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Summary 

Lately a large number of artificial reservoirs have been constructed worldwide which lead to 

growing interest in understanding reservoir watershed systems. This study focuses on the role 

of in-reservoir and external watershed processes on water quality and bottom sediment 

geochemistry in a reservoir (Soyang Reservoir), which is located in a monsoon climate area 

and is strongly affected by nutrient loads from agriculturally used catchments. 

In the first study non-point source (NPS) exports under monsoonal climate of nutrients, organic 

matter, and suspended solids from the agriculturally used Haean catchment, a sub-catchment 

in the Soyang watershed, were quantified. NPS pollution from Haean catchment is the main 

driver for water quality in the Soyang Reservoir. Stream water samples were collected at the 

outlet of Haean catchment and analyzed of nutrients (nitrogen and phosphorus), organic matter, 

and suspended solids from the study catchment for 2 years (2009–2010). The stream water 

samples were taken separately in the dry and rainy seasons for evaluating the effect of 

monsoonal rainfall on pollutant export into the streams. Discharge was estimated using a 

stage/discharge rating curve at each study site. Concentrations of total phosphorus (TP), 

suspended solid (SS), biochemical oxygen demand (BOD), and chemical oxygen demand 

(COD) showed peaks during intense rainfall conditions. The annual TP and SS loadings 

decreased in the streams in 2010 (3,601,173 kg km–2 y–1 and 3,676 kgP km–2 y–1, respectively) 

compared to the loadings in 2009 (24,380,657 kg km–2 y–1 and 10,741 kgP km–2 y–1, 

respectively). The result implies that the decreased intensity of rainfall in 2010, reducing soil 

erosion processes, is the main reason for the decreased SS and TP loadings. It proves that 

monsoon rainfalls are the main drivers for export of nutrients into the streams. We also found 

that government driven measures to prevent soil erosion from the catchment (including 

dramatic change of land uses) contributed to reducing TP and SS exports into the streams.   
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Sediment processes and their effect on water quality of the Soyang Reservoir were studied in 

the second study. The reservoir water, the main inflowing stream (Soyang River), bottom 

sediment, and pore water of the lake sediments were studied for 2 years (2012–2013). After 

intensive monsoon rain events, particulate organic carbon (POC), TP, and turbid material were 

abundant in the inflowing water and in the metalimnion as well as iron (Fe) and manganese 

(Mn). A turbid metalimnetic layer with high concentrations of suspended particles established 

during the summer monsoon season. During the summer stratification period, the hypolimnion 

and sediment became anoxic. Diffusion leads to substantial release of dissolved inorganic P 

and ammonia from the sediment to the hypolimnion. Sulfate and reduced sulfur concentrations 

were higher in the pore water of the top sediment layers compared to the deeper layers of the 

sediment core suggesting that substantial amounts of inorganic nutrients and minerals were 

supplied to the lake in the last years. 

The third study deals with the effects of changes in land use on reservoir water quality under 

monsoon climate. To these ends the chemical composition of sediments (C, N, P, Fe, Mn, S, 

and isotopes of C and N) was studied and water quality parameters (suspended solid, 

chlorophyll ɑ, and Secchi disk depth) were monitored. Sediment cores were taken along a 

transect from the inlet to the dam in the Soyang Reservoir and water samples were collected in 

the deepest part of the reservoir. Additionally, water quality data from previous studies were 

used to track historical water quality changes of the reservoir water. The changes of the trophic 

state and of activities in the watershed were well preserved in the bottom sediments in the 

Soyang Reservoir. C and N deposition was mainly autochthonous along with eutrophication 

driven by fish farming in 1990s. The terrestrial input has clearly increased after fish-farm 

business was terminated as indicated by an increase in soil-borne elements (Fe, Mn, S, and P) 

as well as terrestrial C. Such increase coincides with an increase in loads of nutrients and 

suspended solids following changes in land use (agricultural expansion) in the watershed. 
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Recently, the increased agricultural activity has the most impact on the water quality of Soyang 

Reservoir under monsoon climate and the effect was well recorded in the bottom sediment of 

the reservoir. 
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Zusammenfassung 

Seit vielen Jahren wird weltweit eine große Anzahl an Stauseen gebaut. Dies führt zu einem 

wachsenden Interesse an der Entwicklung von Stauseen im Hinblick auf ihre Wasserqualität. 

Von besonderer Bedeutung ist hierbei die Wechselwirkung mit den Einzugsgebieten. Diese 

Studie konzentriert sich auf geochemische Prozesse bei der Wasserqualität und der Sedimente, 

welche im Stausee und im umliegenden Wassereinzugsgebiet, des Soyang Stausees untersucht 

wurden. Der Stausee liegt in Südkorea in einer Gegend, die vom Monsunklima geprägt ist und 

stark von Nährstofffrachten aus dem Haean-Einzugsgebiet, einem stark landwirtschaftlich 

geprägten Gebiet, beeinflusst wird.  

In der ersten Studie wurden Einträge aus diffusen Quellen in das Soyang Reservoir quantifiziert 

wie z.B. Nährstoffe, organisches Material und Schwebstoffe. Zu diesem Zweck wurden 

Wasserproben in den Zuflüssen in den Jahre 2009 und 2010 untersucht um die Frachten für 

Nährstoffe (Stickstoff und Phosphor), organischem Material und Schwebstoffe von dem 

Einzugsgebiet (Haean Einzugsgebiet) abzuschätzen. Die Zuflüsse wurden sowohl in der 

Trockenzeit als auch während der Monsunzeit beprobt um den Monsunregeneffekt für die 

Schadstoffzufuhr in die Zuflüsse auszuwerten. Der Abfluss wurde an jeder Messstelle anhand 

einer Flusswasserpegels/ Abfluss- Bewertungskurve abgeschätzt. Die Konzentrationen von 

Gesamtphosphor, Schwebstoffen, biologischem Sauerstoffverbrauch und dem chemischem 

Sauerstoffverbrauch zeigten erhöhte Werte während der intensiven Regenzeit. Die jährlichen 

Gesamtphosphor- und Schwebstofffrachten nahmen in 2010 (3,601,173 kg km–2 y–1 und 3,676 

kgP km–2 y–1 in 2010) im Vergleich zu den Frachten in 2009 ab (24,380,657 kg km–2 y–1 und 

10,741 kgP km–2 y–1 in 2009). Diese Ergebnisse weisen darauf hin, dass im Jahr 2010 die 

geringere Intensität der Regenfälle der Hauptgrund für die Reduzierung der 

Bodenerosionsprozesse war. Dies wiederum ist der Grund für die Verringerung der 

Schwebstoff- und Gesamtphosphorfrachten. Monsunregenfälle sind demnach die 
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Hauptursache für die Auswaschung von Nährstoffen in die Zuflüsse. Ein weiterer Grund für 

die Verringerung von Gesamtphosphor- und Schwebstofffrachten ist in den Maßnahmen der 

Regierung zur Prävention von Bodenerosion in dem Einzugsgebiet zusehen sowie dem starken 

Landnutzugswechsel innerhalb des Beobachtungszeitraum. 

Bei der zweiten Studie wurden die Prozesse im Sediment und deren Auswirkung auf die 

Wasserqualität des Soyang Stausees untersucht. Zwei Jahre lang (2012-2013) wurde das 

Wasser im Stausee, das Wasser des Hauptzuflusses (Soyang Fluss), die Seesedimente und das 

Porenwasser der Seesedimente untersucht. Nach intensiven Monsunregenereignissen wurde 

besonders viel partikulärer organischer Kohlenstoff, Gesamtphosphor, Trübstoffe, sowie Eisen 

und Mangan, in den zuströmenden Flüssen als auch im Metalimnion vorgefunden. Während 

der Zeit des Sommermonsuns bildete sich eine trübe metalimnische Schicht, welche eine hohe 

Konzentration an Schwebstoffen hatte. Das Hypolimnion und die Sedimente waren während 

der Sommerschichtung anoxisch. Aufgrund dessen kam es zu einer erhöhten Freisetzung von 

gelöstem anorganischem Phosphor und Ammoniak vom Sediment ins Hypolimnion. Sulfat und 

reduzierte Schwefelkonzentrationen wurden in größeren Mengen in den Porenwassern der 

oberen Sedimentkerne im Vergleich zu dem Porenwasser der unteren Teile der Sedimentkerne 

gefunden. Dies zeigt, dass bedeutende Mengen von anorganischen Nährstoffen und Mineralien 

dem Stausee bei starkem Regenabfluss während des Monsuns der letzten Jahre beigefügt 

wurden.  

Bei der dritten Studie geht es um die Auswirkungen der Wechsel der Landnutzung auf die 

Wasserqualität des Stausees in dem Monsun geprägtem Klima. Dabei wurden die chemische 

Zusammensetzung von Sedimentkernen (C, N, P, Fe, Mn, S, und Isotope von C und N) und 

Wasserqualitätsparameter (Schwebstoffe, Chlorophyll ɑ, and Secchi-Tiefe) untersucht. Die 

Sedimentkerne wurden entlang eines Transekts vom Hauptzufluss bis zur Stauseemauer des 

Soyang Stausees entnommen. Wasserproben wurde an der tiefsten Stelle im Stausee 
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entnommen. Zusätzlich wurden Wasserqualitätsdaten von früheren Untersuchungen benutzt 

um die Veränderungen in der Wasserqualität in vergangenen Jahren nachvollziehen zu können. 

Die Veränderungen des trophischen Zustandes des Stausees und die Veränderungen innerhalb 

des Einzugsgebietes sind in den Sedimenten des Soyang Stausees gut erhalten.  

Während der 1990er Jahre wurden im Stausee intensive Fischfarmen betrieben. Dabei kam es 

zu einer Ablagerung von Kohlenstoff und Stickstoff, welche die Eutrophierung im See 

ankurbelte. Der Eintrag an bodenbürtigen Elementen (Fe, Mn, S, and P) sowie auch an 

terrestrischem Kohlenstoff in den Stausee nahm deutlich zu nachdem die Fischfarmen 

aufgelöst wurden. Dies geht einher mit einem erhöhten Eintrag von Nährstoffen und 

Schwebstoffen, welche auf die Ausdehnung der landwirtschaftlichen Nutzflächen im 

Einzugsgebiet zurückzuführen sind. Seit kurzem hat die erhöhte landwirtschaftliche Aktivität 

den größten Einfluss auf die Sedimentzusammensetzung und Wasserqualität des Stausees im 

Monsun geprägten Klima.  
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Chapter 1 GENERAL INTRODUCTION 

1.1  INTRODUCTION AND RESEARCH SUMMARIES 

1.1.1 The concept of watershed process linkages between upland areas and receiving water 

bodies 

Many studies have investigated a variety of inland waters, such as streams, natural lakes, 

artificial reservoirs, and wetlands in regard to water quality management, water resource 

preservation, and ecological views (Wetzel 2001, Allan and Castillo 2007). However, many of 

these studies examined individual water resource components separately rather than looking 

into them as closely linked, although these components are interlinked with each other. 

Therefore, these studies underestimated the importance of understanding the entire watershed 

system concurrently and holistically. This oversight dismisses the realization that streams, 

lakes, reservoirs, and watershed activities (i.e. agriculture type, land use changes and other 

anthropogenic activities) are closely interrelated as pollutant sources and reactive 

environments. Therefore, an integrated watershed evaluation is required to depict the 

systematic interactions within a watershed. For instance, land use/cover changes in upper 

watersheds that control soil erosion and pollutant exports from the watershed to streams can 

alter not only stream water quality within the upper watersheds but can also significantly 

impact downstream water quality of reservoirs and lakes (Huang et al. 2013, Yesuf et al. 2015). 

Specifically, the identification of the interactions governing water quality at the watershed 

scale is required to precisely characterize water quality degradation processes and to construct 

an integrated water quality management plan at the watershed scale. To better understand lake 

and reservoir system processes and the effect of bottom sediments on water bodies, analysis of 
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historical watershed modifications and management activities are necessary since watershed 

processes are intricately linked and integrated across scales. 

1.1.2 Non-point source (NPS) pollution in agricultural areas under a monsoon climate 

Sources of pollutants are derived from diverse sources in watershed systems, mostly originated 

from non-point sources (NPS) compared to point sources (PS) (Hu and Huang 2014). For 

decades, agricultural NPS pollution has been the primary challenge in order to preserve water 

quality in many developing countries and also in South Korea (Cruz et al. 2012, Sun et al. 

2012). Nutrients and eroded sediment from agricultural fields cause deterioration of water 

quality in agricultural watersheds (Heathcote et al. 2013).  

Phosphorus (P) and Nitrogen (N), which are primary nutrients for algal growth, result in algal 

abundance and high growth rates depending on the amounts (Wetzel 2001). The algal 

overgrowth can harmfully cause undesirable symptoms in freshwater systems such as algal 

toxin release, oxygen depletion, and negative economic impacts (Smith 2003). The nutrients 

easily enter into water bodies through surface runoff on agricultural fields either in a dissolved 

form or particulates attached to sediment (Bartley et al. 2003). P and N are common 

constituents of fertilizers applied in agricultural croplands (Vitousek et al. 2009). The excess P 

and N not used during plant growth processes on the agricultural fields is flushed from the 

landscape during rainfall dominated seasons after fertilizers are applied on the fields (Gao et 

al. 2014). The increasing fertilizer overuse beyond crop uptake influences water quality by 

transporting nutrients from the croplands to water bodies (Kim et al. 2011, Thorburn et al. 2013, 

Guo et al. 2014).  

Eroded sediments are transported from agricultural and forested areas into streams through 

frequent soil disturbances and land use changes (Miller et al. 2011, Glendell and Brazier 2014, 

Smith et al. 2015). The transported sediments to inland waters have been considered a major 
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problem for the management of water quality, causing severe economic implications (Chaiechi 

et al. 2016). In particular, disturbed soils are susceptible to erosion in mountainous areas with 

high elevation gradients under a variety of circumstances including: deforestation and high-

elevation cultivation vulnerable to agricultural expansion (Vezina et al. 2006, Otero et al. 

2011). Construction activities can also cause significant sediment loss (Jahantigh and 

Pessarakli 2011, Shangguan et al. 2014). Sediments eroded from terrestrial watersheds and 

transported into water systems deteriorates water quality in a number of ways, including: 

destroying aquatic organisms by disordering feeding and degrading habitat (Zehrer et al. 2015), 

undermining recreational uses, limiting light penetration (Tamayo-Zafaralla et al. 2002), 

transporting heavy metal loads and toxic materials (Bibi et al. 2007, Begy et al. 2016) and 

attached P (Yuan et al. 2013), and also increasing drinking water purification processes 

(Mueller-Warrant et al. 2012).  

Organic matter (OM) is also an important parameter controlling NPS pollution and water 

quality management (Molinero and Burke 2009). Human agricultural practices impact the OM 

content in soils; for example, repetitive tillage and burning of vegetation affect microorganism 

activity in the OM decomposition process, which results in the change of the OM 

decomposition rates in soil (Beare et al. 1994, Mills and Fey 2003). Residual OM in soil is 

eventually introduced to water bodies by flushing through runoff events (Dalzell et al. 2007).  

Most of the NPS pollutants from agricultural fields are directly transported to stream reaches 

through surface runoff during rainfall events and the amount of pollutants increases with 

rainfall amount and intensity (Fig. 1.1).  
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Figure 1.1 Differences of discharge and pollutants in a stream between dry and rainy seasons (photos were taken 

in an outlet of the study catchment)   

 

In the Asian monsoon climate region, rainfall intensity and precipitation volume is severe and 

is concentrated over short time periods in the summer season. In extreme cases, the rainfall 

intensity is as high as 100 mm d–1 or 20 mm hr–1 causing significant runoff, transporting 

increased nutrients (Gao et al. 2012), OM, and sediment loads, during the summer monsoonal 

season. Recently, increased rainfall frequency and intensity as an effect of global climate 

change are becoming a critical factor to be considered for NPS pollution control.  

Recent studies have focused on finding practical and efficient agricultural practices that reduce 

agricultural NPS pollutant yields under the guise of best management practices (BMPs) 

(Chiang et al. 2012, Dechim and Skhiri 2013). Among the BMP methods, land use/cover 

changes have been considered one of the most effective ways to improve NPS pollution 

problems in agricultural lands because land use changes clearly influence stream discharge and 

pollutant exports (Liu et al. 2013). Crop changes can also impact water quality by altering 

management practices such as, the amount of fertilizer used, varying harvest periods, and 

alternating crops (perennial or annual) (Cosentino et al. 2015).  
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1.1.3  The influence of released materials from bottom sediments on water quality in a 

reservoir 

Reservoirs have long been considered as depositional storage locations that contain pollutants 

and sediment from upland watersheds that settle to the bottom of the reservoir. Therefore, 

reservoirs have been regarded as environmentally friendly and the construction of artificial 

reservoirs thereby has increased around the world for multiple purposes (WCD 2000). 

However, studies have recently revealed the role of bottom sediments as internal sources of 

pollutants and nutrients in reservoirs (Linnik and Zubenko 2000, Komatsu et al. 2006). Studies 

have also proved that sediments directly impact water quality by releasing internal nutrients at 

the interface between bottom sediments and the hypolimnion in reservoirs (Istvanovics 1994, 

Beutel 2003). The fate of these internal pollutants to water bodies depends on the physical 

water movement within reservoirs (Nowlin et al. 2005). Internal diffusion of nutrients occurs 

under conditions in which the dissolved oxygen content is depleted and simultaneously a large 

amount of organic matter is available in the bottom sediments. Under these anaerobic 

conditions, various substances act as electron acceptors in an OM decomposition process. 

Normally the anaerobic decomposition process take places in a sequence with reduction of 

nitrate, manganese, iron, sulfate, and carbon dioxide as the final process utilizing organic 

substrates in methanogenesis process (Fig. 1.2).  
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Figure 1.2 Processes of sequential decompositions under anaerobic conditions (structured based on texts in Wetzel 

2001)  

 

In the case of N, particulate organic N is mineralized to ammonium (NH4
+) in both the oxic 

and anoxic states in the bottom sediments. NH4
+ can then be oxidized under oxic conditions in 

the sediment through assimilation processes by benthic organisms; otherwise it diffuses into 

the water column from the sediments. Nitrate can be reduced by nitrification to NH4
+ by 

bacteria in the sediment and can be released from sediment to the water.  

Certain interests have focused on the internal supply of P from sediments to the water column 

due to the clear importance of P as a limiting nutrient in most lacustrine systems (Søndergaad 

et al. 2003). Under anaerobic conditions, inorganic exchange between the bottom sediment and 

hypolimnion water is strongly influenced by redox conditions. Diffusion of phosphate from Fe 

(III) oxides in the sediment to the overlying water column occurred as the compounds are 

reduced under anoxic conditions in sediments and the overlying water (Perkins and Underwood 

2001). Iron sulfide formation coupled to sulfate reduction under anoxic conditions can also 

suppress the abundance of Fe compounds that can retain the phosphate ion and eventually 

initiate release of phosphate into water. The transformation of Fe compounds to iron sulfides 

by sulfate reducing bacteria (SRB) is a main pathway that releases Fe-associated phosphate. 
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Sulfate reduction in the process of OM decomposition by bacteria can produce H2S, which is 

toxic for aquatic organisms (Fig. 1. 3).   

 

 

Figure 1.3 Sulfur cycle n an interface between reservoir water and bottom sediment (modified from Holmer and 

Storkholm 2001) 

 

1.1.4  The use of sediment cores as archives of changes in water quality and watershed 

activity 

Climate change and anthropogenic activities play an important role in aquatic system changes 

both ecologically and hydrologically. These changes have altered conditions of the drainage 

basins, water budgets, nutrients loadings, and water quality in streams and receiving water 

bodies. For many decades, reservoirs and lakes have been considered as storage locations, 

which capture sediments, nutrients, and organic matter after the materials are deposited in the 

bottom sediments from the watershed. Due to sedimentation of external and internal materials, 

chronologic records of climate change and the history of watershed changes within a watershed 

are stored in the bottom sediments of lakes and reservoirs (Szarlowicz and Kubica 2014). 

