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Abstract 

The ancient Eratosthenes experiment concerning the earth’s circumference offers the opportunity of an inquiry-based 
revival in today’s science classrooms: A multinational European science education initiative (acronym: OSR) 
introduced this experiment as a hands-on basis to extract the required variables and to exchange results with 
classroom peers across two continents, including Finland in the North, via Poland and Serbia to Greece and Egypt in 
the South. The aims behind focused on typical science requirements in classroom approaches such as measurement 
spreads of scores, translation of one score into its context as well as to solve a complex scientific question with 
simple hands-on results when unveiling nature’s hidden principles. Within the scope of this present study, 2180 
students from 89 schools in 5 different countries (Finland, Poland, Serbia, Greece, Egypt) completed the 
Eratosthenes experiment on the same day. Working groups of up to four students collected the measurement scores 
within their school sites which by selection covered about 30 degrees of latitude. The analyses clearly show more 
accuracy in the scores as more distant the measurement sites are located (within Greece: 17.6% error; Greece – 
Finland: 1.3% error). Recommendations for school implementations as well as its potential in experimental science 
classrooms are discussed in detail. 

Keywords: Eratosthenes experiment; hands-on learning; cooperative learning; science education; measurement 
errors 

 

1. Introduction 

Inquiry- and problem-based implementations in science education are frequent claims that promise to overcome 
well-known constraints in science classrooms (e.g. Rocard, Csermely, Jorde, Lenzen, Walberg-Henriksson, & 
Hemmo, 2007). As a central component of science learning inquiry is regarded as essential for a student’s learning 
process due to its need to ask and refine questions, to find solutions to real problems, to design and conduct 
explorations, to gather information, to analyze and calculate individually collected data, to make interpretations, to 
draw and defend conclusions and to appropriately report findings either to peers or to teachers (e.g. Novak & Gowin, 
1984; Roth & Roychoudhury, 1993; Coleman 1998). Therefore, inquiry-based learning is repeatedly claimed to 
ensure better learning levels, since a thorough understanding is needed to individually isolate a learning issue rather 
than to simply repeat factual contents and simple information details (e.g., Bybee, 2000; Blanchard, Southerland, 
Osborne, Sampson, Annetta, & Granger, 2010). To set a pathway toward learning science by inquiry, to support the 
adoption of inquiry-learning by reducing individual constraints and to apply appropriate methods as well as to label 
exemplarily best practice cases are the main aims within inquiry-based science education; just remembering simple 
facts or being told about science no longer fits the requirement of modern societies (Sotiriou & Bogner, 2005; 
Alberts, 2009). Hereby, the approach potential is widespread from using open inquiry until guided inquiry. If inquiry 
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is to be more that obtaining expected results, students need freed up in order to ask and research their own questions. 
In science education experiments, very often it is helpful to pursue a teacher-directed, not student-directed inquiry 
(Martin-Hansen, 2002). Within this view, students are being brought into subjection to science, not conversation with 
it, they are being prepared to develop informed opinions, to become convinced of current scientific ways of 
explaining the world (Bozic & Ducloy, 2008; Ireland, Watters, Lupton, & Lunn, 2014). Consequently, preference is 
given to guided- rather than to open-inquiry (NRC 2000).  

Students need to follow a learning vision to act like a scientist when answering a science question. In combination 
with traditional learning experiences students may use everyday technology such as google maps from the worldwide 
web. This approach requires scientific knowledge and knowledge about the nature of science and its methods as well 
in order to conclude to needed results (Decamp & deHosson, 2012; Dutka, 1993). Quantitative studies with the intent 
of empirically monitoring efficacies of inquiry-based instructions clearly show advantages for inquiry-based 
approaches when potential disadvantages are avoided (e.g., Blanchard et al. 2010): Of course, there are limitations, 
for instance, the lack of guidance is often not welcomed by students who in general are accustomed to guided 
instructions in conventional classrooms (Kirschner Sweller, & Clark, 2006). Although a minimum of guidance is 
often welcomed by academic educators, empirical studies, however, too often report strong evidence about lower 
effectiveness levels and less efficiency when open inquiry-based instruction is applied (e.g., Dean & Kuhn 2007). In 
order to allow instruction with less guidance to develop its genuine superiority, more is needed than just its 
application in classrooms; specific preparation is needed to accumulate sufficient skills to succeed (Kirschner, et 
al.2006). As a major additional limitation, besides others, cognitive load always comes into play when unfamiliar 
learning environments block learning outcomes (Paas, Renkl, & Sweller, 2004; Sweller, 1988; Scharfenberg & 
Bogner, 2010, 2013). 

