the conduction band and the optical excitation is
modelled by the choice of an initial non-equilibrium carrier distribution. The optical excitation of a DMS with
a time-dependent laser field within the dipole approximation was taken explicitly into account on a quantum
kinetic level only in rare cases such as in Ref. 21.

For an experimental verification of the prediction of a non-Markovian carrier-impurity spin transfer, i. e.
dynamics that cannot be described by a simple rate equation approach, it is important to find a regime of
excitation conditions, where these effects are most pronounced. Especially important for experiments are the
properties of the laser pulse: If the pulse duration τL is too short, i.e. the spectral width of the laser is large,
the excitation can no longer be concentrated on states at k = 0. If such broad distributions are taken as initial
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carrier occupations, the quantum kinetic theory predicts the same behaviour as the rate equations.20,27 On the
other hand, if the pulse is too long, the spin transfer between carriers and impurities is already significant during
the laser pulse and non-Markovian features might be smeared out. Also, in the presence of a magnetic field, the
originally spin-degenerate conduction band is split and an energy conserving scattering from an initial state with
wave vector k = 0 scatters to a state with finite kinetic energy. Recalling that quantum kinetic effects are most
pronounced near the band edge, the occupation of states with higher kinetic energy induced by a finite magnetic
field suggests that deviations from the predictions of rate equations should be smaller for higher values of the
magnetic field.

The goal of the present article is to provide a more comprehensive study of non-Markovian effects in the spin
dynamics in DMS for a broader set of parameters and initial conditions. In particular, we study the effects of
different pulse durations and external magnetic fields on the deviations of the quantum kinetic predictions from
the results of rate equations.

Indeed, we find that the non-Markovian effects nearly vanish for pulses much shorter than the carrier-impurity
spin transfer time, where rate equations turn out to provide a good approximation. For pulse durations of the
order of the spin transfer time, the non-Markovian effects, such as overshoots, predicted by initial value calcu-
lations are confirmed for the more realistic description, where the light-matter interaction is treated explicitly.
Surprisingly, the quantum kinetic features are still visible for much longer pulses and are not smoothed out, as
it might be expected.

The presence of an external magnetic field reduces the overshoots that are characteristic for non-Markovian
behavior. However, the stationary value of the spin polarization after the pulse is significantly different in both
approaches, which can be attributed to the build-up of strong carrier-impurity correlations in the quantum kinetic
theory.

The article is structured as follows: In section II, we briefly recapitulate the quantum kinetic theory of
Ref. 19 and its extension in the presence of an external magnetic field.26 In Section III we present quantum-
kinetic numerical calculations for different pulse durations and with and without external magnetic fields.

2. THEORY

The quantum kinetic equations for the spin dynamics in DMS in the absence of an external magnetic field have
been derived in Ref. 19, where the conduction and valence bands as well as the interband coherences have been
taken into account. The Zeeman energies have been accounted for in Ref. 26, but there, only the conduction band
has been considered and the optical excitation has been modelled by suitable non-equiblibirum initial carrier
occupations. Here, we present the full set of quantum kinetic equations of motion including both, the optical
excitation as well as the external magnetic field, on a quantum kinetic level.

2.1 Hamiltonian

A DMS quantum well in the presence of an external magnetic field is described by the total Hamiltonian

H =H0 +Hsd +Hpd +Hem +He
Z +Hh

Z +HMn
Z , (1a)

H0 =
∑

lk

Elkc
†
lkclk +

∑

vk

Evkd
†
vkdvk, (1b)

Hsd =
Jsdd

V

∑

kk′ll′

∑

Inn′

Snn′ · sell′c†lkcl′k′ei(k
′−k)RI P̂ I

nn′ , (1c)

Hpd =
Jpdd

V

∑

kk′vv′

∑

Inn′

Snn′ · shvv′d
†
vkdv′k′ei(k

′−k)RI P̂ I
nn′ , (1d)

Hem =−
∑

lvk

(
E ·M∗vlkc†lkd

†
v−k + E ·Mvlkdv−kclk

)
, (1e)

He
Z =

∑

ll′k

geµBB · sell′c†lkcl′k, (1f)
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Hh
Z =

∑

vv′k

ghµBB · shvv′d
†
vkdv′k, (1g)

HMn
Z =

∑

nn′I

gMnµBB · Snn′ P̂ I
nn′ (1h)

where H0 denotes the crystal Hamiltonian and Hem incorporates the light-matter interaction describing the

optical excitation of carriers in the semiconductor. The operators c
(†)
lk and d

(†)
vk annihilate (create) conduction

band electrons in the l-th subband or valence band holes in the v-th subband with wave vector k. Elk and Evk

describe the electron and hole band structures, E is the electric field of the light and Mvlk is the transition dipole
moment between states in the v-th valence subband and the l-th conduction subband. The exchange interaction
between electrons and the magnetic impurities is described by Hsd, where Jsd is the coupling constant, d is the
quantum well width, V is the volume of the sample and RI is the position of the I-th impurity ion. Similarly,
Hpd represents the coupling between holes and the magnetic impurities, where Jpd is the corresponding coupling

constant for the valence band. The operator P̂ I
n1n2

= |I, n1〉〈I, n2| is the impurity density operator in the basis
spanned by the ni-th spin states of the I-th impurity, where ni ∈ {− 5

2 ,− 3
2 , . . . ,

5
2} for spin- 52 magnetic impurities

like Mn. sel1l2 and shv1v2
are the electron (spin- 12 ) and hole (spin- 32 ) spin matrices and Sn1n2 denotes the impurity

spin matrices. The Zeeman energies for electrons, holes and magnetic impurities in an external magnetic field
are He

Z , H
h
Z and HMn

Z , respectively.

2.2 Equations of motion

Starting from the Hamiltonian in Eqs. (1a)–(1e), quantum kinetic equations of motion have been derived in
Ref. 19 for the carrier and impurity density matrices and the carrier-impurity correlations∗:

Mn2
n1

=〈P̂ I
n1n2
〉, (2a)

Cl2
l1k1

=〈c†l1k1
cl2k1〉, (2b)

Dv2
v1k1

=〈d†v1k1
dv2k1〉, (2c)

Y l2
v1k1

=〈dv1k1
cl2−k1

〉, (2d)

QC
l2n2k2

l1n1k1
=V 〈c†l1k1

cl2k2
P̂ I
n1n2

ei(k2−k1)RI 〉(1− δk1,k2
), (2e)

QD
v2n2k2

v1n1k1
=V 〈d†v1k1

dv2k2
P̂ I
n1n2

ei(k2−k1)RI 〉(1− δk1,k2
), (2f)

QY
l2n2k2

v1n1k1
=V 〈dv1k1cl2k2 P̂

I
n1n2

ei(k2+k1)RI 〉(1− δk1,−k2), (2g)

where the brackets denote a quantum mechanical average as well as an average over a random distribution of
impurity positions RI .

Since the Zeeman energies (1f)–(1h) are single particle contributions and do not lead to a build-up of further
many-particle correlations, it is straightforward to include them into the quantum kinetic theory. Taking these
into account, the corresponding equations of motion for the variables defined in Eq. (2) in Ref. 19 are extended
to:

−ih̄ ∂
∂t
Mn2

n1
=
∑

n

ωMn ·
(
Snn1M

n2
n − Sn2nM

n
n1

)

+
Jsd
V 2

∑

kk′

∑

n

[∑

ll′

sell′ ·
(
Snn1

QC
l′n2k

′

lnk − Sn2nQC
l′nk′
ln1k

)

+
∑

vv′

shvv′ ·
(
Snn1

QD
l′n2k

′

lnk − Sn2nQD
l′nk′
ln1k

)]
, (3a)

∗Here, we use a slightly more condensed, but equivalent notation for the carrier-impurity correlations compared to
Ref. 19.
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−ih̄ ∂
∂t
Cl2

l1k1
=−

(
El2k1

− El1k1

)
Cl2

l1k1
+
∑

v

E ·
(
M∗vl2k1

(Y l1
v−k1

)∗ −Mvl1k1
Y l2
v−k1

)

+
∑

l

ωe ·
(
sell1C

l2
lk1
− sel2lC

l
l1k1

)
+
JsdNMn

V 2

∑

k

∑

nn′l

Snn′ ·
(
sell1QC

l2n
′k1

lnk − sel2lQC
ln′k
l1nk1

)
, (3b)

−ih̄ ∂
∂t
Dv2

v1k1
=− (Ev2k1 − Ev1k1)Dv2

v1k1
+
∑

l

E ·
(
M∗v2l−k1

(Y l
v1k1

)∗ −Mv1l−k1Y
l
v2k1

)

+
∑

v

ωh ·
(
shvv1

Dv2
vk1
− shv2vD

v
v1k1

)
+
JsdNMn

V 2

∑

k

∑

nn′v

Snn′ ·
(
shvv1QD

v2n
′k1

vnk − shv2vQD
vn′k
v1nk1

)
,

(3c)

−ih̄ ∂
∂t
Y l2
v1k1

=−
(
Ev1k1 + El2−k1

)
Y l2
v1k1

+ E ·M∗v1l2−k1
−
∑

l

E ·M∗v1l−k1
Cl2

l−k1
−
∑

v

E ·M∗vl2−k1
Dv1

vk1

−
∑

l

ωe · sel2lY l
v1k1
−
∑

v

ωh · shv1vY
l2
vk1

− NMn

V 2

∑

nn′

Snn′ ·
(
Jsd
∑

l

sel2lQY
ln′k
v1nk1

+ Jpd
∑

v

shv1vQY
l2n

′−k1

vnk

)
, (3d)

−ih̄ ∂
∂t
QC

l2n2k2

l1n1k1
=−

(
El2k2 − El1k1

)
QC

l2n2k2

l1n1k1
+ bEC

l2n2k2

l1n1k1
+ bIC

l2n2k2

l1n1k1
+ bIIC

l2n2k2

l1n1k1
+ bIIIC

l2n2k2

l1n1k1
, (3e)

−ih̄ ∂
∂t
QD

v2n2k2

v1n1k1
=−

(
Ev2k2

− Ev1k1

)
QD

v2n2k2

v1n1k1
+ bED

v2n2k2

v1n1k1
+ bID

v2n2k2

v1n1k1
+ bIID

v2n2k2

v1n1k1
+ bIIID

v2n2k2

v1n1k1
, (3f)

−ih̄ ∂
∂t
QY

l2n2k2

v1n1k1
=−

(
El2k2

+ Ev1k1

)
QY

l2n2k2

v1n1k1
+ bEY

l2n2k2

v1n1k1
+ bIY

l2n2k2

v1n1k1
+ bIIY

l2n2k2

v1n1k1
+ bIIIY

l2n2k2

v1n1k1
, (3g)

with mean-field electron, hole and impurity precession frequencies

ωe :=
JsdNMn

V

∑

nn′

Snn′Mn′
n + geµBB, (4a)

ωh :=
JpdNMn

V

∑

nn′

Snn′Mn′
n + ghµBB, (4b)

ωMn :=
Jsd
V

∑

kll′

sell′C
l′
lk +

Jpd
V

∑

kvv′

shvv′Dv′
vk + gMnµBB, (4c)

where NMn is the total number of magnetic impurities in the DMS. The explicit expressions for the source terms
of the correlations are given in appendix A. The source terms can be classified as follows:22 the terms bE represent
interactions between the different correlations QC , QD and QY via the light field. bI are inhomogeneous source
terms that only depend on the single particle density matrices C, D, Y and M . bII are the homogeneous terms
that describe a precession-type motion of the correlations about the effective magnetic field provided by the
carrier and impurity magnetization as well as by the external magnetic field. These terms depend linearly on ωe,
ωh and ωMn and correlations with the same k-indices. The source terms bIII comprise the interaction between
correlations with different k-indices.

2.3 Assumptions and approximations

The full numerical solution of Eqs. (3) is very time consuming and it becomes necessary to introduce some
simplifying and physically meaningful assumptions in order to reduce the huge numerical demands. In the
present article, we focus on the situation of a narrow intrinsic paramagnetic DMS quantum well that is optically
excited by a pulse of circularly polarized light for various parameters and excitation conditions. This allows for
several simplifications:

(i) In an intrinsic DMS such as Mn-doped II-VI semiconductors like CdTe or ZnSe, the quasi-free carriers
stem exclusively from optical excitation. Thus, the number of quasi-free carriers Ne is typically much smaller
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than the number of magnetic impurities NMn. Therefore, the impurities act like an effective spin bath for the
carriers and the change of the average impurity spin during the spin-transfer process is negligible,22 so that the
impurity density matrix M can be treated as constant in time.

(ii) In a typical narrow quantum well, the heavy- and light-hole bands are split, e.g., because of the different
effective masses and the confinement potential or due to strain effects.28 Here, we assume that the splitting is
large enough to prohibit transitions between heavy- and light-hole states and that the heavy hole band lies above
the light hole band. Confining our considerations to the basis set of conduction and heavy-hole bands, we find
that the total Hamiltonian is diagonal with respect to the heavy-hole subband indices v. Thus, for a narrow
well, the hole spin is pinned. Since the circular polarization of the light only couples to one of the heavy-hole
subbands, only this band is important for further calculations. Therefore, non-trivial spin dynamics after the
exciting laser pulse only takes place in the system of the conduction band electrons.

(iii) As we consider a situation where spin-orbit coupling is not important,25 there is no preferred direction in
k-space. This allows us to regard all density matrices and correlations as depending on the corresponding wave
vectors k only via its modulus |k|. This reduces the dimensionality of the problem enormously.

(iv) The central frequency of the laser pulse, which is of the order of the band gap Eg, is much larger than
any other energy scale in the system. It is therefore a good approximation to formulate the equations of motion
(3) in a rotating-wave picture with respect to the laser frequency ωL and neglect terms with frequency ±2ωL.

(v) It was found in earlier studies22 that the source terms bIII are numerically insignificant. These terms
describe how correlations are influenced by other correlations with different wave vectors. Since the correlations
in general oscillate rapidly, the terms in bIII can be expected to interfere destructively which explains why these
terms have been found in Ref.22 to have little effects. We therefore neglect the source terms bIII in order to
reduce the computation time.

