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Abstract. The field of process model similarity matching is well exam-
ined for imperative process models like BPMN models, Petri nets, or
EPCs where a lot of different measuring techniques exist. For the re-
cently upcoming declarative process models, generally providing more
flexibility than imperative models, however, there is a lack of compari-
son methods. Along with their advantage of providing more flexibility,
declarative process models have a disadvantage in comprehending the
models, especially the models’ behavior. To overcome this problem, a
comparison of imperative and declarative models is reasonable to check
whether the declarative model represents a desired behavior which is
easier to express and validate in an imperative notation. The work at
hand provides a method based on flow dependencies, abstracting from
the modeling type, for comparing two process models. It uses not only in-
formation about control-flow, but also data-based dependencies between
process activities.

Keywords: Process Model Comparison, Process Model Similarity, Be-
havioral Similarity, Behavioral Profile, Flow Dependency

1 Introduction and Discussion of Related Work

Deriving similarity between process models has a lot of use cases mentioned
in literature, cf. [1], [8], [14]. On the one hand, it is often referred to in the
context of large model repositories and their management. When a repository
grows, the identification of duplicate models [13] and model variants [15], [24],
or the reuse of model parts [22] becomes a challenging issue. On the other hand,
also the comparison of only a small set of models with reference models [21] for
verifying compliance [7] is one application field of measuring similarity of process
models. The method is thereby usually split into two steps: in the first step, a
mapping is established between the two models that shall be compared. In a
second step, a similarity value is computed based on the mapping of step one.
This procedure can also be iterated, depending on the underlying algorithm, to
find the best mapping that provides the highest similarity value. The similarity
value can include several aspects, referred to as the five perspectives [16] of a
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2 Michaela Baumann

process model: task description, control-flow, data-flow, as well as human and
non-human resources. For process models representable as graphs, also graph-
based comparison techniques can be applied. In earlier work, the main focus
lies on label similarity (semantic and syntactic similarity), contextual similarity,
structural similarity like graph-edit distance, and behavioral, i.e., control-flow
similarity [5], [9], [10], [12]. In more recent work, also other process perspectives
are taken into account: (non-)human resources [6] and data, more precisely data-
flow [2]. In [3], a method for combining all perspective similarities is given.

What all of these approaches have in common is that they are designed
for imperative process models, i.e., models used for designing routine processes.
Some methods are explicitly suitable for petri nets or event process chains, like
[1], [9], for dependency graphs [2], or for abstracted, graph-like process mod-
els, e.g., [3], [17]. For declarative process models, i.e., models for designing agile
processes, however, research concerning similarity matching is not highly de-
veloped. Similarity matching for declarative models is suggested in [27] via a
transformation of declarative models to a finite state automaton representation
and applying known matching techniques on the automaton. This approach is
restricted to models representable as finite state automata. Other approaches
are mentioned in [4] like using simulation of execution traces and conformity
checking, applying execution patterns, or directly comparing the constraints of
a declarative process model on the logical level. The approaches are, however,
not fully fomalized. Arbitrary comparison of both imperative and declarative
models is, to the best of the author’s knowledge, not yet investigated although
this is a promising field of research. Declarative models provide a good level of
flexibility [20] but also impose a difficulty to fully understand the models [29]. In
order to better understand a declarative process model, a comparison with an
imperative model designated to represent (parts of) the declarative model can
be carried out. The work at hand presents one method for comparing two mod-
els with respect to their behavior. The approach is able to give hints that one
model is a subsumption of the other model but also points out the differences. It
makes use of the dependencies between every two model elements, which we call
flow dependencies. This approach is similar to the behavioral profile techniques
proposed, for example, in [2], [18], [25], [28], adapting and enlarging them for
the application with declarative process models and incorporating not only basic
control-flow information but also data-flow.

The structure of the paper is as follows: in Section 2, imperative and declara-
tive process models are defined to provide a consistent basis. Section 3 describes
how we can extract flow dependencies involving two activities from both imper-
ative and declarative process models, catching as much information as possible
available in both model types. With help of a hierarchy of the dependencies,
Section 4 illustrates how two process models can be compared. This allows for
the proposition whether the models are in a subsumption relation, contradictory,
or not comparable. If there are inconsistencies, they can be located. Section 5
concludes the paper with a short discussion about current limitations and an
outlook for future work, involving the derivation of a similarity measure.
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2 Imperative and Declarative Process Models

In order to abstract from a specific imperative process modeling language, we
regard imperative process models as models of the form stated in Definition 1.
Agents, for example lanes in BPMN, are not considered in this definition.

