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German Abstract

In dieser Dissertation präsentieren wir eine numerische Methode für den Ent-

wurf von input-to-state praktisch stabilisierenden (ISpS) Reglern mit Zustands-

rückführung für gestörte, nichtlineare zeit-diskrete Kontrollsysteme. Die Regler

sind so konzipiert, dass sie auf Quantisierungsregionen, die nicht unbedingt klein

sein müssen, konstant sind. Im Entwurf wird der ereignisbasierte Charakter der

Regler genutzt, bei dem der Übergang von einer Quantisierungsregion zu einer

anderen ein Ereignis auslöst, was eine Änderung des Kontrollwertes zur Folge

hat.

Die Konstruktion des Reglers basiert auf der Umwandlung des ISpS Entwurfs-

problems in ein robustes Regler-Entwurfsproblem gegen Störungen, indem das

System geeignet skaliert wird. Das robuste Regler-Entwurfsproblem wird mittels

einer mengenorientierten Diskretisierungsmethode gelöst, gefolgt von der Lösung

eines dynamischen Spiels auf einem Hypergraphen.

Wir präsentieren und analysieren diese Methode mit einem besonderen Fokus

auf der quantitativen Analyse der resultierenden Gains und der Größe des prakti-

schen Stabilitätsgebietes, abhängig von den Entwurfsparametern unseres Reglers.

Zusätzlich zeigen wir ein nichtlineares small-gain Theorem basierend auf Lya-

punov Funktionen, um unsere Entwurfsmethode auf große Systeme anwenden zu

können.

Schließlich wird die ereignisbasierte Regler-Entwurfsmethode an einem kon-

tinuierlichen Flussprozess angewandt, um die analytischen Ergebnisse auf Basis

eines Beispiels auszuwerten. Dies geschieht sowohl durch Simulation als auch

durch ein Experiment an einer Versuchsanlage.





Abstract

We present a numerical design method for input-to-state practically stabilizing

(ISpS) state feedback controllers for perturbed nonlinear discrete-time control

systems. The controllers are designed to be constant on possibly coarse quan-

tization regions. In the design phase we take the discrete-event character of

the controller into account where the transition from one quantization region to

another triggers an event upon which the control value changes.

The controller construction relies on the conversion of the ISpS design prob-

lem into a robust controller design problem under perturbation by appropriately

scaling the system. The robust controller design problem is solved by a set ori-

ented discretization technique followed by the solution of a dynamic game on a

hypergraph.

We present and analyze this approach with a particular focus on keeping track

of the quantitative dependence of the resulting gain and the size of the exceptional

region for practical stability from the design parameters of our controller.

In addition we show a nonlinear Lyapunov function based small-gain theorem

for applying this design to large-scale systems.

In the end the event-based control method is applied to a continuous flow

process to show its practical implementation and to evaluate the analytical results

on the basis of an example. The example is evaluated via simulation as well as

via an experiment on a laboratory plant.
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Numerical ISpS controller design
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Chapter 1

Introduction

Since its introduction by Sontag in [54] the concept of input-to-state stability

(ISS) has become one of the most influential concepts in nonlinear stability under

perturbations for it yields a theoretically sound concept for quantitative and

qualitative analysis of stability of nonlinear systems.

Similar to stabilizing controllers for nonlinear systems, ISS controllers can in

principle be derived from corresponding ISS Lyapunov functions via a universal

or Sontag type formula [45]. However, applying this formula requires the analytic

knowledge of an ISS Lyapunov function, which may not always be available. An

alternative are dynamic programming type design methods relying on optimal

control formulations which require much less a priori analytical knowledge. The

main drawback of this approach is the curse of dimensionality, which means that

it is only computationally feasible for systems of moderate space dimension.

However, a useful tool for stability analysis and controller design of large-scale

interconnected nonlinear control systems are small-gain theorems. There, the

large-scale system is split into subsystems which can be separately analyzed and

stability of the overall system can be concluded from small-gain conditions. Many

variants of small-gain theorems for continuous-time systems exist, cf. [37, 36, 7].

Hybrid systems have been considered, too, cf. [43, 41, 52].

In such a small-gain based decentralized setting in which the controller design

is to be carried out for a set of low dimensional subsystems, the dynamic pro-

gramming approach may provide an attractive and feasible alternative to other

existing methods, which is why we investigate it.

A dynamic programming based ISS controller design was proposed in [33]1.

Anyhow, the drawback of the approach is that by converting the problem into an

auxiliary `∞ control problem the state variable needs to be augmented by two ad-

ditional scalar states which considerably increases the computational complexity

of the controller design. In order to avoid this problem, we propose an approach

1This reference treats various different robust controller design objectives, among them ISS.

3



4 CHAPTER 1. INTRODUCTION

that consists of converting the ISS controller design problem into a uniform sta-

bilization problem for a perturbed system using the concept of robust stability,

which can be accomplished without increasing the dimension.

The equivalence between ISS and robust stability was already exploited in a

theoretical context in [38] (for a continuous time version of this result see [57])

and thus our approach can be seen as a constructive numerical interpretation of

the results in [38], based on Lyapunov functions. In order to solve the auxiliary

stabilization problem under perturbations we use the game theoretic set oriented

approach of [17] which in turn relies on [19, 40].

In contrast to approaches such as, e.g., finite elements, which require fine

discretizations [9], the set oriented discretization is particularly suitable for the

quantized problem formulation due to its ability to rigorously handle large quan-

tization regions by representing them as boxes or cells in the set oriented dis-

cretization. The resulting game on a hypergraph can then be solved using a

Dijkstra-type algorithm [18, 61] (see also [4] for a recent extension).

Like in most nonlinear numerical approaches relying on Lyapunov functions,

cf. e.g. [13, 30, 14], a neighborhood of the equilibrium (here always chosen as the

origin) needs to be treated in a different way. In our setting this is the case be-

cause in general with only finitely many quantization regions “true” asymptotic

stability cannot be achieved. This means that the resulting nonlinear controller

will in general only yield input-to-state practical stability (ISpS), i.e., in the ab-

sence of perturbations the controller is supposed to regulate the system into a

neighborhood of a desired equilibrium, whose size depends on the size of the quan-

tization regions. If a perturbation acts on the system, we still assume convergence

to a neighborhood of this equilibrium. However, the size of this neighborhood

may grow with the amplitude of the perturbation.

For this reason, a substantial part of the analysis is devoted to keeping track of

the size of this exceptional neighborhood in order to control the errors introduced

by the numerical solution of the dynamic game problem. This allows us to identify

conditions under which this neighborhood is small. Hence, a linearization based

design could be used if desired in order to define an ISS controller also near the

origin, cf. [53]. Moreover, we note that both the Lyapunov function as well as

the resulting optimal feedback law are piecewise constant and thus discontinuous

in our approach, which is why we provide an analysis entirely avoiding continuity

assumptions.

After designing an ISpS controller for low-dimensional systems we are inter-

ested in a small-gain result guaranteeing ISpS of discrete-time systems, which

could also be representations of sampled continuous-time systems for the sake of

numerical controller design, for example. For discrete-time systems, first small-

gain theorems were presented in [38, 42, 34] for the special case of two inter-
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connected systems. Nonlinear small-gain theorems for discrete-time large-scale

systems have been developed in [35, 46], assuming continuous dynamics and the

existence of a continuous Lyapunov function. The small-gain theorem in [12]

does not require continuity, but does not consider additional disturbance inputs

on the system and thus yields asymptotic stability rather than ISS.

Here we state a small-gain theorem based on ISS Lyapunov functions in

implication-form, which does not depend on any type of continuity. When prov-

ing small-gain results for discrete-time systems, it was already observed that the

Lyapunov function needs to fulfill additional conditions, cf. [42, 43, 35, 46]. In

this work we utilize a strong implication-form ISS-Lyapunov function for discon-

tinuous systems which has been proposed recently, cf. [21], yielding a necessary

and sufficient ISS characterization without imposing any continuity assumptions.

The key idea of this strong implication-form is to require an additional bound on

the increase of the Lyapunov function, also when the state is small compared to

the perturbation. In contrast to other papers in which similar ideas were used

before for deriving small-gain theorems (like in [43, 46] for hybrid and continuous

discrete-time systems, respectively), here we follow [21] in using different gains

for the two implications. One of the main results is the somewhat surprising

observation that it is the gain from the newly introduced implication which is

decisive for the small-gain condition.

Our objective in this part is to construct a numerical ISpS controller on coarse

quantizations for large-scale systems via a dynamic game approach. We start by

introducing the problem setting and basic definitions in Chapter 2. Afterwards,

in Chapter 3, we explain the game theoretic stabilizing controller approach which

will be the basis for our ISpS controller design described in Chapter 4, cf. [26].

In the last chapter we consider a small-gain theorem that gives a condition under

which a large-scale system can be rendered ISpS using the ISpS controller design

from Chapter 4 on low-dimensional subsystems of the large-scale system, cf. [28].
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Chapter 2

Setting and Preliminaries

In this chapter we introduce basic notation, definitions, and our problem setting.

We start by stating the considered control system. After that, in Section 2.2, we

define some notions of stability. In Section 2.3 Lyapunov functions, which play a

very important role throughout this thesis, are discussed. We shortly introduce

the concept of the upper value function and its optimality principle in Section

2.4. In the last section, we formally state our problem and explain the basic idea

of solving it, which is the topic of the following chapters.

2.1 Control System

We consider discrete-time control systems with perturbation which are composed

of N interconnected subsystems. The evolution of the state of the system depends

on its current state, the control input, and the acting perturbation. The discrete-

time model under consideration can also be the discrete-time representation of a

sampled continuous-time model.

The nonlinear state-space model is given by the difference equations

Σ: x(k + 1) = f
(
x(k), u(k), w(k)

)
=

 f1

(
x1(k), . . . , xN(k), u1(k), w(k)

)
...

fN
(
x1(k), . . . , xN(k), uN(k), w(k)

)
 , (2.1)

k = 0, 1, . . . , with x = (x1, x2, . . . , xN) ∈ X ⊂ Rn, X = X1 × . . . × XN , u =

(u1, . . . , uN) ∈ U ⊂ Rm, U = U1 × . . . × UN , and w ∈ W ⊂ Rq. We assume that

X, U and W are compact since the discretization method we use can only be

applied to compact sets. The overall system dynamics are described by f and

the state at time instant k is given by x(k). For the initial value x(0) we write

x0. Here, u(k) denotes the control input and w(k) is the perturbation acting

7



8 CHAPTER 2. SETTING AND PRELIMINARIES

on the system at time k. Infinite sequences of control and perturbation values

are denoted by u =
(
u(0), u(1), . . .

)
and w =

(
w(0), w(1), . . .

)
, respectively, and

the corresponding spaces of such sequences with values uk ∈ U and wk ∈ W are

denoted by U and W , respectively. A trajectory of the system for a given initial

value x0 ∈ X, a given control sequence u ∈ U and a given perturbation sequence

w ∈ W is denoted by x(x0,u,w) =
(
x(k, x0,u,w)

)
k∈N.

We assume f(0, 0, 0) = 0, i.e., that the origin is a steady state, also called

equilibrium. That means if the initial value is the origin and there is no per-

turbation or control input, the state will stay forever at the origin. The overall

system is denoted by Σ and the i-th subsystem by Σi. In the following, Ba(A)

denotes the closed ball around the set A with radius a.

The only way to influence the trajectories of system (2.1) is via the control

input. Thus, if one wants the system to have certain properties, e.g. stability,

one needs to find a control input so that those properties hold. One type of

controller is a state feedback controller u(x(k)), i.e., the control input depends

on the current state x(k) and there is a control value assigned to every state. If

this controller is known, the resulting closed loop system can be written as

x(k + 1) = f
(
x(k), u(x(k)), w(k)

)
, k = 0, 1, . . . . (2.2)

In order to characterize stability properties of the closed loop system, we

use comparison functions. They play a very important role in nonlinear control

theory since E. D. Sontag used them, e.g. in [54]. The concept of comparison

functions in context of stability first appeared in [31, 32] by W. Hahn.

Definition 2.1. We define the following classes of comparison functions:

K =
{
γ : R≥0 → R≥0 | γ is continuous and strictly increasing with γ(0) = 0

}
K∞ =

{
γ ∈ K | γ is unbounded

}
KL =

{
β : R≥0 × R≥0 → R≥0 | β is continuous, β(·, k∗) ∈ K for all k∗ ≥ 0,

β(r∗, ·) is continuous and strictly decreasing to zero for all r∗ > 0
}

An interesting result of E.D. Sontag [55, Proposition 7] about KL functions

is widely known as Sontag’s KL–Lemma.

Lemma 2.2. For each function β ∈ KL, there exist functions α̂, α̃ ∈ K∞ such

that

α̂
(
β(s, t)

)
≤ α̃(s)et ∀(s, t) ∈ R≥0 × R≥0. (2.3)

In order to develop our controller design we need to consider how the control

and perturbation interact. In this work, we employ a concept from game theory

and restrict the choice of perturbation sequences w ∈ W , allowing only those

that follow a nonanticipating strategy φ to a given control sequence u.
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Definition 2.3. A strategy φ : U → W is called nonanticipating if it fulfills the

implication

u(k) = u′(k) ∀k ≤ K ⇒ φ(u)k = φ(u′)k ∀k ≤ K

for any two control sequences u =
(
u(k)

)
k
, u′ =

(
u′(k)

)
k
∈ U .

The set of all nonanticipating strategies φ : U → W is denoted by Φ.

Let a control sequence u ∈ U and a nonanticipating strategy φ ∈ Φ be given. A

corresponding perturbation sequence w ∈ W follows the nonanticipating strategy

φ if it satisfies w = φ(u).

Using these nonanticipating strategies, we can define asymptotic controllabil-

ity, which is a necessary condition for feedback stabilizability.

Definition 2.4. Consider system (2.1). We say that the system is asymptoti-

cally controllable if there exists a function β ∈ KL such that for each admissible

initial value x0 and nonanticipating perturbation strategy φ ∈ Φ there exists an

admissible control sequence u such that the inequality

‖x(k, x0,u, φ(u))‖ ≤ β(‖x0‖, k) (2.4)

holds for all k ∈ N0.

2.2 Stability

A very useful type of stability for nonlinear systems with inputs is input-to-state

stability (ISS), introduced by E. D. Sontag in [54]. Here we fix a state feedback

law u and consider closed loop systems (2.2) with input w, i.e., we interpret the

input as perturbation. A variant of ISS is introduced by considering a practical

version, which is more general. The “classical” definition can be obtained by

setting δ to zero in Definition 2.5.

Definition 2.5. System (2.2) is called input-to-state practically stable (ISpS)

with respect to δ ∈ R≥0,∆w ∈ R≥0 on a set Y ⊂ X if there exist β ∈ KL and

γ ∈ K such that the solutions of the system satisfy

‖x(k, x0,w)‖ ≤ max
{
β(‖x0‖, k), γ(‖w‖∞), δ

}
(2.5)

for all x0 ∈ Y , all w ∈ W with ‖w‖∞ ≤ ∆w, and all k ∈ N0.

In Figure 2.1 we sketch a possible ISpS situation where the trajectory (red) has

been depicted continuously for ease of presentation. The bound of the trajectory

by the function β (dark blue) represents the asymptotic nature of the system, i.e.
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x0×
β(‖x0‖, k)

δ

γ(‖w‖∞)

trajectory

time k

Figure 2.1: Input-to-State practical Stability for Σ

in case the perturbation w and the term δ vanish, the system is asymptotically

stable. The practical component is δ (cyan) which implies that the solutions will

tend to a δ-neighborhood of the origin, i.e., the trajectories do not necessarily get

arbitrarily close to the steady state, they just stay close to it. In case of δ = 0, the

system would be called input-to-state stable (ISS). The γ-term (green), finally,

measures the influence of the perturbation: in presence of a large perturbation

w the solution will tend to a neighborhood of 0 whose size is proportional to

γ(‖w‖∞). If Definition 2.5 holds with γ = 0, the system is called uniformly

practically asymptotically stable.

Definition 2.6. System (2.2) is called uniformly (w.r.t. w ∈ W) practically

(w.r.t. δ ∈ R≥0) asymptotically stable on a set Y ⊂ X if there exists β ∈ KL
such that the solutions of the system satisfy

‖x(k, x0, w)‖ ≤ max
{
β(‖x0‖, k), δ

}
for all x0 ∈ Y , all w ∈ W, and all k ∈ N0.

Note that δ describes the practical stability region. Setting δ = 0 yields the

non-practical version in which the trajectory will converge to the origin and the

system is uniformly asymptotically stable.

2.3 Lyapunov Functions

ISS Lyapunov functions, introduced by E. D. Sontag and Y. Wang in [56], are

a very helpful tool because they provide a characterization of ISS. There are

two different ways of defining ISS-Lyapunov functions, in dissipative-form or in

implication-form. Both formulations have their own advantages and are useful

in different contexts. Here we base our analysis on the implication-form ISS

Lyapunov functions.



2.3. LYAPUNOV FUNCTIONS 11

Note that in general the controller u(x) in (2.2) is not continuous, in fact,

the controller we design will not be continuous. Thus, we consider discrete-time

nonlinear systems without continuity assumptions on f in x. However, in this

case the classical implication-form ISS Lyapunov function, cf., e.g., [38], is not

sufficient. Using the classical definition it is not possible to conclude ISS from

the existence of a Lyapunov function. This issue was discussed in detail by L.

Grüne and C. M. Kellett in [21], introducing the so-called strong implication-form

ISS Lyapunov function. In the following we use the practical version of it. The

difference to the “classical” implication-form ISpS Lyapunov function lies in the

additional implication (2.8).

Definition 2.7. A function V : X → R≥0 is called ISpS Lyapunov function for

system (2.2) on a sublevel set Y = {x ∈ X |V (x) ≤ `} for some ` > 0 if there

exist functions α, α ∈ K∞, µ, µ̃ ∈ K, a positive definite function α, and values

w ∈ R>0 ∪ {+∞}, c, ν, ν̃ ∈ R≥0 such that for all x ∈ Y the inequalities and

implications

α
(

max{‖x‖ − c, 0}
)
≤ V (x) ≤ α(‖x‖) (2.6)

and

V (x) ≥ max
{
µ(‖w‖∞), ν

}
⇒ V

(
f(x, u(x), w)

)
− V (x) ≤ −α

(
V (x)

)
(2.7)

V (x) < max
{
µ(‖w‖∞), ν

}
⇒ V

(
f(x, u(x), w)

)
≤ max

{
µ̃(‖w‖∞), ν̃

}
(2.8)

hold for all w ∈ W with ‖w‖ ≤ w.

In simple words, this definition demands that for any time at which the value

V (x) is large relative to w the Lyapunov function will decay according to (2.7).

Otherwise, the Lyapunov function may increase up to the w-dependent bound

on the right hand side of (2.8).

The practical nature becomes apparent in the lower bound of (2.6) and the

constants ν, ν̃. In the practical setting a trajectory enters a neighborhood of the

origin and then stays within that neighborhood. Thus, inside this neighborhood

we only bound the Lyapunov function from below by zero. Similarly, if we are

inside a neighborhood of the origin, we can not guarantee the descent of the

Lyapunov function in (2.7). Hence, if V (x) < ν, we only require the Lyapunov

function in the next step to be bounded again. The reason for this practical

setting will become clear later on.

As mentioned before, ISpS Lyapunov functions are very useful because they

provide a characterization of ISpS. The following theorem shows this, i.e., that

the existence of a strong-implication-form ISpS Lyapunov function implies that
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the system is ISpS. We give a direct proof which allows us to determine the

resulting gain γ and the size δ of the practical stability region. The theorem

extends the sufficiency part of Corollary 4 in [21] to the practical setting, similar

to [26, Theorem 10] and [28, Theorem 6].

Theorem 2.8. Consider system (2.2) and assume that the system admits an

ISpS Lyapunov function V . Then the system is ISpS on Y with

δ = max
{
α−1(ν) + c, α−1(ν̃) + c, 2 c

}
, (2.9)

γ(r) = 2α−1
(

max{µ(r), µ̃(r)}
)

(2.10)

and ∆w = γ−1
(
α−1(`)

)
, provided δ ≤ α−1(`) holds.

Before we prove this theorem we state a helpful lemma by Z.-P. Jiang and Y.

Wang [39, Lemma 4.3].

Lemma 2.9. For each α̃ ∈ K there exists a function βα̃ ∈ KL with the following

property:

If y : N→ [0,∞) is a function satisfying

y(k + 1)− y(k) ≤ −α̃
(
y(k)

)
for all 0 ≤ k < k1 for some k1 ≤ ∞, then

y(k) ≤ βα̃
(
y(0), k

)
∀k < k1.

Proof of Theorem 2.8. We fix x0 ∈ Y , w ∈ W and denote the corresponding

trajectory of (2.2) by x(k). We begin the proof by deriving estimates for V (x(k))

under different assumptions. To this end, we distinguish three cases.

Case 1: Let k′ ∈ N be such that V
(
x(k)

)
≥ max

{
µ(‖w‖∞), ν

}
for all k =

0, . . . , k′ − 1. Then (2.7) yields

V
(
x(k + 1)

)
− V

(
x(k)

) (2.7)

≤ −α
(
V (x(k))

)
.

Note that (2.7) also implies V
(
x(k+ 1)

)
≤ V

(
x(k)

)
. Together with x0 ∈ Y ={

x ∈ X | V (x) ≤ `
}

this shows that x(k) ∈ Y for all k = 0, . . . , k′ − 1. Hence,

(2.7) may indeed be used for all these k. Setting α̃ := α, Lemma 2.9 yields the

existence of βα̃ ∈ KL such that

V
(
x(k)

)
≤ βα̃

(
V (x0), k

)
for all k = 0, . . . , k′ − 1. (2.11)

Case 2: Let k ∈ N be such that V
(
x(k)

)
< max

{
µ(‖w‖∞), ν

}
.

Then (2.8) yields

V
(
x(k + 1)

)
≤ max

{
µ̃(‖w‖∞), ν̃

}
.
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Case 3: Let k ∈ N be such that V
(
x(k)

)
< max

{
µ̃(‖w‖∞), ν̃

}
.

Then we either have V
(
x(k)

)
< max

{
µ(‖w‖∞), ν

}
and thus Case 2 implies

V
(
x(k + 1)

)
≤ max

{
µ̃(‖w‖∞), ν̃

}
.

Otherwise, we have V
(
x(k)

)
≥ max

{
µ(‖w‖∞), ν

}
and (2.7) yields

V
(
x(k + 1)

)
≤ V

(
x(k)

)
< max

{
µ̃(‖w‖∞), ν̃

}
.

Thus, in either case we get V
(
x(k + 1)

)
≤ max

{
µ̃(‖w‖∞), ν̃

}
.

Combining these three cases we can now prove the desired inequality (2.5):

Let k′ ∈ N be maximal such that the condition from Case 1 is satisfied. Then,

for all k = 0, . . . , k′ we get

‖x(k)‖
(2.6)

≤ α−1
(
V (x(k))

)
+ c

(2.11)

≤ α−1
(
βα̃(V (x0), k)

)
+ c

(2.6)

≤ α−1
(
βα̃(α(‖x0‖), k)

)
+ c

≤ max
{

2α−1( βα̃(α(‖x0‖), k)), 2 c
}
. (2.12)

This implies (2.5) for all k = 0, . . . , k′ with β(‖x0‖, k) := 2α−1
(
βα̃(α(‖x0‖), k)

)
.

Next, for all k ≥ k′ by induction we show the inequality

V
(
x(k)

)
≤ max

{
µ(‖w‖∞), µ̃(‖w‖∞), ν, ν̃

}
. (2.13)

Note that we need the bounds δ ≤ α−1(`) and ∆w = γ−1
(
α−1(`)

)
in the

assertion to ensure that (2.13) implies V
(
x(k)

)
≤ ` and thus x(k) ∈ Y for all

w ∈ W with ‖w‖∞ ≤ ∆w:

V
(
x(k)

) (2.13)

≤ max
{
µ(‖w‖∞), µ̃(‖w‖∞), ν, ν̃

}
≤ α

(
max{2α−1(µ(‖w‖∞)), 2α−1(µ̃(‖w‖∞)),

α−1(ν) + c, α−1(ν̃) + c, 2 c}
)

(2.9)
=

(2.10)
α
(

max{γ(‖w‖∞), δ}
)

≤ α
(

max{γ(∆w), δ}
)

≤ `.

Hence, (2.13) implies that one of the Cases 1 - 3 must hold for x(k) because

Case 1 applies until k′ and then, if (2.13) holds, only Cases 2 or 3 could occur.

Consequently, if we know that (2.13) holds, we can use the estimates in the Cases

1 - 3 in order to conclude the required inequality for V
(
x(k + 1)

)
.

To start the induction at k = k′, note that the maximality of k′ implies

V
(
x(k)

)
≤ max

{
µ(‖w‖∞), ν

}
by the condition of Case 1, thus yielding (2.13).

For the induction step k → k + 1, assume that (2.13) holds for V
(
x(k)

)
. Then,
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either Case 1 holds implying V
(
x(k + 1)

)
≤ V

(
x(k)

)
and thus (2.13) for

V
(
x(k + 1)

)
. Otherwise, one of the Cases 2 or 3 must hold for V

(
x(k)

)
, which

also implies (2.13) for V
(
x(k + 1)

)
.

Applying (2.6) to (2.13) yields

‖x(k)‖
(2.6)

≤ α−1
(

max {µ(‖w‖∞), µ̃(‖w‖∞), ν, ν̃}
)

+ c

= max
{
α−1(µ(‖w‖∞)) + c, α−1(µ̃(‖w‖∞)) + c,

α−1(ν) + c, α−1(ν̃) + c
}

= max
{

2α−1(µ(‖w‖∞)), 2α−1(µ̃(‖w‖∞)),

2 c, α−1(ν) + c, α−1(ν̃) + c
}
. (2.14)

Together, (2.12) and (2.14) show the desired result.

2.4 Upper Value Function and The Optimality

Principle

As mentioned before, the only way to influence the trajectories of system (2.1)

is via the control input. There are many different possibilities and objectives of

choosing this input. An approach used in dynamic game theory is to find the

feedback law that stabilizes the system under all possible perturbations while

the worst accumulated cost is minimized. To this end, we need to introduce a

continuous instantaneous cost along the trajectories of system (2.1), g : X×U →
R≥0 with

g
(
x(k), u(k)

)
≥ 0, (2.15)

which penalizes the distance to the origin.

Assumption 2.10. Let system (2.1) be asymptotically controllable according to

Definition 2.4. Then we consider α̂ from Lemma 2.2 with β from Definition 2.4

and assume the existence of α ∈ K∞ such that

α̂(‖x‖) ≥ g(x, u) ≥ α(‖x‖) (2.16)

holds for all x ∈ X, u ∈ U .

Remark 2.11. Note that this assumption can be quite restrictive if the cost g

actually depends on the control u since α and α̂ only depend on x. However, if

the additional small control property, cf. [25, Definition 4.2], is satisfied, i.e., if

(2.4) can be substituted by

‖x(k, x0,u, φ(u))‖+ ‖u(k)‖ ≤ β(‖x0‖, k),

then Assumption 2.10 can be relaxed.

All the following statements could be suitably adjusted to this situation.
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The total cost along a controlled trajectory is given by

J(x0,u,w) =
∞∑
k=0

g
(
x(k, x0,u,w), u(k)

)
∈ [0,∞]. (2.17)

In order to determine the lowest cost along a trajectory under all possible

perturbations, we restrict the choice of perturbation sequences to those that

follow a nonanticipating strategy as introduced in Definition 2.3. The reason for

this game theoretic choice is that the problem at hand actually describes a game

(see, e.g., [10]) where in each iteration step of (2.1) the “controlling player” and

the “perturbing player” choose values u(k) and w(k), respectively. The objective

of the “controlling player” is to minimize the total cost whereas the “perturbing

player” tries to maximize it. There are only two choices of strategies which will

yield a well-posed game. Either the “controlling player” knows about the choice

of the “perturbing player” or the other way around, i.e., the “perturbing player”

is informed about the choice of the “controlling player”. In our setting, the

first mentioned strategy has the problem that it requires the knowledge of the

perturbation which in general is unknown or not measurable. Therefore we choose

the other option, the nonanticipating strategy. The game theoretic interpretation

of this strategy is essentially that the “controlling player” who wants to minimize

the cost chooses the value u(k) first and the “perturbing player” knows this

value when choosing the perturbation w(k) to maximize the cost. However, the

“perturbing player” is not able to predict the future choices of the “controlling

player”, thus he always chooses the worst possible perturbation value for each

single step of the trajectory.

Considering Definition 2.3, we can define the minimal value of the total cost

via the upper value function V : X → [0,∞] by

V (x) = sup
φ∈Φ

inf
u∈U

J
(
x,u, φ(u)

)
. (2.18)

By standard dynamic programming arguments [5] one sees that this function V

fulfills the optimality principle

V (x) = inf
u∈U

[
g(x, u) + sup

w∈W
V
(
f(x, u, w)

)]
in all states x for which V (x) is finite.

Using the optimality principle, an optimal stabilizing feedback is given by

u(x) = argmin
u∈U

{
g(x, u) + sup

w∈W
V
(
f(x, u, w)

)}
whenever this minimum exists.

An interesting property of the value function is that it is bounded from above

and below by K∞ functions, cf. [25].
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Proposition 2.12. Consider system (2.1). If the system is asymptotically con-

trollable, then there exist α1, α2 ∈ K∞ such that the optimal value function V

corresponding to the cost function g : X × U → R≥0 satisfying Assumption 2.10

fulfills the inequality

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) (2.19)

for all x ∈ X.

Proof. We start by proving the lower bound of (2.19). For each x0 ∈ X,u ∈
U ,w ∈ W we get

J(x0,u,w)
(2.17)
=

∞∑
k=0

g
(
x(k, x0,u,w), u(k)

)
(2.20)

≥ g
(
x(0, x0,u,w), u(0)

)
(2.21)

(2.10)

≥ α
(
‖x0‖

)
. (2.22)

Thus,

V (x0)
(2.18)
= sup

φ∈Φ
inf
u∈U

J
(
x,u, φ(u)

) (2.22)

≥ α(‖x0‖),

proving the lower bound in (2.19) with α1 = α.

Let us consider the upper bound. To this end let u∗ ∈ U be any sequence of

control values.

V (x0)
(2.18)
= sup

φ∈Φ
inf
u∈U

J
(
x0,u, φ(u)

)
≤ sup

φ∈Φ
J
(
x,u∗, φ(u∗)

)
(2.17)
= sup

φ∈Φ

∞∑
k=0

g
(
x(k, x0,u

∗, φ(u∗)), u∗(k)
)

(2.16)

≤ sup
φ∈Φ

∞∑
k=0

α̂
(
x(k, x0,u

∗, φ(u∗))
)

(2.4)

≤
∞∑
k=0

α̂
(
β(‖x0‖, k)

)
(2.23)

(2.3)

≤
∞∑
k=0

α̃(‖x0‖)e−k

≤ e

e− 1
α̃(‖x0‖),

i.e., the upper bound holds with α2(r) = e α̃(r)/(e− 1).
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2.5 Problem Formulation and Basic Idea

The objective in the first part of this thesis is to numerically construct an optimal

static state feedback for system (2.1) which renders the interconnected system

(2.2) ISpS.

The approach we present relies on the conversion of the ISpS controller de-

sign problem into a uniformly practically stabilizing controller design problem.

To this end, we modify system (2.1), scaling it so that close to the origin only

small perturbations occur and the farther away from the equilibrium the state is,

the larger perturbation values are allowed. Then it is possible to find a robust

controller for this system. The idea is to construct a uniformly practical stabi-

lizing controller for the modified system and to ensure that the original system

with the same controller is ISpS.

To calculate the controller for the modified system, we utilize a set oriented

dynamic game based controller design method from [18], yielding uniform practi-

cal stability. We will explain this method thoroughly in Chapter 3. The resulting

controller is given in form of a lookup table, which makes it possible to compute

it offline and to just apply the table online.

Since this method is set oriented, i.e., it requires a partition of the state space

X, we introduce a target set T into which we want to steer the system. Note that

it is in general not possible to use the target set T = {0} unless one is willing

to assume that the system can be controlled to the origin in finitely many steps

(and even then using T = {0} is likely to cause numerical problems). This is why

we introduced practical versions of all stability properties involved.