Generally, reservoirs incorporate a relatively short history in the equivalent sediment depths 

compared to natural lakes due to faster sedimentation rate in many cases. The record in the 

sediments ultimately can help us to obtain insight into the history of past water quality 

conditions, productivity, and human activity effects. The record also provides information 

about the main causes that governed the water quality in a watershed during certain periods. In 
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addition, the information from the sediment record can be used for prediction of environmental 

changes in a watershed and can contribute to making efficient plans and policies for expected 

future problems in watersheds (Navas et al. 2009). Reservoir sediments are composed of both 

internal and external sources. Autochthonous materials deposit to the bottom sediment through 

a sedimentation process after it is generated within the reservoirs while allochthonous materials 

are transported mostly from the watershed. Rainfall, which generates runoff and transported 

pollutants in watersheds, is the main factor to govern the amount of allochthonous materials to 

lacustrine systems. Evaluation of historical changes in a watershed system through sediment 

studies requires an accurate determination of sedimentation rates. Sediment dating techniques 

are a useful tool to reconstruct the historical changes within bottom sediment cores. Several 

methods have been used and tested to determine the precise age of sediment for decades. 

Recently, many studies have been conducted to date the sediment cores by analyses of lead-

210 (210Pb) (Aranud et al. 2006, Tošić et al. 2012). Cautious interpretations are certainly 

required because different accumulation rates and resuspension of sediments can alter the 

contents of lead in the sediments. Stable isotope analyses have been considered as useful tools 

to determine sources of materials in lakes and reservoirs. Carbon (C) isotopes have been used 

for distinguishing OM sources since each source has different proportionated C isotopes 

(Kendall et al. 2001, Ogrinc et al. 2005). C isotopes show distinctive concentrations for the 

various sources, plankton, macrophyte, soil OM, and terrestrial plants (Kendall et al. 2001). N 

isotopes are also considered as a good indicator to show watershed activity (Filstrup et al. 

2010). C/N ratios are one of the most powerful tools available and show clear differences 

between terrestrial soils and lacustrine sediments (Usui et al. 2006, Tue et al. 2011, Zhao et al. 

2015).  
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1.1.5  Research hypotheses and objectives  

The goal of the studies performed for this dissertation is to elaborate on flow and transport 

processes of a reservoir watershed system in South Korea under the Asian monsoon climate. 

Specifically, we divided the system into two sections: (1) a catchment in an upper part of the 

watershed and (2) a reservoir body in a lower part of the watershed. The studies focus on 

understanding how components interact among each other within the watershed and how they 

are related in terms of change in water quality in streams and in the reservoir. The three studies 

were conducted in the upland streams of the watershed, the reservoir, and the bottom sediments 

of the reservoir in order to understand processes affecting the whole watershed system. From 

these considerations, the following hypotheses were derived, which will be studied in each 

chapter of this thesis:  

 

1) The nutrients, turbid materials, and organic matters (OM) from non-point sources (NPS) 

cause water quality problem of streams in an agricultural catchment under monsoon 

climate. 

2) Under anoxic conditions at the sediment-water interface, substantial release of 

dissolved phosphorus (P), nitrogen (N), and sulfur (S) occurs depending on the amounts 

of P, N, S, iron (Fe), manganese (Mn), and organic matter (OM) in the bottom sediment. 

3) The changes of trophic state and activities in the watershed are well preserved in the 

bottom sediment and the chronological changes can be reconstructed by analyzing 

sediment features and elements of the sediment.  

 

Based on the hypotheses the following objectives of each chapter in this thesis arise: 
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1) To understand the effect of agricultural NPS pollution on stream water quality in a 

catchment under monsoon climate.  

2)  To understand the sediment process in a reservoir in regard to influence on water 

quality by internal loads. 

3) To reconstruct history of trophic state changes and watershed activities based on 

analyses of the bottom sediments in a reservoir.   

 

With these hypotheses and objectives, the following three studies were conducted in this thesis.  

 

Chapter 1 (Study 1):  

The agricultural NPS pollution, affecting on the water quality of streams in a catchment, was 

evaluated as the primary contributing source of pollutant materials into streams and eventually 

into reservoir water. In the Asian monsoon climate area, agricultural NPS pollution levels are 

enhanced by monsoonal rainfalls. In this context, intensive field work during rainy and dry 

seasons was conducted to identify the scale of the NPS pollution in a small agricultural 

catchment. The impact of land use changes on pollutant exports into streams was also assessed 

as a way to mitigate the water quality deterioration from NPS pollution.  

 

Chapter 2 (Study 2): 

The importance of studies on bottom sediments in reservoir systems has increased with an 

increase in internal sources of pollutants into reservoirs. The increased pollutants transported 

by heavy runoff from agricultural watersheds enter receiving water bodies and settle to the 

bottom. Nutrient ions such as PO4
3–, NH4

+, and S2− then diffuse into the water column under 

anoxic conditions, which is dependent on the amount of P, N, S, OM, and other elements in 

the bottom sediments. In this study, the effects of intensive rainfall events on lake water quality 
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were assessed during the monsoon season and the potential effects of sediment processes to 

water quality were evaluated by determining the distribution of elements in the bottom 

sediments and pore-water of the reservoir.  

 

Chapter 3 (Study 3): 

Sediment cores are considered as a powerful tool to reconstruct the chronological history of 

water quality and management activity changes in a watershed. Sediment incorporates 

materials from the watershed and the water body implying the potential possibility of 

delineating the change of activities in a watershed (such as agricultural activity, land use 

changes, construction events) and the history of reservoir water quality. The bottom sediment 

cores were evaluated as a tool that reflects the change in trophic state and watershed activities 

in the Soyang Reservoir. Parameters of water quality including Fe, Mn, S, P, Chlorophyll- ɑ 

(Chl. ɑ), Secchi depth (SD), and suspended solids (SS) were investigated. C and N 

concentration and sedimentation rates and sediment age were estimated. Stable isotopes were 

analysed. Finally, grain size variability in sediment cores was analysed for the historical 

reconstruction in the Soyang watershed. 
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1.2 MATERIALS AND METHODS 

 

    Figure 1.4 Photos at study sites and a satellite image of Soyang watershed (Map data: Google, DigitalGlobe) 

 

Soyang watershed was chosen for studies in this thesis (Fig. 1.4) 
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1.2.1 Study sites 

 

                                        Figure 1.5 A land use map of Soyang Reservoir watershed 

 

Soyang Reservoir watershed The Soyang Reservoir watershed is located in northeastern part 

of South Korea. The average annual air temperature is approximately 10 °C, with the 

temperature ranging between approximately –30 °C and 40 °C. The average annual 

precipitation is 1,300 mm with more than half of the annual precipitation falling during the 

summer monsoon period (June – Sep.) (Water Resources Management Information System; 

www.wamis.go.kr). The total area of the watershed is 2,675 km2. Most of the Soyang 

watershed area is covered by forest (over 85 %) and urban areas have steadily increased around 

Chuncheon-si (Fig. 1.5). Agricultural lands have decreased due to urbanization within the 
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watershed, while the highland agricultural areas have been increased with local government 

support, inducing agricultural land expansion in the watershed since the 1990s. Despite the 

relatively small area compared to forested land use, the agricultural area (especially highland 

farming area) accounts for the most abundant pollutant contribution to the Soyang Reservoir. 

Governmental policies and management directives have attempted to diminish turbidity levels 

in streams of South Korea. Since 2004, the Ministry of Environment of South Korea has 

established comprehensive NPS pollution management measures for the four major rivers: the 

Han, the Nakdong, the Geum, and the Yeongsan/Sumjin Rivers and has designated the Lake 

Soyang watershed as a special management area (Jun 2015).  
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             Figure 1.6 A contour map of the Haean catchment (with study sites indicated in the first study) 

 

Haean catchment The Haean catchment is located in Yanggu Province, northeastern South 

Korea in the upper elevation headwater area of the Soyang Reservoir watershed along the 

demilitarized zone (DMZ) between North and South Korea (Shope et al. 2013). An important 

land use in the region is highland agriculture. The elevation of the catchment ranges from 

approximately 400 to 1,300 m with an average slope of 28.4 % and maximum slope of 84 % 

(Fig. 1.6, Jung et al. 2012, Shope et al. 2013). The punchbowl shaped catchment is composed 

of Precambrian gneiss at higher elevations with Jurassic biotite granite intrusions, which 

eroded and deposited in the central part of the catchment (Kwon et al. 1990). The catchment is 



 

16 

 

divided into six regions including; Oyu-Ri, Hyun-Ri, Yihyun-Ri, Hu-Ri, Wolsan-Ri, and 

Mandae-Ri administrative districts. The area is surrounded by forested mountains including 

Mt. Daeam and the summit of Gachil. The climate has an annual average air temperature 

around 9 °C with winter temperatures often below 0 °C (Kettering et al. 2012, Shope et al. 

2013). The average annual precipitation determined by the Korea Meteorological 

Administration (KMA) is approximately 1,400 mm. The area of the Haean catchment is 

approximately 61.52 km2 supporting a population of 1,454. The population has decreased since 

the 1980s. The catchment is largely forested, covering about 36.0 km2 of the total catchment 

area. The forest consists of a diverse species of trees but is dominated by oak. The remaining 

area is comprised mostly of dry field, rice field, and other agriculture crops. Potato, radish, and 

cabbage are the main dry field crops and recently, ginseng and orchard fields have increased 

under local government encouragement. Several streams, including the Naedong, the 

Dunjunggol, the Kunjigol, and the Sunghwang streams flow through the Haean catchment 

contributing to the Mandae stream (an outlet of Haean catchment), which continues toward 

Inbuk stream. Inbuk stream is a tributary to the Soyang River flowing into the Soyang 

Reservoir, which is the primary drinking water source for the metropolitan area of Seoul 

(Bartsch et al. 2014). The dominant nutrient sources in the Haean catchment are fertilizers and 

livestock manure applications to cropland. The catchment is considered to be a nutrient hot-

spot, accounting for high levels of NPS export (especially, nutrients and sediment) into the 

Soyang Reservoir.  
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Figure 1.7  A map of Soyang Reservoir (with study sites for the second and the third study) 

 

Soyang Reservoir The Soyang Reservoir (also known as Lake Soyang) was constructed on 

the North Han River system in 1973 for the purposes of electricity production, drinking water 

supply, and flood control (Kim and Kim 2006). The reservoir is located in the upper part of the 

Bukhan River, which is a major tributary of the Han River, in the central area of the Korean 

Peninsula. The reservoir is the largest reservoir with a volume of 2.9 billion m3, which has 

stimulated a large body of work on water quality and monitoring research (Water Resources 

Management Information System; www.wamis.go.kr). The maximum depth of the reservoir is 

120 m at the outlet and its average width is approximately 0.5 km. The reservoir mean depth 

and average residence time are 42 m and 0.7 yr, respectively. The reservoir is a warm 
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monomictic lake with a mixing period in winter seasons. Ice cover only forms around the inlet 

area in the winter seasons due to the relatively shallow depth in the area. The reservoir has a 

dendrictic shape as surrounded by mountainous areas, which suppresses the wind mixing effect 

(Fig 1.7). The Soyang Reservoir receives most of its pollutants through the Soyang River, 

which is the main contributing stream. Most nutrient and organic matter loads are derived from 

the agricultural areas of the watershed during the summer monsoon season (usually May to 

Aug.) (Kim et al. 2000). More than half of the annual precipitation falls during the summer 

monsoon season with occasionally intensive rain events (> 100 mm d–1) every year. 

1.2.2 Sampling and analyses methods 

Stream Water quality and discharge at study sites throughout the Haean catchment were 

regularly monitored. Water samples were collected at seven stream sites (Site N, D, C, K, W, 

S, and M; Fig. 1.6) during rainfall periods and dry conditions from June to December in 2009 

and in the whole twelve months of 2010. During eleven storm events, with total precipitation 

exceeding 100 mm, at least 10 water samples were collected during individual events. Surface 

discharge was also measured at each of the sites. Precipitation data were obtained from the 

KMA.   

Collected water samples were kept cool during transport to the laboratory and preserved by 

acidifying (with HCl or H2SO4) or refrigerated. Water samples were filtered through Whatman 

GF/C glass fiber filters (pore size 1.0 µm) to measure the concentration of suspended solids 

(SS) and dissolved N and P. Unfiltered water samples for total phosphorus (TP), total nitrogen 

(TN) were preserved by acidifying with H2SO4 to pH<2. TP was analyzed using the ascorbic 

acid method after persulfate digestion. TN was measured using the cadmium reduction method 

after digestion with potassium persulfate. Biochemical oxygen demand (BOD) and dissolved 

oxygen (DO) concentration of the first bottle was determined. The second bottle was incubated 
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under 20 ̊C for 5 days and the BOD value was calculated as the difference between the initial 

and final DO values. The KMnO4 method was used for Chemical Oxygen Demand (COD). All 

of analysis methods for water samples were referred from Standard Methods 20th Ed. (APHA 

2012). 

To estimate discharge at each of the studied sites, the velocity-area method was used with an 

electronic flow meter (Shope et al. 2013). Stream discharge during both wet and dry conditions 

was measured at each of the stream monitoring sites and rating curves were developed to 

describe the relationship between discharge and water level for each stream. The discharges 

were estimated with measured water levels in the sites on the basis of the stage/discharge rating 

curve.  

 

Lake water One sampling point was chosen for water samples in order to characterize the 

reservoir water quality. The deepest part of the reservoir adjacent to the dam site was 

hypothesized to reflect the mean water quality in the reservoir as well as the outflow water 

quality and therefore chosen for the monitoring site. Water samples were collected bi-monthly 

to monthly during the study period from a boat. Sampling was performed at 10 m depth 

intervals to the maximum depth, and at 0, 2, and 5 m below the water surface using a water 

sampler. Basic limnological in-situ parameters (pH, temperature, and DO) were determined 

during each sampling campaign with a portable multi-parameter sensor (Hydrolab Quanta, 

provided by CLMR-KNU). Collected samples were stored below 4 ̊C before each analysis. 

Secchi disk (SD) depth was measured monthly from the boat with a 30 cm SD round slide.   

Water samples were filtered through glass fiber filters (Whatmann GF/F) for dissolved total 

phosphorus (DTP), dissolved inorganic phosphorus (DIP), organic carbon (OC), nitrate 

(NO3
−), sulfate (SO4

2−), and other major and trace elements. Before filtration, TP of water 

samples was analyzed by the ascorbic method after persulfate digestion (APHA 2012). Filtered 
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water samples were used for the measurement of dissolved organic carbon (DOC) with a total 

organic carbon (TOC) analyzer (Shimadzu TOC 5000, Kyoto, Japan). Particulate organic 

carbon (POC) measurements were conducted by combusting the dried glass fiber filters using 

a Yanoco MT-5 CHN analyzer. NO3
−, SO4

2−, and Chloride ion (Cl−) concentrations of all water 

samples were measured by ion chromatography (Metrohm modular IC system 762, Herisau, 

Switzerland). Iron (Fe) and manganese (Mn) concentrations in water samples were measured 

through inductively coupled plasma optical emission spectrometry (ICP-OES, Optima 

3200XL, Perkin Elmer, Waltham, USA). Chlorophyll ɑ (Chl. ɑ) concentrations in water 

samples were measured by the Lorenzen method (APHA 2012). SS amount in water samples 

was calculated by measuring the differences in weight of GF/F filter paper before filtration and 

the dried filter paper (1hr, 105 ̊C) after filtration of samples (APHA 2012).   

 

Sediment Sediment core samples were collected with a gravity core (UWITEC, Mondsee, 

Austria) along the distance from a dam site to an inlet area of an inflow. Five sampling sites 

(St. 1 to 5) were selected for the sediment samples in 2012 and 2013 and additional sediment 

samples were collected in a former fish farm area (St. F) in 2013 (Fig. 1.7). Pore-water samples 

were extracted by centrifuge from the sliced sediment core samples. Sediment traps were 

deployed 5 times from July to October in 2013 and were installed at three depths (20, 50, and 

80 m) at the dam site. Trap samplers were made of stainless material to prevent physical 

damage. The sediment samples in the trap were collected to calculate the distributed 

sedimentation rate of C and N in the water column of the reservoir. 

Sediment core samples were sliced with a customized core cutting device at 1, 2, or 5 cm 

intervals according to visual identification of the structured layering. From these sliced 

samples, we measured TP, Fe, total reduced inorganic sulfur (TRIS), and other elements 

(Aluminum (Al), Calcium (Ca), Potassium (K), and S) after freeze-drying. Fe was measured 
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after HCL extraction using the Phenantroline assay (Tamura et al. 1974) to differentiate ferric 

(Fe3+) and ferrous (Fe2+) iron in the sediment samples. TRIS species were extracted (S2
2−, S2−, 

and S0) from freeze-dried and sectioned sediment core samples following chromium reduction 

(Canfield et al. 1986), trapped as H2S in NaOH. Reduced sulfur species were measured by the 

methylene blue assay (Williams 1979) and using an UV-VIS-photometer. Further elements in 

the sediment samples were measured by ICP-OES method after 1 N HCl extraction. Sediment 

grain size was analyzed using Mastersizer 2000 (Malvern, UK) after sonication. C, N, δ13C, 

and δ15N were analyzed with sliced sediment samples after freeze-drying. Relative C and N 

isotope abundances of sectioned sediment samples were measured with an elemental analyzer 

in a dual-element analysis mode (Carlo Erba 1108, Milano, Italy) for Dumas combustion 

followed by gas chromatographic separation of the gaseous combustion products. The other 

elemental compositions (P, S, Fe, Mn, Ca, Cd, Cu, and Pb) were detected by energy-dispersive 

X-ray fluorescence (XRF) spectrometry (Rigaku, Japan). Sediment dating analysis was 

conducted using the 210Pb dating technique.  

1.3 RESULTS AND DISCUSSION 

1.3.1  Extent of non-point source (NPS) pollution throughout an agricultural catchment 

The average concentrations of SS, turbidity, and TP of each stream under dry conditions were 

significantly lower than the concentrations of the water quality parameters during rain events 

and the transported sediment and associated nutrient concentrations generally increased with 

increasing discharge in the all of streams for all of the rain events as indicated in previous 

studies (Jain 2002, Wu et al. 2012). The exported TP and SS into the streams were influenced 

most among the water quality parameters by the rainfall (Fraser et al. 1999). The SS 

concentration in streams during rainfall in the Haean catchment was generally higher than the 

results of previous studies conducted in other main river systems in South Korea (Park et al. 
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2005, Kwak et al. 2008) and also at the same site in the past (Jung 2012). Highland agriculture 

in the catchment under high slopes is considered as one of the reasons that caused high annual 

SS loading to the streams in this region (Arnhold et al. 2014). The SS remained low at Site W 

with the lowest concentration during rainfall events because forested land use mitigated soil 

disturbance from the watershed of the Site W. The average EMCs of TN increased while the 

average EMCs of TP and SS decreased in 2010 compared to the EMCs in 2009 (Table 1.1).  

 

Table 1.1 Event mean concentrations (EMC) of suspended solid (SS), total nitrogen (TN), and total phosphorous 

(TP) at an outlet stream during rain events in Haean catchment (unit: mg L−1) 

Year Event no. SS TN TP 

2009 

1 2954 2.24 1.27 
2 1837 2.08 1.37 
3 1587 1.76 0.81 
4 3804 3.43 1.62 

2010 

5 1281 5.08 1.45 
6 304 3.90 0.49 
7 427 3.77 0.46 
8 661 3.54 0.71 
9 738 3.04 0.95 

10 332 3.16 0.46 
11 313 3.25 0.48 

 

The decreased intensity of rainfall in 2010 seemed to mitigate the amount of SS and TP in 

runoff, which are usually exported together as attached forms on sediment derived from the 

agricultural fields (Kim et al. 2014). The government has driven construction of new facilities 

to contain turbid water generation in the catchment, which influenced on decreased soil loss 

from the catchment. BOD increased in the watershed for 2 years while COD decreased, which 

can be interpreted as biodegradable organic matter increasing in the catchment but non-

biodegradable (recalcitrant) organic matter were produced less in 2010 relative to 2009. The 

EMC of TP at an outlet of the Haean catchment was much higher compared to other streams 

in other regions of Korea (Park et al. 2005, Kwak et al. 2008), which have similar summer 

monsoon rainfall characteristic such as rainfall intensity and periods. Also, compared to the 
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results from locations in other countries, the EMCs of SS and TP were higher (Gentry et al. 

2007, Hu and Huang 2014). These results imply that runoff into the stream through the Haean 

catchment transported significant amounts of suspended sediment with attached P into the Lake 

Soyang receiving reservoir.  