Definition 1 (Imperative Process Model). A (graphical) imperative process
model G is a tuple (N,E, τ, λ) where

– N is a set of nodes, E ⊆ N ×N is a set of edges, τ : N → T is a function
mapping nodes to types, and λ : N → L is a function mapping nodes to
labels.

– (N,E) is a connected graph.
– We define five different types of nodes: T = {start event, end event, activity,

AND-gateway, XOR-gateway}.
• There is exactly one start event (no incoming edge, one outgoing edge)

and one end event (one incoming edge, no outgoing edge).
• Each activity has exactly one incoming and one outgoind edge and con-

sists of three different parts: task description, attached incoming, and
attached outgoing data. Function λ is a three-dimensional mapping that
maps each node to a task description (λ1), a data identifier for incoming
data (λ2), and a data identifier for outgoing data (λ3).
• Each gateway is either a split or a merge gateway. Split gateways have

exactly one incoming edge and at least two outgoing edges. Merge gate-
ways have at least two incoming and exactly one outgoing edge.

Definition 1 allows for process models with loops. Loops are usually modeled
with XOR-gateways (not AND-gateways) where one of the outgoing edges points
backward to a merge XOR-gateway. Fig. 1 shows an imperative process model
in BPMN with activities A to H, XOR- and AND-gateways, and a data object
flowing from E to F. More precisely, the data connection according to Definition 1
is λ2(F ) = δ and λ3(E) = δ with δ being the data identifier. The example model
is in accordance with Definition 1.

A

B

C

D

E F

G

H

Fig. 1. Example of an imperative process model (BPMN model).

Declarative process models are of the form defined in Definition 2. This def-
inition is in accordance with [19].
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Definition 2 (Declarative Process Model). A declarative process model D
consists of two basic elements: activities A and rules R. Both sets are finite.
Activities have at least two events: start and complete. Furthermore, there is a
set of data, resp. data identifiers. The rules are of the form Body ⇒ Head.
Both Body and Head represent logical expressions over process events (start
and completion of activities, writing of data, etc.) and process variables and can
include a temporal ordering. Each rule either connects two activities (control-
flow rules, Rc ⊆ R), an activity and a data identifier or two data identifiers
(data rules, Rd ⊆ R).

Edges as well as functions λ and τ are not explicitly given for declarative
process models. Edges and λ are given implicitly within the rules. Different types
of nodes do not exist. Note that the expression Body ⇒ Head can also be written
as ¬(Body∧¬Head) or ¬Body∨Head and that {Body ⇒ Head} = {¬Head⇒
¬Body}. With this it is possible to formulate all rules with a positive Body.
The restriction that each rule is able to connect only two objects is important
to get reasonable comparison results between an imperative and a declarative
model. An exemplary declarative process model is given in Table 1 and a list of
all possible rules enabled through Definition 2 is provided in Table 2 regarding
two events: start and complete. The example process model of Table 1 consists
of A = {A, B, C, D, E, F, G, H} and rules R = {1, . . . , 8}. Variables t and s are
points of time and δ denotes a specific data object. Rules 1, 2, 3, and 7 are each
connecting two activites whereas 4, 5, 6, and 8 are connecting an activity with
a data identifier. Rules 1 and 4 contain temporal ordering information. For the
other rules, t and s are indepedent, i.e., they hold for s ≤ t and for s > t.

No. Rule Explanation

1 start of B at t ⇒
complete of A at s < t

“A has to be completed before B can start”

2 complete of B at t ⇒
not complete of C at s

“B can only be finished when C is not com-
pleted yet and C may not be completed once
B is completed”

3 complete of C at t ⇒
not complete of B at s

(see rule 2)

4 start of F at t ⇒ write of δ at s < t “F can only be started when data δ is al-
ready available, i.e., F consumes δ”

5 complete of E at t ⇒ write of δ at s “The completion of E requires that data δ is
written, i.e., E causes the production of δ”

6 start of G at t ⇒ write of δ at s (see rule 5 with start instead of completion)

7 complete of H at t ⇒
complete of G at s

“Whenever H is proceeded, G needs to be
proceeded, too”