(vi) We assume that there are no quasi-free carriers before the pump pulse arrives so that the density matrices
C, D and Y as well as all correlations are zero for times t � 0, where t = 0 is defined by the center of the
pump pulse. For a paramagnetic DMS, the value of the impurity density matrix M is determined by the thermal
equilibrium with respect to the Zeeman energy HMn

Z for a given external magnetic field B, the impurity g-factor
gMn ≈ 2 and the temperature T = 2 K.

2.4 Markov limit

Approximation (v), i.e. neglecting the source terms bIII , makes it possible to formally integrate the equations of
motion for the correlations (3e)–(3g) and obtain expressions for the correlations, which have the form of memory
integrals over the values of the single-particle density matrices at earlier times. In the Markov limit, where it
is assumed that this memory is short, the quantum kinetic equations reduce to rate equations. For vanishing
magnetic field and impurity magnetization, this procedure gives the same results as Fermi’s golden rule.26 Since
the goal of the present paper is to work out the conditions under which the quantum kinetic results deviate from
the Markovian rate equations, we also calculate the Markovian results in order to enable a direct comparison.
Note that, here, the Markovian approximation is applied only to the s-d interaction, whereas the light-matter
interaction is still taken into account fully coherently. The p-d interaction does not lead to a carrier-impurity
spin transfer in the approximation of a narrow quantum well with strong heavy-hole–light-hole splitting (ii).

For the derivation of the Markovian rate equations, the reader is referred to Ref. 26. For a formulation of the

rate equations, it is useful to define the spin-up and spin-down occupations n
↑/↓
k1

and the perpendicular carrier

spin s⊥k1
with respect to the quantization axis given by the external magnetic field direction e‖ = B

|B| by:

n
↑/↓
k1

:=
∑

l1l2

(
1

2
δl1l2 ± e‖ · sl1l2)Cl2

l1k1
,

s⊥k1
:=sk1 −

1

2
(n↑k1

− n↓k2
)e‖, (5a)
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where sk1 :=
∑
l1l2

sl1l2C
l2
l1k1

is the average spin in the conduction band states with wave vector k1. In the Markov

limit, the contribution of the correlations to the equations of motion for the carrier variables are:26

∂

∂t
n
↑/↓
k1

∣∣
cor
≈πJ

2
sdNMn

h̄2V 2

∑

k2

δ
(
ωk2 −

(
ωk1 ± (ωe − ωMn)

))[(
〈S⊥2〉 ± 〈S

‖〉
2

)
(1− n↑/↓k1

)n
↓/↑
k2

−
(
〈S⊥2〉 ∓ 〈S

‖〉
2

)
(1− n↓/↑k2

)n
↑/↓
k1

)]
, (6a)

∂

∂t
s⊥k1

∣∣
cor
≈− πJ2

sdNMn

h̄2V 2

∑

k2

[
δ(ωk2

− ωk1
)〈S‖2〉+ δ

(
ωk2
−
(
ωk1

+ (ωe − ωMn)
))1

2

(
〈S⊥2〉 − (1− 2n↑k2

)
〈S‖〉

2

)

+ δ
(
ωk2
−
(
ωk1
− (ωe − ωMn)

))1

2

(
〈S⊥2〉+ (1− 2n↓k2

)
〈S‖〉

2

)]
s⊥k1

, (6b)

with operators S‖ = e‖ ·S and S⊥
2

= 1
2

(
S2−S‖2

)
and band energies h̄ωk := Elk. In Eq. (6b) the quantitatively

small correlation-induced renormalization of the spin precession frequency24 has been neglected.

Equations (6) can be understood as follows:26 The s-d interaction is responsible for spin-flip scattering
processes, where a spin-up electron becomes a spin-down electron and vice-versa, while an impurity spin flips
in the opposite direction. In this process, the energy h̄ωe of the spin degree of freedom of a spin-up electron is
released and a quantum h̄ωMn has to be spent in order to flip the corresponding impurity spin. The magnetic
energy h̄ωe − h̄ωMn released in a spin-flip scattering process has to be accommodated by an increase of the
kinetic energy of the scattered electron of the same magnitude. This explains the arguments of the δ-function

in Eqs. (6). The terms (1 − n↑/↓k ) in Eq. (6a) account for Pauli blocking effects. The rate, i.e. the prefactor in

Eq. (6), depends on the value of the impurity spins. A stationary value of the occupations n
↑/↓
k1

is reached when
spin-flip scattering processes from spin-up to spin-down states balance spin-flips in the opposite direction. The
perpendicular carrier spin component s⊥k1

decays approximately exponentially towards zero.

Assuming a parabolic band structure we find for the Markovian rate equations

∂

∂t
Cl2

l1k1
=
i

h̄

∑

v

E ·
(
M∗vl2k1

(Y l1
v−k1

)∗ −Mvl1k1Y
l2
v−k1

)
+
∂

∂t
Cl2

l1k1

∣∣
cor
, (7a)

∂

∂t
Dv2

v1k1
=
i

h̄

∑

l

E ·
(
M∗v2l−k1

(Y l
v1k1

)∗ −Mv1l−k1
Y l
v2k1

)
, (7b)

∂

∂t
Y l2
v1k1

=− i

h̄

(
Eg +

h̄2k2
1

2mhh
+
h̄2k2

1

2m∗
)
Y l2
v1k1

+
i

h̄

(
E ·M∗v1l2−k1

−
∑

l

E ·M∗v1l−k1
Cl2

l−k1
−
∑

v

E ·M∗vl2−k1
Dv1

vk1

)
,

(7c)

with effective electron and heavy-hole masses m∗ and mhh, band gap Eg and

∂

∂t
Cl2

l1k1

∣∣
cor

=
1

2
δl1l2

( ∂
∂t
n↑k1

∣∣
cor

+
∂

∂t
n↓k1

∣∣
cor

)
+ (e‖ · sl1l2)

( ∂
∂t
n↑k1

∣∣
cor
− ∂

∂t
n↓k1

∣∣
cor

)
+ 2 sl1l2 ·

∂

∂t
s⊥k1

∣∣
cor

(7d)

If no external magnetic field is applied, a single spin transfer rate T−11 can be identified:

∂

∂t
Cl2

l1k1

∣∣
cor

=− 1

T1

(
Cl2

l1k1
− δl1l2

1

2

∑

l

Cl
lk1

)
, (8a)

1

T1
=
J2
sdNMnm

∗

h̄3V d

〈S2〉
3

, (8b)

where 〈S2〉 = 35
4 for a spin- 52 impurity system and d is the width of the quantum well.
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Table 1. Material parameters for ZnSe [cf. Ref. 20] and CdTe [cf. Ref. 26]. a0: (cubic) lattice constant, me: conduction
band effective mass, mhh: heavy-hole mass, Jsd: coupling constant for conduction band electrons, Jpd: coupling constant
for holes in the valence band.

a0 me mhh Jsd Jpd

ZnSe 0.567 nm 0.21 m0 1.44 m0 -12 meVnm3 60 meVnm3

CdTe 0.648 nm 0.1 m0 0.7 m0 -15 meVnm3 60 meVnm3

3. RESULTS

We first consider a Cd0.93Mn0.07Te quantum well excited with a Gaussian laser pulse with FWHM duration τL =
1.7 ps and central frequency in resonance with the band gap. The material parameters used in our calculations
are listed in Table 1. The pulse characteristics have been chosen here as in a previous study of a 4 nm wide
Zn0.93Mn0.07Se quantum well21 which enables a conclusive comparison of the different materials. The time
evolution of the carrier spins resulting from the quantum kinetic theory is shown in Fig. 1(a) together with
mean-field and rate equation results. The corresponding curves for Zn0.93Mn0.07Se from Ref. 21 are included for
comparison in Fig. 2(d).

The carrier spin is normalized so that at long times t → ∞ a value of 1 corresponds to the maximal spin
polarization. For B = 0 and a paramagnetic impurity system, the s/p-d interaction has no effect whatsoever
in the mean-field approximation. Thus, the mean-field result simply tracks the build-up of carrier occupations
during the laser pulse. Similar to the ZnMnSe quantum well of Ref. 21, the differences between the results of
the quantum kinetic theory and the Markovian rate equaitions are the following: First, the spin transfer in the
quantum kinetic description is delayed with respect to the rate equations, so that the quantum kinetics follows the
mean-field curve more closely in the first few hundred fs. After that, the carrier spin according to the quantum
kinetic theory decreases faster than predicted by the rate equations and eventually leads to an overshoot, i.e. a
non-monotonic time trace of the electronic spin polarization which in the case shown in Fig. 1(a) first falls below
zero and then recovers.

Figure 1(b) shows the kinetic energy distribution of the electrons at t = 0. Note that in order to achieve
comparable occupations for the quantum kinetic calculation and the rate equations (maximum of occupations
at Ek = 0 meV), it was necessary to slightly shift the laser energy with respect to the band edge about -0.25
meV (-0.68 meV for ZnSe) to compensate a renormalization of the carrier energies due to the s-d interaction.
Still, the occupations obtained using the quantum kinetic theory form a broader peak than predicted by the rate
equations. This is due to the scattering of carriers at the impurities which induces a redistribution in k-space.20

In comparison with the ZnSe quantum well depicted in Fig. 2(d), the carrier spin in the CdTe quantum well
in Fig. (1) decays slower and the overshoot of the quantum kinetic result is less pronounced, although the basic
features are very similar in both figures. This agrees with the findings for initial value calculations20,27 that the
non-Markovian effects are particularly strong when the rate is large. According to Eq. (8b) the spin relaxation
times at B = 0 are T1 ≈ 3.0 ps for the CdTe DMS and T1 ≈ 1.5 ps for the ZnSe system. The difference between
both sets of material parameters is mainly that the effective electron mass, which enters linearly in the expression
for the rate, is about twice as large in ZnSe compared with CdTe.

Figure 2 shows the time evolution of the carrier spins in a Zn0.93Mn0.07Se quantum well for different pulse
durations τL. For the short pulses presented in Fig. 2(a) and Fig. 2(b), the quantum kinetic results show an
almost exponential decay. The main difference between the quantum kinetic and the Markovian results is that
an exponential fit to the quantum kinetic curves yields an increased rate by about 5% for τL = 0.17 ps [Fig. 2(a)]
and 7% for τL = 0.34 ps [Fig. 2(b)]. The fact that the spin transfer is nearly exponential for short pulses,
i.e. broad spectral distributions of the excited carriers, is compatible with the finding of previous initial value
calculations,27 where the non-Markovian features were shown to be particularly strong for excitation in close
proximity to the band edge.

When the pulse duration reaches values close to the spin transfer time T1 ≈ 1.5 ps according to Fermi’s golden
rule, such as in Figs. 2(c) and (d) for τL = 0.85 ps and τL = 1.7 ps, the non-Markovian effects, i.e. a short delay
of the spin transfer and an overshoot, become visible, as already discussed for the situation depicted in Fig. 1.
Even for pulse durations much longer than the spin transfer time [cf. Figs. 2(e) and (f)], the non-Markovian
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Figure 1. (a) Time evolution of the carrier spin in a 4 nm wide Cd0.93Mn0.07Te quantum well after optical excitation
with a circularly polarized Gaussian light beam with pulse duration (FWHM) τL = 1.7 ps centered at t = 0. The inset
shows a magnified picture of the region where the non-monotonic behavior of the spin dynamics occurs. Red solid lines
describe the results of the quantum kinetic equations (3), green dashed lines represent the Markovian calculations based
on Eqs. (7). The blue dotted line shows the mean-field result where the correlations are neglected. (b) Distribution of
the electronic kinetic energy at t = 0.
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Figure 2. Time evolution of the carrier spin in a 4 nm wide Zn0.93Mn0.07Se quantum well for different pulse durations
τL. Key as in Fig. 1. The insets show magnifications of the regions from -0.04 to 0.06 of the normalized carrier spin in
the time interval from 5 ps to 20 ps.

Pub 8



-0.2

0

0.2

0.4

0.6

0.8

1

-5 0 5 10 15

(a) B = 10 mT

-5 0 5 10 15

(b) B = 100 mT

time (ps)

ca
rr

ie
r

sp
in

(n
or

m
.)

0 2 4 6 8 10 12 14 16

(c)

kinetic energy (meV)
oc

cu
pa

ti
on

s
(a

.u
.)

QKT
rate eq.

mean field

QKT, t = 10 ps, ↑
QKT, t = 10 ps, ↓
QKT, t = 20 ps, ↑
QKT, t = 20 ps, ↓

rate eq., t = 10 ps, ↑
rate eq., t = 10 ps, ↓

k

E

(d)

Figure 3. Time evolution of the carrier spin in a 4 nm wide Zn0.93Mn0.07Se quantum well in the presence of external
magnetic fields (a) B = 10 mT and (b) B = 100 mT, excited with pulse duration τL = 1.7 ps. (c) spin-up and spin-down
occupations at t = 10 ps and 20 ps, respectively, for the calculation with B = 100 mT. (d): Band diagram of spin-up and
spin-down electrons in an external magnetic field.

effects are clearly observable. Thus, the overshoots are not destroyed due to a smoothing of the dynamics, which
might be expected for long pulse durations.

