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Abstract

In this thesis we study varieties isogenous to a product and product quotient varieties

with canonical singularities in dimension three.

A variety X isogenous to a product of curves is a quotient of a product of compact

Riemann surfaces of genus at least two by the free action of a finite group:

X =
(
C1 × . . .× Cn

)
/G.

Since Catanese introduced these objects in [Cat00] they turned out to be very useful

to find new and interesting examples of varieties of general type. Especially the surface

case has been studied extensively (see [BCG08, CP09, Pe10] et al). We are interested

in the systematic construction and classification of these varieties in dimension three.

Our first main result is the full classification of threefolds isogenous to a product with

χ(OX) = −1 under the assumption that the induced actions of the maximal subgroups

Gi ≤ G acting on Ci are faithful. Our approach to achieve this result is algorithmic

and relies on techniques from computational group theory, which extend the methods

used by the authors above. Part of the classification, namely the unmixed case, where

the group G acts diagonally, has been achieved in a joint work with Davide Frapporti

[FG15].

The notion of a product quotient variety X generalizes the definition of a variety isoge-

nous to a product by allowing non-free group actions. We study these varieties in

dimension three under the assumptions that X has canonical singularities and G acts

faithfully on each factor of the product. The first assumption implies that we can con-

sider a crepant terminalisation i.e. a proper birational morphism ρ : X̂ → X, where

X̂ has only terminal singularities and ρ∗(KX) = K
X̂

. Our first aim is to study the

geography of these varieties i.e. relations between the Chern invariants

χ(O
X̂

), e(X̂) and K3
X̂
.

We provide such relations in the form of inequalities and discuss the boundary cases.

This leads to a characterization of the examples, where X̂ is smooth i.e. the examples

admitting a smooth minimal model. For these varieties, we provide a classification

algorithm to determines all examples for a given fixed value of χ(O
X̂

). In the last part
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of this thesis, we prove the sharp inequality K3
X ≥ 4 for product quotient threefolds X

with canonical singularities and provide the full list of examples realizing the minimum

value K3
X = 4.
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Zusammenfassung

Gegenstand dieser Arbeit sind Varietäten isogen zu einem Produkt von Kurven und

Produktquotienten mit kanonischen Singularitäten in Dimension drei. Eine Varietät

X isogen zu einem Produkt von Kurven ist ein Quotient eines Produktes C1 × . . . ×
Cn kompakter Riemannscher Flächen Ci vom Geschlecht größer gleich zwei nach einer

endlichen Gruppe G von Automorphismen, die frei auf dem Produkt operiert:

X =
(
C1 × . . .× Cn

)
/G.

Diese Objekte wurden von Catanese in [Cat00] eingeführt und haben sich seitdem als sehr

nützlich erwiesen, um neue und interessante Beispiele von Varietäten von allgemeinem

Typ zu finden. Insbesondere der zweidimensionale Fall wurde intensiv untersucht (siehe

[BCG08, CP09, Pe10] et al). In dieser Arbeit sind wir an der systematischen Konstruk-

tion und Klassifikation im dreidimensionalen Fall interessiert. Unser Hauptresultat ist

die Klassifikation aller dreidimensionaler Varietäten X isogen zu einem Produkt von

Kurven mit χ(OX) = −1 unter der Voraussetzung, dass die induzierten Operationen der

maximalen Untergruppen Gi ≤ G, die auf den Kurven Ci wirken, treu sind. Um dieses

Ergebnis zu erhalten, verwenden wir Techniken aus der algorithmischen Gruppenthe-

orie, die die Methoden der oben aufgeführten Autoren erweitern und verallgemeinern.

Ein Teil unserer Klassifikation, der sogenannte ungemischte Fall, bei dem die Gruppe G

diagonal wirkt, ist Gegenstand einer gemeinsamen Arbeit mit Davide Frapporti [FG15].

Der Begriff des Produktquotienten erweitert den Begriff der Varietät isogen zu einem

Produkt von Kurven dadurch, dass auch nicht freie Gruppenwirkungen zugelassen wer-

den. Wir untersuchen diese Varietäten im dreidimensionalen Fall unter den Annahmen,

dass X kanonische Singularitäten hat und die Gruppe G treu auf jedem Faktor des

Produkts operiert. Die erste Annahme impliziert, dass eine krepante Terminalisierung

existiert d.h. ein eigentlicher, birationaler Morphismus ρ : X̂ → X mit ρ∗(KX) = K
X̂

,

so dass X̂ nur terminale Singularitäten besitzt. Unser erstes Ziel ist es die Geographie

dieser Varietäten d.h. Relationen zwischen den Chern Invarianten

χ(O
X̂

), e(X̂) und K3
X̂

zu untersuchen. Wir leiten Relationen in Form von Ungleichungen her und diskutieren
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deren Grenzfälle. Dies führt zu einer Charakterisierung jener Beispiele, bei denen X̂ glatt

ist, die also ein glattes minimales Modell besitzen. Wir stellen einen Algorithmus bereit,

um diese Varietäten für einen gegebenen, fixierten Wert von χ(O
X̂

) zu klassifizieren. Im

letzten Teil dieser Arbeit beweisen wir die scharfe Schranke K3
X ≥ 4 für dreidimensionale

Produktquotienten mit kanonischen Singularitäten und berechnen die vollständige Liste

aller Beispiele, die den minimalen Wert K3
X = 4 realisieren.
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Introduction

A complex algebraic variety X is isogenous to a product of curves if X is a quotient

X = (C1 × . . .× Cn)/G,

where the Ci’s are compact Riemann surfaces of genus at least two and G is a finite

group acting freely on C1 × . . .× Cn. If the diagonal group

G0 := G ∩
(

Aut(C1)× . . .×Aut(Cn)
)

is equal to G, we say that X is of unmixed type and otherwise of mixed type. This class

of smooth minimal projective varieties of general type has been introduced by Catanese

[Cat00], and since then a considerable amount of literature appeared, especially in the

case of surfaces. In particular, surfaces isogenous to a product with holomorphic Euler-

Poincaré-characteristic χ(OX) = 1, are completely classified (see [BCG08, CP09, Pe10]

et al). Also quotients of a product of two curves by a non-free action of a finite group

G and their desingularisations have been studied. First under the assumption that the

quotient has only canonical singularities (i.e. rational double points) [BCGP12] and

later without any restrictions on the singularities (see [BP12], [P09], [Pe10] et al). There

are two natural questions regarding these varieties in higher dimension:

I) Is it possible to classify varieties X isogenous to a product for a fixed value of

χ(OX) if dim(X) ≥ 3?

II) What can be said about quotients of products of curves by a non-free action?

Our aim is to address these questions under the assumption that dim(X) = 3 and, in

case of the second question, that the singularities of the quotient are canonical. We want

to mention that the holomorphic Euler-Poincaré-characteristic of a smooth projective

threefold of general type with ample canonical class is negative, in contrast to the surface

case, where χ(OS) is positive if S is of general type (cf. [Mi87]).

To give an answer to the first question we derive an algorithm, i.e. a finite procedure to

classify threefolds isogenous to a product for a fixed value of χ(OX). In particular, we

determine all Galois groups G and all Hodge numbers hp,q(X). The technical condition
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we have to impose is that the induced group actions

ψi : Gi → Aut(Ci), where Gi := G ∩
[

Aut(C1 × . . .× Ĉi × . . .× Cn)×Aut(Ci)
]
,

have trivial kernels Ki, in which case we say that the action of G is absolutely faithful.

This assumption allows us to derive an effective bound for the order of G in terms of

χ(OX), which makes a complete classification feasible, at least in the boundary case

χ(OX) = −1. The classification procedure is computationally hard and cannot be

carried out by hand. For this reason, we use the computer algebra system MAGMA

[Mag]. We run our implementation (see Appendix A), which is based on the code given

in [BCGP12], in the boundary case χ(OX) = −1. For threefolds of unmixed type, i.e. in

the case where the groups G0, Gi and G coincide, we obtain the following classification

theorem, which is also the main theorem in our joint paper with Davide Frapporti [FG15]:

Theorem (A). Let X = (C1×C2×C3)/G be a threefold isogenous to a product of curves

of unmixed type. Assume that the action of G is absolutely faithful and χ(OX) = −1.

Then, the tuple

[G,T1, T2, T3, h
3,0(X), h2,0(X), h1,0(X), h1,1(X), h2,1(X), d]

appears in the table below. Conversely, each row is realized by at least one family of

threefolds isogenous to a product of curves of unmixed type with χ(OX) = −1, which

depends on d parameters and is obtained by an absolutely faithful G-action.

No. G Id T1 T2 T3 h3,0 h2,0 h1,0 h1,1 h1,2 d

1 {1} 〈1, 1〉 [2;−] [2;−] [2;−] 8 12 6 27 36 9

2 Z2 〈2, 1〉 [0; 26] [0; 26] [2;−] 8 8 2 19 28 9

3 Z2 〈2, 1〉 [0; 26] [1; 22] [2;−] 6 7 3 17 24 8

4 Z2 〈2, 1〉 [1; 22] [1; 22] [2;−] 6 8 4 19 26 7

5 Z3 〈3, 1〉 [0; 34] [0; 34] [2;−] 6 6 2 15 22 5

6 Z2
2 〈4, 2〉 [0; 25] [0; 25] [2;−] 6 6 2 15 22 7

7 Z2
2 〈4, 2〉 [0; 25] [0; 25] [2;−] 5 5 2 13 19 7

8 Z2
2 〈4, 2〉 [0; 25] [0; 26] [1; 22] 5 4 1 11 17 7

9 Z2
2 〈4, 2〉 [0; 25] [0; 26] [1; 22] 6 5 1 13 20 7

10 Z2
2 〈4, 2〉 [0; 25] [1; 22] [1; 22] 4 4 2 11 16 6

11 Z2
2 〈4, 2〉 [0; 25] [1; 22] [1; 22] 5 5 2 13 19 6

12 Z4 〈4, 1〉 [0; 22, 42] [0; 22, 42] [2;−] 6 6 2 15 22 5

13 Z5 〈5, 1〉 [0; 53] [0; 53] [2;−] 4 4 2 15 20 3

14 Z5 〈5, 1〉 [0; 53] [0; 53] [2;−] 5 5 2 13 19 3

15 Z5 〈5, 1〉 [0; 53] [0; 53] [2;−] 6 6 2 11 18 3

16 S3 〈6, 1〉 [0; 26] [0; 22, 32] [1; 3] 4 3 1 9 14 5

17 S3 〈6, 1〉 [0; 22, 32] [0; 22, 32] [2;−] 5 5 2 13 19 5

18 Z6 〈6, 2〉 [0; 22, 32] [0; 22, 32] [2;−] 6 6 2 15 22 5

19 Z6 〈6, 2〉 [0; 22, 32] [0; 3, 62] [2;−] 5 5 2 13 19 4

20 S3 〈6, 1〉 [0; 22, 32] [1; 22] [1; 3] 4 4 2 11 16 4

21 Z6 〈6, 2〉 [0; 3, 62] [0; 3, 62] [2;−] 4 4 2 15 20 3

22 Z6 〈6, 2〉 [0; 3, 62] [0; 3, 62] [2;−] 6 6 2 11 18 3
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No. G Id T1 T2 T3 h3,0 h2,0 h1,0 h1,1 h1,2 d

23 Z3
2 〈8, 5〉 [0; 25] [0; 25] [0; 25] 4 2 0 7 12 6

24 Z3
2 〈8, 5〉 [0; 25] [0; 25] [0; 25] 5 3 0 9 15 6

25 D4 〈8, 3〉 [0; 26] [0; 23, 4] [1; 2] 4 3 1 9 14 5

26 D4 〈8, 3〉 [0; 23, 4] [0; 23, 4] [2;−] 5 5 2 13 19 5

27 D4 〈8, 3〉 [0; 23, 4] [0; 22, 42] [1; 22] 4 3 1 9 14 4

28 D4 〈8, 3〉 [0; 23, 4] [1; 2] [1; 22] 4 4 2 11 16 4

29 Z8 〈8, 1〉 [0; 2, 82] [0; 2, 82] [2;−] 4 4 2 15 20 3

30 Z8 〈8, 1〉 [0; 2, 82] [0; 2, 82] [2;−] 6 6 2 11 18 3

31 Q 〈8, 4〉 [0; 43] [0; 43] [2;−] 5 5 2 13 19 3

32 Z10 〈10, 2〉 [0; 2, 5, 10] [0; 2, 5, 10] [2;−] 4 4 2 15 20 3

33 Z10 〈10, 2〉 [0; 2, 5, 10] [0; 2, 5, 10] [2;−] 6 6 2 11 18 3

34 Z10 〈10, 2〉 [0; 2, 5, 10] [0; 2, 5, 10] [2;−] 5 5 2 13 19 3

35 D6 〈12, 4〉 [0; 25] [0; 23, 3] [1; 3] 4 3 1 9 14 4

36 D6 〈12, 4〉 [0; 23, 3] [0; 23, 3] [2;−] 5 5 2 13 19 5

37 D6 〈12, 4〉 [0; 23, 3] [0; 23, 6] [1; 22] 4 3 1 9 14 4

38 Z3 × Z2
2 〈12, 5〉 [0; 2, 62] [0; 2, 62] [2;−] 4 4 2 15 20 3

39 Z3 × Z2
2 〈12, 5〉 [0; 2, 62] [0; 2, 62] [2;−] 4 4 2 13 18 3

40 Z3 × Z2
2 〈12, 5〉 [0; 2, 62] [0; 2, 62] [2;−] 5 5 2 11 17 3

41 Z3 × Z2
2 〈12, 5〉 [0; 2, 62] [0; 2, 62] [2;−] 6 6 2 11 18 3

42 Dic12 〈12, 1〉 [0; 3, 42] [0; 3, 42] [2;−] 5 5 2 13 19 3

43 D4 × Z2 〈16, 11〉 [0; 25] [0; 23, 4] [0; 23, 4] 4 2 0 7 12 4

44 D4 × Z2 〈16, 11〉 [0; 25] [0; 23, 4] [0; 23, 4] 3 1 0 5 9 4

45 SD16 〈16, 8〉 [0; 2, 4, 8] [0; 2, 4, 8] [2;−] 4 4 2 13 18 3

46 SD16 〈16, 8〉 [0; 2, 4, 8] [0; 2, 4, 8] [2;−] 5 5 2 11 17 3

47 S4 〈24, 12〉 [0; 23, 4] [0; 22, 32] [0; 3, 42] 3 1 0 5 9 2

48 Z3 oϕ D4 〈24, 8〉 [0; 2, 4, 6] [0; 2, 4, 6] [2;−] 4 4 2 13 18 3

49 Z3 oϕ D4 〈24, 8〉 [0; 2, 4, 6] [0; 2, 4, 6] [2;−] 5 5 2 11 17 3

50 SL(2,F3) 〈24, 3〉 [0; 32, 4] [0; 32, 4] [2;−] 5 5 2 13 19 3

51 S4 × Z2 〈48, 48〉 [0; 25] [0; 2, 4, 6] [0; 2, 4, 6] 3 1 0 5 9 2

52 GL(2,F3) 〈48, 29〉 [0; 2, 3, 8] [0; 2, 3, 8] [2;−] 4 4 2 13 18 3

53 GL(2,F3) 〈48, 29〉 [0; 2, 3, 8] [0; 2, 3, 8] [2;−] 5 5 2 11 17 3

54 A5 〈60, 5〉 [0; 23, 3] [0; 2, 52] [0; 32, 5] 2 0 0 3 6 1

The table above is organized in the following way:

• the first column gives the number of the example,

• the second column reports the Galois group (see Notation 0.0.1 for the definition

of the groups that appear),

• the third column provides the MAGMA identifier of the Galois group: 〈a, b〉 denotes

the bth group of order a in the Database of Small Groups [Mag],

• the types

Ti = [g′i;mi,1, . . . ,mi,ri ]

in column 4-6 yield the branching data of the G-covers Fi : Ci → C ′i induced by

the actions

ψi : G→ Aut(Ci),

i.e. g′i is the genus of the quotient curve C ′i and the mi,j ’s are the branching indices.

They are written in a simplified way: for example, [0; 2, 2, 4, 4] is abbreviated by

[0; 22, 42].
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• the remaining columns report the Hodge numbers hp,q(X) and the number d of

parameters of the families.

The mixed case is algebraically more complicated to handle than the unmixed case. Since

G/G0 can be considered as a subgroup of S3, it breaks up in three sub-cases, according

to the index of G0 in G and we need a slightly different strategy for our algorithm

depending on the particular case. The full classification of threefolds isogenous to a

product of mixed type with χ(OX) = −1 is summarized in [Theorem (B) p.50] and

[Theorem (C) p.52].

In principle though, the basic idea of the algorithms is similar in the unmixed and the

mixed case. We briefly explain the idea. Let

X = (C1 × C2 × C3)/G

be a threefold isogenous to a product. The associated actions ψi : Gi → Aut(Ci) induce

Gi-covers Fi : Ci → C ′i, where C ′i is the quotient Riemann surface. Let Bi ⊂ C ′i be the

branch locus of Fi. Then, the restrictions

Fi : Ci \ F−1
i (Bi)→ C ′i \ Bi

are also Galois covers with the same Galois group Gi. Therefore, they are determined,

up to isomorphism, by the monodromy map

ηi : π1

(
C ′i \ Bi

)
→ Gi.

Once we choose a geometric basis of π1

(
C ′i \ Bi

)
(see Definition 1.1.4), the images of the

basis elements under the monodromy map ηi form a tuple Vi, which is called a generating

vector. It has the property that it’s elements generate the group Gi and fulfill certain

relations. We can now attach to a threefold X isogenous to a product an algebraic

datum, i.e. a tuple which basically consists of the group G and the generating vectors

Vi. It encodes the geometric information of X that we are interested in. Thanks to

Riemann’s existence theorem there is also a way back: starting with an abstract datum

of a finite group G and generating vectors Vi for Gi, which fulfill certain conditions,

we obtain family of threefold isogenous to a product. This allows us to translate the

geometric classification problem into a problem of combinatorial group theory. As we

already mentioned, the crucial step in this approach is that the freeness assumption

for the group action allows us to bound the order of the group G in terms of χ(OX)

and derive combinatorial constraints on the genera of the curves and the generating

vectors Vi. These constraints are strong enough to imply that the set of algebraic data

of all threefolds isogenous to a product, with the same value of χ(OX), is finite. This

allows us to develop an algorithm searching systematically through all possible groups in

order to find all algebraic data of these threefolds. The algorithm contains a subroutine
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to determine the Hodge numbers of the threefolds from the corresponding algebraic

data. Here, the strategy relies on representation theory: the group actions ψi induce

representations via pullback of holomorphic 1-forms

ϕi : Gi → GL
(
H1,0(Ci)

)
.

According to the formula of Chevalley-Weil, the characters χϕi of these representations

can be computed from a generating vector Vi of Gi. On the other hand, Künneth’s

formula allows us to determine the characters χp,q of the representations

φp,q : G→ GL
(
Hp,q(C1 × C2 × C3)

)
, g 7→ [ω 7→ (g−1)∗ω]

in terms of the characters χϕi . This provides a way to determine the Hodge numbers

hp,q(X), because they are equal to the multiplicity of the trivial character of G in χp,q.

Now we turn to the second question and study product quotient threefolds

X =
(
C1 × C2 × C3

)
/G,

i.e. quotients of a product of curves of genus g(Ci) ≥ 2 by a non-free action of a finite

group G. We assume that G embeds into the automorphism group of each curve Ci and

that the quotient X has canonical singularities. The first assumption ensures that the

singularities of X are isolated cyclic quotient singularities and the second assumption

allows us to consider a crepant terminalisation

ρ : X̂ → X,

i.e. a proper birational morphism such that X̂ has terminal singularities and ρ∗(KX) =

K
X̂

. We show that the Chern invariants

χ(O
X̂

), e(X̂) and K3
X̂
,

which are independent of the chosen crepant terminalisation (cf. [H89]), fulfill the in-

equalities

i) 48χ(O
X̂

) +K3
X̂
≥ 0 and ii) 6e(X̂) +K3

X̂
≥ 0.

Therefore, by dropping the freeness assumption, we obtain a great flexibility to construct

threefolds of general type with interesting Chern invariants. The price is that we lose

or weaken certain combinatorial constraints which hold in the isogenous case. The

inequalities above characterize those product quotient threefolds admitting a smooth

minimal model, more precisely we show:

• the inequality i) is sharp if and only if X̂ is smooth and

• the inequality ii) is sharp if and only if X is a threefold isogenous to a product of
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unmixed type, in which case i) is automatically sharp.

Since we already discussed threefolds isogenous to a product, we go on to study the

case, where X̂ is smooth but X is singular, i.e. the case where i) is sharp, but ii) is

a proper inequality. Here, the crepant terminalisation ρ : X̂ → X is actually a crepant

resolution and the singularities of X are Gorenstein. We adapt our algorithm from the

isogenous case to classify these varieties for a fixed value of χ(O
X̂

), which must be also

negative. Our algorithm allows us to determine the Galois group G and the Hodge

numbers hp,q(X̂), which are independent of the chosen crepant resolution, thanks to a

theorem of Kontsevich [Kon95]. As it turns out, the Gorenstein condition implies that

the Galois groups cannot be 2-groups, which excludes a huge number of groups that

should be investigated otherwise. We execute our implementation (see Appendix A)

and find that there are no examples with χ(O
X̂

) = −1 and −2 (see Proposition 5.0.7).

For χ(O
X̂

) = −3 we obtain examples and provide the full classification (see Theorem

5.0.8).

In the last part of this thesis, we prove the sharp inequality K3
X ≥ 4 for product quotient

threefolds X with canonical singularities and provide the full list of examples realizing

the minimum value K3
X = 4 (see Theorem 6.0.1). To determine this value, we give an

algorithm to classify for a given positive and sufficiently small number c all product

quotient threefolds X with canonical singularities and K3
X̂
≤ c. We refer to Appendix A

for our MAGMA implementation. Running the implementation for c = 4, we obtain the

above result. We point out that K
X̂

is, in general, not a Cartier divisor, consequently

K3
X̂

does not need to be an integer (see Remark 6.0.3).

The thesis is divided in six chapters. We briefly explain the main content of each chapter.

• In Chapter 1, we present the theoretical prerequisites from Riemann surface theory,

group theory and representation theory used in this thesis. The central theorems

are Riemann’s existence theorem and the Chevalley-Weil formula.

• In Chapter 2 we introduce varieties isogenous to a product and explain some of

their basic properties. Moreover, we study the structure of mixed group actions

on a product of three curves and define the algebraic datum of a threefold X

isogenous to a product. Based on that, we show how to determine Hodge numbers

of a threefold X isogenous to a product from an algebraic datum of X.

• In Chapter 3 we develop an algorithm to classify threefolds isogenous to a product

for a fixed value of χ(OX) obtained by an absolutely faithful group action and

present our main result: the classification of these varieties in the case χ(OX) = −1.

• In Chapter 4 we introduce product quotient threefolds and their singularities. We

show how to determine a crepant terminalisation X̂ of a product quotient threefold

with canonical singularities, using methods from toric geometry. We go on to relate
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the invariants χ(O
X̂

), e(X̂) and K3
X̂

and derive the inequalities i) and ii) that we

discussed above.

• In Chapter 5 we specialize to singular product quotient threefolds X with canonical

singularities admitting a smooth minimal model X̂. We explain how to determine

the Hodge numbers of X̂ and derive an algorithm to classify these varieties for a

fixed value of χ(O
X̂

). Running an implementation of this algorithm we show there

are no examples for χ(O
X̂

) = −1 and −2 and compute the full list of examples for

χ(O
X̂

) = −3.

• In Chapter 6, the last chapter of this thesis, we prove the sharp inequality K3
X ≥

4 for product quotient threefolds X with canonical singularities and provide a

classification of these varieties for K3
X = 4.

Notation 0.0.1. Throughout the thesis all varieties are defined over the field of complex

numbers and the standard notation from complex algebraic geometry is used, see for

example [GH78]. Moreover, we use the following notations and definitions from group

theory.

• The cyclic group of order n is denoted by Zn.

• Dn = 〈s, t
∣∣ s2 = tn = 1, sts = t−1〉 is the dihedral group of order 2n.

• Sn and An denote the symmetric and alternating group on n letters, respectively.

• The quaternion group of order 8 is defined by

Q := 〈−1, i, j, k
∣∣ i2 = j2 = k2 = ijk = −1〉.

• The groups GL(n,Fq) and SL(n,Fq) are the general linear and special linear groups

of n× n matrices over the field Fq.

• The holomorph Hol(G) of a group G is the semi-direct product Goid Aut(G).