8 write of δ at t ⇒
not complete of D at s

“As soon as δ is produced, D may not be
completed”

Table 1. Example of a declarative process model with rule explanations.
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control-flow rules data rules

s/c of A at t ⇒ (not) s/c of B at s s/c of A at t ⇒ (not) write of δ at s

s/c of A at t ⇒ (not) s/c of B at s < t s/c of A at t ⇒ (not) write of δ at s < t

s/c of A at t ⇒ (not) s/c of B at s > t s/c of A at t ⇒ (not) write of δ at s > t

write of δ at t ⇒ (not) s/c of B at s

write of δ at t ⇒ (not) s/c of B at s < t

write of δ at t ⇒ (not) s/c of B at s > t

write of δ at t ⇒ (not) write of ε at s

write of δ at t ⇒ (not) write of ε at s < t

write of δ at t ⇒ (not) write of ε at s > t
Table 2. List of all possible rules in a declarative process model with A and B denoting
activities and δ and ε data identifiers; s/c stands for either start or complete; t and s
are time variables.

3 Flow Dependencies in Process Models

We determine flow dependencies in process models only locally to not get into a
potentially irresolvable problem when regarding all possible executions. There-
fore, we call them (local) dependencies. Note that a dependency is not the same
as an edge from Definition 1. Flow dependencies (or only “dependencies”) can
be extracted from process behavior/control-flow, but also from other process
perspectives (see also [28] for an example). In the work at hand, we exemplarily
show this for the data perspective.

Definition 3 (Dependency Type). We distiguish between two different types
of dependencies within a process model: control-flow-related dependencies (c) and
data-related dependencies (d). Every dependency can either be a mandatory or
an optional ordering dependency, a mutual-exclusion dependency (always sym-
metric), or a symmetric or non-symmetric existence dependency. For each pair
of activities, both an existence dependency and an ordering dependency can be
stated. We define the symbols for the dependencies as shown in Tab. 3.

control-flow data

mandatory ordering c� d�

optional ordering c→ d→
symmetric existence c== d==

non-symmetric existence c=> d=>

exclusive existence c>< d><
Table 3. Possible dependency types within a process model.
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Additionally to the dependencies defined above, if it is not possible to state
an ordering for two activities which is, e.g., the case for the exclusive existence,
we write the symbol − (no ordering, absence of any order).

The order of two activities A and B is always stated in both directions: (A,B)
and (B,A). For each direction, we have a pre- and a postconditional ordering.
A mandatory postconditional ordering �(A,B) means that after A, B has to be
executed. A mandatory (preconditional) ordering �(A,B) means that before B,
A has to be executed. It is not possible to have both �(A,B) and �(B,A) as
this would be an infinite cycle. An optional postconditional ordering →(A,B)
means that it is possible to do B after A but there are also ways to finish the
process without doing B after A. An optional preconditional ordering ←(A,B)
means that it is possible but not necessary to do A before B. Ordering arrows
for one tuple of activities are combined, e.g.,�→(A,B). It is not possible to have
ordering arrows with an arrowhead on only one side, e.g., to have only →(A,B)
but not←(A,B) as this is simply a not possible behavior. Thus, for each activity
tuple we have four different kinds of ordering dependencies:↔(A,B),←�(A,B),
�→(A,B), or −(A,B).

Non-symmetric existence =>(A,B) means that if A is done in a process
instance then B needs to be done as well. The symmetric-existence dependency
==(A,B) means that if A is done in a process instance, B needs to be done as
well, and the other way round (if =>(A,B) and =>(B,A), we have ==(A,B)).
A mandatory ordering always implies an existence dependency (�(A,B) implies
=>(A,B), for example) but not the other way round. The exclusive existence
dependency ><(A,B) means that as soon as A is executed, B can no longer
be executed and the other way round. The distinction between ordering and
existence dependencies can also be found in [11] where they are called temporal
and dependency relationships.

3.1 Dependencies in Imperative Process Models

In the following, we show how to derive flow dependencies from an imperative
process model. Dependencies in an imperative process model will only be defined
for activities and neither for start and end event nor for gateways. To assign the
correct dependencies to every pair of activities, we analyze the structure of the
process model as done in [23]. There, a process model is decomposed into process
fragments. The fragments are determined with the concept of domination. One
node n1 dominates another node n2 when all paths from start event to n2 include
n1. A node n3 postdominates another node n4 when all paths from n4 to end
event include n3.