The EMCs of SS and TP decreased for 2 years at Site N in which the land use had been 

dramatically changed from dry fields to orchard and ginseng fields. The decreased EMCs of 

TP and SS at Site N were assumed to be derived from decreased sediment and P exports as a 

function of land use changes. However, the other water quality parameters (BOD, COD, TN 

and NO3
–) showed no clear discrepancies between 2009 and 2010. The results imply that 

migrating soil disturbance and erosion by land use changes efficiently reduced the P export 

(Ouyang et al. 2014) but EMCs of nitrate and TN increased minimally showing that land use 

changes did not mitigate those parameters because these pollutants are less related to soil 

erosion compared to TP and SS.  

1.3.2  Effects of a monsoonal climate and the release of materials from sediment to the water 

column in a reservoir 

The high POC values (4.0 mgC L–1 in the hypolimnion and 2.8 mgC L–1 in the metalimnion) 

in the reservoir emerged after heavy rainfall, stressing the relevance of POC loading during 

high flow conditions. The highest POC concentration in the reservoir is a result of intensive 

summer rainfall, which causes a large amount of particulate organic matter to enter the lake via 

storm runoff as shown in Lake Soyang (Kim et al. 2000) and other reservoirs (Aryal et al. 

2014). The transported C was eventually deposited in the bottom sediment. The calculated C 

sedimentation rate in Lake Soyang (453 mg POC m–2 d–1) was lower than the sedimentation 

rates in the other reservoirs, but higher than in natural lakes (Teodoru et al. 2013, Clow et al. 

2015). The TP concentrations in the metalimnion (17.6 µgP L−1 at 30 m water depth and 19.5 
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µgP L−1 at 40 m water depth) were increased after summer monsoon rainfall. A previous study 

reported that the load of TP was highest (approximately, 1,200 tP yr−1) in 2006 during the 

intensive rainfall of the summer monsoon season (Kim and Jung 2007). This input was 

increased by the disturbances in forested areas and agricultural practices with the overuse of P 

fertilizer and frequent soil disturbances (Park et al. 2010). The high amount of P load is also 

eventually deposited into the sediment in such reservoir systems. The input of Fe and Mn were 

also increased by an inflow of high amounts of Fe and Mn (137 µgFe L−1 and 25 µgMn L−1, 

respectively). The high amounts of Fe, Mn, and S entered the lake along with high amounts of 

P adsorbed to these particles after rainfall. Hypolimnetic anoxia has emerged since the 

eutrophication period in 1980s in Lake Soyang (Fig. 1.8).  
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Figure1.8 Vertical profiles of dissolved oxygen (DO), temperature (Temp.), and turbidity (Turb.) in Soyang 

Reservoir during a stratification period 

 

The oxidation redox potential (ORP) in sediment at site 1 was negative for the entire depth 

indicating anoxic conditions in the sediments. Under anoxic conditions, sulfate reduction is the 

main respiratory pathway as sulfate is used as the primary electron acceptor in decomposition 

processes (D’Hondt et al. 2002). The fact was well deflected in the observed high 

concentrations of TRIS (exceeded 20 mmol g−1) in the upper layers of Lake Soyang sediment 

cores. Therefore, it appears that significant amounts of iron oxides are not reduced and P 

remains trapped in the sediment. High amounts of Fe in the sediment can act as P traps by 

strong adsorption. The decreased sulfate in the pore-water toward the top of the sediment and 

higher TRIS concentrations in this region imply the occurrence of sulfate reduction in the 
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sediment, which leads to high amounts of reduced sulfur. The sedimentation of Fe, Mn, S and 

C and its interactions in the sediment seem to control the diffusion of nutrients from the 

sediment with the redox condition. Higher concentrations of DIP and ammonia were observed 

in pore water than in bottom water. This mobile P and N can diffuse to the water column as 

previously observed in eutrophic conditions (Reddy et al. 1996, Yang et al. 2015). However, 

despite the high concentrations of DIP and ammonia in the lower water column during 

stratification, the average concentration of DIP and ammonia remained constantly low after the 

monsoon season. We assumed that DIP can be resettled and ammonia can be oxidized when 

they contact the oxic layer around the time of the water mixing period (Beutel et al. 2008). In 

addition to that, the released N and P can be removed when the intermediate density current is 

discharged out of the dam through the outlet at the middle depth of the dam before the mixing 

period in the winter season. We found that heavy rainfall caused acute increases of C, P, Fe, 

and Mn in the lake by turbid density currents during the monsoon seasons. Such increased 

materials are eventually deposited to bottom sediments and control the diffusion process of 

mobile P and N at the interface between the bottom water and sediment under anoxic condition. 

This finding implies that sediment processes and internal loads are an important subject to 

monitor together with inflowing water quality change for effective reservoir management, 

especially in Asian monsoon climate areas. 

1.3.3 Potential of sediment core samples as a tool for historical archives 

The estimated sedimentation rate (0.2 cm yr–1) of Soyang Reservoir by the Pb dating technique 

was much lower than observed in other reservoirs and seems to be similar to natural lakes (e. 

g. 6 cm yr–1 in the Danube Iron Gate Dam; Vukovic et al. 2014, 4 cm yr–1 in the Partoon 

Reservoir; Arnason and Fletcher 2003, between 2 to 7 cm yr–1 in the Conowingo reservoir; 

McLean et al. 1991, ranging from 0.01 to 0.32 cm yr–1 in Lake Superior; Evans et al. 1981). 
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The sedimentation rate also contrasts a previous estimate of 1.0 cm yr–1 in Lake Soyang 

(Cheong and Jung 2006). The limitations about 210Pb dating have been reported in other 

reservoirs due to sediment disturbance by frequent water fluctuations and the relatively 

younger ages compared to natural lakes (Filstrup et al. 2010, Winston et al. 2014). To overcome 

the limitations of the Pb dating technique, we attempted to independently estimate sediment 

age with our sediment composition data. The reservoir has experienced different trophic states 

with specific events during each time period (Table 1.2).  

 
   Table 1.2 History of trophic state changes in Soyang Reservoir 

 

Since the dam construction in 1973, the reservoir had its last oligotrophic state from 1973 

through 1985 (1st period). The reservoir had been eutrophic with frequent algal blooms during 

the late summer seasons in 1986 through 1999 (2nd period), after fish farming had started. This 

trophic state recovered into meso/eutrophic states from 2000 to 2005 (3rd period), after fish 

farm businesses were completely removed from the reservoir. However, the reservoir recently 

turned into a eutrophic state between 2006 and 2012 (4th period), since the reservoir water 

quality has been the worst observed in history due to massive turbid water inflow from the 

Period 
 

Trophic 
state 

Year Events (year) References 

 
1st 
 

Oligo- 

 
1973-
1985 

 

Dam construction completed (1973) 
Onset of Fish farms setup (1980)  

 
2nd 

 
Eutro- 

1986- 
1999 

 

Massive blue green algae growth with SD only 
0.7 m in 1990  
Fish farm eliminations since 1998 and 
anabaena cells decreased in 3 year, 1996-1998  

Kim and Jung 2007 
 

Kim et al. 1999 

 
 

3rd 

 
 

   Meso/ 
Oligo- 

 

2000- 
2005 

 

Phytoplankton species change (cyanobacteria 
to dinoflagellates and chrysophytes) 
Oligotrophication sign based on nutrient 
concentrations, phytoplankton species and 
transparency data. 
Increase in P load since 2000 from watershed  

 
 

Kim’s personal 
communication 

 
Kim and Jung 2007 

 
 

4th 

 
 

Meso/ 
Eutro- 

 

2006-
2012 

 

After typhoon, Turbid water out released from 
the dam to the downstream for over 6 months 
in 2006  
Frequent turbid water inflow from watershed 
after monsoon climate summer rainfall 

 
Kim and Jung 2007 
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watershed in 2006. The chronological history reflected in sediment compositions of cores is 

presented in Figure 1.9.  

 

Figure 1.9 Profiles of P, S, Fe, Mn, C, N, δ13C, δ15N, and C/N ratio in core at site 1 (dash lines divide the 

reconstructed periods)  

 

The elemental distributions clearly show the discrepancy between pre- and post-construction 

periods. The C/N ratio profile at site 1 was the primary evidence, which increased to 40.0 at a 

depth of 14 cm and they remained constant with an average ratio of 40.1 ±1.4 (n=10) below 

showing similar values from land-derived plants (Meyers 1994, Mayers and Ishiwatari 1993). 

On the other hand, the low C/N ratios observed in the upper region are similar to the values 

from lacustrine sediments (average 8.9; Murase and Sakamoto 2000, approximately 10; 

Koszelnik et al. 2008). In the second period, C and N increased, which results from the 

eutrophic condition caused by fish farming. During the 3rd and the 4th periods, the P, S, Fe, and 

Mn increased relative to the 1st and 2nd periods,  as well as the C and N concentrations, which 

can be proof of increased exports from the watershed by increased agricultural activity and 

intensified rainfall characteristic in the watershed since the 2000s (Kim and Jung 2007). 

Decreased Chl ɑ concentrations in the lake since the 2000s compared to the concentrations in 
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1990s led to less contributions of autochthonous organic matter than the contribution of 

allochthonous organic matter to the bottom sediment. The SS increased in the metalimnion 

after heavy rainfall, forming turbid current inflow and the SS remained high in the hypolimnion 

after the monsoon season with the maximum concentration of SS in 2 years (49.1 mg L–1 in 

July 2013). The turbid current emerged more often in the reservoir because of the increased 

agricultural area in the watershed and intensified rainfall characteristics since 2000 (Kim and 

Jung 2007). The turbid current inflow seemed to carry significant amounts of C sources from 

the watershed to the reservoir water and it led to increased contributions of allochthonous C 

into the reservoir sediment in the years since the 2000s. 

1.4 CONCLUSIONS  

A watershed of a reservoir (Soyang watershed) in South Korea was studied from an upland 

catchment (Haean catchment) to the bottom sediment of Soyang Reservoir. Three studies for 

this thesis were conducted to understand the interactions between each component in the 

watershed. First, we examined watershed activity effects on the stream water quality in the 

watershed by studying the pollution of agricultural NPS in the Haean catchment, which is a 

primary source of pollutants to Soyang Reservoir. The second study moved to the Soyang 

Reservoir to evaluate the water quality under monsoon climate characteristics and the role of 

the bottom sediment as an internal source of pollutants and nutrients to the water column. 

Finally, we reconstructed the history of trophic state changes in the reservoir and watershed 

activity changes in the watershed by interpreting the data from bottom sediment cores of the 

reservoir. The conclusions are summarized under three categories. 

 

1) In the Haean catchment, significant amounts of pollutant exports entered into streams during 

the summer monsoon. Asian summer monsoonal rainfall enhanced the extent of agricultural 
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NPS pollution by flushing terrestrial pollutants in the catchment. EMCs of TP and SS were 

higher than findings of previous studies, which were conducted in South Korea and other 

overseas countries. Governmental driven land use changes were implemented for 2 years 

(2009–2010) as a way to reduce the soil erosion from the agricultural land and the policy led 

to conversion of large scales of land use (mostly dry fields and rice paddies to orchard and 

ginseng fields). The SS loads from the catchment into streams clearly decreased in 2010 as 

well as TP.  

 

2) Heavy rainfall also caused dramatic increases of C, P, Fe, and Mn of the water in the 

reservoir by turbid density currents during monsoon seasons. The elements composed the 

bottom sediments in Soyang Reservoir. The increased organic matter and elements controlled 

the internal loads of PO4
3-, NH4

+, and S released from the sediment. However, the effects of 

diffused nutrients and toxic material were not significant because of the physical reservoir 

characteristics (deep water depth and an outflow from the middle layer) hampered the diffusion 

of materials into the entire reservoir water body. Regular investigations of sediment processes 

and internal loading with constant monitoring of inflow water quality are requisite for an 

effective management of reservoirs.  

  

3) Sediment cores can be used as an archive, which includes the history of trophic states and 

watershed activity changes, through analyses of sediment dating and the composition of cores. 

The reconstructed sediment ages where highly correlated with the vertical profiles of elements 

in the sediment cores. Soyang Reservoir has received OM and nutrients through two sources, 

autochthonous and allochthonous source, since the dam construction. The composition of cores 

and the water quality parameter changes indicated that the main OM and pollutants sources 

have been changed from autochthonous matter to allochthonous matter. 
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2.1 ABSTRACT 

Agricultural non-point source (NPS) pollution is a major concern for water quality 

management in Soyang watershed in South Korea. Nutrients (phosphorus and nitrogen), 

organic matter, and sediment exports in streams were estimated in an agricultural catchment 

(Haean catchment) for 2 years. The stream water samples were taken in dry and rainy seasons 

to evaluate a monsoonal rainfall effect to pollutants exports in the streams. An influence of 
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land use changes on NPS pollution was assessed by conducting a land use census for 2 years, 

and comparing the NPS exports characteristic for the 2 years. Total phosphorus (TP), 

suspended solid (SS), biochemical oxygen demand (BOD), and chemical oxygen demand 

(COD) increased dramatically in rainy seasons for 2 years. Land uses were changed for the 2 

years of study period. Especially, dry fields and rice paddies have been decreased distinctively 

while orchard (apple, grape, and peach) and ginseng crops have been increased throughout the 

catchment. The TP and SS loadings decreased in the streams in 2010 compared to the loadings 

in 2009 while the BOD and NO3
– have been not changed significantly. In this study, monsoonal 

driven rainfalls increased exports of agricultural NPS pollutants into streams. Land use change 

(mostly crop and paddy fields to orchards and ginseng fields) mitigated TP and SS exports into 

the streams.         

2.2 INTRODUCTION 

Non-point source (NPS) pollution is the main cause of inland water deterioration and a priority 

issue for present water quality management worldwide (Rhee et al. 2012, Duncan 2014). NPS 

pollution is more difficult to control and to treat than pollution from point sources (PS) due to 

the complicated generation and formation (Berka et al. 2001, Shen et al. 2011), and concern 

for NPS pollution affecting lake water quality has continually increased (Qin et al. 2007, 

Gantidis et al. 2007). Better understanding nitrogen (N) and phosphorus (P) transport from 

agricultural NPS to surface waters is a major focus of scientific research and environmental 

policy (Hart et al. 2004, Vadas et al. 2005, Park et al. 2015). This is especially prevalent in 

agricultural areas where high amounts of N and P are the main NPS contamination factors into 

surface waters (Elçi and Selçuk 2013, Lou et al. 2015), which results in increased algal 

production and amplifies lake and reservoir eutrophication (Correll 1998, Ma et al. 2011). The 

NPS pollution contributes to excessive sediment, nutrients, and organic matter in streams 
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during the summer rainy season under monsoonal climate conditions. Studies conducted in 

monsoonal climate regions have shown that mountainous areas with intensive highland 

agriculture induce high nutrient (especially N and P) loading into rivers, particularly during the 

summer monsoonal conditions (Park et al. 2010, Wang et al. 2011). Soil erosion is enormously 

induced on high land agricultural area with steep slopes in combination with intense rainfalls 

during rainy season (Jain 2002). High turbidity surface discharge due to large-scale soil erosion 

causes environmental deterioration that severely impacts to aquatic ecosystems (Lee et al. 

2013). In recent years, studies have focused on finding practical and efficient agricultural 

practices that reduce agricultural NPS pollutant yields under the moniker of best management 

practices (BMPs) (Chiang et al. 2012, Dechim and Skhiri 2013). Efforts to identify the ideal 

BMP are still in progress (Yulianti et al. 1999, Gitau et al. 2008, Liu et al. 2013). Among the 

ways to manage NPS pollution, land use change is regarded as one of the most efficient factors, 

by directly influencing hydrologic processes at the catchment-scale (Johnes 1996, Sargaonkar 

2006, You et al. 2012, Fučík et al. 2014, Ren et al. 2015). In general, land use change, such as 

dry field crops to orchard farms, can reduce soil erosion, which decreases fertilizer inputs and 

minimizes ecological disturbances in critical ecosystems. 

  In South Korea, the Ministry of Environment (MoE) has established comprehensive NPS 

pollution management measures for the four major rivers of the Han: the Nakdong, the Geum 

and the Yeongsan and the Sumjin rivers since 2004. The MoE has also designated the Lake 

Soyang watershed, which includes our study catchment, as a special management area (Jun 

2015). These governmental policies and management directives have attempted to diminish 

turbidity levels in streams in South Korea. Consistent with these regulatory changes, the 

patterns in land use have been substantially altered in recent years, with the amount of land use 

for ginseng and orchard farming that causes less soil deteriorations compared to crop lands 

(Wang et al. 2001), continuously increasing.  
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Goal for this study is to scale the extent of NPS pollution in an agricultural catchment. We tried 

to assess the effect of exports from agricultural NPSs to streams in the catchment and also 

attempted to evaluate the land use change impact on nutrients and sediment exports by 

comparing 2 years in which the land use significantly changed in the catchment. To achieve 

the goals, the stream water qualities of the Haean catchment, located in the Lake Soyang 

watershed and a hot spot as nutrients, sediments, and organic matter sources into the lake, was 

monitored for 2 years (2009–2010). Event mean concentrations (EMCs) and biochemical 

oxygen demand (BOD), chemical oxygen demand (COD), suspended solid (SS), total nitrogen 

(TN), and total phosphorus (TP) loading were calculated to evaluate the water quality in 

streams influenced by NPS. Principal component analysis (PCA) was also used to determine 

the factors contributing to NPS loading in the catchment. Land use re-classification processing 

along the stream areas (Seo et al. 2014) was conducted to assess land use change effects to 

NPS exports into the streams in the catchment.  

2.3 MATERIALS AND METHODS 

2.3.1 Land use map survey 

We modified the land use dataset from Seo et al. (2014) to characterize the land use according 

to each stream basin. A plot-scale land use census was completed throughout the Haean 

catchment (61.52 km2) in 2009 and 2010, and subsequently digitized into GIS. The 

investigation yielded more than 3,000 individual land use classifications with regard both to 

crop and non-crop areas. Land use polygons were classified into a categorical aggregation for 

simplicity and associated with ecological and physical traits. Ground observations, completed 

by the Research Institute of Gangwon Province (RIG) during the 2007 crop season, were used 

for qualitative validation of the 2009 and 2010 land use classification. A total 11 aggregated 
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land use classifications were used to evaluate the land use change status for each stream 

watershed. 

2.3.2 Study site and sampling description 

The study area encompasses the Haean catchment located in Yanggu County, Gangwon 

Province, South Korea. The catchment is bowl-shaped and locally known as the ‘punch-bowl’; 

Bartsch et al 2013. It encompasses a mountainous headwater portion of the watershed of Lake 

Soyang, which supplies drinking water for the Seoul metropolitan area since construction in 

1973 (Kim et al. 2000). The elevation of the Haean catchment ranges from 339 to 1,320 m and 

the area is surrounded by high elevation Precambrian Gneiss complex while the low elevation 

central portion is a highly weather Jurassic biotite granite intrusion (Kwon et al. 1990). The 

climate has a mean annual air temperature of 8.7 ̊ C with winter temperatures as low as –27 ̊ C 

and summer temperatures as high as 33 ̊ C. The average annual precipitation determined by the 

Korea Meteorological Administration (KMA) is 1,400 mm yr–1 and over seventy percent of 

the annual precipitation falls during summer monsoon season, June to August, (Bartsch et al. 

2013). The catchment is largely forested particularly at high elevation. The remaining area is 

comprised mostly of dry croplands and rice paddy agriculture (Seo et al. 2014). An important 

land use in the region is highland agriculture, which cultivates crops (potato, radish, and 

cabbage) in steep slopes, and the dominant nutrient sources are artificial fertilizers and 

livestock manure applications to cropland in the Haean catchment (Kettering et al. 2012). 

Highland agriculture in the Lake Soyang watershed  has been shown to cause increases in 

nutrient loading into streams from non-point sources (NPSs) from sources such as the overuse 

of organic fertilizers, resulting in turbid water (Jung et al. 2009). The Haean catchment 

headwaters are one of the most problematic turbid water sources to Lake Soyang.  
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Figure 2.1 Study area and sites (maps of the Northeast Asia; A, the Korean Peninsula: B, Soyang watershed; C, 

and Haean catchment including study sites (green circles); D) 

 

Seven streams were selected for water quality monitoring (Fig. 2.1) including: Naedong (Site 

N), Dunjunggol (Site D), Kunjigol (Site K), Sunghwang (Site S), Wolsan (Site W), 

Chungryongangol (Site C), which flow to the Mandae stream (Site M), an outlet of the Haean 

catchment continuing toward Inbuk stream and the Soyang River flowing into Lake Soyang. 