• Let G1 and G2 be groups with isomorphic subgroups Ui ≤ Z(Gi) and let φ : U1 → U2

be an isomorphism. The central product G1 ∗φ G2 is defined as the quotient of the

direct product G1 ×G2 by the normal subgroup

N := {(g1, g2) ∈ U1 × U2

∣∣ φ(g1)g2 = 1G2}.

• The dicyclic group of order 4n is Dic4n := 〈a, b, c
∣∣ an = b2 = c2 = abc〉.

• The semidihedral group of order 2n is

SD2n := 〈a, b
∣∣ a2(n−1)

= b2 = 1, bab = a2(n−2)−1〉.
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• The group M16 of order 16 is M16 := 〈a, b
∣∣ a8 = b2 = e, bab−1 = a5〉.

• The binary octahedral group of order 48 is 2O := 〈a, b, c
∣∣ a4 = b3 = c2 = abc〉.
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Chapter 1

Riemann Surfaces

In this chapter we present the theoretical prerequisites from Riemann surface theory,

group theory and representation theory used in this thesis. In particular we recall

some principles of group actions on compact Riemann surfaces. The central theorems

are Riemann’s existence theorem and the Chevalley-Weil formula. Although most of

the results in this chapter come without a proof, we decided to give a proof of the

Chevalley-Weil formula, because we could not find a suitable modern reference. For an

introduction to the theory of Riemann surfaces we refer the reader to the textbooks

[L05], [F81], [FK80] and for representation and character theory to textbook [Isa76].

1.1 Group Actions on Riemann Surfaces

Let C be a compact Riemann surface, G be a finite group and

ψ : G→ Aut(C)

be a faithful group action. If there is no possibility of confusion, we identify G with its

image in Aut(C) and omit writing the map ψ.

We shall introduce some notation and recall the standard constructions: we denote the

stabilizer group of a point p ∈ C by Gp. This is a cyclic group. We say that two

points p1, p2 ∈ C are equivalent if g(p1) = p2 for some g ∈ G and consider the quotient

C ′ := C/G endowed with the quotient topology. Note that C ′ is Hausdorff because C is

Hausdorff and G is finite. Moreover, there is a unique complex structure on C ′ such that

the projection map F : C → C ′ is holomorphic. We say that F is a (ramified) Galois

cover. Let B ⊂ C ′ be the finite set of critical values of F and R := F−1(B) its preimage,

then the restriction

f : C \ R → C ′ \ B

of F is an unramifed cover.
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We write Deck(f) for the group of covering transformations of f . It coincides with

Deck(F ) and is identified with G via ψ. We choose a point p0 ∈ C \ R and define

q0 := f(p0). The cover f determines the monodromy map

µ : π1

(
C ′ \ B, q0

)
→ Deck(f), γ 7→ gγ .

Here the element gγ is the unique covering transformation such that gγ(p0) is the end

point of the unique lift of γ with initial point p0. Recall that the monodromy map is a

surjective group homomorphism with kernel f∗
(
π1

(
C \ R, p0

))
.

Proposition 1.1.1. Let C ′ be a compact Riemann surface, B ⊂ C ′ a finite subset and

η : π1

(
C ′ \ B, q0

)
→ G be a homomorphism onto a finite group G. Then there exists, up

to isomorphism, a unique topological cover

f : (Ĉ, p0)→
(
C ′ \ B, q0

)
together with a unique isomorphism of groups ψ : G→ Deck(f) such that the homomor-

phism

(ψ ◦ η) : π1

(
C ′ \ B, q0

)
→ Deck(f)

is the monodromy map of f . Moreover, Ĉ has a unique complex structure such that f is

holomorphic.

Proof. Consider the kernel ker(η) E π1

(
C ′ \ B, q0

)
. According to the classification the-

orem of unramified covering spaces [L05, 3.7.1] there exists, up to isomorphism, an

unramified cover f : (Ĉ, p0) →
(
C ′ \ B, q0

)
such that f∗

(
π1

(
Ĉ, p0

))
= ker(η). Since the

kernel is normal in π1

(
C ′ \ B, q0

)
, the cover f is Galois. Let

µ : π1

(
C ′ \ B, q0

)
→ Deck(f)

be the monodromy map of f . Note that the surjective maps µ and η have the same kernel,

therefore they differ by a unique isomorphism ψ : G→ Deck(f). For the statement that

Ĉ admits a unique complex structure such that f is holomorphic we refer to [F81,

Theorem 4.6].

The crucial point is that the unramified cover f of C ′ \ B in the proposition above can

be uniquely extended to a (ramified) cover of C ′.

Theorem 1.1.2 (Riemann’s existence theorem, cf. [F81, Theorem 8.4 and 8.5]). Let

C ′ be a compact Riemann surface and B ⊂ C ′ be a finite subset. Let Ĉ be a Riemann

surface and f : Ĉ → C ′ \ B a finite unramified cover. Then there exists a compact

Riemann surface C, a holomorphic map F : C → C ′ and a biholomorphic map

Ξ: C \ F−1(B)→ Ĉ

2



such that the following diagram commutes

Ĉ
f // C ′ \ B

C \ F−1(B).

Ξ

dd

F

88

Moreover, every covering transformation of f can be uniquely extended to a covering

transformation of F yielding an isomorphism between Deck(f) and Deck(F ).

We shall summarize the discussion from above.

Theorem 1.1.3. Given

i) a compact Riemann surface C ′,

ii) a finite set B ⊂ C ′, a point q0 ∈ C ′ \ B and

iii) a surjective homomorphism η : π1

(
C ′ \ B, q0

)
→ G.

Then there exists, up to isomorphism, a unique Galois cover F : C → C ′ together with a

unique inclusion ψ : G→ Aut(C) identifying G with Deck(F ) such that the critical values

of F are contained in B and the restriction f : C \ F−1(B) → C ′ \ B is an unramified

cover with monodromy map

(ψ ◦ η) : π1

(
C ′ \ B, q0

)
→ Deck(F ).

In the literature the fundamental group of the non-compact Riemann surface C ′ \ B is

usually described in terms of a geometric basis. We recall its definition.

Definition 1.1.4. Let C ′ be a compact Riemann surface of genus g′ and B := {q1, . . . , qr}
a finite subset of C ′. A geometric basis of π1

(
C ′ \ B, q0

)
consists of loops

γ1, . . . , γr, α1, β1, . . . , αg′ , βg′

with base point q0 and no other intersection points such that γi is a simple loop around

qi and

π1

(
C ′ \ B, q0

)
=
〈
γ1, . . . , γr, α1, β1, . . . , αg′ , βg′

∣∣ γ1 · · · γr ·
g′∏
i=1

[αi, βi]
〉
.
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q0

γ1

γ2

α1
β1

Figure 1.1: geometric basis

By a simple loop γ around a point q ∈ B we mean a product of paths of the form δ∗u∗δ−,

where δ connects q0 and the initial point of u, which is a loop inside a centred chart

zq : Uq → E := {z ∈ C
∣∣ |z| < 1}, Uq ∩ B = {q}

such that the composition zq ◦ u is homotopic to

ε : [0, 1]→ E, t 7→ (zq ◦ u)(0) · exp
(
2π
√
−1t

)
.

Remark 1.1.5. Let F : C → C ′ be a Galois cover and B = {q1, . . . , qr} be the set of

critical values of F . Let µ : π1

(
C ′ \ B, q0

)
→ Deck(F ) be the monodromy map and

γ1, . . . , γr, α1, β1, . . . , αg′ , βg′

be a geometric basis of π1

(
C ′ \ B, q0

)
. Then the elements

hi := µ(γi), ai := µ(αi) and bi := µ(βi)

generate the group Deck(F ) and the product

h1 · · ·hr ·
g′∏
i=1

[ai, bi]

is trivial. Moreover, the branching index of F at qi is equal to ord(hi).

This observation motivates the following definition.

Definition 1.1.6. Let m1, . . . ,mr ≥ 2 and g′ ≥ 0 be integers and G be a finite group.

A generating vector for G of type [g′;m1, . . . ,mr] is a (2g′ + r)-tuple

(h1, . . . , hr, a1, b1, . . . , ag′ , bg′)
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of elements of G such that:

i) G = 〈h1, . . . , hr, a1, b1, . . . , ag′ , bg′〉,

ii) h1 · · ·hr ·
g′∏
i=1

[ai, bi] = 1G and

iii) ord(hi) = mi for all 1 ≤ i ≤ r.

In the remaining parts of this thesis it is convenient to use the following much weaker

version of Riemann’s existence theorem.

Theorem 1.1.7. A finite group G acts faithfully and biholomorphically on some compact

Riemann surface C of genus g(C) if and only, if there exists a generating vector

(h1, . . . , hr, a1, b1, . . . , ag′ , bg′)

for G of type [g′;m1, . . . ,mr] such that the Hurwitz formula holds:

2g(C)− 2 = |G|
(

2g′ − 2 +
r∑
i=1

mi − 1

mi

)
.

In this case g′ is the genus of the quotient Riemann surface C/G and the Galois cover

F : C → C/G is branched in r-points {q1, . . . , qr} with branching indices m1, . . . ,mr,

respectively. Moreover, the cyclic groups 〈hi〉 and their conjugates provide the non-trivial

stabilizers of the action of G on C.

Example 1.1.8. Consider the dihedral group

D6 = 〈s, t
∣∣ s2 = t6 = 1, sts = t5〉

of order 12 and the type T := [1; 2, 2]. Note that Hurwitz’ formula holds for g(C) = 7:

2g(C)− 2 = 12

(
2g′ − 2 +

1

2
+

1

2

)
= 12.

We claim that V := (st, st, t5, t5) is a generating vector for D6 of type T . Clearly the

elements in V generate D6,

ord(st) = 2 and st · st · [t5, t5] = 1.

We conclude that D6 acts on a compact Riemann surface C of genus g(C) = 7 such that

the quotient C/G is an elliptic curve, i.e. g(C/G) = 1 and the covering C → C/G is

branched in two points with branching index 2, respectively.

5



1.2 Representations and Characters

In this section we introduce the fundamental notions of a representation and a character.

In mathematics representation and character theory appears naturally, whenever we deal

with symmetries, i.e. groups and vector spaces. The case where we want to apply this

theory is when the symmetries are automorphisms of Riemann surfaces, or more generally

algebraic varieties, and the vector spaces are cohomology groups. These concepts will

be used throughout the thesis.

Definition 1.2.1. Let G be a finite group and let V be a finite dimensional complex

vector space. A group homomorphism % : G → GL(V ) is called a representation. The

character of % is the associated function χ% : G → C, where χ%(g) = tr
(
%(g)

)
and the

degree of % is the dimension of V .

We want to give two important examples of representations which can be defined for

any finite group G.

i) The first one is the trivial representation: it is defined to be the trivial homomor-

phism

%triv : G→ C∗, g 7→ 1.

We denote its character by χtriv.

ii) The second one is the regular representation: let V be the vector space of maps

from G to the complex numbers C. It has a natural basis indexed by the group

elements:

{eh
∣∣ h ∈ G}, where eh(g) :=

1, if g = h

0, otherwise.

The regular representation is defined as

%reg : G→ GL(V ), g 7→
[∑
h∈G

λheh 7→
∑
h∈G

λhegh

]

and its character, the regular character, is given by

χreg(g) =

|G|, if g = 1G

0, otherwise.

Note that a character of a representation belongs to the vector space of class functions:

CF(G) := {α : G→ C
∣∣ α is constant on the conjugacy classes of G}.

This vector space, of dimension equal to the number of conjugacy classes of G, carries a
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Hermitian product defined as:

〈α, β〉 :=
1

|G|
∑
g∈G

α(g)β(g), for α, β ∈ CF(G).

In representation theory we have the notion of isomorphic representations:

Definition 1.2.2. Let %1 : G → GL(V1) and %2 : G → GL(V2) be representations. We

say that %1 and %2 are isomorphic if there exists an isomorphism f : V1 → V2 of vector-

spaces such that for all g ∈ G the following diagram is commutative:

V1
f // V2

V1
f //

%1(g)

OO

V2

%2(g)

OO

Clearly, isomorphic representations have the same character.

The standard operations form linear algebra: the direct sum and the tensor product can

be defined for representations as well.

Definition 1.2.3. Let %1 : G → GL(V1) and %2 : G → GL(V2) be representations. The

direct sum of %1 and %2 is defined as

%1 ⊕ %2 : G→ GL(V1 ⊕ V2), g 7→ [v1 ⊕ v2 7→ %1(g)v1 ⊕ %2(g)v2].

The tensor product of %1 and %2 is defined as

%1 ⊗ %2 : G→ GL(V1 ⊗ V2), g 7→ [v1 ⊗ v2 7→ %1(g)v1 ⊗ %2(g)v2].

The character of the direct sum is the sum of the characters and the character of the

tensor product is the product of the characters:

χ%1⊕%2 = χ%1 + χ%2 and χ%1⊗%2 = χ%1 · χ%2 .

Given a representation %, it is natural to ask if % is isomorphic to a direct sum of

representations that are easier to understand. To formalize this question, we give the

following definition:

Definition 1.2.4. Let % : G → GL(V ) be a representation and U ⊂ V be a linear

subspace. We say that

i) U is G-invariant if %(g)(U) ⊂ U for all g ∈ G,

ii) % is irreducible if the trivial vector space is the unique G-invariant subspace U ( V ,

iii) the character χ% is irreducible if % is irreducible.
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Maschke’s theorem provides a positive answer to the question stated above:

Theorem 1.2.5. Let % : G → GL(V ) be a representation, then % is isomorphic to a

direct sum of irreducible representations.

The central theorem in representation theory of finite groups is due to Schur and is

usually called the orthogonality relations. We we state it in the following form:

Theorem 1.2.6. Let G be a finite group with d conjugacy classes, then:

i) There are exactly d isomorphism classes of irreducible representations of G.

ii) The set of characters corresponding to this d irreducible representations form an

orthonormal basis of the vector space CF(G).

The set of irreducible characters of a group G is denoted by Irr(G). It is customary

to give it in the form of a d × d square matrix, the so called character table, where

the columns are labelled by the conjugacy classes of G and the rows by the irreducible

characters. The entries of this matrix are the values that the characters obtain at the

respective classes.

Example 1.2.7. To illustrate Theorem 1.2.6, we consider the regular character

χreg(g) =

|G|, if g = 1G

0, otherwise

of a finite group G. Observe that for any other character χ of G it holds

〈χ, χreg〉 =
1

|G|
∑
g∈G

χ(g)χreg(g) =
1

|G|
χ(1G)|G| = χ(1G).

Decomposing χreg in irreducible characters, we obtain the following useful formula:

χreg =
∑

χ∈Irr(G)

〈χ, χreg〉 · χ =
∑

χ∈Irr(G)

χ(1G)χ.

In other words: the regular representation contains every irreducible representation of

degree k precisely k-times.

Example 1.2.8. To conclude this section, we determine the character table of the dihedral

group

D6 = 〈s, t
∣∣ s2 = t6 = 1, sts = t5〉.

It has six conjugacy classes: apart from the trivial one they are given by

{s, st2, st4}, {t, t5}, {t2, t4}, {t3} and {st, st3, st5}.
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Consequently D6 admits six (isomorphism classes) of irreducible representations. Four

of these representations have degree one, they are obtained from the irreducible repre-

sentations of the abelian group Z2 × Z2 via the quotient map

D6 → D6/〈t2〉 ' Z2 × Z2.

Since they have degree one, we can identify them with their characters

χtriv, χ1, χ2 and χ3.

Clearly the values of these characters can only be ±1. There is also a natural irreducible

representation of degree two D6 → GL(R2) obtained by considering D6 as the symmetry

group of a regular hexagon:

t 7→ 1

2

(
1 −

√
3√

3 1

)
and s 7→ 1

2

(
1
√

3√
3 −1

)
.

We denote the character of this representation by χ4. The remaining irreducible repre-

sentation has degree two and its character is given by

χ5 =
1

2

(
χreg − χtriv − χ1 − χ2 − χ3 − 2χ4

)
according to the previous example. Whence, the character table of D6 is the following:

1 s t t2 t3 st

χtriv 1 1 1 1 1 1

χ1 1 −1 1 1 1 −1

χ2 1 1 −1 1 −1 −1

χ3 1 −1 −1 1 −1 1

χ4 2 0 1 −1 −2 0

χ5 2 0 −1 −1 2 0

1.3 The Chevalley-Weil Formula

Let G be a finite group and ψ : G → Aut(C) be a faithful group action on a compact

Riemann surface C. The action ψ induces in a natural way a representation of G via

pullback of holomorphic 1-forms:

ϕ : G→ GL
(
H1,0(C)

)
, g 7→ [ω 7→ ψ(g−1)∗ω].
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The character χϕ of this representation has, according to Theorem 1.2.6, a decomposition

χϕ =
∑

χ∈Irr(G)

〈χ, χϕ〉 · χ

in irreducible characters. The Chevalley-Weil formula, which we want to state and prove

in this section, provides a way to compute the coefficients 〈χ, χϕ〉 from a generating

vector

(h1, . . . , hr, a1, b1, . . . , ag′ , bg′)

associated to the covering F : C → C/G.

We begin with a definition which is based on the following observation: let % : G →
GL(V ) be a representation of a finite group G. Then for each h ∈ G the endomorphism

%(h) : V → V

has finite order and is therefore diagonalizable. Its eigenvalues are of the form ξαm, where

m = ord(h), 0 ≤ α ≤ m− 1 and ξm := exp
(2π
√
−1

m

)
.

Definition 1.3.1. Let G be a finite group and (h1, . . . , hr, a1, b1, . . . , ag′ , bg′) be a gen-

erating vector for G of type [g′;m1, . . . ,mr] and

% : G→ GL(V )

be a representation. We denote by Ni,α the multiplicity of ξαmi as an eigenvalue of %(hi).

The following lemma describes the local action of the elements hi from the generating

vector around the points that they stabilize. This result is a crucial ingredient in our

prove of the Chevalley-Weil formula.

Lemma 1.3.2 (cf. [L05, Satz 4.7.2]). Let F : C → C/G be a Galois cover with branch

locus B = {q1, . . . , qr} and

(h1, . . . , hr, a1, b1, . . . , ag′ , bg′)

be an associated generating vector of G. Let qj be a branch point and p ∈ C be a point

in the fibre of qj. Let h be an element in G such that the stabilizer of p is generated by

hhjh
−1. Then it holds

Jp(hhjh
−1) = exp

(
2π
√
−1

mj

)
,

where Jp(hhjh
−1) is the Jacobian of hhjh

−1 in the point p and mj = ord(hj).
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Theorem 1.3.3 (Chevalley-Weil formula, cf. [CW34]). Let G be a finite group acting

faithfully on a compact Riemann surface C. Choose a generating vector

(h1, . . . , hr, a1, b1, . . . , ag′ , bg′)

of type [g′;m1, . . . ,mr] corresponding to the covering F : C → C/G. Let χ be an irre-

ducible character of G and % be a representation with character χ, then it holds

〈χ, χϕ〉 = χ(1G)(g′ − 1) +
r∑
i=1

mi−1∑
α=1

α ·Ni,α

mi
+ 〈χ, χtriv〉.

Before we give a proof of the formula, we apply it in the special case of a free action.

Here we obtain a particularly nice description of the representation

ϕ : G→ GL
(
H1,0(C)

)
.

Example 1.3.4. Under the assumption that the action is free, the Chevalley-Weil formula

reads

〈χ, χϕ〉 = χ(1G)(g′ − 1) + 〈χ, χtriv〉 for all χ ∈ Irr(G).

Therefore, the character of ϕ is given by

χϕ = (g′ − 1)
∑

χ∈Irr(G)

χ(1G)χ+ χtriv = (g′ − 1)χreg + χtriv.

In other words: the representation ϕ is isomorphic to the direct sum of (g′ − 1) copies

of the regular representation and one copy of the trivial representation.

Proof of the Chevalley-Weil formula. Let L be the class function χtriv − χϕ. By bilin-

earity of the inner product it holds

〈χ, χϕ〉 = −〈χ,L〉+ 〈χ, χtriv〉.

Thus, it suffices to determine the inner product 〈χ,L〉, which we expand in the following

way

〈χ,L〉 =
1

|G|
∑
g∈G

χ(g)L(g) =
1

|G|
χ(1G)L(1G) +

1

|G|
∑
g∈G
g 6=1G

χ(g)L(g).

By definition of L it holds L(1G) = 1− g(C), and for all elements g 6= 1G we have

L(g) = 1− χϕ(g) =
∑

p∈Fix(g)

1

1− Jp(g)
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according to Eichler’s trace formula (see [FK80, Theorem V.2.9]). Since L(g) = L(g−1),

it follows
1

|G|
∑
g∈G
g 6=1G

χ(g)L(g) =
1

|G|
∑
g∈G
g 6=1G

∑
p∈Fix(g)

χ(g)

1− Jp(g−1)

=
1

|G|
∑

p∈Fix(C)

∑
g∈Gp
g 6=1G

χ(g)

1− Jp(g−1)
,

where

Fix(C) :=
{
p ∈ C

∣∣ Gp 6= {1G}}.
Let {q1, . . . , qr} be the branch locus of F . For all 1 ≤ i ≤ r there exists a point

pi ∈ F−1(qi) with Gpi = 〈hi〉 and for each h ∈ G it holds

Gh(pi) = 〈hhih−1〉.

Moreover, every p ∈ Fix(C) maps to a branch point of F . Lemma 1.3.2 implies

Jh(pi)(hhih
−1) = ξmi = exp

(
2π
√
−1

mi

)
and we conclude that the Jacobian Jh(pi)(hh

l
ih
−1) is equal to ξlmi for all l ∈ Z. Since χ

is a class function we also have χ(hli) = χ(hhlih
−1). This implies

1

|G|
∑

p∈Fix(C)

∑
g∈Gp
g 6=1G

χ(g)

1− Jp(g−1)
=

1

|G|

r∑
i=1

|G|
mi

mi−1∑
l=1

χ(hli)

1− ξ−lmi
,

which is equal to
r∑
i=1

1

mi

mi−1∑
l=1

∑mi−1
α=0 Ni,α · (ξαmi)

l

1− ξ−lmi
.

To simplify the last sum, we use the well-known identity

mi−1∑
l=1

(ξlmi)
α

1− ξ−lmi
=
mi − 1

2
− α for all 0 ≤ α ≤ mi − 1,

(see for example [Reid87, Eq. 8.8]) and get

〈χ,L〉 =
1

|G|
χ(1G)

(
1− g(C)

)
+

r∑
i=1

mi−1∑
α=0

Ni,α

mi

(
mi − 1

2
− α

)
.

Finally, we use Hurwitz’ formula to rewrite the inner product 〈χ, χϕ〉 in the following
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way

〈χ, χϕ〉 = 〈χ, χtriv〉+χ(1G)(g′−1)+
r∑
i=1

[
χ(1G)

(
mi − 1

2mi

)
−
mi−1∑
α=0

Ni,α

(
mi − 1

2mi
− α

mi

)]
.

The proof of the Chevalley-Weil formula is finished because
∑mi−1

α=0 Ni,α is equal to the

degree of the representation % which is given by χ(1G).

Remark 1.3.5. If we want to decompose the character χϕ of the representation

ϕ : G→ GL
(
H1,0(C)

)
in irreducible characters with the help of the Chevalley-Weil formula, we face the fol-

lowing computational problem: for each irreducible character χ of G and for each hi

in the generating vector, we need to determine the eigenvalues of the endomorphism

%(hi), where % is an irreducible representation with character χ. While it is relatively

easy to compute the irreducible characters of a finite group, it is comparatively hard

to determine its irreducible representations. For example: the computer algebra system

MAGMA can determine the character table of every finite group but its irreducible rep-

resentations only over fields of positive characteristic and, if the group is solvable, over

cyclotomic fields. The eigenvalues of %(hi) are, by definition, the roots of the character-

istic polynomial Phi of this endomorphism. Clearly, once we know the polynomial Phi ,

we can factorize it easily since its roots are powers of ξmi . Thus, we need to determine

Phi from the information encoded in the character χ without using the representation

%. This is indeed possible, according to the lemma below.

Lemma 1.3.6. Let % be a representation of degree n with character χ and h ∈ G. Then,

the coefficients ck of the characteristic polynomial

Ph(x) = xn + c1x
n−1 + . . .+ cn−1x+ cn

of %(h) are given by the following recursive formula:

ck = −1

k

k∑
j=1

ck−j · χ(hj) for 1 ≤ k ≤ n and c0 := 1.

Proof. The elementary symmetric polynomials and the power sum polynomials in n

variables

sk =
∑

1≤j1<...<jk≤n
xj1 · . . . · xjk and pk = xk1 + . . .+ xkn

13



are related via the Newton identities:

k · sk =
k∑
j=1

(−1)j−1sk−j · pj , for all 1 ≤ k ≤ n.