The effects of an external magnetic field on the spin dynamics are shown in Fig. 3 for the Zn0.93Mn0.07Se
quantum well excited by a laser with pulse duration τL = 1.7 ps. For small magnetic fields [B = 10 mT, Fig. 3(a)],
the same deviations of the quantum kinetic results from the Markovian calculations are found as in the zero-
magnetic-field case, in particular the non-monotonic time trace in the form of an overshoot as well as the short
delay and subsequent increase of the carrier-impurity spin transfer. For higher magnetic fields [B = 100 mT,
Fig. 3(b)], these effects are visibly reduced. However, the most striking genuine quantum kinetic effect, which
is absent in the zero-magnetic-field case, is that the stationary value reached in the limit t→∞ is significantly
different from the predictions of the rate equations. To understand this effect, the occupations of the spin-up
and spin-down bands at t = 10 ps and t = 20 ps are presented in Fig. 3(c) and the spin-flip scattering process
is visualized in Fig. 3(d). The rate equations predict that a spin-flip scattering process is strictly horizontal in
the band structure, i.e. the spin-up occupations are transferred to the spin-down band at the same total energy,
which due to the giant Zeeman splitting of the bands implies an increase of the kinetic energy of the scattered
electron. Since the transition is δ-like in energy, the emerging occupation in the spin-down band in Fig. 3(c)
is a replica of the optically induced occupation in the spin-up band. In the quantum kinetic calculations, one
can observe a significant broadening of the scattered electron distribution. Note that the broadening of the
spin-up occupations in Fig. 3(c) with respect to the prediction of the rate equations is due to the scattering
during the light pulse, as already shown in Fig. 1(b) for B = 0. The stationary spin polarization is reached
when there is a balance between scattering from the spin-up to the spin-down band and vice versa. The small
non-zero stationary spin polarization in the case of the rate equations is a consequence of the different prefactors(
〈S⊥2〉 ± 1

2 〈S‖〉
)

for the corresponding transition rates [cf. Eq. (6a)]. In contrast, the quantum kinetic theory
predicts a broadening of the electron occupations in the spin-down band, so that a significant number of states
below the energetic threshold corresponding to the band splitting are occupied [cf. Fig. 3(c)]. The probability of
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these states to scatter back to the spin-up band is considerably reduced, as there are no spin-up states with the
same total energy. Thus, the balance between the scattering from and to spin-up and spin-down bands becomes
biased in the quantum kinetic theory, which leads to a different stationary value of the carrier spin. In this sense,
the system acts effectively like a quantum ratchet29 driven by the carrier-impurity correlations.

A broadening of carrier distributions is often found in quantum kinetic calculations at early times reflecting
the energy-time uncertainty.30,31 If the main reason for the broadening in the case studied here were the energy-
time uncertainty, the distributions would be expected to narrow for later times. However, one can see clearly
in Fig. 3(c) that the width of the distributions at t = 20 ps is practically identical to that at t = 10 ps. We
propose that the reason for the broadening is not primarily the energy-time uncertainty, but rather the fact that
the carriers and impurities become strongly correlated. Thus, the eigenstates of the system are many-particle
states, which cannot be separated into products of independent single-particle states. Taking the partial trace
of such a many-particle state to obtain the reduced single-particle density matrix means that the single-particle
occupations do not correspond to states with well-defined single-particle energies. This picture is consistent
with the fact that the distributions stay broad also for longer times. Thus, we attribute the broadening of
the distributions observed in Fig. 3(c) rather to strong many-body correlation effects than to the energy-time
uncertainty.

Note that the difference in the stationary values for the rate equations and the quantum kinetic theory can
only be clearly distinguished if there is no significant thermalization, e.g. due to carrier-carrier or carrier-phonon
interaction, during the lifetime of the optically excited carriers. If thermalization processes are active and enable
a dissipation of energy, the system in the situation depicted in Fig. 3(d) will evolve into an equilibrium state,
where only the spin-down band is occupied, which would lead to a negative spin polarization close to -1 also when
exchange interaction is treated in the Markov limit. However, for low excitation intensities and temperatures
and a band splitting well below the energy of LO phonons, thermalization is expected to play a minor role on
the timescale considered here and the deviations of the degree of spin polarization from the prediction of rate
equation a few T1 after the laser pulse are indeed a signature of genuine quantum kinetic effects.

4. CONCLUSION

A quantum kinetic theory is employed to describe the spin dynamics in diluted magnetic semiconductors. Nu-
merical calculations for different excitation conditions allow us to identify a regime where genuine quantum
kinetic effects, which cannot be described by simple rate equations, are particularly pronounced.

We find that in order to experimentally access these non-Markovian quantum kinetic effects, it is advantageous
to use laser pulses with durations on the order of or longer than the carrier-impurity spin transfer time, which
can be obtained from Fermi’s golden rule. For a 4 nm wide Zn0.93Mn0.07Se we find pulse durations of more
than ∼1 ps most suitable for this purpose. Earlier studies20 already found that the non-Markovian effects are
particularly strong for materials where the spin transfer rate is large. Numerical calculations confirm that due
to the different sets of material parameters, Mn-doped ZnSe is slightly better suited than CdTe for experiments
targeted at confirming non-Markovian effects in DMS.

Furthermore, in the presence of an external magnetic field, the quantum kinetic theory predicts a signifi-
cantly different stationary value of the carrier spin polarization than Markovian rate equations, which is directly
connected to a spectral broadening of the distribution of spin-flip scattered electrons. In contrast to the usual
situation in quantum kinetic calculations,30,31 this broadening stems not from the energy-time uncertainty, but
it is rather a consequence of strong many-body correlations.
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APPENDIX A. SOURCE TERMS FOR CORRELATIONS

The source terms for the correlations QC
l2n2k2

l1n1k1
are:

bEC
l2n2k2

l1n1k1
=
∑

v

E ·
(
M∗vl2k2

(QY
l1n1k1

vn2−k2
)∗ −Mvl1k1

QY
l2n2k2

vn1−k1

)
, (9a)

bIC
l2n2k2

l1n1k1
=Jsd

∑

nll′

(
Snn1

· sell′(δl1l′ − Cl′
l1k1

)Cl2
lk2
Mn2

n − Sn2n · sell′(δll2 − Cl2
lk2

)Cl′
l1k1

Mn
n1

)

+ Jpd
∑

nvv′

shvv′Y l2
v′−k2

(Y l1
v−k1

)∗ · (Snn1
Mn2

n − Sn2nM
n
n1

), (9b)

bIIC
l2n2k2

l1n1k1
=
∑

l

ωe ·
(
sell1QC

l2n2k2

ln1k1
− sel2lQC

ln2k2

l1n1k1
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+
∑

n

ωMn ·
(
Snn1QC

l2n2k2

l1nk1
− Sn2nQC

l2nk2

l1n1k1

)
, (9c)

bIIIC

l2n2k2

l1n1k1
=
Jsd
V

∑

k

∑
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[(
Snn1

· sell1QC
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lnk − Sn2n · sel2lQC
lnk
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−
∑

l′
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·
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Snn1QC

l2n2k2

lnk − Sn2nQC
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ln1k
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−
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l′
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l′n2k
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− Sn2nQC
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V

∑

k

∑

nvv′
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. (9d)

The source terms for the correlations QD
v2n2k2

v1n1k1
are:

bED
v2n2k2

v1n1k1
=
∑

l

E ·
(
M∗v2l−k2

(QY
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v1n2k1
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, (10a)
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The source terms for the correlations QY
l2n2k2

v1n1k1
are:
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[
Jsd
∑

l

sel2lQY
lnk
v1n1k1

+ Jpd
∑

v

shv1vQY
l2nk2

vn1k

]

− Jsd
V

∑

k

∑

nll′

sell′C
l2
lk2
·
(
Snn1QY

l′n2k
v1nk1

− Sn2nQY
l′nk
v1n1k1

)

− Jpd
V

∑

k

∑

nvv′

shvv′Dv1
vk1
·
(
Snn1

QY
l2n2k2

v′nk − Sn2nQY
l2nk2

v′n1k

)

− Jsd
V

∑

nll′

sell′Y
l′
v1k1
·
(
Snn1

QC
l2n2k2

lnk − Sn2nQC
l2nk2

ln1k

)

− Jpd
V

∑

nvv′

shvv′Y l2
v′−k2

·
(
Snn1

QD
v1n2k1

vnk − Sn2nQD
v1nk1

vn1k

)
(11d)
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We study the spin dynamics of carriers due to the Rashba interaction in semiconductor quantum disks and wells
after excitation with light with orbital angular momentum. We find that although twisted light transfers orbital
angular momentum to the excited carriers and the Rashba interaction conserves their total angular momentum, the
resulting electronic spin dynamics is essentially the same for excitation with light with orbital angular momentum
l = +|l| and l = −|l|. The differences between cases with different values of |l| are due to the excitation of states
with slightly different energies and not to the different angular momenta per se and vanish for samples with large
radii where a k-space quasicontinuum limit can be established. These findings apply not only to the Rashba interac-
tion but also to all other envelope-function-approximation spin-orbit Hamiltonians like the Dresselhaus coupling.
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I. INTRODUCTION

Light with orbital angular momentum (OAM), referred to
as twisted light, is a relatively new field of research which has
become increasingly popular [1–17] since Allen et al. showed
how twisted light beams can be easily generated from conven-
tional laser beams [18]. Recently, the theoretical foundation of
the optical excitation of solids and nanostructures with twisted
light has been established [19–27], and experimental studies
with twisted light on semiconductors have been carried out
[28,29].

One motivation for such studies is the prospect of using
the large amounts of angular momentum that twisted light
can carry in order to control the spin dynamics of electrons,
thus adding a flexible tool to the active field of spin control
[30–39]. In this context two different mechanisms need to be
distinguished. First, angular momentum as well as energy se-
lection rules can lead to selective optical excitation of carriers
with a preferred spin direction. This mechanism enables fast
spin-selective preparation of states during the photoexcitation
process and has recently been studied for strongly confined
systems such as quantum dots [27] and quantum rings [23].
Second, the spin-orbit interaction, like the Rashba [40] and
Dresselhaus [41] couplings in semiconductor structures, is
expected to couple the OAM of carriers transferred from the
twisted light [19,22] to their spin degree of freedom. This
would provide a slower carrier spin control, which would be
dynamical and would remain active after the twisted light
pulse.

In this paper, we study the spin dynamics of carriers in
semiconductor quantum disks and wells excited with twisted
light, taking into account the Rashba spin-orbit interaction.
Our central finding is that, rather unexpectedly, the spin dy-
namics of the photoexcited electrons differs only slightly after
excitation with light with and without OAM in the limit of large
quantum disks, becoming insensitive to the OAM content of
the twisted light beam for extended quantum wells. This result
is consistent with the outcome of recent experiments which did
not show traces of the OAM transferred from twisted light to
bulk GaAs in spin-resolved photoemission measurements [29].

Analytically, we find that the Rashba interaction, while
conserving the total angular momentum of the electrons,

has matrix elements which are independent of the OAM
quantum number in the (k-space) quasicontinuum limit. As
a consequence, the induced spin dynamics is almost identical,
particularly for twisted light with components of the OAM in
the growth direction l = +|l| and l = −|l|. This finding can
be generalized to all possible effective spin-orbit interactions
stemming from a lattice-periodic potential in the envelope-
function approximation, e.g., the Dresselhaus coupling. Our
results suggest that for the search for materials supporting
twisted-light-based spin control it is most promising to concen-
trate on small quantum structures and other discrete systems.

II. OPTICAL EXCITATION WITH TWISTED LIGHT

The discussion of the optical excitation of electrons with
twisted light is especially clear when a basis of cylindrical
states is chosen [22]. The wave functions of these basis states
are expressed in cylindrical coordinates {r,φ,z} as

ψbmν(r,φ,z) = NmνJm(kmνr)eimφ�b(z), (1)

where Jm is the mth Bessel function, �b(z) is the z envelope
of the b subband (the band index includes the spin quantum
number), and Nmν = [

√
πRJm+1(kmνR)]−1 is the normal-

ization factor. For a circular quantum disk with radius R,
width L, and growth direction z, the boundary conditions
ψbmν(R,φ,z) = 0 are satisfied if kmν = um,ν/R, where um,ν

is the νth zero of the mth Bessel function. Note that ψbmν is an
eigenstate of the z component of the envelope OAM operator
with eigenvalue �m and kmν determines the kinetic energy of
state ψbmν since in a parabolic band b with effective mass
m∗

b the energy of the state is given by εbmν = �2k2
mν/(2m∗

b).
Note also how the precise location of the energy eigenvalues
is given by the zeros of the Bessel functions; this detailed
information will be “smeared out” in the limit R → ∞ as
the allowed values of k become a quasicontinuum. For the
sake of simplicity, we restrict our discussion to a case where
only spin-degenerate conduction (b = c = {−1/2,1/2}) and
heavy-hole (b = v = {−3/2,3/2}) bands are considered.

The matrix elements of the twisted-light–matter interaction
Hamiltonian HI (in the dipole approximation for only the
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FIG. 1. (Color online) Diagonal elements of the density matrix ρcmνcmν after an excitation of a cylindrical quantum disk with radius R

with a box-shaped pulse of length t = 5 ps and orbital angular momentum l of the light. (a) and (b) show the occupations of an R = 1.2 μm
quantum disk with l = 0 and l = 5, respectively. (c) and (d) display the occupations for a larger R = 5 μm disk with l = 0 and l = 5. For a
better comparison, the matrix elements are plotted against the energies εcmν instead of the indices ν, and the absolute values of the occupations
are rescaled.

z component) in the cylindrical basis states were derived in
Ref. [22]:

〈cm′ν ′|HI |vmν〉 = ξcvν ′νm′e−iωt δm,m′−l , (2a)

ξcvν ′νm′ = − e

me

A0 εσ · pcv〈�c|δkz,qz
|�v〉Nm′ν ′Nmν

×
∫ R

0
dr rJl(q‖r)Jm′(km′ν ′r)Jm′−l(kmνr),

(2b)

where e and me are the electron charge and (bare) mass,
A0 is the field strength, ω is the light frequency, q‖ and
qz are the in-plane and growth-direction parts of the light

wave vector, respectively, kz is the electron wave vector in
the growth direction, l is the OAM of the light, εσ is the
light polarization vector, and pcv is the dipole matrix element
between heavy-hole and conduction-band states. Note that pcv

contains spin selection rules. Let us consider the case where
due to excitation with circularly polarized light only spin-up
electrons are excited.