Water samples were collected at each site during rainfall periods and bi-monthly during dry 

conditions from June to December in 2009 and monthly in 2010. For 11 individual storm vents 

(4 times in 2009 and 7 times in 2010, respectively), at least 10 water samples were collected 

for each rainfall event (Table 2.1). However, samples were not collected at Site D during the 

2nd storm event due to inaccessibility as a function of massive mudslides. Surface discharge 

data were also collected at each of the sites. Hourly precipitation data was obtained from the 

KMA.  

 

D 
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                 Table 2.1 Dates, rainfall amounts, and rainfall intensities for each rain event 

No. of event Date Total amount 

(mm) 

Intensity 

(mm hr–1) 

Intensity order 

1 09’ Jul 9th–10th 149.0 5.4 3 
2 09’ Jul 12th–13th 118.0 2.7 7 
3 09’ Jul 14th–15th 148.0 6.6 2 
4 09’ Aug 11th–12th 210.0 9.5 1 
5 10’ May 18th–19th 67.5 3.8 4 
6 10’ May 23rd–25th 43.0 1.5 8 
7 10’ Jul 2nd–3rd 36.5 1.3 10 
8 10’ Jul 16th–19th 91.5 1.3 9 
9 10’ Aug 7th–8th 56.5 1.2 11 

10 10’ Aug 25th–27th 117.0 2.7 6 
11 10’ Sep 2nd–3rd 77.5 2.8 5 

 

2.3.3 Laboratory analyses  

All water samples were stored in cool conditions (<4 ̊ C) and acidified prior to laboratory 

analysis. Water samples were filtered through Whatman GF/C glass fiber filters (pore size 1.0 

µm) to measure the concentrations of SS and dissolved N and P. Unfiltered water samples were 

analyzed for TP and TN and were preserved by acidifying with H2SO4 to pH < 2. TP was 

analyzed using the ascorbic acid method after persulfate digestion. Total nitrogen was 

measured using the cadmium reduction method after digestion with potassium persulfate. BOD 

was calculated by determining the difference in dissolved oxygen (DO) concentration between 

in-situ conditions and after 5 days of incubation at 20 ̊ C using a DO meter (YSI 58 Dissolved 

Oxygen Meter, USA, YSI incorporated).The KMnO4 method was used for COD analysis. 

Turbidity was measured using a nephelometer (Hach). All of the analysis methods for water 

samples were completed according to references in Standard Methods 20th Ed. (APHA 2012). 

We used an electronic flow meter (Flo-MateTM 2000 Flow Meter, USA, Marsh-MacBirney) to 
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estimate discharge with the velocity-area method, which is commonly used to measure 

discharge in open channels (Shope et al. 2013). Using this method, the flow velocity and cross 

sectional area are measured separately for each stream in the catchment (Buchanan and Somers 

1968). Stream discharge during both wet and dry conditions were measured at least 10 times 

at each of the stream monitoring locations and rating curves were developed to describe the 

relationship between discharge and water level for each stream. When water samples were 

collected at each monitoring location, discharge was estimated using a stage/discharge rating 

curve.  

Detailed description and equations about flow measurement method are shown below 

(Equation 2-1 and 2-2). 

2.3.4 Calculation for discharges, event mean concentration (EMC), and pollutant loading 

Surface water discharge 

 

Equation 2-1 

𝑸𝟏 = (𝑯𝒊(𝟏 + 𝑯𝒊)
𝑾𝒊

𝟐 𝑽𝒊 

where Wi is the distance to measurement points along the transect, Vi is stream velocity, Hi is 

water depth, and i is the subarea dimension, which is typically 20–25 measurements across the 

stream width. 

 

Equation 2-2 

𝑸 = 𝑸𝒊 = 𝑨𝒊 𝑽𝒊 

where Vi is stream velocity and Ai is the integrated stream area. 
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EMC (event mean concentration) Pollutant export equations or EMC values are fundamental 

and effective approaches used in water quality assessment for examining changes in stream 

chemistry during rainfall events (Lin 2004, Hu and Huang 2014). EMC is the total loading 

divided by the total discharge volume for a storm event. EMC is defined as; 

 

Equation 2-3 

𝑬𝑴𝑪 =
𝑴
𝑽 =

𝑪 𝒕 𝑸 𝒕
𝑸 𝒕

 

where C(t) and Q(t) are the concentration of a solute and runoff measured during a storm event, 

M is the mass, and V is the discharge volume, respectively. The EMC results in a flow-

weighted average and does not simply represent a time average of the solute concentration.  

 

Constituent loading Loading of nutrients to receiving waters is estimated by the product of 

EMC and surface water discharge. The EMC values are expressed as milligrams per liter (mg 

L–1) and can be used to calculate the pollutant load. Annual mean loading of pollutants was 

estimated as the total loading multiplied by the ratio of annual rainfall to total rain fall for the 

storm event. The annual total load of pollutants per area (km2) for each sub-catchment was 

estimated as the annual total loading divided by area of each catchment.   

2.3.5 Principal component analysis (PCA) 

PCA analysis was used as multivariate statistical technique to identify the most influential 

factors that contribute to NPS pollution effects in the catchment. The EMC data of TP, TN, 

NO3
–, BOD, COD, SS, and rainfall related factors (rainfall intensity (RI), amount (RA) and 

stream discharge) were used for the PCA analysis as explanatory variables. The PCA analysis 

produces a new variable set including information on the water quality data set. The analysis 
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provides the principal components as number of parameters used, their eigenvalues, and 

proportions.  

2.4 RESULTS 

2.4.1 Precipitation variations 

More than half of the annual precipitation is concentrated in the summer season (May to Sep.) 

based on 10 years of data (2002–2011) within the Haean catchment. In both study years (2009–

2010), over 70 % of annual precipitation amount occurred during each of the summer monsoon 

seasons (73 % in 2009 and 81 % in 2010, respectively; Fig. 2.2). The precipitation volume and 

rainfall intensity differed among studied rain event periods (Table 2.1 and Figure 2.2). The 

maximum intensity was 9.5 mm hr–1 during the 4th rain event in 2009 and overall, the intensity 

was stronger and the volume of rainfall for each event was greater in 2009 relative to 2010 

(Table 2.1). In case of the 2nd event in 2009 and the 10th event in 2010, the intensities and the 

amounts of precipitation between the two events were similar (2.7 mm hr–1 with total 118.0 

mm for the 2nd event and 2.7 mm hr–1 with total 117.0 mm for the 10th event, respectively; 

Table 2.1). 
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                                         Figure 2.2 Variations of hourly precipitation for 2 years (2009–2010) 

2.4.2 Land use changes 

For the 2 years between 2009 and 2010, significant land use changes were found in dry fields 

(mostly white radish and potato), rice paddy fields, orchards (mostly apple, grape, and peach), 

and ginseng crops throughout the catchment (Table 2.2 and Fig 2.3). Dry and rice paddy fields 

decreased from 16.97 % (10.67 km2) to 12.65 % (7.95 km2) and from 8.71 % (5.47 km2) to 

8.24 % (5.18 km2), respectively. On the other hand, more profitable orchards and ginseng farms 

increased from 0.32 % (0.20 km2) to 1.51 % (0.95 km2) and from 0.79 % (0.49 km2) to 2.57 % 

(1.59 km2) %, respectively in the catchment for the same 2 years (Table 2). Semi grid, which 

includes fallow land, also increased in the catchment from 11.53 % (7.24 km2) to 14.43 % (9.07 

km2). Previous studies have shown (Seo et al. 2014) that the spatial footprint of ginseng farming 

has increased the most from 0.69 % (0.03 km2) to 9.16 % (0.36 km2) of the watershed in the 

region of Site N, among all of the watersheds of the study streams and that orchards also 

increased from 0.01 % to 0.82 % in the same watershed (Table 2.2 and Fig.2.4).  
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              Table 2.2 Percentages of main land uses of Haean catchment in 2009 and 2010 

 
Site  Semi Paddy Dry Ginseng Orchard 

M 09’ 12.7	 9.9	 19.1	 0.9	 0.4	
10’ 15.8	 9.4	 14.4	 2.7	 1.7	

W 09’ 9.2	 4.2	 9.5	 0.1	 0.0	
10’ 12.1	 4.2	 5.5	 2.5	 1.0	

K 09’ 9.7	 14.1	 15.7	 0.7	 0.0	
10’ 13.4	 12.2	 11.2	 1.5	 1.8	

D 09’ 22.2	 19.3	 29.6	 1.0	 0.0	
10’ 26.6	 17.9	 24.6	 4.8	 0.1	

N 
09’ 18.3	 7.1	 24.9	 0.7	 0.0	
10’ 21.9	 6.8	 18.9	 9.2	 0.8	

C 
09’ 9.8	 6.7	 21.2	 0.0	 0.2	
10’ 11.5	 6.7	 18.6	 3.5	 0.4	

S 
09’ 10.7	 10.6	 16.7	 1.2	 0.1	
10’ 12.7	 10.0	 13.4	 1.9	 2.7	

Total 
09’ 11.5	 8.7	 17.0	 0.8	 0.3	
10’ 14.4	 8.2	 12.6	 2.5	 1.5	
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                           Figure 2.3 Land use changes in Haean catchment for 2 years (2009–2010) 
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                      Figure 2.4 Land use changes in a watershed of Site N for 2 years (2009–2010) 

2.4.3 Variations of water quality parameters  

For this study, we sampled each of the stream sites during non-monsoon periods monthly and 

11 times during storm events, respectively. During dry (non-monsoon) period, no significant 

variations of TN, NO3
–, COD, and BOD were evident in either of the years, whereas TP and 
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SS varied widely at all of the sampling sites. At Site N, the average values of TN, NO3
–, and 

BOD were 5.1 ±0.7 (n=44), 4.5 ±0.6 (n=41) and 1.0 ±0.6 (n=48), respectively while the annual 

averages of SS and TP were 84.2 ±302.1 (n=48) and 78.1 ±125.2 (n=47) with wider ranges of 

changes (Fig.2.5).  
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Figure 2.5 Average concentrations of biochemical oxygen demand (BOD), chemical oxygen demand (COD), total 

nitrogen (TN), nitrate (NO3
–), suspended solid (SS), and total phosphorus (TP) at Site N during dry seasons for 2 

years (2009–2010) 

 

Throughout the rainy season, the concentrations of pollutants varied during all of the rainfall 

events. For the 1st precipitation event in 2009, the average concentrations of SS, TN, and TP at 

Site M (the outlet of the Haean catchment) were 2,934 (range 288–12,115) mg L–1, 2.8 (range 

1.8–3.9) mgN L–1, and 1.2 (range 0.1–3.2) mgP L–1, respectively (Fig. 2.6). The average 

concentrations of BOD and COD were 1.3 (range 0.1–2.9) mgO2 L–1 and 15.4 (range 6.2–23.3) 

mgO2 L–1, respectively during the same event (Fig. 2.6). Similar variations were found at Site 

N, in which the average concentrations of SS, TN, and TP were 3,187 (range 400–11,440) mg 

L–1, 2.9 (range 1.6–4.5) mgN L–1, and 1.4 (range 0.4–3.2) mgP L–1 for the same event, 
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respectively (Fig. 2.7). The other studied streams showed similar patterns of concentrations for 

most of the parameters with the exception of TP, which remained below 2 mgP L–1 at the other 

sites. The average concentrations of SS, TN, and TP at Site D, in which the watershed area is 

smallest (1.45 km2), were 2,641 (range 81–13,410) mg L–1, 2.7 (range 1.6–5.7) mgN L–1, and 

1.0 (range 0.1–2.8) mgP L–1. In Site C, which has the second smallest watershed area (2.01 

km2) among all of the study sites, the concentrations were 1,794 (35–6,688) mg L–1, 2.1 (1.7–

3.3) mgN L–1, and 1.0 (0.1–3.6) mgP L–1, respectively for the 1st event in 2009.  
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Figure 2.6 Variations of water quality parameters (turbidity, TN, nitrate, TP, DIP, and precipitation) at Site M 

during the 1st rain event 
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Figure 2.7 Variations of water quality parameters (turbidity, TN, nitrate, TP, DIP, and precipitation) at Site N 

during the 1st rain event 

 

The maximum concentration of SS at Site K was 18,150 mg L–1 for the 1st rain event and was 

the highest concentration of SS among the measured SS concentrations in all of the study 

streams in the catchment in 2009. The average TP concentration for the 1st rain event at the 

Site W was 0.9 mgP L–1, which is the lowest concentration for the event in 2009. For the fourth 
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event in 2009, the average concentrations of SS, TN, and TP peaked in all of the streams, with 

the exception of Site W. The average concentrations of SS, TN, and TP at the Site W were 

2,796 (156–8,155) mg L–1, 2.4 (1.1–3.7) mgN L–1, and 1.3 (0.1–4.6) mgP L–1, respectively. 

The 5th rainfall event with the most intense precipitation caused the maximum average 

concentrations of the SS, TN, and TP, as well as BOD and COD at all study sites in 2010. The 

average concentrations of SS, TN, and TP at Site M were 1,073 (60–3,795) mg L–1, 5.0 (3.3–

7.2) mgN L–1, and 1.3 (0.3–5.2) mgP L–1, respectively. BOD and COD were 9.6 (3.0–16.5) 

mgO2 L–1 and 20.6 (2.2–55.2) mgO2 L–1, respectively during the 5th event. The patterns of 

variations for the each parameter showed similar variations during storm events between 2009 

and 2010. Especially, TP, SS, and Turbidity increased with increasing discharge and steadily 

decreased after rainfall cessation for both 2009 and 2010 years. However the variation in 

patterns of N concentrations (TN and NO3
–) differed during each event and no consistent 

patterns were observed for either of the years.  

2.4.4 EMC and pollutant loading 

EMC (event mean concentration) The EMCs of SS, TN, and TP at Site M were 3,804 mg L–

1, 3.4 mgN L–1, and 1.6 mgP L–1, respectively for the 4th rain event in 2009 (Table 2.3). The 

EMC of SS was higher at each of the study sites during the 4th storm event relative to the other 

rain events in 2009. At Site K, the highest EMC of SS (8,763 mg L–1) was recorded for the 4th 

rain event in 2009. At site S, which has a greater watershed area than the other sites, the EMC 

of SS (2,971 mg L–1) was lower than the smaller streams, in which the EMCs of SS were 3,787 

mg L–1 at Site D and 4,872 mg L–1 at Site C, respectively, for the 4th event. The EMCs of TN 

(2.5 mgN L–1) and TP (1.6 mgP L–1) were lower at Site W than the EMCs of TN and TP at site 

K (3.5 mgN L–1 and 2.5 mgP L–1, respectively) with similar watershed area for the same event. 

The EMC of BOD was highest at all study sites for the first rainfall event (5th rain event) in 
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2010. The EMC of BOD at site M was 9.8 mgO2 L–1 at the same time. Comparing the results 

of EMCs between all of the stream sites between 2009 and 2010, EMCs of SS and TP remained 

lower at all sites in 2010 while EMCs of TN and BOD increased over the 2 consecutive years. 

Of particular importance, an average EMC of SS at all of the streams drastically plunged in 

2010, compared to the average EMC of SS in 2009 (Table 2.3).  

 

      Table 2.3 Event mean concentrations (EMCs) at Site M during rain events (unit: mg L–1) 

Event 
No. BOD COD SS TN NO3

– TP 

1 1.0 16.15 2954 2.24 1.67 1.27 
2 2.3 16.77 1837 2.08 1.56 1.37 
3 2.0 16.56 1587 1.76 1.53 0.81 
4 8.7 24.76 3804 3.43 1.37 1.62 
5 9.8 20.92 1281 5.08 2.52 1.45 
6 4.0 10.97 304 3.90 2.78 0.49 
7 4.6 13.19 427 3.77 2.68 0.46 

8 5.1 16.40 661 3.54 2.48 0.71 

9 2.1 6.36 738 3.04 1.76 0.95 

10 3.2 8.96 332 3.16 2.05 0.46 

11 2.8 6.80 313 3.25 1.80 0.48 

 

Areal pollutant loading throughout stream watersheds in the catchment Overall, the total 

areal loads of SS and TP in 2009 were higher relative to 2010 (Table 2.4). The areal loads of 

SS and TP at Site M were 1,148,377 kg km–2 and 558 kgP km–2, respectively in 2009 and 

169,526 kg km–2 and 209 kgP km–2, respectively in 2010. The total loads of SS and TP at Site 

D were the lowest among the study sites with total SS and TP loads of 762,641 kg km–2 and 

379 kgP km–2, respectively, in 2009 and 138,284 kg km–2 and 157 kgP km–2, respectively, in 

2010. Site K transported the most SS, N, and P into Site M among all of the streams in the 

catchment. The loads of SS, TN, and TP were lower at Site W than the amount of loads at Site 

N, although the area of Site W watershed was bigger than the watershed area of Site N. The 
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calculated annual load per total watershed area, based on the rainfall ratio between the 2 years 

indicated that loads of all parameters were higher in 2009 than in 2010 (Table 2.4). 

 

Table 2.4 Areal loadings of pollutants (BOD, COD, SS, TN, and TP) at study sites during rain events (unit: kg 

km–2 yr–1) 

Site  BOD COD SS TN TP 

M 
09’ 1496	 8246	 1148377	 1056	 558	
10’ 1250	 3529	 169526	 1072	 209	

W 
09’ 1404	 7384	 901661	 643	 446	
10’ 613	 2472	 103351	 566	 106	

K 
09’ 1425	 6430	 2377372	 931	 629	
10’ 893	 3195	 153741	 968	 163	

D 
09’ 1320	 4430	 762641	 654	 379	
10’ 701	 2269	 138284	 585	 157	

N 
09’ 1768	 6404	 2172759	 1397	 850	
10’ 981	 3055	 258560	 979	 185	

C 
09’ 2386	 15281	 1873577	 1170	 1100	
10’ 1218	 3819	 233318	 1263	 238	

S 
09’ 1450	 4267	 481667	 580	 320	
10’ 500	 1435	 73204	 563	 96	

Annual 
loads 

09’ 28219	 131568	 24380657	 16134	 10741	
10’ 19616	 63021	 3601173	 19109	 3676	

 

2.4.5 Statistical analysis - principal components analysis (PCA) 

For this study, the first two principal components (PC1 and PC2) showed eigenvalues higher 

than 1 (2.04 and 1.48, respectively) from the PCA analysis with the data set (Table 2.5). When 

eigenvalues are higher than 1, the corresponding components are considered as significant. The 

two components explained more than 70 % of total variance of our data set (Table 2.5). 

Therefore, PC1 and PC2 were the only datasets used for further interpretation. PC1 was 

comprised of EMC of SS, COD, and TP as well as rainfall indices (rainfall intensity (RI) and 

rainfall amount (RA)) while PC2 incorporated contributions from TN, NO3
–, and BOD (Fig. 

2.8). Therefore, PC 1 can be regarded as a factor representing high loading of TP, SS, and 

rainfall parameters and PC2 can be defined as the component that represents negative nitrogen 
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parameters and BOD loadings. The events in 2009 were all located in the upper right section 

with values higher than the PC1 axis and the events in 2010 were located in the lower left 

section with values less than 0. The final 3 events (from 9th to 11th event) all located in the 

upper left quadrant indicating lower values in the PC1 axis and higher values in the PC 2 axis 

(Fig. 2.8).  
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           Table 2.5 Results of principal component analysis with water quality parameters 

                                (SS, TP, TN, NO3
–, BOD, COD, rainfall intensity, and rainfall amount) 

 PC 1 PC 2 
Eigenvalue 2.04 1.48 
Proportion 0.46 0.24 

Cumulative portion 0.46 0.71 
 

Loadings 
Parameters PC 1 PC 2 

SS 0.41 0.03 
TP 0.42 –0.19 
TN –0.03 –0.63 

NO3
– –0.24 –0.44 

BOD 0.26 –0.45 
COD 0.36 –0.26 

 

          Figure 2.8 Loadings of two principal components from water quality parameters during rain events 

2.5 DISCUSSION 

2.5.1 Characteristics of agricultural NPS pollution in the catchment  

The average concentration of SS and TP of each stream under dry conditions was much lower 

than during rain events (Table 2.6), suggesting that primary transport processes are 
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rainfall/runoff flushing of terrestrial sources (Su et al. 2016, Cho et al. 2016). In general, the 

average concentrations of BOD in all of the study streams in the Haean catchment during dry 

conditions was within the management guidelines as suggested by the Korean MoE (Table 

2.7). However, the average concentration of TN in all of the study streams was higher than the 

criteria of TN for lake water quality (Table 2.6 and 2.7).  