Let λ1, . . . , λn be the roots of Ph. Since % is a homomorphism and %(h) is diagonalizable,

it holds:

χ(hk) = tr
(
%(h)k

)
= λk1 + . . .+ λkn = pk(λ1, . . . , λn).

To conclude the proof, we combine the equalities

sk(λ1, . . . , λn) = (−1)kck, and pk(λ1, . . . , λn) = χ(hk)

with the Newton identities in compliance with c0 = s0 = 1.

Example 1.3.7. To illustrate the Chevalley-Weil formula, we consider the dihedral group

D6 = 〈s, t
∣∣ s2 = t6 = 1, sts = t5〉.

According to Example 1.1.8 there is a faithful group action of D6 on a compact Riemann

surface C of genus g(C) = 7 such that C/D6 is an elliptic curve and the cover

F : C → C/D6

is branched in two points with index 2, respectively. An associated generating vector is

given by (st, st, t5, t5). We consider the character χ5 in the character table of D6 (see

Example 1.2.8) and compute the multiplicity 〈χ5, χϕ〉: by the lemma above

c1 = −χ5(st) = 0, and c2 = −1

2

(
c1χ5(st) + χ5((st)2)

)
= −1

are the coefficients of the characteristic polynomial

Pst(x) = x2 + c1x+ c2 = x2 − 1

of %(st), where % is a representation with character χ5. The roots of Pst are ξ2 = −1

and ξ0
2 = 1. Consequently Ni,1 = 1 for i = 1, 2 and the Chevalley-Weil formula yields

〈χ5, χϕ〉 = 2
(
g(C/D6)− 1

)
+

2∑
i=1

mi−1∑
α=1

α ·Ni,α

mi
=

1

2
+

1

2
= 1.

Performing an analogous computation using the remaining irreducible characters of D6,

we obtain the decomposition

χϕ = χtriv + χ1 + χ2 + χ4 + χ5.
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Remark 1.3.8. At first glance, our version of the Chevalley-Weil formula differs from the

original one (see [CW34]), where the formula reads

〈χ, χϕ〉 = χ(1G)(g′ − 1) +
r∑
i=1

mi−1∑
α=1

Mi,α

(
1− α

mi

)
+ 〈χ, χtriv〉.

The reason is that the integers Mi,α are defined in another way than Ni,α. The definition

of Mi,α goes as follows (cf. [Nae05, § 1.4 and § 2.1]): let p ∈ C be a ramification point

which maps to the branch point qi ∈ C/G of index mi. Consider the unique element hp

in the stabilizer group Gp which maps to ξmi under the cotangent representation

Gp → GL
(
mp/m

2
p

)
' C∗, g 7→ [ω 7→ (g−1)∗ω] .

The integer Mi,α is defined as the multiplicity of ξαmi as an eigenvalue of %(hp), where

% is a representation with character χ. The relation between Mi,α and Ni,α is easy

to describe: recall that the branch point qi corresponds to the element hi from the

generating vector. We can assume that Gp = 〈hi〉. According to Lemma 1.3.2 it holds

Jp(hi) = ξmi . In other words hi is the unique element in Gp which maps to ξmi under

the tangent representation

Gp → GL
(
TpC

)
' C∗.

Since the tangent representation is the dual of the cotangent representation, we conclude

that hp = h−1
i . Thus, ξαmi is an eigenvalue of %(hp) if and only if ξmi−αmi is an eigenvalue

of %(hi) which implies

Mi,α = Ni,mi−α

and shows that both versions of the Chevalley-Weil formula are equivalent.
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Chapter 2

Varieties Isogenous to a Product

In the previous chapter we studied actions of a finite group G on a compact Riemann

surface C of genus g(C) ≥ 2. Here, we want to generalize this concept and consider

instead of a single Riemann surface C a product C1 × . . . × Cn of such surfaces and a

group G of automorphisms of the product. Under the assumption that the action of G

is free, the quotient space

X := (C1 × . . .× Cn)/G

is a projective manifold. It is called a variety isogenous to a product. These varieties

were introduced by Catanese in [Cat00]. They are the objects we want to study in this

chapter, especially in the case n = 3, where we call X a threefold isogenous to a product.

2.1 Basic Definitions and Properties

In this section we define varieties isogenous to a product and collect some basic properties

of these varieties.

Definition 2.1.1. A complex algebraic variety X is isogenous to a product of curves if

there exist compact Riemann surfaces C1, . . . , Cn of genus at least two and a finite group

G ≤ Aut(C1 × . . .× Cn) acting freely on the product C1 × . . .× Cn such that

X = (C1 × . . .× Cn)/G.

As a direct consequence of the definition, a variety X isogenous to a product is smooth,

projective, of general type (i.e. κ(X) = dim(X) = n) and its canonical classKX is ample.

The n-fold self-intersection of the canonical class Kn
X , the topological Euler number e(X)

and the holomorphic Euler-Poincaré-characteristic χ(OX) can be expressed in terms of

the genera g(Ci) and the group order |G|.

16



Proposition 2.1.2. Let X = (C1 × . . . × Cn)/G be a variety isogenous to a product.

Then

χ(OX) =
(−1)n

|G|

n∏
i=1

(
g(Ci)− 1

)
, Kn

X = (−1)nn! 2nχ(OX) and e(X) = 2nχ(OX).

Proof. We define Y := C1× . . .×Cn and denote a fibre of the projection pi : Y → Ci by

Fi. Then, the class of the canonical divisor KY it given by

KY ≡num
n∑
i=1

(
2g(Ci)− 2

)
Fi, and therefore Kn

Y = n! 2n
n∏
i=1

(
g(Ci)− 1

)
.

Since the G-action on Y is free, the quotient map π : Y → X is unramified and it

holds π∗ci(X) = ci(Y ) for all i. The equality c1(KZ) = −c1(Z) holds for all projective

manifolds Z, in particular for X and Y , and we deduce

n! 2n
n∏
i=1

(
g(Ci)− 1

)
= Kn

Y = (−1)n deg c1(Y )n = |G|(−1)n deg c1(X)n = |G|Kn
X .

The topological as well as the holomorphic Euler-Poincaré-characteristic is multiplica-

tive, therefore

e(Y ) =

n∏
i=1

e(Ci) =

n∏
i=1

(
2− 2g(Ci)

)
and χ(OY ) =

n∏
i=1

χ(OCi) =

n∏
i=1

(
1− g(Ci)

)
.

To relate these expressions with e(X) and χ(OX), we apply the Gauss-Bonnet formula

(see [GH78, p. 416]):

n∏
i=1

(
2− 2g(Ci)

)
= deg cn(Y ) = |G| deg cn(X) = |G|e(X)

and the formula of Hirzebruch-Riemann-Roch (see [GH78, p. 437]):

n∏
i=1

(
1−g(Ci)

)
= deg Tdn

(
c1(Y ), . . . , cn(Y )

)
= |G|deg Tdn

(
c1(X), . . . , cn(Y )

)
= |G|χ(OX).

In order to study group actions on a product C1× . . .×Cn of compact Riemann surfaces

with g(Ci) ≥ 2, it is important to understand the structure of the automorphism group

of the product. This group has a simple description in terms of the automorphism groups

Aut(Ci) of the factors, thanks to the lemma below:

Lemma 2.1.3 ([Cat00, cf. Rigidity Lemma 3.8]). Let g : C1× . . .×Cn → B1× . . .×Bn
be a surjective holomorphic map between products of compact Riemann surfaces. Assume

that g(Bi) ≥ 2 for all 1 ≤ i ≤ n. Then there exists a permutation ρ ∈ Sn and surjective
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holomorphic maps hi : Cρ(i) → Bi such that the following diagram commutes

C1 × . . .× Cn
g //

fρ ))

B1 × . . .×Bn

Cρ(1) × . . .× Cρ(n),

h

55

where h = (h1, . . . , hn) and fρ(x1, . . . , xn) = (xρ(1), . . . , xρ(n)).

Corollary 2.1.4 ([Cat00, cf. Corollary 3.9]). Let D1, . . . , Dk be pairwise non-isomorphic

compact Riemann surfaces with g(Di) ≥ 2. Then for all positive integers n1, . . . , nk it

holds:

Aut(Dn1
1 × . . .×D

nk
k ) =

(
Aut(D1)n1 oSn1

)
× . . .×

(
Aut(Dk)

nk oSnk

)
.

The corollary above motivates the next definition.

Definition 2.1.5. Let G ≤ Aut(C1 × . . .× Cn) be a subgroup. Then we define:

i) the diagonal subgroup G0 := G ∩
[

Aut(C1)× . . .×Aut(Cn)
]

ii) the subgroups Gi := G ∩
[

Aut(C1 × . . .× Ĉi × . . .× Cn)×Aut(Ci)
]

and

iii) the group homomorphisms ψi : Gi → Aut(Ci), induced by the natural projections

Aut(C1 × . . .× Ĉi × . . .× Cn)×Aut(Ci)→ Aut(Ci).

The kernel of ψi is denoted by Ki. We say that G is of unmixed type if G = G0 and

otherwise of mixed type. Moreover, we say that the quotient

(C1 × . . .× Cn)/G

is of mixed, respectively unmixed type, if and only if G is of mixed, respectively unmixed

type.

Remark 2.1.6. Let G ≤ Aut(C1 × . . .× Cn) be a subgroup, then G0 is normal in G.

Proof. The diagonal subgroup G0 is, by definition, the intersection of G with

Aut(C1)× . . .×Aut(Cn).

The latter is normal in Aut(C1 × . . .× Cn), whence G0 is normal in G, too.
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2.2 Group Actions on a Product of Curves

Let G be a subgroup of the automorphism group of a product C1× . . .×Cn of compact

Riemann surfaces, where g(Ci) ≥ 2. The diagonal subgroup G0 is normal in G and the

quotient G/G0 can be considered as a permutation group of the coordinates (x1, . . . , xn)

of the product in a natural way:

G/G0 → Sn, g 7→ ρ−1,

where g = h ◦ fρ is the factorization of g according to Lemma 2.1.3. If G is of unmixed

type, then it is immediate that the action is given in terms of the maps ψi:

g(x1, . . . , xn) =
(
ψ1(g)x1, . . . , ψn(g)xn

)
, for all g ∈ G.

In the mixed case our aim is to show that after conjugation with a suitable automorphism

in

Aut(C1)× . . .×Aut(Cn),

there are analogous formulas describing the G-action on the product in terms of the

maps ψi. Such a description, i.e. a normalized form of the action, is of great importance

for the following reasons:

• we can study geometric properties of the quotient (C1×. . .×Cn)/G using Riemann

surface theory (see Chapter 1).

• the formulas defining the normal form can be used to construct an action of an

abstract finite group G on a product of compact Riemann surfaces starting from

suitable subgroups Gi ≤ G and group actions ψ : Gi → Aut(Ci).

We assume that n = 3, but similar results can be obtained in any dimension. For the

case n = 2 we refer the reader to [Cat00, Proposition 3.16].

According to the index of G0 in G, there are three sub-cases of the mixed case:

G/G0 ' Z2, G/G0 ' A3 and G/G0 ' S3.

We call them index two, index three and index six case, respectively.

Convention: in the index two case we can assume that C2 ' C3. In the index three

and six case it holds C1 ' C2 ' C3. If we specialize to one of these cases, then we write

D × C2 or C3 instead of C1 × C2 × C3.
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Remark 2.2.1. The groups G,Gi and G0 are related as follows:

i) G1 = G and G2 = G3 = G0 in the index two case,

ii) Gi = G0 for all 1 ≤ i ≤ 3 in the index three case and

iii) |Gi : G0| = 2 for all 1 ≤ i ≤ 3 and Gi ∩Gj = G0 for all i 6= j in the index six case.

Proposition 2.2.2. Let G be a subgroup of the automorphism group of a product of

three compact Riemann surfaces and ν : G→ G/G0 ≤ S3 be the projection map.

i) In the index two case, fix an element δ ∈ G of the form δ(x, y, z) = (δ1x, δ3z, δ2y),

i.e. ν(δ) = (2, 3). Then, after conjugating with the automorphism ξ(x, y, z) :=

(x, y, δ3z), it holds

ψ3(g) = ψ2(δgδ−1) for all g ∈ G0

and the action is given by the formulas

• δ(x, y, z) =
(
ψ1(δ)x, z, ψ2(δ2)y

)
• g(x, y, z) =

(
ψ1(g)x, ψ2(g)y, ψ2(δgδ−1)z

)
for all g ∈ G0.

ii) In the index three case, fix an element τ ∈ G of the form τ(x, y, z) = (τ2y, τ3z, τ1x),

i.e. ν(τ) = (1, 3, 2). Then, after conjugating with the automorphism ε(x, y, z) :=

(x, τ2y, τ2τ3z), it holds

ψ2(g) = ψ1(τgτ−1) and ψ3(g) = ψ1(τ2gτ−2) for all g ∈ G0

and the action is given by the formulas

• τ(x, y, z) =
(
y, z, ψ1(τ3)x

)
• g(x, y, z) =

(
ψ1(g)x, ψ1(τgτ−1)y, ψ1(τ2gτ−2)z

)
for all g ∈ G0.

iii) In the index six case, fix an element τ ∈ G of the form τ(x, y, z) = (τ2y, τ3z, τ1x),

i.e. ν(τ) = (1, 3, 2). Then, after conjugating with the automorphism ε(x, y, z) :=

(x, τ2y, τ2τ3z), it holds

ψ2(h) = ψ1(τhτ−1) and ψ3(k) = ψ1(τ2kτ−2)

for all h ∈ G2 and k ∈ G3 and the action is given by the formulas

• τ(x, y, z) =
(
y, z, ψ1(τ3)x

)
• g(x, y, z) =

(
ψ1(g)x, ψ1(τgτ−1)y, ψ1(τ2gτ−2)z

)
• f(x, y, z) =

(
ψ1(f)x, ψ1(τfτ−2)z, ψ1(τ2fτ−1)y

)
for all g ∈ G0 and f ∈ G1 \G0.
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Proof. We just prove iii). The proofs of i) and ii) are analogous. After conjugation with

ε, it holds τ(x, y, z) = (y, z, τ ′x), where τ ′ = τ2τ3τ1. Since τ3(x, y, z) = (τ ′x, τ ′y, τ ′z), it

follows that τ ′ = ψ1(τ3). The next step is to relate the actions ψ1, ψ2 and ψ3 to each

other. The action of f ∈ G1 \G0 can be written as

f(x, y, z) =
(
ψ1(f)x, f3z, f2y

)
.

The element f ′ := τfτ−1 is contained in G3 \ G0, say f ′(x, y, z) =
(
f ′2y, f

′
1x, ψ3(f ′)z).

Consequently

(
f3z, f2y, ψ1(τ3f)x

)
= τf(x, y, z) = f ′τ(x, y, z) =

(
f ′2z, f

′
1y, ψ3(f ′)ψ1(τ3)x

)
and we conclude that ψ3(τfτ−1) = ψ1(τ3fτ−3) for all f ∈ G1 \ G0. An analogous

computation with f ∈ G0 shows that ψ3(τfτ−1) = ψ1(τ3fτ−3) holds for all f ∈ G1 or

equivalently

ψ3(k) = ψ1(τ2kτ−2) for all k ∈ G3.

The same argument using τ2 instead of τ yields ψ2(h) = ψ1(τhτ−1) for all h ∈ G2. As

a by-product

g(x, y, z) =
(
ψ1(g)x, ψ1(τgτ−1)y, ψ1(τ2gτ−2)z

)
for all g ∈ G0.

It remains to show that

f(x, y, z) =
(
ψ1(f)x, ψ1(τfτ−2)z, ψ1(τ2fτ−1)y

)
for all f ∈ G1 \G0.

Consider arbitrary elements f ∈ G1 \G0 and h ∈ G2 \G0. They can be written as

f(x, y, z) =
(
ψ1(f)x, f3z, f2y

)
and h(x, y, z) =

(
h3z, ψ1(τhτ−1)y, h1x

)
.

The product

fh(x, y, z) = f
(
h3z, ψ1(τhτ−1)y, h1x

)
=
(
ψ1(f)h3z, f3h1x, f2ψ1(τhτ−1)y

)
is contained in ν−1

(
(1, 2, 3)

)
, whence it is equal to τ2g′ ∈ τ2G0, where g′ := τ−2fh.

Consequently

τ2g′(x, y, z) =
(
ψ1(fhτ−2)z, ψ1(τfh)x, ψ1(τ2fhτ−1)y

)
=
(
ψ1(f)h3z, f3h1x, f2ψ1(τhτ−1)y

)
and we conclude that f2 = ψ1(τ2fτ−1). A similar computation starting with the product

hf instead of fh shows that f3 = ψ1(τfτ−2).

Remark 2.2.3. In the index six case it holds:

i) G3 = τG1τ
−1 and G2 = τ2G1τ

−2 as we already used in the proof above.
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ii) the restriction of the action to the subgroup H := ν−1
(
〈(1, 2, 3)〉

)
is in normal

form, i.e. in the form given in Proposition 2.2.2.

Convention: from now on we assume that a subgroup G ≤ Aut(C1×C2×C3) of mixed

type is embedded in normal form for a fixed choice of δ or τ , respectively.

As already mentioned a very important observation is that the formulas from Proposition

2.2.2 provide a way to define mixed group actions on a product of three compact Riemann

surfaces:

Proposition 2.2.4. Let G be a finite group with a normal subgroup G0 such that G/G0

is isomorphic to Z2, A3 or S3. Let ν : G→ G/G0 be the quotient map.

i) In the index two case, let ψ1 : G→ Aut(D) and ψ2 : G0 → Aut(C) be group actions

on compact Riemann surfaces with kernels Ki such that

K1 ∩K2 ∩ δK2δ
−1 = {1G}

for an element δ ∈ G \G0. Then the formulas from Proposition 2.2.2 i) define an

embedding iδ : G ↪→ Aut(D × C2).

ii) In the index three case, let α : G/G0 → A3 be an isomorphism and ψ1 : G0 →
Aut(C) be a group action on a compact Riemann surface with kernel K1 such that

K1 ∩ τK1τ
−1 ∩ τ2K1τ

−2 = {1G}

for an element τ ∈ G with (α◦ν)(τ) = (1, 3, 2). Then the formulas from Proposition

2.2.2 ii) define an embedding iτ : G ↪→ Aut(C3).

iii) In the index six case, let α : G/G0 → S3 be an isomorphism. Define

G1 := (α ◦ ν)−1
(
〈(2, 3)〉

)
and let ψ1 : G1 → Aut(C) be a group action on a compact Riemann surface with

kernel K1 such that

K1 ∩ τK1τ
−1 ∩ τ2K1τ

−2 = {1G}

for an element τ ∈ G with (α◦ν)(τ) = (1, 3, 2). Then the formulas from Proposition

2.2.2 iii) define an embedding iτ : G ↪→ Aut(C3).

Proof. The verification that the maps iδ and iτ are well-defined group homomorphisms,

is elementary and will be skipped. To finish the proof, we need to show that the maps

iδ and iτ are injective. Let g ∈ G such that iδ(g) = id, then g ∈ G0 and the condition
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iδ(g) = id is equivalent to

ψ1(g) = id, ψ2(g) = id and ψ2(δgδ−1) = id .

This is the same as g ∈ K1 ∩K2 ∩ δK2δ
−1. Similarly, iτ (g) = id is equivalent to

g ∈ K1 ∩ τK1τ
−1 ∩ τ2K1τ

−2.

Proposition 2.2.5. Let G be a subgroup of the automorphism group of a product of

three compact Riemann surfaces and denote by Ki,j the intersection of the kernels Ki

and Kj for i 6= j. Then it holds:

i) K1 ∩K2 ∩K3 = {1G}.

ii) a) In the index two case K3 = δK2δ
−1. In particular K2,3 is normal in G.

b) In the index three and index six case K3 = τK1τ
−1 and K2 = τ2K1τ

−2.

iii) the group K1,2 ·K1,3 ·K2,3 is a normal subgroup of G.

Proof. i) Let g ∈ K1 ∩K2 ∩K3 ≤ G0, then ψi(g) = id for all 1 ≤ i ≤ 3 which implies

g = 1G.

ii) is a direct consequence of Proposition 2.2.2.

iii) We only consider the index six case. The proof in the other cases is similar. Since

Ki,j is normal in G0, it suffices to show that

g
(
K1,2 ·K1,3 ·K2,3

)
g−1 = K1,2 ·K1,3 ·K2,3 for g = τ and for all g ∈ Gi \G0.

For g = τ this is a consequence of ii) part b) and the fact that elements a ∈ K1,2, b ∈ K1,3

and c ∈ K2,3 always commute. Consider an element f ∈ G1 \ G0. Since K1 is normal

in G1, it holds fK1f
−1 = K1. By a direct computation we verify fK2f

−1 = K3 and

conclude fK3f
−1 = K2 using the normality of K2 in G2. Putting these informations

together we obtain

f
(
K1,2 ·K1,3 ·K2,3

)
f−1 = K1,2 ·K1,3 ·K2,3.

The proof is finished because every element g ∈ G2 \G0 can be written as g = τf for a

suitable element f ∈ G1 \G0 and every g ∈ G3 \G0 as g = τ2f for some f ∈ G1 \G0.

Definition 2.2.6. Let X := (C1 × C2 × C3)/G be a threefold isogenous to a product.

We say that the action of G is

i) minimal if the groups Ki,j are trivial.

ii) absolutely faithful if the kernels Ki are trivial.
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Remark 2.2.7. Let X := (C1 × C2 × C3)/G be a threefold isogenous to a product.

i) Assume that the action of G is minimal, then

(G0 ∩Ki)× (G0 ∩Kj) E G0 for all i 6= j.

ii) In the index two case the action of G is minimal if and only if

K1 ∩K2 = {1G} and K2 ∩ δK2δ
−1 = {1G}.

iii) In the index three and index six case the action of G is minimal if and only if

K1 ∩ τK1τ
−1 = {1G}.

Proof. i) Clearly, the groups Ki ∩G0 are normal in G0. Moreover, the pairwise intersec-

tion of these groups is trivial, which implies that

(Ki ∩G0) · (Kj ∩G0) E G0

is a direct product.

ii) and iii) follow immediately from Proposition 2.2.5 ii) a) and b)

Lemma 2.2.8. Every threefold isogenous to a product can be obtained by a minimal

action.

Proof. Let (C1 × C2 × C3)/G be a realization of a threefold X isogenous to a product.

Since K := K1,2 · K1,3 · K2,3 is normal in G and Ki acts trivially on Ci we have the

following natural isomorphisms:

C1 × C2 × C3

G
' (C1 × C2 × C3)/K

G/K
' C1/K2,3 × C2/K1,3 × C3/K1,2

G/K
.

Note that the Riemann surface Ck/Ki,j has genus g(Ck/Ki,j) ≥ 2 because g(Ck) ≥ 2

and Ki,j acts freely on Ck. The kernel of the induced action of Gk/K on Ck/Ki,j is

given by

Kk = ker
(
Gk/K → Aut(Ck/Ki,j)

)
' (Kk ·K)/K.

We claim that the intersection Ki∩Kj is trivial for all 1 ≤ i < j ≤ 3. Assume that i = 1

and j = 2. An element in the intersection K1 ∩ K2 can be represented by an element

k1 ∈ K1 such that k1 = k2k with k2 ∈ K2 and k ∈ K. We want to show that k1 ∈ K.

Write k = abc with a ∈ K1,2, b ∈ K1,3 and c ∈ K2,3. Note that the elements a, b and c

commute, because the pairwise intersection of the normal subgroups Ki,j E G0 is trivial.
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The product k2c is contained in K1,2 ≤ K because

k2c ∈ K2 and k2c = k1(ab)−1 ∈ K1.

It follows that k1 = (k2c)ab ∈ K.

Convention: from now on we assume, without loss of generality, that the action of G

is minimal.

2.3 The Algebraic Datum

The aim of this section is to give a group theoretical description of threefolds isogenous

to a product.

We start by describing the freeness of the G-action. Here the following definition is

convenient:

Definition 2.3.1. Let C be a compact Riemann surface and ψ : G → Aut(C) a group

action. The stabilizer set Σ ⊂ G of ψ is defined as the set of elements in G admitting

at least one fixed point:

Σ =
⋃
p∈C

Gp.

Let ψ : G → Aut(C) be a group action and K := ker(ψ) be the kernel. Since ψ factors

through the quotient map

G/K
ψ // Aut(C)

G

ψ

99OO
,

it follows that the pre-image of the stabilizer set Σ of ψ is equal to Σ. Let

V := (h1, . . . , hr, a1, b1, . . . , ag′ , bg′)

be a generating vector of G/K associated to the cover

C → C/G, where G := G/K.