Within the variety of approaches to teaching science, the ancient Eratosthenes experiment offers an ideal example 
from a triple point of view: (i) to follow an inquiry-based approach to solving discrepancies in data scores 
(Eratosthenes had read about empirical observations which he could not confirm), (ii) to generate simple a hands-on 
experiment to further understanding of the earth’s shape and circumference which has been fiercely disputed over 
centuries as well as (iii) to exchange results within online repositories and thus enlarge the opportunities to 
cooperatively solve a scientific problem. Eratosthenes (ca. 276-194 B.C.) supposedly was the first person to precisely 
calculate the circumference of the earth. His interest in the issue began with reading a description that did not match 
his own conceptions that, on June 21st, the sun’s rays convertically reach the bottom of a deep well without 
producing a shadow. This phenomenon was not observable in Alexandria, situated exactly 821km north of the 
imaginary line (which nowadays is labeled the Tropic of Cancer) where the sun reaches the 90° zenith. His measures 
were remarkably accurate by applying a simple model using distance and a pre-selected time. Surprisingly, 
Eratosthenes just needed to compare results obtained at the summer solstice at two sites. While at the Northern 
Tropic, the sun appeared directly above the zenith (providing no shadows), the situation in Alexandria was slightly 
different: In his conclusion, when measuring the sun's angle at both sites, [rewrite the remainder of the sentence:]he 
came to an arc of about 1/50th of a circle and finally corroborated a circumference of 39,690 km. This measure came 
surprisingly close to the actual equatorial circumference of 40,075 km (with an error of just 4.2%). This astonishing 
accuracy was mainly due to the expert bematists (“pace counter”) who were trained to guarantee precise distance 
calculations. Even 17 centuries later, Christopher Columbus (1451-1506) followed much less accurate assumptions: 
Although he knew about Eratosthenes’ conclusion, he mistrusted its accuracy and dramatically reduced the distances, 
leading to his conclusion that India is located few thousand miles west of Europe (thus labeling his discovery India 
and its inhabitants Indians). 

The use of networking platforms is becoming increasingly popular in science classrooms. Science education in 
formal and informal contexts uses the potential of digital repositories to enrich conventional hands-on initiatives 
(Sotiriou & Bogner 2011; Gialouri, Uzunoglou, Gargalakos, Sotiriou, & Bogner, 2011). There is an impressive 
number of high quality repositories, which however often remains unexploited due to barriers such as the lack of 
interoperability standards between repositories, the inefficiency of content organization as well as metadata 
structures and the language barriers in Europe. The OpenScienceResources (OSR) initiative focused on formal and 
informal sets of “proof-of-concept” experiments in order to implement hands-on science education issues in the 
context of real-life situations; it is intended to promote effective widespread usage of problem-based science issues 
in classrooms (e.g., see initiatives such as OpenScienceResources [OSR], OpenDiscoverySpace [ODS], 
InspiringScienceEducation [ISE]). A major aim of the OSR initiative is the sharing of a repository of scientific 
digital objects in order to support its coherent use within the context of formal and informal learning situations (Van 
Joolingen, de Jong, Lazonder, Savelsbergh, & Manlove, 2005; Sampson, Zervas, & Sotiriou, 2011). 
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3. Results 

3.1 Measuring the Angle between Different School Locations 

Students from our collaborating schools defined the angles α1 and α2 and the distance between the two school 
locations, D21 (see methods). The angle between the two locations was calculated by subtracting the smaller angle 
(southern location) from the larger angle (northern location): α21= α2- α1. After each school had computed its average 
score loaded it onto the portal, the score was made public for the other participating schools. 

 

 

 

 

 

 

 

 

 

 

Figure 6. Data from One School (Ellinogermaniki Agogi, Greece) Where the Experiment Was Performed 72 Times 
The graph presents the measurements of the stick shadow and their frequencies. 72 measurements were completed by 

210 students working in small groups, yielding on average 71.4cm of shadow (see Table 1) 

Table 1. Summarized Average Score of All Participating Schools in Greece 

School Location in Greece Shadow Length (cm) – 
Average Value 

Angle α (°) 

Athens/Pallini 71,4 35,5 
Athens/Glyfada 71,4 35,5 
Athens/Markopoulo 71,2 35,5 
Athens/Lavrio 71,2 35,5 
Athens/Pyrgos 71 35,4 
Chios 73 36,2 
Volos 75 37,0 
Portaria 76 37,2 
Corfu 76,5 37,4 
Thessaloniki 79 38,5 
Komotini 79 38,5 
Herakleion 65 33,1 
Chania 66 33,3 