In Ref. [22] equations of motion were presented for the
density matrix under the influence of twisted light switched on
with constant amplitude at t = 0. In the low-excitation limit,
i.e., initially empty conduction and filled valence bands excited
with a moderate light field so that the occupations can be well
approximated by an expansion up to second order in the field
strength, we find from Eqs. (16) and (17) of Ref. [22]

ρcmνc′m′ν ′ (t) =
∑
m1ν1v

δ 3
2 ,vξcvνν1mξ ∗

c′vν ′ν1m′

[
1 − e−i(εcmν−εc′m′ν′ )t/�

εcmν − εc′m′ν ′

(
1

εc′m′ν ′ − εvm1ν1 − �ω
− 1

εcmν − εvm1ν1 − �ω

)

+ 1

(εcmν − εvm1ν1 − �ω)(εc′m′ν ′ − εvm1ν1 − �ω)

(
ei(εc′m′ν′−εvm1ν1 −�ω)t/� + e−i(εcmν−εvm1ν1 −�ω)t/� − 2

)]
δmm′δc 1

2
δc′ 1

2
.

(3)

Thus, the optical excitation yields only diagonal elements
of ρcmνc′m′ν ′ with respect to m. Also, we find from Eqs. (2) that
for every electron with OAM m there occurs an unoccupied
state with OAM m − l in the valence band, i.e., a hole
with OAM l − m. From this we can conclude that the total
envelope OAM ltot induced in the valence and conduction
bands together is ltot = lNe�, where Ne is the number of
excited electrons or, equivalently, holes. The distribution of
the total orbital momentum into conduction- and valence-band
contributions depends on the details of the band structure,
the pulse duration, and the laser frequency. For example, for
the effective masses m∗

c = 0.067me and m∗
hh = 0.45me for

conduction and heavy-hole bands, respectively, an excitation
with a circularly polarized twisted-light pulse with OAM

l = 5, pulse duration t = 5 ps, and central frequency resonant
to the band gap leads to a total OAM in the conduction
band of ltot

c = 2.866Ne� for R = 1.2 μm, ltot
c = 3.145Ne� for

R = 5 μm, and ltot
c = 2.914Ne� for R = 10 μm.

Figure 1 shows the diagonal elements of the density matrix
ρcmνcmν for the excitation conditions described above. The
oscillatory structure of the occupations along the energy
axis can be attributed to the finite pulse duration via the
energy-time uncertainty relation. Along the m axis, there are
also oscillations in the occupations. Since their frequency
depends strongly on the radius R of the sample and they
get smeared out for large values of R, we attribute these
oscillations to finite-size effects. Note that in Fig. 1(b), where
the occupation for light with l = 5 is plotted, the states with the
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five lowest values of m for every energy shell are empty (seen
more clearly at low energies) since there are no valence-band
states which satisfy the condition m′ = m − l of the matrix
element in Eq. (2a). Figures 1(c) and 1(d) show that for
the larger R = 5 μm quantum disk, the difference between
the occupations after l = 0 and l = 5 excitations diminishes
visibly.

III. SPIN DYNAMICS

Now, we focus on the spin dynamics after the optical
excitation. We study the effects of spin-orbit coupling mech-
anisms, considering for concreteness the Rashba Hamiltonian
HR [40], which is usually the dominant mechanism in quasi-
two-dimensional systems. In order to better work with the
cylindrical states given in Eq. (1), we switch from the usual
Cartesian-coordinate expression of HR to its expression in
polar coordinates:

HR = �αR(kyσx − kxσy) = �αR(s+∂− − s−∂+), (4a)

∂± := ∂

∂x
± i

∂

∂y
= e±iφ

(
∂

∂r
± i

r

∂

∂φ

)
, (4b)

where αR is the Rashba coefficient and σi and s± are the Pauli
matrices and spin raising and lowering operators, respectively.
With the relation∫ R

0 dr rJm(pr)Jm(qr)

= R
pJm(qR)J ′

m(pR) − qJm(pR)J ′
m(qR)

q2 − p2
, (5)

it is straightforward to calculate the matrix elements of HR

with respect to the cylindrical states:

〈c′m′ν ′|∂±|cmν〉 = δm′,m±1
2

R

kmνkm′ν ′

k2
mν − k2

m′ν ′
, (6a)

〈c′m′ν ′|HR|cmν〉 = �αRkmνkm′ν ′

R
(
k2
mν − k2

m′ν ′
) (s+

c′cδm′,m−1−s−
c′cδm′,m+1).

(6b)

It can be seen from the form of the Rashba Hamiltonian in
cylindrical coordinates that an electron with spin up (down)
and envelope OAM m flips to a state with spin down (up) and
OAM m + 1 (m − 1). In this sense, ∂± can be regarded as
raising and lowering operators in m. If HR is applied a second
time, the electronic state is transferred back to the initial spin
and OAM state, while a change in ν is possible. Note that
the sum J = m + s of the envelope OAM m and the spin s is
conserved by the Rashba Hamiltonian.

Having derived the matrix elements of HR in cylindrical
coordinates, it is straightforward to calculate numerically
the time evolution of the density matrix, where the initial
conditions correspond to the final occupations generated by
optical excitation with light with OAM l, illustrated in Fig. 1.
The resulting dynamics for the total conduction-band spin is
shown in Fig. 2. We show results for three different values of
the disk radius, R = {1.2,5,10} μm. As in the case of optical
excitation with light with zero OAM, the Rashba interaction
leads to a dephasing of the initial electron spins. Since for
small disks only a finite number of states contributes noticeably

FIG. 2. (Color online) Spin dynamics after excitation with
twisted light with orbital angular momentum l = {−5,0,5} and
quantum-disk radius R = 1.2 μm and with l = {0,5} and R =
{5 μm,10 μm}.

to the dynamics, oscillations are found which do not cancel
completely so that for long times the total spin reaches a
nonzero value. Note that the curves for excitation with l = 5
and l = −5 almost coincide (shown for R = 1.2 μm). This
unexpected result shows clearly the insensitivity of the spin
dynamics, in the presence of the Rashba spin-orbit interaction,
to the content of OAM transferred from twisted light to
the electron gas. For the same quantum disk, an excitation
with l = 0 produces spin dynamics different from the l = ±5
excitation, but this difference decreases for larger radii. This
tendency can be seen by comparing the excitations with l = 5
and l = 0 for the three different values of R used in Fig. 2.

To understand this finding, it is useful to analyze the case
of an infinitely extended quantum well, obtained by letting
R → ∞. In this limit, the discrete kmν become continuous,
and the eigenstates can be written as

ψbkm(r,φ,z) :=
√

k

2π
Jm(kr)eimφ�b(z), (7)

with the orthogonality relation 〈bkm|b′k′m′〉 = δbb′δmm′δ(k −
k′). Using the fact that Bessel functions satisfy

∫ ∞
0 dr rJm(kr)Jm(k′r) = 1

k
δ(k − k′), (8)

the corresponding matrix elements become

〈c′k′m′|∂±|ckm〉 = ∓kδm′,m±1δ(k − k′), (9a)

〈c′k′m′|HR|ckm〉 = �αRk δ(k − k′)(s+
c′cδm′,m−1+s−

c′cδm′,m+1).

(9b)
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Thus, in the quasicontinuum limit, the prefactor of the
Rashba interaction depends only on the energy of the state via
k but not on m. The spin dynamics is therefore a precession
of the electron spin with a k-dependent frequency, which, for
a given k, is the same for all different values of m. Since
the effect of the excitation with twisted light was mainly that
states with different m are excited, it is now easy to see why,
for extended systems, the spin dynamics due to the Rashba
Hamiltonian is almost the same for excitations with light with
and without OAM.

It is noteworthy that this statement is also true for all
effective Hamiltonians with a microscopic origin in the
lattice-periodic crystal potential such as the Dresselhaus [41]
spin-orbit coupling when treated in the envelope-function
approximation: For a lattice-periodic potential, the solutions
of the corresponding Schrödinger equation are given by
the Bloch theorem as ψ(r) ∝ eikrunk(r) with lattice-periodic
Bloch function unk(r), band index n, and wave vector k.
The envelope-function approximation consists of integrating
over the plane-wave part of the wave function, yielding an
effective Hamiltonian [42] Heff for unk which is diagonal in
k, and the matrix elements can be written as a power series
in k. The resulting effective Hamiltonian can be rewritten by
decomposing kx and ky in terms of ∂+ and ∂−, as done in
Eqs. (4). Thus, the dependence of the matrix elements of Heff

in cylindrical states on m is of the same character as that for the
Rashba Hamiltonian and vanishes in the quasicontinuum limit.
For systems with finite size, however, a weak dependence on m

can be found due to the m dependence of the possible k values
in the prefactor of the Rashba Hamiltonian in Eq. (6b). This
means that, e.g., for small quantum disks, where the energy
separation between the discrete cylindrical states becomes
important, the OAM of the exciting light can influence the
spin dynamics significantly.

IV. CONCLUSION

In conclusion, we have shown that although the OAM of
twisted light can be transferred into the envelope OAM of
electrons, the usual solid-state spin-orbit interactions, such
as Rashba and Dresselhaus interactions, do not couple the
envelope OAM of the carriers to their spin degree of freedom
in such a way that a significant difference in the spin dynamics
after excitation with light with and without OAM is found
in large extended systems. This finding can explain why in
recent experiments [29] no influence of the light’s OAM
on the spin polarization was found. However, for cylindrical
quantum disks with small radii, the discreteness of the states
plays an important role, so that the spin dynamics indeed
depends on the OAM of the light. Nevertheless, also for small
systems, the spin dynamics after excitation with OAM l = |l|
and l = −|l| are very similar, in contrast to optical excitation
with opposite circular polarization, where the spin dynamics
acquires a different sign. Thus, twisted-light-based spin control
is fundamentally different from traditional spin orientation,
and combining these control schemes should therefore open
new ways for spin manipulation. Our findings have direct
implications for the search for systems where optical excitation
with twisted light can be used to manipulate the spin dynamics:
A continuum of states has to be avoided. Such systems can be
confined structures like quantum dots [27] and rings [21,23],
discrete states due to multiparticle effects, e.g., excitons, or
localized states due to impurities and surface effects.
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Influence of non-magnetic impurity scattering on the spin dynamics in diluted
magnetic semiconductors

M. Cygorek,1 F. Ungar,1 P. I. Tamborenea,2 and V. M. Axt1

1Theoretische Physik III, Universität Bayreuth, 95440 Bayreuth, Germany
2Departamento de F́ısica and IFIBA, FCEN, Universidad de Buenos Aires,
Ciudad Universitaria, Pabellón I, 1428 Ciudad de Buenos Aires, Argentina

The doping of semiconductors with magnetic impurities gives rise not only to a spin-spin inter-
action between quasi-free carriers and magnetic impurities, but also to a local spin-independent
disorder potential for the carriers. Based on a quantum kinetic theory for the carrier and impurity
density matrices as well as the magnetic and non-magnetic carrier-impurity correlations, the influ-
ence of the non-magnetic scattering potential on the spin dynamics in DMS after optical excitation
with circularly polarized light is investigated using the example of Mn-doped CdTe. It is shown that
non-Markovian effects, which are predicted in calculations where only the magnetic carrier-impurity
interaction is accounted for, can be strongly suppressed in the presence of non-magnetic impurity
scattering. This effect can be traced back to a significant redistribution of carriers in k-space which
is enabled by the build-up of large carrier-impurity correlation energies. A comparison with the
Markov limit of the quantum kinetic theory shows that, in the presence of an external magnetic
field parallel to the initial carrier polarization, the asymptotic value of the spin polarization at
long times is significantly different in the quantum kinetic and the Markovian calculations. This
effect can also be attributed to the formation of strong correlations which invalidates the semiclas-
sical Markovian picture and it is stronger when the non-magnetic carrier-impurity interaction is
accounted for. In an external magnetic field perpendicular to the initial carrier spin, the correla-
tions are also responsible for a renormalization of the carrier spin precession frequency. Considering
only the magnetic carrier-impurity interaction, a significant renormalization is predicted for a very
limited set of material parameters and excitation conditions. Accounting also for the non-magnetic
interaction a relevant renormalization of the precession frequency is found to be more ubiquitous.

PACS numbers: 75.78.Jp, 75.50.Pp, 75.30.Hx, 72.10.Fk

I. INTRODUCTION

Most of the devices based on the spintronics paradigm
that are commercially available today use the fact that
spin-up and spin-down carriers exhibit different trans-
mission and reflection probabilities at interfaces involv-
ing ferromagnetic metals1,2. However, some applications,
like spin transistors3, require the control not only of spin-
up and spin-down occupations, but also of the coher-
ent precession of spins perpendicular to the quantiza-
tion axis provided by the structure. For this purpose,
spintronic devices based on semiconductors are prefer-
able to metallic structures since the dephasing time in
a metal is about three orders of magnitude shorter than
in a semiconductor4. In the context of semiconductor
spintronics5–7, a particularly interesting class of materi-
als for future applications are diluted magnetic semicon-
ductors (DMS)8–22, which are obtained when semicon-
ductors are doped with transition metal elements, such
as Mn, which act as localized magnetic moments. While
some types of DMS, such as Ga1−xMnxAs, exhibit a fer-
romagnetic phase8,23, other types of DMS, like the usu-
ally paramagnetic CdMnTe, are especially valued for the
enhancement of the effective carrier g-factor by the gi-
ant Zeeman effect that can be used, e.g., to facilitate an
injection of a spin-polarized current into a light-emitting
diode24. Besides causing the giant Zeeman effect, the s-d
exchange interaction between the quasi-free carriers and

localized magnetic impurities also leads to other effects,
such as inducing spin-flip scattering and thereby a direct
transfer of spins from the carriers to the impurities and
vice versa25–28.
Typically, the s-d interaction is described by a Kondo-

like29 localized spin-spin interaction between carriers and
impurities. However, in real DMS materials, the in-
troduction of Mn impurities not only leads to a spin-
dependent interaction Hamiltonian, but also to a spin-
independent local potential for the carriers30. The rea-
son for the appearance of this spin-independent potiential
is that, in the case of Cd1−xMnxTe, the semiconductor
CdTe has a different band structure than MnTe and car-
riers located at unit cells with Mn impurities experience
a larger local potiential energy than carriers at unit cells
with Cd cations. The strength of this local potential can
be estimated by the conduction and valence band offsets
between CdTe and MnTe. Note, however, that usually,
CdTe crystallizes in a zinc-blende structure, while MnTe
is found in a wurzite structure. Thus, a better estima-
tion for the strength of the spin-independent local po-
tential is obtained by studying CdTe/Cd1−xMnxTe het-
erostructures where both materials appear in the form
of a zinc-blende lattice31. From such investigations, the
strenght of the local spin-independent potential for car-
riers at Mn sites of about 1.6 eV can be estimated. In
contrast, the spin-dependent local interaction in DMS
is typically about 220 meV, i.e. one order of magnitude
lower. This consideration suggests that the non-magnetic
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impurity scattering caused by the local spin-independent
interaction between carriers and impurities should not be
disregarded in the study of the spin physics in DMS.