Then, according to Riemann’s existence Theorem, the cyclic groups 〈hi〉 and their con-

jugates provide the non-trivial stabilizer groups of ψ. Therefore we have

Σ =
⋃
g∈G

⋃
i∈Z

r⋃
j=1

{
ghijg

−1
}

25



and we also refer to Σ as the stabilizer set associated to the generating vector V .

Proposition 2.3.2. Let G be a subgroup of the automorphism group of a product C1 ×
C2 × C3 of compact Riemann surfaces and Σi be the stabilizer sets of the group actions

ψi : Gi → Aut(Ci). Then

a) In the unmixed case, the action of G is free if and only if:

Σ1 ∩ Σ2 ∩ Σ3 = {1G}.

b) In the index two case, the action of G is free if and only if:

i) Σ1 ∩ Σ2 ∩ δΣ2δ
−1 = {1G}.

ii) for all g ∈ G0 with δg ∈ Σ1, it holds (δg)2 /∈ Σ2.

c) In the index three case, the action of G is free if and only if:

i) Σ1 ∩ τΣ1τ
−1 ∩ τ2Σ1τ

−2 = {1G}.

ii) for all g ∈ G0 it holds (τg)3 /∈ Σ1.

d) In the index six case, the action of G is free if and only if:

i) Σ1 ∩ τΣ1τ
−1 ∩ τ2Σ1τ

−2 = {1G}.

ii) for all g ∈ G0 it holds (τg)3 /∈ Σ1.

iii) for all f ∈ G1 \G0 with f ∈ Σ1, it holds τf2τ−1 /∈ Σ1.

Proof. c) The group G is the disjoint union of G0, τG0 and τ2G0. Suppose p is a fixed

point of τg ∈ τG0, then p is also a fixed point of (τg)2 ∈ τ2G0. Conversely, let p be a

fixed point of τ2g ∈ τ2G0, then p is also a fixed point of (τ2g)2 ∈ τG0. Therefore it is

sufficient to show:

i) an element g ∈ G0 has a fixed point if and only if g ∈ Σ1 ∩ τΣ1τ
−1 ∩ τ2Σ1τ

−2.

ii) an element τg ∈ τG0 has a fixed point if and only if (τg)3 ∈ Σ1.

i) According to Proposition 2.2.2, we have

g(x, y, z) =
(
ψ1(g)x, ψ1(τgτ−1)y, ψ1(τ2gτ−2)z

)
,

for all g ∈ G0. Therefore (x0, y0, z0) ∈ C3 is a fixed point of g if and only if g, τgτ−1

and τ2gτ−2 are contained in Σ1. This is equivalent to

g ∈ Σ1 ∩ τΣ1τ
−1 ∩ τ2Σ1τ

−2

because Σ1 = τ3Σ1τ
−3.

ii) Let p ∈ C3 be a fixed point of τg, then p is also a fixed point of (τg)3 ∈ G0 and it

follows from i), that (τg)3 is contained in Σ1. Conversely, assume that (τg)3 ∈ Σ1, then
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there exists a point x0 ∈ C such that ψ1

(
(τg)3

)
x0 = x0. We define y0 := ψ1(τ(τg)2)x0

and z0 := ψ1(τ3g)x0. Then (x0, y0, z0) is a fixed point of τg.

d) In addition to the elements in G0, τG0 and τ2G0, we have to consider the elements

in Gi \ G0. Note that G2 \ G0 = τ2(G1 \ G0)τ−2 and G3 \ G0 = τ(G1 \ G0)τ−1. This

implies: there are elements in Gi \G0 (for i = 2, 3) with fixed points if and only if there

are elements in G1 \G0 with fixed points. It remains to show: an element f ∈ G1 \G0

has fixed points if and only if f ∈ Σ1 and τf2τ−1 ∈ Σ1. According to Proposition 2.2.2:

f(x, y, z) =
(
ψ1(f)x, ψ1(τfτ−2)z, ψ1(τ2fτ−1)y

)
.

Let (x0, y0, z0) ∈ C3 be a fixed point of f , then

ψ1(f)x0 = x0, ψ1(τfτ−2)z0 = y0, ψ1(τ2fτ−1)y0 = z0.

This shows that f ∈ Σ1 and ψ1(τf2τ−1)y0 = y0. The latter implies τf2τ−1 ∈ Σ1.

Conversely, assume f ∈ Σ1 and τf2τ−1 ∈ Σ1 then there exist points x0, y0 ∈ C such

that ψ1(f)x0 = x0 and ψ1(τf2τ−1)y0 = y0. Define z0 := ψ1(τ2fτ−1)y0, then (x0, y0, z0)

is a fixed point of f .

a) is clear and the proof of b) is similar, but simpler.

Proposition 2.3.3. Let G be a subgroup of the automorphism group of a product of

three curves.

a) Assume that G0 E G is of index six and G is acting freely on the product, then the

short exact sequence

1 −→ G0 −→ G −→ S3 −→ 1

does not split.

b) Assume that G0 E G is of index three and condition i) in Proposition 2.3.2 c)

holds. Then ii) in Proposition 2.3.2 c) is equivalent to the condition, that the

short exact sequence

1 −→ G0 −→ G −→ A3 −→ 1

does not split.

Proof. a) A short exact sequence 1 −→ G0 −→ G −→ S3 −→ 1 splits, if and only if

there exist elements a, b ∈ G \ G0 such that ord(a) = 2, ord(b) = 3 and aba = b−1.

Assume that the sequence splits, then there exist elements a, b as above. Since b2 /∈ G0

we can assume that b = τg ∈ τG0. This leads to the contradiction (τg)3 = 1 ∈ Σ1.

b) A short exact sequence 1 −→ G0 −→ G −→ A3 −→ 1 splits if and only if there exists

an element b ∈ G \ G0 of order 3. Suppose that such an element exists. Observe that

ord(b2) = 3 and b2 /∈ G0 so we can assume that b = τg ∈ τG0. Since (τg)3 = b3 = 1 ∈ Σ1
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we obtain a contradiction. Assume there is an element g ∈ G0 such that (τg)3 ∈ Σ1.

Then there exists a fixed point p ∈ C3 of τg. The point p is also a fixed point of

(τg)3 ∈ G0, hence

(τg)3 ∈ Σ1 ∩ τΣ1τ
−1 ∩ τ2Σ1τ

−2 = {1G}.

Corollary 2.3.4. Let X be a threefold isogenous to a product of curves. Assume that

G0 E G is of index three or six, then |G0| is divisible by 3.

Proof. Assume that 3 does not divide |G0|, then all elements of order 3 in G are contained

in G \G0. Since |G| is divisible by 3, there is least one such element and it follows that

the short exact sequence

1 −→ G0 −→ G −→ G/G0 −→ 1

splits. A contradiction.

We shall associate to a threefold isogenous to a product certain algebraic data. We

have the groups G, G0, the kernels Ki and the embedding G/G0 ≤ S3. In the index

three case we choose an element τ ∈ G with residue class (1, 3, 2). In the index six case

we choose elements τ, h ∈ G with classes (1, 3, 2) and (2, 3). According to Riemann’s

existence theorem, for each ψi : Gi/Ki → Aut(Ci) we can choose a generating vector Vi

for Gi/Ki of type Ti. However, this choice is not unique, only the type Ti is uniquely

determined.

Definition 2.3.5. To a threefold X isogenous to a product of we attach the tuple

• (G,K1,K2,K3, V1, V2, V3) in the unmixed case,

• (G,G0,K1,K2, V1, V2) in the index two case,

• (G,G0,K1, τ, V1) in the index three case,

• (G,G0,K1, τ, h, V1) in the index six case,

and call it an algebraic datum of X.

Thanks to Riemann’s existence theorem and Proposition 2.2.4, we have a way to con-

struct threefolds isogenous to a product starting from group theoretical data. For the

two dimensional analogue, we refer to [BCG08, Proposition 2.5].

Proposition 2.3.6. Let G be a finite group and G0 E G be a normal subgroup such that

G/G0 ≤ S3. Let ν : G→ G/G0 be the quotient map.

a) Assume that G0 = G and let Ki E G be three normal subgroups such that

Ki ∩Kj = {1G} for all 1 ≤ i < j ≤ 3.
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Let Vi be generating vectors for the groups G/Ki for 1 ≤ i ≤ 3. Let Σi ⊂ G be the

pre-images of the stabilizer sets associated to the generating vectors Vi under the

quotient maps

G→ G/Ki.

Assume that the freeness condition from Proposition 2.3.2 a) holds. Then there

exists a threefold X isogenous to a product of unmixed type with algebraic datum

(G,K1,K2,K3, V1, V2, V3).

b) Assume that G/G0 ' Z2. Let δ ∈ G \ G0, K1 E G and K2 E G0 be normal

subgroups such that

K1 ∩K2 = {1G} and K2 ∩ δK2δ
−1 = {1G}.

Let V1 be a generating vector for G/K1 and V2 a generating vector for G0/K2. Let

Σi ⊂ G be the pre-images of the stabilizer sets associated to the generating vectors

Vi under the quotient maps

G→ G/K1 and G0 → G0/K2.

Assume that the freeness conditions from Proposition 2.3.2 b) hold. Then there

exists a threefold X isogenous to a product with algebraic datum

(G,G0,K1,K2, V1, V2).

c) Assume that G/G0 ' Z3. Let τ ∈ G \G0 and K1 E G0 such that

K1 ∩ τK1τ
−1 = {1G}.

Let V1 be a generating vector for G0/K1 and Σ1 ⊂ G0 be the pre-image of the

stabilizer set associated to the generating vector V1 under the quotient map

G0 → G0/K1.

Assume that the freeness conditions from Proposition 2.3.2 c) hold. Then there

exists a threefold X isogenous to a product with algebraic datum

(G,G0,K1, τ, V1).

d) Assume that G/G0 ' S3. Let τ, h ∈ G\G0 such that τ2 /∈ G0 and h2 ∈ G0. Define

the subgroup

G1 := 〈h,G0〉 ≤ G.
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Let K1 E G1 be a normal subgroup such that

K1 ∩ τK1τ
−1 = {1G}.

Let V1 be a generating vector for G1/K1 and Σ1 ⊂ G1 be the pre-image of the

stabilizer set associated to the generating vector V1 under the quotient map

G1 → G1/K1.

Assume that the freeness conditions from Proposition 2.3.2 d) hold. Then there

exists a threefold X isogenous to a product with algebraic datum

(G,G0,K1, τ, h, V1).

Proof. b) By Riemann’s existence theorem there are two compact Riemann surfaces C

and D and two faithful group actions, ψ1 : G/K1 → Aut(D) and ψ2 : G0/K1 → Aut(C),

associated to the generating vectors V1 and V2. Composing these homomorphisms with

the quotient maps G→ G/K1 and G0 → G0/K2, we obtain two group actions

ψ1 : G→ Aut(D) and ψ2 : G0 → Aut(C)

with kernels K1 and K2. According to Proposition 2.2.4 i) there exists an embedding

iδ : G→ Aut(D×C2). The action of G on D×C2 is minimal by Remark 2.2.7 and free

by Proposition 2.3.2. It follows that the quotient (D × C2)/G is a threefold isogenous

to a product with algebraic datum (G,G0,K1,K2, V1, V2).

d) There is a compact Riemann surface together with a faithful group action

ψ1 : G1/K1 → Aut(C)

associated to the generating vector V1. Composition with G1 → G1/K1 yields a group

action

ψ1 : G1 → Aut(C) with ker(ψ1) = K1.

Define an isomorphism α : G/G0 → S3 via α(τ) := (1, 3, 2) and α(h) := (2, 3). According

to Proposition 2.2.4 iii) there is an embedding iτ : G → Aut(C3). As in part a), the

action of G on C3 is minimal and free, whence the quotient C3/G is a threefold isogenous

to a product with algebraic datum (G,G0, τ, h,K1, V1). We skip the proof of a) and c)

because it is identical.

In the proposition above, we actually construct families of threefolds. Theorem 1.1.3,

which is a stronger version of Riemann’s existence theorem, allows us to count the

number of parameters of these families. In order to apply it, we need to give additional

data namely:
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i) a compact Riemann surface C ′i, i.e. an oriented compact 2-dimensional topological

surface without boundary endowed with a complex structure,

ii) a finite set Bi ⊂ C ′i of points and

iii) a surjective homomorphism π1

(
C ′i \ Bi

)
→ Gi/Ki

for i = 1 in the index three and index six case, for i = 1 and 2 in the index two case and

for i = 1, 2 and 3 in the unmixed case. The choice of C ′i and the set of points Bi depend

on 3g′i − 3 + ri parameters, where ri = |Bi| and g′i = g(C ′i). Once we choose a geometric

basis for the fundamental group, the homomorphism

π1

(
C ′i \ Bi

)
→ Gi/Ki

is determined by a generating vector Vi of type Ti = [g′i;mi,1, . . . ,mi,ri ]. The following

remark is an immediate consequence this discussion.

Remark 2.3.7. The families of threefolds constructed in Proposition 2.3.6 depend on

i) 3(g′1 + g′2 + g′3)− 9 + r1 + r2 + r3 parameters in the unmixed case,

ii) 3(g′1 + g′2)− 6 + r1 + r2 parameters in the index two case and

iii) 3g′1 − 3 + r1 parameters in the index three and index six case.

Here, the integers g′i and ri are given in terms of the types Ti = [g′i;mi,1, . . . ,mi,ri ] of

the generating vectors Vi.
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2.4 The Hodge Diamond

The aim of this section is to explain how to compute the Hodge diamond of a threefold

X isogenous to a product from an algebraic datum of X. For the readers benefit we

briefly recall the terminology used in Hodge theory and some basic properties of Hodge

numbers (see for example [Hu05, Section 3.2]).

The Hodge numbers hp,q(X) of a projective, or more generally, a compact Kähler man-

ifold X are defined to be the dimensions of the Dolbeault cohomology groups

Hp,q(X) :=
ker
(
∂ : Ωp,q(X)→ Ωp,q+1(X)

)
∂ Ωp,q−1(X)

, where p, q ≤ dim(X) = n.

Here Ωp,q denotes the sheaf of C∞-forms of type (p, q) and ∂ is the Dolbeault operator.

According to the theory of harmonic forms there is a decomposition

Hk(X,C) =
⊕
p+q=k

Hp,q(X) for all k ≤ 2n.

Moreover, we have

hp,q(X) = hq,p(X) and hp,q(X) = hn−p,n−q(X),

where the equality on the left-hand side is induced by complex conjugation (on the level

of harmonic forms) and the equality on the right-hand side by Serre-duality. The Hodge

numbers can be displayed in form of a ”diamond” which is called the Hodge diamond of

X.

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

...

hn,0 hn−1,1 · · · · · · h1,n−1 h0,n

...

hn,n−2 hn−1,n−1 hn−2,n

hn,n−1 hn−1,1

hn,n

Let G be a group of automorphisms of X, then for all g ∈ G there are linear maps

g∗ : Hp,q(X)→ Hp,q(X), ω 7→ g∗ω.
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This fact allows us to define the subspaces

Hp,q(X)G :=
{
ω ∈ Hp,q(X)

∣∣ g∗ω = ω for all g ∈ G
}
⊆ Hp,q(X)

for all p, q ≤ n. Thanks to the next proposition, these subspaces have a particularly nice

interpretation in the case where G is finite group acting freely on X.

Proposition 2.4.1. Let X be a compact Kähler manifold and G be a finite group of

automorphisms acting freely on X. Then, the quotient map π : X → X/G induces

isomorphisms

Hp,q(X/G) ' Hp,q(X)G.

Proof. According to [Hat02, Proposition 3G.1] there are isomorphisms

π∗ : Hk(X/G,Q)
∼−→ Hk(X,Q)G for all k ≤ 2n.

Since a holomorphic map induces a morphism of Hodge structures (cf. [Voi07, Section

7.3.2]) we obtain a graded isomorphism

π∗ :
⊕
p+q=k

Hp,q(X/G)
∼−→
( ⊕
p+q=k

Hp,q(X)

)G
=
⊕
p+q=k

Hp,q(X)G

and the statement follows.

In our situation, the proposition motivates the following definition.

Definition 2.4.2. Let G be a subgroup of Aut(C1 × C2 × C3), where Ci are compact

Riemann surfaces of genus g(Ci) ≥ 2. We define representations of G via pullback

φp,q : G→ GL
(
Hp,q(C1 × C2 × C3)

)
, g 7→ [ω 7→ (g−1)∗ω]

and denote the characters of φp,q by χp,q.

Remark 2.4.3. Let X = (C1 × C2 × C3)/G be a threefold isogenous to a product. As a

direct consequence of Proposition 2.4.1 the Hodge numbers of X are given by

hp,q(X) = 〈χp,q, χtriv〉 =
1

|G|
∑
g∈G

χp,q(g).

Note that the group actions ψi : Gi → Aut(Ci) also induce representations

ϕi : Gi → GL
(
H1,0(Ci)

)
, h 7→ [ω 7→ ψi(h

−1)∗ω].

Our first aim is to show that the characters χp,q are completely determined by the
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characters χϕi of the representations ϕi. As usual, we assume that the embedding

G ≤ Aut(C1 × C2 × C3)

is given in normal form (see Proposition 2.2.2). The main tool for our computations is

Künneth’s formula for Dolbeault cohomology.

Proposition 2.4.4 ([GH78, p.103-104]). There is an isomorphism

Hp,q(C1 × C2 × C3) '
⊕

s1+s2+s3=p
t1+t2+t3=q

Hs1,t1(C1)⊗Hs2,t2(C2)⊗Hs3,t3(C3)

is induced by the map

ω1 ⊗ ω2 ⊗ ω3 7→ p∗1ω1 ∧ p∗2ω2 ∧ p∗3ω3,

where pi : C1 × C2 × C3 → Ci are the natural projections.

Theorem 2.4.5. For the characters χp,q it holds:

i) ResGG0

(
χ1,0

)
= χϕ1 + χϕ2 + χϕ3,

ii) ResGG0

(
χ1,1

)
= 2Re(χϕ1χϕ2 + χϕ1χϕ3 + χϕ2χϕ3) + 3χtriv,

iii) ResGG0

(
χ2,0

)
= χϕ1χϕ2 + χϕ1χϕ3 + χϕ2χϕ3,

iv) ResGG0

(
χ2,1

)
= χϕ1χϕ2χϕ3 + χϕ1χϕ2χϕ3 + χϕ1χϕ2χϕ3 + 2(χϕ1 + χϕ2 + χϕ3),

v) ResGG0

(
χ3,0

)
= χϕ1χϕ2χϕ3.

Here, χtriv is the trivial character and ResGG0

(
χp,q

)
is the restriction of χp,q to G0.

Proof. According to Künneth’s formula

Hp,q(C1 × C2 × C3) =
⊕

s1+s2+s3=p
t1+t2+t3=q

Hs1,t1(C1)⊗Hs2,t2(C2)⊗Hs3,t3(C3).

Let ω = ω1 ⊗ ω2 ⊗ ω3 be a pure tensor contained in some direct summand of this

decomposition. Since the action of G0 is diagonal the tensors ω and (g−1)∗ω are in the

same summand for all g ∈ G0. This implies that each summand is a subrepresentation,

whence the character χp,q is the sum of the characters of these subrepresentations. By

definition of χϕi and the fact that the character of a tensor product is the product of

the characters, the statement follows.

Now we turn to the mixed case, where we need to determine the values of the characters

χp,q for the elements outside of G0. Here, according to Proposition 2.2.2, the actions ψi
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are related to each other. Since the representations χϕi are defined in terms of ψi, they

must be related in the same way:

Remark 2.4.6.

i) χϕ3(g) = χϕ2(δgδ−1) for all g ∈ G0 in the index two case,

ii) χϕ2(g) = χϕ1(τgτ−1) and χϕ3(g) = χϕ1(τ2gτ−2) for all g ∈ G0 in the index three

case and

iii) χϕ2(h) = χϕ1(τhτ−1) and χϕ3(k) = χϕ1(τ2kτ−2) for all h ∈ G2 and k ∈ G3 in the

index six case.

In the proof of the next theorem, we need a lemma from linear algebra.

Lemma 2.4.7. Let A,B and C be endomorphisms of a finite dimensional vector space

V over the field K. Then

i) the trace of the unique linear map

V ⊗ V → V ⊗ V with u⊗ v 7→ Av ⊗Bu

is equal to the trace of A ◦B,

ii) the trace of the unique linear map

V ⊗ V ⊗ V → V ⊗ V ⊗ V with u⊗ v ⊗ w 7→ Av ⊗Bw ⊗ Cu

is equal to the trace of A ◦B ◦ C.

Proof. We just prove i), the proof of ii) is similar. Let {v1, . . . , vn} be a basis of V . We

write

A(vj) =
n∑
i=1

aijvi, and B(vk) =
n∑
l=1

blkvl,

where aij ∈ K and blk ∈ K are the coefficients of the matrices of A and B with respect

to the basis above. From the formula

vk ⊗ vj 7→ Avj ⊗Bvk =
∑
i,l

aijblkvi ⊗ vl

it follows that the trace of the map u⊗ v 7→ Av⊗Bu is the sum of the elements akjbjk:

∑
k,l

akjbjk =
n∑
k=1

n∑
j=1

akjbjk.

The proof is finished, because the elements ckk :=
∑n

j=1 akjbjk are precisely the diagonal

entries of the matrix of A ◦B.
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Theorem 2.4.8. The values of the characters χp,q for the elements outside of G0 are

displayed in the table below:

(1, 0) (1, 1) (2, 0) (2, 1) (3, 0)

χp,q(δg) χϕ1
(δg) 1 −χϕ2

(
(δg)2

)
−χϕ1

(δg)χϕ2

(
(δg)2

)
−χϕ1

(δg)χϕ2

(
(δg)2

)
χp,q(τg) 0 0 0 0 χϕ1

(
(τg)3

)
χp,q(τ2g) 0 0 0 0 χϕ1

(
(τ2g)3

)
χp,q(f) χϕ1

(f) 1 −χϕ2
(f2) −χϕ1

(f)χϕ2
(f2) −χϕ1

(f)χϕ2
(f2)

Here,

• the first row holds for all δg ∈ δG0 in the index two case,

• the second and third row holds for all τg ∈ τG0 and τ2g ∈ τ2G0 in the index three

as well as the index six case and

• the last row holds for all f ∈ G1 \G0 in the index six case.

Remark 2.4.9. The table above gives the values of the characters χp,q for all G \ G0.

In the index two and index three case this is clear. In the index six case we use the

identities

G1 \G0 = τ(G2 \G0)τ−1 = τ2(G3 \G0)τ−2

and the fact that a character is a class function.

Proof. Via ν : G→ G/G0 ≤ S3, the elements in G \G0 can either map to a three cycle

or a transposition. For this reason we will compute the values of the characters χp,q just

in two cases:

a) for the elements τg ∈ τG0, i.e. ν(τg) = (1, 3, 2) and

b) for the elements δg ∈ δG0, i.e. ν(δg) = (2, 3).

For the elements contained in τ2G0, the computation is identical to a) and for the

elements f ∈ G1 \G0 it is identical to b).

a) The inverse of an element τg ∈ τG0 acts on C3 via

(τg)−1(x, y, z) =
(
ψ1(g−1τ−3)z, ψ1(τg−1τ−1)x, ψ1(τ2g−1τ−2)y

)
.

Let ω = ω1 ⊗ ω2 ⊗ ω3 be a pure tensor in Hs1,t1(C)⊗Hs2,t2(C)⊗Hs3,t3(C), where

s1 + s2 + s3 = p and t1 + t2 + t3 = q.
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Under Künneth’s isomorphism ω maps to p∗1ω1 ∧ p∗2ω2 ∧ p∗3ω3. The pullback of this

element via (τg)−1 is:

± p∗1ψ1(τg−1τ−1)∗ω2 ∧ p∗2ψ1(τ2g−1τ−2)∗ω3 ∧ p∗3ψ1(g−1τ−3)∗ω1,

where the sign depends on the degrees of the classes ωi. The corresponding tensor

± ψ1(τg−1τ−1)∗ω2 ⊗ ψ1(τ2g−1τ−2)∗ω3 ⊗ ψ1(g−1τ−3)∗ω1

is an element in

Hs2,t2(C)⊗Hs3,t3(C)⊗Hs1,t1(C).

Hence ω and
(
(τg)−1

)∗
ω are contained in different direct summands for all pairs

(p, q) ∈
{

(1, 0), (1, 1), (2, 0), (2, 1)
}
.

This implies that the traces of the linear maps

(
(τg)−1

)∗
: Hp,q(C3)→ Hp,q(C3)

are equal to zero for these pairs. In other words χp,q(τg) = 0. In the case (p, q) = (3, 0),

the forms ωi are all of type (1, 0), consequently the sign in the formula for the pullback

of ω is +1 and there is only one summand in the decomposition of H3,0(C3). According

to the definition of the representations ϕi it holds

(
(τg)−1

)∗
ω = ϕ1(τgτ−1)ω2 ⊗ ϕ1(τ2gτ−2)∗ω3 ⊗ ϕ1(τ3g)∗ω1.