 

Table 2. Average Scores of Participating Schools in the 5 Countries 

School Location Country Shadow Length (cm) Angle α (°) 
Alexandria Egypt 55,4 29 
Athens/Pallini Greece 71,4 35,5 
Belgrade Serbia 92 42,6 
Warsaw Poland 119,1 50 
Vantaa Finland 160 58 
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Strong, 1996). The Eratosthenes experiment with its very simple approach requires all the subject integrative 
argumentation which brought Eratosthenes to his famous solution. No fancy equipment is needed, but simply to 
following the footsteps of Eratosthenes with his very simple assumptions may force a student to think and to argue as 
a scientist by discussing evidence (Lott, 1983; Brooks & Brooks, 1999). Nevertheless, students aren’t discussing why 
the circumference of the earth is important to know or whether they may improve their Eratosthenes measurement 
using the technologies, the lesson’s question is focusing on why they are taking so many measurements when only 
two will do. Therefore, our approach may rather be an activity than an experiment, since the latter commonly is 
trying to answer a research question while the first is repeating an experiment with the intent to come as close as 
possible to an already known answer. 

4.1 Cooperation with Peers 

A crucial aspect guarantees the success of our experiment: The effective cooperation between different schools (in 
different countries) completing the same experiment on the same day and exchanging results with peers. Students 
realize the dependency on partner schools as a precondition to calculate their own estimation of the Earth’s 
circumference. The proposed approach built upon school cooperation in context and offering unique opportunities to 
demonstrate the potential of inter-school international projects (at least in Europe, national cooperation does not 
yield sufficiently accurate results). The proposed approach brings school cooperation to a more advanced level 
(beyond usual school twinning projects) where students realize the importance of the timing of the measurements, 
the agreement on common methods and procedures and the sharing of results towards a common target (e.g., Slavin, 
1990; Kose, Sahin, Ergu, & Gezer, 2010). The promotion of the idea of effective school cooperation and partnership 
in meaningful activities, related to the school curriculum, is the ultimate target of the proposed large scale project. 
Johnson and Johnson (2009) described an effective cooperation between students as a promotion to force to reach 
better achievement levels compared to conventional school approaches where competitive or individualistic efforts 
are frequent.  

Another important aspect of the success of the Eratosthenes experiment in schools is the students’ engagement in an 
authentic experiment. One indication of engagement in learning is the time on task. Cooperators in general spend 
considerably more time on a task than students working individually (Johnson & Johnson, 2009). The activity itself 
is usually combined with a series of hands-on activities where students were working cooperatively in the framework 
of meaningful activities which tend to be more involved in activities and tasks, attach greater importance to success, 
and engage in more on-task behavior and less apathetic, off-task, disruptive behaviors, especially when abstract 
geometrical problems are discussed (Johnson & Johnson, 1999): Cooperative experiences where student are helping 
each other compared with competitive and individualistic ones have been found to promote more positive attitudes 
toward the task and the experience of working on the task.  

4.2 Demonstrate How Science Works 

Offering high school students a chance to duplicate an ancient experiment provides a large scale basis to use 
shadows for measuring the sun’s position at noon. Comparing measurements from different latitudes permits the 
calculation of the Earth’s circumference. However, students become aware of measurement spreads and the scientific 
process. Within Greece, even at a distance of 271 km, the measurement errors summed up to 17.6%, far greater than 
the 4.5% of Eratosthenes’ original experiment. However, when using distances comparable to the original 
experiment, for instance the one between Athens/Pallini and Belgrade (770km), similar error ranges in the 
calculations appear: Students see their scientific measurements equivalent to the professional ones. 

Our project offers a unique opportunity to introduce students to a discussion on measurement errors and on the 
nature of science. Starting the discussion on the shape of the Earth, a teacher can move to the errors that are 
introduced at each stage of the process. The discussion could include issues related to possible errors in Eratosthenes’ 
calculation. Different error types also reflect corresponding methodologies of science, essential for the practice of 
science and (in a context of scientific literacy) the analysis of its claims. Effective efforts in teaching about error 
could ideally be informed by earlier educational perspectives and a schema for inventorying and organizing error 
types. According to Allchin (2012), student-directed inquiry approaches face basic limits, whereas guided-inquiry 
case studies seem to function as appropriate vehicles for the introduction of scientific methodology in the classroom. 
On a larger scale, one may also envision a learning progression based on successively deeper understandings of error 
in science. Our aim for the design and implementation of the Eratosthenes experiment in school (even if some 
adaptation is needed: see below) is that it offers an approach to counteract a common misconception about the shape 
of the Earth. School children commonly hold misconceptions about the Earth’s shape (American Psychological 
Association, see http://www.apa.org/education/k12/alternative-conceptions.aspx). Some children believe that the 



http://wje.sciedupress.com World Journal of Education Vol. 5, No. 2; 2015 

Published by Sciedu Press                         60                          ISSN 1925-0746  E-ISSN 1925-0754 