Another problem to deal with is that due to the discretization method used in

this controller design it is only reasonably applied to low dimensional systems. In

order to resolve this issue we state and prove an ISpS based small-gain theorem in

Chapter 5. This allows us to design the controllers of the subsystems independent

of each other by considering the inputs from other subsystems as perturbations.

The individual controllers, in turn, must then be robust w.r.t. these perturbation

inputs in the ISpS sense. The so called small-gain condition eventually guarantees

that these separate controllers of the subsystems, applied to the overall system

Σ, render the interconnected system ISpS.
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Chapter 3

Game theoretic stabilizing

controller design for perturbed

systems

In this chapter the control objective is to design a practically uniformly stabilizing

state feedback controller, i.e., a controller u(k) = uP
(
x(k)

)
such that the closed

loop system

x(k + 1) = f
(
x(k), uP(x(k)), w(k)

)
, (3.1)

k = 0, 1, . . ., is uniformly practically asymptotically stable as defined in Defini-

tion 2.6.

In order to calculate the control u(k) we use a set-oriented algorithm which

was proposed and developed in [40], [16], [18] and [19], utilizing the concept of

multivalued games.

Since we work with the set-oriented method, we have to introduce a target set

T 3 0n. This target set is typically a small neighborhood of the origin because

a small target set relates to a small δ, the size of the practical stability region of

Definition 2.6.

In Section 3.1 we start by introducing the principle of multivalued games

and explain how to obtain a corresponding upper value function. Afterwards we

discuss our discretization process, utilizing the introduced multivalued games,

and provide some important properties of the resulting value function. Based on

these results we then design a stabilizing controller for the perturbed system in

Section 3.3.

19
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3.1 Multivalued Games

As described in [19], it is useful to introduce the principle of the multivalued game

since the set oriented approach of discretizing the state space of the perturbed

control system (2.1) will lead to a finite state multivalued game.

A multivalued game is given by a multivalued map F : X×U×W ⇒ X where

X ⊂ Rn is a closed set, U ⊂ Rm, W ⊂ Rq, and the images of F are compact

sets, together with a cost function G : X×U → [0,∞). A trajectory of the game

for a given initial point x0 ∈ X, a given control sequence u =
(
u(k)

)
k∈N ∈ U

and a given perturbation sequence w =
(
w(k)

)
k∈N ∈ W is given by any sequence

x(x0,u,w) =
(
x(k, x0,u,w)

)
k∈N ∈ XN such that

x(k + 1) ∈ F
(
x(k, x0,u,w), u(k), w(k)

)
,

k = 0, 1, ... . We denote the set of all trajectories of F associated to x, u, and w

by

XF (x,u,w) =
{

(x(k))k ∈ XN | x(k + 1) ∈ F (x(k, x0,u,w), u(k), w(k)) ∀k ∈ N
}
.

The associated accumulated cost until reaching a given target set T is now

given by

JF,G(x0,u,w) = sup
(x(k))k∈XF (x,u,w)

k(T,x0,u,w)∑
k=0

G
(
x(k, x0,u,w), u(k)

)
(3.2)

where k(T, x0,u,w) := inf
{
k ≥ 0 |x(k, x0,u,w) ∈ T

}
.

The feedback construction is based on a piecewise constant approximation

of the value function. Here the upper value function VF,G : X → [0,∞] of the

multivalued game is given by

VF,G(x) = sup
φ∈Φ

inf
u∈U

JF,G
(
x,u, φ(u)

)
∀x /∈ T (3.3)

and VF,G(x) = 0 for all x ∈ T . The set of the states x ∈ X which are stabilizable

is denoted by SF,G =
{
x ∈ X |VF,G(x) <∞

}
.

Note that in [19] the lower value function, with infimum in (3.2), was utilized,

i.e., the value function was approximated from below. But due to the used dis-

cretization scheme, which we will introduce in Section 3.2, the value function in

this case is rather heavily underestimated and certain Lyapunov function prop-

erties are not satisfied, hence a very fine partition is needed in order to achieve

stability of the closed loop system, cf. [18, Section IV].

A key property of the upper value function is that it satisfies the principle of

optimality.
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Proposition 3.1. The upper value function VF,G as defined in (3.3) satisfies the

principle of optimality

VF,G(x) = inf
u∈U

{
G(x, u) + sup

w∈W
sup

x′∈F (x,u,w)

VF,G(x′)

}
(3.4)

for x /∈ T together with the boundary condition VF,G|T ≡ 0 on the stabilizable set

SF,G.

Proof. If x ∈ T , there is nothing to show. Therefore, let x /∈ T .

First we prove that

VF,G(x) ≤ G(x, u) + sup
w∈W

sup
x′∈F (x,u,w)

VF,G(x′) ∀u ∈ U. (3.5)

Let ε > 0 and u1 = (u(1), u(2), ...) ∈ U , where u = (u(0), u(1), u(2), ...) ∈ U ,

be such that

sup
φ∈Φ

J(x(1),u1, φ(u1)) ≤ VF,G(x(1)) + ε. (3.6)

For the strategy φ(u)k=1,... with w = φ(u) we introduce the notation φ(u)k=1,... =:

φ1 ∈ Φ with w1 = φ1(u1) where w1 = (w(1), w(2), ...) ∈ W . Then for any u∗ ∈ U
with u∗(k + 1) = u1(k) for all k = 0, 1, ... it holds that

VF,G(x)
(3.3)
= sup

φ∈Φ
inf
u∈U

JF,G
(
x,u, φ(u)

)
≤ sup

φ∈Φ
JF,G

(
x,u∗, φ(u∗)

)
(3.2)
= sup

φ∈Φ
sup

(x(k))k∈XF (x,u∗,φ(u∗))

k(T,x,u∗,φ(u∗))∑
k=0

G
(
x(k,u∗, φ(u∗)), u∗(k)

)

= G(x, u∗(0)) + sup
φ∈Φ

sup
(x(k))k∈XF (x,u∗,φ(u∗))

k(T,x,u∗,φ(u∗))∑
k=1

G
(
x(k,u∗, φ(u∗)), u∗(k)

)
(3.2)

≤ G(x, u∗(0)) + sup
φ1∈Φ1

JF,G
(
x(1),u1, φ1(u1)

)
(3.6)

≤ G(x, u∗(0)) + VF,G(x(1)) + ε

≤ G(x, u∗(0)) + sup
w∈W

sup
x′∈F (x,u∗(0),w)

VF,G(x′) + ε.

Thus, (3.5) follows since ε > 0 and u∗(0) were chosen arbitrarily.
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It is left to show

VF,G(x) ≥ inf
u∈U

{
G(x, u) + sup

w∈W
sup

x′∈F (x,u,w)

VF,G(x′)

}
.

To this end, let ε > 0,u ∈ U be such that

VF,G(x) ≥ sup
φ∈Φ

J(x,u, φ(u))− ε. (3.7)

Then

VF,G(x)
(3.7)

≥ sup
φ∈Φ

J(x,u, φ(u))− ε

(3.2)
= sup

φ∈Φ
sup

(x(k))k∈XF (x,u,φ(u))

k(T,x,u,φ(u))∑
k=0

G
(
x(k,u, φ(u)), u(k)

)
− ε

= G(x, u) + sup
φ∈Φ

sup
(x(k))k∈XF (x,u,φ(u))

k(T,x,u,φ(u))∑
k=1

G
(
x(k,u, φ(u)), u(k)

)
− ε

x(1)∈F (x,u,w)
= G(x, u)− ε

+ sup
φ∈Φ

sup
x′∈F (x,u,φ(u))

sup
(x(k))k∈XF (x′,u,φ(u))

k(T,x,u,φ(u))∑
k=0

G
(
x(k,u, φ(u)), u(k)

)
= G(x, u) + sup

w∈W
sup

x′∈F (x,u,W )

sup
φ∈Φ

J(x,u, φ(u))− ε

≥ G(x, u) + sup
w∈W

sup
x′∈F (x,u,W )

sup
φ∈Φ

inf
u∈U

J(x,u, φ(u))− ε

= G(x, u) + sup
w∈W

sup
x′∈F (x,u,w)

VF,G(x′)− ε

≥ inf
u∈U

{
G(x, u) + sup

w∈W
sup

x′∈F (x,u,w)

VF,G(x′)

}
− ε.

Since ε > 0 was arbitrary, this together with (3.6) shows the assertion.

Note that it is sufficient to know the set valued image F (x, u,W ) in (3.4),

thus the parametrization of F by w is not needed and (3.4) can also be written

as

VF,G(x) = inf
u∈U

{
G(x, u) + sup

x′∈F (x,u,W )

VF,G(x′)

}
. (3.8)
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Observe further that the originally introduced “single-valued game” (2.1),

(2.15)-(2.18) can be recast in this multivalued setting by defining

F (x, u, w) :=
{
f(x, u, w)

}
and G(x, u) = g(x, u). (3.9)

In this case we use the notation Vf,g and Jf,g.

Remark 3.2. Proposition 2.12 also holds for Vf,g for all x /∈ T . The step to

(2.21) in the proof still holds and the supremum can be eliminated without prob-

lems, thus we get (2.22) for all x /∈ T . Considering the upper bound, note that

k(T,x0,u,w)∑
k=0

g
(
x(k, x0,u, φ(u)), u(k)

)
≤

∞∑
k=0

g
(
x(k, x0,u, φ(u)), u(k)

)
.

Also, the supremum in the definition of Jf,g disappears in the step to (2.23)

and therefore the proof continues as before for x /∈ T . This upper bound actually

even holds for all x ∈ Sf,g.

As in [19], we now want to investigate the relation of the value functions of

different multivalued games. To this end we first have to introduce the concept

of an enclosure, cf. [19, Definition 1].

Definition 3.3. If (F1, G1) and (F2, G2) are two multivalued games such that

F2(x, u, w) ⊂ F1(x, u, w) (3.10)

for all x ∈ X, u ∈ U, w ∈ W and

G1(x, u) ≥ G2(x, u) (3.11)

for all x ∈ F2(x, u, w) and all u ∈ U , then (F1, G1) is called an enclosure of

(F2, G2).

An immediate consequence of this definition is shown next, cf. [19, Prop. 1].

Proposition 3.4. Let the game (F1, G1) be an enclosure of the game (F2, G2)

with the same target set T , then

VF1,G1(x) ≥ VF2,G2(x). (3.12)
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Proof. Because of Definition 3.3 we get

JF2,G2(x,u,w) = sup
(x(k))k∈XF2 (x,u,w)

k(T,x0,u,w)∑
k=0

G2

(
x(k, x0,u,w), u(k)

)
(3.10)

≤ sup
(x(k))k∈XF1 (x,u,w)

k(T,x0,u,w)∑
k=0

G2

(
x(k, x0,u,w), u(k)

)
(3.11)

≤ sup
(x(k))k∈XF1 (x,u,w)

k(T,x0,u,w)∑
k=0

G1

(
x(k, x0,u,w), u(k)

)
= JF1,G1(x,u,w)

and consequently

VF1,G1(x) = sup
φ∈Φ

inf
u∈U

JF1,G1

(
x,u, φ(u)

)
≥ sup

φ∈Φ
inf
u∈U

JF2,G2

(
x,u, φ(u)

)
= VF2,G2(x).

In the following proposition we study the convergence of the value functions

of a sequence of games (Fi, Gi), cf. [19, Prop. 2]. Here and later on, H denotes

the Hausdorff distance for compact sets.

Definition 3.5. Let a metric space X with metric d be given and let A,B ⊆ X

be non-empty. Then the Hausdorff distance is given by

H(A,B) := max

{
sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)

}
. (3.13)

Proposition 3.6. Let a sequence of games (Fi, Gi), i ∈ N, be enclosures of the

game (F,G) and assume

sup
x∈X,u∈U,w∈W

H
(
Fi(x, u, w), F (x, u, w)

)
→ 0 as i→∞ (3.14)

and

sup
x∈X,u∈U

|Gi(x, u)−G(x, u)| → 0 as i→∞. (3.15)
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Let T be the target set of the game (F,G) with 0 ∈ T and Ti be the target sets

of the games (Fi, Gi) with H(Ti, T )→ 0 for i→∞ and Ti ⊇ Bδi(T ) for δi → 0.

Assume furthermore that F is upper semi-continuous in x and that G is con-

tinuous in x, uniformly in u, on compact subsets of X.

In addition, we assume that there exists α ∈ K∞ with

G(x, u) ≤ α(‖x‖) (3.16)

and

Gi(x, u) ≤ α(‖x‖) (3.17)

for all i ∈ N, u ∈ U .

Then for each compact set K for which sup
x∈K

VF,G(x) <∞ we have

lim
i→∞

supx ∈ KVFi,Gi(x) ≤ VF,G(x). (3.18)

Proof. Let the time where the trajectory
(
x(k, x0,u,Φ(u))

)
k

first enters the tar-

get set T be denoted by k(T, x0,u,Φ(u)). Since Gi are bounded from above by

α(‖x‖) for x 6= 0, x ∈ SFi,Gi = {x | VFi,Gi(x) < ∞} implies the existence of a

time k(Ti, x0,u,Φ(u)) <∞ such that

VFi,Gi(x)
(3.3)
= sup

φ∈Φ
inf
u∈U

sup
(x(k))k∈XFi (x,u,φ(u))

k(Ti,x0,u,φ(u))∑
k=0

Gi

(
x(k, x0,u, φ(u)), u(k)

)
. (3.19)

For any i ∈ N we use an εi-optimal perturbation strategy φ∗i and an arbitrary

u∗ ∈ U obtaining

VFi,Gi(x)
(3.19)

≤ inf
u∈U

sup
(x(k))k∈XFi (x,u,φ∗i (u))

k(Ti,x0,u,φ
∗
i (u))∑

k=0

Gi

(
x(k, x0,u, φ

∗
i (u)), u(k)

)
+ εi

≤ sup
(x(k))k∈XFi (x,u∗,φ∗i (u∗))

k(Ti,x0,u
∗,φ∗i (u∗))∑

k=0

Gi

(
x(k, x0,u

∗, φ∗i (u
∗)), u∗(k)

)
+ εi. (3.20)

In particular, the last expression is bounded from above by C + εi for x ∈
K ⊂ SFi,Gi , where C ∈ R is a constant.
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Note that Ti ⊇ T implies k(Ti, x0,u,w) ≤ k(T, x0,u,w) and thus

inf
x∈K

VF,G(x)
(3.3)
= inf

x′∈K
sup
φ∈Φ

inf
u∈U

sup
(x(k))k
∈XF (x′,u,φ(u))

k(T,x0,u,φ(u))∑
k=0

G
(
x(k, x0,u, φ(u)), u(k)

)

= inf
x′∈K

sup
φ∈Φ

inf
u∈U

sup
(x(k))k
∈XF (x′,u,φ(u))

[
k(Ti,x0,u,φ(u))∑

k=0

G
(
x(k, x0,u, φ(u)), u(k)

)

+

k(T,x0,u,φ(u))∑
k=k(Ti,x0,u,φ(u))+1

G
(
x(k, x0,u, φ(u)), u(k)

)]
(3.12)

≤ VFi,Gi(x)

+ inf
x′∈K

sup
φ∈Φ

inf
u∈U

sup
(x(k))k
∈XF (x′,u,φ(u))

k(T,x0,u,φ(u))∑
k=k(Ti,x0,u,φ(u))+1

G
(
x(k, x0,u, φ(u)), u(k)

)
.

It follows that VFi,Gi is bounded from above and below by

C + εi ≥ VFi,Gi(x)

≥ inf
x∈K

VF,G(x)− inf
x′∈K

sup
φ∈Φ

inf
u∈U

sup
(x(k))k∈XF (x′,u,φ(u))

k(T,x0,u,φ(u))∑
k=k(Ti,x0,u,φ(u))+1

G
(
x(k, x0,u, φ(u)), u(k)

)
.

Thus the upper bound α for Gi implies that there exists a compact set K1

such that each εi-optimal trajectory
(
x(k)

)
k
∈ XFi

(
x,u∗, φ)i∗(u∗)

)
lies in K1 for

all i ∈ N.

Applying any φ∗i to V(F,G) yields

VF,G(x)
(3.3)
= sup

φ∈Φ
inf
u∈U

sup
(x(k))k∈XF (x,u,φ(u))

k(T,x0,u,φ(u))∑
k=0

G
(
x(k, x0,u, φ(u)), u(k)

)

≥ inf
u∈U

sup
(x(k))k∈XF (x,u,φ∗i (u))

k(T,x0,u,φ∗i (u))∑
k=0

G
(
x(k, x0,u, φ

∗
i (u)), u(k)

)
. (3.21)



3.1. MULTIVALUED GAMES 27

Then, fixing φ∗i , we pick an εi-optimal control u∗i and get

VF,G(x)
(3.21)

≥ sup
(x(k))k∈XF (x,u∗i ,φ

∗
i (u∗i ))

k(T,x0,u∗i ,φ
∗
i (u∗i ))∑

k=0

G
(
x(k, x0,u

∗
i , φ
∗
i (u
∗
i )), u

∗
i (k)

)
−εi. (3.22)

Now assumption (3.14) and the upper semicontinuity of F imply that for

each ε1 > 0 there exists an i0 ∈ N such that for i ≥ i0 and each such εi -optimal

trajectory
(
x(k)

)
k
∈ XFi

(
x, u∗i , φ

∗
i (u
∗
i )
)

there exists a trajectory
(
x̃(k)

)
k
∈

XF
(
x,u∗i , φ

∗
i (u
∗
i )
)

with ‖x(k) − x̃(k)‖ ≤ ε1 for all k = 1, ..., k
(
T, x0,u

∗
i , φ
∗
i (u
∗
i )
)
.

Hence, (3.15) and the continuity of G imply that we can find i1 ∈ N such that

∣∣∣∣∣ sup
(x(k))k∈XF (x,u∗i ,φ

∗
i (u∗i ))

{
k∗∑
k=0

G(x(k, x0,u
∗
i , φ
∗
i (u
∗
i )), u

∗
i (k))

}

− sup
(x(k))k∈XFi (x,u∗,φ∗i (u∗))

{
k∗∑
k=0

Gi(x(k, x0,u
∗, φ∗i (u

∗)), u∗(k))

}∣∣∣∣∣ ≤ εi (3.23)

for all i ≥ i1 and all k∗ ∈
{

1, ..., k
(
T, x0,u

∗
i , φ
∗
i (u
∗
i )
)}

.

Combining this inequality with the previously obtained estimates and u∗ = u∗i
yields

VFi,Gi(x)
(3.20)

≤ sup
(x(k))k∈XFi (x,u∗i ,φ∗i (u∗i ))

k(Ti,x0,u
∗
i ,φ(u∗i ))∑

k=0

Gi

(
x(k, x0,u

∗
i , φ
∗
i (u
∗
i )), u

∗
i (k)

)
+ εi

= sup
(x(k))k∈XFi (x,u∗i ,φ∗i (u∗i ))

k(Ti,x0,u
∗
i ,φ(u∗i ))∑

k=0

Gi

(
x(k, x0,u

∗
i , φ
∗
i (u
∗
i )), u

∗
i (k)

)

− sup
(x(k))k∈XF (x,u∗i ,φ

∗
i (u∗i ))

k(T,x0,u∗i ,φ
∗
i (u∗i ))∑

k=0

G
(
x(k, x0,u

∗
i , φ
∗
i (u
∗
i )), u

∗
i (k)

)

+ sup
(x(k))k∈XF (x,u∗i ,φ

∗
i (u∗i ))

k(T,x0,u∗i ,φ
∗
i (u∗i ))∑

k=0

G
(
x(k, x0,u

∗
i , φ
∗
i (u
∗
i )), u

∗
i (k)

)
+ εi
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≤ sup
(x(k))k∈XFi (x,u∗i ,φ∗i (u∗i ))

k(Ti,x0,u
∗
i ,φ(u∗i ))∑

k=0

Gi

(
x(k, x0,u

∗
i , φ
∗
i (u
∗
i )), u

∗
i (k)

)

− sup
(x(k))k∈XF (x,u∗i ,φ

∗
i (u∗i ))

k(Ti,x0,u
∗
i ,φ
∗
i (u∗i ))∑

k=0

G
(
x(k, x0,u

∗
i , φ
∗
i (u
∗
i )), u

∗
i (k)

)

+ sup
(x(k))k∈XF (x,u∗i ,φ

∗
i (u∗i ))

k(T,x0,u∗i ,φ
∗
i (u∗i ))∑

k=0

G
(
x(k, x0,u

∗
i , φ
∗
i (u
∗
i )), u

∗
i (k)

)
+ εi

(3.23)

≤ εi + sup
(x(k))k∈XF (x,u∗i ,φ

∗
i (u∗i ))

k(T,x0,u∗i ,φ
∗
i (u∗i ))∑

k=0

G
(
x(k, x0,u

∗
i , φ
∗
i (u
∗
i )), u

∗
i (k)

)
+ εi

(3.22)

≤ VF,G(x) + 3εi

for all i ≥ i1. Since i1 depends only on k
(
T, x0,u

∗
i , φ
∗
i (u
∗
i )
)

and εi, hence only on

the set K and not on the individual x, we obtain the desired convergence.

3.2 Discretization

We approximate VF,G by functions which are piecewise constant. To this end, the

set X is decomposed into a finite partition P of boxes or cells P with pairwise

disjoint interior and
⋃
P∈P P = X. We let ρ(x) ∈ P , x ∈ X, denote the element

of the partition which contains x. Furthermore, we assume that the target set T

is a union of partition elements.

With this discretization we define

VP(x) = sup
x′∈ρ(x)

VF,G(x′) ∀x /∈ T (3.24)

and VP(x) = 0 for all x ∈ T , i.e., the value function VP is zero inside the target set

and outside we choose the maximal value of VF,G(x) out of all x in the respective

cell. Hence VP is constant on each partition element P ∈ P and we write VP(P )

for the value of VP in the cell P .

For P = ρ(x) we get the following optimality principle on the stabilizable set

SP =
{
x ∈ X |VP(x) <∞

}
:

VP(P ) =

 inf
N∈F(P )

{
G(P,N ) + sup

N∈N
VP(N)

}
if P ∩ T = ∅

0 if P ∩ T 6= ∅
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where

F(P ) =
{
ρ(F (x, u,W )) | (x, u) ∈ P × U

}
,

i.e., F(P ) is the set of all partition elements which can be reached from P under

all possible perturbations, considering all admissible controls.

The central trick introduced in [18] in terms of stabilization is to interpret the

discretization error arising from the partition P as a perturbation and to explicitly

include it in the computation. While in [18] the discretization error is the only

perturbation acting on the system, here we extend the setting by considering

both the original disturbance w and the discretization error as perturbations.

To this end, we fix a partition P and pick a union of partition elements as

target set T 3 0, i.e., T =
⋃
P∈T P, T ⊂ P . We consider a dynamic game with

F (x, u, w) = f
(
ρ(x), u, w

)
(3.25)

for every (x, u, w) where f comes from (2.1). Further we define

G(x, u) = sup
x′∈ρ(x)

g(x′, u) (3.26)

where g is the associated instantaneous cost (2.15).

With these definitions we can write the optimality principle (3.8) as

VF,G(x) = inf
u∈U

 sup
x′∈ρ(x)

g(x′, u) + sup
x′∈f
(
ρ(x),u,W

)VF,G(x′)

 . (3.27)

The following theorem, cf. [18, Theorem 1], shows crucial properties of the

approximate value function VP .

Theorem 3.7. Let V denote the optimal value function of the optimal control

problem (2.1), (3.9) with cost function g and let VP denote the approximate opti-

mal value function of the game (F,G) from (3.25) and (3.26) on a given partition

P with target set T ⊂ P and 0 ∈ T . Then,

V (x)−max
y∈T

V (y) ≤ VP(x) = sup
x′∈ρ(x)

VF,G(x′) = VF,G(x), (3.28)

i.e., VP coincides with VF,G and is an upper bound for V −maxV |T . Furthermore,

VP satisfies

VP(x) ≥ min
u∈U

{
g(x, u) + sup

x′∈f(x,u,W )

VP(x′)

}
(3.29)

for all x ∈ SP \ T and w ∈ W .
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Proof. Note that VF,G is constant on the elements of the partition P because F

and G are constant on them. Outside T , by definition of the game (F,G), we

have

VF,G(x) = inf
u∈U

{
sup

x∗∈ρ(x)

g(x∗, u) + sup
x∗∈f(ρ(x),u,W )

VF,G(x∗)

}

and thus

sup
x′∈ρ(x)

VF,G(x′) = sup
x′∈ρ(x)

{
inf
u∈U

{
sup

x∗∈ρ(x′)

g(x∗, u) + sup
x∗∈f(ρ(x′),u,W )

VF,G(x∗)

}}
. (3.30)

If x′ ∈ ρ(x), then ρ(x′) = ρ(x). Therefore (3.30) implies

sup
x′∈ρ(x)

VF,G(x′) = VF,G(x). (3.31)

Now we can prove the equality in (3.28):

VP(x)
(3.24)
= sup

x′∈ρ(x)

VF,G(x′)
(3.31)
= VF,G(x).

To prove (3.29), we assume x /∈ T . Then

VP(x)
(3.27)
= inf

u∈U

{
sup

x′∈ρ(x)

g(x′, u) + sup
x′∈f(ρ(x),u,W )

VP(x′)

}

= inf
u∈U

sup
x′∈ρ(x)

{
g(x′, u) + sup

w∈W
VP
(
f(x′, u, w)

)}
≥ inf

u∈U
sup
w∈W

{
g(x, u) + VP

(
f(x, u, w)

)}
(3.32)

≥ min
u∈U

{
g(x, u) + VP

(
f(x, u, w)

)}
. (3.33)

It remains to show the inequality in (3.28). To this end, we order the elements

P1, P2, ... ∈ P such that i ≥ j implies VP(Pi) ≥ VP(Pj). We know that VP(Pi) = 0

if and only if Pi ⊆ T . Hence there exists some i∗ ≥ 1 such that Pi ⊆ T for

i ∈ {1, ..., i∗}. Consequently, the inequality V (x) −max
y∈T

V (y) ≤ VP(x) holds for

all x ∈ P1, ..., Pi∗ .

Now we proceed by induction: fix some i ∈ N, assume the inequality (3.28)

holds for x ∈ P1, ..., Pi−1 and consider x ∈ Pi. If VP(x) =∞, there is nothing to

show. Thus assume VP(x) <∞ and let u∗ ∈ U be the minimizer of (3.32). Then
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we obtain the following inequality from (3.32).

V (x)− VP(x) ≤ inf
u∈U

sup
w∈W

{
g(x, u) + V

(
f(x, u, w)

)}
− inf

u∈U
sup
w∈W

{
g(x, u) + VP

(
f(x, u, w)

)}
≤ sup

w∈W

{
V
(
f(x, u∗, w)

)
− VP

(
f(x, u∗, w)

)}
. (3.34)

Since g(x, u∗) > 0, we get VP
(
f(x, u∗, w)

)
< VP(x) for all w ∈ W which im-

plies f(x, u∗, w) ∈ Pj for some j < i. By the induction assumption the inequality

(3.28) holds on Pj for all w ∈ W :

V
(
f(x, u∗, w)

)
− VP

(
f(x, u∗, w)

)
≤ max

y∈T
V (y). (3.35)

This finishes the induction step with

V (x)− VP(x)
(3.34)

≤
(3.35)

sup
w∈W

{
max
y∈T

V (y)

}
= max

y∈T
V (y).

Observe that VP may assume the value +∞ on some parts of X, in which

case inequality (3.29) does not yield valuable information. This is why we define

the stabilizable set.

Definition 3.8. The set SP =
{
x ∈ X |VP(x) < ∞

}
is called stabilizable set of

X under the partition P.

Next we want to investigate how the approximate optimal value function VP
relates to the value function of the game (f, g), cf. [19, Theorem 1]. To this

end, we consider a sequence of increasingly finer partitions of X and study their

convergence to the value function of the game (f, g). In a nested sequence of

partitions, each element of a partition is contained in an element of the preceding

partition.

Theorem 3.9. Let (P)i∈N be a nested sequence of partitions of X such that

sup
x∈X

H
(
{x ∈ Pi | ρ(x) = Pi}, {x}

)
→ 0 as i→∞. (3.36)

Assume that g(x, u) is continuous, that g(x, u) > 0 for x /∈ T = 0, that Vf,g
is continuous on ∂T , and that H(Ti, T ) → 0 for i → ∞ and Ti ⊇ Bδi(T ) for

δi → 0. Then ∥∥VPi |Ki − Vf,g|Ki∥∥∞ → 0 as i→∞ (3.37)
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for every compact set K ⊆ X on which Vf,g is continuous and

Ki =
⋃

P∈Pi,ρ−1(P )⊂K
ρ−1(P ) (3.38)

being the largest subset of K which is a union of partition elements P ∈ Pi.
Proof. We use Theorem 3.7 and Proposition 3.6 with (F,G) = (f, g) where we

interpret f as a set valued map, cf. (3.9).

Since the sequence of partitions (P)i∈N is nested, it holds that Fi(x, u, w) =

f
(
ρi(x), u, w

)
⊃ Fi+1(x, u, w) and Gi(x, u) = supx′∈ρi(x) g(x′, u) ≥ Gi+1(x, u) and

the games (Fi, Gi) are enclosures of (f, g).

Note that all assumptions of Proposition 3.6 are satisfied. The proof of Propo-

sition 3.6 shows that

Vfi,gi(x) ≤ Vf,g(x) + 3εi︸︷︷︸
i→∞−→ 0

(3.39)

and Theorem 3.7 provides

Vf,g −max
y∈Ti

Vf,g ≤ VPi(x) for all i. (3.40)

Note that the continuity of Vf,g on ∂T and H(Ti, T )→ 0 for i→∞ imply that

max
y∈Ti

Vf,g → 0 for i→∞. (3.41)

Thus, (3.39) and (3.40) together yield (3.37).

Combining this theorem with the result of Proposition 2.12 immediately yields

the following lemma.

Lemma 3.10. Let Vf,g denote the value function of the game (3.9) with a given

target set T . Assume that the system is asymptotically controllable and that the

assumptions of Theorem 3.9 are satisfied. Then there exist a partition P, a cor-

responding target set TP ⊇ T , and a function α ∈ K∞ such that the approximate

optimal value function VP fulfills the inequality

Vf,g(x) ≤ VP(x) ≤ 2α(‖x‖)
for all x ∈ Sf,g.
Proof. Fix the same target set T for Vf,g and for VF,G from the game (3.25)–

(3.26). From (3.25) and (3.26) we obtain {f} ⊂ F and g ≤ G. Thus, the game

(F,G) is an enclosure of the game (f, g) and Proposition 3.4 and Theorem 3.7

yield Vf,g
(3.12)

≤ VF,G
(3.28)
= VP . According to Remark 3.2 it holds that Vf,g(x) ≤

α(‖x‖) ≤ 2α(‖x‖) for all x ∈ Sf,g. Now, according to Theorem 3.9, we can find

a fine enough partition P with corresponding target set TP such that Vf,g(x) ≤
VP(x) ≤ 2α(‖x‖) for all x ∈ Sf,g.
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Remark 3.11. Note that an upper bound of VP can also be derived without

Theorem 3.9. Since VP ≡ 0 holds on T , a neighborhood of 0, and VP is piecewise

constant and bounded by ` on Y , it follows that supx∈Y,‖x‖≤r VP(x) is piecewise

constant, finite for each r > 0 and equal to 0 for all sufficiently small r > 0.

Thus, it can be over bounded by a function α ∈ K∞, which could be constructed

by piecewise linear interpolation, for example. To this end assume 0 ∈ T and

define

P̂ (x) :=
{
P (c) | c ∈ X, |c| = |x|

}
.

P̂ helps to find a piecewise constant function α̂P such that VP(x) ≤ α̂P(|x|)
by setting

α̂P(|x|) = max
{
VP(P ) | P ∈ P̂ (x)

}
.