We apply Lemma 2.4.7 with A := ϕ1(τgτ−1), B := ϕ1(τ2gτ−2) and C := ϕ1(τ3g) and

conclude

χ3,0(τg) = tr(ABC) = tr
(
ϕ1(τg))3

)
= χϕ1

(
(τg)3

)
.

b) Consider an element δg ∈ δG0 and a pure tensor ω = ω1 ⊗ ω2 ⊗ ω3 in

Hs1,t1(D)⊗Hs2,t2(C)⊗Hs3,t3(C) ⊂ Hp,q(D × C2).

The pullback of ω via (δg)−1 is

(
(δg)−1

)∗
ω = ± ψ1(g−1δ−1)∗ω1 ⊗ ψ2(δg−1δ−1)∗ω3 ⊗ ψ2(g−1δ−2)∗ω2.

It is a tensor in

Hs1,t1(D)⊗Hs3,t3(C)⊗Hs2,t2(C).

For all pairs (p, q) in the table below, there is exactly one direct summand of Hp,q(D×C2)

containing both ω and
(
(δg)−1

)∗
ω. Hence, the trace of

(
(δg)−1

)∗
is equal to the trace

of the restriction of
(
(δg)−1

)∗
to this invariant direct summand. Using Lemma 2.4.7 in
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the same way as above, we obtain the following table:

(p, q) invariant summand χp,q(δg)

(1, 0) H1,0(D)⊗H0,0(C)⊗H0,0(C) χϕ1
(δg)

(1, 1) H1,1(D)⊗H0,0(C)⊗H0,0(C) 1

(2, 0) H0,0(D)⊗H1,0(C)⊗H1,0(C) −χϕ2

(
(δg)2

)
(2, 1) H0,1(D)⊗H1,0(C)⊗H1,0(C) −χϕ1

(δg)χϕ2

(
(δg)2

)
(3, 0) H1,0(D)⊗H1,0(C)⊗H1,0(C) −χϕ1(δg)χϕ2

(
(δg)2

)

Remark 2.4.10. Let X be a threefold isogenous to a product. The group actions

ψi : Gi/Ki → Aut(Ci)

induce representations

ϕi : Gi/Ki → GL
(
H1,0(Ci)

)
,

whose characters χϕi can be determined from an algebraic datum of X with the help of

the Chevalley-Weil formula (Theorem 1.3.3). Clearly, the composition of the quotient

map Gi → Gi/Ki and the character χϕi is equal to χϕi . According to Remark 2.4.3 the

Hodge numbers of X are given by

hp,q(X) =
1

|G|
∑
g∈G

χp,q(g),

where the characters χp,q are determined by the characters χϕi according to Theorem

2.4.5 and Theorem 2.4.8.
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Chapter 3

Combinatorics, Bounds and

Algorithms

Given a threefold isogenous to a product X = (C1×C2×C3)/G, we consider the following

numerical information:

• the group order n := |G|,

• the orders ki of the kernels Ki of ψi : Gi → Aut(Ci) and

• the types Ti = [g′i;mi,1, . . . ,mi,ri ] (see Theorem 1.1.7) of the corresponding Galois

covers

Ci → Ci/Gi, where Gi := Gi/Ki.

Note that the collection above determines the genera gi := g(Ci) via Hurwitz’ formula

gi =
|Gi|
2ki

(
2g′i − 2 +

ri∑
j=1

mi,j − 1

mi,j

)
+ 1,

and therefore also the invariants χ(OX), e(X) and K3
X of the threefold X (cf. Propo-

sition 2.1.2). However, for threefolds of mixed type, some of the information above is

redundant: in the index two case k2 = k3 and T2 = T3, whereas in the index three

and six case k1 = k2 = k3 and T1 = T2 = T3. Therefore, the following definition is

convenient.

Definition 3.0.1. The numerical datum of a threefold X isogenous to a product is the

tuple

• D := (n, k1, k2, k3, T1, T2, T3) in the unmixed case,

• D := (n, k1, k2, T1, T2) in the index two case,

• D := (n, k1, T1) in the index three and index six case.
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In the absolutely faithful case ki = 1 for all 1 ≤ i ≤ 3. Here, as a convention, we omit

writing the k′is.

Note that an algebraic datum A of X (see Definition 2.3.5) determines the numerical

datum D of X. In this case we say that the numerical datum D is realized by the algebraic

datum A.

In this section we derive combinatorial constraints on the numerical data. These con-

straints will imply that there are only finitely many possibilities for the numerical data,

once the value of χ(OX) is fixed. Consequently, there can be only finitely many algebraic

data, realizing these numerical data. This fact can be turned into an algorithm searching

systematically through all possibilities and thereby classifying all threefolds isogenous

to a product with a fixed value of χ(OX).

To have a compact notation of Hurwitz’ formula, we give the following definition.

Definition 3.0.2. To a type T := [g′;m1, . . . ,mr], we associate the rational number

Θ(T ) := 2g′ − 2 +

r∑
j=1

mj − 1

mj
.

According Hurwitz’ formula Θ(T ) is positive, when T is the type associated to a Galois

cover of a compact Riemann surface C of genus g(C) ≥ 2. The next remark is a well-

known estimation for Θ(T ).

Remark 3.0.3 (cf. [Mir95, Lemma III.3.8]). If Θ(T ) > 0, then Θ(T ) ≥ Θmin(T ), where

Θmin(T ) :=


1/42, if g′ = 0

1/2, if g′ = 1

2g′ − 2, if g′ ≥ 2

Moreover, Θ(T ) = Θmin(T ) if and only if

T ∈
{

[0; 2, 3, 7], [1; 2], [g′;−]

}
.

Definition 3.0.4. We define the function Nmax : N≥2 → N, where

Nmax(g) := max
{
|Aut(C)|

∣∣ C is a compact Riemann surface with g(C) = g
}
.

Remark 3.0.5. According to Hurwitz Nmax(g) is bounded by 84(g − 1). In [Con14] the

author provides a table listing the values of Nmax(g) for 2 ≤ g ≤ 301. According to our

knowledge this paper is the most comprehensive reference.
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Proposition 3.0.6. Let X =
(
C1 × C2 × C3

)
/G be a threefold isogenous to a product

with numerical datum D. Then

n ≤
⌊√√√√−d · χ(OX)

3∏
i=1

ki
Θmin(Ti)

⌋

where d = 8 in the unmixed case, d = 32 in the index two case and d = 216 in the index

three and index six case.

Proof. Since gi ≥ 2, Hurwitz’ formula

gi − 1 =
1

2

|Gi|
ki

Θ(Ti)

implies Θ(Ti) > 0. In combination with Proposition 2.1.2 and Remark 3.0.3 we can

estimate

−χ(OX) =
1

n

3∏
i=1

(
gi − 1

)
=

1

8n

3∏
i=1

|Gi|
ki

Θ(Ti) ≥
1

8n

3∏
i=1

|Gi|
ki

Θmin(Ti).

Now the claim follows from Remark 2.2.1.

In the absolutely faithful case Proposition 3.0.6 immediately yields a bound of the group

order in terms of χ(OX).

Corollary 3.0.7. Let X be a threefold isogenous to a product. Assume that the action

is absolutely faithful. Then

n ≤ b42
√
−d · 42χ(OX)c,

where d = 8 in the unmixed case, d = 32 in the index two case and d = 216 in the index

three and index six case.

Also in the general case it is possible to show that n is bounded in terms of χ(OX): let

X = (C1×C2×C3)/G be a threefold isogenous to a product. We consider the quotient

X0 := (C1 × C2 × C3)/G0.

It is a threefold isogenous to a product of unmixed type with

χ(OX0) =
∣∣G/G0

∣∣χ(OX).

Therefore it suffices to give a bound in the unmixed case.
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Proposition 3.0.8. Let X be a threefold isogenous to a product of unmixed type, then

n ≤ 846 · χ(OX)2.

Proof. It holds

−χ(OX) =
(g1 − 1)

k3

(g2 − 1)

k3

(g3 − 1)k3

n
k3 ≥

(
1

84

)3

k3 .

The inequality follows from Hurwitz’ bound which can be applied since K3 acts faithfully

on C1 and C2, by the minimality assumption, and G/K3 acts faithfully on C3. By

symmetry, the inequality

−843χ(OX) ≥ ki

also holds for i = 1, 2. The claim follows combining these inequalities with Proposition

3.0.6 and using Θ(Ti) ≥ 1/42.

Unfortunately, even in the simplest case χ(OX) = −1, the bound for the group order n

is very large.

Remark 3.0.9. It would be interesting to understand if there exists a significantly better

bound for n in terms of χ(OX).

Proposition 3.0.10. Let X be a threefold isogenous to a product, with numerical datum

D. Then

i) ki
∣∣ (g[i+1] − 1

)(
g[i+2] − 1

)
,

ii) mi,j

∣∣ (g[i+1] − 1
)(
g[i+2] − 1

)
,

iii)
(
gi − 1

) ∣∣ χ(OX)
n

ki
,

iv) ri ≤
4diki

(
gi − 1

)
n

− 4g′i + 4,

v) mi,j ≤ 4gi + 2,

vi) g′i ≤ 1− dikiχ(OX)(
g[i+1] − 1

)(
g[i+2] − 1

) ≤ 1− diχ(OX).

vii) n/(kidi) ≤ Nmax(gi)

Here, [ · ] denotes the residue mod 3 and

• di = 1 for all i in the unmixed case,

• d1 = 1 and d2 = d3 = 2 in the index two case,

• di = 3 for all i in the index three and index six case.
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Proof. i − ii) We assume that i = 1. Let V1 := (h1, . . . , hr, a1, b1, . . . , ag′1 , bg′1) be a

generating vector of type T1 associated to the cover

C1 → C1/G1, where G1 := G1/K1.

Let γj ∈ G1 ≤ G be a representative of hj ∈ G1 (if r = 0, then we set γj := 1G). By

the minimality of the G-action, the subgroup 〈γj〉 ·K1 ≤ G1 acts faithfully on C2 × C3.

Furthermore, 〈γj〉 ·K1 is contained in Σ1, therefore, it acts freely on C2 × C3. In other

words

S :=
C2 × C3

〈γj〉 ·K1

is a surface isogenous to a product with holomorphic Euler-Poincaré characteristic

χ(OS) =

(
g2 − 1

)(
g3 − 1

)
|〈γj〉 ·K1|

.

We conclude that

k1

∣∣ (g2 − 1
)(
g3 − 1

)
and m1,j = ord(hj)

∣∣ (g2 − 1
)(
g3 − 1

)
.

iii) The statement follows from part i) and Proposition 2.1.2:

−χ(OX)
n

ki
=
(
gi − 1

)(g[i+1] − 1
)(
g[i+2] − 1

)
ki

.

iv) is a straightforward consequence of Hurwitz’ formula, using the fact mi,j ≥ 2.

v) For a cyclic group H acting faithfully on a compact Riemann surface C of genus

g(C) ≥ 2, Wiman’s bound (see [Wim95]) holds:

|H| ≤ 4g(C) + 2.

In particular mi,j ≤ 4gi + 2.

vi) According to Proposition 2.1.2 and Hurwitz’ formula

g′i − 1 ≤ Θ(Ti)

2
=

ki
|Gi|

(
gi − 1

)
=

−ki(
g[i+1] − 1

)(
g[i+2] − 1

) |G/Gi|χ(OX).

Now, the second inequality follows from part i).

vii) The group Gi/Ki of order n/(diki) acts faithfully on Ci, hence n/(kidi) ≤ Nmax(gi).

An immediate consequence of Proposition 3.0.8 and Proposition 3.0.10 is the following

Corollary.
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Corollary 3.0.11. Let χ be an integer.

a) If χ ≥ 0 there are no threefolds X isogenous to a product with χ(OX) = χ.

b) If χ ≤ −1 there are only finitely many algebraic data of threefolds X isogenous to

a product with χ(OX) = χ.

A trivial but useful consequence of Proposition 2.1.2 is:

Remark 3.0.12.

a) In the index two case g2 =

√
−n · χ(OX)

g1 − 1
+ 1.

b) In the index three and index six case g1 = 3
√
−n · χ(OX) + 1.

The combinatorial constraints that we found enable us to give an algorithm to classify

threefolds isogenous to a product with a fixed value of χ(OX). Since the bound for the

group order is very large (cf. Proposition 3.0.8), a complete classification, even with the

help of a computer and just for small values of χ(OX), seems to be out of reach. On

the other hand, if the group action is assumed to be absolutely faithful, then the bound

drops significantly and a full classification, at least in the boundary case χ(OX) = −1, is

possible. For this reason, we restrict ourselves to the absolutely faithful case. The exact

strategy, that we follow in our algorithm, differs slightly according to the index of G0 in

G. Our MAGMA implementation is based on the code given in [BCGP12, Appendix].

We point out that the program relies heavily on MAGMA’s Database of Small Groups,

which contains:

• all groups of order up to 2000, excluding the groups of order 1024,

• the groups whose order is a product of at most 3 primes,

• the groups of order dividing p6 for p prime,

• the groups of order pkq, where pk is a prime-power dividing 28, 36, 55 or 74 and q

is a prime different from p.

Since the full code is long, we give it in Appendix A. Here we just explain the strategy:

Input: A value χ for the holomorphic Euler-Poincaré-characteristic.

Part 1: In the first part we determine the set of admissible numerical data. This is the

finite set of tuples of the form

• (n, T1, T2, T3) in the unmixed case,

• (n, T1, T2) in the index two case and

• (n, T1) in the index three and index six case,
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such that the combinatorial constraints form Proposition 3.0.10 and Remark 3.0.12, the

inequality from Proposition 3.0.6 and Hurwitz’ formula are satisfied.

Note that the set of numerical data of threefolds isogenous to a product with χ(OX) = χ

is a subset of the set of admissible numerical data.

In our implementation, this computation is performed by the functions AdNDunmixed,

AdNDindexTwo, AdNDindexThree and AdNDindexSix in the respective cases. The func-

tions just return the set of admissible numerical data such that the groups of order n

in the unmixed case, n/2 in the index two case and n/3 in the index three and index

six case are contained in the Database of Small Groups. The exceptions are stored

in the files ExcepUnmixedχ.txt, ExcepIndexTwoχ.txt, ExcepIndexThreeχ.txt and

ExcepIndexSixχ.txt.

Part 2: In the second part of the algorithm, we search for algebraic data.

Unmixed case:

For each 4-tuple (n, T1, T2, T3) contained in the set AdNDunmixed(χ) 1 search through

the groups G of order n for groups admitting at least one generating vector of type T1,

one of type T2 and one of type T3. For such groups compute all generating vectors Vi of

type Ti and consider all possible triples (V1, V2, V3). If the associated stabilizer sets Σi

fulfill the condition

Σ1 ∩ Σ2 ∩ Σ3 = {1G}

(cf. Proposition 2.3.2 a)), then there exists a threefold X isogenous to a product with

algebraic datum (G,V1, V2, V3) and χ(OX) = χ (see Proposition 2.3.6). Compute the

Hodge diamond of X with the method described in Section 2.4 and save the occurrence

[G,T1, T2, T3, h
3,0, h2,0, h1,0, h1,1, h1,2]

in the file unmixedχ.txt. The classification is performed calling ClassifyUnmixed(χ).

Index two case:

Step 1: Starting from the triples (n, T1, T2) contained in the set AdNDindexTwo(χ),

compute the set of 4-tuples (n, T1, T2, H), where H is a group of order n/2 admitting at

least one generating vector of type T2.

In our implementation, this computation is performed by the function NDHIndexTwo.

The set of 4-tuples (n, T1, T2, H) such that the groups of order n are contained in the

Database of Small Groups is returned. The remaining tuples are stored in the file

ExcepIndexTwoχ.txt.

1Here we mean the set of admissible numerical data which is returned after applying the function
AdNDunmixed to the value χ.
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Step 2: For each integer n belonging to some 4-tuple in the set NDHIndexTwo(χ) consider

the groups of order n. For each group G of order n construct the list of subgroups of

index two. For each G0 in this list consider the 4-tuples (n, T1, T2, H) from Step 1 such

that H ' G0. For each of this 4-tuples compute the set of generating vectors V1 for G

of type T1 and the set of generating vectors V2 for G0 of type T2. Check the freeness

conditions i) and ii) of Proposition 2.3.2 b). If they are fulfilled, then there exists a

threefold X isogenous to a product with algebraic datum (G,G0, V1, V2) and χ(OX) = χ

(see Proposition 2.3.6). Compute the Hodge diamond of X and save the occurrence

[G,T1, T2, h
3,0, h2,0, h1,0, h1,1, h1,2]

in the file IndexTwoχ.txt. Step 2 is performed calling ClassifyIndexTwo(χ).

Index three case:

Step 1: Starting from the pairs (n, T1) contained in the set AdNDindexThree(χ), com-

pute the set of triples (n, T1, H), where H is a group of order n/3 admitting three

generating vectors V1,V ′1 and V ′′1 of type T1 such that the associated stabilizer sets Σ1,

Σ′1 and Σ′′1 fulfill the condition

Σ1 ∩ Σ′1 ∩ Σ′′1 = {1H}.

Here we use the fact that a threefold isogenous to a product of mixed type with nu-

merical datum (n, T1) is covered by a threefold of unmixed type with numerical datum

(n/3, T1, T1, T1).

In our implementation, this computation is performed by the function NDHIndexThree.

The set of triples (n, T1, H) such that the groups of order n are contained in the

Database of Small Groups is returned. The remaining triples are stored in the file

ExcepIndexThreeχ.txt.

Step 2: For each integer n belonging to a triple from Step 1 consider the groups of

order n. For each group G of order n construct the list of normal subgroups G0 of index

three such that the short exact sequence

1→ G0 → G→ A3 → 1

does not split. For each G0 in this list consider the triples (n, T1, H) from Step 1 such

that H ' G0. For each of these 4-tuples choose an element τ ∈ G \G0 and compute all

generating vectors V1 for G0 of type T1. Check the freeness condition i) of Proposition

2.3.2 c). If it holds, then the second condition of the proposition is also fulfilled, since

the sequence

1→ G0 → G→ A3 → 1
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is non-split which is an equivalent condition according to Proposition 2.3.3. Therefore,

there exists a threefold X isogenous to a product with algebraic datum (G,G0, τ, V1)

and χ(OX) = χ (see Proposition 2.3.6). Compute the Hodge diamond of X and save

the occurrence

[G,T1, h
3,0, h2,0, h1,0, h1,1, h1,2]

in the file IndexThreeχ.txt. Step 2 is performed calling ClassifyIndexThree(χ).

Index six case:

Step 1: Starting from the pairs (n, T1) contained in the set AdNDindexSix(χ), compute

the set of triples (n, T1, H), whereH is a group of order n/3 admitting a generating vector

V1 of type T1.

In our implementation, this computation is performed by the function NDHIndexSix.

The set of triples (n, T1, H) such that the groups of order n are contained in the

Database of Small Groups is returned. The remaining triples are stored in the file

ExcepIndexSixχ.txt.

Step 2: For each integer n belonging to a triple from Step 1 consider the list of groups

of order n. For each group G of order n, consider the triples of the form (n, T1, H) such

that G admits a subgroup of index three isomorphic to H. Compute the set of normal

subgroups G0 of G of index six such that the short exact sequence

1→ G0 → G→ S3 → 1

does not split. Choose elements τ, h ∈ G \ G0 such that τ2 /∈ G0 and h2 ∈ G0. If the

group G1 := G0 ∪ h ·G0 is isomorphic to H, then compute all generating vectors V1 of

type T1 for this group. For each of these vectors compute the associated stabilizer set

Σ1 and check the freeness conditions i), ii) and iii) of Proposition 2.3.2 d). If they are

fulfilled, then there exists a threefold X isogenous to a product with algebraic datum

(G,G0, τ, h, V1) and χ(OX) = χ (see Proposition 2.3.6). Compute the Hodge diamond

of X and save the occurrence

[G,T1, h
3,0, h2,0, h1,0, h1,1, h1,2]

in the file IndexSixχ.txt. Step 2 is performed calling ClassifyIndexSix(χ).

Computational Remark 3.0.13.

• In Part 2 of the algorithm we search for generating vectors. We point out that

different generating vectors may determine threefolds with the same invariants.

For example, this happens if (but not only if) they differ by some Hurwitz moves.

These moves are described in [CLP15], [Zim87] and [Pe10] and we refer to these

sources for further details.
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• Note that for a generating vector of type [g′;−] the corresponding stabilizer set is

trivial and the corresponding character χϕ is the sum of the trivial character and

(g′ − 1) copies of the regular character (cf. Example 1.3.4). Consequently, in this

case it is sufficient for us to know the existence of a generating vector, but there

is no need to compute all of them.

Main Computation

We execute the implementation for the input value χ = −1. Note that the combinato-

rial constraints in Part 1 of the program are very strong, so relatively few admissible

numerical data are returned. The total number of admissible group orders turns out to

be relatively small and the maximum possible group order drops significantly compared

to the theoretical bound from Corollary 3.0.7.

The table below summarizes the occurrences:

unmixed index two index three index six

No. AdNumData 672 253 8 5

No. G-Orders 38 39 2 1

nmax 504 576 216 216

ntheo 769 1539 4000 4000

In the first row we report the total number of admissible numerical data, in the sec-

ond row the total number of group orders, in the third row the maximum possible

group order after performing Part 1 of the algorithm and in the last row the theoretical

bound for the group order according to Corollary 3.0.7. There are no exceptional nu-

merical data to be considered, i.e. the files ExcepUnmixedχ.txt, ExcepIndexTwoχ.txt,

ExcepIndexThreeχ.txt and ExcepIndexSixχ.txt remain empty. The table below re-

ports the computation time to run the complete program (Part 1 and Part 2) on a

8× 2.5GHz Intel Xenon L5420 workstation with 16GB RAM in the respective cases:

unmixed index two index three index six

time 11h 35min 10h 28min 24 sec 30 sec

This computation yields our main result: the classification of threefolds isogenous to a

product with χ(OX) = −1 and absolutely faithful G-action. For the definition of the

groups occurring in the tables below, we refer to Notation 0.0.1.

In the unmixed case we have the following theorem.

Theorem (A). Let X = (C1×C2×C3)/G be a threefold isogenous to a product of curves

of unmixed type. Assume that the action of G is absolutely faithful and χ(OX) = −1.

Then, the tuple

[G,T1, T2, T3, h
3,0(X), h2,0(X), h1,0(X), h1,1(X), h1,2(X), d]

48



appears in the table below. Conversely, each row is realized by at least one family of

threefolds isogenous to a product of curves of unmixed type with χ(OX) = −1, which

depends on d parameters and is obtained by an absolutely faithful G-action.