Earth is shaped like a flat rectangle or a disc that is supported by the ground and covered by the sky and solar objects 
above its “top” (Vosniadou, Ioannides, Dimitrakopoulou, & Papademetriou, 2001). Due to these misconceptions, 
school students experience difficulty learning the correct scientific understanding of the spherical Earth taught in 
school. It appears that children start with an initial concept of the Earth as a physical object that has all the 
characteristics of physical objects in general (i.e., it is solid, stable, stationary and needing support), in which space is 
organized in terms of the direction of up and down and in which unsupported objects fall “down.” When students are 
exposed to the information that the Earth is a sphere, they find it difficult to understand because it violates certain of 
the above-mentioned beliefs about physical objects (see, Vosniadou, 1994; Vosniadou & Brewer, 1992; Vosniadou 
et al. 2001). The repetition of the Eratosthenes experiment demonstrates how in a single project all these issues 
connected with the nature of science and the use of the scientific methodology in the classroom can be integrated and 
presented to the students as a meaningful hands-on cooperative project. 

4.3 Potential Adjustments 

The Eratosthenes experiment provides a wonderful but complex activity. The focus on the effort of measuring should 
not neglect the processes of creating scientific knowledge. Nevertheless, some adjustments of the hands-on approach 
are needed since students are not familiar with trigonometry and the calculation of the angle between the stick and 
the sunlight is not yet known. In this case, there is a simple alternative way to measure the angle between the stick 
and the sunlight. By using proportional relationships (e.g. divide both sides of the triangle by 10) students draw a 
new triangle (by connecting the two end points) proportional to this triangle on a piece of paper. By using a 
goniometer, they may measure the angle between the side that represents the stick and the side that represents the 
stick's shadow on the triangle they drew. 

Inquiry-based learning follows the steps of scientists (Krajcik, Blemenfeld, Marx, & Soloway, 1997). Eratosthenes 
was one of the earlier ones who came up with an extraordinary but simple experiment and (with some luck) 
achieving a surprisingly accurate result. Even with today’s very precise instruments, the latter isn’t easy to duplicate. 
However, with better preconditions such as a much wider range of latitude even student measures become 
surprisingly accurate (error ranges of 1.3% rather than of 4.2%). Thus, when comparing results from similar 
distances, 821km in the case of Eratosthenes and 770 km within the Greece-Serbia cooperation, the first produced an 
error of 4.2%, the latter of 3.9%! The original experiment’s accuracy is even more surprising when taking the 
meridian correction in mind (see Figure 4) which shortens the distance to 758km. Consequently, this is the science 
classroom to prepare future scientists! 

The present work demonstrates the potential of performing a large scale educational activity in different schools in 
different countries with more than 2000 students actively involved in a task that is so closely connected with a 
measurement of their everyday experience. Nevertheless, the lack of assessment of learning outcomes is a 
shortcoming of the present approach. Consequently, the next approach (at the following spring in March 2015) will 
need to include empirical evaluation measures: Potential measures, for instance, may focus on (i) scoring of the 
cognitive achievement, (ii) monitoring the degree of students may realize the importance of the timing of the 
measurements; (iii) analyzing the agreement on common methods and procedures; (iv) sharing of results towards a 
common target, (v) monitoring the students' science skills, or last but not least, (vi) evaluating their satisfaction 
toward the experiment itself.  
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Appendix 

The procedure is the following: (i) Open the program and on the bar on the left, (it is hidden until the mouse goes 
over) select the top icon “Location Window”. (ii) Insert your school location (recommended) either from the list or 
by giving the respective coordinates. (iii) Locate the sun and click on it so that you can see its information on the top 
left corner of your screen. Then select the “Time/Date” Window. (iv) Set the date when the measurement is planned 
to take place and start changing the time while checking the value for the Sun’s Azimuth. The goal is to find the time 
when the Azimuth is 180°. When you find at what time the sun’s azimuth is 180° write down the time. This is the 
time the measurement should take place at the given date for the given location. 

  