Definition 4 (Process Fragment). A process fragment of process model G
is a subprocess of G defined through a split and a merge gateway gs and gm
where gs dominates gm, gm postdominates gs and every loop either contains
both gs and gm or none of the two. Node n belongs to process fragment defined
by (gs, gm) when gs dominates n and gm postdominates n. Process fragments
can be nested when all nodes belonging to fragment f1 are completely included
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in another fragment f2. Then, f1 is a child of f2. Fragments can be AND- or
XOR-fragments, depending on the gateway types defining them.

One trivial process fragment that is always present is the fragment (start
event, end event), the only fragment not defined by gateways. All nodes belonging
to this fragment and to no other fragment are on level 0. All other nodes have a
level assignment depending on the fragment hierarchy and the smallest fragment
they belong to. The level assignment for the activities of the example process of
Fig. 1 is the following: level 0: {A} (trivial); level 1: {B, C} (XOR-fragment),
{D, E, F} (XOR-fragment); level 2: {G, H} (AND-fragment).

Two activities are optionally in parallel if they belong to the same AND-
fragment but to different branches of the fragment. Two activities are manda-
torily in parallel if they belong to the same AND-fragment but to different
branches of the fragment and if only other activities or AND-gateways belong
to this AND-fragment. Mandatorily in parallel is a stronger property and op-
tionally in parallel. Within a non-loop XOR-fragment, there are at least two
exclusive paths from gs to gm and in an AND-fragment there are at least two
parallel paths from split to merge gateway. When determining the dependen-
cies for two activities, we separately assign existence and ordering dependencies.
For the existence dependencies, we need the fragment hierarchy. The ordering
dependencies consider pre- and postconditional ordering.

Definition 5 (Control-flow-based Ordering Dependencies in Impera-
tive Process Models). Let G = (N,E, τ, λ) be an imperative process model
and A and B two activities.

– We assign a mandatory postconditional ordering dependency to A and B,
�(A,B), iff B postdominates A.

– We assign a mandatory preconditional ordering dependency to A and B,
�(A,B), iff A dominates B.

– We assign an optional postconditional ordering dependency to A and B,
→(A,B), iff there is a chain of edges from A to B but B does not postdominate
A.

– We assign an optional preconditional ordering dependency to A and B,←(A,B),
iff there is a chain of edges from A to B but A does not dominate B.

– If A and B are in parallel (optionally and mandatorily), we assign ↔(A,B)
and ↔(B,A).

– If there is no mandatory or optional ordering possible for A and B, we assign
−(A,B).

Note that it is possible to have, for example, ↔(A,B) but −(B,A).

Definition 6 (Control-flow-based Existence Dependencies in Impera-
tive Process Models). Let G = (N,E, τ, λ) be an imperative process model
and A and B two activities.

– We assign a symmetric existence dependency to A and B, ==(A,B), iff A
dominates B and B postdomiates A or B dominates A and A postdominates
B or A and B are mandatorily in parallel.
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– We assign a non-symmetric existence dependency to A and B, =>(A,B), iff
B dominates A but not A postdominates B or B postdominates A but not A
dominates B.

– We assign an excluding dependency between A and B, ><(A,B), iff A and
B belong to the same XOR-fragment but to different branches and there is
neither a chain of edges from A to B nor from B to A.

The excluding dependency ><(A,B) is regarded global; when there is a loop
in the model, activities belonging to a child XOR-fragment of the loop XOR-
fragment are not exclusive.

Definition 7 (Data-based Dependencies in Imperative Process Mod-
els). Let G = (N,E, τ, λ) be an imperative process model with already identified
control-flow-based dependencies, A and B two activities and δ a data identifier.
There is a data-based dependency between A and B iff

– we do not have ><(A,B) and

– we have either λ2(A) = δ = λ3(B) or λ3(A) = δ = λ2(B).

The already identified control-flow-based dependencies are then changed into
data-based ones by changing the symbols.

For the example BPMN process model of Fig. 1, the dependencies are shown
in a matrix structure in Table 4. Properties of the single activities are not con-
sidered here, so the diagonal is empty. The model of Fig. 1 contains information
concerning control-flow and data-flow. Note that if a data-based dependency
is available for two activities, then an additional control-flow dependency does
not have to be entered into the matrix. We regard data-based dependencies as
more valuable than control-flow-based dependencies. Existence dependencies are
always mirrored at the diagonal.