No. G Id T1 T2 T3 h3,0 h2,0 h1,0 h1,1 h1,2 d

1 {1} 〈1, 1〉 [2;−] [2;−] [2;−] 8 12 6 27 36 9

2 Z2 〈2, 1〉 [0; 26] [0; 26] [2;−] 8 8 2 19 28 9

3 Z2 〈2, 1〉 [0; 26] [1; 22] [2;−] 6 7 3 17 24 8

4 Z2 〈2, 1〉 [1; 22] [1; 22] [2;−] 6 8 4 19 26 7

5 Z3 〈3, 1〉 [0; 34] [0; 34] [2;−] 6 6 2 15 22 5

6 Z2
2 〈4, 2〉 [0; 25] [0; 25] [2;−] 6 6 2 15 22 7

7 Z2
2 〈4, 2〉 [0; 25] [0; 25] [2;−] 5 5 2 13 19 7

8 Z2
2 〈4, 2〉 [0; 25] [0; 26] [1; 22] 5 4 1 11 17 7

9 Z2
2 〈4, 2〉 [0; 25] [0; 26] [1; 22] 6 5 1 13 20 7

10 Z2
2 〈4, 2〉 [0; 25] [1; 22] [1; 22] 4 4 2 11 16 6

11 Z2
2 〈4, 2〉 [0; 25] [1; 22] [1; 22] 5 5 2 13 19 6

12 Z4 〈4, 1〉 [0; 22, 42] [0; 22, 42] [2;−] 6 6 2 15 22 5

13 Z5 〈5, 1〉 [0; 53] [0; 53] [2;−] 4 4 2 15 20 3

14 Z5 〈5, 1〉 [0; 53] [0; 53] [2;−] 5 5 2 13 19 3

15 Z5 〈5, 1〉 [0; 53] [0; 53] [2;−] 6 6 2 11 18 3

16 S3 〈6, 1〉 [0; 26] [0; 22, 32] [1; 3] 4 3 1 9 14 5

17 S3 〈6, 1〉 [0; 22, 32] [0; 22, 32] [2;−] 5 5 2 13 19 5

18 Z6 〈6, 2〉 [0; 22, 32] [0; 22, 32] [2;−] 6 6 2 15 22 5

19 Z6 〈6, 2〉 [0; 22, 32] [0; 3, 62] [2;−] 5 5 2 13 19 4

20 S3 〈6, 1〉 [0; 22, 32] [1; 22] [1; 3] 4 4 2 11 16 4

21 Z6 〈6, 2〉 [0; 3, 62] [0; 3, 62] [2;−] 4 4 2 15 20 3

22 Z6 〈6, 2〉 [0; 3, 62] [0; 3, 62] [2;−] 6 6 2 11 18 3

23 Z3
2 〈8, 5〉 [0; 25] [0; 25] [0; 25] 4 2 0 7 12 6

24 Z3
2 〈8, 5〉 [0; 25] [0; 25] [0; 25] 5 3 0 9 15 6

25 D4 〈8, 3〉 [0; 26] [0; 23, 4] [1; 2] 4 3 1 9 14 5

26 D4 〈8, 3〉 [0; 23, 4] [0; 23, 4] [2;−] 5 5 2 13 19 5

27 D4 〈8, 3〉 [0; 23, 4] [0; 22, 42] [1; 22] 4 3 1 9 14 4

28 D4 〈8, 3〉 [0; 23, 4] [1; 2] [1; 22] 4 4 2 11 16 4

29 Z8 〈8, 1〉 [0; 2, 82] [0; 2, 82] [2;−] 4 4 2 15 20 3

30 Z8 〈8, 1〉 [0; 2, 82] [0; 2, 82] [2;−] 6 6 2 11 18 3

31 Q 〈8, 4〉 [0; 43] [0; 43] [2;−] 5 5 2 13 19 3

32 Z10 〈10, 2〉 [0; 2, 5, 10] [0; 2, 5, 10] [2;−] 4 4 2 15 20 3

33 Z10 〈10, 2〉 [0; 2, 5, 10] [0; 2, 5, 10] [2;−] 6 6 2 11 18 3

34 Z10 〈10, 2〉 [0; 2, 5, 10] [0; 2, 5, 10] [2;−] 5 5 2 13 19 3

35 D6 〈12, 4〉 [0; 25] [0; 23, 3] [1; 3] 4 3 1 9 14 4

36 D6 〈12, 4〉 [0; 23, 3] [0; 23, 3] [2;−] 5 5 2 13 19 5

37 D6 〈12, 4〉 [0; 23, 3] [0; 23, 6] [1; 22] 4 3 1 9 14 4

38 Z3 × Z2
2 〈12, 5〉 [0; 2, 62] [0; 2, 62] [2;−] 4 4 2 15 20 3

39 Z3 × Z2
2 〈12, 5〉 [0; 2, 62] [0; 2, 62] [2;−] 4 4 2 13 18 3

40 Z3 × Z2
2 〈12, 5〉 [0; 2, 62] [0; 2, 62] [2;−] 5 5 2 11 17 3

41 Z3 × Z2
2 〈12, 5〉 [0; 2, 62] [0; 2, 62] [2;−] 6 6 2 11 18 3

42 Dic12 〈12, 1〉 [0; 3, 42] [0; 3, 42] [2;−] 5 5 2 13 19 3

43 D4 × Z2 〈16, 11〉 [0; 25] [0; 23, 4] [0; 23, 4] 4 2 0 7 12 4

44 D4 × Z2 〈16, 11〉 [0; 25] [0; 23, 4] [0; 23, 4] 3 1 0 5 9 4

45 SD16 〈16, 8〉 [0; 2, 4, 8] [0; 2, 4, 8] [2;−] 4 4 2 13 18 3

46 SD16 〈16, 8〉 [0; 2, 4, 8] [0; 2, 4, 8] [2;−] 5 5 2 11 17 3

47 S4 〈24, 12〉 [0; 23, 4] [0; 22, 32] [0; 3, 42] 3 1 0 5 9 2

48 Z3 oϕ D4 〈24, 8〉 [0; 2, 4, 6] [0; 2, 4, 6] [2;−] 4 4 2 13 18 3

49 Z3 oϕ D4 〈24, 8〉 [0; 2, 4, 6] [0; 2, 4, 6] [2;−] 5 5 2 11 17 3

50 SL(2,F3) 〈24, 3〉 [0; 32, 4] [0; 32, 4] [2;−] 5 5 2 13 19 3
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No. G Id T1 T2 T3 h3,0 h2,0 h1,0 h1,1 h1,2 d

51 S4 × Z2 〈48, 48〉 [0; 25] [0; 2, 4, 6] [0; 2, 4, 6] 3 1 0 5 9 2

52 GL(2,F3) 〈48, 29〉 [0; 2, 3, 8] [0; 2, 3, 8] [2;−] 4 4 2 13 18 3

53 GL(2,F3) 〈48, 29〉 [0; 2, 3, 8] [0; 2, 3, 8] [2;−] 5 5 2 11 17 3

54 A5 〈60, 5〉 [0; 23, 3] [0; 2, 52] [0; 32, 5] 2 0 0 3 6 1

In the index two case we have the following theorem.

Theorem (B). Let X be a threefold isogenous to a product of curves of mixed type.

Assume that the action of G is absolutely faithful, χ(OX) = −1 and the index of G0 in

G is two. Then, the tuple

[G,T1, T2, h
3,0(X), h2,0(X), h1,0(X), h1,1(X), h1,2(X), d]

appears in the table below. Conversely, each row in the table is realized by at least one

family of threefolds, which depends on d parameters and is obtained by an absolutely

faithful G-action.

No. G Id T1 T2 h3,0 h2,0 h1,0 h1,1 h1,2 d

1 Z2 〈2, 1〉 [2;−] [2;−] 5 7 4 18 24 6

2 Z4 〈4, 1〉 [0; 22, 42] [2;−] 4 4 2 11 16 4

3 Z4 〈4, 1〉 [2;−] [0; 26] 7 7 2 14 22 6

4 Z4 〈4, 1〉 [2;−] [1; 22] 5 6 3 14 20 5

5 Z2
2 〈4, 2〉 [2;−] [0; 26] 5 5 2 14 20 6

6 Z2
2 〈4, 2〉 [2;−] [1; 22] 4 5 3 14 19 5

7 S3 〈6, 1〉 [2;−] [0; 34] 4 4 2 12 17 4

8 Z6 〈6, 2〉 [2;−] [0; 34] 5 5 2 12 18 4

9 Z8 〈8, 1〉 [2;−] [0; 22, 42] 5 5 2 12 18 4

10 Z4 × Z2 〈8, 2〉 [2;−] [0; 22, 42] 5 5 2 12 18 4

11 Z4 × Z2 〈8, 2〉 [0; 22, 42] [1; 22] 3 2 1 7 11 3

12 Z4 × Z2 〈8, 2〉 [2;−] [0; 25] 5 5 2 12 18 5

13 Z4 × Z2 〈8, 2〉 [2;−] [0; 25] 6 6 2 12 19 5

14 D4 〈8, 3〉 [2;−] [0; 22, 42] 4 4 2 12 17 4

15 D4 〈8, 3〉 [0; 22, 42] [1; 22] 3 2 1 8 12 3

16 D4 〈8, 3〉 [1; 2] [0; 26] 3 2 1 8 12 4

17 D4 〈8, 3〉 [1; 2] [1; 22] 2 2 2 8 11 3

18 D4 〈8, 3〉 [2;−] [0; 25] 4 4 2 11 16 5

19 D4 〈8, 3〉 [2;−] [0; 25] 5 5 2 12 18 5

20 Q 〈8, 4〉 [2;−] [0; 22, 42] 6 6 2 12 19 4

21 Z3
2 〈8, 5〉 [2;−] [0; 25] 4 4 2 12 17 5

22 D5 〈10, 1〉 [2;−] [0; 53] 4 4 2 10 15 3

23 Z10 〈10, 2〉 [2;−] [0; 53] 4 4 2 12 17 3

24 Dic12 〈12, 1〉 [2;−] [0; 22, 32] 6 6 2 12 19 4

25 Dic12 〈12, 1〉 [2;−] [0; 3, 62] 5 5 2 10 16 3

26 Z12 〈12, 2〉 [2;−] [0; 22, 32] 5 5 2 12 18 4

27 Z12 〈12, 2〉 [2;−] [0; 3, 62] 4 4 2 12 17 3

28 D6 〈12, 4〉 [2;−] [0; 22, 32] 4 4 2 12 17 4

29 D6 〈12, 4〉 [2;−] [0; 3, 62] 4 4 2 10 15 3

30 D6 〈12, 4〉 [2;−] [0; 22, 32] 4 4 2 11 16 4

31 Z3 × Z2
2 〈12, 5〉 [2;−] [0; 22, 32] 5 5 2 12 18 4

32 Z3 × Z2
2 〈12, 5〉 [2;−] [0; 3, 62] 4 4 2 12 17 3
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No. G Id T1 T2 h3,0 h2,0 h1,0 h1,1 h1,2 d

33 Z16 〈16, 1〉 [2;−] [0; 2, 82] 4 4 2 12 17 3

34 Z2
2 oϕ Z4 〈16, 3〉 [1; 2] [0; 22, 42] 3 2 1 6 10 2

35 Z2
2 oϕ Z4 〈16, 3〉 [0; 22, 42] [0; 25] 4 2 0 6 11 3

36 Z2
2 oϕ Z4 〈16, 3〉 [0; 22, 42] [0; 25] 3 1 0 5 9 3

37 Z2
2 oϕ Z4 〈16, 3〉 [0; 22, 42] [0; 25] 4 2 0 5 10 3

38 Z2
2 oϕ Z4 〈16, 3〉 [0; 22, 42] [0; 25] 4 2 0 7 12 3

39 Z2
2 oϕ Z4 〈16, 3〉 [1; 2] [0; 25] 3 2 1 6 10 3

40 Z2
2 oϕ Z4 〈16, 3〉 [1; 2] [0; 25] 4 3 1 6 11 3

41 Z4 oϕ Z4 〈16, 4〉 [1; 2] [0; 22, 42] 3 2 1 6 10 2

42 Z4 oϕ Z4 〈16, 4〉 [1; 2] [0; 22, 42] 4 3 1 6 11 2

43 Z8 × Z2 〈16, 5〉 [2;−] [0; 2, 82] 4 4 2 12 17 3

44 M16 〈16, 6〉 [2;−] [0; 2, 82] 5 5 2 10 16 3

45 D8 〈16, 7〉 [2;−] [0; 2, 82] 4 4 2 10 15 3

46 D8 〈16, 7〉 [2;−] [0; 23, 4] 4 4 2 11 16 4

47 SD16 〈16, 8〉 [2;−] [0; 2, 82] 4 4 2 12 17 3

48 SD16 〈16, 8〉 [2;−] [0; 43] 4 4 2 11 16 3

49 SD16 〈16, 8〉 [0; 2, 4, 8] [1; 22] 3 2 1 7 11 2

50 SD16 〈16, 8〉 [2;−] [0; 23, 4] 5 5 2 11 17 4

51 Dic16 〈16, 9〉 [2;−] [0; 2, 82] 6 6 2 10 17 3

52 Dic16 〈16, 9〉 [2;−] [0; 43] 5 5 2 11 17 3

53 Z2
2 × Z4 〈16, 10〉 [0; 22, 42] [0; 25] 3 1 0 5 9 3

54 D4 × Z2 〈16, 11〉 [2;−] [0; 23, 4] 4 4 2 11 16 4

55 D4 × Z2 〈16, 11〉 [0; 22, 42] [0; 25] 3 1 0 6 10 3

56 Q× Z2 〈16, 12〉 [2;−] [0; 43] 5 5 2 11 17 3

57 D4 ∗φ Z4 〈16, 13〉 [2;−] [0; 43] 4 4 2 11 16 3

58 D4 ∗φ Z4 〈16, 13〉 [2;−] [0; 23, 4] 5 5 2 11 17 4

59 Dic20 〈20, 1〉 [2;−] [0; 2, 5, 10] 6 6 2 10 17 3

60 Z20 〈20, 2〉 [2;−] [0; 2, 5, 10] 4 4 2 12 17 3

61 D10 〈20, 4〉 [2;−] [0; 2, 5, 10] 4 4 2 10 15 3

62 Z2
2 × Z5 〈20, 5〉 [2;−] [0; 2, 5, 10] 4 4 2 12 17 3

63 Dic24 〈24, 4〉 [2;−] [0; 3, 42] 5 5 2 11 17 3

64 S3 × Z4 〈24, 5〉 [2;−] [0; 3, 42] 4 4 2 11 16 3

65 S3 × Z4 〈24, 5〉 [2;−] [0; 23, 3] 5 5 2 11 17 4

66 D12 〈24, 6〉 [2;−] [0; 23, 3] 4 4 2 11 16 4

67 Dic12× Z2 〈24, 7〉 [2;−] [0; 2, 62] 5 5 2 10 16 3

68 Dic12× Z2 〈24, 7〉 [2;−] [0; 2, 62] 6 6 2 10 17 3

69 Dic12× Z2 〈24, 7〉 [2;−] [0; 3, 42] 5 5 2 11 17 3

70 Z3 oϕ D4 〈24, 8〉 [2;−] [0; 23, 3] 5 5 2 11 17 4

71 Z3 oϕ D4 〈24, 8〉 [2;−] [0; 3, 42] 4 4 2 11 16 3

72 Z3 oϕ D4 〈24, 8〉 [2;−] [0; 2, 62] 4 4 2 10 15 3

73 Z3 oϕ D4 〈24, 8〉 [2;−] [0; 2, 62] 4 4 2 12 17 3

74 Z6 × Z4 〈24, 9〉 [2;−] [0; 2, 62] 4 4 2 12 17 3

75 D4 × Z3 〈24, 10〉 [2;−] [0; 2, 62] 4 4 2 11 16 3

76 D4 × Z3 〈24, 10〉 [2;−] [0; 2, 62] 5 5 2 10 16 3

77 D6 × Z2 〈24, 14〉 [2;−] [0; 23, 3] 4 4 2 11 16 4

78 D6 × Z2 〈24, 14〉 [2;−] [0; 2, 62] 4 4 2 10 15 3

79 Z3
2 × Z3 〈24, 15〉 [2;−] [0; 2, 62] 4 4 2 12 17 3

80 Z2
2 oϕ Z8 〈32, 5〉 [1; 2] [0; 2, 82] 2 1 1 6 9 1

81 Z3
2 oϕ Z4 〈32, 6〉 [0; 22, 42] [0; 23, 4] 3 1 0 4 8 2

82 Z3
2 oϕ Z4 〈32, 6〉 [1; 2] [0; 23, 4] 3 2 1 6 10 2

83 M16 oϕ Z2 〈32, 7〉 [1; 2] [0; 23, 4] 3 2 1 6 10 2

84 D4 oϕ Z4 〈32, 9〉 [0; 22, 42] [0; 23, 4] 3 1 0 5 9 2

85 D4 oϕ Z4 〈32, 9〉 [0; 22, 42] [0; 23, 4] 3 1 0 4 8 2

86 D4 oϕ Z4 〈32, 9〉 [0; 2, 4, 8] [0; 25] 3 1 0 5 9 2

87 Z4 oϕ Z8 〈32, 12〉 [1; 2] [0; 2, 82] 3 2 1 6 10 1

88 D4 × Z4 〈32, 25〉 [0; 22, 42] [0; 23, 4] 3 1 0 4 8 2

89 Z4 oϕ D4 〈32, 28〉 [0; 22, 42] [0; 23, 4] 3 1 0 5 9 2
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No. G Id T1 T2 h3,0 h2,0 h1,0 h1,1 h1,2 d

90 SD16× Z2 〈32, 40〉 [2;−] [0; 2, 4, 8] 4 4 2 11 16 3

91 D8 ∗φ Z4 〈32, 42〉 [2;−] [0; 2, 4, 8] 4 4 2 11 16 3

92 Hol(Z8) 〈32, 43〉 [2;−] [0; 2, 4, 8] 4 4 2 10 15 3

93 SD16 oϕ Z2 〈32, 44〉 [2;−] [0; 2, 4, 8] 5 5 2 10 16 3

94 2O 〈48, 28〉 [2;−] [0; 32, 4] 5 5 2 11 17 3

95 GL(2,F3) 〈48, 29〉 [2;−] [0; 32, 4] 4 4 2 11 16 3

96 SL(2, 3)× Z2 〈48, 32〉 [2;−] [0; 32, 4] 5 5 2 11 17 3

97 SL(2, 3) oϕ Z2 〈48, 33〉 [2;−] [0; 32, 4] 4 4 2 11 16 3

98 Dic24 oϕ Z2 〈48, 37〉 [2;−] [0; 2, 4, 6] 4 4 2 11 16 3

99 D4 ×S3 〈48, 38〉 [2;−] [0; 2, 4, 6] 4 4 2 10 15 3

100 D4 oϕ S3 〈48, 39〉 [2;−] [0; 2, 4, 6] 5 5 2 10 16 3

101 Z6 oϕ D4 〈48, 43〉 [2;−] [0; 2, 4, 6] 4 4 2 11 16 3

102 S4 × Z4 〈96, 186〉 [0; 22, 42] [0; 2, 4, 6] 3 1 0 3 7 1

103 GL(2,F3)× Z2 〈96, 189〉 [2;−] [0; 2, 3, 8] 4 4 2 11 16 3

104 (Q× Z2) oϕ S3 〈96, 190〉 [2;−] [0; 2, 3, 8] 5 5 2 10 16 3

105 2O oϕ Z2 〈96, 192〉 [2;−] [0; 2, 3, 8] 4 4 2 11 16 3

106 GL(2,F3) oϕ Z2 〈96, 193〉 [2;−] [0; 2, 3, 8] 4 4 2 10 15 3

107 GL(2,Z4) 〈96, 195〉 [0; 22, 42] [0; 2, 4, 6] 3 1 0 4 8 1

In the index three and index six case we have the following theorem.

Theorem (C).

a) There is a unique group G acting absolutely faithful and freely on a product of

curves such that the quotient X has χ(OX) = −1 and the index of G0 in G is

three. The group G has MAGMA id 〈27, 4〉 and is a semidirect product

G ' Z9 oϕ Z3.

The numerical datum of X is
(
27, [0; 34]

)
and the Hodge numbers are:

h3,0(X) = 4, h2,0(X) = 2, h1,0(X) = 0, h1,1(X) = 5 and h1,2(X) = 10

b) There is no group acting absolutely faithful and freely on a product of curves such

that the quotient X has χ(OX) = −1 and the index of G0 in G is six.

Computational Remark 3.0.14. For values of χ different from −1 there might occur

exceptional numerical data, when we run Part 1 of the program. We executed Part 1 in

the unmixed, index two, index three and index six case for all values of χ in the range

−40 ≤ χ ≤ −1

and found no exceptional numerical data. Albeit it is not of great importance in our

context, we we shall mention that there are methods to deal with the exceptional numer-

ical data, if they should occur for χ ≤ −41. We refer the reader to the paper [BCG08],

where the authors classify surfaces isogenous to a product with pg = q = 0 and the

analogous problem appears. Their strategy can be easily adapted to the threefold case.
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Nevertheless, running Part 2 of the program for χ different from −1 is very time and

memory consuming, in particular in the unmixed and the index two case: when we

decrease χ, then the maximal possible value for g′i increases, according to Proposition

3.0.10 vi). Similarly, the maximal length ri of the types

Ti = [g′i;mi,1, . . . ,mi,ri ]

that we obtain increases as well. This leads to a large number of generating vectors that

need to be determined and analysed, which slows down the computation and requires a

lot of memory.

To conclude this chapter we give two further examples of threefolds X isogenous to a

product with χ(OX) = −1. The first one is of mixed type and obtained by an index

six action, the second one is of unmixed type without parameters, i.e. a rigid example.

Note that there are no such examples in the absolutely faithful case with χ(OX) = −1.

The files ExampleIndexSix.magma and ExampleRigid.magma in Appendix A contain the

source codes to perform the required MAGMA computations.

Example 3.0.15.

a) We begin with the index six example. Consider the groupG := SmallGroup(216, 90),

it admits a unique normal subgroup G0 such that G/G0 ' S3. Moreover, the ex-

tension

1→ G0 → G→ S3 → 1

is non-split. For the elements h := G.1 ∗G.2 ∗G.42 and τ := G.3 ∗G.42 in G \G0

it holds

τ2 /∈ G0 and h2 ∈ G0,

i.e. h and τ define an isomorphism G/G0 → S3. The cyclic group K1 generated

by G1.3 ∗ G1.4 is the unique normal subgroup in G1 := 〈h,G0〉 of order six such

that

K1 ∩ τK1τ
−1 = {1G}.

The quotient G1/K1 is isomorphic to the dihedral group D6 via the map G1/K1 →
D6 defined by

G1.1 7→ s and G1.2 ∗G1.5 7→ t.

According to Example 1.1.8 there is a faithful group action D6 → Aut(C), where

C is a compact Riemann surface of genus g(C) = 7. A corresponding generating

vector is given by V1 := (st, st, t5, t5). The stabilizer set Σ1 of the action

ψ1 : G1 → G1/K1 ' D6 → Aut(C)
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fulfills the freeness conditions:

i) Σ1 ∩ τΣ1τ
−1 ∩ τ2Σ1τ

−2 = {1G}.

ii) (τg)3 /∈ Σ1 for all g ∈ G0 and

iii) τf2τ−1 /∈ Σ1 for all f ∈ G1 \G0 ∩ Σ1.

According to Proposition 2.3.6 c), the tuple (G,G0,K1, τ, h, V1) is an algebraic

datum of a threefold X = C3/G isogenous to a product. Since g(C) = 7, it holds

χ(OX) = −(g(C)− 1)3

216
= −1.

For completeness, we also determine the Hodge numbers hp,q of the threefold X:

the character χϕ1 of the representation

ϕ1 : G1 → G1/K1 ' D6 → GL
(
H1,0(C)

)
is equal to the composition of the homomorphism G1 → G1/K1 ' D6 with the

character of the representation D6 → GL
(
H1,0(C)

)
. The latter is, according to

Example 1.3.7, given by

χtriv + χ1 + χ2 + χ4 + χ5,

where χi are the irreducible characters of D6 determined in Example 1.2.8. Using

the explicit description of the characters χp,q in terms of χϕ1 (see Theorem 2.4.5

and Theorem 2.4.8), we compute the Hodge numbers of X via the formulae

hp,q(X) = 〈χp,q, χtriv〉 =
1

|G|
∑
g∈G

χp,q(g)

and obtain

h3,0(X) = 2, h2,0(X) = 1, h1,0(X) = 1, h1,1(X) = 5 and h1,2(X) = 8.

b) Let S =
(
C1 × C2

)
/G be a rigid surface isogenous to a product of unmixed type,

then Ci/G ' P1 and the G-covers Ci → P1 are branched over 0, 1 and ∞. These

surfaces are called Beauville surfaces, since Beauville provided the first example of

such a surface (cf. [Be83]). In his example G = Z2
5 and g(Ci) = 6, which yields

χ(OS) = 1, according to Proposition 2.1.2. Appropriate generating vectors Vi for

Z2
5 are given by

V1 =
[
(0, 3), (3, 3), (2, 4)

]
and V2 =

[
(2, 0), (2, 1), (1, 4)

]
.

We can easily modify this example to obtain a rigid threefold isogenous to a prod-
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uct with χ(OX) = −1. Consider the generating vector V3 = (1, 1, 3) of Z5. It

corresponds to an action

ψ3 : Z5 → Aut(C3),

where C3 is a curve of genus two, C3/Z5 ' P1 and the Z5-cover C3 → P1 is branched

over 0, 1 and∞. We obtain a diagonal, free action of Z2
5 on C1×C2×C3, where Z2

5

acts on C3 via ψ3 composed with the projection to the first factor. The quotient

X =
(
C1 × C2 × C3

)
/Z2

5

is a rigid threefold isogenous to a product with χ(OX) = −1 and the Hodge

numbers of X are the following:

h3,0(X) = 3, h2,0(X) = 1, h1,0(X) = 0, h1,1(X) = 5 and h1,2(X) = 9.
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Chapter 4

Product Quotient Threefolds

4.1 Generalities

Until now we considered varieties isogenous to a product, i.e. varieties obtained as a

quotient of a product of compact Riemann surfaces by the free action of a finite group

G. Now we drop the freeness assumption. For simplicity, we also assume that the action

is unmixed and absolutely faithful.

Definition 4.1.1. A variety X =
(
C1× . . .×Cn

)
/G, where G is a finite group with an

unmixed action on the product of compact Riemann surfaces Ci of respective genera at

least two such that the maps ψi : G→ Aut(Ci) are injective is called a product quotient

variety.