It is noteworthy that a theory which takes into ac-
count a local magnetic interaction as well as a non-
magnetic local potential in a DMS, the V-J tight-binding
model was employed to study the magnetic properties of
GaMnAs32 and it was found that taking into account
the non-magnetic interaction is necessary in order to ob-
tain results in good quantitative agreement with ab initio
calculations for the Curie temperature and with experi-
mental data for the optical conductivity.

For the spin dynamics, scattering at non-magnetic
impurities has already important consequences in non-
magnetic semiconductors33 in the presence of spin-orbit
fields, where scattering processes can enhance or reduce
the spin relaxation and dephasing significantly, e.g., via
the Elliott-Yafet34 and D’yakonov-Perel’35 mechanisms.

The goal of the present article is to investigate how the
non-magnetic interaction between carriers and impurities
affects the spin dynamics in paramagnetic II-VI DMS.
To this end we employ a quantum kinetic theory for car-
rier and impurity density matrices including the carrier-
impurity correlations starting from a system Hamiltonian
that comprises a kinetic energy term, the magnetic and
non-magnetic carrier-impurity interactions as well as the
carrier and impurity Zeeman energies. Earlier quantum
kinetic studies of the spin dynamics in DMS25–27,36,37,
which only considered the spin-dependent s-d interac-
tion, predicted that in some cases, such as in narrow
quantum wells optically excited very close to the band
edge38, the spin transfer between carriers and impurities
cannot be well described by rate equations. Rather, the
time evolution of the carrier spin is, in these cases, non-
exponential and it can exhibit non-monotonic features
such as overshoots. These effects are non-Markovian, as
they can be traced back to the finite memory provided by
the correlations, since the Markovian assumption of a δ-
like memory leads to effective rate equations that predict
an exponential spin dynamics28.

Here, we find that these non-Markovian effects pre-
dicted in the theory of Refs. 25–27, 36, and 37 are
suppressed in the case of the conduction band of a
Cd1−xMnxTe quantum well when non-magnetic scatter-
ing of carriers at the impurities is taken into account.
While, in this case, the non-monotonic behavior of the
spin dynamics disappears, the quantum kinetic theory
predicts quantitative changes in the effective spin trans-
fer rate compared with the Fermi’s golden rule value.
The suppression of the non-Markovian features is mainly
caused by a significant redistribution of carriers away
from the band edge where the non-Markovian effects are
particularly strong38. This carrier redistribution is facil-
itated by the build-up of strong carrier-impurity correla-
tions providing a correlation energy of the order of a few
meV per electron that leads to an increase of the average
kinetic electron energy by about the same amount. Due
to the different strengths of the interactions in the con-

duction band of Cd1−xMnxTe, the non-magnetic carrier-
impurity correlation energy is also much larger than the
magnetic correlation energy studied before in Ref. 39.

In other cases, such as in the valence band of
Cd1−xMnxTe, the non-magnetic impurty scattering can
be much weaker than the magnetic spin-flip scattering
and the non-Markovian effects prevail.

In the presence of an external magnetic field parallel
to the initial carrier spin polarization, it was shown40

that a quantum kinetic treatment of the magnetic part
of the carrier-impurity interaction in DMS leads to a sig-
nificantly different asymptotic value of the carrier spin
polarization at long times t. Because this is also a conse-
quence of an energetic redistribution of carriers, includ-
ing non-magnetic scattering increases this effect. If the
initial carrier spin polarization is perpendicular to the
external magnetic field, the carrier spins precess about
the effective field comprised of the external field and the
mean field due to the impurity magnetization. As shown
in Ref. 39, the carrier-impurity correlations built up by
the magnetic s-d interaction renormalize the carrier spin
precession frequency. Here, we show that when both, the
magnetic and the non-magnetic interactions are taken
into account the renormalization of the carrier spin pre-
cession frequency can be different in sign and magnitude
compared with calculations in which only the magnetic
interaction is considered.

The article is structured as follows: First, quantum
kinetic equations of motion for the carrier and impurity
density matrices as well as for the magnetic and non-
magnetic carrier-impurity correlations are formulated for
a DMS with magnetic and non-magnetic carrier-impurity
interactions. Then, we derive the Markov limit of the
quantum kinetic theory which enables a comparison and
allows us to distinguish the genuine quantum kinetic ef-
fects from the Markovian behavior. Furthermore, from
the Markov limit we can derive analytic expressions for
the carrier-impurity correlation energies as well as the
correlation-induced renormalization of the carrier spin
precession frequency. After having layed out the theory,
we present numerical simulations of the quantum kinetic
equations for the conduction band of a Cd1−xMnxTe
quantum well including magnetic and non-magnetic scat-
tering at the Mn impurities and discuss the energetic re-
distribution of carriers as well as the correlation energies.
Then, we estimate the influence of non-magnetic impu-
rity interaction on the spin dynamics in the valence band
of Cd1−xMnxTe. Finally, we discuss the effects of the
non-magnetic impurity scattering on the spin dynamics
in DMS in the presence of an external magnetic field
parallel and perpendicular to an initial non-equilibrium
carrier spin polarization.
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II. THEORY

A. DMS Hamiltonian

Here, we consider an intrinsic DMS such as
Cd1−xMnxTe in the presence of an external magnetic
field. The total Hamiltonian of this DMS is given by

H =H0 +Hsd +Himp +He
Z +HMn

Z , (1a)

H0 =
∑

kσ

h̄ωkc
†
σkcσk, (1b)

Hsd =
Jsd
V

∑

kk′σσ′

∑

Inn′

Snn′ · sσσ′c†σkcσ′k′ei(k
′−k)RI P̂ I

nn′ ,

(1c)

Himp =
J0
V

∑

kk′σ

∑

J

c†σkcσk′ei(k
′−k)RJ , (1d)

He
Z =

∑

kσσ′

h̄geµBB · sσσ′c†σkcσ′k, (1e)

HMn
Z =

∑

Inn′

h̄gMnµBB · Snn′ P̂ I
nn′ , (1f)

where H0 is the single-electron Hamiltonian due to the
crystal potential, Hsd describes the magnetic s-d ex-
change interaction between the carriers and the impu-
rities, Himp describes the spin-independent scattering of
carriers at impurities and He

Z and HMn
Z are the carrier

and impurity Zeeman energies.

In Eqs. (1), c†σk and cσk denote the creation and an-
nihilation operators for conduction band electrons with
wave vector k in the spin subband σ = {↑, ↓}. The
magnetic Mn impurities are described by the operator
P̂ I
nn′ = |I, n〉〈I, n′| where |I, n〉 is the n-th spin state

(n ∈ {− 5
2 ,− 3

2 , . . .
5
2}) of the I-th magnetic impurity lo-

cated at RI . The band structure of the semiconductor
is described by h̄ωk, which we assume to be parabolic

ωk = h̄k2

2m∗ with effective mass m∗. V denotes the vol-
ume of the sample. Jsd is the s-d coupling constant for
the spin-spin interaction between carriers and impurities
and J0 is the non-magnetic coupling constant. Sn1n2 and
sσ1σ2 are the vectors with components consisting of spin-
5
2 and spin- 12 spin matrices for the impurities and the
conduction band electrons, respectively, where the unit
h̄ has been substituted into the definition of Jsd so that
sσ1σ2 = 1

2σσ1σ2 , where σσ1σ2 are the Pauli matrices. Fi-
nally, ge and gMn are the g-factors of the electrons and
the impurities, respectively, and µB is the Bohr magne-
ton.
In order to account for spin-independent scattering

not only at Mn impurities but also additional non-
magnetic scattering centers, such as in quaternary com-
pound DMSs like HgCdMnTe41, we allow the number of
scattering centers Nimp in general to be larger than the
number of magnetic impurities NMn. Here, we use the
notation that the index I runs from 1 to NMn while the
index J runs from 1 to Nimp.

B. Quantum kinetic equations of motion

The goal of this artilce is to study the time evolution of
the carrier spin polarization after optical excitation with
circularly polarized light which can be extracted from
the carrier density matrix. In this section, we derive the
corresponding equations of motion starting from the total
Hamiltonian in Eqs. (1).
Following Ref. 36, where for the conduction band only

H0 andHsd in Eqs. (1) were considered, we seek to obtain
a closed set of equations for the reduced carrier and im-
purity density matrices as well as for the carrier-impurity
correlations:

Mn2
n1

=〈P̂ I
n1n2

〉 (2a)

Cσ2

σ1k1
=〈c†σ1k1

cσ2k1〉, (2b)

C̄σ2k2

σ1k1
=V 〈c†σ1k1

cσ2k2e
i(k2−k1)RJ 〉, for k2 6= k1,

(2c)

Qσ2n2k2

σ1n1k1
=V 〈c†σ1k1

cσ2k2e
i(k2−k1)RI P̂ I

n1n2
〉, for k2 6= k1.

(2d)

Mn2
n1

and Cσ2

σ1k1
are the impurity and electron density ma-

trices and C̄σ2k2

σ1k1
as well as Qσ2n2k2

σ1n1k1
are the non-magnetic

and magnetic carrier-impurity correlations, respectively.
In Eqs. (2), the brackets denote not only the quantum
mechanical average of the operators, but also an aver-
age over a random distribution of impurity positions,
which we assume to be on average homogeneous so that
〈ei(k2−k1)RJ 〉 = δk1k2 .
The equations of motion for the variables de-

fined in Eqs. (2) can be derived using the Heisen-
berg equations of motion for the corresponding op-
erators. Note, however, that this procedure leads
to an infinite hierarchy of variables and equations
of motion, since, e. g., the equation of motion for

〈c†σ1k1
cσ2k2e

i(k2−k1)RI P̂ I
n1n2

〉 contains also terms of the

form 〈c†σ1k1
cσke

i(k−k1)RI ei(k2−k)RI′ P̂ I
n1n2

P̂ I′
nn′〉 for I ′ 6= I

which cannot be expressed in terms of the variables in
Eqs. (2). Thus, in order to obtain a closed set of equa-
tions, one has to employ a truncation scheme. Here, we
follow the procedure of Ref. 36: we factorize the aver-
ages over products of operators and define the true cor-
relations to be the remainder when all combinations of
factorizations have been subtracted from the averages.
For example, we define (for k2 6= k1)

δ〈c†σ1k1
cσ2k2e

i(k2−k1)RI P̂ I
n1n2

〉 :=
〈c†σ1k1

cσ2k2e
i(k2−k1)RI P̂ I

n1n2
〉

−
(
〈c†σ1k1

cσ2k2〉〈ei(k2−k1)RI 〉〈P̂ I
n1n2

〉

+ 〈c†σ1k1
cσ2k2e

i(k2−k1)RI 〉〈P̂ I
n1n2

〉

+ 〈ei(k2−k1)RI 〉〈c†σ1k1
cσ2k2P̂

I
n1n2

〉
)

(3)

where δ〈. . . 〉 denotes the true correlations. The basic
assumption of the truncation scheme of Ref. 36 is that
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all correlations higher than δ〈c†σ1k1
cσ2k2e

i(k2−k1)RI 〉 and
δ〈c†σ1k1

cσ2k2e
i(k2−k1)RI P̂ I

n1n2
〉 are negligible. This as-

sumption results in a closed set of equations of motion for
the reduced density matrices and the true correlations.
However, it turns out26 that the equations of motion can
be written down in a more condensed form when switch-
ing back to the full (non-factorized) higher order density

matrices as variables, after the higher (true) correlations
are neglected. For details of this procedure, the reader is
referred to Refs. 26 and 36.
Applying this truncation scheme to the total Hamil-

tonian (1) including magnetic and non-magnetic carrier-
impurity interactions as well as the Zeeman terms for
carriers and impurities leads to the equations of motion
for the variables defined in Eqs. (2):

−ih̄
∂

∂t
Mn2

n1
=
∑

n

h̄ωMn · (Snn1M
n2
n − Sn2nM

n
n1
) +

Jsd
V 2

∑

n

∑

kk′σσ′

(Snn1 · sσσ′Qσ′n2k
′

σnk − Sn2n · sσσ′Qσ′nk′
σn1k )

]
, (4a)

−ih̄
∂

∂t
Cσ2

σ1k1
=
∑

σ

h̄ωe · (sσσ1C
σ2

σk1
− sσ2σC

σ
σ1k1

) + Jsd
NMn

V 2

∑

nn′

∑

kσ

(Snn′ · sσσ1Q
σ2n

′k1

σnk − Snn′ · sσ2σQ
σn′k
σ1nk1

)+

+ J0
Nimp

V 2

∑

k

(C̄σ2k1

σ1k
− C̄σ2k

σ1k1
), (4b)

−ih̄
∂

∂t
Qσ2n2k2

σ1n1k1
=h̄(ωk1 − ωk2)Q

σ2n2k2

σ1n1k1
+ bσ2n2k2

σ1n1k1

I
+ bσ2n2k2

σ1n1k1

II
+ bσ2n2k2

σ1n1k1

III
+ bσ2n2k2

σ1n1k1

imp
, (4c)