 

Table 2.6 Average concentrations (with standard deviations) of BOD, COD, SS, TN, and TP during dry seasons 

Site  BOD COD SS TN TP 

M 
avg. 1.4	 3.1	 22.8	 4.9	 65.3	
s.d. 0.5	 1.9	 42.8	 0.9	 67.2	

W 
Avg. 0.9	 2.9	 16.5	 2.8	 29.9	
s.d. 0.5	 3.3	 71.5	 0.8	 88.3	

K 
Avg. 1.1	 2.5	 23.9	 4.4	 47.2	
s.d. 0.6	 1.8	 51.2	 0.7	 59.2	

D 
Avg. 1.0	 3.0	 13.6	 4.0	 29.1	
s.d. 0.6	 2.5	 21.6	 0.8	 35.9	

N 
Avg. 1.0	 3.0	 84.2	 5.1	 78.1	
s.d. 0.6	 3.3	 302.2	 0.7	 125.2	

C 
Avg. 2.0	 4.3	 19.2	 3.3	 61.5	
s.d. 1.4	 3.1	 67.1	 0.9	 82.4	

S 
Avg. 1.2	 2.6	 36.8	 4.4	 55.0	
s.d. 0.8	 1.7	 112.5	 1.0	 113.8	

 

                Table 2.7 Classification of water quality levels by Korean standards 

Notch For streams For lakes 
	 BOD SS TP TN 
1	 ≤	1	 ≤	25	 ≤	0.01	 ≤	0.2	
2	 ≤	3	 ≤	25	 ≤	0.03	 ≤	0.4	
3	 ≤	6	 ≤	25	 ≤	0.05	 ≤	0.6	
4	 ≤	8	 ≤	100	 ≤	0.10	 ≤	1.0	
5	 ≤	10	 No trash ≤	0.15	 ≤	1.5	

 

The fertilizer seemed to cause the high N concentration in the streams as reported in many 

studies in agricultural areas (Bao et al. 2006, Giri and Qiu 2016). Of particular importance, SS 

and TP concentrations were much higher (with wider variability) than the Korean water quality 

standard during dry periods at many locations (Table 2.6 and Table 2.7). It appears that 



 

65 

 

government-driven treatment facility construction to reduce turbidity in surface water, which 

is observed since 2009, ironically increased soil disturbance over the catchment. In terms of 

nutrients and sediment concentrations in stream water during precipitation events, the quality 

throughout stream sites in the Haean catchment were generally lower than water quality results 

from previous studies, which were conducted in the other main river systems in Korea and also 

at the same stream as Site M (Kim et al. 2007a, Jung 2012). Three sites, located in the forest 

area of Gum River watershed in Korea, displayed lower SS, TN, and TP concentrations than 

the Haean sites during storm events (Kim et al. 2007a). Two streams located in the Lake 

Soyang watershed (Jawoon and Naerin streams) displayed lower SS and TP concentrations 

compared to the monitoring locations of this study, although TN was similar (Jung et al. 2009). 

The concentration of TP at Site N was higher than the TP concentration at other monitoring 

locations, which seems the result of the government driven construction in the watershed of 

Site N. The watershed of Site N was identified as the primary subject area for turbid water 

control therefore it seemed that attached-P onto soil is exported into streams during the 

construction period. Site D and C extended over a relatively smaller area of the watershed than 

the remaining watershed areas in the catchment and showed lower average concentrations of 

SS, TN, and TP than those in the rest of the monitoring sites during rain events. During the 4th 

event, which produced the highest volume and intensity of rainfall during the study period, all 

parameters peaked with the highest concentrations at all steams except for Site N, clearly 

showing the rainfall impact on pollutant exports (Randall et al. 2001, Delpa et al. 2011). 

However, the rainfall effect seems mitigated by the land use at Site W, of which the watershed 

is dominated by forest. The forest land use mitigates the amount of exports from the watershed 

(Beaulac and Reckhow 1982, Poor and McDonnell 2007).  

During all storm events over the 2 years of 2009 and 2010, the average EMCs of SS, TN, TP, 

and BOD were all the lowest at Site W among the monitoring locations, indicating that forest 
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land use exports less nutrients and soil into streams during runoff (Zhuang et al. 2015). There 

was no clear difference among EMCs of pollutants based on the stream watershed sizes but the 

EMCs of TP and SS remained lower at Site W than the EMCs at Site K, which had a similar 

watershed area as Site W. These results again indicate that forested land use can potentially 

mitigate soil erosion and phosphorus exports (Peterjohn et al. 1984, Wang et al. 2014, Yao et 

al. 2016). Comparing the average EMCs of pollutants at the outlet site (Site M) between 2009 

and 2010, the average EMC of TN increased while the average EMCs of TP and SS decreased. 

We hypothesize that the decreased intensity of rainfall in 2010, reducing soil erosion processes, 

is one of the possible reasons for the decreased SS and TP, which are usually exported 

concurrently from agricultural fields (Kim et al. 2014). Additionally, the government-driven 

construction of new facilities to diminish turbid water generation in the catchment seemed to 

decrease soil loss from the catchment. However, the extent of SS export is still higher than the 

export from other stream sites (Table 2.8), therefore consistent soil management protecting 

erosion, such as reducing soil inverting and mountainous soil disturbance for new crop land, 

should be implemented (Baumhardt et al. 2015).  
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Table 2.8 Event mean concentrations (EMCs) of BOD, COD, SS, TN, and TP of streams in South Korea (literature 

reviews) 

Site Area 
(km2) 

Primary land 
use (%) BOD COD SS TN TP Sources 

Imsil 
stream 

- Forest (over 
70 %) 

2.7 6.9 75.9 2.7 0.19 
Kwak et 
al. 2008 Seomjin 

River 2.6 5.1 46.5 2.3 0.13 

3 sites in 
Seomjin 

River  

60.2
8 

Forest 3.11-5.74 3.4-12.7 2.1-30.0 0.9-2.9 0.02-0.13 
Park et al. 

2005 Paddy 8.2-15.5 15.6-33.4  3.2-7.2 0.21-.42 
Dry field 4.6-11.8 6.7-17.6  2.3-3.7 0.03-0.44 

Sutong 3.38 Forest (99.5) - - - 0.9 0.28 

Kim et al. 
2007 

Sansuchon 2.85 Forest (94.2) - - - 0.9 0.16 

Daegokcho
n 4.97 

Forest (82.3 %) 
Crop & rice 

paddy (14.8 %) 
- - - 2.1 0.62 

Sinheung 27.3
7 

Forest (44.8 %) 
Rice paddy 

(35.9 %) 
- - - 4.9 1.36 

2 sites in 
Sangju 
basin 

0.47 Paddy and forest 
(58.6 %) 26.0 - 11.1 - - Choi et al. 

2011 0.54 Paddy and forest 
(55.5 %) 22.6 - 17.6 - - 

Up & down 
streams in 
Kokseong 

River 

4.29 Forest (100 %) 0.6 1.5 1.7 0.03 0.48 
Yang 2006 

30.7
8 

Forest (71.9 %) 
Paddy (12.4 %) 2.9 4.8 63.5 0.18 1.67 

Jawoon 
stream - 

Forest (85.6 %) 
Agricultural area 

(9.6 %) 
1.8  207 3.94 0.27 Jung et al. 

2009 

Soyang 
River 2004 

- Mostly forest 

1.4 8.9 199 1.6 0.20 

Kim and 
Jung 2007 

Soyang 
River 2005 0.8 4.2 303 2.1 0.103 

Soyang 
River 2006 1.7 10.1 531 2.4 0.244 

Mandae 
stream 2004 (Same site as the Site M 

in this study) 

1.32 11.8 436 2.8 0.363 
Jung 2012 Mandae 

stream 2006 1.57 8.97 387 2.68 0.338 

Site M 2009 This study  3.5 18.6 2545 2.4 1.27 This study 
Site M 2010 4.5 11.9 579 3.7 0.71 

 
 
The highest EMCs of BOD in all of the sites during the 5th event can be explained by a “first 

flush” effect (Kim et al. 2007b, Nguyen et al. 2010). The antecedent non-rainfall period was 

the longest at that time allowing for accumulation of biodegradable OM sources on the soil 

(Guggenberger et al. 1998, McLaughlin and Kaplan 2013). Perhaps, the most interesting results 

were found in the variability of BOD and COD, which display inverse relationships over the 

studied 2 years. BOD increased in the watershed, which can be interpreted as elevated 

biodegradable organic matter (i.e. manure) within the catchment (Haynes and Naidu 1998). On 

the other hand, we hypothesized that non-biodegradable (recalcitrant) organic matter (OM) was 
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decreased in 2010 relative to 2009, based on the decreased EMC of COD. The results suggest 

that lower OM is exported from the forest area, which usually consists of forest detritus, leaf 

litter, and woody debris that containing lignin and cellulose substance, due to less intensive 

rainfall in 2010. In comparison with EMCs investigated in previous studies in Korea and 

overseas, the EMCs for SS and TP were much higher than the other localities, regardless of 

rainfall intensity and land use distribution (Table 2.8 and Table 2.9). The EMC of TP at Site 

M in this study was much higher compared to streams in other regions, which displayed similar 

summer monsoonal rainfall characteristics such as rainfall intensity and periods in Korea (Park 

et al. 2005, Kim et al. 2007, Kwak et al. 2008, Choi et al. 2011, Yang 2006, Jung et al. 2009, 

Kim and Jung 2007, Jung 2012; Table 2.8). Also comparing to results from locations in other 

countries, the EMCs were higher (Hu and Huang 2014, Sharma et al. 2012, Gentry et al. 2007, 

Harper 1998, McKergow et al. 2003; Table 2.9). These results imply that the runoff into 

streams throughout the Haean catchment transported a significant amount of suspended 

sediment with attached P into the receiving reservoir, Lake Soyang. The effects of turbid water 

inflow are well studied in the Soyang reservoir. The turbid water inflow deteriorated water 

transparency and the high amount of P, which is the primary limiting factor in most inland 

waters of Korea, also prompted eutrophic conditions in the reservoir (Kim and Jung 2007).   
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Table 2.9 Event mean concentrations (EMCs) of BOD, COD, SS, TN, and TP in streams in oversea countries 

(literature reviews) 

Site 
  

Watershed 
area 

(km2) 

Primary 
land use 

(%) 
BOD COD SS TN TP Sources 

Siheshui 
watershed China 131 Agriculture 

and forest 3.14 5.75 58.3 3.52 0.26 
Hu and 
Huang 
2014 

River 
Yamuna India Agricultural 

runoff samples 21.8 73.5 77.6 15.3  
Sharma 

et al. 
2012 

Embarras 
River 

(1997-2003) 

USA 

481 Agriculture 
(91 %)     0.14-

0.35 

Gentry 
et al. 
2007 

Lake Fork 
watershed 

(1998-2003) 
365 Agriculture

(91 %)     0.11-
0.21 

Big Ditch 
watershed 

(2001-2003) 
101 Agriculture 

(86 %)     0.19-
0.38 

Florida USA Runoff 
samples Agriculture 3.8  55.3 2.32 0.34 Harper 

1998 

North 
Willyung 

catchment 
Australia 5.9 Cattle   9.9 

Med 
2.51 
Med 

0.48 
Med 

McKerg
ow et al. 

2003 

 

Figure 2.9 Scatter plots and correlation coefficients among water quality parameters at all study sites during rain 

events for 2 years (2009–2010) 
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The relationship in EMCs of TN and NO3
– at all monitoring locations were relatively well 

correlated with a correlation coefficient of 0.65 (figure 2.9). However the NO3
– and TN 

relationship at Site N was not evident with a lower correlation coefficient (0.37; Figure 2.10) 

and the patterns showed high temporal variations of TN and NO3
– in some of the investigated 

rain events (Figure 2.11). It appears that there was a huge loss of organic N from Site N and 

the high correlation coefficient between TN and BOD, which also can explain biodegradable 

organic matter amounts such as manure and organic fertilizer, supports this assumption (Figure 

2.10). However, the patterns differed temporally, which can perhaps be attributed to the effect 

of different time scales of organic fertilizer application. 

 

Figure 2.10 Scatter plots and correlation coefficients among water quality parameters at Site N during rain events 

for 2 years (2009–2010) 
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                      Figure 2.11 Variations of TN and nitrate concentrations at Site N during 8th rain event 

2.5.2 Monsoonal climate effects on the watershed 

Similar results were reported in other monsoonal climate areas (Jain 2002, Wu et al. 2012). 

Especially, the losses of TP and SS into the streams were influenced most by the rainfall among 

the water quality parameters (Fraser et al. 1999) and the losses of TP and SS is generated mostly 

during the summer monsoon season in Korea (Chun et al. 2010, Park et al. 2010). In 

combination with crop cultivation under high slopes in the area, the effect of monsoonal rainfall 

is amplified, producing higher annual SS loading relative to other SS loss estimations in Korea 

and other countries (Montgomery 2007, Arnhold et al. 2014). Comparing the export patterns 

of EMCs according to differences in the storm event intensities, the exports rates of all of the 

investigated pollutants were consistent with rainfall intensities that displayed high correlation 

coefficients (Fig. 2.9). This is commonly observed in studies that focused on agricultural NPS 

pollution exports, especially in monsoonal climate areas. However, the EMCs of TN and NO3
– 

were not strongly correlated with the rain factors (Figure 2.9). It appears that the variations of 

N parameters during storm events depend on a variety of factors, including fertilizer application 

period, manure production, and N loss to the air through denitrification processes, compared 

to the other investigated parameters (Jenkinson 2001). 
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The results of our PCA analysis showed the relationship of monsoonal rainfall on SS and TP 

exports to streams. The PC1, which explained 46.4% of variance and is positively influenced 

by TP, SS, and rainfall factors (Table 2.5), displays a positive relationship with the relatively 

intense rain events (all events in 2009 and also the 5th event in 2010) (Fig 2.8).  

2.5.3 Land use change effect 

To reflect the increase in ginseng farming in the study area, ginseng was most commonly 

observed in the Naedong watershed (Site N). The fact that a project to reduce stream turbidity 

has been focused in the area around Naedong stream area explains the increase in ginseng 

cultivation in this area. Comparing the EMCs of SS and TP between 2009 and 2010, the EMCs 

drastically decreased at Site N and also at the main outlet stream. More specifically between 

the second and the 10th rainfall event, in which the amounts and the intensities of rainfalls were 

similar (Table 2.1), the EMCs of TP and SS at Site N decreased significantly, which suggests 

that the land use change influenced sediment and P exports in the site (Table 2.10).  

                   

Table 2.10 Comparisons with EMCs of pollutants in between the 2nd and the 10th event 

Site BOD COD SS TN NO3
– TP 

M +40.5 -46.6 -81.9 +51.7 +31.5 -66.4 
W –12.3 –50.7 –89.8 +26.8 –10.8 –80.2 
K –17.1 –24.3 –94.7 +53.2 +46.5 –76.8 
N +6.3 +9.2 –70.3 +5.1 –5.2 –36.6 
C +10.6 –56.5 –79.4 +79.2 +22.3 –63.0 
S –48.9 –37.5 –88.1 +41.6 +32.9 –65.5 

 

 

We also examined the relationship between areal pollutant exports per rainfall amounts for 

each year at Site N to identify the land use effects on pollutant export with offsetting the rainfall 

amount effect between 2 years. BOD was decreased from 755 ±488 (n=4) kg km–2 mm–1 to 374 

±57 (n=7) kg km–2 mm–1 while SS decreased dramatically from 434,954 ±260,085 (n=4) km–2 
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mm–1 in 2009 to 32,571 ±31,067 (n=7) km–2 mm–1 in 2010 (Fig.2.12). The effect of the land 

use change over the entire watershed also showed a relationship between each rain event (from 

the 1st to the 11th events) and areal loadings of SS and TP per rainfall amounts at Site M for 2 

years (Fig 2.13). SS and TP clearly decreased in 2010, while the other water quality parameters 

(BOD, COD, TN and NO3
–) showed no clear differentiation between 2009 and 2010. The 

results imply that mitigating soil disturbance and erosion through land use changes, efficiently 

reduces P export (Ouyang et al. 2014). However, the EMCs of NO3
– and TN increased 

minimally, showing that land use change did not mitigate those parameters because these 

pollutants are less related to soil erosion processes relative to TP and SS.  
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              Figure 2.12 Areal loading averages of BOD and SS per rainfall amounts in 2009 and 2010 
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       Figure 2.13 Variations of areal loadings of BOD and SS per rainfall amounts during rain events for 2 years 
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2.6 CONCLUSIONS 

The Haean catchment is located in an upstream area of the Lake Soyang watershed that supplies 

metropolitan drinking water. Following rain events, the Haean catchment discharges turbid 

water containing elevated nutrient concentrations resulting from non-point sources. The mean 

concentrations of SS, TN and TP at Site M (the catchment outlet stream) were much higher 

than observed in other streams in Korea and locations overseas, indicating that the streams in 

the headwater catchment transport elevated amounts of sediment and nutrient to downstream 

areas. During the dry season, these headwaters do not appear to impose a substantial impact on 

water quality; however, monsoonal rainfall events increased the NPS discharge impacts on 

stream water quality. A government implemented project altered land use in the catchment 

dramatically since 2000s. As result of this project, many turbid water abatement facilities were 

constructed and less detrimental land use practices have been recommended, with many of 

these best management practices (BMP) initiated within the past few years. We compared 2 

events (the 2nd and the 10th storm events), in which the rainfall amounts and intensities were 

similar, to evaluate the land use change impact to pollutant loads in the catchment  and  the 

results indicated that the land use change resulted in reduced amounts of sediment and TP 

transports to the stream sites. However, BOD and TN increased, which can be expected as the 

parameters are less related to soil erosion than TP and SS. BOD and TN are more related to 

other management factors, such as the annual spatial changes in manure application over the 

catchment and the temporal variability of fertilizer applications. In the future, more specific 

studies on manure and fertilizer applications are suggested to identify the role these processes 

have on headlands water quality and transport.  
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3.1 ABSTRACT 

Sediment processes in lakes may affect water chemistry through the internal loading of 

phosphorus, ammonia, and sulfides released under anoxic conditions. Lake Soyang is a deep 

warm monomictic reservoir with a dendritic shape, located in the Asian summer monsoon 

region, South Korea. During summer, the lake is stratified and receives a large nutrient input 

via storm runoff, which forms a turbid intermediate layer with high concentrations of 

suspended particles. The lake water, the main inflowing stream (the Soyang River), bottom 

sediment, and porewater of the lake sediments were studied over a 2-year period (2012–2013). 

After intensive monsoon rain events, particulate organic carbon (POC), total phosphorus (TP), 
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and turbidity were high in the inflowing water (C: 1.21 mg L−1 in June 2013) and in the 

metalimnion (2.8 mg L−1, 17.6 µg L−1, and 58.5 NTU, respectively in July 2013). Higher 

concentrations of iron (Fe) and manganese (Mn) were also associated with the turbid 

intermediate layer (37 and 8 µg L−1, respectively in July 2013). During the summer 

stratification period, oxygen started to deplete in the hypoliminion (down to 0.5 mg L−1 in 

September 2013), and sediment became anoxic, showing negative oxidation redox potential 

(ORP) in core samples. Diffusion of dissolved inorganic P and ammonia from sediment to the 

water column can be substantial, considering the concentration difference between the 

porewater and hypolimnetic water. Fe and Mn were abundant in the sediment porewater at the 

dam site, implying inorganic nutrients and minerals are well transported along the 60 km long 

lake axis by the density current of storm runoff. Sulfate and reduced sulfur were larger in the 

porewater of the top sediment than in the lower layer of the sediment core (below 10 cm). The 

results show that substantial amounts of inorganic nutrients and minerals are supplied to the 

lake by storm runoffs during monsoon and distributed through the lake by a density current, 

controlling the material cycle and flux at the sediment surface. 

 

Key words: artificial reservoir, Lake Soyang, monsoon, porewater, sediment  

3.2 INTRODUCTION 

Lake sediments are frequently studied to understand and determine changes of water quality 

and internal processes occurring within lakes (De Boer 1994, Marce et al. 2006, Mushtaq et al. 

2015). Lake sediments are used to derive historic changes of catchment processes such as 

previous changes in land use and agricultural activities (Morellón et al. 2011, Giguet-Covex et 

al. 2014) and also impact on water quality through internal loads of nutrients and toxic 

materials (Perkins and Underwood 2001, Liu et al. 2013). Artificial lakes are increasingly 
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created for agricultural and hydroelectric purposes worldwide, especially in many Asian 

countries (WCD 2000, Gupta et al. 2012), including South Korea in the monsoon climate area 

(An and Jones 2000, Bae et al. 2008).  