Comparing these dependencies with related work about behavioral profiles
for imperative process models, e.g., [18], we see that we can represent the be-
havioral profiles with our flow dependencies. But due to the distinction between
ordering and existence dependencies, we can specify more different profiles with
flow dependencies than with behavioral profiles. For the comparison, it holds: the
strict order relation is identified with the mandatory ordering, the exclusiveness
relation with the exclusive dependency, and the interleaving order relation with
the optional ordering in both directions (cf. [18]). [26] mentions a further rela-
tion, namely co-occurrence relation, which is represented by the non-symmetric
existence dependency in our notation. As a disadvantage of the co-occurrence
relation, the authors mention that the co-occurrence relation can only be speci-
fied for activities in strict order relation (thus implying strict order relation), it
cannot be detected for interleaving order relation. This is not the case for the
non-symmetric existence dependency presented in the work at hand.
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A B C D E F G H

A
c<= c<= c<= c<= c<= c<= c<=
c�→ c�→ c�→ c�→ c�→ c�→ c�→

B
c=> c><− c↔ c↔ c↔ c↔ c↔

C
c=> c><− c↔ c↔ c↔ c↔ c↔

D
c=> c>< c>< c>< c><− − −

E
c=> c><

d== c== c==

− − − d�� c�� c��

F
c=> c><

d== c== c==
− − − − c�� c��

G
c=> c><

c== c== c==
− − − − − c↔

H
c=> c><

c== c== c==
− − − − − c↔

Table 4. Existence and ordering dependencies according to Definitions 5, 6, and 7
describing the example model of Fig. 1.

3.2 Dependencies in Declarative Process Models

Like for imperative process models, we now show how to derive flow dependen-
cies from declarative process models. In conformance with the general approach
of declarative process modeling, the default ordering of two activities is an op-
tional ordering in both directions and the default existence is not specified. The
dependencies are assigned according to the list of rules given in Table 2. For
the control-flow rules, the dependencies are directly assigned as stated in Defi-
nition 8.

Definition 8 (Control-flow-based Dependencies in Declarative Process
Models). Let D = (A,R) be a declarative process model. For control-flow rules,
the following dependencies hold:

– s/c of A at t ⇒ s/c of B at s: =>(A,B) and ↔(A,B) and ↔(B,A)
– s/c of A at t ⇒ s/c of B at s < t: =>(A,B) and ↔(A,B) and �→(B,A)
– s/c of A at t ⇒ s/c of B at s > t: =>(A,B) and ←�(A,B) and ↔(B,A)
– s/c of A at t ⇒ not s/c of B at s: ><(A,B) and −(A,B) and −(B,A)
– s/c of A at t ⇒ not s/c of B at s < t: ↔(A,B) and −(B,A)
– s/c of A at t ⇒ not s/c of B at s > t: −(A,B) and ↔(B,A)

A symmetric existence connection between two activities is introduced the fol-
lowing way: =>(A,B) ∧ =>(B,A) ⇒ ==(A,B). When two rules affect the same
activity tuple, � and − predominate the default →.

Due to transitivities in the flow dependencies, e.g., =>(A,B) and =>(B,C)
lead to =>(A,C), it is possible to derive dependencies not only directly from
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process rules as stated in Definition 8 but to get more dependencies in a second,
iterative step. Note that transitivity within flow dependencies is different from
transitivity in data rules stated in Definition 9. The assignment of data-based
dependencies needs one derivation step performed on the process rules to get
dependencies between two activities instead of two data objects or an activity
and a data object.

Definition 9 (Data-based Dependencies in Declarative Process Mod-
els). Let D = (A,R) be a declarative process model and Rd ⊆ R all data
rules. The data rules are traced back to control-flow rules of the form presumed
in Definition 8 applying transitivity of the < operator for the time information
and natural deduction calculus. Then, the data-flow dependencies between two
activities can be derived in the same way as the control-flow dependencies.

As an illustration of Definition 9, regard rules 4 and 8 of the example model
of Table 1. Assume activity F is executed at time t (Ft). The natural deduction
calculus yields the following result: Ft together with rule 4 results in write of δ
at s < t (δs ∧ s < t) applying modus ponens. Elimination out of conjunction
yields δs. Together with rule 8 (write of δ at s ⇒ not complete of D at r, which
implies the statement write of δs ⇒ not complete of Dr) and modus ponens, we
get (Ft ∧ s < t) ⇒ ¬Dr which is the same as F ⇒ ¬D as D is independent of
any execution time and t is arbitrary. Thus, it holds s/c of F at t ⇒ not s/c of
D at s. The derived dependency is therefore d>< (F,D).