−ih̄
∂

∂t
C̄σ2k2

σ1k1
=h̄(ωk1 − ωk2)C̄

σ2k2

σ1k1
+ cσ2k2

σ1k1

I
+ cσ2k2

σ1k1

II
+ cσ2k2

σ1k1

III
+ cσ2k2

σ1k1

sd
(4d)

with

bσ2n2k2

σ1n1k1

I
=

∑

nσσ′
Jsd[Snn1 · sσσ′(δσ1σ′ − Cσ′

σ1k1
)Cσ2

σk2
Mn2

n − Sn2n · sσσ′(δσσ2 − Cσ2

σk2
)Cσ′

σ1k1
Mn

n1
], (4e)

bσ2n2k2

σ1n1k1

II
=
∑

σ

h̄ωe · (sσσ1Q
σ2n2k2

σn1k1
− sσ2σQ

σn2k2

σ1n1k1
) +

∑

n

h̄ωMn · (Snn1Q
σ2n2k2

σ1nk1
− Sn2nQ

σ2nk2

σ1n1k1
), (4f)

bσ2n2k2

σ1n1k1

III
=
Jsd
V

∑

n

∑

kσ

{
(Snn1 · sσσ1Q

σ2n2k2

σnk − Sn2n · sσ2σQ
σnk
σ1n1k1

)

−
∑

σ′
sσσ′ ·

[
Cσ′

σ1k1

(
Snn1Q

σ2n2k2

σnk − Sn2nQ
σ2nk2

σn1k

)
+ Cσ2

σk2

(
Snn1Q

σ′n2k
σ1nk1

− Sn2nQ
σ′nk
σ1n1k1

)]}
, (4g)

bσ2n2k2

σ1n1k1

imp
=J0

[(
Cσ2

σ1k2
− Cσ2

σ1k1

)
Mn2

n1
+

1

V

∑

k

(
Qσ2n2k2

σ1n1k
−Qσ2n2k

σ1n1k1

)]
, (4h)

and

cσ2k2

σ1k1

I
=J0(C

σ2

σ1k2
− Cσ2

σ1k1
), (4i)

cσ2k2

σ1k1

II
=
∑

σ

h̄ωe · (sσσ1 C̄
σ2k2

σk1
− sσ2σC̄

σk2

σ1k1
), (4j)

cσ2k2

σ1k1

III
=
J0
V

∑

k

(C̄σ2k2

σ1k
− C̄σ2k

σ1k1
), (4k)

cσ2k2

σ1k1

sd
=Jsd

∑

nn′

∑

σ

Mnn′Snn′ ·
(
sσσ1C

σ2

σk2
− sσ2σC

σ
σ1k1

)
+

Jsd
V

NMn

Nimp

∑

nn′

∑

kσ

Snn′ ·
(
sσσ1Q

σ2n
′k2

σnk − sσ2σQ
σn′k
σ1nk1

)
,

(4l)

where bσ2n2k2

σ1n1k1

X
are the source terms for the magnetic

carrier-impurity correlations, cσ2k2

σ1k1

X
are the sources for

the non-magnetic correlations and

ωMn = gMnµBB+
Jsd
h̄

1

V

∑

kσσ′

sσσ′Cσ′
σk, (5a)

ωe = geµBB+
Jsd
h̄

NMn

V

∑

nn′
Snn′Mnn′ (5b)

Pub 10



5

are the mean-field precession frequencies of the impu-
rity and carrier spins, respectively. The first terms on
the right-hand side of Eqs. (4a) and (4b) represent the
precession of the impurity and carrier spins in the mean
field due to the carrier and impurity magnetization as
well as the external magnetic field. The second terms in
Eqs. (4a) and (4b) describe the effects of the magnetic
carrier-impurity correlations on the impurity and carrier
density matrices and the last term of Eq. (4b) describes
the scattering of carriers at non-magnetic impurities.
In analogy to the situation without non-magnetic im-

purity scattering (J0 = 0) studied in Ref. 26, we label
the source terms of the correlations on the right-hand
side of the Eqs. (4c) and (4d) as follows: The terms

bσ2n2k2

σ1n1k1

I
are the inhomogeneous driving terms depending

only on single-particle quantities. bσ2n2k2

σ1n1k1

II
are homoge-

neous terms which describe a precession-type motion of
the correlations in the effective fields ωe and ωMn. The

source terms bσ2n2k2

σ1n1k1

III
comprise the driving of the mag-

netic correlations by other magnetic correlations with dif-
ferent wave vectors and describe a change of the wave
vectors of the correlations due to the s-d interaction.

bσ2n2k2

σ1n1k1

imp
denotes the contributions to the equation for

the magnetic correlations due to the non-magnetic im-

purity scattering. The source terms cσ2k2

σ1k1

X
for the non-

magnetic correlations are classified analogously.
A straightforward but lengthy calculation confirms

that Eqs. (4) conserve the particle number as well as
the total energy comprised of the single-particle contri-
butions and the correlation energies.

C. Markov limit

Although Eqs. (4) can readily be used to calculate the
spin dynamics given a set of appropriate initial condi-
tions, it is instructive also to derive the Markov limit of
the quantum kinetic equations26–28. On the one hand,
this enables us to distinguish the Markovian behavior
from genuine quantum kinetic effects. On the other hand,
it allows us to derive analytic expressions for the cor-
relation energies and the renormalization of the preces-
sion frequencies in the presence of an external magnetic
field39.
The derivation of the Markov limit comprises two

steps28: First, the equations of motion for the correla-
tions are formally integrated yielding explicit expressions
for the correlations in the form of a memory integral.
This yields integro-differential equations for the single-
particle variables, where the values of the single-particle
variables at earlier times enter. Second, the memory in-
tegral is eliminated by assuming a δ-like short memory.
However, the first step, which involves the formal in-

tegration of the carrier-impurity correlations, can, in
general, be complicated. Nevertheless, if the source

terms bσ2n2k2

σ1n1k1

III
and cσ2k2

σ1k1

III
as well as the correlation-

dependent part of bσ2n2k2

σ1n1k1

imp
and cσ2k2

σ1k1

sd
are neglected,

the formal solution of Eqs. (4c-d) becomes much eas-
ier. In absence of non-magnetic impurity scattering,
it has been shown that these source terms are indeed
numerically insignificant26. Furthermore, a straightfor-
ward calculation shows that neglecting these terms also
yields a consistent theory with respect to the conserva-
tion of the total energy. Whether neglecting the terms

bσ2n2k2

σ1n1k1

III
, cσ2k2

σ1k1

III
and the correlation-dependent parts

of bσ2n2k2

σ1n1k1

imp
and cσ2k2

σ1k1

sd
is indeed a good approxima-

tion in the presence of non-magnetic impurity scattering
can be tested by comparing the numerical results of the
quantum kinetic equations with and without accounting
for these source terms.
Neglecting the aforementioned source terms in

Eqs. (4), we first formulate a set of quantum kinetic equa-
tions for the new dynamical variables

〈Si〉 =
∑

n1n2

Si
n1n2

Mn1n2 , (6a)

nk =
∑

σ

Cσ
σk, (6b)

sik =
∑

σ1σ2

siσ1σ2
Cσ2

σ1k
, (6c)

C̄αk2

k1
=

∑

σ1σ2

sασ1σ2
C̄σ2k2

σ1k1
(6d)

Qαk2

lk1
=

∑

σ1σ2

∑

n1n2

sασ1σ2
Sl
n1n2

Qσ2n2k2

σ1n1k1
, (6e)

where 〈S〉 is the average impurity spin and nk and sk
are the occupation density and spin density of the car-
rier states with wave vector k, respectively. C̄αk2

k1
as

well as Qαk2

lk1
comprise the non-magnetic and magnetic

carrier-impurity correlations. In Eqs. (6) we use a nota-
tion in which the Latin indices are in the range {1, 2, 3},
while the Greek indices also include the value 0, where
s0σ1σ2

= δσ1σ2 is the 2x2 identity matrix. The corre-
sponding equations of motion for the variables defined in
Eqs. (6) are explicitly given in appendix A.

Note that the source terms bαk2

lk1

I
for the correlations

Qαk2

lk1
depend on the second moments of the impurity

spins 〈SiSj〉 = ∑
n1n2n3

Si
n1n2

Sj
n2n3

Mn1n3 for which we do

not present equations of motions, although such equa-
tions can, in principle, be derived from Eqs. (4). Here,
we use the fact that for typical sample parameters the
optically induced carrier density is usually much lower
than the impurity concentration, so that the average im-
purity spin only changes marginally over time26. For the
numerical calculations we assume that the impurity den-
sity matrix can be approximately described as being in
thermal equilibrium at all times where the effective im-
purity spin temperature TMn can be obtained from the
value of 〈S〉. From this thermally occupied density ma-
trix, the second moments 〈SiSj〉 consistent with 〈S〉 can
be calculated in each time step.
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The equations of motion for the variables defined in
Eqs. (6) are the starting point for the formal integra-
tion of the correlations. Note that Eqs. (A1d-g) for the

correlations Qαk2

lk1
and C̄αk2

k1
can be transformed into the

general form

∂

∂t
Qk2

k1
= −i(ωk2 − ωk1)Q

k2

k1
+ iχ1ωeQ

k2

k1

+ iχ2ωMnQ
k2

k1
+ bk2

k1

I
, (7)

where χ1, χ2 ∈ {−1, 0, 1} and the terms proportional to
ωe = |ωe| and ωMn = |ωMn| originate from the preces-
sion of the correlations described by the source terms

bσ2n2k2

σ1n1k1

II
and cσ2k2

σ1k1

II
. The term bk2

k1

I
here denotes the

contributions from the source terms bσ2n2k2

σ1n1k1

I
, cσ2k2

σ1k1

I
,

bσ2n2k2

σ1n1k1

imp
and cσ2k2

σ1k1

sd
and only depends on the single-

particle variables. The formal integration of Eq. (7)
yields

Qk2

k1
(t) =

t∫

0

dt′ei[ωk2
−(ωk1

+χ1ωe+χ2ωMn)](t
′−t)bk2

k1

I
(t′).

(8)

The Markov limit consists of assuming a short memory,
i.e. the assumption that the correlations at time t depend
only significantly on the single-particle variables at the

same time t, so that one is inclined to evaluate bk2

k1

I
(t′)

in Eq. (8) at t′ = t and to draw the source term out of
the integral. However, first, one has to make sure that
the source terms are indeed slowly changing variables.

For example, the carrier spin can precess rapidly about
an external magnetic field. Therefore, we first analyze
the mean-field precession of the single-particle quantities
and split the source terms into parts oscillating with some
frequencies ω of the form

bk2

k1

I
(t′)

MF
=

∑

ω

∑

χ∈{−1,0,1}
eiχω(t′−t)bk2

k1

ω,χ
(t). (9)

Then, the different oscillating parts bk2

k1

ω,χ
(t) can be

drawn out of the memory integral and the remaining in-
tegral can be solved in the limit of large times t28:

t∫

0

dt′ ei∆ω(t′−t) t→∞−→ πδ(∆ω) − i

∆ω
. (10)

This procedure yields particularly transparent results
in the case where the external magnetic field and the im-
purity magnetization are collinear, as is usually the case
when the number of impurities exceeds the number of
quasi-free carriers (NMn ≫ Ne), and the impurity den-
sity matrix is initially occupied thermally. Choosing the

direction of ωe as a reference and defining s
‖
k1

:= s · ωe

ωe
,

S‖ := Ŝ · ωe

ωe
and ω

‖
Mn := ωMn · ωe

ωe
, the Markovian equa-

tions obtained for the spin-up and spin-down occupations
and the perpendicular carrier spin component with re-
spect to the direction of ωe,

n
↑/↓
k1

:=
nk1

2
± s

‖
k1
, (11a)

s⊥k1
:=sk1 −

ωe

ωe
s
‖
k1
, (11b)

are given by:

∂

∂t
n
↑/↓
k1

=
π

h̄2V 2

∑

k2

{
δ(ωk2 − ωk1)

[
J2
sdNMn

1

2
〈S‖2〉 ± JsdJ0(NMn +Nimp)〈S‖〉+ 2J2

0Nimp

]
(n

↑/↓
k2

− n
↑/↓
k1

)+

+ δ
[
ωk2 −

(
ωk1 ± (ωe − ω

‖
Mn)

)]
J2
sdNMn

[(
〈S⊥2〉 ± 1

2
〈S‖〉

)(
1− n

↑/↓
k1

)
n
↓/↑
k2

−
(
〈S⊥2〉 ∓ 1

2
〈S‖〉

)(
1− n

↓/↑
k2

)
n
↑/↓
k1

]}
,

(12a)
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∂

∂t
s⊥k1

=− π

h̄2V 2

∑

k2

{
δ(ωk2 − ωk1)

[
J2
sdNMn

1

2
〈S‖2〉(s⊥k2

+ s⊥k1
)− 2J2

0Nimp(s
⊥
k2

− s⊥k1
)
]

+ δ
[
ωk2 −

(
ωk1 + (ωe − ω

‖
Mn)

)]1
2

(
〈S⊥2〉 − 1

2
〈S‖〉(1 − 2n↓

k2
)
)
s⊥k1

+ δ
[
ωk2 −

(
ωk1 − (ωe − ω

‖
Mn)

)]1
2

(
〈S⊥2〉+ 1

2
〈S‖〉(1 − 2n↑

k2
)
)
s⊥k1

}

+ ωe × s⊥k1
+

1

h̄2V 2

∑

k2

{
− JsdJ0

ωk2 − ωk1

〈S〉 ×
[
(Nimp −NMn)s

⊥
k2

+ (NMn +Nimp)s
⊥
k1

]

− J2
sdNMn

ωk2 −
(
ωk1 + (ωe − ω

‖
Mn)

)
1

2

(
〈S⊥2〉 − 1

2
〈S‖〉(1− 2n↓

k2
)
)(ωe

ωe
× s⊥k1

)

+
J2
sdNMn

ωk2 −
(
ωk1 − (ωe − ω

‖
Mn)

)
1

2

(
〈S⊥2〉+ 1

2
〈S‖〉(1− 2n↑

k2
)
)(ωe

ωe
× s⊥k1

)}
. (12b)

The first line of the right-hand side of Eq. (12a), which

is proportional to n
↑/↓
k2

− n
↑/↓
k1

, describes a redistribution
of occupations of spin-up and spin-down states within
a shell of defined kinetic energy via the term propor-
tional to δ(ωk2 − ωk1). For a parabolic band struc-
ture, this implies a redistribution between states with
the same modulus k of the wave vector k, while the to-
tal carrier spin remains unchanged. If accompanied by
a wave-vector dependent magnetic field like a Rashba or
the Dresselhaus field, this term leads to a D’yakonov-
Perel’-type suppression of the spin dephasing. Here,
however, we do not consider any wave vector dependent
field and the system under investigation is isotropic in
k-space, so that the first line in Eq. (12a) has no in-
fluence on the dynamics of the total spin. The second
line in Eq. (12a) describes a spin-flip scattering from
the spin-up band to the spin-down band and vice versa.
Since these bands are energetically split by h̄ωe and a
flip of carrier spin involves a corresponding flip of an im-
purity spin in the opposite direction, which requires a

magnetic (Zeeman) energy of h̄ω
‖
Mn, the total magnetic

energy released in a spin-flip process is ±h̄(ωe − ω
‖
Mn).