Reservoirs constructed in the middle reach of a river system generally have a higher ratio of 

watershed area to reservoir surface area than natural lakes of comparable size, resulting in 

relatively larger inputs of carbon and nutrients (Knoll et al. 2013). Nutrients and eroded soils 

from agricultural non-point sources are major problems for impounded water quality 

management in many places (Heathcote et al. 2013, Michalak et al. 2013). Typically non-point 

source pollution increases when intensive cultivation is combined with monsoon rainfall 

events, resulting in large amounts of pollutants transported by heavy runoff to receiving water 

bodies (Hu and Huang 2014). 

Phosphorus (P) is typically limiting nutrient in freshwater and causes eutrophication by 

promoting massive algal growth (Correll 1999, Wetzel 2001, Xu et al. 2015). P is easily 

adsorbed onto soil particles in the watershed and mobilized through soil erosion and enters 

lakes or reservoirs via storm runoffs or inflowing streams (Ekholm and Lehtoranta 2012). After 

entering lakes, P can be released from the sediment to the water column, especially under 

anoxic conditions, enhancing eutrophication in lakes (Søndergaard et al. 2003, Kangura et al. 

2013, Martins et al. 2014, Nikolai and Dzialowski 2014, Kowalczewska-Madura et al. 2015, 

Tang et al. 2015). Additionally, toxic materials such as ammonia (NH4
+) and dissolved sulfides 

(S2−) are released under anoxic conditions, depending on the concentrations of nitrogen (N), 

sulfur (S), and decomposable organic matter (Besser et al. 1998, Holmer and Storkholm 2001), 

and can harm the aquatic ecosystem (Wang and Chapman 1999). Thus, the internal load from 

lake sediment processes is considered an important factor in lake water quality management.  

Previous Lake Soyang studies investigated its trophic state, phytoplankton–zooplankton 

successions, and C dynamics (Kim et al. 1985, 2000, 2001, Lee et al. 2013), but we found no 
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study that focused on the interaction between lake water quality and sediment processes in 

artificial reservoir systems located in the monsoon climate. In this study, the effects of internal 

sediment processes on the water quality was studied in a deep, stratified reservoir (Lake 

Soyang, South Korea) by measuring the vertical and horizontal distribution of nutrient contents 

in the sediment along the main axis from the dam site to the tributary inlet site. We also assessed 

the external input of nutrients via monsoon runoff of the main inflowing river. The objectives 

of this study were to (1) assess the effects of inorganic nutrient input from intensive rainfalls 

on the lake sediment process, and (2) evaluate the potential effects of sediment processes by 

determining the distribution of elements in the bottom sediment and porewater of the lake 

sediments.   

3.3 STUDY SITE  

Lake Soyang was constructed in 1973 on the North Han River system for electrical power 

generation and flood control and today serves as an important drinking water resource for the 

Seoul metropolitan area (Jo and Park 2010, Bartsch et al. 2014). It is the largest and deepest 

reservoir in South Korea, with a maximum depth of 120 m, a main axis length of 60 km (Kim 

et al. 2001), a mean width of the lake of only 0.5 km, and a typical dendritic shape (Fig. 3.1). 

The watershed (total area 2,703 km2; WAMIS 2003) of Lake Soyang is scarcely populated, 

mostly covered by forest (>85% of the watershed). It also includes small areas of cropland with 

increasingly intensive agricultural activities (Jung et al. 2012), and agricultural soil erosion has 

become a major source of suspended solids the lake (Shope et al. 2013). The Soyang River is 

the main inflowing stream to Lake Soyang, and most of the nutrients and organic matter are 

exported from the watershed during the summer monsoon season (May–Aug). The mean 

annual precipitation in the watershed is 1100 mm (WAMIS 2003), more than half of which 

occurs in summer, a season of episodic heavy rains (Hwang et al. 2003, Park et al. 2010). The 



 

88 

 

trophic state of Lake Soyang has varied over time. Although it was oligotrophic at the 

beginning of impoundment, it has become eutrophic following the input of nutrients from fish 

farming (Kim et al. 2001). The water quality and trophic state are currently improving, however 

(Seo et al. 2014), presumably due to the removal of fish farms. 
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                                      Figure 3.1 Lake Soyang watershed in South Korea (up) and study sites (down) 

3.4 METHODS 

Five sampling sites (St. 1–5 (yellow circles); Fig. 3.1) were selected along the main axis from 

the dam site (St. 1) to the upstream inlet site (St. 5) for collecting water and sediment. Lake 
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water samples were collected once a month in 2012 and 2013 at St. 1 at depths of 0, 2, and 5 

m, and at 10 m intervals below 10 m to the bottom. Water samples were also collected in the 

Soyang River on a monthly basis (inflow; Fig. 3.1). Core or grab-type sediment samples were 

collected with a gravity corer (UWITEC, Mondsee, Austria) and a grab sampler (Wild Co., 

USA) at each site before and after the summer monsoon period in both 2012 and 2013. 

Porewater samples were extracted by centrifugation from the sliced sediment core samples. 

Dissolved oxygen (DO), temperature, and turbidity were measured on site with a portable multi 

parameter probe (Hydrolab Quanta, Loveland, USA). On 2 additional occasions, vertical 

profiles of these parameters were measured at a 1 m depth resolution for detailed information. 

Water samples were filtered with glass fiber filters (Whatmann GF/F) for dissolved total P, 

organic carbon, nitrate (NO3
−), sulfate (SO4

2−), and other major and trace elements. Before 

filtration, total P (TP) of water samples was analyzed by the ascorbic method after persulfate 

digestion (APHA 2012). Filtered water samples were used to measure dissolved organic carbon 

(DOC) using a TOC analyzer (Shimadzu TOC 5000, Kyoto, Japan). Particulate organic C 

(POC) was measured by combusting the dried glass fiber filters using a Yanaco MT-5 CHN 

analyzer. NO3
−, SO4

2−, and chloride ion (Cl−) concentrations in the porewater samples were 

determined by the ion chromatography method (Metrohm modular IC system 762, Herisau, 

Switzerland). Iron (Fe) and manganese (Mn) concentrations in water samples were measured 

by inductively coupled plasma optical emission spectrometry (ICP-OES, Optima 3200XL, 

Perkin Elmer, Waltham, MA, USA). 

Sediment core samples were sliced with a customized core cutter device at 1, 2, or 5 cm 

intervals according to the visual identification of layers. Sliced samples were freeze-dried, and 

the contents of TP, Fe, total reduced inorganic sulfur (TRIS), and other elements, including 

aluminum (Al), calcium (Ca), potassium (K), and sulfur (S) were determined. Fe was analyzed 

after HCL extraction using the phenanthroline assay (Tamura et al. 1974) to differentiate ferric 
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(Fe3+) and ferrous (Fe2+) iron in the sediment samples. TRIS species (S2
2−, S2−, and S0) were 

extracted from sediment samples following chromium reduction (Canfield et al. 1986) and 

trapped as H2S in NaOH solution. Reduced S concentration was measured by the methylene 

blue assay method (Williams 1979) using a UV-VIS-photometer. Further elements in the 

sediment samples were measured by ICP-OES method after 1 N HCl extraction.  

3.5 RESULTS 

3.5.1 Seasonal changes in water quality parameters of lake and inflowing stream 

Vertical stratification The vertical variations of temperature, DO, and turbidity were 

measured on a monthly basis at the dam site (St. 1) in 2012 and 2013. The temperature varied 

between 5 and 30 °C, typical for a warm monomictic lake. The profiles of temperature in 

summer clearly showed a stable stratification in both years. DO was depleted at the 

hypolimnion, and the metalimnetic oxygen minimum was observed occasionally between 10 

and 20 m depth during the stratification period. DO (as O2) decreased to <4 mg L−1 in the 

bottom layer after the onset of stratification for both years. The DO depletion lasted until the 

end of September, with DO values <2.5 mg L−1 in 2012 and 2013 (Fig. 3.2 and 3.3).  
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           Figure 3.2 Vertical variations of temperature, DO, and pH in the Lake Soyang in 2012 
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           Figure 3.3 Vertical variations of temperature, DO, and pH in the Lake Soyang in 2013 
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The thermocline disappeared in winter, and the lake water was entirely mixed until the next 

stratification period. Turbidities were higher in the metalimnion (20–50 m depth) than in the 

other water layers in both summer monsoon seasons (Fig. 3.4). Based on average turbidity 

values, however, the turbidity of water in the metalimnion was different between the 2 survey 

years; the mean turbidity was only 1.1 ± 0.3 NTU in 2012 but was 15.9 ±11.7 NTU in 2013. 

The maximum turbidity of 58.5 NTU was observed at 30 m depth in July 2013 following 

intensive rainfalls. Turbidity varied in the same pattern as POC and TP (Fig. 3.4 and 3.5). 

  



 

95 

 

 
 

Figure 3.4 Records of daily precipitation in Lake Soyang watershed and seasonal variations of DOC, POC, 

turbidity, TN, and TP in a metalimnion (20−50m) of the lake for 2 study years (2012−2013)   
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Figure 3.5 Scatter plots with correlation coefficient values among water quality parameters in the metalimnion in 

2012−2013 

 

Water chemistry During our study period, the median POC in the inflowing water was 0.5 

mg L−1. The maximum concentration of POC in the Soyang River reached 2.1 mg L−1 after 

heavy rainfall in 2012. POC remained <1.0 mg L−1 in most other monthly observations (range 

0.04–0.96 mg L−1) but was notably higher during the monsoon season (2.1 and 1.2 mg L−1 in 

Jul 2012 and 2013, respectively). Two different forms of organic C were also measured in the 

lake at St. 1 on a monthly basis during the study period. POC and DOC were uniform in the 

whole lake water and at all depths except during the summer season, when they reached a 

metalimnetic maximum, as did turbidity. The POC profile showed the highest value at the 

hypolimnion (4.0 mg L−1), but it also showed a peak at the metalimnion (2.8 mg L−1) in July 
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after heavy precipitation of >430 mm within 8 days (8–15 Jul 2013; Fig. 3.4; Korean 

Meteorological Administration website; www.kma.go.kr). DOC, however, showed a smaller 

seasonal variation varying between 1.1 and 1.9 mg L−1.  

TP variation was associated with the variation of turbidity in both years. The annual averages 

of TP and TN were similar in both years (P: 7.7 ± 2.7 and 7.5 ± 2.5 µg L−1; N: 1.6 ± 0.2 and 

1.8 ± 0.5 mg L−1 in 2012 and 2013, respectively). TP in the metalimnion was much higher than 

in the other layers after monsoon rainfalls in July and August 2013 (17.6 µg L−1 at 30 m water 

depth; 19.5 µg L−1 at 40 m water depth, respectively; Fig. 3.4). 

Fe and Mn of the inflow stream and reservoir water were determined for summer season in 

2013. Concentrations of Fe and Mn in the inflowing water were >20 and 2 µg L−1, respectively. 

Fe and Mn concentrations showed 2 peaks, one in the metalimnion (17 ± 14 and 5 ± 3 µg L−1, 

respectively) and another in the hypolimnion (197 and 8585 µg L−1, respectively) in July 2013 

after heavy rainfall (Fig. 3.6). The concentrations of Fe and Mn were highest in the 

hypolimnion during the oxygen depletion phase after the onset of stratification (Fig. 3.3 and 

3.6).  
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               Figure 3.6 Distributions of Fe and Mn in Lake Soyang water during monsoon season in 2013 

 

3.5.2 Porewater and sediment analysis  

Porewater chemistry Oxidation redox potential (ORP) and pH and were measured with 

electrodes in core sediment samples at St. 1 in May and St. 5 in June. The pH remained virtually 

constant over depth, varying between 6.4 and 6.7 at St. 1 and 6.6 and 6.9 at St. 5; sediment pH 

was similar to the bottom water (6.6 and 6.9, respectively; data not shown). ORP indicated 

completely anaerobic conditions in the sediment samples. ORP decreased toward the bottom 

of sediment and was lower than −100 mV below 10 cm depth in both core samples (St. 1 and 

5; data not shown). Dissolved inorganic phosphorus (DIP) and NH4
+ concentrations of the 

porewater were measured at 2 cm resolution to determine the distribution of mobile forms of 

P and N. Both P and N showed an almost identical depth profile, with a maximum at 4 cm 
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depth (23.0 and 251.5 µg L−1, respectively) and decreased at the sediment surface (15.9 and 

150.6 µg L−1, respectively, at 2 cm depth). P and N increased again, however, deeper in the 

core (19.5 ± 5.0 and 201.1 ± 71.3 µg L−1, respectively; Fig. 3.7). Concurrently, the P and N 

concentrations of DIP and NH4
+ in the lake bottom water were 0.9 and 16 µg L−1, respectively 

(data not shown), much lower than the uppermost porewater of the sediment. Hence, large 

concentration gradients exist between the sediment porewater and the overlying bottom water.  

NO3-N- was depleted in all sediment samples from St. 1 to St. 5 (<0.2 mg L−1; Fig. 3.8). 

Concentrations of SO4
2− showed sharp gradients between 0 and 4 cm depth, with S ranging 

from 3.3 to 0.7 mg L−1
 and remaining constantly low in deeper zones. Furthermore, the 

concentrations of SO4
2− were lower (2.2 ± 1.2 to 1.1 ± 0.6 mg L−1) in the top sediment 

porewater (below 3 cm) at St. 1 after the monsoon than concentrations before the monsoon 

period. Chloride concentrations were on average 3.7 ± 0.8 and 3.0 ± 0.3 mg L−1 in the samples 

before and after the monsoon period, respectively. Dissolved concentrations of Fe and Mn were 

higher below 20 cm depth compared to the concentrations in the other depths in porewater of 

St. 1 sediment (Fig. 3.9). 

 
                   

               Figure 3.7 Distributions of DIP and ammonia in porewater samples of the core at St. 1 in 2013 
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Figure 3.8 Distributions of chloride, nitrate, and sulfate ions in porewater of sediments samples at St. 1 and St. 5 

in 2012 
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         Figure 3.9 Vertical profiles of Fe and Mn in porewater at St. 1 before and after monsoon season in 2012 

 

Sediment chemistry The average TP for all depths in the sediment core at St. 1 was 1.6 ± 0.1 

mg g−1. The amount of P decreased from the top to the bottom layers of the sediment. A strong 

gradient of TRIS existed between the top surface of the sediment and 4 cm depth, with 

concentrations decreasing sharply from 23.0 to 3.6 mmol g−1. Below 4 cm, TRIS concentrations 

further decreased and leveled off at an average concentration of 1.0 ± 0.1 mmol g−1 below 8 

cm. TRIS exceeded 20 mmol g−1 in the top sediment samples at St. 1 before and after the 

monsoon in 2012. TRIS in the deeper layers, especially below 10 cm, of the sediments was <5 

mmol g−1 (Fig. 3.10). The vertical distributions of TRIS in the sediment from St. 2 to St. 5 were 
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different from St. 1 (Fig. 3.10); the concentrations of TRIS were <5 mmol g−1 over the entire 

depth down to 30 cm. 

Solid phase Fe was determined as 2 forms (Fe2+ and Fe3+) in sediment cores from St. 1 to St. 5 

in 2012 (Fig. 3.11). St. 1 had the highest Fe contents of the 5 sampling sites, and the 

concentrations continuously decreased along the lake axis from the dam (St. 1) toward the 

upstream site (St. 5). More than 80% of Fe was in the ferric form at all depths and at all sites. 

Accordingly, the ratio of Fe2+ to Fe3+ was approximately constant from St. 1 to St. 5, despite 

substantial concentrations of TRIS and the differences in TRIS observed between the sites.  
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Figure 3.10 Vertical profiles of TRIS in sediment samples from St.1 to St. 5 before and after monsoon season in 

2012 
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            Figure 3.11 Fractions and amounts of Fe2+ and Fe3+ in sediments samples from St. 1 to St. 5 in 2012 

 

3.6 DISCUSSION 

3.6.1 Material input from the watershed during the summer monsoon season 

The median value of POC in the inflowing stream was much lower than the worldwide median 

value of POC in rivers (2.0 mg L−1); however, the highest POC values emerged after heavy 

rainfall in each year, stressing the relevance of POC loading during high flow. The ratio of 

DOC to POC was <1:1 in the metalimnion of the lake, much lower than data collected from 

other eutrophic lakes (6:1; Wetzel 2001). This low value indicates that intensive summer 

rainfalls cause a large amount of particulate organic matter to enter the lake via storm runoffs, 

which leads to higher POC concentrations in the lake, as reported earlier in Lake Soyang (Kim 

et al. 2000, 2009) and other reservoirs (Aryal et al. 2014). Moreover, a high amount of coarse 

woody debris (CWD), which is not included in POC measurements because of its large size 

(>2 mm), was observed floating on the surface of the lake during filed surveys after monsoon 

rainfalls. CWD may provide a high contribution to the C load of the lake water and of the 

sediment over the long term (Wipfli et al. 2007, Seo et al. 2008); therefore, also quantifying 

CWD input to the lake water body would be useful. Nevertheless, the observed POC 

concentrations compared well with previous measurements made at St. 1 (highest 

concentrations 2.4 mg L−1 in 1996: Kim et al. 2000; and ~3 mg L−1 in 2008: Kim et al. 2009), 
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and the seasonal and vertical variations coincided with the results of previous studies on POC 

distribution in this particular reservoir (Kim et al. 2000, 2009). We therefore calculated a C 

sedimentation rate based on the annual average of POC concentration in this study and a 

previously reported C settling velocity in the same reservoir (POC 0.9 m d−1 in 2009; Kim 

2009, unpublished data), yielding a POC sedimentation of 453 mg m−2 d−1. This result is similar 

to the C sedimentation rates in the other reservoirs but higher than in natural lakes (Teodoru et 

al. 2013, Clow et al. 2015).  

The ratios of DOC to POC varied over depths and seasons, possibly because of changes in 

stratification. High input of POC and TP caused by intensive rainfalls is a regular annual 

occurrence during the monsoon period in Lake Soyang (Kim et al. 1995, 2000). A previous 

study investigated the annual variation of input TP load into Lake Soyang for 16 years (1991–

2006), and the P load was highest (~1200 t yr−1) in 2006 during an intensive rainfall of the 

summer monsoon season (Kim and Jung 2007). This input is presumably amplified by the 

disturbances in forested areas and agricultural practices of overusing P fertilizer and frequent 

soil disturbances (Park et al. 2010). Consequently, a high load of P is deposited into the 

sediment in reservoir systems (Tang et al. 2015), a common occurrence in lake waters 

surrounded by intensively managed agricultural regions like Lake Soyang (Carpenter 2005). 

Interestingly, Fe and Mn concentrations were also high in the metalimnion during the summer 

monsoon, caused by an inflow of high amounts of Fe and Mn (137 and 25 µg L−1, respectively), 

as already observed at an adjacent site during the summer monsoon in a previous study (Hong 

et al. 1989). Previous studies have attributed these high amounts of Fe, Mn, and S to input of 

particulate matter from the watershed, along with high amounts of P adsorbed to these particles 

(Stewart and Tiessen 1987, Gleyzes et al. 2002); therefore, The observed high concentrations 

of Fe and Mn in the hypolimnion seem to have resulted from diffusive fluxes from the sediment 

under anoxic condition (Graham et al. 2012).  
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3.6.2 Stratification and formation of anoxia  

The metalimnetic DO depletion (3.8 mg L−1 at 14 m in Sep 2013) observed in this study was 

presumably driven by the density current induced by flooding from the monsoon rainfall (Kim 

and Cho 1989, Lee et al. 2013), which supplied a large amount of labile C from the watershed. 

A hypolimnetic anoxia was formed after the eutrophication period in the 1980s in Lake Soyang 

(Kim and Cho 1989), and, accordingly, the ORP in sediment cores from St. 1 were negative 

for the entire depth, comparable to values in anoxic sediments in Japanese lakes (Bibi et al. 

2007). Under these conditions, oxidized Fe, Mn, and S phases can be favorable electron 

acceptors (Gambrell et al. 1983). Sulfate reduction is an important respiratory pathway in 

anoxic sediments (D’Hondt et al. 2002), which explains the observed high concentrations of 

TRIS in the upper layers of Lake Soyang sediment cores. We therefore presume that anoxic 

conditions happen frequently, but significant amounts of unreduced Fe oxides seem to be 

present that may thus still trap P to some extent.  