Now we obtain α through linear interpolation of the points of the jumps x(`) ∈ R≥0

of the step function α̂P . Thus, we set the point (x(0), α̂P(x(0))) to be the origin

and let x(`) denote the first point for which α̂P(x(`)) > α̂P(x(`−1)). Hence, we get

α(|x|) =


α̂P (x(1))

x(1)
|x| for |x| ∈ [0, x(1)[

α̂P (x(2))−α̂P (x(1))

x(2)−x(1)
(
|x| − x(1)

)
+ α̂P(x(1)) for |x| ∈ [x(1), x(2)[

...

.

However, using interpolation has the major drawback that α would directly depend

on the partition P and the target set T , whereas in Lemma 3.10 we fix the target

set and get an upper bound independent of T as long as P is fine enough.

3.3 Controller Design

As described in Chapter 2.4 the value function represents the minimal value of

the total cost along a controlled trajectory. Theorem 3.7 gives a lower bound to

the approximate value function VP(x) independent of the actual control that is

used. Thus, (3.29) motivates the definition of the controller

uP(x) := argmin
u∈U

{
g(x, u) + sup

x′∈f(x,u,W )

VP(x′)

}
(3.42)

for x ∈ SP \ T . We note that in our practical implementation U is a quantized

set with finitely many values. Hence, the minimum in (3.29) will always exist

and thus (3.42) is well defined.

In order to compute this controller numerically, a graph theoretic representa-

tion of the dynamics on P is constructed by interpreting the partition elements

as nodes and determining the edges via the dynamics, cf. Figure 3.1, where the
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weight of the edges is determined by the cost function g. Since the model includes

both control and perturbation, the resulting graph theoretic approximation takes

the form of a hypergraph.

P
P

f(P, u, w)

Figure 3.1: Representation of the dynamics on P via a hypergraph,

cf. [20, Figure 1]

Afterwards, solving a generalized min-max shortest path problem on this hy-

pergraph, cf. [61], yields an approximation VP of V which is constant on each

element P of the partition P .

As described in [18] we then get the feedback uP from the algorithm by

uP(x) = argmin
u ∈ U

ρ(f(ρ(x), u,W )) = N (ρ(x))

{
sup
x∈ρ(x)

g(x, u)

}
(3.43)

for x ∈ SP where

N (P ) = argmin
N∈F(P )

{
G(P,N ) + sup

N∈N
VP(N)

}
, (3.44)

G(P,N ) = inf
u

{
sup
x∈P

g(x, u)

∣∣∣∣∣ u ∈ U, ρ(F (P, u,W )
)

= N
}
. (3.45)

Recall that F(P ) =
{
ρ
(
f(ρ(x), u,W )

)
| (x, u) ∈ P × U

}
, i.e., the set of all par-

tition elements which can be reached from P under all possible perturbations.

Equation (3.44) looks very much like the optimality principle. Indeed, it is the

set of all partition elements N with the shortest path to the target set that can be

reached from P because G(P,N ) describes the cost from P to N and the second

part of the sum in (3.44) yields the maximal cost from N to the target set. The

weights G(P,N ) are determined by the maximal cost from all points in P to all

reachable points in N , taking the infimum over the control.

We remark that uP renders system (3.1) practically uniformly stable. While

conceptually this is the reason why our approach works, formally we will not rely
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on this property. For x ∈ X \ SP our approach does not allow for a meaningful

definition of uP . Observe further that the controller uP is undefined inside the

target set T because the optimality principle only holds for x /∈ T . Therefore, we

let uP = κ(x) for x ∈ T , where κ is a bounded function, satisfying the following

assumption for all x ∈ T .

Assumption 3.12. The function κ : T → U fulfills the following conditions:

1. κ(0) = 0.

2. There exists ν̄ ∈ R such that for all x ∈ T∥∥f(x, κ(x), 0
)∥∥ ≤ ν̄. (3.46)

3. Consider two target sets T1, T2 with T1 ( T2. Then the corresponding con-

stants ν̄1, ν̄2 in (3.46) fulfill the inequality ν̄1 < ν̄2.

This assumption is essential because the size of ν̄ will play a critical role in

obtaining the size of the practical stability region δ in Definition 2.5.

There are different options of choosing κ. Since f(0, 0, 0) = 0, one can often

use κ(x) = 0m. Another possibility is to switch to a local controller obtained, for

example, from linearization techniques, cf. [15].

Remark 3.13. Even if we are willing to use point-shaped quantization regions,

it is in general not possible to use the target set T = {0} unless the perturbed

system (4.1) can be controlled to the origin in a finite number of steps (and even

then using T = {0} is likely to cause numerical problems). Similar problems in

small neighborhoods of the equilibrium occur in many other numerical approaches

for computing Lyapunov functions for nonlinear systems, even for uncontrolled

systems, see [13, 30, 14]. This means that on a small neighborhood around the

origin VP is not a classical Lyapunov function, which results in the parameter δ

in the practical stability definition.

In control problems, the usual way to work around this problem is to use

linearization techniques in order to solve the feedback stabilization problem locally

near the origin, see, e.g., [15]. For this purpose it is of utmost importance to keep

the size of the practical stability region δ small. Consequently, one of the central

tasks in the following chapter will be to carefully estimate this value in the ISpS

context.
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Chapter 4

ISpS Controller Design

This chapter focuses on how to obtain an ISpS controller with the help of the

algorithm from the previous chapter. In order to apply the algorithm to ISpS

controller design we make use of an extension of one of the central results in [38]

which states that the closed loop system (2.2) is ISS if and only if it is robustly

stable.

Definition 4.1. The closed loop system (2.2) is called robustly stable if there

exist e : Rn × Rq → Rq and η ∈ K∞ such that the system

x(k + 1) = f̃
(
x(k), u(k), d(k)

)
, (4.1)

k = 0, 1, . . . , with

f̃(x, u, d) = f
(
x, u, e(x, d)

)
and d ∈ D = B1(0) ⊂ Rq (4.2)

is uniformly asymptotically stable where e is such that for each w ∈ W and each

x ∈ X with ‖w‖ ≤ η(‖x‖) there exists d ∈ D with e(x, d) = w.

This definition of robust stability is an extension of the definition in [38]. The

original definition can be obtained by choosing e(x, d) := η(‖x‖)d. Note that with

this choice ‖w‖ ≤ η(‖x‖) is always satisfied since d ∈ D = B1(0). Also note that

the main difference between system (4.1) and system (2.1) lies in the property

of asymptotic controllability, cf. Definition 2.4. System (4.1) is more likely to be

asymptotically controllable than system (2.1) since only small perturbations are

allowed near the steady state.

With d = (d0, d1, ...) we denote an infinite sequence and the corresponding

space of such sequences with values dk ∈ D is denoted by D.

The proof of the equivalence between ISS and robust stability relies on Lya-

punov function arguments. In the following proposition it is shown that VP when

computed from (4.2), (3.42) is an ISpS Lyapunov function for the closed loop

37
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system (2.2). A particular difficulty in this derivation is the fact that in our set-

ting neither VP nor uP are continuous. Also, we have not required any regularity

assumptions of f . The only restriction we now impose is a continuity assumption

on f w.r.t. the perturbation w which ensures that small perturbation values have

little effect on the system while for larger perturbations the effect may increase.

Assumption 4.2. The map f : X×U×W → Rn in (2.1) is uniformly continuous

in w = 0 in the following sense: there exists γw ∈ K∞ such that for all x ∈ X,

u ∈ U , and w ∈ W
‖f(x, u, w)− f(x, u, 0)‖ ≤ γw(‖w‖). (4.3)

Proposition 4.3. Consider the system (2.1) satisfying Assumption 4.2, system

(4.1) satisfying Assumption 2.10, a sufficiently fine partition P with target set T 1,

the function VP from Theorem 3.7 for system (4.1) with f̃ from (4.2), and the

corresponding feedback uP from (3.42). Then VP is an ISpS Lyapunov function

on a sublevel set Y = {x ∈ X |VP(x) ≤ `} for the closed loop system (2.2) for

any ` > 0 with

c := max
x∈T
{‖x‖}, (4.4)

ν := α(c), (4.5)

µ(r) := α
(
η−1(r)

)
, (4.6)

α(r) := α
(
α−1(r)

)
, (4.7)

µ̃(r) := α
(

max
{

2 γw(r), 2α−1(µ(r))
} )
, (4.8)

ν̃ := α
(

max
{

2 ν̄, 2α−1(ν), 2 c
} )

(4.9)

where α comes from Assumption 2.10, γw from Assumption 4.2, ν̄ from (3.46),

and α is a suitable upper bound for VP , e.g. from Lemma 3.10.

In order to prove that VP is an ISpS Lyapunov function, we need to show the

inequalities and implications (2.6) – (2.8).

Proof of (2.6). Let c > 0 be such that 0 ∈ T ⊆ Bc(0), thus c can be chosen as

in (4.4). If x ∈ T , it follows that ‖x‖ ≤ c. For α ∈ K∞ from Assumption 2.10 we

obtain

VP(x)
(3.29)

≥ min
u∈U

{
g(x, u) + sup

x′∈f̃(ρ(x),u,D)

VP(x′)

}
∀x ∈ SP\T

VP(x) ≥ min
u∈U

g(x, u)
(2.16)

≥ α(‖x‖) ∀x ∈ SP\T

VP(x) ≥ α (‖x‖ − c) ∀x ∈ SP\Bc(0)

VP(x) ≥ α
(

max{‖x‖ − c, 0}
)

∀x ∈ SP .
1Note that throughout this chapter the considered target T always belongs to a specific

partition P, thus corresponding to a target Ti from Chapter 3.
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The existence of an upper bound follows from Remark 3.11, where under appro-

priate assumptions the bound can be chosen as α = 2 α̃(‖x‖), cf. Lemma 3.10.

Proof of (2.7).

If x ∈ T , (2.6) yields VP(x) ≤ α(‖x‖) ≤ α(c) =: ν, thus assume x /∈ T .

Consider a trajectory of (3.1) with f̃ from (4.2).

From the construction of uP we get the following inequality:

VP(x)
(3.29)

≥ g
(
x, uP(x)

)
+ VP

(
f̃
(
x, uP(x), e(x, d)

))
for all x /∈ T and thus for VP(x) ≥ ν. Therefore,

VP
(
f̃
(
x, uP(x), e(x, d)

))
− VP(x) ≤ −g

(
x, uP(x)

)
(4.10)

for all d ∈ D.

Furthermore, applying Assumption 2.10 yields

−g
(
x, uP(x)

) (2.16)

≤ −α(‖x‖)
(2.6)

≤ −α
(
α−1(VP(x))

)
= −α(VP(x))

with α(r) := α
(
α−1(r)

)
.

Now consider a trajectory of (2.2). By assumption on e in (4.2) it holds that

for all w ∈ W with η−1(‖w‖) ≤ ‖x‖ we find some d ∈ D with w = e(x, d). This

condition is satisfied if

VP(x) ≥ α
(
η−1(‖w‖)

)
(4.11)

because then we get

‖x‖
(2.6)

≥ α−1
(
VP(x)

) (4.11)

≥ η−1(‖w‖),

showing that (2.7) holds with µ = α ◦ η−1 ∈ K∞ and ν = α(c).

Proof of (2.8). We want to prove the following implication

VP(x) < max
{
µ(‖w‖∞), ν

}
⇒ VP

(
f(x, u(x), w)

)
≤ max

{
µ̃(‖w‖∞), ν̃

}
.

Therefore, let

VP(x) < max
{
µ(‖w‖∞), ν

}
. (4.12)

First consider x ∈ T . It follows from Assumption 4.2 that∥∥f(x, κ(x), w
)
− f

(
x, κ(x), 0

)∥∥ ≤ γw(‖w‖∞), (4.13)
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yielding∥∥f(x, κ(x), w
)∥∥ ≤

∥∥f(x, κ(x), w
)
− f

(
x, κ(x), 0

)∥∥+
∥∥f(x, κ(x), 0

)∥∥
(4.13)

≤
(3.46)

γw(‖w‖∞) + ν̄

≤ max
{

2 γw(‖w‖∞), 2 ν̄
}
. (4.14)

Thus,

VP
(
f(x, uP(x), w)

) (2.6)

≤ α
(
‖f(x, κ(x), w)‖

)
(4.14)

≤ α
(

max{2 γw(‖w‖∞), 2 ν̄}
)

(4.15)

≤ max
{
µ̃(‖w‖∞), ν̃

}
where µ̃ from (4.8) and ν̃ from (4.9).

In case of x /∈ T , note that we obtain VP
(
f(x, uP(x), 0)

)
≤ VP(x) from the

proof of (2.7). Together with the results in the proof of (2.6) this yields∥∥f(x, uP(x), 0
)∥∥ ≤ α−1

(
VP(x)

)
(4.16)

if f
(
x, uP(x), 0

)
/∈ T and else∥∥f(x, uP(x), 0

)∥∥ ≤ c. (4.17)

Using this observation and Assumption 4.2 we derive∥∥f(x, uP(x), w
)∥∥ ≤

∥∥f(x, uP(x), w
)
− f

(
x, uP(x), 0

)∥∥+
∥∥f(x, uP(x), 0

)∥∥
(4.3)

≤ γw(‖w‖∞) +
∥∥f(x, uP(x), 0

)∥∥
(4.16)

≤
(4.17)

γw(‖w‖∞) + max
{
α−1(VP(x)), c

}
≤ max

{
2 γw(‖w‖∞), 2α−1(VP(x)), 2 c

}
(4.18)

(4.12)
< max

{
2 γw(‖w‖∞), 2α−1 (max{µ(‖w‖∞), ν}) , 2 c

}
,

yielding

V
(
‖f(x, uP(x), w)‖

) (2.6)

≤ α
(
max

{
2 γw(‖w‖∞), 2α−1 (µ(‖w‖∞)) , 2α−1 (ν) , 2 c

})
≤ max

{
µ̃(‖w‖∞), ν̃

}
with µ̃ from (4.8) and ν̃ from (4.9). Thus, in both cases we obtain the desired

inequality and (2.8) is proven.
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Note that since VP assumes only finitely many values and is finite on SP ,

choosing ` := maxx∈SP VP(x) yields the maximal possible domain Y = SP on

which VP is an ISpS Lyapunov function.

Now we summarize the conditions under which the feedback uP indeed renders

system (2.1) ISpS.

Theorem 4.4. Consider system (2.1) satisfying Assumption 4.2, system (4.1)

satisfying Assumption 2.10, a sufficiently fine partition P , the function VP from

Theorem 3.7 for system (4.1) with f̃ from (4.2) and the corresponding feedback

uP from (3.42). Let ` ≤ maxx∈SP VP(x) and let α, α ∈ K∞, c ∈ R be such that

(2.6) holds2 on Y =
{
x ∈ X |VP(x) ≤ `

}
.

(i) If the value ` > 0 is such that the inequality

` ≥ α
(

max{α−1(α(c)) + c, α−1(ν̃) + c, 2 c}
)

=: ˜̀ (4.19)

holds with c from (4.4), ν̃ from (4.9), and ν̄ from (3.46), then the system is ISpS

on Y w.r.t. δ = α−1
(
˜̀
)

and ∆w as specified in Theorem 2.8.

(ii) If the assumptions of Lemma 3.10 are satisfied, then for each δ > 0 there

exist T and P such that the system is ISpS on Y w.r.t. this δ and ∆w as specified

in Theorem 2.8.

Proof. (i) By Proposition 4.3 the function VP is an ISpS Lyapunov function. Since

(4.19) ensures that Theorem 2.8 is applicable, i.e., that δ = α−1
(
˜̀
)
≤ α−1(`),

this yields the ISpS property.

(ii) From the first part of the proof of Proposition 4.3 we know that α can

be chosen independently of T . Lemma 3.10 states that for every T there exists a

partition P such that α can also be chosen independently of T . By choosing T to

be a sufficiently small neighborhood of the origin we can choose c and, because

of Assumption 3.12, 3., ν̄ arbitrarily close to 0. Thus, we can ensure that (4.19)

holds and δ can be chosen arbitrarily small. This shows the assertion.

Remark 4.5. The stabilizable set SP = {x ∈ X |VP(x) < ∞} can be deter-

mined a posteriori. Thus, once VP is computed, it can be checked whether the

quantization was fine enough in order to yield a desired operating region of the

controller.

Remark 4.6. Although in Lemma 3.10 we require asymptotic controllability ac-

cording to Definition 2.4, we only get practical stability. This loss is due to the

discretization technique we introduced.

2These functions exist according to the first part of the proof of Proposition 4.3.
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Chapter 5

Small-Gain Theorem

A major drawback of the ISpS controller design in Chapter 4 is the fact that the

approach is only suitable for low dimensional systems. Due to the discretization

method the complexity and thus the time of computation rises dramatically in

higher dimensions. As a remedy, in this chapter we consider a way to apply

the ISpS controller design from Chapter 4 separately to all subsystems Σi and

ensure through a so called small-gain condition that these controllers, applied

to the overall system Σ, render the system ISpS. We start by introducing some

definitions and notations and state an auxiliary lemma in the first section. In

Section 5.2 we state the general version of the small-gain theorem and in the

ensuing section we show an example of how to use the theorem. The application

to the ISpS controller design at hand is described in the last section.

5.1 Preliminaries

In order to investigate which condition needs to be satisfied to guarantee ISpS of

an overall interconnected system (2.2), assuming the subsystems Σi are ISpS, we

first have to clarify the notion of ISpS of the subsystems.

The main question to be considered is how to treat the states of the other

subsystems Σj, j 6= i. The idea is to handle them similarly to the perturbation

inputs in Definition 2.5, cf. [7], i.e., they are treated as independent inputs. This is

reasonable since xj = 0, j 6= i, is a steady state, thus no disturbance of subsystem

i takes place. However, the farther away from the steady state xj is the more it

might influence the state xi.

Definition 5.1. The i-th subsystem Σi of (2.2) is called ISpS with respect to

δi ∈ R≥0, ∆w ∈ R≥0 if there exist βi ∈ KL and γij ∈ K∪{0}, j ∈ 1, . . . , n, γi ∈ K
such that the solutions of the system satisfy

‖xi(k, xi(0),w)‖ ≤ max
{
βi(‖xi(0)‖, k), max

j
{γij(‖xj‖∞)}, γi(‖w‖∞), δi

}
(5.1)

for all x0 ∈ Y , all w ∈ W with ‖w‖∞ ≤ ∆w, and all k ∈ N0.

43
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The proof of the small-gain theorem in the next section is based on Lyapunov

functions. Hence we also need to define ISpS Lyapunov functions for subsystems

Σi. As in the definition of ISpS for the subsystems, the inputs of the other

subsystems are treated similarly to the external perturbations. However, here

we also get a dependency on the Lyapunov functions of the other inputs. If the

function µ(r) = 0 for all r ∈ R≥0, we write µ ∈ {0}.
Definition 5.2. Functions Vi : Xi → R≥0, i = 1, . . . , n, are called ISpS Lyapu-

nov functions for the subsystems Σi of (2.2) on sublevel sets Yi =
{
xi ∈ Xi |

Vi(xi) ≤ `i
}

, for some `i > 0, if there exist functions αi, αi ∈ K∞, µij, µ̃ij ∈
K∪{0}, µi, µ̃i ∈ K, positive definite functions αi, and values w ∈ R>0, ci, νi, ν̃i ∈
R≥0 such that for all xi ∈ Yi the inequalities and implications

αi
(

max{‖xi‖ − ci, 0}
)
≤ Vi(xi) ≤ αi

(
‖xi‖

)
(5.2)

and

Vi
(
xi(k)

)
≥ max

{
max
j

{
µij(Vj(xj(k)))

}
, µi(‖w(k)‖∞), νi

}
⇒ Vi

(
xi(k + 1)

)
− Vi

(
xi(k)

)
≤ −αi

(
Vi(xi(k))

)
(5.3)

Vi
(
xi(k)

)
< max

{
max
j

{
µij(Vj(xj(k)))

}
, µi(‖w(k)‖∞), νi

}
⇒ Vi

(
xi(k + 1)

)
≤ max

{
max
j
{µ̃ij(Vj(xj(k)))}, µ̃i(‖w(k)‖∞), ν̃i

}
(5.4)

hold for all w ∈ W with ‖w‖ ≤ w.

The functions µij, µ̃ij and µi, µ̃i are called ISpS Lyapunov gains. Note that

any influence of different inputs on a state is described by µij, µi and µ̃ij, µ̃i. In

case of no influence of xj on the state of Σi, i.e., if fi is independent of xj, we set

µij ≡ 0. Also we define µii := 0 and µ̃ii := 0.

ISS Lyapunov functions in strong implication-form, i.e., involving the addi-

tional implication (5.4), were used before in [43, 46] and [44] to prove small-gain

theorems. However, in these references the gains µij and µ̃ij were chosen to be

identical. In our case it will turn out that the additional gains µ̃ij are the decisive

ones for the small-gain condition and thus important to keep track of.

Therefore, we now define the gain matrix

Γ̃ :=
(
µ̃ij
)
i,j=1,...,n

. (5.5)

As in [6], we also need the following nonlinear map

Γ̃max : Rn
≥0 → Rn

≥0,

 s1
...

sn

 7→
 max

{
µ̃11(s1), . . . , µ̃1n(sn)

}
...

max
{
µ̃n1(s1), . . . , µ̃nn(sn)

}
 . (5.6)
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An inequality of the form

Γ̃max(r) < r ∀r ∈ Rn
≥0

is always to be understood componentwise.

For the proof in the next section we need the following auxiliary lemma, which

is proved similarly to [42, Lemma 6.3].

Lemma 5.3. Suppose that we are given two differentiable functions ρ1, ρ2 ∈ K∞,

where ρ′1(s) is a positive definite function, and a positive definite function α such

that Id− α is positive definite. Then the inequality

max
0≤ρ1(s)≤ρ2(r)

ρ1 ◦ (Id− α)(s)− ρ2(r) ≤ −ά ◦ ρ2(r) (5.7)

holds for some positive definite function ά and all r ≥ 0.

Proof. If 0 ≤ ρ1(s) ≤ ρ2(r)
2

, it follows that

ρ1 ◦ (Id− α)(s)− ρ2(r) ≤ ρ1(s)− ρ2(r) ≤ −ρ2(r)

2
. (5.8)

Let ρ1(s) ∈
[
ρ2(r)

2
, ρ2(r)

]
. Applying the Mean Value Theorem yields the

existence of s∗ ∈ ((Id− α)(s), s) such that

(ρ1)′ (s∗) =
ρ1 ◦ (Id− α)(s)− ρ1(s)

−α(s)
. (5.9)

Thus,

ρ1 ◦ (Id− α1)(s)− ρ2(r)

≤ max
ρ2(r)

2
≤ρ1(s)≤ρ2(r)

ρ1 ◦ (Id− α)(s)− ρ1(s)

(5.9)
= (ρ1)′ (s∗)[−α(s)].

Using [1, Lemma IV.1], there exist two functions q1 ∈ K∞, q2 ∈ L such that

− (ρ1)′ (s∗)[α(s)] ≤ −q1(s∗)q2(s∗)α(s)

≤ −q1 ◦ (Id− α)(s) · q2(s) · α(s)

=: −α∗(s)

where α∗ is a positive definite function. Applying [1, Lemma IV.1] a second

time and using the fact that s ∈
[
ρ−1

1

(
ρ2(r)

2

)
, ρ−1

1 (ρ2(r))
]

yields the existence of
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q∗1 ∈ K∞ and q∗2 ∈ L such that

−α∗(s) ≤ −q∗1(s) · q∗2(s)

≤ −q∗1 ◦ ρ−1
1

(
ρ2(r)

2

)
· q∗2 ◦ ρ−1

1 (ρ2(r))

=: −α◦ (ρ2(r)) .

Together with (5.8) this yields (5.7) with ά(r): = min
{

1
2
r, α◦(r)

}
.

5.2 Small-Gain Theorem

In the following we present a Lyapunov-type nonlinear small-gain theorem for

interconnected systems of type (2.2).

Theorem 5.4. Consider the interconnected system (2.2) where each of the sub-

systems Σi has an ISpS Lyapunov function Vi according to Definition 5.2, and

the corresponding gain matrix Γ̃. Let a function ε ∈ K∞ be given such that Id− ε
is positive definite. Assume there is a differentiable function σ ∈ Kn∞ such that

Γ̃max

(
σ(r)

)
< σ(r) ∀r > 0. (5.10)

Then an ISpS Lyapunov function for the overall system on the sublevel set

Y = Y1 × . . .× Yn is given by

V (x) = max
i=1,...,n

σ−1
i

(
Vi(xi)

)
(5.11)

with

µ(r) = max
i

{
ε−1
(
σ−1
i (µ̃i(r))

)}
, (5.12)

µ̃(r) = µ(r), (5.13)

ν = max
i

{
ε−1
(
σ−1
i (νi)

)}
, (5.14)

ν̃ = ν, (5.15)

α(r) = max
i=1,...,n

{
σ−1
i (αi(r))

}
, (5.16)

α(r) = min
i=1,...,n

{
σ−1
i (αi (r))

}
, (5.17)

c = max
j=1,...,n

cj (5.18)

and a suitable positive definite function α.
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Proof. Let V (x) be given by (5.11).

The existence of α, α follows from σi ∈ K∞ and Vi being Lyapunov functions:

V (x)
(5.11)
= max

i=1,...,n
σ−1
i

(
Vi(xi)

)
(5.2)

≤ max
i=1,...,n

σ−1
i

(
αi(‖xi‖)

)
≤ max

i=1,...,n
σ−1
i

(
αi(‖x‖)

)
=: α(‖x‖).

For the bound from below assume without loss of generality that ‖.‖ = ‖.‖∞
since all considered spaces are finite dimensional. Then

V (x)
(5.11)
= max

i=1,...,n
σ−1
i

(
Vi(xi)

)
(5.2)

≥ max
i=1,...,n

σ−1
i

(
αi(max{‖xi‖∞ − ci, 0})

)
≥ max

i=1,...,n
σ−1
i

(
αi

(
max

{
‖xi‖∞ − max

j=1,...,n
cj, 0

}))
≥ max

i=1,...,n
min

s=1,...,n
σ−1
s

(
αs

(
max

{
‖xi‖∞ − max

j=1,...,n
cj, 0

}))
≥ min

s=1,...,n
σ−1
s

(
αs

(
max

{
max
i=1,...,n

‖xi‖∞ − max
j=1,...,n

cj, 0

}))
= min

s=1,...,n
σ−1
s

(
αs

(
max

{
‖x‖∞ − max

j=1,...,n
cj, 0

}))
=: α

(
max {‖x‖∞ − c, 0}

)
.

From the definition of V (x) in (5.11) we obtain

V
(
x(k + 1)

)
− V

(
x(k)

)
= max

i
σ−1
i

(
Vi(xi(k + 1))

)
−max

i
σ−1
i

(
Vi(xi(k))

)
= σ−1

i1

(
Vi1(xi1(k + 1))

)
− σ−1

i2

(
Vi2(xi2(k))

)
(5.19)

where i1 and i2 are the maximizing indices.
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Before we start with the rest of the proof, note that condition (5.10) yields

max
j

{
σ−1
i1

(µ̃i1j(Vj(xj(k))))
}

= σ−1
i1

(
max{µ̃i11(V1(x1(k))), . . . , µ̃i1n(Vn(xn(k)))}

)
= σ−1

i1

(
max

{
µ̃i11 ◦ σ1 ◦ σ−1

1 (V1(x1(k))), . . . ,

µ̃i1n ◦ σn ◦ σ−1
n (Vn(xn(k)))

})
(5.11)

≤ σ−1
i1

(
max

{
µ̃i11 ◦ σ1 ◦ σ−1

i2
(Vi2(xi2(k))), . . . ,

µ̃i1n ◦ σn ◦ σ−1
i2

(Vi2(xi2(k)))
})

(5.11)
= σ−1

i1

(
max

{
µ̃i11 ◦ σ1(V (x(k))), . . . ,

µ̃i1n ◦ σn(V (x(k)))
})

= σ−1
i1

(
Γ̃max,i1

(
σ(V (x(k)))

))
(5.20)

(5.10)
< V

(
x(k)

)
(5.21)

where Γ̃max,i1 denotes the i1-th component of Γ̃max.

We want to prove (2.7) and (2.8) for V (x), therefore let x ∈ Y . We consider

two cases.

Case 1: Vi1
(
xi1(k)

)
< max

{
max
j

{
µi1j(Vj(xj(k)))

}
, µi1(‖w(k)‖∞), νi1

}
.

According to (5.4) we get

(5.19) ≤ max

{
max
j

{
σ−1
i1

(µ̃i1j(Vj(xj(k))))
}
, σ−1

i1

(
µ̃i1(‖w(k)‖∞)

)
, σ−1

i1

(
ν̃i1
)}

−σ−1
i2

(
Vi2(xi2(k))

)
. (5.22)

First we prove (2.7), i.e., (5.22) ≤ −α
(
V (x(k))

)
, while we assume

V
(
x(k)

)
≥ max

{
µ(‖w(k)‖∞), ν

}
(5.23)

with µ from (5.12) and ν from (5.14).

We start by considering only the last part in the maximum of (5.22), i.e.,

max
{
σ−1
i1

(µ̃i1(‖w(k)‖∞)), σ−1
i1

(ν̃i1)
}
− σ−1

i2

(
Vi2(xi2(k))

)
. (5.24)

If σ−1
i2

(
Vi2(xi2(k))

)
≥ maxi

{
ε−1
(
σ−1
i (µ̃i(‖w(k)‖∞))

)
, ε−1(σ−1

i (νi))
}

, we derive

ε ◦ σ−1
i2

(
Vi2(xi2(k))

)
− σ−1

i2

(
Vi2(xi2(k))

)
≥ max

i

{
σ−1
i (µ̃i(‖w(k)‖∞)), σ−1

i (νi)
}
− σ−1

i2

(
Vi2(xi2(k))

)
⇔ −(Id− ε) ◦ σ−1

i2

(
Vi2(xi2(k))

)
≥ max

i

{
σ−1
i (µ̃i(‖w(k)‖∞)), σ−1

i (νi)
}
− σ−1

i2

(
Vi2(xi2(k))

)
.
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Note that V
(
x(k)

)
= σ−1

i2

(
Vi2(xi2(k))

)
≥ maxi

{
ε−1 ◦ (σ−1

i ( µ̃i( ‖w(k)‖∞))),

ε−1
(
σ−1
i (νi)

) }
= max

{
µ(‖w(k)‖∞), ν

}
, i.e., (5.23) holds. Thus, it follows that

(5.24) ≤ max
i

{
σ−1
i (µ̃i(‖w(k)‖∞)), σ−1

i (ν̃i)
}
− σ−1

i2

(
Vi2(xi2(k))

)
≤ −(Id− ε)V

(
x(k)

)
(5.25)

and thus (2.7) is proven for this part of the maximum.

Next we want to find an upper bound for the first term in the maximum of

(5.22), i.e.,

max
j

{
σ−1
i1

(µ̃i1j(Vj(xj(k))))
}
− σ−1

i2

(
Vi2(xi2(k))

)
. (5.26)

Choosing ᾰ(r) : = r −maxi

{
σ−1
i

(
Γ̃max,i

(
σ(r)

))}
yields the desired result:

(5.26)
(5.20)

≤ σ−1
i1

(
Γ̃max,i1

(
σ(V (x(k)))

))
− V

(
x(k)

)
≤ max

i

{
σ−1
i

(
Γ̃max,i

(
σ(V (x(k)))

))}
− V

(
x(k)

)
= −ᾰ

(
V (x(k))

)
(5.27)

where ᾰ is positive definite because of (5.10):

Γ̃max,i

(
σ(r)

)
< σi(r) ⇔ σ−1

i

(
Γ̃max,i

(
σ(r)

))
< r.