Thus, δ
[
ωk2 −

(
ωk1 ± (ωe − ω

‖
Mn)

)]
ensures a conserva-

tion of the total single-particle energies in the Markov
limit. It is noteworthy that, if the mean-field dynamics
of the source terms as in Eq. (9) is not correctly taken
into account, other energetic shifts are obtained in the δ-
function, which yields equations in the Markov limit that
are not consistent with the conservation of the single-
particle energies28. Note also that the right-hand side of
Eq. (12a) correctly deals with Pauli blocking effects. Be-
cause the non-magnetic impurity scattering enters in the
equations of motion (12a) for the spin-up and spin-down
occupation only via the first line which plays no role in an
isotropic system, it has no influence on the spin dynamics
in the Markov limit.

The first three lines in Eq. (12b) for the perpendic-
ular carrier spin component, which are proportional to
δ-functions, indicate an exponential decay of the per-

pendicular carrier spin component towards zero. The
last three lines describe a precession of the perpendic-
ular carrier spin component. The mean-field precession
frequency ωe is renormalized by the carrier-impurity cor-
relations. This renormalization originates from the imag-
inary part of the memory integral in Eq. (10). Besides
the terms proportional to 1

ωk2
−
(
ωk1

±(ωe−ω
‖
Mn)

) , which are

also present when only the magnetic s-d interaction is
taken into account39, the non-magnetic impurity scatter-
ing introduces another contribution which is a cross-term,
i.e. it is absent when either the magnetic or the non-
magnetic impurity scattering is absent, which can be seen
from the fact that it is proportional to the product of Jsd
and J0. In the quasi-continuous limit, the sum over k2

can be replaced by an integral over the spectral density
of states. In quasi-two-dimensional systems like quan-
tum wells, the spectral denstiy of states D(ω) = Am∗

2πh̄
is constant. Thus, the frequency renormalization can be
integrated and yields logarithmic divergences

∑

k2

1

ωk2 − ω0
=

ωBZ∫

0

dωD(ω)
1

ω − ω0

=
Am∗

2πh̄
ln

∣∣∣∣
ωBZ − ω0

ω0

∣∣∣∣ . (13)

at the poles ω0 = ωk1 and ω0 = ωk1 ± (ωe−ω
‖
Mn). These

logarithmic divergences are similar to the ones obtained
in the discussion of the Kondo-effect in metals with mag-
netic impurities29. Despite the formal divergence, the
summation over a non-singular carrier distribution al-
ways leads to a finite value of the precession frequency of
the total carrier spin, since the logarithm is integrable28.
From Eq. (13), one can see that the cut-off energy h̄ωBZ ,
which corresponds to the width of the conduction band
and is typically of the order of 1 eV, enters as a new
model parameter in the theory and cannot be eliminated
by assuming that ωBZ → ∞, since then the frequency
renormalization also diverges. As a consequence, the
Markovian expression for the frequency renormalization
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can only give an order-of-magnitude estimation and a
more detailed treatment of the band structure is neces-
sary if a quantitatively more accurate description is re-
quired.
For the special case of zero external magnetic field,

vanishing impurity magnetization and low carrier densi-
ties, Eqs. (12) are equivalent to the simple rate equations

∂

∂t
sk1 = − 1

τ
sk1 , (14)

where the values of the rates coincide with the Fermi’s
golden rule value. In two dimensions, one obtains25

1

τ2D
=
35

12

J2
sdm

∗

h̄3

NMn

V

1

d
. (15)

D. Correlation energy

In Eqs. (8) to (10), Markovian expressions for the
carrier-impurity correlations are derived as functionals
of the carrier and impurity variables. Using these ex-
pressions, it is straightforward to also obtain analytic ex-
pressions for the carrier-impurity correlation energies as
functionals of the carrier spins and occupations28. Split-
ting the averages over the magnetic and non-magnetic
carrier-impurity interactions into mean-field and corre-
lated contributions

〈Hsd〉 =〈HMF
sd 〉+ 〈Hcor

sd 〉, (16a)

〈Himp〉 =〈HMF
imp〉+ 〈Hcor

imp〉, (16b)

〈HMF
sd 〉 =JsdNMn

V

∑

k

〈S〉 · sk (16c)

〈Hcor
sd 〉 =JsdNMn

V 2

∑

k,k′

∑

i

Qik′
ik (16d)

〈HMF
imp〉 =

J0Nimp

V

∑

k

nk, (16e)

〈Hcor
imp〉 =

J0Nimp

V 2

∑

k,k′

C̄0k′
k , (16f)

one obtains in the Markov limit

〈Hcor
sd 〉 = − JsdNMn

V 2

∑

k1k2

{ 1
2Jsd〈S‖2〉nk1 + 2J0〈S‖〉s‖k1

ωk2 − ωk1

+
Jsd

(
〈S⊥〉 − 1

2 〈S‖〉
)
(1− n↓

k2
)n↑

k1

ωk2 −
(
ωk1 + (ωe − ω

‖
Mn)

)

+
Jsd

(
〈S⊥〉+ 1

2 〈S‖〉
)
(1− n↑

k2
)n↓

k1

ωk2 −
(
ωk1 − (ωe − ω

‖
Mn)

)
}
, (17a)

〈Hcor
imp〉 = − 2

J0Nimp

V 2

∑

k1k2

J0nk1 + Jsd〈S‖〉s‖k1

ωk2 − ωk1

. (17b)

Eqs. (17) have the same poles as Eq. (12b) for the fre-
quency renormalization and, thus, also contain formally
logarithmic divergences in two-dimensional systems.

III. RESULTS

After having derived the quantum kinetic equations for
the description of the spin dynamics in DMS including
magnetic and non-magnetic scattering and having ob-
tained rate-type Markovian equations, we now present
results of numerical simulations. Here, we focus on the
case of a 4-nm-wide Cd0.93Mn0.07Te quantum well. For
this material, the magnetic coupling constant is Jsd =
−15 meVnm3 (N0Jsd = −220 meV)42, while the non-
magnetic coupling constant is approximately J0 = 110
meVnm3 (N0J0 = 1.6 eV)31, where N0 is the number of
unit cells per unit volume. Furthermore, we use a con-
duction band effective mass of m∗ = 0.1m0 and assume
that the impurity magnetization is described by a ther-
mal distribution at a temperature of T = 2 K and the
g-factors of the conduction band carriers and Mn impu-
rities are ge = −1.77 and gMn = 2, respectively40. If not
stated otherwise, we choose a value of 40 meV for the
cut-off energy h̄ωBZ in the numerical calculations and
we consider only Mn ions as sources of non-magnetic im-
purity scattering, i. e. Nimp = NMn. As initial value for
the carrier distribution, we use a Gaussian distribution
centered at the band edge of the spin-up band with stan-
dard deviation of Es = 0.4 meV, which corresponds to
an excitation with a circularly polarized light pulse with
full width at half maximum (FWHM) pulse duration of
about 350 fs.
We first discuss the spin dynamics in the conduction

band of a Cd0.93Mn0.07Te quantum well for zero mag-
netic field with a focus on the impact of non-magnetic
impurity scattering on the spin dynamics and investigate
the redistribution of carriers in k-space as well as the
build-up of correlation energy. Then, we study the spin
dynamics in the valence band in a simplified model. Fi-
nally, we investigate the spin dynamics in the presence
of an external magnetic field parallel and perpendicular
to the carrier spin polarization and discuss, in the latter
case, how the non-magnetic impurity scattering affects
the carrier spin precession frequencies.

A. Zero magnetic field

Figure 1(a) shows the time evolution of an initially
polarized carrier spin in a Cd0.93Mn0.07Te quantum well
for vanishing magnetic field. The Markovian equations
(12) predict a simple exponential decay of the carrier
spin, which is transferred to the impurities. Note that
due to NMn ≫ Ne, the asymptotic value of the carrier
spin for long times t is close to zero, since the impu-
rities act as a spin bath. If only the magnetic spin-
flip scattering is accounted for (J0 = 0), the time evo-
lution according to the quantum kinetic theory is non-
monotonic and shows an overshoot below the asymptotic
value. These non-Markovian effects are strongly sup-
pressed in the calculations including non-magnetic im-
purity scattering (J0 = 110 meVnm3) and the time evo-
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(b)QKT1, J0 = 0 meVnm3

QKT2, J0 = 0 meVnm3

QKT1, J0 = 110 meVnm3

QKT2, J0 = 110 meVnm3

Markov

t = 0 ps
J0 = 0 meVnm3, t = 10 ps

J0 = 110 meVnm3, t = 10 ps

FIG. 1. (a): Time evolution of the carrier spin for zero magnetic field with (J = 110 meVnm3) and without (J = 0) non-
magnetic impurity scattering. QKT1 (points) denotes the results according to the full quantum kinetic equations (4) while
QKT2 (lines) describes the results of the reduced set of equations (A1). The purple dash-dotted line shows the results of the
Markovian equations (12), which is independent of non-magnetic impurity scattering. The inset shows a magnification of the
region where the quantum kinetic theory for J0 = 0 predicts a non-monotonic behavior. (b) Occupation of carrier states at
t = 0 and t = 10 ps for the calculations with and without non-magnetic impurity scattering.

lution of the total spin follows the Markovian dynamics
more closely. An exponential fit to the dynamics of the
full quantum kinetic theory yields an effective spin trans-
fer rate about 15% smaller than the Markovian rate in
Eq. (15).

Interestingly, while the full quantum kinetic equations
(4) yield identical results as the reduced set of equations
(A1) in the case without non-magnetic impurity scatter-
ing, deviations between both approaches can be clearly
seen when the non-magnetic impurity scattering is taken
into account.

In order to understand the suppression of the non-
monotonic features in the spin dynamics with non-
magnetic impurity scattering, it is useful to recapitu-
late the findings of Ref. 38, where the origin of the non-
Markovian behavior of the spin dynamics in absence of
non-magnetic impurity scattering was discussed: It was
found that the depth of the memory induced by the cor-
relations is of the order of the inverse energetic distance
of the carrier state under consideration to the band edge
times h̄. Memory effects become insignificant if the ki-
netic energy of the carrier h̄ωk1 is much higher than the
energy scale of the carrier-impurity spin transfer rate
h̄
τ . For the parameters used in the simulations, one ob-

tains from Eq. (15) a value of τ2D = 2.97 ps and there-
fore h̄

τ ≈ 0.22 meV. Figure 1(b) shows the redistribu-

tion of carriers in the calculations with and without non-
magnetic impurity scattering. One can clearly see that,
while without non-magnetic impurity scattering the car-
rier distribution at t = 10 ps is only slightly broadened,
including the non-magnetic impurity scatterings leads to
a drastic redistribution of carriers to states many meV
away from the initial distribution. For these states, the
memory is very short compared with the spin relaxation
time and therefore the Markovian approximation is jus-
tified.

The redistribution of carriers to states several meV
away from the band edge raises questions about the con-
servation of energy, since for zero magnetic field the
mean-field energy of the system is comprised of only the
kinetic energy of the carriers. In the quantum kinetic cal-
culations, however, we also consider the carrier-impurity
correlations which introduce correlation energies that are
not captured in a simple single-particle picture. The dif-
ferent contributions to the total energy over the course of
time for the simulations presented in Fig. 1 are shown in
Fig. 2. There, it is shown that the average kinetic energy
per electron increases from the initial value of the order
of the width of the initial carrier distribution to a much
larger value of about 4 meV on a timescale of about 0.5
ps. This energy is mostly provided by a decrease of non-
magnetic correlation energy from zero to a negative value.
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calculation shown in Fig. 1 with J0 = 110 meVnm3. The
red circles show the kinetic energy obtained from the Marko-
vian calculation in Fig. 1. The pluses and crosses depict the
results according to the analytic Markovian expressions for
the correlation energies in Eqs. (17) evaluated using the car-
rier distribution of the quantum kinetic calculation at selected
time steps.

The magnetic correlation energy is comparatively small
since the magnetic coupling constant Jsd is about one or-
der of magnitude smaller than the non-magnetic coupling
constant J0. The pluses and crosses in Fig. 2 show the
results of the analytic expressions (17) for the correlation
energies evaluated using the carrier distributions of the
full quantum kinetic theory in the respective time steps.
The analytic results are found to coincide with the val-
ues extracted from the quantum kinetic theory after the
first 0.5 ps. Even though the analytic expressions for the
correlation energies are obtained within the Markovian
description, it should be noted that in the Markovian
equations of motion (12) for the spins and occupations
only single-particle energies are considered for evaluating
the energy balance. As in our case the single particle en-
ergies comprise only the kinetic energies of the carriers,
the latter are constant in the Markovian description in
sharp contrast to the quantum kinetic treatment.

Note also that the total energy comprised of single-
particle and correlation energies remains constant in the
quantum kinetic simulations, which provides a further
test for the numerics.
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FIG. 3. Spin dynamics in a degenerate valence band of a
Cd0.93Mn0.07Te quantum well with and without accounting
for non-magnetic impurity scattering.

B. Valence band

The fact that in the conduction band of a Cd1−xMnxTe
quantum well the non-magnetic scattering at the impuri-
ties suppresses the characteristic non-monotonic features
of genuine quantum kinetic behavior raises the ques-
tion whether this statement is true in general and non-
Markovian effects always only change the spin dynamics
quantitatively. In this section, we provide an example
of a situation where the non-Markovian features are not
suppressed due to impurity scattering.