3.6.3 Processes in the sediment  

The mean TP in the sediment at St. 1 was higher than in other shallower reservoirs of South 

Korea (Kim et al. 2003) and in other eutrophic lakes of China (Zhang et al. 2008). The higher 

concentrations of DIP and NH4
+ in porewater than in bottom water can result in internal loading 

by diffusion, as proposed earlier in a hypereutrophic lake and reservoirs (Reddy et al. 1996, 

Wang and Liang 2015, Yang et al. 2015). A substantial amount of NH4
+ seems to be released 

from the sediment into the overlying lake water, evidenced by the highest NH4
+ concentration 

just above the sediment. But rapid decrease of NH4
+ concentration toward upper layer of the 

hypolimnion implies rapid oxidation of NH4
+ in oxic conditions. NO3

− showed the opposite 

distribution of NH4
+, decreasing drastically under oxygen depletion (hypolimnetic DO of 1.9 

mg L−1) just below the boundary of the oxic and anoxic layers (e.g., Sep 2012; Fig. 3.12). 
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                Figure 3.12 Vertical profiles of DO, nitrate, and ammonia in water columns in September 2012 

 

Despite the high concentrations of DIP and NH4
+ in the bottom water layer during stratification, 

however, the average concentration of DIP and NH4
+ remained constantly low after the 

monsoon season (Sep 2012 to Dec 2013), when the onset of strong oxygen depletion was 

observed in the hypolimnion. DIP concentration in the epilimnion was 1.8 ± 1.2 µg L−1, and 

the NH4
+ concentration was 0.018 ± 0.008 mg L−1, which is significantly lower than in the 

hypolimnion. We therefore assume that DIP and NH4
+ do not reach the epilimnion after being 

released from the bottom sediment. The maximum lake depth of 120 m could be mainly 

responsible; in other words, DIP can be resettled and NH4
+ can be oxidized when they enter 

the oxic layer on the way to the epilimnion. Although not measured in this study, turbulence 

energy in Lake Soyang is thought to be low because it is located in the midst of a high, 

mountainous area and well sheltered from wind action at the lake surface. Additionally, the 
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removal of nutrients by the intermediate density current discharged from the dam through the 

outlet at the middle depth of the dam could also explain why nutrients from the sediment cannot 

easily reach the epilimnion (Fig. 3.2 and 3.3). The major transport mechanism of nutrients from 

the sediment to the epilimnion is thought to be the winter turnover circulation in January and 

February.  

The high abundance of Fe and Mn was considered to be delivered by input from the lake 

watershed (especially agricultural areas) after monsoon rainfall, based on the high 

concentrations of Fe and Mn in the metalimnion of the lake after precipitation (Fig. 3.5). 

Previous studies noted that Fe, Mn, and Al can originate from soil particles, which also carry 

high amounts of P (SanClements et al. 2009). A horizontal concentration gradient of Fe was 

observed from the inlet to the outlet, which implies that finer particles can be transported far 

to the dam area, and an especially high amount of Fe and P is included in this fine particle 

fraction compared to coarse particles more associated with Mg and K (Delfino et al. 1969, Zan 

et al. 2011). High amounts of Fe in the sediment commonly act as P traps through strong 

adsorption (Wang et al. 2005, Doncheva 2010).  

The Fe2+ to Fe3+ ratio was interestingly similar over the whole sediment depth, but the 

underlying reasons could not be elucidated in this study. We hypothesized, however, that the 

presence of a sulfate reduction reaction of sulfide with Fe oxide surfaces may lead to a 

passivation, impeding further reduction. Sulfate in the porewater sharply decreased in the top 

sediment, and TRIS concentrations were higher in the same depth. This finding supports the 

occurrence of SO4
2− reduction in the sediment, leading to high amounts of reduced S trapping 

available cations as insoluble sulfides (Wersin et al. 1991, Burton et al. 2006, Yu et al. 2015). 

In the case of Lake Soyang, formation of Fe sulfides is likely due to a constant and high supply 

of Fe by inflow from the watershed (Hong et al. 1989). Additionally, a previous study revealed 

that TRIS in lake sediments mostly consisted of FeS and FeS2 (Canfield et al. 1986). To form 



 

108 

 

Fe sulfides, ferric Fe becomes reduced by sulfide (Wan et al. 2014). After formation of sulfides 

their interaction with Fe and other metals controls and modifies mobilization of phosphate 

(PO4
3−), NH4

+, and hydrogen sulfide. Internal loads from sediments seem to be driven by not 

only anoxic conditions, but also by sedimentations of Fe, Mn, S, and C (Gächter and Müller 

2003). 

  
 

          Figure 3.13 Seasonal changes of processes in the Soyang Reservoir under summer monsoon climate 

 

Based on our findings, we established a conceptual model of the hypothesized seasonal 

variation of biogeochemical and hydrological processes in the Soyang reservoir located in the 

monsoon area (Fig. 3.13). In the pre-monsoon season (Fig. 3.13a), the reservoir begins to 

stratify and receives only low amounts of C, N, and P from the watershed because of low 

precipitation and few agricultural activities in the watershed. DO is thus still available for 

decomposition in the hypolimnion. During the monsoon season (Fig. 3.13b), a significant 
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amount of suspended materials carrying substantial amounts of labile C, N, P, and other 

biogeochemically important elements (Fe, Mn) are added to the water body by intensive rain 

events and concomitant mobilization in the watershed. A turbidity layer establishes at a depth 

of 30–50 m. After the monsoon season (Fig. 3.13c), decomposition of the large pulse of 

allochthonous organic matter, especially in its particulate form, starts and leads to strong 

oxygen depletion. Under these conditions, PO4
3− is released upon dissolution of solid phase 

electron acceptors (Fe (III), Mn (IV)) to which PO4
3− is bound in the sediment. Finally, during 

the winter season, the reservoir water is mixed entirely, and ferrous Fe and Mn reoxidize, 

reestablishing conditions for sequestration of PO4
3− at the sediment–water interface (Fig. 

3.13d). The situation may differ under conditions of high discharge when a much larger fraction 

of the suspended material becomes dissipated in the entire water body, releasing a pulse of 

biogeochemically reactive substances into the entire water body. Nevertheless, we assume that 

our conceptual model represents many big artificial reservoirs located in the summer monsoon 

region (An and Park 2002, Wang et al. 2012).  

Overall, heavy rainfalls caused acute increases of C, P, Fe, and Mn in the lake via turbid density 

currents during monsoon seasons. This increased availability of easily decomposable organic 

matter controlled the internal loads of PO4
3−, NH4

+, and reduced S released from the sediment 

because electron acceptors are consumed under anoxic conditions in the sediment. Our study 

has implications for reservoir management in monsoon climate regions. Sediment processes 

and internal loads must be constantly checked while monitoring inflowing water quality for 

effective reservoir management because the input of the nutrients with eroded soil from the 

agricultural watershed is consistently high from overuse of fertilizer and frequent soil 

disturbance. 
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4.1 ABSTRACT 

Reservoirs are located in watersheds as experiencing a variety of activity changes, such as land 

use changes, soil disturbance for agricultural purposes, and deforestation, within the 

watersheds. In order to reconstruct the effects of changes in land use for reservoir water quality 

under monsoon climate, the chemical composition of sediments (carbon (C), nitrogen (N), 

phosphorus (P), iron (Fe), manganese (Mn), sulfur (S), and isotopes of C and N) and water 

quality parameters (suspended solid (SS), chlorophyll ɑ (Chl ɑ), and Secchi disk (SD) depth) 

were studied. Sediment cores were taken along a transect from the inlet to the dam of Soyang 

Reservoir and water samples were collected in the deepest part of the reservoir. Additionally, 
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water quality data from previous studies were used to track historical water quality changes of 

the reservoir water. The changes of a trophic state and of an activity in the watershed were well 

preserved in bottom sediment cores in the Soyang Reservoir. Until the late 1990s, C and N 

deposition was mainly autochthonous along with eutrophication driven by fish farming. The 

terrestrial input has clearly increased after fish-farm business was terminated as indicated by 

an increase in soil-borne elements (Fe, Mn, S, and P) as well as terrestrial C. Such increase 

coincides with an increase in loads of nutrients and SS following changes in land use in parts 

of the upper catchment (agricultural land expansion and application of external soils for 

improving crop land quality). Recently, the increased agricultural activity in the Soyang 

Reservoir watershed has the greatest effect on the water quality of the Soyang Reservoir under 

monsoon climate and the effect was well preserved in the bottom sediment of the reservoir. 

 

4.2 INTRODUCTION  

Artificial reservoirs have been constructed for multiple reasons (agriculture, hydroelectric 

power generations) worldwide, and also in many Asian countries (WCD 2000, An and Jones 

2000, Gupta et al. 2012). Reservoirs commonly receive higher amounts of sediment and 

nutrients from their watershed since the reservoirs interact with a much larger watershed area 

than natural lakes (Thornton 1990, Kennedy 2001). Reservoirs were often constructed in rivers 

and the run-on-the-river reservoirs contact a much larger area of terrestrial watershed compared 

to natural lakes because of the long, narrow, and dendrictic shape (Chapman 1996). 

Additionally, many reservoirs lack of well fostered wetland area, which filters runoffs from 

watersheds, due to frequent fluctuations in water levels (Wetzel 2001). Therefore, water quality 

in reservoirs is more sensitive to watershed activity such as land use change. Rainfall increased 

the potential effect of watershed activity to reservoir by flushing process. In monsoon climate 
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countries, the monsoonal rainfall can be a main factor for the exports of pollutants to the 

downstream water body (Kim et al. 2000, Park et al. 2010). Bottom sediment in reservoirs 

contains important information when assessing aquatic environments and record chronological 

information regarding changes of environmental factors, anthropogenic activities, and trophic 

states in watersheds (Szarlowicz and Kubica 2014). The Bottom sediments in reservoirs mostly 

provide a higher temporal resolution compared to sediments of natural lakes due to higher 

sedimentation rates (Wetzel 2001). Based on many existing studies, the 210Pb dating technique 

is currently considered as a reliable indicator to estimate sediments ages in lacustrine systems 

(Arnaud et al. 2006, Tošić et al. 2012). However, reservoirs are spatiotemporally more dynamic 

compared to similar sized natural lakes (cf. irregular outflow, high water level fluctuations and 

relatively short residence times depending on the reservoir management) (Filstrup et al. 2009, 

Tang et al. 2014). The 210Pb dating technique is thus commonly applied to natural lakes but 

much less to artificial reservoirs and here additional analyses to support sediment age 

estimations may be necessary to obtain precise paleolimnological reconstructions. Carbon (C) 

stable isotopes have thereby been recognized as a powerful tool to trace organic matter (OM) 

sources in many environments because the δ13C ratio varies distinctively for various C sources, 

phytoplankton, C3, C4 plants, and soils (Deines 1980, Kendall et al. 2001, Ogrinc et al. 2005). 

Nitrogen (N) stable isotopes can further serve as indicator to reflect processes in the watershed, 

such as land use change, (Filstrup et al. 2010). Moreover, the C/N ratio can help to distinguish 

sources of OM, i.e. from terrestrial soils or lacustrine sediments, also in combination with C 

and N stable isotopes (Usui et al. 2006, Tue et al. 2011, Zhao et al. 2015). 

In this study, we have therefore studied the bottom sediments of a reservoir located in the 

monsoon climate zone of South Korea and receiving water from a catchment that is partially 

heavily used for agricultural purposes. We hypothesized sediment incorporates the 

chronological information of land use changes and trophic states variations.  
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4.3 MATERIALS AND METHODS 

4.3.1 Study site 

 

Figure 4.1 Study sites. (A: South Korea (Blue colored) in North East Asia B: Soyang watershed (Blue colored) in 

Korea Peninsula, C: Land uses in Soyang watershed, and D: Sampling points in Soyang reservoir) 

 

Soyang Reservoir is the largest and the deepest artificial reservoir in South Korea with a 

maximum depth of 120 m and a capacity of water of 2.9 billion cubic meters (Water 

Management Information System website; www.wamis.go.kr). The mean residence time is 

about 275 days (Kim et al. 2001). The reservoir was constructed for multiple purposes, such as 

water supply in the dry season, flood control, and power generation, in 1973 on the North Han 

River system located in central region of the Korean peninsula (Fig. 4.1). The main inflowing 

river, Soyang River, contributes 90 % of the water supply (Kim et al. 2000). The reservoir is 

warm-monomictic, and has a vertical mixing period in the winter season. However, the area of 

an inflow inlet is frozen due to its shallower depth (less than 20 m) compared to its depth in 

front of dam. The reservoir has a typical dendritic shape with a mean width of 750 m and a 

length of main stem of about 60 km, which limits horizontal water mixing by wind, (Kim et al. 
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2000). The area of the watershed is 2,703 km2 (www.wamis.go.kr) and most of the watershed 

is covered by forest (about 90 %). The watershed also includes small areas of cropland (about 

5 %) where agricultural activities have increased and intensified recently (Fig. 4.1, Park et al. 

2010, Jung et al. 2012, Kim et al. 2014). The watershed of Soyang Reservoir is scarcely 

populated and soil erosion by the agricultural expansion is a major source of SS to the reservoir 

water (Shope et al. 2013) causing a turbid density current in the middle layer of the reservoir 

(Kim and Kim 2006). The mean annual precipitation in the watershed is 1,100 mm 

(www.wamis.go.kr) and more than half of it falls during the summer monsoon season (June to 

Aug.), including frequent and intensive rain events (Hwang et al. 2003, Park et al. 2010, 

Kettering et al. 2012). In certain years (cf. in 1999 and 2006), typhoons or strong winds 

accompanying intensive rainfalls induced large amounts of woody debris and SS from the 

watershed into the reservoir (Kim et al. 2000, Jung 2012). The trophic state of Soyang 

Reservoir varied over time. The reservoir had been in an oligotrophic state at the beginning of 

impoundment but it has turned to a meso-/eutrophic state following the input of nutrients from 

fish farming and from agricultural areas after monsoon rainfalls (Cho et al. 1991, Kim et al. 

2001). However, the water quality and trophic state are currently improving (Seo et al. 2014), 

presumably due to the cessation of fish farming. The reservoir plays an important role as a 

supply of drinking water for the Seoul metropolitan area (Jo et al. 2010, Bartsch et al. 2014). 

 

4.3.2 Methods 

Procedures for field works A site adjacent to the dam, which is the deepest part of the 

reservoir (St. D; Fig. 4.1) was chosen for water samples to determine SS, Chl. ɑ, and SD. Water 

samples were collected by a horizontal Van Dorn water sampler (KC, Silkeborg, Denmark) 

from the several depths (0, 2, 5, 10, and 10 m intervals to the bottom). Collected samples were 
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stored below 4 ̊C before Chl. ɑ and SS analyses. SD depth was measured monthly in two 

consecutive years from a boat using a standard Secchi disk (diameter 30 cm).  Sediment 

samples were collected using a gravity corer (UWITEC, Mondsee, Austria) along distance 

transect from the dam site to the area the main inflow. Initially five sampling sites (St. 1 to 5; 

Fig. 4.1) were selected for the sediment samples in 2012 and 2013 and additional sediment 

samples were collected from a former fish farm area (St. F) in 2013 (Fig. 4.1). Sediment traps, 

constructed of stainless material, were deployed 5 times from July to October in 2013 at St. D 

near the dam (Fig. 4.1) and were installed at 3 depths (20, 50, and 80 m depth) at the site. 

Sedimentation rates of C and N in the water columns of the reservoir were calculated based on 

the trap experiment data. 

 

Procedures for pre-treatment and analyses Water samples were filtrated through GF/C 

filters and the filters were subsequently stored frozen until analysis of Chl. ɑ by the Lorenzen 

method (APHA 2012). SS amounts in water samples were calculated by measuring the 

differences in weight of GF/F filters before filtration and dried filter paper (1hr, 105 ̊C) after 

filtration of water samples (APHA 2012).  Sediment core samples were segmented using a 

customized core cutter device at 1, 2, or 5 cm intervals according to visual identification of 

layers. Grain size distributions of the sediments were analyzed using a Mastersizer 2000 

(Malvern, UK) after sonication. Grain size distributions are displayed as D 10 (size of 10th % 

diameter), D 50 (size of 50th % diameter) and D 90 (size of 90th % diameter) values representing 

the cumulative percentile value of the particles in the sediment sample that are finer than the 

corresponding D grain size. C, N, δ13C and, δ15N were analyzed in sediment samples after 

freeze-drying. Relative C and N isotope abundances were measured with an elemental analyzer 

in dual-element analysis mode (Carlo Erba 1108, Milano, Italy) coupled to an isotope ratio 

mass spectrometer (delta S Finnigan MAT, Bremen, Germany) thorough a ConFlo III open-
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split interface (Finnigan MAT). Relative isotope abundances are denoted using the common δ 

notation, calculated as follows:  

 

Equation 4-1 

δ45C	or	δ4:N	 =
𝐑=>?@AB
𝐑=C>DE>FE

− 1 ×1000	‰ 

 

in which R sample and R standard are the ratios of the heavy isotope to the light isotope of the 

samples and the respective standards. Standard gases (N and CO2, respectively) were calibrated 

against international standards (N in air and Pee Dee Belemnite (PDB), respectively) by use of 

the reference substances N1 and N2 for the nitrogen isotopes and Australian National 

University (ANU) sucrose and NBS 19 for the C isotopes. The further elemental composition 

(P, S, Fe, Mn, Ca, Cd, Cu, and Pb) were detected by energy-dispersive X-ray fluorescence 

(XRF) spectrometry (ZSX Primus II, Rigaku, Japan), mixing 0.5 g of milled sediment powder 

with 50 mg of XRF pelleting agent (Licowax 21 C, APC Solutions SA). This mixture was 

pressed to a 13 mm pellet for subsequent analysis. One sediment core (obtained at St. 1 in Sep. 

2012) was used for sediment dating using 210Pb. We applied the constant rate of supply (CRS) 

model to the measured 210Pb activity, which assumes a constant unsupported 210Pb flux to the 

sediment allowing for temporal variation of the deposition rate. The sediment accumulation 

rate was then calculated (Appleby and Oldfield, 1978) as follows: 

 

Equation 4-2 

t = λN4× ln(
AR
AS
) 
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where t is the time in years, λ is the 210Pb decay rate constant (0.031 yr–1), and A∞ is the 

integrated value for 210Pb activity from bottom to surface, Ax is the integrated activity from 

bottom to depth x. 

4.4 RESULTS AND DISCUSSION 

4.4.1 Sediment age  

The 210Pb activity in the core taken at St.1 decreased from the top sediment until a depth of 12 

cm (Fig. 4.2) below which the activity reached a constant value with some fluctuations with 

depth (40.3 ±13.3 Bq kg–1, n=10). Estimation of the sediment age using Equation 4.2 predicts 

that the dam construction in 1973 is located at a depth of 8 cm (dotted-line; Fig. 4.2) and the 

calculated average sedimentation rate was 0.2 cm yr–1 with a range of 0.15 to 0.22 cm yr–1 in 

different depths.  
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Figure 4.2 Profile of 210Pb activity in a core at St. 1 (dotted-line indicates the temporal point of dam construction 

in 1973 calculated by the constant rate of supply (CRS) model) 
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The estimated sedimentation rate was much lower than observed in other reservoirs (e. g. 6 cm 

yr–1 in the Danube Iron Gate Dam; Vukovic et al. 2014, 4 cm yr–1 in the Partoon Reservoir; 

Arnason and Fletcher 2003, between 2 to 7 cm yr–1 in the Conowingo reservoir; McLean et al. 

1991) and seems to be similar to natural lakes (e. g. ranging from 0.01 to 0.32 cm yr–1 in Lake 

Superior; Evans et al. 1981). It also contrasts a previous estimate of 1.0 cm yr–1 for the 

downstream part of Lake Soyang (Cheong and Jung 2006), which was calculated based on the 

discrimination of sediment features such as water content, lithologic structure, and organic 

matter contents. Similar discrepancies between 210Pb dating technique observations and 

sediment stratigraphy were made in other reservoirs and were attributed to sediment 

disturbance by frequent water fluctuations and the relatively younger ages compared to natural 

lakes (Shotbolt et al. 2005, Filstrup et al. 2010, Winston et al. 2014). We therefore attempted 

to independently estimate sediment age from our sediment composition data.  

The C/N ratios in the top sediment layers (0–10 cm) were constant with an average ratio of 9.4 

±0.7 (n=10) at St. 1 (Fig. 4.3). The ratios increased at a depth of 14 cm below which they 

remained constant with an average ratio of 40.1 ±1.4 (n=10). This value is characteristic for 

land-derived plants (Meyers 1994, Meyers and Ishiwatari 1993). Inversely, the low C/N ratios 

observed in the upper part are common in lacustrine sediments (average 8.9; Murase and 

Sakamoto 2000, approximately 10; Koszelnik et al. 2008).  