Finally, we prove (2.8). Assume therefore

V
(
x(k)

)
< max

{
µ(‖w(k)‖∞), ν

}
. (5.28)

Thus,

V
(
x(k + 1)

)
= σ−1

i1

(
Vi1(xi1(k + 1))

)
(5.4)

≤ max
{

max
j
{σ−1

i1
(µ̃i1j(Vj(xj)))

}
,

σ−1
i1

(
µ̃i1(‖w(k)‖∞)

)
, σ−1

i1
(ν̃i1)

}
(5.21)
< max

{
V (x(k)), σ−1

i1
(µ̃i1(‖w(k)‖∞)), σ−1

i1
(ν̃i1)

}
(5.28)
< max

{
µ(‖w(k)‖∞), ν, σ−1

i1
(µ̃i1(‖w(k)‖∞)), σ−1

i1
(ν̃i1)

}
(5.12)

≤
(5.14)

max
{

max
i

{
ε−1
(
σ−1
i (µ̃i(‖w(k)‖∞))

)
, ε−1

(
σ−1
i (νi)

) }
,

max
i

{
σ−1
i (µ̃i(‖w(k)‖∞)), σ−1

i (νi)
}}

ε−1>id

≤
(5.12),(5.14)

max
{
µ(‖w(k)‖∞), ν

}
, (5.29)

and hence (2.8) holds with µ̃(r) = µ(r) and ν̃ = ν.
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Case 2: Vi1(xi1(k)) ≥ max

{
max
j

{
µi1j(Vj(xj(k)))

}
, µi1(‖w(k)‖∞), νi1

}
.

We start again by proving (2.7). Because of (5.3) it holds that

Vi1
(
xi1(k + 1)

)
≤ (Id− αi1)

(
Vi1(xi1(k))

)
(5.30)

and therefore

(5.19)
(5.30)

≤ σ−1
i1
◦ (Id− αi1)

(
Vi1(xi1(k))

)
− σ−1

i2

(
Vi2(xi2(k))

)
. (5.31)

Observe that (Id − αi1) is positive definite since αi1 is positive definite

and Vi1
(
xi1(k + 1)

)
> 0, Vi1

(
xi1(k)

)
> 0. Also note that σ−1

i2
(Vi2(xi2(k))) =

maxi σ
−1
i (Vi(xi(k))) ≥ σ−1

i1
(Vi1(xi1(k))). To find a bound for (5.31) we apply

Lemma 5.3 with ρ1(s) = σ−1
i2

(s), ρ2(r) = σ−1
i1

(r), r = Vi2
(
xi2(k)

)
, and α = αi1 ,

obtaining a positive definite function ά which depends on i1 and i2:

(5.31) ≤ max
0≤σ−1

i1
(s)≤σ−1

i2
(Vi2 (xi2 (k)))

σ−1
i1
◦ (Id− αi1)(s)− σ−1

i2
(Vi2(xi2(k)))

(5.7)

≤ −ά
(
σ−1
i2

(Vi2(xi2(k)) , i1, i2
)

(5.11)
= −α̂

(
V (x(k))

)
(5.32)

where α̂(r) = mini1,i2{ά(r, i1, i2)}.
Therefore, (2.7) holds and only (2.8) is left to show.

If V
(
x(k)

)
< max

{
µ(‖w(k)‖∞), ν

}
, (5.32) yields

V
(
x(k + 1)

)
≤ V

(
x(k)

)
− ά

(
V (x(k))

)
≤ V

(
x(k)

)
< max

{
µ(‖w(k)‖∞), ν

}
(5.33)

and thus we have shown (2.8), finishing Case 2.

Combining both cases we get (2.7) for

V
(
x(k)

)
≥ max

{
µ(‖w(k)‖∞), ν

}
(5.34)

from (5.32), (5.27) and (5.25) with α(r) : = min
{
ά(r), ᾰ(r), (Id−ε)(r)

}
, µ(r) =

max
i

{
ε−1
(
σ−1
i (µ̃i(r))

)}
and ν = maxi

{
ε−1
(
σ−1
i (νi)

)}
.

The inequalities (5.29) and (5.33) yield (2.8) for

V (x(k)) < max
{
µ(‖w(k)‖∞), ν

}
(5.35)

with µ̃(r) = µ(r) and ν̃ = ν.
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5.3 Example

In this section we show an example of how to apply the small-gain Theorem 5.4.

First we find a Lyapunov function for the subsystems, then check if the small-gain

condition (5.10) is satisfied. Afterwards we state the overall Lyapunov function

and its gain. To keep it simple we do not consider the practical component, i.e.,

νi = ν̃i = ν = ν̃ = 0. In the end we compare the gains µ̃ij and µij to show that

it is better to choose them separately and not the same.

Consider the nonlinear system, inspired by [12],

x1(k + 1) =
x2

2(k)

1 + x2
2(k)

+ w1(k)

x2(k + 1) =
1

4
x1(k)− 1

12
x2(k)− 2

3
w2(k)

(5.36)

where w = (w1, w2) is a disturbance on the system with state x = (x1, x2). The

first subsystem Σ1 is described by the first component of the system, the second

subsystem Σ2 by the second component.

We start by showing that Vi(r) = |r| is a Lyapunov function for each subsys-

tem, beginning with Σ1. Let µ12(r) = 3r2

1+r2
and µ1(r) = 3r. First we show (2.7).

Assuming

|x1(k)| ≥ max
{
µ12(|x2(k)|), µ1(|w1(k)|)

}
= max

{
3|x2(k)|2

1 + |x2(k)|2 , 3 |w1(k)|
}
,(5.37)

we obtain

V1

(
x1(k + 1)

)
− V1

(
x1(k)

)
≤

∣∣∣∣ x2
2(k)

1 + x2
2(k)

+ w1(k)

∣∣∣∣− |x1(k)|

≤ max

{
2x2

2(k)

1 + x2
2(k)

, 2 |w1(k)|
}
− |x1(k)|

(5.37)

≤ 2

3
|x1(k)| − |x1(k)|

≤ −1

3
|x1(k)| = −1

3
V1

(
x1(k)

)
.

Thus, (2.7) holds with α1(r) = 1
3
r.

Now, assuming |x1(k)| < max
{
µ12(|x2(k)|), µ1(|w1(k)|)

}
, we get

V1

(
x1(k + 1)

)
=

∣∣∣∣ x2
2(k)

1 + x2
2(k)

+ w1(k)

∣∣∣∣
≤ max

{
2x2

2(k)

1 + x2
2(k)

, 2w1(k)

}
= max

{
µ̃12(|x2(k)|), µ̃1(|w1(k)|)

}
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with µ̃12(r) = 2r2

1+r2
and µ̃1(r) = 2 r, proving (2.8). Hence, V1(r) = |r| is a

Lyapunov function for the first subsystem.

We proceed the same way with Σ2. Let µ21(r) = 0.9 r and µ2(r) = 2.4 r and

assume

|x2(k)| ≥ max
{
µ21(|x1(k)|), µ2(|w2(k)|)

}
= max

{
0.9 |x1(k)|, 2.4 |w2(k)|

}
.

(5.38)

Then

V2

(
x2(k + 1)

)
− V2

(
x2(k)

)
≤

∣∣∣∣14x1(k)− 1

12
x2(k)− 2

3
w2(k)

∣∣∣∣− |x2(k)|

≤ max

{
3

4
|x1(k)|, 2 |w2(k)|, 1

4
|x2(k)|

}
− |x2(k)|

(5.38)

≤ max

{
5

6
|x2(k)|, 1

4
|x2(k)|

}
− |x2(k)|

≤ −1

6
|x2(k)|

which yields (2.7) with α2(r) = 1
6
r.

Assuming

|x2(k)| < max
{
µ21(|x1(k)|), µ2(|w2(k)|)

}
(5.39)

leads to

V2

(
x2(k + 1)

)
=

∣∣∣∣14x1(k)− 1

12
x2(k)− 2

3
w2(k)

∣∣∣∣
≤ max

{
3

4
|x1(k)|, 1

4
|x2(k)|, 2 |w2(k)|

}
(5.39)
< max

{
3

4
|x1(k)|, 9

40
|x1(k)|, 3

5
|w2(k)|, 2 |w2(k)|

}
≤ max

{
3

4
|x1(k)|, 2 |w2(k)|

}
≤ max

{
µ̃21(|x1(k)|), µ̃2(|w2(k)|

}
with µ̃21(r) = 3

4
r and µ̃2(r) = 2 r. Thus, V2(r) = |r| is a Lyapunov function for

the second subsystem.

In order to apply Theorem 5.4, we need the vector Γ̃max

Γ̃max(s) =

(
max

{
0, µ̃12(s2)

}
max

{
µ̃21(s1), 0

} ) =

(
2s22

1+s22
3
4
s1

)
and have to find a function σ ∈ K2

∞ such that (5.10) is satisfied. Let

σ(r) =

(
r

r

)
,
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then

Γ̃max

(
σ(r)

)
=

(
2r2

1+r2

3
4
r

)
<

(
2|r|
2

r

)
=

(
r

r

)
= σ(r) ∀r > 0.

Thus, Theorem 5.4 yields V (x(k)) = max
{
|x1(k)|, |x2(k)|

}
as a Lyapunov func-

tion of the overall system with

µ(r) = max
i

{
ε−1
(
σ−1
i (µ̃i(r))

) }
= max

{
ε−1(2 r), ε−1(2 r)

}
= ε−1(2 r)

= µ̃(r)

where ε ∈ K∞ is such that Id− ε is positive definite.

Finally we compare the gains µ̃ij and µij. To this end we calculate

µ̃21 ◦ µ̃12(r) =
3

4

(
2r2

1 + r2

)
<

3

2
· |r|

2
=

3

4
|r| < r ∀r > 0,

µ21 ◦ µ12(r) =
9

10

(
3r2

1 + r2

)
=

27

10
· r2

1 + r2
> r ∀ r >

√
10

17
.

Thus, the small-gain condition via µ̃ij is not only less conservative than the con-

dition via the “classical” gains µij but in this particular example the “classical”

gains µij would not have been sufficiently small.

5.4 Application to the ISpS Controller Design

In this section we apply the small-gain Theorem 5.4 to the ISpS controller design

at hand. To this end, we first consider the subsystems Σi, i = 1, . . . , N , of the

interconnected system (2.1) separately. The influence of the other subsystems is

treated as perturbation.

Let x−i = (x1, . . . , xi−1, xi+1, . . . xn) ∈ X−i = X1× . . .×Xi−1×Xi+1× . . .×Xn

and for functions eij : Xi → Dj, j 6= i, we use the notation

e
(−i)
i (xi, d−i) =

(
ei1(xi, d1), . . . , ei(i−1)(xi, di−1), ei(i+1)(xi, di+1), . . . , ein(xi, dn)

)
.

Definition 4.1 of robust stability then reads as follows:

Definition 5.5. A closed loop subsystem of (2.2) is called robustly stable if there

exist eij : Rni × Rnj → Rnj , i 6= j, ei : Rni × Rq → Rq, and ηij, ηi ∈ K∞, i 6= j,

such that the corresponding subsystem of (3.1) with

f̃i (xi, x−i, ui, d) = fi

(
xi, e

(−i)
ij (xi, d−i), ui, ei(xi, di)

)
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and Di = Dj = B1(0), i 6= j, is uniformly asymptotically stable, where ei is such

that for each w ∈ W with ‖w‖ ≤ ηi(‖xi‖) there exists di ∈ Di with ei(xi, di) = w

and eij is such that for each xj ∈ Xj with ‖xj‖ ≤ ηij(max{‖xi‖ − cj, 0}), cj =

max{‖xj‖ : xj ∈ Tj}, j 6= i, there exists dj ∈ Dj with eij(xi, dj) = xj.

Note that we treat the influence of the other subsystems as perturbations.

Thus in Definition 5.5 in addition to the function ei we had to introduce functions

eij which have the same “scaling” purpose for the subsystems.

Also Assumption 4.2 for the subsystems needs to be modified.

Assumption 5.6. The map fi : Xi×X−i×U×W → Rn for the subsystem Σi of

(2.1) is uniformly continuous in the following sense: there exist γw,i ∈ K∞ and

γw,ij ∈ K∞∪{0}, i 6= j, such that for all xi ∈ Xi, xj ∈ Xj, x̄j ∈ Tj, j 6= i, u ∈ U ,

and w ∈ W

‖fi(xi, x−i, u, w)− fi(xi, x̄−i, u, 0)‖ ≤ max

{
max
j 6=i

γw,ij
(
‖xj‖

)
, γw,i(‖w‖), θi

}
where θi := maxj 6=i maxxj , x̂j∈Tj ‖xj − x̂j‖.

Observe that there are no external perturbations if w = 0 but for the subsys-

tems Σj the goal is only to reach the target set Tj, not 0ni . Thus we were able

to introduce the constant θi.

The next step is to design an ISpS controller for every subsystem according

to Chapter 4, thus yielding ISpS controllers uP,i, corresponding ISpS Lyapunov

functions VP,i, and gains µ̃ij(r). Only minor adjustments in the proof of Propo-

sition 4.3 are necessary to adapt to this new setting.

Proposition 5.7. Consider a subsystem of (2.1) satisfying Assumption 5.6, the

function VP,i satisfying Theorem 3.7 for the corresponding subsystem of (4.1)

with f̃i from (4.2) and the corresponding feedback uP,i from (3.42). Then VP,i is

an ISpS Lyapunov function for the closed loop subsystem of (2.2) for any `i > 0

with

ci := max
xi∈Ti
{‖xi‖},

θi := max
j 6=i

max
xj ,x̂j∈Tj

‖xj − x̂j‖,

νi := αi(ci),

µi(r) := αi
(
η−1
i (r)

)
,

µij(r) := αi
(
η−1
ij (α−1

j (r))
)
,

αi(r) := αi
(
α−1
i (r)

)
,

µ̃i(r) := αi
(

max
{

2 γw,i(r), 2α
−1
i (µi(r))

} )
,

µ̃ij(r) := αi
(
max{2(γw,ij(2α

−1
j (r))), 2α−1

i (µij(r))}
)
,

ν̃i := αi

(
max

{
2 θi, 2 ν̄i, 2 max

i 6=j
{γw,ij(2cj)}, 2α−1

i (νi), 2 ci

})



5.4. APPLICATION TO THE ISPS CONTROLLER DESIGN 55

where αi comes from Assumption 2.10, γw,i from Assumption 4.2, ν̄i from (3.46),

and αi is suitable.

Proof. The proof of (5.2) is analogous to the proof of Proposition 4.3. The main

difference is that due to the definition of the Lyapunov function the additional

term maxj{µij(VP,j(xj(k)))} in (5.3) and (5.4) needs to be considered. Thus, in

the proof of (5.3), additionally to (4.11), we get the conditions

VP,i ≥ αi
(
η−1
ij (α−1

j (VP,j(xj)))
)
, ∀j 6= i. (5.40)

It holds that

‖xi‖
(5.2)

≥ α−1
i

(
VP,i(xi)

) (5.40)

≥ η−1
ij

(
α−1
j (VP,j(xj))

) (5.2)

≥ η−1
ij

(
max{‖xj‖ − cj, 0}

)
,

satisfying the condition in Definition 5.5 which yields

µij = αi ◦ η−1
ij ◦ α−1

j .

Also, the proof of (5.4) in case xi ∈ Ti needs some additional consideration.

Because of Assumption 5.6 we get

VP,i
(
fi(xi, x−i, uP,i(xi), w)

)
≤ αi

(
max

{
2 γw,i(‖w‖∞), 2 max

i 6=j

{
γw,ij

(
‖xj‖

)}
, 2 θi, 2 ν̄i

})
(5.41)

instead of (4.15). Applying (5.2), i.e., α−1
j (VP,j (xj)) + cj ≥ max {‖xj‖, cj} yields

(5.41) ≤ αi

(
max

{
2 γw,i(‖w‖∞), 2 max

i 6=j

{
γw,ij

(
max{‖xj‖, cj}

)}
, 2 θi, 2 ν̄i

})
≤ αi

(
max

{
2 γw,i(‖w‖∞), 2 max

i 6=j

{
γw,ij

(
α−1
j (VP,j(xj)) + cj

)}
, 2 θi, 2 ν̄i

})
≤ αi

(
max

{
2 γw,i(‖w‖∞), 2 max

i 6=j

{
γw,ij

(
max{2α−1

j (VP,j(xj)), 2cj}
)}
,

2 θi, 2 ν̄i

})
≤ αi

(
max

{
2γw,i(‖w‖∞), 2 max

i 6=j

{
max

{
γw,ij

(
2α−1

j (VP,j(xj)), γw,ij(2cj)
})}

,

2 θi, 2 ν̄i

})
≤ αi

(
max

{
2 γw,i(‖w‖∞), 2 max

i 6=j

{
γw,ij

(
2α−1

j (VP,j(xj)), γw,ij(2cj)
)}
,

2 θi, 2 ν̄i

})
≤ max {µ̃i(‖w‖∞), µ̃ij(VP,j(xj)), ν̃i} .
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In case of xi /∈ T we can proceed in the same way as in the proof of Proposition

4.3 and obtain

µ̃ij(r) = αi
(

max
{

2(γw,ij(α
−1
j (r))), 2α−1

i (µij(r))
})
.

Now Theorem 5.4 needs to be modified. In the following small-gain theorem

we adapted the requirements to the new setting.

Theorem 5.8. Consider the interconnected system (2.1) where each of the sub-

systems Σi, i = 1, . . . , N , the corresponding functions VP,i and the feedbacks uP,i
satisfy Proposition 4.3. Let a function ε ∈ K∞ be given such that Id−ε is positive

definite. Assume there is a differentiable function σ ∈ Kn∞ such that

Γ̃max

(
σ(r)

)
=

 max{µ̃11(σ1(r)), ..., µ̃1n(σn(r))}
...

max{µ̃n1(σ1(r)), ..., µ̃nn(σn(r))}

 < σ(r) ∀r > 0. (5.42)

Then an ISpS Lyapunov function for the overall system on the sublevel set Y =

Y1 × . . .× Yn is given by

VP(x) = max
i=1,...,n

σ−1
i

(
VP,i(xi)

)
(5.43)

with

µ(r) = max
i

{
ε−1
(
σ−1
i (µ̃i(r))

)}
, (5.44)

µ̃(r) = µ(r), (5.45)

ν = max
i

{
ε−1
(
σ−1
i (αi(ci))

)}
, (5.46)

ν̃ = ν, (5.47)

and a suitable α where

ci = max
xi∈Ti
{‖xi‖}, (5.48)

µ̃i(r) = αi
(
max

{
2 γw,i(r), 2α

−1
i

(
αi(η

−1
i (r))

)})
. (5.49)

Proof. According to Proposition 5.7, the VP,i are ISpS Lyapunov functions for

the closed loop subsystems of (2.2) with µ̃i from (5.49), ci from (5.48), and

νi = αi(ci). Thus, Theorem 5.4 is applicable, yielding the desired result.

Note that the independence of the bounds αi, αi, and αj from the parti-

tions is very important because the gains µ̃ij(r) = αi
(

max{ 2(γw,ij(α
−1
j (r))),

2α−1
i (αi(η

−1
ij (α−1

j (r))))}
)

depend on them. Moreover, the only way to influence

the size of the gains is via the scaling functions ηij. Thus, the choice of the

scaling functions plays a crucial role not only for the controllability of the single

subsystems but also for the stability of the overall system.



Part II

Numerical event-based controller

design
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Chapter 6

Introduction

Event-based control is a feedback control method in which the control value is

not updated continuously or periodically but only if certain criteria are satisfied,

i.e., when an “event” occurs. The main benefit of this approach compared to

conventional techniques is the reduction of the communication between sensors,

controllers, and actuators, thus lowering the requirements on sensor and com-

munication infrastructure as well as their energy consumption. For this reason,

a lot of effort has been spent on developing a profound theory on event-based

control starting with the works of [2, 3] and continued in recent years, e.g. by

[59, 11, 49, 64, 63].

Most of the theoretically oriented literature on event-based control is con-

cerned with stabilization. Particularly, the problem of rendering the system

asymptotically or exponentially stable using event-based feedback has been stud-

ied, among others, by [59, 50, 8, 62, 63]. These approaches, however, do not

tolerate model uncertainties or exogenous disturbances. In contrast to this, in

this part we again take perturbations of the dynamics explicitly into account.

As in Part I, the structure of the feedback law is induced by an a priori

defined, possibly coarse quantization, i.e., by a partition of the state space into

regions on which the control value applied to the system is held constant. In

this case an event is generated whenever the state moves from one quantization

region to another. Set oriented numerics are particularly suited for handling

such a situation since in the design phase of the controller the images of the

quantization region under the dynamics — here also including perturbations —

must be known. Robustness against perturbations and uncertainties is formalized

by means of practical input-to-state stability (ISpS). The need to consider the

practical version of ISS follows immediately from the quantized nature of the

controller: since we use only finitely many quantization regions, it is in general

only possible to steer the state to a neighborhood of a desired target point (here

chosen as the origin).
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After designing an ISpS controller for low-dimensional systems we again are

interested in a small-gain result guaranteeing ISpS of discrete-time systems. In

[8] a small-gain approach to distributed event-triggered control of continuous-

time systems is considered. However, continuous dynamics and the existence of

a differentiable Lyapunov function are required. Further small-gain results have

been used in the literature in connection with event-based control in order to

determine the event-trigger by considering the event-triggered control system as

an interconnection of the controlled system and the event trigger, cf. [60, 47]. In

these cases there were no small-gain theorems developed but existing results for

continuous systems were utilized.

Our goal in this part is to design an event-based feedback controller that

renders system (2.1) input-to-state practically stable (ISpS), cf. [27, 29]. Thus,

here we further extend the approach from Part I to the event-based setting. In

Chapter 7 we formulate our event-based problem and define an event-based ISpS

Lyapunov function, which again provides a characterization of the ISpS property.

After these preliminaries, in Chapter 8 we explain the changes in the stabilizing

controller design, which are based on [23], which in turn is based on the earlier

papers [18, 19, 22], extending [40, 16]. We obtain event-based versions of all

results from Chapter 3. Afterwards, in Chapter 9, it is shown how the stabilizing

feedback design helps to construct an ISpS controller. Lastly we state the small-

gain theorem in Chapter 10 which allows us to solve the ISpS problem for large-

scale systems by applying our controller to small-dimensional subsystems and

ensuring via the small-gain condition that the overall system will be stabilized.



Chapter 7

Setting

In this chapter we first state the objective for this part of the thesis and recap

the basic idea in Section 7.1. Then, in Section 7.2, we define an event-based

Lyapunov function and show the key property, namely that it characterizes the

ISpS property.

7.1 Problem Formulation and Basic Idea

As in Part I we consider discrete-time control systems with perturbation, com-

posed of N interconnected subsystems, i.e., system (2.1)

Σ : x(k + 1) = f
(
x(k), u(k), w(k)

)
=

 f1

(
x1(k), . . . , xN(k), u1(k), w(k)

)
...

fN
(
x1(k), . . . , xN(k), uN(k), w(k)

)
 , (2.1)

k = 0, 1, . . . , with x = (x1, x2, . . . , xN) ∈ X ⊂ Rn, X = X1 × . . . × XN , u =

(u1, . . . , uN) ∈ U ⊂ Rm, U = U1 × . . .× UN , and w ∈ W ⊂ Rq.

The goal is to numerically construct an event-based controller for system (2.1)

which renders the closed loop system

x(k + 1) = f
(
x(k), u(x(k)), w(k)

)
, (2.2)

k = 0, 1, . . . , ISpS. Thus the control value does not change at every time step

k but only when an “event” occurs. Consequently, a map u : X → U is an

event-based controller if u(x(k)) = u(x(k − 1)) whenever k ∈ N is not an event

time.

Both for theoretical and for computational reasons, we assume that the time

between two consecutive event times is bounded.
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Assumption 7.1. We assume that an event occurs the latest after time R,

i.e., for two consecutive event times kj < k` there exists an R ∈ N such that

k` − kj ≤ R.

Theoretically, the need for this will become clear in the proof of Case 1 of

Theorem 7.3, below, and in Case (c) of the proof of the small-gain Theorem 10.4.

Computationally, the numerical evaluation of x(k`) would take arbitrarily long if

k` − kj was unbounded.

We follow the same approach as in Part I, i.e., we rely on the conversion of the

ISpS controller design problem into a uniformly practically stabilizing controller

design problem. To this end, we modify system (2.1) as before, scaling it so that

close to the origin only small perturbations occur and the farther away the state

is, the larger are the allowed perturbation values, thus making it possible to find

a robust controller for this system.

To calculate the controller for the modified system, we adjust the set ori-

ented dynamic game based stabilizing controller design method from Chapter 3.

Through the property that ISpS follows from robust stability we then can apply

the calculated controller to the ISpS problem at hand.

As before we have to address the issue that the proposed controller design

method is only reasonably applied to low dimensional systems. However, the

event-based small-gain theorem in Chapter 10 allows us to design the controllers

of the subsystems independent of each other by considering the inputs from other

subsystems as perturbations. The individual controllers, in turn, must then be

robust w.r.t. these perturbation inputs in the ISpS sense. The so called small-gain

condition eventually guarantees that the separate controllers of these subsystems,

applied to the overall system Σ, render the interconnected system ISpS.

7.2 Lyapunov Functions

We now consider event-based systems, thus we have to modify the definitions

of Lyapunov functions accordingly. Since we are only interested in the times in

which events occur, we have to consider the time intervals between the event

times in the definitions.

Definition 7.2. A function V : X → R≥0 is called event-based ISpS Lyapunov

function for system (2.2) on a sublevel set Y = {x ∈ X |V (x) ≤ `} for some

` > 0 if there exist functions α, α ∈ K∞, µ, µ̃ ∈ K, a positive definite function α,

and values w ∈ R>0∪{+∞}, c, ν, ν̃ ∈ R≥0 such that for all x ∈ Y the inequalities

and implications

α(max{‖x‖∞ − c, 0}) ≤ V (x) ≤ α(‖x‖∞) (7.1)
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and

∀k ∈ [kj, k`) such that V (x(k)) ≥ max
i∈[k,k`)

{µ(‖w(i)‖∞), ν}

it holds that V (x(k`))− V (x(k)) ≤ −α(V (x(k))), (7.2)

∀k ∈ [kj, k`) such that V (x(k)) < max
i∈[k,k`)

{µ(‖w(i)‖∞), ν}

it holds that V (x(k`)) ≤ max
i∈[k,k`)

{µ̃(‖w(i)‖∞), ν̃} (7.3)

hold for all trajectories x(k) of the closed loop system in Y corresponding to

w ∈ W with ‖w‖ ≤ w and for all event times kj where k` > kj is the maximal

time such that V (x(kj)) = V (x(k)) for all k ∈ [kj, k`).

Observe that the existence of some k such that the left-hand-side of (7.2)

is satisfied implies that V (x(k)) ≥ maxi∈[k,k`){µ(‖w(i)‖∞), ν} holds for all k ∈
[kt, k`) where kt is the smallest time in [kj, k`) such that the left-hand-side of

(7.2) is satisfied. On the other hand, the existence of a k such that V (x(k)) <

maxi∈[k,k`){µ(‖w(i)‖∞), ν} implies that the left-hand-side of (7.3) is satisfied for

all k ∈ [kj, kt) where kt = k` if no k exists such that the left-hand-side of (7.2)

holds.

Note further that an event-based Lyapunov function only changes at event

times and stays constant otherwise, i.e., for two consecutive event times kj < k`
we have

V (x(k)) = V (x(k + 1)) if k ∈ [kj, k`),

V (x(k)) 6= V (x(k + 1)) if k = k` − 1.

Thus, if the left-hand-side of (7.2) is satisfied, the right-hand-side holds for

all k ∈ [kj, k`).

In other words, the definition demands that if a time k ∈ [kj, k`) exists at

which the value V (x(kt)) is large relative to the perturbation value w, according

to (7.2) the event-based Lyapunov function will decay from kj to the next event

time k`. If, on the other hand, a time k ∈ [kj, k`) exists at which the value

V
(
x(kt)

)
is small relative to the perturbation value w, the Lyapunov function

may increase up to the w-dependent bound on the right hand side of (7.3).

As seen in Chapter 2, Theorem 2.8, ISpS Lyapunov functions are very useful

because they provide a characterization of ISpS. The following theorem shows

this relation for the event-based setting.

Theorem 7.3. Consider system (2.2) and assume that the system admits an

event-based ISpS Lyapunov function V according to Definition 7.2. Then the

system is ISpS on Y = {x ∈ X |V (x) ≤ `} with

δ = max{α−1(ν) + c, α−1(ν̃) + c, 2c},
γ(r) = α−1

(
max {µ(r), µ̃(r)}

)
,
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and ∆w = γ−1(α−1(`)) for every ` > 0 with δ ≤ α−1(`).

For the proof of this theorem, we also have to adapt the auxiliary Lemma 2.9

to the event-based setting. Note that the existence of a bound R between two

consecutive event times as in Assumption 7.1 is essential to apply Lemma 7.4.

Lemma 7.4. For each α ∈ K and each R > 0 there exists some βα,R ∈ KL
with the following property: if

(
y(k)

)
k∈N0

is a real sequence and
(
y(ki)

)
i∈N0

is a

subsequence with

y(ki+1)− y(ki) ≤ −α(y(ki)), (7.4)

y(ki) ≥ y(ki + 1) ≥ ... ≥ y(ki+1 − 1), (7.5)

k0 = 0 and 0 < ki+1 − ki ≤ R for all i ∈ N0, then

y(k) ≤ βα,R(y(0), k) (7.6)

holds for all k ∈ N0.

Proof. We first observe that the function ỹ(i) := y(ki) satisfies all requirements

of Lemma 2.9. Hence, there exists βα̃ ∈ KL with

y(ki) = ỹ(i) ≤ βα̃(ỹ(0), i) = βα̃(y(0), i).

Together with (7.5) this implies

y(k) ≤ βα̃(y(0), i)

for all k ∈ [ki, ki+1).

From ki+1−ki ≤ R it follows that for all k ≤ ki+1−1 the inequality k < (i+1)R

holds. This suggests i ≥ bk/Rc for all k ≤ ki+1− 1 where brc denotes the largest

integer less or equal to r. By monotonicity of βα̃ this implies

y(k) ≤ βα̃
(
y(0), bk/Rc

)
=: β̃α,R(y(0), k)

for all k ∈ [ki, ki+1). The function β̃α,R is continuous and strictly increasing in its

first (real) argument and monotonously decreasing to zero in its second (integer)

argument. By defining

βα,R(r, t) := (k + 1− t)β̃α,R(r, k) + (t− k)β̃α,R(r, k + 1) + e−tr

for all t ∈ [k, k + 1), one obtains a KL-function with βα,r(r, k) ≥ β̃α,r(r, k) for all

r ≥ 0 and k ∈ N0, which satisfies the claim. Note that the e−tr term is needed

in order to ensure that βα,R is strictly decreasing in t.
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Proof of Theorem 7.3. We fix x0 ∈ Y , w ∈ W and denote the corresponding

trajectory of system (2.2) with feedback u by x(k). We begin the proof by

deriving estimates for V (x(k)) under different assumptions. To this end, we

denote the event times by ki, i ∈ N, numbered in ascending order and note that

V (x(ki)) = V (x(k)) for all k ∈ [ki, ki+1). Now we distinguish three different

cases.

Case 1. Let i′ ∈ N be such that ∀k ∈ [ki−1, ki): V (x(ki)) ≥ max
j∈[k, ki)

{µ(‖w(j)‖∞), ν}
for all i = 0, . . . , i′ − 1. Then

V (x(ki))− V (x(ki−1))
(7.2)

≤ −α
(
V (x(ki−1))

)
(7.7)

for all i = 1, . . . , i′ where α is a positive definite function.

Using Lemma 7.4, we get the existence of a function β̃ such that

V (x(k)) ≤ β̃(V (x0), k) (7.8)

for all k ≤ ki′ .

Case 2. Let i∈N be such that ∃k̂ ∈[ki−1, ki): V (x(ki−1))< max
j∈[k̂,ki)

{µ(‖w(j)‖∞), ν}.

Then (7.3) yields

V (x(ki)) ≤ max
j∈[k̂, ki)

{µ̃(‖w(j)‖∞), ν̃} ≤ max{µ̃(‖w‖∞), ν̃}.

Case 3. Consider i ∈ N such that for all k ∈ [ki−1, ki) : max
j∈[k, ki)

{µ(‖w(j)‖∞), ν} <
V (x(ki−1)) ≤ max

j∈[k, ki)
{µ̃(‖w(j)‖∞), ν̃}. Then (7.2) yields

V (x(ki)) ≤ V (x(ki−1)) ≤ max
j∈[k, ki)

{µ̃(‖w(j)‖∞), ν̃} ≤ max{µ̃(‖w‖∞), ν̃}.