For the example of Table 1, the dependency matrix is given in Table 5.
Note that one of the rules 2 and 3 is redundant. The shown dependencies are
the directly derivable ones and that ones achieved through transitivities within
the directly derivable flow dependencies (not the transitivities within the data
rules). In the example model, only the dependency between D and H is achieved
through flow dependency transitivity. As the derivation is not fully data-based,
it is a control-flow dependency. A list of all possibilities for flow dependency
transitivity is given in Table 6. The table reads as follows: when we derived a
non-default flow dependency listed in column “dependency 1”, actually an ex-
istence and a certain combination of ordering dependencies, and a dependency
listed in column “dependency 2” on the same row, we have to refine, i.e., re-
strict, a third dependency according to the third column of the same row. For
the ordering dependencies, there are often several combination possibilities that
have to be distinguished. Also remember that ==(A,B) includes both =>(A,B)
and =>(B,A). In the example model, the transitive flow dependency between D
and H is achieved via the transitivity c=>(H,G) and c↔(H,G) and c↔ (G,H)
together with d><(G,D) which leads to c><(H,D) according to the second pos-
sibility mentioned in Table 6. In the not specified cells, i.e., all those that cannot
be refined, we entered the default values in Table 5.

4 Comparison of Two Process Models

When comparing two models, in this case their behavior, we can now compare
the two dependency matrices. For this, we determine a hierarchy of the de-



DR
AF
T
Se
pt
em
be
r
23
,
20
16

Comparing Imperative and Declarative Process Models 11

A B C D E F G H

A
c<=
c�→ c↔ c↔ c↔ c↔ c↔ c↔

B
c=> c><c↔ c↔ c↔ c↔ c↔ c↔

C c><c↔ c↔ c↔ c↔ c↔ c↔

D d>< d>< d>< c><c↔ c↔ c↔

E d><c↔ c↔ c↔ c↔ c↔ c↔

F d><c↔ c↔ c↔ c↔ c↔ c↔

G d><
c<=

c↔ c↔ c↔ c↔ c↔ c↔

H c><
c=>

c↔ c↔ c↔ c↔ c↔ c↔
Table 5. Flow dependencies according to Definitions 8 and 9 in the example model of
Table 1.

pendencies. This allows us to state whether two models show contradictionary
behavior, similar behavior, or are related in a way that one model is overspeci-
fied/underspecified compared to the other model.

We set the hierarchy of the dependencies according to the degree of restric-
tions the respective dependencies impose. With dep1 ≺ dep2 we denote that dep1
is more restrictive regarding execution possibilities than dep2, i.e., the set of pos-
sible executions induced by dep1 is a proper subset of those imposed by dep2.
Thus, ≺ is transitive. With dep1 # dep2 we denote that dep1 and dep2 impose
contradictional behavior (the intersection of both sets is empty). Two dependen-
cies are not comparable when their intersection and their relative complements
are not empty. With nspec we denote the absence of an existence dependency.
We get the following hierarchy for the existence dependencies:

== ≺ => ≺ nspec

Comparing => and <= is not possible, i.e., we assign a ◦ for marking the non-
comparability. Here, we can possibly derive a more meaningful statement when
looking at the comparison of the ordering dependencies. For the non-existence
dependency we get

>< # == .

The dependencies >< and => resp. nspec are not comparable in the first place
regarding execution possibilities. However, when considering contradictions on
basis of musts and prohibitions more severe than commonalities in allowed (but
not prescribed) possibilities, we can add

=> # >< .
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dependency 1 dependency 2 derived dependency

=>(A,B) =>(B,C) =>(A,C)

and �→(B,A) and ↔(A,B) and �→(C,B) and ↔(B,C) and �→(C,A) and ↔(A,C)

and ←�(A,B) and ↔(B,A) and ←�(B,C) and ↔(C,B) and ←�(A,C) and ↔(A,C)

and any other combinations of ordering dependencies and ↔(A,C) and ↔(C,A)

=>(A,B) ><(B,C) ><(A,C)

and arbitrary ordering

=>(A,B)

and ←�(A,B) and ↔(B,A) ↔(B,C) and −(C,B) ↔(A,C) and −(C,A)

=>(A,B)

and ↔(A,B) and �→(B,A) ↔(C,B) and −(B,C) ↔(C,A) and −(A,C)

↔(A,B) and −(B,A) ↔(B,C) and −(C,B) ↔(A,C) and −(C,A)

Table 6. Transitive flow dependency derivation.