 

127 

 

 

                     Figure 4.3 Vertical profiles of C/N ratios in cores from St. 1 to 5 and St. F. 

 

This pattern is reflected also by the vertical distribution of the C contents at St.1 which is 

identical to the C/N ratio (Fig. 4.3 and 4.4). The C contents were constant down to a depth of 

10 cm with a mean value of 2.7 ±0.4 % (n=10) and sharply increased to a constant value of 

14.8 ±1.4 % (n=10) below 14 cm depth. The C content decreased again slightly below 20 cm.  
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Figure 4.4 Vertical profiles of C contents in cores from St. 1 to 5 and St. F 
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Similar trends were observed in the vertical distribution of the C isotope signature (Fig. 4.5). 

δ13C values displayed some variation from the surface to 12 cm depth ranging between –26.3 

and –23.7 ‰. Below the 12 cm depth, the δ13C values remained constant with an average value 

of –25.0 ±0.1 ‰ (n=10). The values of δ15N were distinctly higher above a depth of 12 cm than 

below that depth with much more variability between 4.7 ‰ at the top surface and 6.5 ‰ at 12 

cm depth (Fig. 4.6). A strong decrease in δ15N values occurred in the bottom part below 12 cm 

depth to values of 4.0 ‰ at 28 cm depth (Fig. 4.6).   

The vertical distributions of P, S, Fe, and Mn showed much variability above a depth of 13 cm 

while the concentrations leveled off to constant values below that depth with average 

concentrations of 1,101 ±31.4 mgP kg–1 (n=11), 897 ±38.6 mgS kg–1 (n=11), 1,258 ±43.8 

mgMn kg–1 (n=11), and 51 ±0.3 gFe kg–1 (n=11), respectively (Fig. 4.7). 
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Figure 4.5 Vertical profiles of δ13C in cores from St. 1 to 5 and St. F 

 

 



 

129 

 

2012 St.1

4 5 6 7
0

10

20

30

40
2012 St.2

4 5 6 7

2012 St.3

4 5 6 7

2012 St.4

4 5 6 7

2012 St.5

4 5 6 7 4 6 8 10 12

2013 St.F

d15N (‰)

 

Figure 4.6 Vertical profiles of δ15N in cores from St. 1 to 5 and St. F 

 

Figure 4.7 Vertical profiles of P, S, Fe, Mn, C/N ratio, C, N, and its isotopes in core at St. 1 (dotted-lines indicates 

presumed dam construction point (lower line) and an assumed boundary line between before and after agricultural 

lands expansion starting point (upper line)) 

 

A similar splitting of the sediment as indicated by the biogeochemical signatures is displayed 

by the vertical grain size distribution (Fig. 4.8). The D 90 value at St. 1 had a minimum of 15 

µm above 12 cm which increased again towards the sediment-water interface. Below 12 cm, 

the D 90 value matched a grain size corresponding to the sand fraction (>63 µm).  Such a 

splitting in grain-size distribution of Soyang Reservoir sediments has already been described 
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earlier to distinguish between the pre- and post construction phase (Khim et al. 2005, Cheong 

and Jung 2006).  

Considering the features of the vertical distributions of all these parameters, a clear boundary 

line can be identified at a depth of 13 cm in the core from St. 1, which we attribute to the 

starting point of flooding of the reservoir in 1973 after the dam construction with an adjusted 

average sedimentation rate of 0.3 cm yr–1 (lower dotted line; Fig. 4.8).  
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Figure 4.8 Vertical profiles of D 10, D 50, and D 90 values of grain size distributions from cores at St.1 to 5 

 

4.4.2 Lateral differences in Sediment composition 

The grain sizes at St. 1 and St. 2 had a similar depth distribution (Fig. 4.8). However, the 

increase of the D 90 value with depth that is also slightly visible for the D 50 value is shifted 

towards a greater depth at St.2 (about 18 cm; Fig. 4.8) and disappeared at St.3 to 5. D90 values 

at St.5 are uniform and generally higher compared to depths below 2 cm at St. 1 and 2. We 

therefore interpret this shift in grain size to be due to higher sedimentation rates closer to the 

inlet of the reservoir which is a common phenomenon in run-of-the-river reservoirs and has 

also been described in a previous study in Soyang Reservoir (Khim et al. 2005, Thothong et al. 

2011). Cheong and Jung in 2006 found that the sedimentation rate near St. 5 was about 20 
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times higher than close to the dam in the Soyang Reservoir (Cheong and Jung 2006). The 

increase of the D 90 values at the top layers of St. 1 and St. 2 presumably reflects a recent 

change in the deposition pattern and will be discussed below.    

C contents are displaying a gradient reversal from St. 1 to St. 5 (Fig. 4.4). A strong gradient 

existed at St. 1 with low values (3%) at the top 10 cm that increased to 15 % below 16 cm 

depth. C contents were vertically uniform at St. 2 to St.4 with averages of 4.8 ±0.5 % (n=6), 

4.2 ±1.3 % (n=6), and 3.9 ±1.0 % (n=7), respectively, while a sharp decrease was observed at 

St. 5 at a depth of 10 cm from 7.6 ±0.5 % (n=4) to 2.1 ±0.9 % (n=8) (Fig. 4.4). Apparently, C 

contents in the top sediment layers decreased from St. 5 to St. 1 (Fig. 4.4). Hence not only 

sedimentation rates seem to increase towards the inlet of the reservoir but also the amount of 

deposited carbon changes. Grain size distributions suggest that coarser material was deposited 

at the inlet area (St.5) containing a high amount of C while finer material carrying a relatively 

smaller amount of C traveled along the reservoir water to become deposited further 

downstream (Fig. 4.8).  

Surprisingly, the top sediment layers at St. 1 and 2 are enriched in larger particles, which seems 

contradictory to a particle-size fractionation effect along the reservoir. However, in the last 

years a turbid current has developed in the reservoirs following heavy rainfalls along with 

changes in land use in the upper catchment. The turbidity current is known as significant source 

of allochthonous carbon (Kim and Jung 2007, Lee et al. 2012), nutrients (Jung 2012), and other 

elements such as Fe and Mn (Hong et al. 1989) transferred from the watershed to the reservoir 

water. We assume that the materials were deposited closer to the outlet of the dam. 

It has been demonstrated that C export from the watershed significantly contributes to the total 

C input to the Soyang Reservoir during the monsoon period (Namkung et al. 2001, Kim et al. 

2000, Jung 2012). C export from the mountainous area in the watershed has even increased 

recently following a process of agricultural land expansion in the mountainous area (Kim and 
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Jung 2007). This trend is reflected by the observation that sedimentation rates of both PON and 

POC were highest in all lake depths after heavy rainfall in the summer season (311 mgN m–2 

d–1, 3,446 mgC m–2 d–1 in the trap at 20 m depth, 536 mgN m–2 d–1, 5,010 mgC m–2 d–1 in the 

trap at 50 m depth, and 380 mgN m–2 d–1, 3,841 mgC m–2 d–1 in 80 m depth, respectively; Table 

4.1). The increase in C contents in the sediment core at St. 5 (Fig. 4.4) suggests that C exports 

have increased lately which we attribute to a change in land use since the 2000s. Such land-use 

change increase is reported to drive soil erosion and to increase loads of SS in the inflowing 

stream (Kim and Jung 2007, Seo et al. 2013).  

C/N ratios in the top sediment layers (above 8 cm) were decreasing from the inlet (>40) to the 

dam area (<10) indicating a shift from a terrestrial to a limnetic carbon source with increasing 

distance from the inlet. This observation is supported by the average value of δ13C in the top 

sediment (0–8 cm) at St. 5 (–25.7 ±0.1 ‰ (n=4), Fig. 4.5) which is similar to the δ13C values 

of topsoil in Soyang watershed (Table 4.2).  Similar δ13C values were determined in the top 

sediment at St. 1 as shown above. Contrary to site 5, these values could be only found in a few 

centimeters of the core surface due to the lower sedimentation rate at St. 1 compared to St. 5.   

 

  Table 4.1 Sedimentation rates of PON and POC in three layers of Soyang Reservoir  

  (PON: mgN m–2 d–1, POC: mgC m–2 d–1) 

Times (dates) At 20 m At 50 m At 80 m 

PON POC PON POC PON POC 
1st 

(July 4th–16th) 88 920 38 344 72 593 

2nd 

(July 16th–26th) 311 3446 536 5010 380 3841 

3rd 
(July 26th–Aug. 2nd) 36 320 136 1150 113 957 

4th 
(Aug. 22nd –Sep. 23rd) 20 165 72 586 66 546 

5th 
(Sep. 23rd –Oct. 17th) - - 50 355 51 368 
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Table 4.2 Average values of δ13C and δ15N in various sources in Soyang reservoir and the watershed environment 

– literature reviews and referring personal data (s.d.: standard deviation) 

source year δ13C s.d. δ15N s.d. references 

soil 2007 –23.4 0.8   Lee et al. 2012 

leaf litter 2007 –24.9 1.5   Lee et al. 2012 

phytoplankton 
(diatom) 2007-2009 –32.0 2.5   Lee et al. 2012 

phytoplankton 
(blue green algae) 2007-2009 –22.6 1.7   Lee et al. 2012 

zooplankton 
(pre monsoon) 2007-2009   6.6 2 Lee et al. 2012 

zooplankton 
(post monsoon) 2007-2009   4.3 1.5 Lee et al. 2012 

watershed topsoil 2012 –26.4 0.9   Jung's data (n=81) 
unpublished 

watershed topsoil 2012   3.2 1.5 Jung's data (n=81) 
unpublished 

 

4.4.3 Sediments matching changes in Soyang Reservoir water quality 

From a limnological point of view the Soyang reservoir history can be divided into 4 periods 

according to changes in the trophic state of the reservoir, which is well documented by 

variations of water quality parameters, i.e. Secchi disk (SD) depth, Chl. ɑ, and SS (Table 4.3).  
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 Table 4.3 History of trophic state changes and important events in Soyang Reservoir since the dam         

construction in 1976 - literature reviews 

Period Trophic 
state Year Events (ref.) 

1st Oligo- 1973-
1985 

Dam construction completed (1973) 
Onset of Fish farms setup (1980) 
Emerging turbid water in entire depth caused by intensive monsoon rainfall 
(1984)(Kim et al. 1989) 

2nd Eutro- 

 
1986- 
1999 

 

Fish farm expansion, The first advert of bluegreen algae  
(Anabena spp. in 1986; Cho et al. 1991, Lee et al. 1998) 
Blue green algal bloom during late summer (Sep.) in 1986-1989   
(Kim et al. 1989) 
Hypolimnetic oxygen deficit since 1987  
(Hong et al. 1989, Kim et al. 1989) 
Massive bluegreen algae growth with SD only 0.7 m in 1990  
(Jung 2012, Kim and Jung 2007) 
Most C loads in 1990 in 15 years, 1986-2000,  
(42421 tC y-1; Namgung et al. 2001) 
Cyanobacterial bloom in 1992, 1995 (Pack et al. 1998) 
Meso-eutrophic state based of TSI (trophic state index ) in 1993  
(Kim et al. 2001) 
Increased turbid water input with allochthonous C from the reservoir 
watershed in 1996 (Kim et al. 2000) 
Fish farm eliminations since 1998 and anabaena cells decreased in 3 year, 
1996-1998 (Kim et al. 1999) 
Massive turbid water entered after intensive rainfall in summer in1999 

3rd Meso/ 
Oligo- 

2000- 
2005 

 

Phytoplankton species change (cyanobacteria to dinoflagellates and 
chrysophytes) 
Oligotrophication sign based on nutrient concentrations, phytoplankton 
species and transparency data. 
Increase in P load since 2000 from watershed (Kim and Jung 2007, Jung 
2012) 

4th Meso/ 
Eutro- 

2006-
2012 

After typhoon, Turbid water out released from the dam to the downstream 
for over 6 months in 2006 (Kim and Jung 2007) 
Frequent turbid water inflow from watershed after monsoon climate 
summer rainfall 

 

The dam construction had been completed in 1973 and the reservoir has been impounded after 

the construction. The reservoir had remained in an oligotrophic state during the 1st period 

(1973–1985) before fish-farm business had started. The reservoir had then experienced 

eutrophication with frequent blue green algal blooms and the lowest SD values after summer 

rainfall in the 1980s and early 1990s (SD was as low as 0.7 m in 1989 during an algal bloom; 

Kim et al. 1989, Kim et al. 2001, Jung 2012). The trophic state has changed into meso/eutrophic 

conditions during the 3rd period (2000-2005) after the fish-farm business was banned in the 
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reservoir followed by an increase in transparency of reservoir water. SDs were 5.1 ±1.8 m 

(n=12) in 2012 and 4.5 ±2.2 m (n=12) in 2013 respectively (data not shown). 

The reservoir history is also reflected by the distributions of elements in the sediment. As 

outlined above clear changes in element composition followed the dam construction. However, 

the element composition does not match the periods distinguished by the history of water 

quality data (Fig. 4.7). Rather, a remarkable increase in the concentrations of all studied 

elements occurs in the top sediment layers above 4 cm depth (upper dotted-line; Fig. 4.7), 

where P, S, Fe, and Mn even reached their maximum values. This concentration increase seems 

to reflect the increased export of soil material from the watershed following an expansion of 

agricultural activity since the 2000s (Kim and Jung 2007). Soil disturbances by an increasing 

use of agricultural machinery since the late 1990s as well as the practice to apply external soil 

material to improve soil quality in the upper catchments facilitated soil erosion along with the 

expansion of agriculturally used areas in this watershed (Park et al. 2010, Jung 2012, Jun 2015).  

δ13C values (– 25.9 to –26.3 ‰) as well as δ15N values (4.7 to 5.2 ‰)  are corresponding to 

values measured in top soils in the watershed (δ13C = –26.4 ±0.9 ‰ (n=81); Jung, unpublished 

data, δ15N = 3.2 ±1.5 ‰ (n=81); Meusburger et al. 2013 in Table 4.2).  

The change in the composition of the youngest sediment layers is also reflected by a recent 

change in reservoir water quality data, which severely deteriorated since 2006 along with 

massive inflow of turbid water (Kim and Jung 2007, Park et al. 2010, Jung 2012). In both of 

the years studied, the SS concentration increased in the metalimnion after heavy rainfalls 

following turbid current inflow and it remained high in the hypolimnion after the monsoon 

season in 2013 reaching the maximum SS concentration within the 2 years (49.1 mg L–1 in July; 

Fig. 4.9). 
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Figure 4.9 Variations of precipitation amounts in Soyang Reservoir watershed (Chuncheon Si) and suspended 

solids (SS) distributions of Soyang Reservoir for 2 years 

 

Development of a dense population of cyanobacteria during the autumn season (Aug.-Sep.) 

became an annual characteristic in the reservoir (Kim et al. 1999, Choi et al. 2001, Srivastava 

et al. 2015). It is regarded to be fuelled by the inflowing turbid water from the watershed 

contributing to nutrient supply to phytoplankton before becoming released from the reservoir 

or deposited in the bottom sediment (Lee et al. 2012). However, based on its average Chl a 

concentrations in the epilimnion for 2012 and 2013 (3.4 ±2.3 µg L–1 (n=60) in 2012 and 2.8 
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±2.6 µg L–1 (n=60) in 2013, respectively) the trophic state of the reservoir would be regarded 

to be oligotrophic (Wetzel 2001). Surprisingly, The Chl ɑ concentrations in the lake water has 

drastically decreased compared to the concentrations in the 1990s implying less contribution 

of autochthonous organic matter relative to allochthonous organic matter to deposition of the 

bottom sediment. 

In contrast to St. 1, signals of autochthonous eutrophication are clearly visible in the sediment 

core from Station F, which reflects a fjord isolated from the main inflow and being strongly 

affected by fish farming. Therefore, the biogeochemical signals in the core strongly differ from 

those in the main body of the reservoir. Similar to the core from St. 1 a strong gradient in C 

content was visible increasing from 3.0 ±0.4 % (n=7) in the top layers to 10.9 ±2.5 % (n=11) 

below 14 cm (Fig. 4.4). It appears that only autochthonous carbon contributed to the bottom 

sediment at St. F compared to St. 1 even though the distance between two sites is only about 3 

km (Fig. 4.1). In contrast to St. 1 also the  N content in the sediment from station F increased 

below 14 cm (Fig. 4.10) making the vertical distributions of C/N ratios remarkably constant 

and indicative of algal sources. This assumption is supported by the vertical C and N isotope 

distributions which were completely different between the two sites (Fig. 4.5 and 4.6). δ13C 

values at St. F drastically decreased with depth from –25.6 to –40.1 ‰ below 26 cm showing 

an opposite trend compared to St. 1. Massive algal blooms had been frequently observed during 

the period of fish farming (Lee et al. 1998) which resulted in the deposition of phytoplankton 

depleted in δ13C compared to terrestrial plants (Hamilton and Lewis Jr. 1992, De Junet et al. 

2009). δ15N signals increased gradually downward from the surface (5.7 ‰) to the bottom (11.2 

‰) of the core from St. F (Fig. 4.6), Such an an increase has been attributed to eutrophication 

in reservoirs and lakes (Filstrup et al. 2009, Winston et al. 2014). Indeed, the values of δ15N 

found in bottom sediment at St. F were similar with the value of δ15N from fertilizer sources 

(10–25; Teranes and Bernasconi 2000). 
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                           Figure 4.10 Vertical profiles of N contents in cores from St. 1 to 5 and St. F 

 

4.4.4 Indicators for a growing influence of external watershed-based processes on sediment 

composition and future water quality.  

Our data are clearly demonstrating the influence of the catchment on sediment composition 

and sediment quality in Soyang Reservoir.  As a consequence, changes in agricultural activity 

in the watershed starting in the early 2000s have severely affected the chemical composition 

of the sediments as reflected by an increase in concentration of catchment borne elements in 

the top sediment layers. The change in agricultural activity in the Soyang watershed consists 

mostly of cultivation of former forested slope toes in the agriculturally heavily used upstream 

catchment (Haean catchment). The catchment is known as a hot spot of agricultural non-point 

pollution (Kettering et al. 2012, Shope et al. 2013). The steep slopes in the catchment promote 

loss of soil material and fertilizers during rainy seasons (Lee 2008) which is amplified by an 

increase in heavy storm events in South Korea (about 90 mm / decade for 30 years, 1973-2007; 

Choi et al. 2008). In the receiving Soyang river, which is the main inflowing stream to Soyang 

Reservoir concentrations of nutrients, C, Fe, Mn, and turbidity have therefore increased 

compared to the period before 1995 (Hong et al. 1989, Kim and Jung 2007, Park et al. 2010, 
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Jung 2012). Nutrient concentrations are showing a trend of increasing concentrations in an 

inflowing river of the reservoir since 1995 (Fig. 4.11).  
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Figure 4.11 Annual variations of TN and TP concentrations in a main inflow stream to Soyang Reservoir 

(Soyang River) since 1996 (source: www.water.nier.go.kr) 

 

Recently studies focusing on bottom sediment have been conducted with diverse aspects. 

Schroeder et al. 2016 looked into diatom assemblages in a core to match the assemblages to 

chronological history of the watershed and Cardoso-Silva et al. 2016 studied vertical 

distributions of heavy metals in cores of a reservoir in Brazil to assess the heavy metal pollution 

by anthropogenic sources in the watershed. In some studies, Pb contamination was also 

evaluated by analyzing the vertical profiles of Pb concentrations in sediment cores at reservoirs 

in China (Zhang et al. 2016) and in South Korea (Lee et al. 2013). In a similar way with this 

study, some studies have used sediment cores to reconstruct the trophic state change (Fontana 

et al. 2014) and agricultural intensification (Ni et al. 2015), however it seems that studies, 

which related in reservoir water process (by water quality monitoring) and watershed activity 

concurrently, are still limited.  
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To date, the effect of altered land use in the upper catchment on water quality is only partially 

visible and future changes are to be expected. The accumulation of redox active substances 

(Fe, S) in the sediment may impact on nutrient mobility as well as formation of more reduced 

hypolimnetic water composition during stratification (e. g. sulphide formation). Moreover, 

already now the accumulation of carbon in the sediments close to the inlet appears to trigger 

methanogenesis and ebullition of methane. All together, our data are suggesting that Soyang 

Reservoir is undergoing a regime shift following a change in watershed activities.  
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