Since we do not assume that G acts freely, a product quotient variety X is in general

singular. The singularities of X must be quotient singularities, i.e. locally analytically

isomorphic to a quotient of Cn modulo a finite subgroup of GL(n,C). More precisely we

have:

Proposition 4.1.2. The singular locus Sing(X) of a product quotient variety

X =
(
C1 × . . .× Cn

)
/G

is the image of the finite set
{
q ∈ C1 × . . . × Cn

∣∣ Stab(q) 6= {1G}
}

under the quotient

map. Each singularity is an isolated cyclic quotient singularity

1

m
(a1, . . . , an),

i.e. locally around the singular point, the variety X is isomorphic to a quotient Cn/H,
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where H is a cyclic group generated by a diagonal matrix

diag
(
ξa1 , . . . , ξan

)
, where ξ := exp

(
2π
√
−1

m

)
and gcd(ai,m) = 1.

Proof. Clearly, a point q ∈ C1× . . .×Cn with trivial stabilizer group can not decent to a

singular point of X. From the assumption that the maps ψi are injective, it follows that

there are at most finitely many points on the product admitting a non-trivial stabilizer

group. Let q = (q1, . . . , qn) be such a point and x its class in X. According to Cartan

[Car57], we know that locally around x the quotient X is isomorphic to Cn/H where

H < GL(n,C) is identified, via the tangent representation, with the stabilizer group

Stab(q). Since the action of G on C1 × . . . × Cn is assumed to be diagonal also H acts

on Cn diagonally, i.e. via diagonal matrices. Note that the stabilizer group Stab(q) is

equal to

Gq1 ∩ . . . ∩Gqn

which is, as an intersection of cyclic groups, cyclic. We conclude that H ' Stab(q) is

generated by a diagonal matrix of order m := |H|:

diag
(
ξa1 , . . . , ξan

)
, where ξ := exp

(
2π
√
−1

m

)
and gcd(ai,m) = 1.

The condition gcd(ai,m) = 1 reflects the fact that in a sufficiently small neighbour-

hood of q there are no other points with non-trivial stabilizer group. The Cheval-

ley–Shephard–Todd theorem (cf. [Che55] and [S-T54]) implies that x is singular.

Definition 4.1.3 ([Cat07, Def 1.1]). Let π : Y → X be a regular map between varieties

of the same dimension. The map π is called quasi-étale if there is a subvariety Z ⊂ Y

of codimension at least two such that

π∣∣Y \Z : Y \ Z → π(Y \ Z)

is étale.

Let X be a product quotient variety. Since quotient singularities are Q-factorial (see

[KM98, Proposition 5.15]) we have a well-defined intersection product Kn
X ∈ Q, which is

in general not an integer. It can be determined in the same way as for varieties isogenous

to a product (cf. Proposition 2.1.2):

Proposition 4.1.4. Let X =
(
C1 × . . .× Cn

)
/G be a product quotient variety, then

Kn
X =

n! 2n

|G|

n∏
i=1

(
g(Ci)− 1

)
.

Proof. Choose an integer I such that IKX is Cartier and define Y := C1 × . . . × Cn.
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Since the quotient map π : Y → X is quasi-étale it holds π∗(IKX) = IKY . Moreover,

the degree of π is the order of G, which implies (IKY )n = |G|(IKX)n. The claim follows

because

Kn
Y = n! 2n

n∏
i=1

(
g(Ci)− 1

)
.

In recent years, there has been a considerable interest in product quotient varieties of

dimension two, see for example [Pe11], [BCGP12] and [BP12]. A lot of new examples

of varieties of general type have been constructed in this way. Our aim is to generalize

the methods of the above authors in order to study higher dimensional product quotient

varieties admitting canonical singularities, in particular the three dimensional case. For

the readers benefit we recall the definition of canonical singularities:

Definition 4.1.5. A normal variety X has canonical singularities if the canonical divi-

sor KX is Q-Cartier, and if for a resolution ρ : Z → X with exceptional prime divisors

Ei the rational numbers ai defined by the formula

KZ = ρ∗(KX) +
∑

aiEi

are non-negative. If ai > 0 for all exceptional prime divisors Ei then the variety X has

terminal singularities.

An important property of quasi-étale morphisms between varieties with canonical sin-

gularities is the following:

Proposition 4.1.6 ([Cat07, Section 3]). Let π : Y → X be a quasi-étale morphism

between varieties with canonical singularities. Then X and Y have the same Kodaira

dimension, i.e. κ(X) = κ(Y ).

Corollary 4.1.7. A product quotient variety X with canonical singularities is of general

type.

Proof. The claim follows immediately from the fact that the quotient map π : C1× . . .×
Cn → X is quasi-étale and

κ(C1 × . . .× Cn) = κ(C1) + . . .+ κ(Cn) = n

because g(Ci) ≥ 2.

Theorem 4.1.8 ([Reid87, 3.2 b)]). Let X be a threefold with canonical singularities then

there exists a crepant terminalisation, i.e. a crepant partial resolution ρ : X̂ → X such

that X̂ has only terminal singularities.
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Remark 4.1.9.

i) Recall that a crepant partial resolution is a proper birational morphism ρ : X̂ → X

such that ρ∗(KX) = K
X̂

.

ii) Let X be a threefold with canonical singularities and ρ : X̂ → X be a crepant ter-

minalisation. Assume that X̂ is minimal but singular. Let Z → X̂ be a resolution

of singularities. Then, by the Negativity Lemma [KM98, Lemma 3.39], there exists

a curve C contained in the exceptional locus of the resolution such that C.KZ < 0,

i.e. Z is not minimal.

The object we want to study in the remaining part of this thesis is a crepant terminali-

sation X̂ of a product quotient threefold

X :=
(
C1 × C2 × C3

)
/G

with canonical singularities. In particular we want to understand which values of the

invariants

e(X̂), K3
X̂

and χ(O
X̂

)

may be realized and how to classify these varieties. These questions are well-posed,

because the invariants mentioned above are independent of the chosen crepant terminal-

isation (cf. [H89]).

Similar to the case of threefolds isogenous to a product it is convenient to introduce and

work with an algebraic datum:

Definition 4.1.10. Let X =
(
C1 × C2 × C3

)
/G be a product quotient threefold and Vi

be a generating vector for G associated to the cover

Ci → Ci/G, for all 1 ≤ i ≤ 3.

The tuple (G,V1, V2, V3) is called an algebraic datum of X.

4.2 The Singularities

In the previous section we saw that the singular locus of a product quotient variety

consists of finitely many isolated cyclic quotient singularities:

1

m
(a1, . . . , an), where gcd(ai,m) = 1 for all 1 ≤ i ≤ n.

The case of interest for us is when the singularities are canonical and the dimension is

three. These singularities were classified by Morrison (see. [Mor85]). In this section we
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present Morrison’s theorem and determine for each possible type of singularity a crepant

terminalisation (cf. Theorem 4.1.8).

Before we start, we explain when two cyclic quotient singularities are isomorphic. This

is important because we are only interested in the isomorphism class of a singularity.

The following proposition gives a criterion.

Proposition 4.2.1 ([Fuj74, Lemma 2.]). The singularities

1

m
(a1, . . . , an) and

1

m
(b1, . . . , bn)

are isomorphic if and only if there exists a permutation δ ∈ Sn and an integer 0 < k < m

with gcd(m, k) = 1 such that

aik ≡ bδ(i) mod m for all 1 ≤ i ≤ n.

Note that the proposition allows us to assume that an isolated cyclic quotient singularity

is of type 1
m(1, a2, . . . , an).

Example 4.2.2. The isolated cyclic quotient singularities

1

m
(1, a, b) and

1

m
(1, c, d)

are isomorphic if and only if (a, b) or (b, a) is one of the following tuples

(c, d), (c−1 mod m, dc−1 mod m) or (d−1 mod m, d−1c mod m).

Next, we introduce affine toric varieties and show that cyclic quotient singularities are

examples of such varieties. Toric geometry provides a convenient way to work with this

class of singularities. For details about toric varieties we refer the reader to the textbook

[Ful93].

Let N ' Zn be a lattice and σ ⊂ N ⊗ R be a strongly convex rational polyhedral cone,

i.e.

σ = cone(v1, . . . , vl) and σ ∩ (−σ) = {0},

where the vectors vi belong to the lattice. The dual lattice of N is defined as M :=

Hom(N,Z) and the dual cone of σ as

σ∨ :=
{
u ∈M ⊗ R

∣∣ 〈u, v〉 ≥ 0 for all v ∈ σ
}
,

where 〈 , 〉 denotes the dual pairing. According to Gordan’s lemma [Ful93, Section

1.2] the semigroup M ∩ σ∨ is finitely generated. Therefore, the associated C-algebra

C[σ∨ ∩M ] is also finitely generated which allows us to define the affine toric variety Uσ
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as

Spec
(
C[σ∨ ∩M ]

)
.

We mention that Uσ is normal (see [Ful93, Section 2.1]) and of dimension n.

Proposition 4.2.3 ([Ful93, Section 2.1]). The affine toric variety Uσ is smooth if and

only if σ is generated by a part of a Z-basis of the lattice N , in which case

Uσ ' Ck ×
(
C∗
)n−k

, where k := dim
(

Span(σ)
)
.

Example 4.2.4. Let U be an isolated cyclic quotient singularity of type

1

m
(a1, . . . , an)

To give it the structure of an affine toric variety, we consider the lattice

N = Zn +
Z
m

(a1, . . . , an)

and the cone σ := cone(e1, . . . , en). The dual lattice of N is given by

M =
{

(u1, . . . , un)
∣∣ m divides

n∑
i=1

uiai
}

and we find that the coordinate ring C[σ∨ ∩M ] is the ring of invariants for the action

of the cyclic group generated by the matrix

diag
(
ξa1 , . . . , ξan

)
, where ξ := exp

(
2π
√
−1

m

)
,

i.e. U = Spec
(
C[σ∨ ∩M ]

)
.

Up to now, we saw the definition of an affine toric variety and our main example: a cyclic

quotient singularity. A general toric variety is obtained by gluing affine toric varieties

Uσ, more precisely:

Definition 4.2.5. Let N be a lattice.

i) A fan F in N ⊗R is a finite collection of strongly convex rational polyhedral cones

σ ⊂ N ⊗ R such that

• each face of a cone in F is a cone in F and

• the intersection of two cones in F is a face of each of them.

ii) The toric variety UF associated to the fan F is the variety obtained by gluing the

affine varieties

Uσ for all σ ∈ F
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along the open sets Uσ∩σ′ of Uσ and Uσ′ for all cones σ and σ′ contained in F .

Example 4.2.6. Consider the lattice N = Z2 and the fan F in Z2⊗R ' R2 which consists

of the cones

σ1 := cone(e1, e2), σ2 := cone(e2,−e1 − e2) and σ3 := cone(e1,−e1 − e2).

The affine toric varieties Uσi are smooth, because the generators of σi form a Z-basis of

Z2 for all 1 ≤ i ≤ 3. By Proposition 4.2.3 they are isomorphic to C2 and it is not hard

to verify that the toric variety associated to F is P2
C.

e1

e2

−e1 − e2

σ1

σ2

σ3

Figure 4.1: toric fan of P2

Proposition 4.2.7 ([Ful93, Section 2.4]). Let N be a lattice and F be a fan in N ⊗R.

Then, the toric variety UF is complete, i.e. compact in the Euclidean topology if and

only if

N ⊗ R =
⋃
σ∈F

σ.

Now that we have the notion of a toric variety, we shall also introduce morphisms between

them. They are induced by certain homomorphisms of lattices.

Remark-Construction 4.2.8.

i) Let N and N ′ be lattices together with fans F in N ⊗ R and F ′ in N ′ ⊗ R. A

homomorphism of lattices φ : N ′ → N with the property that for each cone σ′ ∈ F ′

there exists cone σ ∈ F with φ(σ′) ⊂ σ induces in a natural way a morphism

UF ′ → UF of toric varieties.

ii) Let N be a lattice together with a fan F and let v be a lattice point and τ := R≥0v

be the ray generated by v. We construct a new fan F ′ out of F via subdivision

along τ according to the following recipe: replace any cone σ containing v by the
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collection of convex hulls of τ with the faces of σ that do not contain τ . By i) the

identity map of N induces a morphism

ρ : UF ′ → UF .

Theorem 4.2.9 ([Ful93, Section 2.4 and Section 2.6]).

i) Let F be a fan in N ⊗ R and F ′ be the fan obtained from F via subdivision along

the ray τ generated by v ∈ N . Then the induced morphism

ρ : UF ′ → UF .

is proper and birational.

ii) Iterating the procedure in i) for appropriate lattice points leads to a resolution of

singularities of UF .

Remark 4.2.10. The exceptional locus of the birational map ρ : UF ′ → UF from Theorem

4.2.9 i) has the following description: define the quotient lattice

N(τ) :=
N

N ∩ Rv

and consider all cones σ which contain τ as a face. The collection of the quotient cones

σ :=
σ + Rv
Rv

⊂ N(τ)⊗ R

form a fan in the vector space N(τ) ⊗ R which is denoted by Star(τ). The exceptional

locus of ρ is the associated toric variety E(τ). According to Proposition 4.2.7 the variety

E(τ) is compact if and only if

N(τ)⊗ R =
⋃

σ∈Star(τ)

σ.

Now we apply the above to our example of an isolated cyclic quotient singularity.

Proposition 4.2.11 (Reid-Shepherd-Barron-Tai [Reid80] and [Tai82]). Let U be an

isolated cyclic quotient singularity of type

1

m
(a1, . . . , an).

i) Let v = 1
m(v1, . . . , vn) ∈ σ∩N \{0} be a primitive vector and τ be the ray generated

by v, where

N = Zn +
Z
m

(a1, . . . , an).
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The subdivision of the fan consisting of the single cone σ yields a proper birational

morphism ρ : UF → U , i.e. a partial resolution of U with exceptional divisor E(τ).

It holds

KUF = ρ∗(KU ) +

[
1

m

( n∑
i=1

vi

)
− 1

]
E(τ).

ii) The singularity U is canonical (or terminal) if and only if

n∑
j=1

[k · aj ] ≥ m, for all k = 1, . . . ,m− 1

(respectively > m). Here, [ · ] denotes the residue mod m.

Remark 4.2.12. Note that the partial resolution in i) is crepant if and only if v is con-

tained in the hyperplane

{(x1, . . . , xn) ∈ Rn
∣∣ x1 + · · ·+ xn = 1}.

In dimension three isolated canonical singularities are classified by Morrison. They are

either terminal or Gorenstein, except for two examples.

Theorem 4.2.13 ([Mor85]). Let U be an isolated, canonical, cyclic quotient singularity.

Then precisely one of the following holds:

i) U is a terminal singularity,

ii) U is a Gorenstein singularity,

iii) U is isomorphic to a singularity of type 1
9(1, 4, 7) or of type 1

14(1, 9, 11).

We call the singularities 1
9(1, 4, 7) and 1

14(1, 9, 11) singularities of type III.

Remark 4.2.14.

i) Recall that a normal variety is Gorenstein if it is Cohen-Macauly and its canonical

Weil divisor is a Cartier divisor.

ii) According to Watanabe [Wat74] a quotient singularity Cn/G is Gorenstein if and

only if G ≤ SL(n,C). Therefore, a cyclic quotient singularity, as in the theo-

rem above, is Gorenstein if and only if it is isomorphic to a singularity of type
1
m(1, a,m− a− 1). In which case m is odd, because

gcd(m, a) = gcd(m, a+ 1) = 1.

Theorem 4.2.15 ([MS84]). A three dimensional cyclic quotient singularity is terminal

if and only if it is isomorphic to a singularity of type 1
m(1, a,m−a) for some a ∈ N such

that gcd(a,m) = 1.
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Next, we want to determine a crepant terminalisation

ρ : Û → U

for each type of singularity U occurring in the theorem above. In the terminal case,

we simply set Û := U and ρ := id. In the other (non-trivial) cases, we apply Proposi-

tion 4.2.11 i), iteratively if needed. Remark 4.2.12 provides a necessary and sufficient

condition for ρ to be crepant. We begin with the singularities of type III.

Lemma 4.2.16. A cyclic quotient singularity of type 1
9(1, 4, 7) admits a crepant partial

resolution with exactly three terminal singularities of type 1
3(1, 1, 2).

Proof. As above we consider the singularity 1
9(1, 4, 7) as an affine toric variety. The

lattice point v = 1
3(1, 1, 1) is primitive and contained in the plane

{(x1, x2, x3) ∈ R3
∣∣ x1 + x2 + x3 = 1}.

We subdivide the cone σ = cone(e1, e2, e3) along the ray generated by v in three subcones:

e3

e1 e2

v

σ1

σ2σ3

Figure 4.2: crepant terminalisation of 1
9(1, 4, 7)

σ1 := cone(e1, e2, v), σ2 := cone(e2, e3, v) and σ3 := cone(e3, e1, v).

The matrices

A1 :=

1 0 −1

0 0 3

0 1 −1

 , A2 :=

 3 0 0

−1 1 0

−1 0 1

 and A3 :=

0 3 0

0 −1 1

1 −1 0


induce Z-module isomorphisms φi : N →M , where

M = Ze2 + Ze3 +
Z
3

(1, 1, 2)
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such that φi(σi) = σ. It follows that the affine toric varieties corresponding to N and

σi are cyclic quotient singularities of type 1
3(1, 1, 2). They are terminal according to

Theorem 4.2.15.

Lemma 4.2.17. A cyclic quotient singularity of type 1
14(1, 9, 11) admits a crepant partial

resolution with exactly seven terminal singularities of type 1
2(1, 1, 1).

Proof. We consider the lattice points

v1 :=
1

7
(1, 2, 4), v2 :=

1

7
(4, 1, 2), and v3 :=

1

7
(2, 4, 1).

Clearly, these points are primitive and contained in the plane

{(x1, x2, x3) ∈ R3
∣∣ x1 + x2 + x3 = 1}.

We subdivide the cone σ = cone(e1, e2, e3) in the following way:

e3

e1 e2

v1

v2 v3

Figure 4.3: crepant terminalisation of 1
14(1, 9, 11)

Like in the proof of the previous lemma one can show that the affine toric varieties

corresponding to N and the seven cones σi are cyclic quotient singularities of type
1
2(1, 1, 1), whence terminal.

The remaining case to consider is the case of a Gorenstein singularity 1
m(1, a,m−a−1).

Here, it is possible to determine a crepant terminalisation ρ : Û → U , where Û is smooth,

i.e. a crepant resolution. 1

1For the moment, we drop the assumption that the singularity is isolated.
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A crepant resolution of 1
m(1, a,m− a− 1)

We subdivide σ = cone(e1, e2, e3) along the ray generated by v0 := 1
m(1, a,m − a − 1)

into the subcones

cone(ei, ej , v0), where i 6= j and v0 /∈ cone(ei, ej).

The corresponding partial resolution is crepant because v0 is contained in the plane

{(x1, x2, x3) ∈ R3
∣∣ x1 + x2 + x3 = 1}.

Note that the cone σ2 generated by {e2, e3, v0} is always smooth, since these vectors

form a Z-basis of N . The other cones are in general singular. If m = 2, the singularity

is of type 1
2(1, 1, 0). Here, the cones

σ3 = cone(e1, v0, e3) and σ2 = cone(v0, e2, e3)

are both smooth, which yields the desired resolution. Otherwise, we proceed by induction

on m. We claim that the affine toric variety Uσ3 given by (N, σ3) is a Gorenstein cyclic

quotient singularity of type 1
a(1,−m,m− a− 1). Indeed, the matrix

A =
1

a

a −1 0

0 m 0

0 a+ 1−m a


defines a Z-module isomorphism φ : (N, σ3)→ (N3, σ), where

N3 := Ze2 + Ze3 +
Z
a

(1,−m,m− a− 1).

Similarly, if v0 /∈ cone(e1, e2) then Uσ1 given by (N, σ1) with σ1 := cone(e1, e2, v0) is also

a Gorenstein cyclic quotient singularity. The type is

1

m− a− 1
(1, a,−a− 1).

By induction hypothesis these singularities admit crepant toric resolutions.

Remark 4.2.18.

i) If the singularity 1
m(1, a,m− a− 1) is isolated i.e.

gcd(m, a) = gcd(m, a+ 1) = 1,

we shall perform (m − 1)/2 subdivisions to resolve it. The resulting fan contains

m maximal cones, each of dimension three and the exceptional locus ∆ of the

resolution consists of (m− 1)/2 prime divisors with compact support.
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ii) More generally, any quotient singularity C3/G, where G is a finite abelian subgroup

of SL(3,C) admits a crepant resolution (cf. [Nak01]).

The above resolution allows us to compute the Betti numbers of the exceptional locus

of the resolution.

Proposition 4.2.19 (cf. Example 5.5 [BD96]). Let U be an isolated cyclic quotient

singularity of type
1

m
(1, a,m− a− 1).

Let ρ : UF → U be the crepant resolution constructed above and ∆ := ρ−1({0}) be the

exceptional locus. Then the Betti numbers of ∆ are:

• bi(∆) = dim
(
H i(∆,C)

)
= 0 for i = 1, 3 and

• bi(∆) = dim
(
H i(∆,C)

)
=
m− 1

2
for i = 2, 4.

In particular e(∆) = m.

Proof. First we recall that canonical singularities are rational (see [El81] and [Fl81]), i.e.

Riρ∗(OUF ) = 0 for all i ≥ 1. Leray’s spectral sequence implies

H i(U,OU ) ' H i(UF ,OUF )

for all i ≥ 0. Since U is affine H i(U,OU ) = 0 for all i ≥ 1 according to Serre [Se57].

The exponential sequence yields an isomorphism Pic(UF ) ' H2(UF ,Z). Let d be the

number of edges in the fan F . By construction d = (m − 1)/2 + 3 and all maximal

cones in F are smooth and have dimension 3. According to [Ful93, Section 3.4] we

have rank
(

Pic(UF )
)

= d− 3 and it follows that the classes of the (m− 1)/2 exceptional

divisors form a basis ofH2(UF ,C). All these divisors have compact support. This implies

that their classes are contained in H2
c (UF ,C). Since H4(UF ,C) is the Poincaré dual of

H2
c (UF ,C) we conclude that h4(UF ,C) = (m− 1)/2. Moreover, H i(∆,C) ' H i(UF ,C)

because ∆ is a deformation retract of UF . To finish the proof it is enough to mention

that the Euler number of a toric variety is equal to the number of cones of maximal

dimension in its fan [Ful93, Section 3.2]. This implies e(∆) = e(UF ) = m.

Remark 4.2.20. Proposition 4.2.19 and its proof are just a special case of the so called Mc-

Kay correspondence, which is a tool to compute the cohomology of a crepant resolution

Û of a three dimensional Gorenstein quotient singularity C3/G. We refer the reader to

[IR96] for this generalization.
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4.3 The Invariants of Product Quotient Threefolds

In Chapter 2 we saw that the invariants χ(OX), e(X) and K3
X of a threefold isogenous

to a product

X = (C1 × C2 × C3)/G

are determined by the order of the group G and the genera of the curves Ci. Explicitly

χ(OX) = − 1

|G|

3∏
i=1

(
g(Ci)− 1

)
, K3

X = −48χ(OX) and 6e(X) = −K3
X .

In this section we derive analogous formulas relating the invariants χ(O
X̂

), e(X̂) and

K3
X̂

of a crepant terminalisation X̂ of a product quotient threefold X with canonical

singularities (cf. Theorem 4.1.8). The difference to the formulas displayed above is a

correction term depending on the singularities of X.

Definition 4.3.1. Let X be an algebraic variety with isolated singularities. The basket

of singularities B(X) is by definition the collection of the analytic germs
(
X,x

)
, where

x ∈ Sing(X), modulo equivalence of isomorphic germs.

In the case of a product quotient threefold X, the singularities are isolated cyclic quotient

singularities (see Proposition 4.1.2) and we can think of B(X) as a multi-set{
λ× 1

m
(1, a, b)

∣∣∣∣ X has exactly λ singularities of type 1
m(1, a, b)

}
modulo equivalence of isomorphic singularities (cf. Proposition 4.2.1). If X is canonical

then, according to Theorem 4.2.13, each singularity is one of the following:

• a terminal singularity 1
m(1, a,m− a),

• a Gorenstein singularity 1
m(1, a,m− a− 1) or

• a singularity of type III: 1
9(1, 4, 7) or 1

14(1, 9, 11).