We consider now the valence band of a Cd1−xMnxTe
quantum well. The details of the valence band structure
in a quantum well are influenced by, e.g., spin-orbit cou-
pling, strain or the shape of the confinement potential. A
realistic description of the band structure is beyond the
scope of this article. Instead, we perform a model study,
where we assume that heavy-hole and light-hole bands
are degenerate. In this case, we can use the quantum
kinetic theory derived for the conduction band and take
the material parameters for the heavy holes. The mag-
netic coupling constant in the valence band is Jpd = 60
meVnm342 and the heavy-hole mass is mh = 0.7m0

43.
The difference of the band gaps between CdTe and zinc-
blende MnTe of about 1.6 eV is split into the conduction
and valence band offsets by a ratio of 14:144. Thus, one
obtains a value for the non-magnetic coupling constant in
the valence band of about J0 = 7 meVnm3. The results
of the quantum kinetic simulations for these parameters
are shown in Fig. 3.

In comparison with the conduction band, the 4 times
larger magnetic coupling constant in the valence band
leads to much stronger non-Markovian effects. In par-
ticular, one finds not a single overshoot, but pronounced
oscillations of the spin polarization about its asymptotic
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(↑) and spin-down occupations (↓) at t = 0 and t = 10 ps.

value. In Fig. 3, the calculations with and without ac-
counting for non-magnetic impurity scattering yield prac-
tically identical results. Thus, due to the fact that in
the valence band the non-magnetic coupling constant is
much smaller than the magnetic coupling constant, no
suppression of non-Markovian effects in the spin dynam-
ics is observed.

C. Finite magnetic field: Faraday configuration

Next, we investigate the effects of non-magnetic im-
purity scattering on the spin dynamics in DMS in the
presence of an external magnetic field. In this section,
we study the case in which the external field and the
initial carrier spins are parallel, which is known as the
Faraday configuration. This case has also been consid-
ered in Ref. 40, but without accounting for non-magnetic
impurity scattering.

In Fig. 4(a) the time evolution of the carrier spin po-
larization parallel to an external magnetic field B = 100
mT is shown. Note that the non-monotonic behavior
that can be seen in the case without an external mag-
netic field is suppressed for finite external fields even if
the non-magnetic scattering is disregarded. The most
striking feature in the time evolution of the carrier spin
polarization is that the Markovian result and the quan-
tum kinetic simulations predict very different asymptotic
values of the spin polarization at long times t.

As discussed in Ref. 40, the different stationary values
are related to a broadening of the distribution of scat-
tered carriers in the spin-down band, which is shown in
Fig. 4(b). Note that the broadening of the carrier dis-
tribution is not primarily an effect of energy-time un-

certainty, which is commonly found in quantum kinetic
studies45,46, since the width of the distribution does not
shrink significantly over the course of time40. Rather,
it is a consequence of the build-up of correlation energy
which enables deviations from the conservation of the
single-particle energies in spin-flip scattering processes.
In the Markov limit, the stationary value is obtained

when a balance between scattering from the spin-up to
the spin-down band and vice versa is reached. In the
quantum kinetic calculations, the distribution of the scat-
tered carriers is broadened, so that also spin-down states

below the threshold h̄ωe − h̄ω
‖
Mn are occupied, whose

back-scattering is suppressed since there are no states
in the spin-up band with the matching single-particle en-
ergies. If additionally the non-magnetic impurity scat-
tering is taken into account, the scattered impurity dis-
tribution is even broader and more spin-down states with

kinetic energies below h̄ωe − h̄ω
‖
Mn are occupied, so that

the back-scattering is more strongly suppressed and the
deviation of the asymptotic value of the spin polarization
from the Markovian value is even larger.

D. Finite magnetic field: Voigt configuration

The situation in which an external magnetic field and
the optically induced carrier spin polarization are perpen-
dicular to each other is usually referred to as the Voigt
configuration and is the subject of this section. In this
situation, the carrier spin precesses about the effective
magnetic field ωe due to the external field and the im-
purity magnetization. As shown in Ref. 39, where the
non-magnetic impurity scattering was disregarded, the
carrier-impurity correlations are responsible for a renor-
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FIG. 5. (a) and (b): Time evolution of the carrier spin polarization for B = 25 mT (a) and B = 100 mT (b) using the quantum
kinetic equations (4) and the Markovian equations Eq. (12b), where the terms responsible for the frequency renormalization in
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shown in (c) and (d) using a fit of an exponentially decaying cosine to the quantum kinetic results and the analytic expressions
obtained from Eq. (12b) and the occupations from the quantum kinetic calculations. The black dash-dotted lines in (c) and
(d) show the analytic results for a cut-off energy of h̄ωBZ = 1 eV.

malization of the precession frequency. There, it was also
shown that the strength of this renormalization depends
on the details of the carrier distribution and the strength
of the effective field ωe.

In Fig. 5(a), we present simulations of the spin dynam-
ics in a DMS in Voigt geometry for an external magnetic
field ofB = 25 mT, which corresponds to a situation with
|〈S〉| ≈ 0.05, where the magnetic-correlation-induced fre-
quency renormalization according to Ref. 39 is particu-
larly strong. Simulations with (J0 = 110 meVnm3) and
without (J0 = 0) accounting for the non-magnetic impu-
rity scattering are compared to Markovian calculations
based on Eqs. (12). Note that for the Markovian calcula-
tion shown in Fig. 5 the frequency renormalization was
not taken into account. The results of all simulations
shown in Fig. 5(a) are very similar and follow closely
the form of an exponentially damped cosine. Note that

at long times, the phases of the oscillations of the cal-
culations accounting for non-magnetic impurity scatter-
ing matches the Markovian calculation without frequency
renormalization, while accounting only for magnetic spin-
flip scattering leads to oscillations with a slightly higher
frequency.

The frequency renormalization for the simulations
shown in Fig. 5(a) is presented in Fig. 5(c), where an
exponentially decaying cosine is fit to the quantum ki-
netic results and, for comparison, the total precession
frequency including the correlation-induced renormaliza-
tion in the Markovian description in Eq. (12b) evaluated
using the spin-up and spin-down occupations of the quan-
tum kinetic simulations is depicted. Due to the time evo-
lution of the occupations, also the renormalization pre-
dicted by Eq. (12b) becomes a function of time, which,
however, is for all times close to the constant extracted
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by fitting the quantum kinetic result. The calculations
without non-magnetic impurity scattering predict an in-
crease of the carrier spin precession frequency of about
2 − 3% with respect to the mean-field value ωe, which
is consistent with the findings of Ref. 39. On the other
hand, the contribution from the non-magnetic carrier-
impurity correlations leads to a decrease of the precession
frequency which partially cancels the contribution from
the magnetic correlations.

In Figs. 5(b) and 5(d), the time evolution of the car-
rier spin polarization and the frequency renormalization
are shown for an external magnetic field of B = 100
mT. In this case, the envelope of the spin polariza-
tion decays only exponentially for the calculations with-
out non-magnetic impurity scattering. For J0 = 110
meVnm3, the spin polarization follows the exponential
decay of the simulation with J0 = 0 only up to about
5 ps. After that, it decays much slower, which is a new
non-Markovian effect that is absent if the non-magnetic
impurity scattering is disregarded. As can be seen in
Fig. 5(d), the frequency renormalization due to the mag-
netic interaction alone is almost zero. Nevertheless, when
the non-magnetic carrier-impurity correlations are taken
into account, the precession frequency shows a decrease
of about 2 − 3%. Thus, in contrast to the correlation-
induced renormalization in absence of non-magnetic scat-
tering where the renormalization is only observable for a
very narrow set of initial conditions39, including the non-
magnetic carrier-impurity interaction results in a signifi-
cant renormalization for a much broader set of excitation
conditions.

It is noteworthy that the frequency renormalization in
the quantum kinetic calculations is well reproduced by
the Markovian expression in Eq. (12b). The numerical
demands of the full quantum kinetic equations require a
restriction of the conduction band width h̄ωBZ used in
the calculations to a few tens of meV. However, in real-
istic band structures, the band widths are of the order
of eV. In order to give an order-of-magnitude estimation
of the frequency renormalization for such band widths,
we present in Figs. 5(c) and 5(d) also the results of the
Markovian expression for the frequency renormalizations
using the value of h̄ωBZ = 1 eV together with the oc-
cupations obtained in the quantum kinetic calculations
for h̄ωBZ = 40 meV. This estimation yields a renormal-
ization of the precession frequencies due to the combined
effects of magnetic and non-magnetic scattering of about
5 − 7%. A quantitatively more accurate description re-
quires a more detailed treatment of the band structure,
which is beyond the scope of this article.

Note also that the frequency renormalization due to
the non-magnetic carrier-impurity correlations is domi-
nated by a cross-term proportional to JsdJ0 [cf. fourth
line in Eq. (12b)]. Thus, the sign of the frequency renor-
malization depends on the relative signs of the coupling
constants Jsd and J0. In principle, this allows a determi-
nation of the sign of the magnetic coupling constant Jsd
which cannot be obtained directly, e.g., by measuring the

giant Zeeman splitting of excitons42.

IV. CONCLUSION

We have investigated the influence of non-magnetic im-
purity scattering at Mn impurities on the spin dynamics
in Cd1−xMnxTe diluted magnetic semiconductors. To
this end, we have developed a quantum kinetic theory
taking the magnetic and non-magnetic carrier-impurity
correlations into account. The Markov limit of the quan-
tum kinetic equation is derived in order to distinguish
the Markovian dynamics from genuine quantum kinetic
effects.
In contrast to earlier studies25,27,37,40 in which only

the magnetic contribution to the carrier-impurity inter-
action has been considered, some non-Markovian effects,
such as a non-monotonic spin transfer between carriers
and impurities, are strongly suppressed in the case of the
conduction band of a Cd1−xMnxTe quantum well, while
other features stemming from non-Markovian dynamics
are enhanced, such as the large finite stationary value
of the spin polarization in a magnetic field reached at
long times. The reason for the suppression in the former
case is that the non-magnetic impurity scattering leads
to a strong redistribution of carriers in k-space away from
the states at k = 0. Since memory effects are particu-
larly strong for carriers in proximity to the band edge27,
this redistribution leads to spin dynamics that are well
described by Markovian rate equations. The redistribu-
tion of the carriers implies an increase of their kinetic
energies which is provided by a build-up of (negative)
carrier-impurity correlation energy and which cannot be
described by a mean-field or semiclassical approximation.
We also provide analytic expressions for the correlation
energies in the form of functionals of the spin-up and
spin-down carrier occupations. Numerical calculations
confirm that these expressions indeed describe the cor-
relation energies obtained from the full quantum kinetic
theory very well.
Even though doping with magnetic impurities unavoid-

ably also provides a contribution to non-magnetic impu-
rity scattering, there can still be situations where the
latter is too weak to influence the spin dynamics and to
suppress otherwise visible non-Markovian effects. This is
substantiated by a model study of a Cd1−xMnxTe quan-
tum well with degenerate valence bands, where the spin
polarization exhibits a non-monotonic time dependence
in the form of oscillations, while the Markovian treatment
predicts a simple exponential decay. Further investiga-
tions using a more realistic valence band structure are
needed in order to make more precise predictions about
possible non-Markovian features in the hole spin dynam-
ics in DMS.
In the presence of an external magnetic field paral-

lel to the initial carrier spin (Faraday geometry), earlier
studies40 that did not consider non-magnetic impurity
scattering predicted that the asymptotic value of the car-
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rier spins in the conduction band of a DMS quantum well
at long times t are significantly different in quantum ki-
netic and Markovian calculations. This was attributed
to a broadening of the distribution of the scattered elec-
trons due to the build-up of strong carrier-impurity cor-
relations, which, because of the correlation energy, leads
to a non-conservation of single-particle energies. The
broadening results in an occupation of states by electrons
whose back-scattering to the original band is strongly
suppressed due to the lack of states with matching single-
particle energies. This induces a bias between spin-flip
scattering from the spin-up to the spin-down subband
and vice versa. In the presence of a strong non-magnetic
carrer-impurity interaction, the correlation energy be-
comes much larger and with it also the broadening of the
scattered carrier distribution and the deviations of the
asymptotic value of the carrier spin polarization from its
value obtained in Markovian calculations.

In the Voigt geometry, where the initial carrier spin po-
larization is perpendicular to the external field, the car-
rier spin precesses about the effective magnetic field com-
prised of the external field and the mean field due to the
impurity magnetization. There, the carrier-impurity cor-
relations lead to a renormalization of the spin precession
frequencies. An analytic expression for this renormaliza-
tion is presented and it is found to be of a similar form
as the expression for the correlation energies. The non-
magnetic carrier-impurity interaction influences the fre-
quency renormalization via a cross-term which vanishes if
either the magnetic or the non-magnetic carrier-impurity
interaction is neglected. In the case of the conduction
band of Cd1−xMnxTe, the magnetic and non-magnetic

contributions to the frequency renormalization have op-
posite signs. A measurement of the frequency renormal-
ization can therefore indicate the sign of the exchange
interaction. For magnetic fields at which the renormal-
ization due to the magnetic correlations is particularly
strong, the magnetic and non-magnetic contributions al-
most cancel each other. However, in most situations, the
purely magnetic contribution is relatively weak39, so that
the cross-term dominates the total frequency renormal-
ization. The order of magnitude of the frequency renor-
malization for the cases considered here is about a few
percent of the mean-field precession frequency.
To summarize, the influence of the non-magnetic impu-

rity scattering on the spin dynamics in DMS is two-fold:
First, it leads to a significant redistribution of carriers in
k-space, which facilitates the suppression of some non-
Markovian effects in certain situations. Second, it causes
a formation of strong many-body correlations between
carriers and impurities, which result in large correlation
energies and a significant renormalization of the carrier
spin precession frequency.
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Appendix A: Reduced set of equations of motions

The equations of motions for the variables defined in
Eq. (6) are:
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