Combining these three cases we can now prove the desired inequality (2.5).

Let i′ ∈ N be maximal such that the condition from Case 1 is satisfied. Then,

for all k ∈ {0, . . . , ki′} we get

‖x(k)‖
(7.1)

≤ α−1
(
V (x(k))

)
+ c

(7.8)

≤ α−1
(
β̃(V (x0), k)

)
+ c

(7.1)

≤ α−1
(
β̃(α(‖x0‖), k)

)
+ c

≤ max
{

2α−1
(
β̃(α(‖x0‖), k)

)
, 2c
}
.

This implies (2.5) for all k = 0, . . . , ki′ with β(‖x0‖, k) := 2α−1
(
β̃(α(‖x0‖), k)

)
.
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Next, for all i ≥ i′ by induction we show the inequality

V (x(ki)) ≤ max{ν, ν̃, µ(‖w‖∞), µ̃(‖w‖∞)}. (7.9)

Note that the definitions of δ and γ and the bounds on δ and ∆w in the

assertion imply α−1(ν) ≤ δ ≤ α−1(`) and α−1(µ(∆w)) ≤ γ(∆w) ≤ α−1(`); the

same inequalities hold for ν̃ and µ̃. This suggests that ν, ν̃, µ(∆w) and µ̃(∆w) are

all less or equal to `. Consequently, (7.9) implies V (x(ki)) ≤ ` and thus x(ki) ∈ Y
for all w ∈ W with ‖w‖∞ ≤ ∆w. Hence, (7.9) implies that one of the Cases 1 - 3

must hold for x(ki) because Case 1 applies until ki′−1 and then, if (7.9) holds,

only Cases 2 or 3 could occur. Thus, if we know that (7.9) holds we can use the

estimates in the Cases 1 - 3 in order to conclude an inequality for V (x(ki+1)).

To start the induction to prove (7.9) at i = i′, note that the maximality of i′

implies V (x(ki)) < max{µ(‖w‖∞), ν} by the condition of Case 1, yielding (7.9).

For the induction step i → i + 1, assume that (7.9) holds for x(ki). Then,

either Case 1 holds implying V (x(ki+1)) ≤ V (x(ki)) and thus (7.9) for V (x(ki+1)).

Otherwise, one of the Cases 2 or 3 must hold for x(ki) which also implies (7.9)

for V (x(ki+1)).

Due to the fact that V (x(k)) is constant for k ∈ [ki, ki+1), for each k ≥
ki′ , (7.9) together with (7.1) shows that ‖x(k)‖ ≤ max{γ(‖w‖∞), α−1(ν) + c,

α−1(ν̃) + c}, implying (2.5) for all k ≥ ki′ .

We remark, that the Lyapunov function of Definition 7.2 will be obtained by

the stabilizing controller design in the ensuing chapter and thus will be used for

the subsystems Σi in Chapter 10. However, the small-gain theorem will need a

second, slightly weaker definition of Lyapunov functions for the resulting overall

system Σ, which will be introduced at that point. The main difference will be

that the considered event times kj, k` do not have to be consecutive, thus allowing

for a longer time period to pass, e.g., before a decrease of the Lyapunov function

is estimated.



Chapter 8

Game theoretic stabilizing

controller design for perturbed

systems

In this chapter the control objective is to design an event-based practically uni-

formly stabilizing state feedback controller, i.e., a controller u(k) = uP
(
x(k)

)
such that the closed loop system (3.1)

x(k + 1) = f
(
x(k), uP(x(k)), w(k)

)
, (3.1)

k = 0, 1, . . . , is uniformly practically asymptotically stable as defined in Definition

2.6. As in Part I the construction of the feedback is based on the event-based

ISpS Lyapunov functions defined in Chapter 7.

To this end, in Section 8.1, we first describe when an event is triggered,

depending on the discretization, and then modify the results from Chapter 3

to fit the event-based setting. Afterwards we define the event-based stabilizing

controller in Section 8.2.

8.1 Discretization

We employ the same discretization as in Section 3.2, i.e., the set X is decomposed

into a finite partition P of boxes or cells P with pairwise disjoint interior and⋃
P∈P P = X. We assume that the target set T is a union of partition elements.

The value function was defined in (3.24) as

VP(x) = sup
x′∈ρ(x)

VF,G(x′) ∀x /∈ T (3.24)

and VP(x) = 0 for all x ∈ T . Remember that this VP is constant on each partition

element P ∈ P .

67
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Our concept of event-based control is linked to this quantization in the sense

that an event is triggered whenever the trajectory enters a new quantization

region P .

Definition 8.1. k ∈ N is an event time of system (3.1) if ρ(x(k)) 6= ρ(x(k− 1)),

with the convention that k = 0 is always an event time.

Consequently, a map uP : X → U is an event-based controller if it is constant

on each region P ∈ P , which is equivalent to saying that uP(x(k)) = uP(x(k−1))

whenever k ∈ N is not an event time.

In [23] and [24] only the times at which the state passes from one quantization

region to another is considered, not the individual sampling times k. This is

accomplished by defining the iterates f r(x, u,w) for r ∈ N0, x ∈ X, u ∈ U, and

w ∈ W as

f 0(x, u,w) := x, f r+1(x, u,w) := f(f r(x, u,w), u, wr)

and introducing the time-to-next-event.

Definition 8.2. For each x ∈ X and each u ∈ U we define the value r(x, u,w)

to be the smallest value r ∈ N for which

ρ(x) = ρ(f r−1(x, u,w)) 6= ρ(f r(x, u,w)).

In other words, r(x, u,w) is the time when the state leaves the quantization

region ρ(x), i.e., an event occurs. Note that f r does not depend on the whole

sequence u but only on the element u since we assume u to be constant between

event times. As mentioned in Assumption 7.1, we assume that there exists an

upper bound R ∈ N such that for all u ∈ U , w ∈ W the time-to-next-event

r(x, u,w) is bounded, i.e., r(x, u,w) ≤ R. This upper bound is easily imple-

mented by triggering an event R sampling instants after the last event even if the

state did not pass from one quantization region to another. We note that this

construction is needed for the design of uP and the small gain theorem. but not

for its implementation. This is because uP is constant on each partition element,

hence events in which no quantization region is left do not change the control

value and can thus be neglected when evaluating uP .

The next step is to adapt the multivalued game introduced in Chapter 3. To

this end, we fix a partition P , pick a target set T 3 0 consisting of partition

elements and consider a dynamic game with

F (x, u,w) = cl
⋃

y∈ρ(x)

{
f r(y,u,w)(y, u,w)

}
(8.1)
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for every (x, u,w) where “cl” denotes the closure of a set. This means that we

consider only the times at which the state passes from one quantization region

to another. We observe that F (x, u,w) = F (y, u,w) whenever ρ(x) = ρ(y).

To define a trajectory x(x0,u,w) of the multivalued game (8.1) it is necessary

to shift the sequence of perturbations in each step. To this end, we define

w0 = w ∈ W ,

w1 = w0(·+ r(x0, u0,w0)) ∈ W1,
...

wk+1 = wk(·+ r(x(k), u(k),wk)) ∈ Wk+1.

A trajectory of the game for a given initial point x0 ∈ X, a given control

sequence u ∈ U and a given perturbation sequence w ∈ W is now given by any

sequence x(x0,u,w) = (x(k, x0,u,w))k∈N0 ∈ XN0 such that

x(k + 1) ∈ F (x(k, x0,u,w), u(k),wk), k = 0, 1, ... .

Note that in contrast to w, F only depends on the k-th element of the sequence

u, not on a whole subsequence, since we consider u to remain constant on each

partition element.

Using the running cost g we now define a cost function for the event-based

set valued control system (8.1) via

G : X × U → R+
0 , G(x, u) := sup

x′∈ρ(x)

gr(x
′,u)(x′, u) (8.2)

with

gr(x,u)(x, u) = sup
w∈W

r(x,u,w)−1∑
r=0

g(f r(x, u,w), u).

By this definition we take a worst case approach, i.e., G represents the largest

cost of all possible transitions from ρ(x) to another region.

The optimality principle can now be written as
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VF,G(x)
(3.8)
= inf

u∈U

{
G(x, u) + sup

x′∈F (x,u,W )

VF,G(x′)

}

= inf
u∈U

{
sup

x′∈ρ(x)

sup
w∈W

r(x′,u,w)−1∑
r=0

g
(
f r(x′, u,w), u

)
+ sup

x′∈ρ(x)

sup
w∈W

VP
(
f r(x

′,u,w)(x′, u,w)
)}
. (8.3)

Observe that since F and G are constant on the quantization regions this

property also holds for VP .

Note that VF,G may assume the value +∞ on a subset of X, which is why we

defined the stabilizable set w.r.t. VF,G by SF,G := {x ∈ X |VF,G(x) <∞}.
In the following we adapt Theorem 3.7 to this new setting. The steps of the

proof are the same as before.

Theorem 8.3. Let V denote the optimal value function of the optimal control

problem (2.1), (3.9) with cost function g and let VP denote the approximate opti-

mal value function of the game (F,G) from (8.1) and (8.2) on a given partition

P with target set T ⊂ P and 0 ∈ T . Then

V (x)−max
y∈T

V (y) ≤ VP(x) = sup
x′∈ρ(x)

VF,G(x′) = VF,G(x), (8.4)

i.e., VP coincides with VF,G and is an upper bound for V −maxV |T . Furthermore,

VP satisfies

VP(x) ≥ min
u∈U

{
sup
w∈W

r(x,u,w)−1∑
r=0

g
(
f r(x, u,w), u

)
+ sup

w∈W
VP
(
f r(x,u,w)(x, u,w)

)}
(8.5)

for all x ∈ SP\T .

Proof. Note that VF,G is constant on the elements of the partition P because F

and G are constant on them. Outside of T , by definition of the game (F,G) we
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have

sup
x′∈ρ(x)

VF,G(x′)
(8.3)
= sup

x′∈ρ(x)

{
inf
u∈U

{
sup

x∗∈ρ(x′)

sup
w∈W

r(x∗,u,w)−1∑
r=0

g
(
f r(x∗, u,w), u

)
+ sup

x∗∈ρ(x′)

sup
w∈W

VF,G
(
f r(x

∗,u,w)(x∗, u,w)
)}}

. (8.6)

If x′ ∈ ρ(x), then ρ(x′) = ρ(x). Therefore (8.6) suggests

sup
x′∈ρ(x)

VF,G(x′) = VF,G(x). (8.7)

Now the equation in (8.4) follows:

VP(x)
(3.24)
= sup

x′∈ρ(x)

VF,G(x′)
(8.7)
= VF,G(x). (8.8)

Next we prove (8.5). To this end assume x /∈ T , then

VP(x)
(8.3)
=

(8.8)
inf
u∈U

{
sup

x′∈ρ(x)

sup
w∈W

r(x′,u,w)−1∑
r=0

g
(
f r(x′, u,w), u

)
+ sup

x′∈ρ(x)

sup
w∈W

VP
(
f r(x

′,u,w)(x′, u,w)
)}

≥ inf
u∈U

{
sup
w∈W

r(x,u,w)−1∑
r=0

g
(
f r(x, u,w), u

)
+ sup

w∈W
VP
(
f r(x,u,w)(x′, u,w)

)}
(8.9)

= min
u∈U

{
sup
w∈W

r(x,u,w)−1∑
r=0

g
(
f r(x, u,w), u

)
+ sup

w∈W
VP
(
f r(x,u,w)(x′, u,w)

)}
. (8.10)

It remains to show the inequality in (8.4). To prove this inequality we order

the elements P1, P2, ... ∈ P such that i ≥ j implies VP(Pi) ≥ VP(Pj). We know
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that VP(Pi) = 0 if and only if Pi ⊆ T . Hence there exists some i∗ ≥ 1 such that

Pi ⊆ T for i ∈ {1, ..., i∗}. Consequently, the inequality V (x) − max
y∈T

V (y) ≤ VP

holds for all x ∈ P1, ..., Pi∗ .

Now we proceed by induction: fix some ˜̀ ∈ N, assume the inequality (8.4)

holds for x ∈ P1, ..., P˜̀−1 and consider x ∈ P˜̀. If VP(P˜̀) = ∞, there is nothing

to show. For this reason assume VP(P˜̀) < ∞. Let u∗ ∈ U be the minimizer of

(8.9). Then we obtain the following inequality from (8.9):

V (x)− VP(x) ≤ V (x)− inf
u∈U

{
sup
w∈W

r(x,u,w)−1∑
r=0

g
(
f r(x, u,w), u

)
+ sup

w∈W
VP
(
f r(x,u,w)(x, u,w)

)}

= inf
u∈U

{
sup
w∈W

r(x,u,w)−1∑
r=0

g
(
f r(x, u,w), u

)
+ sup

w∈W
V
(
f r(x,u,w)(x, u,w)

)}

− inf
u∈U

{
sup
w∈W

r(x,u,w)−1∑
r=0

g
(
f r(x, u,w), u

)
+ sup

w∈W
VP
(
f r(x,u,w)(x, u,w)

)}
≤ sup

w∈W

{
V
(
f r(x,u,w)(x, u∗,w)

)
− VP

(
f r(x,u,w)(x, u∗,w)

)}
.(8.11)

Since sup
w∈W

∑r(x,u,w)−1
r=0 g

(
f r(x, u,w), u

)
> 0 we get VP

(
f r(x,u,w)(x, u∗,w)

)
< VP(x)

for all w ∈ W which implies that f r(x,u,w)(x, u∗,w) ∈ Ps for some s < ˜̀. By the

induction assumption the inequality in (8.4) holds on Pj for all w ∈ W :

V
(
f r(x,u,w)(x, u∗,w)

)
− VP

(
f r(x,u,w)(x, u∗,w)

)
≤ max

y∈T
V (y).

This concludes the induction step with

V (x)− VP(x) ≤ sup
w∈W

{
max
y∈T

V (y)

}
= max

y∈T
V (y).
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Observe that VP may assume the value +∞ on some parts of X, in which

case inequality (3.29) does not yield valuable information. That is why we define

the stabilizable set as SP =
{
x ∈ X |VP(x) <∞

}
.

Note that Theorem 3.9 still holds in the event-based case, using Theorem 8.3

instead of Theorem 3.7 in the proof:

Theorem 8.4. Let (P)i∈N be a nested sequence of partitions of X such that

sup
x∈X

H
(
{x ∈ Pi | ρ(x) = Pi}, {x}

)
→ 0 as i→∞. (8.12)

Assume that g(x, u) is continuous, that g(x, u) > 0 for x /∈ T = 0, that Vf,g is

continuous on ∂T and that H(Ti, T )→ 0 for i→∞ and Ti ⊇ Bδi(T ) for δi → 0.

Then ∥∥VPi |Ki − Vf,g|Ki∥∥∞ → 0 as i→∞ (8.13)

for every compact set K ⊆ X on which Vf,g is continuous and

Ki =
⋃

P∈Pi,ρ−1(P )⊂K
ρ−1(P ) (8.14)

being the largest subset of K which is a union of partition elements P ∈ Pi.

As in Chapter 3, combining this theorem with the result of Proposition 2.12

immediately yields the following lemma. Since all needed theorems for the proof

have been adapted to the event-based setting, the proof is analogous to the one

of Lemma 3.10.

Lemma 8.5. Let Vf,g denote the value function of the game from (3.9) with a

given target set T . Assume that the system is asymptotically controllable and that

the assumptions of Theorem 8.4 are satisfied. Then there exists a partition P, a

corresponding target set TP , and a function α ∈ K∞ such that the approximate

optimal value function VP fulfills the inequality

Vf,g(x) ≤ VP(x) ≤ 2α(‖x‖)

for all x ∈ Sf,g.

Remark 3.11 applies accordingly

8.2 Controller Design

Theorem 8.3 gives a lower bound to the approximate value function VP(x) inde-

pendent of the actual control that is used. Thus (8.5) motivates the definition of
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the controller

uP(x) = argmin
u∈U

 sup
w∈W

r(x,u,w)−1∑
r=0

g
(
f r(x, u,w), u

)
+ sup

w∈W
VP
(
f r(x,u,w)(x, u,w)

)
(8.15)

for x ∈ SP\T . We note that in our practical implementation U is a quantized set

with finitely many values. Hence the minimum in (8.5) always exists and thus

(8.15) is well defined.

As described in Section 3.3, the numerical computation of this controller in-

volves a graph theoretic representation of the dynamics on P and a min-max

Dijkstra algorithm which yields the feedback

uP(x) = argmin
u∈U

ρ(fr(x,u,W)(ρ(x),u,W))=N (ρ(x)

 sup
x∈ρ(x)

sup
w∈W

r(x,u,w)−1∑
r=0

g
(
f r(x, u,w), u

)
for x ∈ SP where

N (P ) = argmin
N∈F(P )

{
G(P,N ) + sup

N∈N
VP(N)

}
,

F(P ) =
{
ρ(F (x, u,W))

∣∣∣ (x, u) ∈ P × U, ρ(F (x, u,w)) 6= P ∀w ∈ W
}
,

G(P,N ) = inf
u

{
sup
x∈P

sup
w∈W

r(x,u,w)−1∑
r=0

g
(
f r(x, u,w), u

) ∣∣∣∣∣u ∈ U, ρ(F (P, u,W)) = N
}
.

Observe that the controller uP is undefined inside the target set T because

the optimality principle only holds for x /∈ T . Therefore we let uP(x) = κ(x)

for x ∈ T where κ is a bounded function such that for all x ∈ T the following

assumption is satisfied.

Assumption 8.6. The function κ : T → U fulfills the following conditions:

1. κ(0) = 0.

2. There exists ν̄ ∈ R such that for all x ∈ T

‖f r(x,κ(x),0)(x, κ(x),0)‖ ≤ ν̄. (8.16)

3. Consider two target sets T1, T2 with T1 ( T2. Then the corresponding con-

stants ν̄1, ν̄2 from (8.16) fulfill the inequality ν̄1 < ν̄2.
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This assumption is essential because the size of ν̄ will play a critical role in

obtaining the size of the practical stability region δ in Definition 2.5, cf. Theorem

4.4.

There are different options of choosing κ. Since f(0, 0, 0) = 0, one can often

use κ(x) = 0m. Another possibility is to switch to a local controller obtained, for

example, from linearization techniques, cf. [15].
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Chapter 9

ISpS Controller Design

This chapter focuses on how to obtain an ISpS controller with the help of the

algorithm from the previous chapter.

In Chapter 4 we applied the algorithm to the ISpS controller design by making

use of an extension of one of the central results in [38], which states that the closed

loop system (2.2) is ISS if and only if it is robustly stable. We recall Definition

4.1:

Definition 4.1. The closed loop system (2.2) is called robustly stable if there

exist e : Rn × Rq → Rq and η ∈ K∞ such that the system

x(k + 1) = f̃
(
x(k), u(k), d(k)

)
, (4.1)

k = 0, 1, . . . , with

f̃(x, u, d) = f
(
x, u, e(x, d)

)
and d ∈ D = B1(0) ⊂ Rq (4.2)

is uniformly asymptotically stable where e is such that for each w ∈ W and each

x ∈ X with ‖w‖ ≤ η(‖x‖) there exists d ∈ D with e(x, d) = w.

Since the proof of the relationship between ISpS and robust stability relies on

Lyapunov function arguments, we need to adapt the theory to the event-based

setting.

In the ensuing proposition it is shown that VP when computed from (4.2) with

(8.15) is an event-based ISpS Lyapunov function for the closed loop system (2.2).

For its proof we need the following assumption.

Assumption 9.2. The map f : X×U×W → Rn in (2.1) is uniformly continuous

in the following sense: there exist γx, γw ∈ K∞ such that for all x, y ∈ X, u ∈ U ,

and w ∈ W we have

‖f(x, u, w)− f(y, u, 0)‖ ≤ max{γx(‖x− y‖), γw(‖w‖)}.

77
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We note that for the closed loop trajectories x(x,uP ,w) of (2.2), for all x ∈ X
Assumption 9.2 implies

‖x(r(x, uP ,w), x, uP ,w)− x(r(x, uP ,0), x, uP ,0)‖
≤ max{γw(‖w(r(x, uP ,w)− 1)‖), a}, (9.1)

where a := maxP∈P,x,y∈P γx(‖x− y‖).

Proposition 9.3. Consider system (2.1) satisfying Assumption 9.2, system (4.1)

satisfying Assumption 2.10, a sufficiently fine partition P with target set1 T ,

the function VP from Theorem 8.3 for system (4.1) with f̃ from (4.2) and the

corresponding feedback uP from (8.15). Then VP is an event-based ISpS Lyapunov

function in the sense of Definition 7.2 on a sublevel set Y = {x ∈ X |VP(x) ≤ `}
for the closed loop system (2.2) for any ` > 0 with

c := max
x∈T
{‖x‖}, (9.2)

ν := α(c), (9.3)

µ(r) := α(η−1(r)), (9.4)

α(r) := α(α−1(r)), (9.5)

µ̃(r) := α(max{2α−1(µ(r)), 2 γw(r)}), (9.6)

ν̃ := α(max{2 a, 2 c, 2 ν̄, 2α−1(ν)}) (9.7)

where α comes from Assumption 2.10, γw from Assumption 9.2, a from (9.1),

and α is suitable, e.g. from Lemma 8.5.

In order to prove that VP is an event-based ISpS Lyapunov function, we need

to show the inequalities and implications (7.1) – (7.3).

Proof of (7.1). Let c > 0 be such that 0 ∈ T ⊆ Bc(0), thus c can be chosen as

in (9.2). If x ∈ T , it follows that ‖x‖ ≤ c. Obviously VP(x)
(3.8)

≥
(8.4)

infu∈U G(x, u)

(8.2)

≥ infu∈U g(x, u) if x /∈ T . For α ∈ K∞ from Assumption 2.10 we obtain

VP(x) ≥ inf
u∈U

g(x, u)
(2.16)

≥ α(‖x‖) ∀x ∈ SP\T

VP(x) ≥ α (‖x‖ − c) ∀x ∈ SP\Bc(0)

VP(x) ≥ α
(

max{‖x‖ − c, 0}
)

∀x ∈ SP .
1Note that throughout this chapter the considered target T always belongs to a specific

partition P, thus it corresponds to a target Ti from Chapter 8.
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The existence of an upper bound follows from Remark 3.11 where, under

appropriate assumptions, the bound can be chosen as α = 2 α̃(‖x‖), cf. Lemma

8.5.

Proof of (7.2). Let kj < k` be consecutive event times and let a k̂ ∈ [kj, k`) exist

such that

VP(x(k̂)) ≥ max
p∈[k̂, k`)

{µ(‖w(p)‖), ν}. (9.8)

Note that the existence of k̂ ∈ [kj, k`) such that (9.8) holds implies that the

left-hand-side of (7.2) is satisfied for all k ∈ [k̂, k`). Without loss of generality

assume that k̂ is the smallest time in [kj, k`) such that the left-hand-side of (7.2)

is satisfied. Thus, (9.8) holds for all k ∈ [k̂, k`).

If x ∈ T , (7.1) yields VP(x) ≤ α(‖x‖) ≤ α(c) := ν, thus assume x /∈ T .

Consider a trajectory x̂(k) = x̂(k, x̂0, uP ,d) of (3.1) with V (x̂0) > ν and let

k1 > 0 denote the time of the first event. Since V (x̂0) > ν implies x̂0 6∈ T , we get

VP(x̂(k1))− VP(x̂0)
(8.3)

≤ −
k1−1∑
j=0

g(x̂j, uP(x̂j))
(2.16)

≤ −
k1−1∑
j=0

α(‖x̂j‖) ≤ −α(‖x̂0‖)

(7.1)

≤ −α
(
α−1(VP(x̂0))

)
=: −α(VP(x̂0)). (9.9)

Now consider a trajectory x(k) = x(k, x0, uP ,w) of (2.2) and two consecutive

event times kj < k`. By assumption on e in (4.2), for all w ∈ W with ‖w(k)‖
≤ η(‖x(k)‖) there exists some d ∈ D such that w(k) = e(x(k), d(k − kj)),

k ∈ [kj, k`). Considering µ = α ◦ η−1, (9.8) yields

∀k ∈ [k̂, k`) : ‖x(k)‖
(7.1)

≥ α−1 (VP(x(k)))
(9.8)

≥ max
i∈[k,k`)

{
η−1(‖w(i)‖∞), α−1(ν)

}
≥ max{η−1(‖w(k)‖∞), α−1(ν)}. (9.10)

Thus we can find a d ∈ D such that x(k, x0, uP ,w) = x̂(k − kj, x(k̂), uP ,d)

holds for k = k̂, . . . , k` for the trajectory x̂(k) of (3.1). Particularly, we have

x̂0 = x(k̂) and x̂(k1) = x(k`) for k1 = k` − k̂. Since k̂ ∈ [kj, k`) we know that

VP(x̂0) = VP(x(k̂)) = VP(x(kj)), thus inequality (9.9) implies the right hand side

of (7.2) with µ = α ◦ η−1.

Proof of (7.3). Let kj < k` be consecutive event times and let a k ∈ [kj, k`) exist

such that

VP(x(k)) < max
p∈[k, k`)

{µ(‖w(p)‖), ν}. (9.11)

Note that for x(k) ∈ T Assumption 8.6 yields∥∥x(r(x(k), uP ,0), x(k), uP ,0
)∥∥ (8.16)

≤ ν̄. (9.12)
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In case x(k) 6∈ T , first observe that from the proof of (7.2) we obtain the in-

equality VP (x(r(x(k), uP ,0), x(k), uP ,0)) ≤ VP(x(k)). Together with the results

in the proof of (7.1) this yields∥∥x(r(x(k), uP ,0), x(k), uP ,0
)∥∥ ≤ α−1(VP(x(k))) (9.13)

if x(r(x(k), uP ,0), x(k), uP ,0) /∈ T and else∥∥x(r(x(k), uP ,0), x(k), uP ,0
)∥∥ ≤ c. (9.14)

Moreover, we have the identity x(k`) = x
(
r(x(k), uP ,wk), x(kj), uP ,wk

)
, k ∈

[kj, k`) which implies

‖x(k`)‖ ≤
∥∥x(r(x(k), uP ,wk), x(k), uP ,wk

)
+x
(
r(x(k), uP ,0), x(k), uP ,0

)∥∥
+ ‖x

(
r(x(k), uP ,0), x(k), uP ,0

)
‖

(9.1),(9.12)

≤
(9.13),(9.14)

max{γw(‖w(r(x(k), uP ,wk)− 1)‖), a}

− max
{
α−1(VP(x(k))), c, ν̄

}
(9.11)

≤ max{γw(‖w(r(x(k), uP ,wk)− 1)‖), a}

+ max

{
α−1

(
max
p∈[k, k`)

{µ(‖w(p)‖), ν}
)
, c, ν̄

}

≤ max

{
max
p∈[k, k`)

2 γw(‖w(p)‖), 2 a,

2α−1

(
max
p∈[k, k`)

{µ(‖w(p)‖)}
)
, 2α−1(ν), 2 c, 2 ν̄

}
. (9.15)

Thus,

VP(x(k`))
(7.1)

≤ α(‖x(k`)‖)
(9.15)

≤ α

(
max

{
max
p∈[k, k`)

2 γw(‖w(p)‖), 2 a,

2α−1

(
max
p∈[k, k`)

{µ(‖w(p)‖)}
)
, 2α−1(ν), 2 c, 2 ν̄

})
≤ max

p∈[k, k`)
{µ̃(‖w(p)‖), ν̃ } (9.16)

with µ̃ from (9.6) and ν̃ from (9.7).

Hence, in both cases we obtain the desired inequality.
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Note that since VP assumes only finitely many different values and is finite

on SP , choosing ` := maxx∈SP VP(x) yields the maximal possible domain Y = SP
on which VP is an event-based ISpS Lyapunov function.

The conditions under which the feedback uP indeed renders system (2.1) ISpS

are summarized in the theorem below.

Theorem 9.4. Consider system (2.1) satisfying Assumption 4.2, system (4.1)

satisfying Assumption 2.10, a sufficiently fine partition P , the function VP from

Theorem 8.3 for system (4.1) with f̃ from (4.2) and the corresponding feedback

uP from (8.15). Let ` ≤ maxx∈SP VP(x) and let α, α ∈ K∞, c ∈ R be such that

(7.1) holds2 on Y =
{
x ∈ X |VP(x) ≤ `

}
.

(i) If the value ` > 0 is such that the inequality

` ≥ α
(

max{α−1(α(c)) + c, α−1(ν̃) + c, 2 c}
)

=: ˜̀ (9.17)

holds with c from (9.2), ν̃ from (9.7) and ν̄ from (8.16), then the system is ISpS

on Y w.r.t. δ = α−1
(
˜̀
)

and ∆w as specified in Theorem 2.8.

(ii) If the assumptions of Lemma 8.5 are satisfied, then for each δ > 0 there

exist T and P such that the system is ISpS on Y w.r.t. this δ and ∆w as specified

in Theorem 7.3.

Proof. (i) By Proposition 9.3 the function VP is an event-based ISpS Lyapunov

function. Since (9.17) ensures that Theorem 7.3 is applicable, i.e., that δ =

α−1
(

˜̀
)
≤ α−1(`), this yields the ISpS property.

(ii) From the first part of the proof of Proposition 9.3 we know that α can be

chosen independently of T and Lemma 8.5 states that for every T there exists a

partition P such that α can also be chosen independently of T . By choosing T to

be a sufficiently small neighborhood of the origin we can choose c and, because

of Assumption 8.6, 3., ν̄ arbitrarily close to 0. Thus, we can ensure that (4.19)

holds and δ can be chosen arbitrarily small. This shows the assertion.

Remark 9.5. The stabilizable set SP = {x ∈ X |VP(x) <∞} can be determined

a posteriori. Thus, once VP is computed it can be checked whether the quantization

was fine enough in order to yield a desired operating region of the controller.

Remark 9.6. Although in Lemma 8.5 we require asymptotic controllability ac-

cording to Definition 2.4, we only get practical stability. This loss is due to the

discretization technique we introduced.

2These functions exist according to the first part of the proof of Proposition 9.3.
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Chapter 10

Small-Gain Theorem

As described in Chapter 5, a major drawback of our ISpS controller design is the

fact that this approach is only suitable for low dimensional systems. This is the

case because due to our discretization method the complexity and thus the time

of computation rises dramatically in higher dimensions.

Therefore we state an event-based version of the small-gain theorem from

Chapter 5 which allows us to apply the ISpS controller to low dimensional sub-

systems while the small-gain condition ensures the stability of the overall system.

As before we prove stability via Lyapunov functions. However, we will see that

the resulting Lyapunov function of the overall system will be slightly different

than the one considered until now. The reason for this is that the decrease of the

overall Lyapunov function from one event time to the next might be arbitrarily

small. This fact makes it necessary to allow longer time periods, i.e., to consider

multiple steps of event times (multi-step).

Thus we start by introducing the needed definitions of Lyapunov functions

and prove that the newly defined multi-step Lyapunov function still yields ISpS.

Afterwards, in Section 10.2, we state the general version of the small-gain the-

orem. The application to the ISpS controller design at hand is described in the

last section.

10.1 Preliminaries

The idea for defining event-based Lyapunov functions for the subsystems Σi is

the same as in Chapter 5, i.e., the inputs of the other subsystems are treated

similarly to the external perturbations but depend on the event-based Lyapunov

functions of the other inputs.