>< and nspec are not comparable since a non-specified existence dependency
does not demand for a certain execution prohibited by ><.

For the ordering dependencies, we have three parallel hierarchies:

↔

− ←�

��

�→
≺ �
g

g ≺

Furthermore, it is

− # ��, − # ←�, and − # �→

because the mandatory ordering requires an execution order that is not possible
for the not existing ordering dependency −. Ordering dependencies ←� and
�→ are not comparable.

This hierarchy allows us to compare the two example models, i.e., to set up
a comparison matrix on basis of the dependency matrices of Tables 4 and 5.
The comparison matrix is shown in Table 7 where the imperative dependencies
are mentioned before the declarative ones. The equal sign = means that the
dependencies are the same at the respective positions in the dependency matri-
ces. We do not distinguish between control-flow and data dependencies here as
this does not affect the kind of relation of the two models. It affects, however,
the degree of the respective relation, i.e., the degree of similarity. Existence and
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A B C D E F G H

A
= ≺ ≺ ≺ ≺ ≺ ≺
= ≺ ≺ ≺ ≺ ≺ ≺

B
≺

=
= = = = =

≺ = = = = =

C
≺

=
= = = = =

≺ ≺ ≺ ≺ ≺ ≺

D
≺ = =

= = = =≺ ≺ ≺

E
≺ = =

=
≺ ≺ ≺

≺ ≺ ≺ ≺ ≺ ≺

F
≺ = =

=
≺ ≺ ≺

≺ ≺ ≺ ≺ ≺ ≺

G
≺ = =

=
≺ ≺ ≺

≺ ≺ ≺ ≺ ≺ =

H
≺ = =

=
≺ ≺ ≺

≺ ≺ ≺ ≺ ≺ =
Table 7. Comparison of the two example process models.

ordering dependencies are compared separately, which is why we get up to two
comparison signs in each matrix cell.

We see that the two example models are in a subsumption relation. The
declarative model is more general than the imperative model, i.e., it allows for
more execution possibilities than the imperative model and the imperative model
is completely reproducable by the declarative one. There are no contradictions
in the comparison of the two models. When comparing a declarative and an
imperative process model, we can expect that if there is a subsumption relation
between the two models, it is of the form that the imperative model is part of the
declarative one because the declarative model usually allows for a more flexible
execution. If there are any contradictions, we can locate them precisely, i.e., the
activities and the relations between them through having a closer look at the
dependency matrices.

5 Limitations and Future Work

Like similar approaches in related work, the method described in the paper at
hand determines flow dependencies for every two activities of a process model.
However, declarative modeling languages sometimes allow for constraints involv-
ing more than two activities. These are not captured in the presented approach.
Thus, it is an issue of future work to expand the definition of declarative process
models, i.e., the set of constraint templates. This extension also involves the
inclusion of process rules including agents and non-human resources.

Another application that makes use of the presented approach is to derive a
similarity measure, i.e., a number between 0 and 1 to specify the degree of simi-
larity of two compared models. This similarity measure could use the dependency
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hierarchies given in Section 4, e.g., the distance between two dependencies when
they are in a hierarchy. Contradictions would of course lead to a similarity of 0.
Also, the information whether a dependency is control-flow based or data-based
is useful for determining similarity. With a similarity measure, it is not only
possible to state whether two models are in a subsumption relation but also how
similar they are, i.e., how great their shared behavior is related to all possible
behavior of the subsuming model. Or, if they are contradictionary, the extent of
their difference. For large models, it is easier to judge their similarity at a first
glance according to one approximating number than looking at a complex table.

The presented dependency approach regards the behavior of a process model,
which is just one aspect of a process. It should be combined with a comparison
or similarity determination of the other perspectives as well, like agents, data,
non-human resources, and activity descriptions. Note that this data similarity
does not use the same information used for the data-based flow dependencies
shown in this paper. It also requires the adaption of existing matching methods
for imperative models to also work with declarative models.
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