Definition 10.1. Functions Vi : Xi → R≥0, i = 1, . . . , n, are called event-based

ISpS Lyapunov functions for the subsystems Σi of (2.2) on a sublevel set Yi =

83
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{xi ∈ Xi |Vi(xi) ≤ `i}, for some `i > 0, if there exist functions αi, αi ∈ K∞,

µij, µ̃ij ∈ K ∪ {0}, ci, µi, µ̃i ∈ K, a positive definite function αi, and values

wi ∈ R>0 ∪ {+∞}, νi, ν̃i ∈ R≥0 such that for all x ∈ Yi the inequalities and

implications

αi(max{‖xi‖∞ − ci, 0}) ≤ Vi(xi) ≤ αi(‖xi‖∞) (10.1)

and

∀k ∈ [kj, k`) such that

Vi(xi(k)) ≥ max
p∈[k,k`)

{
max
s 6=i
{µis(Vs(xs(p)))}, µi(‖wi(p)‖∞), νi

}
it holds that

Vi(xi(k`))− Vi(xi(k)) ≤ −α(Vi(xi(k))), (10.2)

∀k ∈ [kj, k`) such that

Vi(xi(k)) < max
p∈[k,k`)

{
max
s 6=i
{µis(Vs(xs(p)))}, µi(‖wi(p)‖∞), νi

}
it holds that

Vi(xi(k`)) ≤ max
p∈[k,k`)

{
max
s 6=i
{µ̃is(Vs(xs(p)))}, µ̃i(‖wi(p)‖∞), ν̃i

}
(10.3)

hold for all trajectories xi(k) in Y corresponding to wi ∈ Wi with ‖wi‖ ≤ wi and

for all event times kj where k` > kj is the maximal time such that V (x(kj)) =

V (x(k)) for all k ∈ [kj, k`).

In the ensuing section a small-gain theorem to prove the stability of the over-

all system Σ is developed. In doing so the problem arises that we are not able

to always consider every event time of Σ in the proof of the small-gain theorem.

Thus the resulting Lyapunov function of the overall system will have to consider

multiple steps of event times in (10.2) and (10.3). An illustrative explanation

is the following. The only way for the Lyapunov function of the overall sys-

tem (V (x) = maxi=1,...,n σ
−1
i (Vi(xi))) to decrease is that the “scaled Lyapunov

function” (σ−1
i (Vi(xi))) of the subsystem responsible for this value is decreasing.

However, it is possible that there is another subsystem whose “scaled Lyapunov

function” was arbitrarily close to the one that is decreasing, now becoming the

new Lyapunov function of Σ and thus making it impossible to estimate the de-

crease via a positive definite function α. Therefore we need to establish the

definition of a multi-step event-based ISpS Lyapunov function where we only re-

quire the existence of a (possibly later) event time kn such that while we “wait”

for kn the function may not rise, i.e., (10.6) and (10.7). The “later event time”

kn occurs either when the difference of the Lyapunov function between the event
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times kj and kn is big enough to be estimated via a positive definite function α,

i.e., (10.5), or the value of the Lyapunov function rises again, i.e., (10.7).

Definition 10.2. A function V : X → R≥0 is called multi-step event-based ISpS

Lyapunov function for system (2.2) on a sublevel set Y = {x ∈ X |V (x) ≤ `}
for some ` > 0 if there exist functions α, α ∈ K∞, µ, µ̃ ∈ K, a positive definite

function α, and values w ∈ R>0 ∪ {+∞}, c, ν, ν̃ ∈ R≥0 such that for all x ∈ Y
the inequality

α(max{‖x‖∞ − c, 0}) ≤ V (x) ≤ α(‖x‖∞) (10.4)

holds and for every event time kj there exists an event time kn > kj with

kn − kj < R such that

if there exists a k ∈ [kj, kn) such that V (x(k)) ≥ max
i∈[k, kn)

{µ(‖w(i)‖∞), ν} then

V (x(kn))− V (x(kj)) ≤ −α(V (x(kj))) and (10.5)

∀i ∈ [j + 1, n) : V (x(ki))− V (x(k)) ≤ 0 ∀k ∈ [ki−1, ki) , (10.6)

if for all k ∈ [kj, kn) it holds that V (x(k)) < max
i∈[k, kn)

{µ(‖w(i)‖∞), ν} then

V (x(kn)) ≤ max
i∈[k, kn)

{µ̃(‖w(i)‖∞), ν̃} ∀k ∈ [kj, kn) and (10.7)

∀i ∈ [j + 1, n) : V (x(ki))− V (x(k)) ≤ 0 ∀k ∈ [ki−1, ki) (10.8)

for all trajectories x(k) of the closed loop system in Y corresponding to w ∈ W
with ‖w‖ ≤ w.

We now show that this definition is indeed a characterization of ISpS.

Theorem 10.3. Consider system (2.2) and assume that the system admits a

multi-step event-based ISpS Lyapunov function V . Then the system is ISpS on

Y = {x ∈ X |V (x) ≤ `} with

δ = max{α−1(ν) + c, α−1(ν̃) + c, 2c},

γ(r) = α−1
(

max{µ(r), µ̃(r)}
)

and ∆w = γ−1(α−1(`)) for every ` > 0 with δ ≤ α−1(`).

Proof. We fix x0 ∈ Y , w ∈ W and denote the corresponding trajectory of system

(2.2) with feedback u by x(k). We begin the proof by deriving estimates for

V (x(k)) under different assumptions. To this end, we denote the event times by
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ki, i ∈ N, numbered in ascending order and note that V (x(ki)) = V (x(k)) for all

k ∈ [ki, ki+1). Now we distinguish three different cases.

Case 1. Let i′ ∈ N be such that for all i = 0, . . . , i′ ∃ı̃ ∈ N, kı̃ − ki < R :

∀k ∈ [kı̃−1, kı̃) : V (x(k)) ≥ max
j∈[k, kı̃)

{µ(‖w(j)‖∞), ν}. Then

V (x(kı̃))− V (x(kı̂))
(10.5)

≤ −α(V (x(kı̂))) (10.9)

for all ı̂ = 0, . . . , ı̃− 1 where α is a positive definite function.

Using Lemma 7.4 we get the existence of β̃ such that

V (x(k)) ≤ β̃(V (x0), k) (10.10)

for all k < kı̃.

Case 2. Let i ∈ N be such that ∃ ı̂ ∈ N, kı̂ − ki < R : ∃ k̂ ∈ [kı̂−1, kı̂) :

V (x(k̂)) < max
j∈[k̂, kı̂)

{µ(‖w(j)‖∞), ν}. Then (10.7) yields

V (x(kı̂)) ≤ max
j∈[k̂, kı̂)

{µ̃(‖w(j)‖∞), ν̃} ≤ max{µ̃(‖w‖∞), ν̃}.

Case 3. Consider i ∈ N such that ∃ ı̂ ∈ N, kı̂ − ki < R : ∀ k ∈ [kı̂−1, kı̂) :

max
j∈[k, kı̂)

{µ(‖w(j)‖∞), ν} < V (x(k)) ≤ max
j∈[k, kı̂)

{µ̃(‖w(j)‖∞), ν̃}. Then (10.6) yields

V (x(kı̂)) ≤ V (x(kı̂−1)) ≤ max
j∈[kı̂−1, kı̂)

{µ̃(‖w(j)‖∞), ν̃} ≤ max{µ̃(‖w‖∞), ν̃}.

Combining these three cases we can now prove the desired inequality (2.5).

Let i′ ∈ N be maximal such that the condition from Case 1 is satisfied. Then,

for all k ∈ {0, . . . , kı̃−1} we get

‖x(k)‖
(10.4)

≤ α−1(V (x(k))) + c

(10.10)

≤ α−1
(
β̃(V (x0), k)

)
+ c

(10.4)

≤ α−1
(
β̃(α(‖x0‖), k)

)
+ c

≤ max
{

2α−1
(
β̃(α(‖x0‖), k)

)
, 2c
}
.

This implies (2.5) for all k = 0, . . . , kı̃−1 with β(‖x0‖, k) := 2α−1
(
β̃(α(‖x0‖), k)

)
.

Next, for all i ≥ ı̃− 1 by induction we show the inequality

V (x(ki)) ≤ max{ν, ν̃, µ(‖w‖∞), µ̃(‖w‖∞)}. (10.11)
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Note that the definitions of δ and γ and the bounds on δ and ∆w in the

assertion imply α−1(ν) ≤ δ ≤ α−1(`) and α−1(µ(∆w)) ≤ γ(∆w) ≤ α−1(`); the

same inequalities hold for ν̃ and µ̃. This suggests that ν, ν̃, µ(∆w) and µ̃(∆w)

are all less or equal to `. Consequently, (10.11) implies V (x(ki)) ≤ ` and thus

x(ki) ∈ Y for all w ∈ W with ‖w‖∞ ≤ ∆w. Hence, (10.11) implies that one

of the Cases 1 - 3 must hold for x(ki). Thus, if we know that (10.11) holds, we

can use the estimates in the Cases 1 - 3 in order to conclude an inequality for

V (x(ki+1)).

To start the induction at i = ı̃ − 1, note that the maximality of i′ implies

V (x(ki)) < max{µ(‖w‖∞), ν} by the condition of Case 1, yielding (10.11).

For the induction step i → i + 1, assume that (10.11) holds for x(ki). Then

either Case 1 holds, implying V (x(kı̃)) ≤ V (x(ki)) and thus (10.11) for V (x(kı̃)).

Note that (10.6) yields that V (x(kj+1)) ≤ V (x(kj)) for all j ∈ [i, ı̃−1). Otherwise,

one of the Cases 2 or 3 must hold for x(ki) which imply (10.11) for V (x(kı̂)). Note

that (10.8) yields V (x(kj+1)) ≤ V (x(kj)) for all j ∈ [i, ı̂− 1).

Due to the fact that V (x(k)) is constant for k ∈ [ki, ki+1), for each k ≥ ki′

(10.11) together with (10.4) show ‖x(k)‖ ≤ max{γ(‖w‖∞), α−1(ν)+c, α−1(ν̃)+c},
implying (2.5) for all k ≥ ki′ .

10.2 Small-Gain Theorem

In the previous section we established all the necessary tools to prove the event-

based version of the small-gain Theorem 5.4. Thus, in the following we present

a Lyapunov-type nonlinear event-based small-gain theorem for interconnected

systems of type (2.2).

Theorem 10.4. Consider the interconnected system (2.2) where each of the sub-

systems Σi has an event-based ISpS Lyapunov function Vi according to Definition

10.1 and the corresponding gain matrix Γ̃ as defined in (5.6). Let a function

ε ∈ K∞ be given such that Id− ε is positive definite. Assume there is a differen-

tiable function σ ∈ Kn∞ such that

Γ̃max(σ(r)) < σ(r), ∀r > 0 (10.12)

is satisfied. Then a multi-step event-based ISpS Lyapunov function for the overall

system on the sublevel set Y = Y1 × ...× Yn is given by

V (x) = max
i=1,...,n

σ−1
i (Vi(xi)) (10.13)
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with

µ(r) = max
i=1,...,n

{
ε−1
(
σ−1
i (µ̃i(r))

)}
, (10.14)

µ̃(r) = µ(r), (10.15)

ν = max
i=1,...,n

{
ε−1
(
σ−1
i (νi)

)}
, (10.16)

ν̃ = ν, (10.17)

α(r) = max
i=1,...,n

{
σ−1
i (αi(r))

}
, (10.18)

α(r) = min
i=1,...,n

{
σ−1
i (αi (r))

}
, (10.19)

c = max
j=1,...,n

cj (10.20)

and a suitable positive definite function α.

Proof. Let V (x) be given by (10.13). We want to prove that V (x) is a multi-step

event-based ISpS Lyapunov function, therefore let x ∈ Y .

The existence of α, α follows because σi ∈ K∞ and Vi are event-based Lya-

punov functions. Thus,

V (x)
(10.13)

= max
i=1,...,n

{
σ−1
i

(
Vi(xi)

)}
(10.1)

≤ max
i=1,...,n

{
σ−1
i

(
αi(‖xi‖)

)}
≤ max

i=1,...,n

{
σ−1
i

(
αi(‖x‖)

)}
=: α(‖x‖).

For the bound from below assume without loss of generality that ‖.‖ = ‖.‖∞
since all considered spaces are finite dimensional. Therefore

V (x)
(10.13)

= max
i=1,...,n

{
σ−1
i

(
Vi(xi)

)}
(10.1)

≥ max
i=1,...,n

{
σ−1
i

(
αi(max{‖xi‖∞ − ci, 0})

)}
≥ max

i=1,...,n

{
σ−1
i

(
αi

(
max

{
‖xi‖∞ − max

j=1,...,n
cj, 0

}))}
≥ max

i=1,...,n

{
min

s=1,...,n
σ−1
s

(
αs

(
max

{
‖xi‖∞ − max

j=1,...,n
cj, 0

}))}
≥ min

s=1,...,n

{
σ−1
s

(
αs

(
max

{
max
i=1,...,n

‖xi‖∞ − max
j=1,...,n

cj, 0

}))}
= min

s=1,...,n

{
σ−1
s

(
αs

(
max

{
‖x‖∞ − max

j=1,...,n
cj, 0

}))}
=: α

(
max {‖x‖∞ − c, 0}

)
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where c := maxj=1,...,n cj.

Let k0 be the starting time. We keep track of any event in any subsystem,

denoting the time of the i-th event by ki. We call the time at which the Lyapunov

function of the overall system Σ changes main event. Thus at any event time there

are different possibilities of behavior for the Lyapunov function of the overall

system. Either no main event occurs and the Lyapunov function does not change,

i.e., V (x(ki)) = V (x(ki+1)). Or a main event does occur and the Lyapunov

function changes, i.e., V (x(ki)) > V (x(ki+1)) or V (x(ki)) < V (x(ki+1)).

Before we start with the rest of the proof, note that condition (10.12) yields

max
j
{σ−1

i1
(µ̃i1j(Vj(xj(k))))} = σ−1

i1
(max{µ̃i11(V1(x1(k))), . . . , µ̃i1n(Vn(xn(k)))})

= σ−1
i1

(
max{µ̃i11 ◦ σ1 ◦ σ−1

1 (V1(x1(k))), . . . ,

µ̃i1n ◦ σn ◦ σ−1
n (Vn(xn(k)))}

)
(10.13)

≤ σ−1
i1

(
max{µ̃i11 ◦ σ1 ◦ σ−1

i2
(Vi2(xi2(k))), . . . ,

µ̃i1n ◦ σn ◦ σ−1
i2

(Vi2(xi2(k)))}
)

= σ−1
i1

(
max{µ̃i11 ◦ σ1(V (x(k))), . . . ,

µ̃i1n ◦ σn(V (x(k)))}
)

= σ−1
i1

(
Γ̃max,i1(σ(V (x(k))))

)
(10.21)

(10.12)
< V (x(k)) (10.22)

where Γ̃max,i1 denotes the i1-th component of Γ̃max.

In the following we will consider tree different cases. First, in Cases (a) and

(b), we consider the special cases where kn in Definition 10.2 is the next event

time k` after kj. Afterwards, in Case (c), we have a closer look at what happens

when neither Case (a) nor (b) apply but we have to ”wait” for a later main event

time kn > k`.

From the definition of V (x) in (10.13) we obtain

V (x(k`))− V (x(kj)) = max
i
σ−1
i (Vi(xi(k`)))−max

i
σ−1
i (Vi(xi(kj)))

= σ−1
i2

(Vi2(xi2(k`)))− σ−1
i1

(Vi1(xi1(kj))) (10.23)

with kj > k` two consecutive main events where i1 and i2 are the maximizing

indices or, respectively,

V (x(kn))− V (x(kj)) = max
i
σ−1
i (Vi(xi(kn)))−max

i
σ−1
i (Vi(xi(kj)))

= σ−1
i3

(Vi3(xi3(kn)))− V (x(kj)) (10.24)
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where i3 is the maximizing index.

Case (a) Let kj < k` be two consecutive main events so that there exists an event

time km > kj of Σi2 with σ−1
i2

(Vi2(xi2(k`))) = σ−1
i2

(Vi2(xi2(km))) such that there

exists a ki2 ∈ [kj, km) which fulfills the inequality Vi2(xi2(ki2)) ≥ maxp∈ [ki2 , km)

{maxs 6=i2 { µi2s(Vs(xs(p))) }, µi2(‖wi2(p)‖∞), νi2}. Note that σ−1
i2

(Vi2(xi2(k`))) =

σ−1
i2

(Vi2(xi2(km))) implies km ≤ k` since km is an event time of Σi2 . Observe

further that the existence of such a time ki2 implies that the left-hand-side of

(10.2) is satisfied for all k ∈ [kt, k`) where kt is the smallest time in [kj, k`) such

that the left-hand-side of (10.2) holds.

Thus (10.2) yields

Vi2(xi2(km)) ≤ (Id− αi2)(Vi2(xi2(ki2))) (10.25)

for all ki2 ∈ [kt, km). Hence

(10.23)
(10.25)

≤ σ−1
i2
◦ (Id− αi2)(Vi2(xi2(ki2)))− V (x(kj)) (10.26)

holds for all ki2 ∈ [kt, km). If kt ≤ kj this inequality in particular holds for all

ki2 ∈ [kj, km). If kt > kj, we get

(10.26) ≤ σ−1
i2
◦ (Id− αi2)(Vi2(xi2(kt)))− V (x(kt)) (10.27)

since V (x(kj)) = V (x(k)) for all k ∈ [kj, k`). Let k̄ = kj if kt ≤ kj and let k̄ = kt
if kt > kj.

Note that positive definiteness of (Id − αi2) follows from (10.25) since αi2
is positive definite and Vi2(xi2(km)) > 0. This allows us to utilize Lemma 5.3.

However, since we use ρ1(s) = σ−1
i2

(s) and ρ2(r) = σ−1
i1

(r), the positive definite

function ά will depend on i1 and i2.

(10.25) ≤ max
0≤σ−1

i2
(s)≤σ−1

i1
(Vi1(xi1(k̄)))

σ−1
i2
◦ (Id− αi2)(s)− σ−1

i1
(Vi1(xi1(k̄)))

(5.7)

≤ −ά
(
σ−1
i1

(
Vi1
(
xi1(k̄)

))
, i1, i2

)
(10.13)

≤ −α̂
(
V (x(k̄))

)
= −α̂

(
V (x(kj))

)
(10.28)

where α̂(r) = mini1,i2{ά(r, i1, i2)}. Therefore (10.5) holds with kn = k`.

If there exists a k ∈ [kj, k`) such that V (x(k)) < max
i∈[k, k`)

{µ(‖w(i)‖∞), ν},
(10.28) yields

V (x(k`)) ≤ V (x(k))− ά(V (x(k))) ≤ V (x(k))

≤ max
i∈[k, k`)

{µ(‖w(i)‖∞), ν} (10.29)

and thus we have shown (10.7) with kn = k`.
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Case (b) Let kj < k` be two consecutive main events so that there exists an event

time km > kj of Σi2 with σ−1
i2

(Vi2(xi2(k`))) = σ−1
i2

(Vi2(xi2(km))) such that there

exists a ki2 ∈ [kj, km) which fulfills the inequality Vi2(xi2(ki2)) < maxp∈[ki2 ,km)

{maxs 6=i2 { µi2s(Vs(xs(p)))}, µi2(‖wi2(p)‖∞), νi2}. Note that σ−1
i2

(Vi2(xi2(k`))) =

σ−1
i2

(Vi2(xi2(km))) implies km ≤ k`. Observe further that the existence of such

a time ki2 implies that the left-hand-side of (10.3) is satisfied for all k ∈ [kj, kt]

where kt is the maximal time in [kj, k`) such that the left-hand-side of (10.3) is

satisfied.

Thus

(10.23) ≤ σ−1
i2

(Vi2(xi2(km)))− σ−1
i1

(Vi1(xi1(kj)))

(10.3)

≤ max
p∈[ki2 , km)

{
max
s
{σ−1

i2
(µ̃i2s(Vs(xs(p))))}, σ−1

i2
(µ̃i2(‖wi2(p)‖∞)),

σ−1
i2

(ν̃i2)
}
− σ−1

i1
(Vi1(xi1(kj))), ki2 ∈ [kj, kt]. (10.30)

First we prove (10.5) with kn = k`, i.e., (10.30) ≤ −α(V (x(k))) while we

assume there exists a k ∈ [kj, k`) such that

V (x(k)) ≥ max
i∈[k, k`)

{µ(‖w(i)‖∞), ν}. (10.31)

We start by considering only the last part in the maximum of (10.30), which

holds in particular for ki2 = kj:

max
p∈[kj , km)

{
σ−1
i2

(
µ̃i2(‖w(p)‖∞)

)
, σ−1

i2
(νi2)

}
− σ−1

i1
(Vi1(xi1(kj)))

≤ max
p∈[kj , km)

max
i

{
σ−1
i

(
µ̃i(‖w(p)‖∞)

)
, σ−1

i (ν̃i)
}
− σ−1

i1
(Vi1(xi1(kj)))

k`≥km>kj
≤ max

p∈[kj , k`)
max
i

{
σ−1
i

(
µ̃i(‖w(p)‖∞)

)
, σ−1

i (ν̃i)
}

−σ−1
i1

(Vi1(xi1(kj))). (10.32)

If σ−1
i1

(Vi1(xi1(k))) ≥ maxp∈[k,k`) maxi
{
ε−1(σ−1

i (µ̃i(‖w(p)‖∞)) , ε−1(σ−1
i (ν̃i))

}
,

we derive

max
p∈[k, k`)

max
i

{
σ−1
i

(
µ̃i(‖w(p)‖∞)

)
, σ−1

i (ν̃i)
}
− σ−1

i1
(Vi1(xi1(k)))

≤ ε ◦ σ−1
i1

(Vi1(xi1(k)))− σ−1
i1

(Vi1(xi1(k)))

≤ −(Id− ε)σ−1
i1

(Vi1(xi1(k))). (10.33)

Since V (x(kj)) = σ−1
i1

(Vi1(xi1(kj))), (10.31) with µ(r) = maxi{ε−1(σ−1
i (µ̃i(r)))}

and ν = maxi{ε−1(σ−1
i (νi))} implies

(10.32)
(10.33)

≤ −(Id− ε)V (x(kj)) (10.34)
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and since V (x(kj)) = V (x(k)) for all k ∈ [kj, k`), (10.5) is proven for this part of

the maximum.

Next we find an upper bound for the first term in the maximum of (10.30):

max
p∈[kj , km)

max
s
{σ−1

i2
(µ̃i2s(Vs(xs(p))))} − σ−1

i1
(Vi1(xi1(kj))). (10.35)

To this end we employ the preliminary result of the small-gain condition

derived in (10.21):

(10.35)
(10.21)

≤ max
p∈[kj , km)

{
σ−1
i2

(
Γ̃max,i2

(
σ(V (x(p)))

))}
− V (x(kj))

≤ max
p∈[kj , km)

{
max
i

{
σ−1
i

(
Γ̃max,i

(
σ(V (x(p)))

))}}
− V (x(kj)). (10.36)

Note that V (x(kj)) = V (x(k)) for all k ∈ [kj, k`) and km > kj, thus choosing

ᾰ(r) : = r −maxi

{
σ−1
i

(
Γ̃max,i(σ(r))

)}
yields the desired result

(10.36) = max
i

{
σ−1
i

(
Γ̃max,i

(
σ(V (x(kj)))

))}
− V (x(kj))

= −ᾰ(V (x(kj))). (10.37)

Thus (10.5) holds with α(r) : = min{(Id− ε)(r), ᾰ(r)}.
Finally, we prove (10.7) with kn = k`. Assume there exists a k ∈ [kj, k`) such

that

V (x(k)) < max
i∈[k, k`)

{µ(‖w(i)‖∞), ν}. (10.38)

Then

V (x(k`))
(10.23)

= σ−1
i2

(Vi2(xi2(k`)))

(10.3)

≤ max
p∈[ki2 , km)

{
max
s

{
σ−1
i2

(µ̃i2s(Vs(xs(p))))
}
,

σ−1
i2

(µ̃i2(‖w(p)‖∞)), σ−1
i2

(ν̃i2)
}

(10.22)
< max

p∈[ki2 , km)

{
V (x(p)), σ−1

i2
(µ̃i2(‖w(p)‖∞)), σ−1

i2
(ν̃i2)

}
. (10.39)
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for all ki2 ∈ [kj, kt). Taking into account that k` ≥ km we get

V (x(k`))
(5.23)

≤ max
p∈[k, k`)

{V (x(p)), σ−1
i2

(µ̃i2(‖w(p)‖∞)), σ−1
i2

(ν̃i2)}
(10.38)

≤ max
p∈[k, k`)

{µ(‖w(p)‖∞), σ−1
i2

(µ̃i2(‖w(p)‖∞)), ν, σ−1
i2

(ν̃i2)},
(10.14)

≤
(10.16)

max
p∈[k, k`)

{
max
i

{
ε−1
(
σ−1
i (µ̃i(‖w(p)‖∞))

)
, ε−1

(
σ−1
i (νi)

) }
,

max
i

{
σ−1
i (µ̃i(‖w(p)‖∞)), σ−1

i (νi)
}}

ε−1>id

≤
(10.14),(10.16)

max
p∈[k, k`)

{
µ(‖w(p)‖∞), ν

}
,

i.e., (10.7) holds with µ̃(r) : = µ(r) and ν̃ = ν.

Case (c) The conditions of Case (a) or (b) hold for the main events kj, kn where

kj < k` < kn. Note that the index i3 from (10.29) corresponds to the former

index i2 in the conditions of Case (a) and (b), the event time kn corresponds to

k` and the event times kj < kn are not consecutive main events.

Note that V (x(k)) in (10.24) changes with the main events. However, as soon

as Case (a) or Case (b) holds, we do not “wait” anymore. If we wait because

Case (a) would hold for kj but there exists no km > kj, i.e., for all k ∈ [kt, k`)

the condition of (10.2) holds but there is no event time of Σi2 in [kt, k`), we

get V (x(kj−1)) ≥ V (x(kj)). The only possibility that Case (b) would hold for

some kj but km < kj is that the “scaled” Lyapunov function responsible for the

overall system fell below the “scaled” Lyapunov function which now fulfills the

conditions of Case (b) but km < kj, i.e., V (x(kj−1)) ≥ V (x(kj)). Thus we know

that

V (x(kj)) ≥ . . . ≥ V (x(k)) ≥ . . . ≥ V (x(kn−1)), (10.40)

i.e., (10.6) and (10.8) hold.

(I) If Case (a) applies, the same steps can be followed as before. If kj ≥ kt,

(10.26) still holds for all ki2 ∈ [kj, km). If kj < kt, observe that V (x(kj)) =

maxi σ
−1
i (Vi(xi(kj))) = σ−1

i1
(Vi1(xi1(kj)))

(10.40)

≥ σ−1
i2

(Vi2(xi2(kt))) holds, i.e.,

(10.27) holds, making Lemma 5.3 applicable as before.

(II) If Case (b) applies, we can also follow the same steps as before. Note that

because of (10.40) the inequalities (10.34) and (10.37) also hold for the con-

sidered k, concluding this case.

Note that this concludes the proof. We have shown that V (x) is a multi-step

event-based ISpS Lyapunov function for the overall system by starting to consider
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the special case kn = k`, i.e., considering two consecutive main events in Case (a)

and (b). If neither of those cases applied we have waited for the event time kn
for which either the conditions of Case (a) or (b) were satisfied. Since an event

is guaranteed to occur in every subsystem after time R, we know that a time

exists when either the conditions of Case (a) or (b) will be satisfied, i.e. Case

(c) occurs. To this end, observe that for subsystem Σi2 either the conditions of

(10.2) or (10.3) are satisfied. If the conditions of (10.2) are satisfied, then latest

after time R an event has occurred in Σi2 , hence an event time km > kj of Σi2

exists. If the conditions of (10.3) are satisfied, then latest R after kj the event

time km ≥ kj will have occurred in Σi2 .

10.3 Application to the ISpS Controller Design

In this section we apply the small-gain Theorem 10.4 to the ISpS controller design

at hand. To this end we first consider the subsystems Σi, i = 1, . . . , N , of the

interconnected system (2.1) separately.

Remember the definition of robust stability in this case.

Definition 5.5. A closed loop subsystem of (2.2) is called robustly stable if there

exist eij : Rni ×Rnj → Rnj , i 6= j, ei : Rni ×Rq → Rq and ηij, ηi ∈ K∞, i 6= j, such

that the corresponding subsystem of (3.1) with

f̃i (xi, x−i, ui, d) = fi

(
xi, e

(−i)
ij (xi, d−i), ui, ei(xi, di)

)
and Di = Dj = B1(0), i 6= j, is uniformly asymptotically stable where ei is such

that for each w ∈ W with ‖w‖ ≤ ηi(‖xi‖) there exists di ∈ Di with ei(xi, di) = w

and eij is such that for each xj ∈ Xj with ‖xj‖ ≤ ηij(max{‖xi‖ − cj, 0}), cj =

max{‖xj‖ : xj ∈ Tj}, j 6= i, there exists dj ∈ Dj with eij(xi, dj) = xj.

Note that we treat the influence of the other subsystems as perturbations,

thus in Definition 5.5 in addition to the scaling function ei we had to introduce

functions eij which have the same “scaling” purpose for the subsystems.

In this context Assumption 9.2 for the subsystems looks as follows.

Assumption 10.5. The map fi : Xi×X−i×U ×W → Rn for the subsystem Σi

in (2.1) is uniformly continuous in the following sense: there exist γx,i, γw,i ∈ K∞
and γw,ij ∈ K∞ ∪ {0}, i 6= j, such that for all xi, x̂i ∈ Xi, xj ∈ Xj, x̄j ∈ Tj, j 6=
i, u ∈ U and w ∈ W

‖fi(xi, x−i, u, w)− fi(x̂i, x̄−i, u, 0)‖

≤ max

{
γx,i(‖xi − x̂i‖),max

j 6=i
γw,ij

(
‖xj‖

)
, γw,i(‖w‖), θi

}
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where θi := maxj 6=i maxxj ,x̂j∈Tj ‖xj − x̂j‖.

We note that for the closed loop trajectories x(x,uP ,w) of (2.2), for all xi ∈
Xi Assumption 10.5 implies∥∥xi(ri(xi, uP,i, (x−i(j))j∈N,w), xi, uP,i, (x−i(j))j∈N,wi

)
−xi

(
ri(xi, uP,i, (x̄−i(j))j∈N,0), xi, uP,i, (x̄−i(j))j∈N,0

)∥∥
≤ max

{
max
j 6=i

{
γw,ij

(∥∥xj(ri(xi, uP,i, (x−i(j))j∈N,wi)− 1
)∥∥)},

γw,i
(∥∥wi(ri(xi, uP,i, (x−i(j))j∈N,wi)− 1

)∥∥), ai} (10.41)

for ai := max{maxPi∈Pi,xi,yi∈Pi γx,i(‖xi− yi‖), θi}. Observe that the time-to-next-

event ri of subsystem Σi now also depends on the sequence of “perturbations”

(x−i(j))j∈N from the other subsystems.

Now, for every subsystem we design an ISpS controller according to Chapter

9, thus yielding ISpS controllers uP,i, corresponding ISpS Lyapunov functions

VP,i and gains µ̃ij. Only minor adjustments in the proof of Proposition 9.3 are

necessary to adapt to the new setting of the event-based Lyapunov functions.

Proposition 10.6. Consider a subsystem of (2.1) satisfying Assumption 10.5, a

sufficiently fine partition P with target set T , a function VP,i satisfying Theorem

8.3 for the corresponding subsystem of (4.1) with f̃i from (4.2) and the corre-

sponding feedback uP,i from (8.15). Then VP,i is an event-based ISpS Lyapunov

function in the sense of Definition 10.1 on a sublevel set Yi = {xi ∈ Xi |VP,i(xi) ≤
`i} for for the closed loop subsystem of (2.2) for any `i > 0 with

ci := max
xi∈Ti
{‖xi‖},

θi := max
j 6=i

max
xj ,x̂j∈Tj

‖xj − x̂j‖,

ai := max{ max
Pi∈Pi,xi,yi∈Pi

γx,i(‖xi − yi‖), θi},
νi := αi(ci),

µi(r) := αi
(
η−1
i (r)

)
,

µij(r) := αi
(
η−1
ij (α−1

j (r))
)
,

αi(r) := αi
(
α−1
i (r)

)
,

µ̃i(r) := αi
(

max
{

2 γw,i(r), 2α
−1
i (µi(r))

} )
,

µ̃ij(r) := αi
(
max{2(γw,ij(2α

−1
j (r))), 2α−1

i (µij(r))}
)
,

ν̃i := αi

(
max

{
2 max

j 6=i
{γw,ij(2cj)}, 2ai, 2α−1

i (νi), 2ci, 2ν̄i

})
where αi comes from Assumption 2.10, γw,i from Assumption 4.2, ν̄i from (3.46),

and αi is suitable.
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Proof. The proof of (10.1) is analogous to the proof of Proposition 9.3. The main

difference is that, due to the adapted definition of the event-based Lyapunov

function, the additional term maxs6=i{µis(Vs(xs(k)))} in (10.2) and (10.3) needs

to be considered. Thus, in the proof of (10.2), we have to adapt (9.10) to account

for the additional terms. Choosing µij = αi◦η−1
ij ◦α−1

j , the left hand side of (10.2)

yields

∀k ∈ [kj, k`) : ‖xi‖
(10.1)

≥ α−1
i

(
VP,i(xi)

) (10.2)

≥ max
p∈[k,k`)

{
η−1
ij

(
α−1
j (VP,j(xj(p)))

)}
≥ max

{
η−1
ij

(
α−1
j (VP,j(xj(k)))

)}
(10.1)

≥ η−1
ij

(
max{‖xj(k)‖ − cj, 0}

)
,

satisfying the condition in Definition 5.5.

Furthermore, the proof of (10.3) needs some additional consideration. In-

equality (9.12) still holds for x(kj) ∈ T , i.e., if there is no perturbation of the

subsystems. Thus, utilizing (10.41) instead of (9.1) we get

‖x(k`)‖ ≤ max

{
max
j 6=i

{
γw,ij

(∥∥xj(ri(xi(k), uP,i, (x−i(j))j∈N,wi)− 1
)∥∥)},

γw,i
(∥∥wi(ri(xi(k), uP,i, (x−i(j))j∈N,wi)− 1

)∥∥), ai}
+ max

{
α−1
i (VP,i(xi(k))), ci, ν̄i

}
≤ max

{
max
j 6=i

{
γw,ij

(
max
p∈[k,k`)

‖xj(p)‖
)}

, γw,i

(
max
p∈[k,k`)

‖wi(p)‖
)
, ai

}
+ max

{
α−1
i

(
max
p∈[k,k`)

{
max
j 6=i
{µij(Vj(xj(p)))}, µi(‖wi(p)‖), νi

})
,

ci, ν̄i

}
≤ max

{
max
p∈[k,k`)

{
max
j 6=i

{
2 γw,ij

(
α−1
j (Vj(xj(p))) + cj

)
,

2α−1
i (µij(Vj(xj(p))))

}
, 2 γw,i(‖wi(p)‖), 2α−1

i (µi(‖wi(p)‖))
}
,

2 ai, 2α−1
i (νi), 2 ci, 2 ν̄i

}
(10.42)
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(10.42) ≤ max

{
max
p∈[k,k`)

{
max
j 6=i

{
2 γw,ij

(
max{2α−1

j (Vj(xj(p))) , 2 cj}
)
,

2α−1
i (µij(Vj(xj(p))))

}
, 2 γw,i(‖wi(p)‖), 2α−1

i (µi(‖wi(p)‖))
}
,

2 ai, 2α−1
i (νi), 2 ci, 2 ν̄i

}
.

≤ max

{
max
p∈[k,k`)

{
max
j 6=i

{
2 γw,ij

(
2α−1

j (Vj(xj(p)))
)
, 2α−1

i (µij(Vj(xj(p))))
}
,

2 γw,i(‖wi(p)‖), 2α−1
i (µi(‖wi(p)‖))

}
,

2 max
j 6=i
{γw,ij(2 cj)}, 2 ai, 2α−1

i (νi), 2 ci, 2 ν̄i

}
The rest of the proof is completely analogous to the proof of Proposition

9.3.

Then Theorem 10.4 can be applied. In the following small-gain theorem we

adapt the requirements to the new setting.

Theorem 10.7. Consider the interconnected system (2.1) where each of the sub-

systems Σi, i = 1, . . . , N , the corresponding function VP,i and the feedback uP,i
satisfy Proposition 9.3. Let a function ε ∈ K∞ be given such that Id−ε is positive

definite. Assume there is a differentiable function σ ∈ Kn∞ such that

Γ̃max

(
σ(r)

)
=

 max{µ̃11(σ1(r)), ..., µ̃1n(σn(r))}
...

max{µ̃n1(σ1(r)), ..., µ̃nn(σn(r))}

 < σ(r) ∀r > 0 (10.43)

is satisfied, then an ISpS Lyapunov function for the overall system on the sublevel

set Y = Y1 × . . .× Yn is given by

VP(x) = max
i=1,...,n

σ−1
i

(
VP,i(xi)

)
(10.44)

with

µ(r) = max
i

{
ε−1
(
σ−1
i (µ̃i(r))

)}
, (10.45)

µ̃(r) = µ(r), (10.46)

ν = max
i

{
ε−1
(
σ−1
i (αi(ci))

)}
, (10.47)

ν̃ = ν (10.48)

and a suitable α, where

ci = max
xi∈Ti
{‖xi‖} (10.49)

µ̃i(r) = αi
(
max

{
2 γw,i(r), 2α

−1
i

(
αi(η

−1
i (r))

)})
. (10.50)
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Proof. According to Proposition 10.6, VP,i are event-based ISpS Lyapunov func-

tions for the closed loop subsystems of (2.2) with µ̃i from (10.50), ci from (10.49)

and νi = αi(ci). Thus, Theorem 10.4 is applicable, yielding the desired result.

Note that the independence of the bounds αi, αi and αj from the parti-

tions is very important because the gains µ̃ij(r) = αi
(

max{2(γw,ij(α
−1
j (r))),

2α−1
i (αi(η

−1
ij (α−1

j (r))))}
)

depend on them. Otherwise the gains would change

with the partitions.

Moreover, the only way to influence the size of the gains is via the scaling

functions ηij. Thus, the choice of the scaling functions plays a crucial role not

only for the controllability of the single subsystems but also for the stability of

the overall system.
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Chapter 11

Implementation

The event-based controller design of Part II was implemented in C++. In all the

programming work Wolfgang Riedl was involved with structuring and optimiza-

tion of runtime as well as memory usage.

As a base of the program a grid- and a graph-class, implemented by Dr.

Thomas Jahn, was utilized. Among other things, the graph-class already in-

cludes the min-max version of the shortest-path algorithm of Dijkstra, cf. [61].

Also we make use of the DGL-solvers implemented in the C++ NMPC software

YANE which can be downloaded from www.nonlinearmpc.com. For instructions

of installation, see [25, Appendix A.3]. We implemented two new classes, “grid-

graph” for the algorithm and “model” to help with the data of the considered

systems.

Currently the program can handle a 4 - dimensional overall system which is

split into two 2 - dimensional subsystems, Σ1 and Σ2, with two control values and

one possible external perturbation per subsystem. However, it could easily be

adapted to other dimensions and settings.

In the ensuing section we outline the elements and usage of the main-file

“main.cpp”. Afterwards, in Section 11.2 we describe the new class gridgraph.

The class model is explained in the last section.

11.1 Main-File

An important feature of the program is that the hypergraph is saved during the

computations, making it possible to run it with, e.g., different target sets without

having to construct the hypergraph anew. If the command #define USE_OLD is

set, the program first checks for existing data files and loads them if applicable.

We only use partitions of 2i × 2i, i = 3, 4, . . . , equally sized rectangular ele-

ments. The number of elements is given by z, e.g. int z[] = {8,8,8,8}; for

a 23 × 23-grid for each subsystem. Note that the first two numbers correspond
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to the 2-dimensional first subsystem and the last two numbers to subsystem Σ2.

To represent the partition element P in the implementation we pick a finite set

of test points yk in P , the number of which is defined by testpkt. This number

has to be bigger than 2dimension and should have the form mdimension for m ∈ N,

otherwise the number will automatically be rounded off. The four corners of a

partition element are always chosen as test points. Further test points are evenly

spaced in between, e.g. when choosing 9 test points, in addition to the four cor-

ners we get the mid-points between the corners on the edges and the middle of

the partition element.

The discretization of the control values is realized via int num_u[] which

gives the number of the considered values, first for subsystem Σ1 and then for

subsystem Σ2. For example, when considering the continuous flow process in

Chapter 12 we used int num_u[] = {9,5,9,4};. Thus for the control of sub-

system Σ1 there are 9 values for controlling the inflow (uT1) and 5 for controlling

the cooling (uCU). For the second subsystem subsystem there are 9 values for

controlling the inflow (uT3) and 4 for controlling the heating (uH). In the same

way, the discretization of the perturbation values is given via int num_w[]. Here,

the first two components are responsible for the perturbation values of subsystem

Σ1, induced by the states of Σ2, the fourth and fifth component for the pertur-

bation values of subsystem Σ2, induced by the states of Σ1, and the third and

sixth components are responsible for the external perturbations. Thus the set-

ting int num_w[] = {3, 3, 1, 3, 3, 1}; for the calculations in Chapter 12

implies that the perturbation input set is chosen as di ∈ {−1; 0; 1}2, i = 1, 2, and

the number 1 stands for no external perturbation, i.e., the value 0.

In order to use the hypergraph based numerical computation of VP , we first

need to re-formulate the optimality principle (8.3) in terms of a hypergraph. For

each test point and each d ∈ D the image xj(yk,u,d)(yk, u,d) is calculated and

the union of these images is used as a numerical approximation for the union

F (x, u,d) in (8.1) and thus for F (x, u,D) = ∪d∈DF (x, u,d). From the resulting

sets F(x, u,D) = ρ(F (x, u,D)) the hypergraph is constructed, cf. Figure 11.1.

We note that the case considered here differs from [19] by the fact that in the

transition map F we have to consider all possible sequences of perturbations in

D which may occur until the state passes from the current quantization region

to the next. Thus, the complexity of the algorithm increases considerably. For

this reason, in our implementation we usually restrict the amount of perturbation

sequences by considering only those sequences with extremal values d(k), those

with d(k) = 0 and a predefined number of randomly generated sequences, given

by int paths. In the calculations of Chapter 12 we did not use additional paths.

According to our numerical experience, this does not yield significantly different

results compared to using all possible sequences. However, using additional paths
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results in much longer calculation times.

In addition to the event-based method described in Part II we implemented

the method of past information developed by Florian Müller and Lars Grüne

in [22, 23, 24, 15]. Since the computational part of our approach entirely relies

on computing a uniformly practically asymptotically stabilizing feedback law for

the scaled system (4.1) by means of the approach from [23], the extension of this

algorithm to implement the computation of feedback laws depending not only

on the current but also on past values of the state [22] can be readily applied.

The idea of this extension is that a state in the hypergraph consists not only of

the current partition element ρ(x(k)) but of tuples of q ≥ 2 partition elements.

More precisely, let k1 < k2 < k3 < . . . denote the ordered event times along a

trajectory with the convention that k0 = 0 is also treated as an event time. Then,

at time k ∈ [kj, kj+1) each node in the hypergraph represents the quantization

regions ρ(x(kj)), ρ(x(kj−1)), . . . , ρ(x(kj−q+1)) containing the state of the event

based system at the current and at the q − 1 previous event times (using an

undefined quantization region for ki in case i < 0). The resulting feedback

law is then of the form u = uP(ρ(x(kj)), ρ(x(kj−1)), . . . , ρ(x(kj−q+1))). Note

that u is still constant as long as x(k) ∈ ρ(x(kj)) because the arguments of

uP only change when k = kj+1, i.e., when the state leaves the current partition

element. Proceeding this way the uncertainty, which is represented by the number

of edges per hyperedge emanating from one node in the hypergraph, can be

substantially reduced. While the method considerably increases the number of

nodes in the hypergraph and the time to compute the hypergraph, due to the

reduced uncertainty it also allows for a significant reduction of the number of

partition elements, i.e., it allows coarser quantizations. This method has thus

been implemented with q = 2. Via the variable bool history this feature can

be turned on or off.

F (x, u1,D)

F(x, u1,D)

P

u1

u2

Figure 11.1: Illustration of the construction of the hypergraph, cf. [19, Figure 1]
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To obtain a discrete-time representation of a continuous-time system, i.e., a

system of the form (2.1), we use the sampling time h which is given in seconds.

The trajectories of the system are approximated by a Runge-Kutta (4,5) scheme

with automatic step size control obtained from the library YANE. Of course one

also has the choice to change the solver, e.g. to the implicit Runge-Kutta method

Radau-5 or the Dormand-Prince Runge-Kutta of order 8(5,3).

Further observe that for two consecutive event times kj < k` the numerical

evaluation of x(k`) would take arbitrarily long if k` − kj was unbounded. Thus

the bound between two consecutive event times, cf. Assumption 7.1, is given by

R, i.e., k` − kj ≤ R.

For the trajectory simulations the initial value is given by x0. Note that a

starting point on the right border of X might cause problems and should be

avoided. The reason is that the right border of a cell is internally (in the grid-

class) always assigned to the cell to the right but the right border of X has no

cells to its right. In order to simulate the trajectories of the subsystems we need

to create perturbation values for the perturbations created via the states of the

respective other subsystem. To this end the variable maxw gives the maximal

values that the perturbations may attain. Again, the first two values are re-

sponsible for the perturbation values of subsystem Σ1, induced by the states of

Σ2, the fourth and fifth component for the perturbations values of Σ2 and the

third and sixth component are responsible for the external perturbations. The

parameter interval gives different options for the intervals in which the uni-

formly distributed random numbers are generated. Note that the seed can be

controlled, thus we always generate the same random numbers in order to be

able to compare the simulated trajectories. The value DEFAULT creates values in

the interval [ -maxw, maxw ] whereas MAXIMAL always chooses the value maxw and

POSITIVE generates values in the interval [ 0, maxw ].

The last parameters which we have to consider in the main-file are concerning

the target set. The smallest possible target is the partition element which contains

the target point, cf. also Remark 3.13. There are several shapes implemented that

the target set may assume, to be chosen via type. Note that the shapes refer to

pixelated versions, e.g. the shape circle refers to a pixelated circle where a pixel

correlates to a partition element. The option SQUARE uses a square as target set.

The size is determined by the variable surround which in this case defines how

many rings of partition elements around the cell containing the target point are

added to the target set. In contrast the option PREVIOUS also creates a square but

here we are able to recreate the smallest target areas used in coarser partitions.

For example let us consider a partition of 32x32 elements. If we set surround

to be 1 we get the same target as the cell containing the target point in the

16x16-grid. If we set it to be 2 the target set will have the same size as the
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partition element containing the target point at a partition with 8x8 elements.

Another option to create a square is NEAR. Here only the partition elements which

border the corner closest to the target point are added. The choice CROSS does

not create a square but a cross shape where only the partition elements bordering

the edges of the cell containing the target point are added to the target set. Thus

the “corners” of the square are missing. Finally the option CIRCLE creates a filled

circle with radius surround around the target cell as target area and the option

ELLIPSE creates an ellipse, however the axes are not rotatable.
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11.2 Class gridgraph

In this section we shortly describe the most important methods of the class grid-

graph. The method which is called in main.cpp to start our algorithm is either

gridgraph_min_max_max_history if the algorithm considering past information

is used or gridgraph_min_max_max_nohistory if not. Here, the algorithm de-

scribed in the previous parts are implemented. Since, depending on the choice

of variables, e.g. the grid size, the calculation time of the hypergraph might be

quite lengthy, cf. Tables 12.2 – 12.3, it is possible to save intermediate results

in gridgraph_min_max_max_history after a certain time has elapsed to prevent

data loss if the algorithm is interrupted, e.g. by a power outage. This time is

given by savetime. Restarting the program with the line #define USE_OLD in

the main file will load the saved data and continue the calculations from this

point. However, you have to make sure that the values of the variables in the

main file which are needed to calculate the hypergraph are the same as before,

e.g. the grid size. All values of variables which are only needed for Dijkstra or

the simulations may be changed, e.g. the target point.

The method responsible for creating an output file with the initial control

values is InitialControlToFile, i.e., this file gives the values for the starting

time since for that time there exists no past information. Note that in case of

running the program without use of past information this file is used to determine,

e.g., the control value at any time instant. The first four columns in the created

file Control.dat are to determine the partition element, first the coordinates of

the bottom left corner and then the ones of the top right corner are printed. The

fifth column shows the value of the value function. Afterwards the initial control

values are given and in the final column the time in seconds according to Dijkstra

that would be needed in the worst case in order to reach the target set under the

considered perturbations.

For the algorithm considering past information the file Value.dat is created

by the method ValueFctToFile_hist, containing all the data that considers

past information. Since this file contains a lot of information and the size can

become quite large, it is saved as a binary file rather than in plain text. To

convert Value.dat into plain text, one can use the file fileconvert.cpp, e.g. by

fileconvert Value.dat > asciiValue.dat. The columns are given the same

way as for the file Control.dat. The only difference is that in addition first the

corners of the past partition element are given before the corners of the current

cell are printed.

To create the simulation of trajectories the methods SolvedDGLToFile for

the subsystems and SolvedDGLToFile_combined for the overall system are used.

First the time is printed, afterwards the coordinates of the trajectory and finally

the control values which will be used. The control values, however, are only
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printed whenever the trajectory changes partition elements, i.e., an event occurs.

The time until which the simulation runs is given by tmax, it can either be set

via the calculated maximal time from the Dijkstra algorithm or by hand.

11.3 Class model

The class model was created to implement examples. Currently a 4 - dimensional

overall system VERA is implemented which gets split up into two 2 - dimensional

subsystems. The files model VERA are responsible for the overall system, the files

submodel1 VERA for subsystem Σ1 and the files submodel2 VERA for subsystem

Σ2.

The .cpp - files contain all the relevant information of the systems, e.g. the size

of the state space, the target point and the system dynamics. The state space is

given as a rectangle where _xu are the coordinates of the “bottom left” corner

and xo the ones of the “top right” corner of the rectangle. One has to take care

to have matching values in all three files. The same holds true for the respective

target point _target or _completeTarget and the system dynamics given via

the method func. The variable modelName is responsible for the name that the

produced data-files and -folders will receive.

Throughout the previous discussions we always assumed the target point to

be zero, i.e., 0 ∈ T . In general this is not the case, thus the affected param-

eters need to get shifted accordingly. The parameter #define SHOW_OFFSET in

model VERA.cpp prints the control values ū such that for the target point x̄ it

holds that f(x̄, ū, 0) = x̄. Note that this feature is evaluated for every subsystem

which, in our case, results in two printouts.

Another feature in model VERA.cpp is the method calcScale in which scal-

ing parameters a and b for the scaling functions eij(xi, dj), ei(xi, di), i = 1, 2, j =

1, 2, from Definition 5.5 can be calculated, depending on, e.g., the target and the

grid size. How exactly we calculate the scaling function in the example of the

thermofluid process called VERA will be explained in detail in Section 12.2.

The cost and scaling functions from (2.15) and Definition 4.1 of the subsystems

are set in submodel1 VERA.h and submodel2 VERA.h, respectively.
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Chapter 12

Thermofluid Process

In this chapter the proposed event-based control is tested and evaluated via

the thermofluid process described in [48, Chapter 5.8] and [53, Section 6]. A

laboratory set-up of the process is standing at the Institute of Automation and

Computer Control at Ruhr-University Bochum, Germany. This pilot plant is

depicted in Figure 12.1.

We shortly summarize the plant model in Section 12.1 before evaluating the

proposed event-based controller in the ensuing section. We compare different

partitions and different scaling functions. To this end we first show the resulting

initial value functions and control values before giving an estimated upper bound

to the maximal time which a trajectory might need to reach the target set. Also

we simulate the trajectories, not only of the subsystems but also of the overall

system. In the last section the controller is tested on the pilot plant.

Reactor B Reactor S

Figure 12.1: Pilot plant
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12.1 Plant model

A simplified version of the plant is illustrated in Figure 12.2.

E1 E2C1 C2

FW

TWTW

CU

PB PS

TT

LL Reactor B Reactor S

T1 T3

uT3

uCU

uT1

uH

dH

dF

uBS uSB

uBW uSW

lB ϑB lSϑS

Ethernet

Figure 12.2: Experimental setup of the continuous flow process

The main components are the two water tanks B and S (reactors). A storage

tank T1 is connected to reactor B. The inflow from T1 into B can be controlled

via the valve angle uT1. The pump PB creates the outflow of reactor B. Some of

the outflow goes into reactor S, regulated by uBS, and the rest flows into a buffer

tank TW. The water from the buffer tank is not used anymore in the process.

The temperature ϑB(t) of the water in reactor B is controlled by a cooling unit

(CU) using the input uCU. A disturbance can be realized via heating rods in the

reactor, using dH. In the same way, the inflow from the storage tank T3 to the

reactor S can be adjusted by means of the opening angle uT3. Also the outflow

of the reactor via pump PS is split to flow into reactor B, regulated by uSB, and

into the buffer tank TW. The temperature ϑTS(t) of the water in reactor S can be

increased via heating rods using uH. In this reactor a disturbance can be added

by opening the valve angle dF, allowing an inflow from a fresh water supply (FW).

In summary, the coupling strength of the reactors can be set via uBS and uSB.

For reactor B we can control the inflow (uT1) and the cooling (uCU), depicted
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as Controller 1 (C1) in Figure 12.2, and for reactor S the inflow (uT3) and the

heating (uH), illustrated as Controller 2 (C2). Both reactor B and S are equipped

with sensors that continuously measure the level l and the temperature ϑ of the

contents (E1 and E2 in Figure 12.2).

In the following, the behavior of the level and the temperature in the separate

reactors B and S are considered as subsystems Σ1 and Σ2, respectively. Hence,

the states of the subsystems are given by x1(t) =
(
lB(t), ϑB(t)

)T
and x2(t) =(

lS(t), ϑS(t)
)T

. The continuous flow process is represented by the nonlinear state-

space model

l̇B(t) = A−1
B

(
q1B(uT1(t)) + qSB(lS(t), uSB)− qBW(lB(t), uBW)

− qBS(lB(t), uBS)
)

ϑ̇B(t) = (ABlB(t))−1
(
q1B(uT1(t))(ϑ1 − ϑB(t))

+ qSB(lS(t), uSB)(ϑS(t)− ϑB(t))

+ qC(uCU(t))(ϑC − ϑB(t)) +HBdH(t)
)

l̇S(t) = A−1
S

(
q3S(uT3(t)) + qBS(lB(t), uBS)− qSW(lS(t), uSW)

− qSB(lS(t), uSB) + qFS(dF(t))
)

ϑ̇S(t) = (ASlS(t))−1
(
q3S(uT3(t))(ϑ3 − ϑS(t))

+ qBS(lB(t), uBS)(ϑB(t)− ϑS(t))

+ qFS(dF(t))(ϑF − ϑS(t)) +HSuH(t)
)
.

(12.1)

The flows from the storage tanks T1 and T3 to the reactors B and S are

denoted by

q1B(uT1(t)) = 1.61× 10−4 · uT1(t)

q3S(uT3(t)) = 1.81× 10−4 · uT3(t),

respectively. The flow of the coolant is given by

qC(uCU(t)) = 0.97× 10−4 · uCU(t)

and
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qBS(lB(t), uBS) = KBS(uBS)
√

2glB(t)

KBS(uBS) = 10−4 ·
{

1.02 · uBS, 0 ≤ uBS ≤ 0.1

2.13 · uBS − 0.11, 0.1 < uBS ≤ 1

qSB(lS(t), uSB) = KSB(uSB)
√

2glS(t)

KSB(uSB) = 10−4 ·
{

0.90 · uSB, 0 ≤ uSB ≤ 0.1

1.68 · uSB − 0.08, 0.1 < uSB ≤ 1

denote the flows from reactor B to reactor S and vice versa with the specific

valve parameters KBS and KSB (m3/m). Finally,

qBW(lB(t), uBW) = KBW(uTB)
√

2glB(t)

KBW(uBW) = 10−4 ·
{

0.96 · uTB, 0 ≤ uBW ≤ 0.1

2.01 · uTB − 0.10, 0.1 < uBW ≤ 1

qSW(lS(t), uSW) = KSW(uSW)
√

2glS(t)

KSW(uSW) = 10−4 ·
{

0.79 · uSW, 0 ≤ uSW ≤ 0.1

1.42 · uSW − 0.06, 0.1 < uSW ≤ 1

denote flows of volume from the reactors B and S into the buffer reactor TW

with the specific valve parameters KBW and KSW (m3/m). All flows have the

unit m3/s. All parameters are listed in Table 12.1.

Due to technical limitations the subsystem states x1 = (lB, ϑB)T and x2 =

(lS, ϑS)T are restricted to the state space X = X1 ×X2 with

X1 = [0.26; 0.40] m× [285.65; 323.15] K,

X2 = [0.26; 0.40] m× [293.15; 323.15] K.
(12.2)

The control inputs u1 = (uT1, uCU)T and u2 = (uT3, uH)T are limited to the

set U = U1 × U2 with

U1 = [0; 1]× [0; 1] , U2 = [0; 1]× [0; 1] . (12.3)

An external disturbance is accomplished by means of the heating with distur-

bance input dH(t) in reactor B and the additional water inflow in reactor S that
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Parameter Value Meaning

AB 0.07 m2 Cross sectional area of tank B

AS 0.07 m2 Cross sectional area of tank S

g 9.81 m/s2 Gravitation constant

HB 4.8× 10−3 m3K/s Heat coefficient of the heating in tank B

HS 0.8× 10−3 m3K/s Heat coefficient of the heating in tank S

ϑ1 294.15 K Temperature of the fluid in tank T1

ϑ3 294.15 K Temperature of the fluid in tank T3

ϑC 282.65 K Temperature of the coolant

ϑF 294.15 K Temperature of the water supply

Table 12.1: Parameters of the flow process

is set by the valve angle dF(t). The disturbances are considered to be bounded

to

dH ∈ DH = [0; 0.1] , dF ∈ DF = [0; 0.25] . (12.4)

Our design in this example is without external disturbances, i.e., we set dH =

dF = 0 and consider only the state of the other subsystem as disturbance by

setting w1 = (lS, ϑS)T and w2 = (lB, ϑB)T .

The control aim for the overall system is to steer the state x from a given

initial state1 x0 ∈ X into a target region T around the operating point

x̄1 =

(
l̄B
ϑ̄B

)
=

(
0.33 m

294.7 K

)
, x̄2 =

(
l̄S
ϑ̄S

)
=

(
0.34 m

300.2 K

)
(12.5)

and stay close to it for all times in spite of the influence of disturbances and

interconnections. The interconnections among both subsystems are set via the

valve angles uBS and uSB which are fixed to

uBS = 0.19, uSB = 0.22 (12.6)

throughout the experiments. Moreover, the choice

uBW = 0.21, uSW = 0.29 (12.7)

defines the outflow from the reactors B and S to the buffer tank TW.

We use the implementation, described in Chapter 11, which considers past

information. For constructing the hypergraph we discretize the control input set

1Note that in the theory we always assumed x to be the origin, therefore, here, we need to

shift the affected parameters.
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for Σ1 by 9 × 5 equidistant values, for Σ2 by 9 × 4 equidistant values and the

perturbation input set by choosing di ∈ {−1; 0; 1}2. Further the bound between

two consecutive event times is chosen as R = 600. A finer discretization or bound

did not yield significantly different results. To compute the controller we use the

sampling time 2s and further the stage costs are chosen as

g1(x1, u1) =
1

0.0196
(lB − l̄B)2 +

1

1406.25
(ϑB − ϑ̄B)2 (12.8)

and

g2(x2, u2) =
1

0.0196
(lS − l̄S)2 +

1

900
(ϑS − ϑ̄S)2. (12.9)

Note that the denominators are derived from the differences of the intervals

in (12.2) to the square in order to account for the different ranges.

12.2 Evaluation by Simulation

In this section we evaluate the ISpS controller via simulation. Observe that for

ū1 =

(
0.49505

0.501116

)
, ū2 =

(
0.500474

0.498258

)
, (12.10)

x̄1 and x̄2 are steady states if there is no perturbation, i.e., the respective other

subsystem is at x̄2 or x̄1. Hence, inside the target set we apply ū1 and ū2,

respectively.

Further we note that throughout this section, the states lB and lS are given

in meter and the states ϑB and ϑS in Kelvin.

First we compare differently fine partitions and afterwards different scaling

functions. Observe that the scaling function is of utmost importance since it is

the only way to influence the gains.

12.2.1 Comparison: Different Partitions

We consider partitions of the state space X consisting of 2i x 2i equally sized

rectangular elements, i = 3, 4, 5, 6, 7. To compare how the results change with

finer partitions we first need to fix a scaling function. As mentioned in Chapter

4, the choice e(x, d) = η(‖x‖)d has been previously used in literature. Thus, we

use a “weighted 2-Norm” as a first, simple choice for the scaling function of the

subsystems,

enorm
1 (x1, d1) =

 l̄S +
√
a11

(
lB − l̄B

)2
+ b11

(
ϑB − ϑ̄B

)2
d11

ϑ̄S +
√
a12

(
lB − l̄B

)2
+ b12

(
ϑB − ϑ̄B

)2
d12
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with d1 = (d11, d12)T ∈ [−1; 1]2 and a11, b11, a12, b12 ∈ R for subsystem Σ1 and

enorm
2 (x2, d2) =

 l̄B +
√
a21

(
lS − l̄S

)2
+ b21

(
ϑS − ϑ̄S

)2
d21

ϑ̄B +
√
a22

(
lS − l̄S

)2
+ b22

(
ϑS − ϑ̄S

)2
d22

 (12.11)

with d2 = (d21, d22)T ∈ [−1; 1]2 and a21, b21, a22, b22 ∈ R for subsystem Σ2.

Obviously, in this setting, using d11 = d12 = d21 = d22 = 1 creates the largest

values that enorm
2 in (12.11) can obtain. Note that the subsystems Σ1 and Σ2

have a cascaded structure, i.e., the first equation does not depend on ϑB, ϑS,

respectively. In the cascaded case it is possible to choose e to reflect this structure,

cf. [51], i.e., we choose b11 = b21 = 0.

The choice of the factors a11, a21, a12, a22, b12, b22 is inspired by the condition

from Definition 5.5 that for each xj ∈ Xj with ‖xj‖ ≤ ηij(max{‖xi‖ − cj, 0})
there exists dj ∈ Dj with eij(xi, dj) = xj.

In case of subsystem Σ1 the “disturbance” xj is created via x2 and in case of

Σ2 it is created via x1, the influence of the respective other subsystem. First we

determine the largest values that the “disturbance” can reach, i.e., using X from

(12.2) we calculate the maximal distance from the operating point x̄ in (12.5) to

the boundary of X for each state, labeling them maxlB , maxϑB , maxlS , maxϑS .

Thus we get the four equations

maxlS =
√
a11(maxlB)2,

maxϑS =
√
a12(maxlB)2 + b12(maxϑB)2,

maxlB =
√
a21(maxlS)2,

maxϑB =
√
a22(maxlS)2 + b22(maxϑS)2.

Finally, considering the ranges of lB and ϑB as well as lS and ϑS we introduce

the additional weights h1, h2, h3, h4 ∈ R, h1 + h2 = 1, h3 + h4 = 1, and add the

conditions

a12 (maxlB)2 = h1 ·max2
ϑS
,

b12(maxϑB)2 = h2 ·max2
ϑS
,

a22 (maxlS)2 = h3 ·max2
ϑB
,

b22(maxϑS)2 = h4 ·max2
ϑB
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with h1 = h3 = 0.99 and h2 = h4 = 0.01.

Thus we determine the constants

a11 = 1.30612

b11 = 0

a12 = 1074.9

b12 = 0.644223

a21 = 0.765625

b21 = 0

a22 = 1264.69

b22 = 1.52137

which are used for all the following calculations in this section.

First, the resulting value functions for differently fine partitions are shown.

Here and further on, the target set is always depicted in black. For the partition

P8 of the 8×8 - grid we choose the target set T 8 as the partition element containing

the operating point x̄, i.e., the smallest possible target set.
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Figure 12.3: Initial value function on an 8×8 - grid, T 8 = P (x̄)

Note that for the white partition elements in subsystem Σ2 of the 8×8 - grid

in Figure 12.3 there is no control sequence for which we can guarantee that a

trajectory starting there will reach the target set under the considered perturba-

tions, the value function is infinity. Thus we immediately see that the stabilizable

set SP8 is not the entire state space X, cf. Remark 9.5. In this example, using a

finer partition solves the problem, cf. Figure 12.4.

The difference of the range between the value functions of Σ1 and Σ2 results

from the different way in which the temperature can be influenced. In Σ2 we are

only able to heat the fluid and therefore if we start at a high temperature it will

take quite some time for it to reach the required lower temperature, cf. Figure

12.22 – 12.27. Whereas in Σ1 we are able to actively cool the liquid, thus reaching
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the required temperature much sooner, accumulating less cost, and hence getting

a lower value of the value function.
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Figure 12.4: Initial value function on a 16×16 - grid, T = T 8

Observe that the size of the relatively large target set T = T 8 in Figure 12.4

is not necessary to solve the control problem obtaining the solvable set SP16 = X

but is chosen to better compare the further results, e.g. the simulated trajectories.

It would be sufficient to choose the smallest possible target set T = P (x̄), cf.

Figure 12.5. The same holds true for all the finer partitions which we consider.

However, to keep the pictures well-arranged we only depict the value functions

with the larger target set T = T 8.
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Figure 12.5: Initial value function on a 16×16 - grid, T = P (x̄)
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Figure 12.6: Initial value function on a 32×32 - grid, T = T 8
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Figure 12.7: Initial value function on a 64×64 - grid, T = T 8

Comparing the value functions of differently fine grid sizes with the same

target set T 8, i.e., Figures 12.3 – 12.4 and Figures 12.6 – 12.9, one notices that

the maximum of the values basically stays the same in both subsystems. This

is expected, because, as we can see, the “extremal values” occur at the upper

border of the grid. However, the accumulated cost of these points of the state

space X to the target set changes only marginally which can be explained when

viewing the applied initial control values shown next in Figures 12.10 – 12.21.

Consider for example a starting point in the top right corner of the state space of

subsystem Σ2. As long as the trajectory is above the target set there is maximal

cooling and as long as it is to the right there is no water inflow. Of course in

Figures 12.16 – 12.21 we only depict the initial control values since it would be

difficult to show the control values considering past information. However, we

can assume that they follow a similar pattern. Anyhow, inside of X we get a

finer distinction of values the finer the grid.
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Figure 12.8: Initial value function of Σ1 on a 128×128 - grid, T = T 8
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Figure 12.9: Initial value function of Σ2 on a 128×128 - grid, T = T 8
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Next we compare the initial control values, first for subsystem Σ1 and after-

wards for Σ2. Since the control values of the subsystems do not differ with the

target set (except in the area of the target set), here we only depict the smallest

possible targets T = P (x̄). Starting with subsystem Σ1, note that the control

input consists of regulating the water inflow, i.e., uT1, and cooling, i.e., uCU.
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Figure 12.10: Initial control values of Σ1 on an 8×8 - grid, T1 = P (x̄1)
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Figure 12.11: Initial control values of Σ1 on a 16×16 - grid, T1 = P (x̄1)

We first evaluate the initial control values for the 8×8 - grid, i.e., Figure 12.10.

As expected, if the fill level lB is lower than the target set we have uT1 = 1,

i.e., the valve regulating the water inflow is fully open, and if it is above, it is

closed, i.e., uT1 = 0. In case that the fill level coincides with the target area,

the valve is partially open or closed. Considering the control of the temperature,

it is not surprising that uCU = 1 if it is above the target set, i.e., maximal
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cooling. However, if the temperature is lower than the target set there is also

maximal cooling. This is due to the interconnection with reactor S, in which the

temperature of the target set (ϑ̄S = 300.2 K) is higher, thus a continuous inflow of

liquid with a temperature above the target set (ϑ̄B = 294.7 K) can be expected.
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Figure 12.12: Initial control values of Σ1 on a 32×32 - grid, T1 = P (x̄1)
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Figure 12.13: Initial control values of Σ1 on a 64×64 - grid, T1 = P (x̄1)

The development of uT1 does not change much as the partition gets finer, cf.

Figures 12.11 – 12.15. Note however that the maximal cooling underneath the

target set of the 8×8 - grid (Figure 12.10) reduces to the lowest row of partition

elements. Between this row and the target set there is no cooling. Also observe

that for the 128×128 - grid there are some “irregularities”, mainly for the higher

temperatures above the target area which we are not able to explain with the

simulation results at hand.
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Figure 12.14: Initial control values of uT1 on a 128×128 - grid, T1 = P (x̄1)
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Figure 12.15: Initial control values of uCU on a 128×128 - grid, T1 = P (x̄1)
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Next we consider the control values of subsystem Σ2, in which we can heat

the liquid via uH instead of cooling it. The water inflow is regulated using the

valve angle uT3.
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Figure 12.16: Initial control values of Σ2 on an 8×8 - grid, T2 = P (x̄2)

As described when viewing the value function for the 8×8 - grid, there are

partition elements for which there exists no control such that we can guaran-

tee reaching the target set under all considered perturbations. These partition

elements are depicted in white in Figure 12.16.

As expected the control of the inflow of water, uT3, behaves basically the same

as uT1 for subsystem Σ1. On the other hand, the control of the temperature

changes with the different setup but is very intuitive. If it is higher than the

target set, there is no heating, i.e., uH = 0, and if it is below, the heating is

maximal. This stays the same throughout the finer grid sizes, cf. Figures 12.17 –

12.21.
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Figure 12.17: Initial control values of Σ2 on a 16×16 - grid, T2 = P (x̄2)
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Figure 12.18: Initial control values of Σ2 on a 32×32 - grid, T2 = P (x̄2)
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Figure 12.19: Initial control values of Σ2 on a 64×64 - grid, T2 = P (x̄2)

As described in Chapter 11, the calculations in the shortest-path algorithm

of Dijkstra yield not only the control values depicted in Figures 12.10 – 12.21 but

also the maximal time in seconds which might be needed to reach the target set

under the considered perturbations. Thus we will examine these maximal times

which are shown in Figures 12.22 – 12.27. Again, the area in which the value

function was infinity and thus no solution exists is depicted in white. Also note

that due to the different temperature conditions in reactor S and B, as previously

explained when discussing the ranges of the value functions, the ranges between

the times of subsystems Σ1 and Σ2 are vastly different.
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Figure 12.20: Initial control values of uT3 on a 128×128 - grid, T2 = P (x̄2)
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Figure 12.21: Initial control values of uH on a 128×128 - grid, T2 = P (x̄2)
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Figure 12.22: Maximal time to reach T 8 = P (x̄) on an 8×8 - grid
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Figure 12.23: Maximal time to reach T = T 8 on a 16×16 - grid
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Figure 12.24: Maximal time to reach T = T 8 on a 32×32 - grid
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Figure 12.25: Maximal time to reach T = T 8 on a 64×64 - grid

The maximum of the maximal time to reach the target set T 8 is approximately

the same for all partitions. This effect can be explained by considering Figures

12.10 – 12.21 of the initial control values which hardly change with the partitions.

These results together imply that also the later control values which are based

on the past only differ marginally.
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Figure 12.26: Maximal time to reach T = T 8 for Σ1 on a 128×128 - grid
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Figure 12.27: Maximal time to reach T = T 8 for Σ2 on a 128×128 - grid

For the trajectory simulations a randomly generated sequence w of per-

turbations is utilized, using uniformly distributed random numbers. For sub-

system Σ1 the values for the components of w1 are chosen between [0; 0.35]

and [0; 10], respectively, and for Σ2 the values for the components of w2 are

chosen between [0; 0.09] and [0; 10], respectively. We start at the initial value

x1 = (0.39 m, 317.2 K)T and x2 = (0.39 m, 293.4 K)T . The time t is always given

in seconds, the temperatures in Kelvin and the fill level in meter.

The resulting trajectories with and without control (for the same sequences

w) are shown in Figures 12.28 – 12.31. The term “without control” refers to the

application of the constant control ū given in (12.10). Observe that we calculated

all the trajectories for the same target set T = T 8, whose area is between the two

brown lines and x̄ is depicted in red. Note that l̄B coincides with the border of

the target area.

One clearly sees that the controllers are able to bring the system considerably

closer to x̄. In Figure 12.28, the uncontrolled trajectory does not even get close

to the target set. This shows that our controller is robust against perturbations.

The practical nature of the controller can be observed via the zig-zagging effect in

the fill levels. This could be avoided by using a local robust event-based controller

near x̄ as proposed in [15] instead of the constant control value ū that we have

employed in our simulation.
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Figure 12.28: Trajectories of lB of different partitions with T = T 8
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Figure 12.29: Trajectories of ϑB of different partitions with T = T 8
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Figure 12.30: Trajectories of lS of different partitions with T = T 8
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Figure 12.31: Trajectories of ϑS of different partitions with T = T 8
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Observing the different partitions, one notices how the trajectories of the

fill level lB get closer to the desired target point the finer the partition, i.e.,

the finer the grid is the more robust is the controller under perturbation. This

happens relatively fast, in less than 100s. On the other hand, the change of the

temperatures ϑB and ϑS are very slow processes where the results for the different

grid sizes do not vary much. The only reason that ϑS reaches the target set so fast

is that we started very close. Note however that the trajectories cross the target

set and then remain around its upper border. To this end, observe that from

the construction of uP in (8.2) we immediately obtain the inequality VP(x(kj)) ≥∑kj+1−1
`=kj

g(x(`), uP(x(`)))+VP(x(kj+1)) for two consecutive event times kj < kj+1

and x(kj) /∈ T . Thus, without perturbation the trajectories always should return

to the target set, even though the theory allows the trajectories to leave the target

set after entering, cf. Assumption 8.6, 2. Due to perturbations however it can

happen that the trajectories do not return to or even enter the target set. This

is the case for the trajectories of ϑB, they only get “close” to the target set which

reflects the practical stability region δ in Definition 2.5.

This effect can also be seen in the following presentation of trajectories with

different initial values shown directly on the value function of the 16×16 - grid.
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Figure 12.32: Trajectories of Σ1 on the value function of the 16×16 - grid
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Here, the desired target point is marked by a white dot inside the target set.

Considering the red trajectory in Figure 12.32 the effect is especially apparent.

The trajectory reaches the target set but due to the large perturbation it crosses

through to another cell above the target set in which area the trajectory then

remains.

 

 

0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4

200

400

600

800

1000

1200

1400

1600

1800

295

300

305

310

315

320

lS

ϑS

Figure 12.33: Trajectories of Σ2 on the value function of the 16×16 - grid

Also we point out that the use of past information can be observed when

examining, e.g., the green trajectory in Figure 12.33. The first time the trajectory

enters the partition element beneath the target set from below and is steered to

the left. However, after reentering the cell from the left, the trajectory is steered

upwards into the target area. The zig-zagging, e.g. of the trajectories across the

partition element above the target set, is the same effect of using past information.

When a trajectory enters from the left-hand side, it is steered downwards but to

the right and when it enters from the right-hand side, it is also steered downwards

but to the left.

After evaluating the subsystems and determining that the calculated con-

trollers indeed render the separate systems robustly stable we are interested in

examining the trajectories of the overall system Σ in Figures 12.34 – 12.37. Again,

the target set is shown between the brown lines and x̄ is depicted in red.
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Figure 12.34: Trajectories of lB of Σ of different partitions with T = T 8
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Figure 12.35: Trajectories of ϑB of Σ of different partitions with T = T 8
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Figure 12.36: Trajectories of lS of Σ of different partitions with T = T 8
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Figure 12.37: Trajectories of ϑS of Σ of different partitions with T = T 8
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First we point out that the overall system Σ does not have external per-

turbations. However, when calculating the controllers for the subsystems, the

states of the respective other subsystem were treated as perturbations which we

had simulated via random numbers. In contrast, for the trajectories of Σ those

“perturbation values” are directly induced by the respective states. Thus in

comparison to the simulation of the trajectories of the separate subsystems the

“perturbation values” are lower, especially once a state entered its target set.

Therefore the controller brings the trajectories even faster to the target set. Also

there are fewer zig-zagging effects. The most noticeable zig-zagging occurs for the

trajectory lS(t) on the 16×16 - grid. Upon examining the other states we notice

however that, in contrast to the trajectories of the other grids, the state lB(t) of

the 16×16 - grid exhibits no zig-zagging during that time-period. All zig-zagging

effects completely stop as soon as the trajectories of ϑB enter the target set.

In the end of this section we compare the calculation times2 necessary to

compute the hypergraph for the different grid sizes in Tables 12.2 – 12.3. For the

computations a transtec CUDA 4210 Supercomputer with 2xQuad-Core Intel

Xeon E5620, 2,4 GHz, and 24 GB RAM (DDR3-1333 with ECC) was used.

Note that we did not use the CUDA-graphics card for our calculations, however.

The respective executables were first compiled on a Fujitsu Celsius W410 with

2xQuad-Core Intel i7-2600, 3.4 GHz, and 16 GB RAM (DDR3-1333) before being

executed on the transtec CUDA Supercomputer.

8× 8 16×16 32× 32 64× 64 128× 128 grid

2 days

1 2 6 18 7 hours

15 58 57 12 21 minutes

Table 12.2: Times to compute the hypergraph of subsystem Σ1

8× 8 16×16 32× 32 64× 64 128× 128 grid

1 days

1 4 11 14 hours

36 34 7 17 40 minutes

Table 12.3: Times to compute the hypergraph of subsystem Σ2

The finer the grid the longer the computations of the hypergraph take. Note

however that the control is saved in a lookup table, thus the (lengthy) compu-

2Special thanks to AOR Dr. Robert Baier who wrote a perl script to automatically extract

the time used for saving data from my output files, making it easier to provide these numbers.
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tation of the hypergraph only needs to be performed once offline and online the

feedback value is easily determined for each quantization region.

In contrast, the computation of the min-max Dijkstra algorithm on the hy-

pergraph needs only a few seconds.

8× 8 16×16 32× 32 64× 64 128× 128 grid

Σ1 0.02 0.08 0.37 2.59 21.43 seconds

Σ2 0.01 0.07 0.34 2.52 20.95 seconds

Table 12.4: Time to run the Dijkstra algorithm

Therefore the saved hypergraph could even be loaded online to create the

control anew via the Dijkstra-algorithm for different settings, e.g. different target

sets.

12.2.2 Comparison: different scaling functions

In this section we only consider the partition of the 8×8 - grid and the partition

element which contains the operating point as target set. As before, the target

set in the grid is always depicted in black.

First we introduce the different scaling functions which we compare. All the

parameters are derived in the same way as for enorm in Section 12.2.1.

We start by considering the exponential function via

eexp
1 (x1, d1) =

 l̄S +

(
exp

(√
a11

(
lB − l̄B

)2
+ b11

(
ϑB − ϑ̄B

)2
)
− 1

)
d11

ϑ̄S +

(
exp

(√
a12

(
lB − l̄B

)2
+ b12

(
ϑB − ϑ̄B

)2
)
− 1

)
d12


with d1 = (d11, d12)T ∈ [−1; 1]2 and a11, b11, a12, b12 ∈ R for subsystem Σ1 and

eexp
2 (x2, d2) =

 l̄B +

(
exp

(√
a21

(
lS − l̄S

)2
+ b21

(
ϑS − ϑ̄S

)2
)
− 1

)
d21

ϑ̄B +

(
exp

(√
a22

(
lS − l̄S

)2
+ b22

(
ϑS − ϑ̄S

)2
)
− 1

)
d22


with d2 = (d21, d22)T ∈ [−1; 1]2 and a21, b21, a22, b22 ∈ R for subsystem Σ2.

With the additional conditions
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a12 (maxlB)2 = h1

(
ln (maxϑS + 1)

)2
,

b12(maxϑB)2 = h2

(
ln (maxϑS + 1)

)2
,

a22 (maxlS)2 = h3

(
ln (maxϑB + 1)

)2
,

b22(maxϑS)2 = h4

(
ln (maxϑB + 1)

)2

where h1 = h3 = 0.99 and h2 = h4 = 0.01 we get the constants

a11 = 1.20878

b11 = 0

a12 = 20.5853

b12 = 0.0123374

a21 = 0.715264

b21 = 0

a22 = 17.8791

b22 = 0.0215078

.

Also we consider

epow2
1 (x1, d1) =

 l̄S +
(
a11

(
lB − l̄B

)2
+ b11

(
ϑB − ϑ̄B

)2
)
d11

ϑ̄S +
(
a12

(
lB − l̄B

)2
+ b12

(
ϑB − ϑ̄B

)2
)
d12


with d1 = (d11, d12)T ∈ [−1; 1]2 and a11, b11, a12, b12 ∈ R for subsystem Σ1 and

epow2
2 (x2, d2) =

 l̄B +
(
a21

(
lS − l̄S

)2
+ b21

(
ϑS − ϑ̄S

)2
)
d21

ϑ̄B +
(
a22

(
lS − l̄S

)2
+ b22

(
ϑS − ϑ̄S

)2
)
d22


with d2 = (d21, d22)T ∈ [−1; 1]2 and a21, b21, a22, b22 ∈ R for subsystem Σ2.

With the additional conditions

a12 (maxlB)2 = h1 ·maxϑS ,

b12(maxϑB)2 = h2 ·maxϑS ,

a22 (maxlS)2 = h3 ·maxϑB ,

b22(maxϑS)2 = h4 ·maxϑB
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where h1 = h3 = 0.99 and h2 = h4 = 0.01 we get the constants

a11 = 16.3265

b11 = 0

a12 = 46.8367

b12 = 0.0280707

a21 = 10.9375

b21 = 0

a22 = 44.4531

b22 = 0.0534752

.

Finally we consider

epow4
1 (x1, d1) =

 l̄S +
(
a11

(
lB − l̄B

)2
+ b11

(
ϑB − ϑ̄B

)2
)2

d11

ϑ̄S +
(
a12

(
lB − l̄B

)2
+ b12

(
ϑB − ϑ̄B

)2
)2

d12


with d1 = (d11, d12)T ∈ [−1; 1]2 and a11, b11, a12, b12 ∈ R for subsystem Σ1 and

epow4
2 (x2, d2) =

 l̄B +
(
a21

(
lS − l̄S

)2
+ b21

(
ϑS − ϑ̄S

)2
)2

d21

ϑ̄B +
(
a22

(
lS − l̄S

)2
+ b22

(
ϑS − ϑ̄S

)2
)2

d22


with d2 = (d21, d22)T ∈ [−1; 1]2 and a21, b21, a22, b22 ∈ R for subsystem Σ2.

With the additional conditions

a12 (maxlB)2 = h1 ·
√
maxϑS ,

b12(maxϑB)2 = h2 ·
√
maxϑS ,

a22 (maxlS)2 = h3 ·
√
maxϑB ,

b22(maxϑS)2 = h4 ·
√
maxϑB

where h1 = h3 = 0.99 and h2 = h4 = 0.01 we get the constants

a11 = 57.723

b11 = 0

a12 = 9.77677

b12 = 0.00585952

a21 = 41.3399

b21 = 0

a22 = 8.33415

b22 = 0.0100256

.
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Note that due to our construction of the scaling functions enorm, eexp, epow2,

and epow4 the maximal values that they may obtain on the borders of X are the

same.

First we compare the value functions in Figures 12.38 – 12.41. Note that

Figure 12.38 is the same as Figure 12.3, depicted with a different scale of the

value function for Σ2 in order to better compare the result with the value functions

derived via utilizing different scaling functions e for which we obtain much lower

values than when using enorm with finer grid sizes.
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Figure 12.38: Initial value function with enorm
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Figure 12.39: Initial value function with eexp
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Figure 12.40: Initial value function with epow2
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Figure 12.41: Initial value function with epow4

We observe that using the scaling functions eexp, epow2 and epow4 the stabiliz-

able set SP is the entire state space, i.e., SP = X, whereas with enorm the initial

value function of subsystem Σ2 depicted in Figure 12.38 contains the white par-

tition elements in which V (P ) =∞. To this end recall that the main purpose of

the scaling function is to keep the perturbation around the target low and grad-

ually allow larger perturbations further away to improve the solvability. Hence it

is not surprising that the scaling functions utilizing the exponential function or

the power functions yield a better solvability of the problem at hand.

This also explains that the values of the initial value function with enorm are

higher than when computed with eexp, epow2 or epow4. Comparing the initial value

functions for eexp, epow2 and epow4 in Figures 12.39 – 12.41, one only notices slight

changes. The values of the initial value function in subsystem Σ2 in the top rows
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of the partition are slightly higher for the initial value function computed with

epow2 than with eexp. On the other hand, the values of the initial value function

computed with epow4 are the lowest in both subsystems.

Next we compare the initial control values, first for subsystem Σ1 in Figures

12.42 – 12.44 and afterwards for Σ2 in Figures 12.45 – 12.46. In Σ1 we regulate

the water inflow via uT1 and the temperature by cooling via uCU.
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Figure 12.42: Initial control values of Σ1 with enorm

In Figure 12.42 we first show the initial control values of Σ1 with enorm from

the previous section, cf. Figure 12.10. For the computations with epow2 and epow4

the initial control values do not differ. Hence they are both depicted in Figure

12.44.
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Figure 12.43: Initial control values of Σ1 with eexp
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Figure 12.44: Initial control values of Σ1 with epow2 or epow4

In all the changes of the initial control values of Σ1 when using different scaling

functions are only minor. Note however that for the control of the temperature

when computed with enorm only two control values were used. In contrast when

computing the controller with the other scaling functions the whole range of

control values is utilized. Thus in this case it would make sense to increase the

number of values in the discretization.

In Σ2 we control the water inflow via uT3 and can heat the liquid via uH.

Again, in Figure 12.45 we show the initial control values for Σ2 with enorm from

the previous section, cf. Figure 12.16. Here, the control values computed with

eexp, epow2, epow4 do not differ and are depicted in Figure 12.46.

 

 

0.26 0.3 0.35 0.4
0

0.125

0.25

0.375

0.5

0.625

0.75

0.875

1

295

300

305

310

315

320

 

 

0.26 0.3 0.35 0.4
0

0.33

0.67

1

295

300

305

310

315

320

uT3 uH

lS

ϑS

lS

ϑS

Figure 12.45: Initial control values of Σ2 with enorm
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Figure 12.46: Initial control values of Σ2 with eexp or epow2 or epow4

The result is the same as for subsystem Σ1. There are minor changes, mainly

that using the scaling functions in this section yields a wider variety of control

values than using enorm. Thus a finer discretization of the heating control values

should be considered for this case.

Observe that the small differences in the initial control values also imply only

minor differences in the following control values including past information.

We continue by examining the maximal times in seconds which it might take

for trajectories to reach the target set as obtained via the Dijkstra algorithm.

Figure 12.47 shows the same result as in Figure 12.22. The only difference is that

we adapted the range of the colorbar to our current setting.
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Figure 12.47: Maximal time to reach T 8 = P (x̄) with enorm
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Figure 12.48: Maximal time to reach T 8 = P (x̄) with eexp
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Figure 12.49: Maximal time to reach T 8 = P (x̄) with epow2
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Figure 12.50: Maximal time to reach T 8 = P (x̄) with epow4
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One notices immediately that the values of the maximal time are much lower

for the computations with the scaling functions in this section, cf. Figures 12.48

– 12.50, than for the one with enorm. Comparing the computations with eexp

and epow2, there are only small changes in submodel Σ1. In Σ2 the values of the

maximal time for the computations with epow2 are slightly higher. For the com-

putations with epow4 the times are the lowest which is not surprising considering

the previously discussed purpose of the scaling function.

For the trajectory simulations the same randomly generated sequence w of

perturbations as in the previous section is utilized, using uniformly distributed

random numbers. For subsystem Σ1 the values for the components of w1 are

chosen between [0; 0.35] and [0; 10], respectively, and for Σ2 the values for the

components of w2 are chosen between [0; 0.09] and [0; 10], respectively. We start

at the initial value x1 = (0.39 m, 317.2 K)T and x2 = (0.39 m, 293.4 K)T . The

time t is always given in seconds, the temperatures in Kelvin and the fill level in

meter. The resulting trajectories computed with the different scaling functions

are depicted in Figures 12.51 – 12.54. The target set area is between the two

brown lines and x̄ is depicted in red. Note that l̄B coincides with the border of

the target area.
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Figure 12.51: Trajectories of lB of Σ1 of different scaling functions
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Figure 12.52: Trajectories of ϑB of Σ1 of different scaling functions
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Figure 12.53: Trajectories of lS of Σ2 of different scaling functions



12.2. EVALUATION BY SIMULATION 147

 

 

epow4

epow2

eexp
enorm

0 500 1000 1500
293

294

295

296

297

298

299

300

301

302

ϑ
S
(t

)

t

Figure 12.54: Trajectories of ϑS of Σ2 of different scaling functions

The trajectories only differ slightly. Viewing the initial control values in Fig-

ures 12.42 – 12.46 explains this phenomenon. Since the values there hardly differ

we can assume that the applied control values considering past information also

only differ slightly. Thus also the trajectories do not differ much.

This effect becomes even more obvious when viewing the trajectories of the

overall system Σ in Figures 12.55 – 12.58 where the perturbation is induced via

the respective other subsystem and hence their values are smaller than in our

previous simulation. Here the trajectories for the computations with eexp, epow2

and epow4 are almost identical.

Therefore in this example we are not able to discern a difference in the gains

under the tested scaling functions.
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Figure 12.55: Trajectories of lB of Σ of different scaling functions
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Figure 12.57: Trajectories of lS of Σ of different scaling functions
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12.3 Evaluation at the Pilot Plant

The plant, depicted in Figure 12.1, includes four cylindrical storage tanks, three

batch reactors and a buffer tank which are connected over a complex pipe system.

It is constructed with standard industrial components including more than 70

sensors and 80 actuators.

This section presents the results of an experiment where the state x(t) of the

system (12.1) is driven from the initial state

x1(0) =

(
lB(0)

ϑB(0)

)
=

(
0.40 m

317.2 K

)
, x2(0) =

(
lS(0)

ϑS(0)

)
=

(
0.40 m

293.4 K

)

to the target set A by our ISpS controller and maintained there via an event-

based control derived via linearization techniques, cf. [53, 58], where A = A1×A2

is given by

A1 = [0.3; 0.36] m× [291.7; 297.7] K, (12.12)

A2 = [0.31; 0.37] m× [297.2; 303.2] K. (12.13)

For this experiment we use a partition P of 8 × 8 equally sized rectangular

elements. The target set AP consists of the partition element containing the

operating point (12.5), i.e., AP1 = [0.33; 0.3475]× [290.3375; 295.025] and AP2 =

[0.33; 0.3475]×[296.9; 300.65]. The controller is switched from the ISpS controller

to the one derived via linearization techniques in each subsystem as soon as

the trajectory enters AP1 , AP2 , respectively. Note that AP ⊂ A, i.e., when the

controller is switched the trajectory is already inside the target set A.

Our design is without external disturbances, i.e., we set dH = dF = 0. We use

the scaling functions

e1(x1, d1) =

(
0.34 +

√
1.28(lB − 0.33)2 d11

300.2 +
√

1053.4(lB − 0.33)2 + 0.63(ϑB − 294.7)2 d12

)
(12.14)

and

e2(x2, d2) =

(
0.33 +

√
0.750312(lS − 0.34)2 d21

294.7 +
√

1239.4(lS − 0.34)2 + 1.49(ϑS − 300.2)2 d12

)
(12.15)
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with d1 = (d11, d12)T ∈ [−1; 1]2 and d2 = (d21, d22)T ∈ [−1; 1]2. Note that in

comparison to our design of enorm in Section 12.2.1, the parameters a11, a21, a12,

a22, b12, b22 are chosen slightly smaller such that the value function is finite for

all x ∈ X.

First we give an overview over the transition of the states x1(t) and x2(t) into

the respective target regions, cf. Figure 12.59.
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Figure 12.59: Trajectories of the states of the pilot plant, cf. [53, Figure 9]

One clearly sees how well the trajectories are controlled into the target area,

in which the local controller, derived via linearization techniques, takes effect.

Next we depict the behavior of the pilot plant in more detail, cf. Figure 12.60.

In the upper two rows the trajectories of the fill levels lB(t), lS(t) and of the

temperatures ϑB(t), ϑS(t) are shown for reactor B and S on the left-hand side

or right-hand side, respectively. The next two rows depict the respective control

inputs and the event time instants are marked by stems in the bottom figures.

The depicting color changes from blue to gray as soon as the local controller takes

effect.

In reactor B the target region A1 is reached within t1 = 398 s, while in reactor

S the state x2(t) enters A2 already after t2 = 103 s. The state x2(t) is steered

four times faster to the target region A2 compared to the transition of x1(t) to

A1, which is due to the fact that x2(0) is much closer to A2 than x1(0) is to A1.

This is also reflected in the number of events triggered in both subsystems: In

the reactor S only 5 events are triggered before the local approach is activated

whereas in reactor B, 48 events are generated before the target set A1 is reached.
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Figure 12.60: Behavior of the approach on the pilot plant, cf. [53, Figure 10]

Observe that this implies considerably less feedback communication effort than

when using sampled-data control (communication every 2 seconds).

Note that this is achieved despite model uncertainties which occur since the

model (12.1) does not precisely describe the behavior of the plant. Hence, this

investigation shows that the proposed decentralized event-based control approach

is robust with respect to model uncertainties.
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We have presented and analyzed a design method for input-to-state stabilizing

feedback laws defined on possibly coarse quantizations. As the basis for our

approach we used the equivalence between ISS and robust stability proved in

[38] for discrete-time systems. The key idea lies in combining the constructive

interpretation of the equivalence between ISS and robust stability with a game

theoretic approach for uniform stabilization from [18] (relying on game theoretic

algorithms). As this underlying algorithm for calculating uniformly stabilizing

feedback laws yields only practically stabilizing controllers, the resulting feedback

law will be input-to-state practically stabilizing w.r.t. some δ > 0. The stability

proof of the resulting controller relies on a novel sufficient Lyapunov function

criterion for input-to-state practical stability in a quantized setting. We used

ISpS Lyapunov functions in strong implication form which were introduced and

shown to be equivalent to ISpS in [21]. In order to obtain a meaningful stability

property, a careful analysis of the size of δ of the practical stability region is

provided. As Theorem 4.4 reveals, the existence of an upper bound α on VP
which is independent of the target set T is a crucial property for bounding δ.

In addition the proofs also keep track of all quantitative information like the

ISpS gains such that it becomes clear which design parameters in our algorithm

influence the thresholds and gains in the resulting ISpS estimate.

To use this design method for large scale systems we introduced a nonlinear

small-gain based stability theorem for discontinuous discrete-time systems. The

main insight gained from our analysis is that the decisive gains for concluding

stability are the gains µ̃ij newly introduced in the strong implication form and

not the “classical” gains µij. In Theorem 5.8 it becomes clear how the previously

designed algorithm is used as a building block for a distributed feedback design for

large networks of systems. Again, we keep track of all quantitative information,

which yields that the independence of the bounds αi and αi of VP,i, i = 1, ..., n,

from the partitions is of utmost importance. In addition it is revealed that the

only way to influence the size of the gains is via the scaling functions ηij.

Afterwards, in Part II, we took the discrete-event character of the controller

into account and extended this theory to event-based ISpS feedback laws by

interpreting the transition from one quantization region to another as the trigger

of an event. The main difference in the design of the input-to-state practically

stabilizing feedback is that here only the event times and not the individual

sampling times are considered. Thus a big challenge in the proof of the event-

based small-gain theorem was to account for all the different event times of the

subsystems of which only some coincide with the event times of the overall system.

The theoretical results have been evaluated on the basis of simulation and

experimental results, obtained by the application of the control method to a

continuous flow process. The simulations show that our controllers have good
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perturbation rejection properties, they steer the trajectories of the system for

differently fine grids into an area (the practical stability region) around the tar-

get and let them remain there under perturbations, much faster than without

the controller. The experiment with different scaling functions, which are the

only way to influence the gains (important for the small gain theorem), did not

yield any insights. The main results of the experimental evaluation were, that

our control method is robust with respect to model uncertainties and that the

control aim is accomplished with considerably less feedback communication effort

as compared to the communication in sampled-data control.
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[15] L. Grüne, S. Jerg, O. Junge, D. Lehmann, J. Lunze, F. Müller, and

M. Post. Two complementary approaches to event-based control. at–

Automatisierungstechnik (Special Issue on Networked Control Systems),

58:173–182, 2010.
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[25] L. Grüne and J. Pannek. Nonlinear model predictive control. Communica-

tions and Control Engineering Series. Springer, London, 2011. Theory and

Algorithms.
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