In the previous section we explained how to construct a (smooth) crepant resolution of a

Gorenstein singularity 1
m(1, a,m−a−1) and crepant terminalisations of the singularities

1
9(1, 4, 7) and 1

14(1, 9, 11). Recall that the latter admit three terminal singularities of type
1
3(1, 1, 2) and seven terminal singularities of type 1

2(1, 1, 1), respectively. Performing

these resolutions and crepant terminalisations for all Gorenstein and for all singularities

of type III of X we obtain a crepant terminalisation

ρ : X̂ → X
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which we shall fix in the following. Note that the terminal singularities of X are not

modified.

Convention: letX be a product quotient threefold with canonical singularities. Through-

out this section we use the following notation: for a singularity x ∈ Sing(X), or more

precisely a singular germ
(
X,x

)
, we denote by mx the order of the corresponding cyclic

group. The integers N1 and N2 are the number of singularities of type

1

9
(1, 4, 7) and of type

1

14
(1, 9, 11),

respectively.

Remark 4.3.2. By construction, the basket B(X̂) consists of all terminal singularities

of X together with 3N1 singularities of type 1
3(1, 1, 2) and 7N2 singularities of type

1
2(1, 1, 1).

Proposition 4.3.3. Let X = (C1 × C2 × C3)/G be a product quotient threefold with

canonical singularities. Then

i) K3
X̂

=
48

|G|

3∏
i=1

(
g(Ci)− 1

)
and

ii) e(X̂) = − 8

|G|

3∏
i=1

(
g(Ci)− 1

)
+
∑
x gor

m2
x − 1

mx
+
∑
x ter

mx − 1

mx
+

26

9
N1 +

97

14
N2.

Proof. i) Since ρ : X̂ → X is crepant, it holds K3
X̂

= K3
X and the claim follows from

Proposition 4.1.4:

K3
X̂

= K3
X =

48

|G|

3∏
i=1

(
g(Ci)− 1

)
.

ii) Let π : Y → X be the quotient map, where Y := C1 × C2 × C3 and define

X0 := X \ Sing(X) and Y 0 := Y \ π−1
(

Sing(X)
)
.

The restriction π|Y 0 : Y 0 → X0 is unramified and has degree |G|, therefore

e(X0) =
e(Y 0)

|G|

which implies

e(X)− | Sing(X)| = e(Y )

|G|
−

∑
x∈Sing(X)

|π−1(x)|
|G|

by the additivity of the Euler number. Using the equalities

|G| = mx |π−1(x)| and e(Y ) = −8
3∏
i=1

(
g(Ci)− 1

)
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we obtain the formula

e(X) = − 8

|G|

3∏
i=1

(
g(Ci)− 1

)
+

∑
x∈Sing(X)

(
1− 1

mx

)
.

It remains to relate e(X) and e(X̂). The additivity of the Euler number yields

e(X̂) = e(X) +
∑
x gor

(
e(∆x)− 1

)
+

∑
x type III

(
e(∆x)− 1

)
, where ∆x := ρ−1({x}).

According to Proposition 4.2.19 we have e(∆x) = mx for a Gorenstein singularity of

type
1

mx
(1, ax,mx − ax − 1).

To derive this identity, we used that e(∆x) is equal to the number of three-dimensional

cones in the fan defining the toric resolution of the singularity. When we consider the

fans of the toric partial resolutions of

1

9
(1, 4, 7) and

1

14
(1, 9, 11)

(see Lemma 4.2.16 and Lemma 4.2.17) and count the number of three-dimensional cones,

we obtain e(∆x) = 3 for 1
9(1, 4, 7) and e(∆x) = 7 for 1

14(1, 9, 11) in the same way.

We proceed to derive a similar formula for χ(O
X̂

). The method we want to use is repre-

sentation theoretic. As a first step, we show how to determine the invariants hp(X̂,O
X̂

)

form the characters χp,0 of the representations

φp,0 : G→ GL
(
Hp,0(C1 × C2 × C3)

)
, g 7→ [ω 7→ (g−1)∗ω]

(cf. Section 2.4 for the case of threefolds isogenous to a product). Before we start, we

introduce the sheaf of reflexive differentials on X, which is defined as

Ω
[p]
X := j∗Ω

p
X\Sing(X),

where j : X \ Sing(X)→ X is the inclusion map.

Proposition 4.3.4. Let X = (C1 × C2 × C3)/G be a product quotient threefold and

h : Z → X be a resolution of singularities. Then

Ω
[p]
X ' h∗Ω

p
Z and H0(Z,Ωp

Z) ' H0(X,Ω
[p]
X ) ' H0(Y,Ωp

Y )G,

where Y := C1 × C2 × C3 and 0 ≤ p ≤ 3.

Proof. For a proof of the isomorphism Ω
[p]
X ' h∗Ω

p
Z we refer the reader to [Ste77, Lemma
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1.11]. The isomorphism yields

H0(Z,Ωp
Z) ' H0(X,Ω

[p]
X ),

by taking global sections, and it remains to show

H0(X,Ω
[p]
X ) ' H0(Y,Ωp

Y )G.

We follow the argument presented in the proof of [Ste77, Lemma 1.8]. According to

Proposition 4.1.2 the singular locus Sing(X) of X is the image of the finite set

R :=
{
q ∈ C1 × . . .× Cn

∣∣ Stab(q) 6= {1G}
}

under the quotient map π. Clearly, the restriction π|Y \R : Y \ R → X \ Sing(X) is

an unramified Galois cover with group G. Therefore, pull-back along π|Y \R induces an

isomorphism

H0(X \ Sing(X),Ωp
X\Sing(X))→ H0(Y \ R,Ωp

Y \R)G

cf. [Be83, Lemma VI.11 and Example VI.12 1)]. By definition, the cohomology group

on the left-hand side coincides with H0(X,Ω
[p]
X ). Finally, by Hartogs theorem, every

holomorphic p-form on Y \R can be extended holomorphically to a p-form on Y yielding

an isomorphism H0(Y \R,Ωp
Y \R) ' H0(Y,Ωp

Y ) which restricts to the G-invariant forms.

Proposition 4.3.5. Let X = (C1 × C2 × C3)/G be a product quotient threefold with

canonical singularities. Then

hp(X̂,O
X̂

) = 〈χp,0, χtriv〉, for all 0 ≤ p ≤ 3.

Proof. The crepant terminalisation ρ fits into a commutative diagram

Z //

h ��

X

X̂,

ρ

??

where h : Z → X̂ is a resolution of singularities of X̂. Since X̂ has only terminal

singularities, terminal singularities are canonical and canonical singularities are rational

(see [El81] and [Fl81]), we have

Hp(X̂,O
X̂

) ' Hp(Z,OZ).

According to Proposition 4.3.4 it holds H0(Z,Ωp
Z) ' H0(Y,Ωp

Y )G, where Y denotes the
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product C1 × C2 × C3. Therefore,

hp(X̂,O
X̂

) = hp(Z,OZ) = h0(Z,Ωp
Z) = 〈χp,0, χtriv〉.

Note that the equality in the middle is a consequence of Hodge symmetry on the pro-

jective manifold Z.

Remark 4.3.6.

i) The proposition above allows us to compute the invariants

pg(X̂) := h3(X̂,O
X̂

), q2(X̂) := h2(X̂,O
X̂

) and q1(X̂) := h1(X̂,O
X̂

)

using an algebraic datum A of X, because A determines the characters χp,0 (cf.

Remark 2.4.10).

ii) From the proof of the proposition it follows that

pg(X
′) = pg(X̂), q2(X ′) = q2(X̂) and q1(X ′) = q1(X̂)

for any other crepant terminalisation ρ : X ′ → X .

Lemma 4.3.7. Let X be a product quotient threefold with canonical singularities. Then

χ(O
X̂

) = − 1

|G|

3∏
i=1

(
g(Ci)− 1

)
+

1

|G|
∑
g∈G
g 6=1G

χhol(g),

where χhol := χtriv − χ1,0 + χ2,0 − χ3,0.

Proof. According to Proposition 4.3.5 it holds χ(O
X̂

) = 〈χhol, χtriv〉. Expanding the

inner product yields:

χ(O
X̂

) =
1

|G|
∑
g∈G

χhol(g) =
χhol(1G)

|G|
+

1

|G|
∑
g∈G
g 6=1G

χhol(g).

To finish the proof, it suffices to mention that

χhol(1G) = χ(OC1×C2×C3) =
3∏
i=1

χ(OCi) = −
3∏
i=1

(
g(Ci)− 1

)
,

which follows from the definition of χhol and the product property of the holomorphic

Euler-Poincaré-characteristic.
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Our remaining task is to rewrite the correction term

1

|G|
∑
g∈G
g 6=1G

χhol(g)

in terms of the singularities of X. The tool for this purpose is the holomorphic Lefschetz

fixed point formula.

Theorem 4.3.8 ([GH78, p. 426]). Let Y be a compact complex manifold and g : Y → Y

be an automorphism of finite order with isolated fixed points. Then

dim(Y )∑
q=0

(−1)q tr(g∗|H0,q(Y )) =
∑

p∈Fix(g)

1

det
(

id−Jp(g)
) ,

where Jp(g) is the Jacobian of g in the point p.

To relate the left-hand side of the holomorphic Lefschetz fixed fixed point formula and

χhol we use the following lemma from Kähler geometry.

Lemma 4.3.9. Let Y be a compact Kähler manifold and g : Y → Y be a holomorphic

map then

Tr(g∗|Hp,q(Y )) = Tr(g∗|Hq,p(Y )) .

Proof. Let
{

[ω1], ..., [ωk]
}

be a basis of Hp,q(Y ) with ωi harmonic, then
{

[ω1], ..., [ωk]
}

is a basis of Hq,p(Y ) and the forms ωi are harmonic. Now we write

[g∗ωj ] =
k∑
i=1

aij · [ωi] or equivalently g∗ωj =
k∑
i=1

aij · ωi + ∂ηj ,

where aij ∈ C and ηj is a form of type (p, q − 1). Complex conjugation yields

g∗ωj =
k∑
i=1

aij · ωi + ∂ηj .

Note that both g∗ωj and
∑k

i=1 aij ·ωi are d-closed forms, therefore ∂ηj is a d-closed form

which is ∂-exact. By the ∂∂-lemma [Hu05, Corollary 3.2.10] there exists a (q, p−1) form

ξj such that ∂ηj = ∂ξj and we obtain

[g∗ωj ] =
k∑
i=1

aij · [ωi] .
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Theorem 4.3.10. Let X be a product quotient threefold with canonical singularities.

Then

χ(O
X̂

) = − 1

|G|

3∏
i=1

(
g(Ci)− 1

)
+

1

24

∑
x ter

m2
x − 1

mx
+

1

3
N1 +

7

16
N2.

Proof. By definition of χp,0 and Lemma 4.3.9 it holds

χhol(g) =

3∑
p=0

(−1)p · χp,0(g−1) =

3∑
p=0

(−1)p · tr
(
g∗|Hp,0(Y )

)
=

3∑
p=0

(−1)p · tr
(
g∗|H0,p(Y )

)
,

for all g ∈ G. As usual, Y denotes the product C1 × C2 × C3. Next, we apply the

holomorphic Lefschetz fixed point formula and rewrite the correction term from Lemma

4.3.7:
1

|G|
∑
g∈G
g 6=1G

χhol(g) =
1

|G|
∑
g∈G
g 6=1G

∑
p∈Fix(g)

1

det
(

id−Jp(g)
) .

The double sum on the right-hand side is equal to

1

|G|
∑

p∈Fix(Y )

∑
g∈Gp
g 6=1G

1

det
(

id−Jp(g)
) ,

where Fix(Y ) is the set of points of Y with non-trivial stabilizer group, which is precisely

the pre-image of the singular locus of X under the quotient map

π : Y → X.

For all x ∈ Sing(X), we choose a point yx ∈ π−1(x). Then mx = |Stab(yx)| and,

according to the orbit-stabilizer correspondence, the points in the fibre π−1(x) are in

bijection with the quotient G
/

Stab(yx). Moreover,

det
(

id−Jh(yx)(hgh
−1)
)

= det
(

id−Jyx(g)
)

for all g ∈ Stab(yx) and h ∈ G. This enables us to rewrite the double sum above as

1

|G|
∑

x∈Sing(X)

|G|
mx

∑
g∈Gyx
g 6=1G

1

det
(

id−Jyx(g)
) =

∑
x∈Sing(X)

1

mx

∑
g∈Gyx
g 6=1G

1

det
(

id−Jyx(g)
) .

The stabilizer group Gyx acts, in suitable local coordinates, linearly. Let 1
mx

(1, ax, bx)

be the type of the analytic germ
(
X,x

)
, then Gyx is generated by the diagonal matrix

diag

(
exp

(
2π
√
−1

mx

)
, exp

(
2πax

√
−1

mx)

)
, exp

(
2πbx

√
−1

mx

))
.
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Therefore ∑
g∈Gyx
g 6=1G

1

det
(

id−Jyx(g)
) =

∑
ξmx=1
ξ 6=1

1

(1− ξ)(1− ξax)(1− ξbx)
,

where the sum on the right-hand side runs over all ξ ∈ C \ {1} with ξmx = 1. To finish

the proof, it suffices to give a closed expression for the Dedekind sums

σ
( 1

mx
(1, ax, bx)

)
:=

∑
ξmx=1
ξ 6=1

1

(1− ξ)(1− ξax)(1− ξbx)

for all types of singularities that can occur. We have

• σ
( 1

mx
(1, ax,mx − ax)

)
=
m2
x − 1

24
according to [Reid87, 8.10] and

• σ
(1

9
(1, 4, 7)

)
= 3 and σ

( 1

14
(1, 9, 11)

)
=

49

8
via an explicit computation.

The remaining case is the case of a Gorenstein singularity, here we claim that

σ
( 1

mx
(1, ax,mx − ax − 1)

)
= 0,

i.e. these singularities do not contribute. First we recall that mx− 1 is even because mx

is odd (see Remark 4.2.14 ii)). With the help of the identity

mx−1∑
i=0

ξi = 0,

which holds for all ξ ∈ C \ {1} with ξmx = 1, we get

σ
( 1

mx
(1, ax,−ax − 1)

)
= −

(mx−1)/2∑
i=1

∑
ξmx=1
ξ 6=1

ξi

(1− ξ)(1− ξax)(1− ξ−ax−1)

−
(mx−1)/2∑

i=1

∑
ξmx=1
ξ 6=1

ξmx−i

(1− ξ)(1− ξax)(1− ξ−ax−1)
.

Next we look at the denominator of the summands. It holds

(1− ξ)(1− ξax)(1− ξ−ax−1) = (ξ−1 − 1)(ξ−ax − 1)(ξax+1 − 1)
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and therefore

σ
( 1

mx
(1, ax,−ax − 1)

)
= −

(mx−1)/2∑
i=1

∑
ξmx=1
ξ 6=1

ξi

(1− ξ)(1− ξax)(1− ξ−ax−1)

+

(mx−1)/2∑
i=1

∑
ξmx=1
ξ 6=1

ξ−i

(1− ξ−1)(1− ξ−ax)(1− ξax+1)
.

Now we exchange ξ with ξ−1 in the second double sum and the claim

σ
( 1

mx
(1, ax,−ax − 1)

)
= 0

follows. We are allowed to exchange ξ with ξ−1, because the sum runs over all ξ ∈ C\{1}
with ξmx = 1.

Remark 4.3.11. We should mention that the theorem above can also be deduced from

Miles Reid’s orbifold Riemann Roch formula ([Reid87, 10.3]). However, we decided to

give a proof which relies on methods from character theory that we developed and used

in the previous parts of the thesis. Note the similarity to the proof of the Chevalley-Weil

formula (see Theorem 1.3.3).

Proposition 4.3.3 and Theorem 4.3.10 imply the following result:

Proposition 4.3.12. Let X be a product quotient threefold with canonical singularities.

Then

i) 48χ(O
X̂

) +K3
X̂

= 2
∑
x ter

m2
x − 1

mx
+ 16N1 + 21N2 and

ii) 6e(X̂) +K3
X̂

= 6
∑
x gor

m2
x − 1

mx
+ 6

∑
x ter

mx − 1

mx
+

52

3
N1 +

291

7
N2.

In particular, it holds

48χ(O
X̂

) +K3
X̂
≥ 0

with equality if and only if X̂ is smooth or equivalently X has Gorenstein singularities

and

6e(X̂) +K3
X̂
≥ 0

with equality if and only if X is a threefold isogenous to a product.

Remark 4.3.13. Let ρ : X ′ → X be another crepant terminalisation of X then B(X ′) =

B(X̂) according to [Ko89, Corollary 4.11]. In particular X̂ is smooth if and only if X ′ is

smooth.
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4.4 How to determine the Basket

In this section we explain how to compute the basket of singularities of a product quotient

threefold

X =
(
C1 × C2 × C3

)
/G

from an algebraic datum of X. We follow the method presented in [BP12, § 1.2].

Note that the natural projections pi : C1 × C2 × C3 → Ci induce holomorphic maps

pi : X → Ci/G.

Clearly, for each x ∈ Sing(X) the image qi := pi(x) is contained in the branch locus Bi
of Fi : Ci → Ci/G. Since the action of G on the product C1 × C2 × C3 is diagonal, we

can restrict it to the product of the fibres F−1
1 (q1)×F−1

2 (q2)×F−1
3 (q3) and consider the

quotient
F−1

1 (q1)× F−1
2 (q2)× F−1

3 (q3)

G

as a subset of X. The important observation is that the singular points of X belonging

to the intersection of the fibres p−1
i (qi) are contained in the quotient above. We need to

describe this quotient in terms of an algebraic datum of X, detect the points which are

singular and determine the analytic type of these singularities.

Definition 4.4.1. Let X be a product quotient threefold with algebraic datum (G,V1, V2, V3).

We define the cyclic subgroups

Hi,j := 〈hi,j〉 ≤ G for all 1 ≤ i ≤ 3 and 1 ≤ j ≤ ri,

where hi,j are the elements in the generating vectors

Vi = (hi,1, . . . , hi,ri , ai,1, bi,1, . . . , ai,g′i , bi,g′i).

Recall that the branch points qi,1, . . . , qi,ri of the covers Fi are in one-to-one corre-

spondence with the elements hi,1, . . . , hi,ri (see Section 1.1) and the choice of a point

xi,j ∈ F−1
i (qi,j) with stabilizer group Hi,j = 〈hi,j〉 determines a G-equivariant bijection

G
/
Hi,j → F−1

i (qi,j), gHi,j 7→ g(xi,j).

Under this bijection the stabilizer group of the ”point” gHi,j is gHi,jg
−1.

Remark 4.4.2. Let H be a non-trivial subgroup of a finite cyclic group 〈g〉 and

δ := min{0 < k < ord(g)
∣∣ gk ∈ H}.
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Then

H = 〈gδ〉 and |H| = ord(g)

δ
.

Now it is straightforward to determine the basket of singularities B(X) of a product

quotient threefold X from an algebraic datum.

Proposition 4.4.3. Let X be a product quotient threefold with algebraic datum (G,V1, V2, V3).

Then:

i) there are (non-canonical) bijections

G/H2,k ×G/H3,l

H1,j
−→

F−1
1 (q1,j)× F−1

2 (q2,k)× F−1
3 (q3,l)

G
.

ii) a class [gH2,k, g
′H3,l] corresponds to a singular point in the intersection of the fibres

p−1
1 (q1,j), p−1

2 (q2,k) and p−1
3 (q3,l)

if and only if

H := H1,j ∩ gH2,kg
−1 ∩ g′H3,lg

′−1

is a non-trivial subgroup of H1,j. In this case, we write H = 〈hδ1,j〉 according to

Remark 4.4.2. Then, the type of the corresponding singular point is 1
m(1, a, b),

where

m := |H|, a :=
mγ

ord(h2,k)
and b :=

mµ

ord(h3,l)
.

Here 1 ≤ γ < ord(h2,k) and 1 ≤ µ < ord(h3,l) are the unique integers such that

ghγ2,kg
−1 = hδ1,j and g′hµ3,lg

′−1 = hδ1,j .

Proof. i) We choose a point

(x1,j , x2,k, x3,l) ∈ F−1
1 (q1,j)× F−1

2 (q2,k)× F−1
3 (q3,l)

such that

Gx1,j = H1,j , Gx2,k = H2,k and Gx3,l = H3,l.

It is easy to see that the map sending the class [gH2,k, g
′H3,l] to the class [x1,j , g(x2,k), g

′(x3,l)]

is a bijection.

ii) The point [x1,j , g(x2,k), g
′(x3,l)] corresponding to the class [gH2,k, g

′H3,l] is singular

if and only if the intersection of the stabilizer groups

Gx1,j ∩Gg(x2,k) ∩Gg′(x3,l)

is non-trivial. The intersection above is equal to H.
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iii) The cyclic group H is generated by the element

h := hδ1,j = ghγ2,kg
−1 = g′hµ3,lg

′−1.

It acts in suitable local coordinates around the point
(
x1,j , g(x2,k), g

′(x3,l)
)

via the di-

agonal matrix

diag

(
exp

(
2πδ
√
−1

ord(h1,j)

)
, exp

(
2πγ
√
−1

ord(h2,k)

)
, exp

(
2πµ
√
−1

ord(h3,l)

))
(see Lemma 1.3.2). Since h has order m, there are unique integers 1 ≤ a, b < m such

that
a

m
=

γ

ord(h2,k)
and

b

m
=

µ

ord(h3,l)
.

We conclude that the type of the corresponding singularity is 1
m(1, a, b).

4.5 The numerical Datum of a Product Quotient Threefold

In analogy to the case of threefolds isogenous to a product we attach to a product

quotient threefold X =
(
C1 × C2 × C3

)
/G a numerical datum

(n, T1, T2, T3),

where n = |G| and Ti = [g′i;mi,1, . . . ,mi,ri ] are the types of the generating vectors Vi

from an algebraic datum (G,V1, V2, V3) of X (cf. Definition 4.1.10). In this section

we provide combinatorial constraints on the numerical datum. Some of the constraints

holding in the case of threefolds isogenous to a product (see Chapter 3) are still valid

for product quotient threefolds, but in general we have only weaker versions. Clearly, if

X is not isogenous to a product, then ri ≥ 1 for all 1 ≤ i ≤ 3.

Proposition 4.5.1. Let X be a product quotient threefold. Then

n ≤
⌊√√√√K3

X

6

3∏
i=1

1

Θmin(Ti)

⌋
, where Θmin(Ti) :=


1/42, if g′i = 0

1/2, if g′i = 1

2g′i − 2, if g′i ≥ 2

We skip the proof of the proposition because it is similar to the proof of the corresponding

bound in the case of threefolds isogenous to a product (cf. Proposition 3.0.6).

Proposition 4.5.2. Let X be a product quotient threefold with numerical datum (n, T1, T2, T3).

Then
48

K3
X

≤ n ≤ b42
√

7 ·K3
Xc.
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Proof. The inequality on the left-hand side follows from

1 ≤
3∏
i=1

(
g(Ci)− 1

)
= n

K3
X

48
.

The inequality on the right-hand side is a direct consequence of Proposition 4.5.1 using

Θmin(Ti) ≥ 1/42 (cf. Corollary 3.0.7).

Next we show that product quotient threefolds with K3
X < 1 do not exist.

Corollary 4.5.3. For a product quotient threefold X it holds K3
X ≥ 1.

Proof. Let X be a product quotient threefold with K3
X ≤ 1. Then, by Proposition 4.5.2,

the group order n is in the range 48 ≤ n ≤ 111. It follows that

3∏
i=1

(
g(Ci)− 1

)
= n

K3
X

48
≤ 111

48
.

W.l.o.g. we assume g(C1) ≤ g(C2) ≤ g(C3). Then, there are two possibilities for the

triple (
g(C1), g(C2), g(C3)

)
,

namely (2, 2, 2) and (2, 2, 3). According to Conders table [Con14], the order of a group

G acting faithfully on a compact Riemann surface of genus 2 is bounded by 48, a fact

which was already known to Bolza [Bol87] in 1887. Consequently n = 48 and we can

exclude the possibility (2, 2, 3). It follows that K3
X = 1.

The bound from Corollary 4.5.3 is actually sharp:

Example 4.5.4. The group GL(2,F3) of order 48 admits the generating vector

V =

([
1 1

0 2

]
,

[
1 0

1 1

]
,

[
1 1

2 1

])

of type T = [0; 2, 3, 8]. By Riemann’s existence theorem, there is a Galois cover C →
P1 with group GL(2,F3) branched over 0, 1 and ∞ with branching indices 2, 3 and 8,

respectively. The compact Riemann surface C has genus 2. Consider the diagonal action

of GL(2,F3) on C3 given by three copies of the action ψ : GL(2,F3) → Aut(C) from

above, then

X := C3/GL(2,F3)

is a product quotient threefold with K3
X = 1.

Remark 4.5.5. Unfortunately our example admits non-canonical singularities: indeed,

there exists a point p ∈ C in the fibre over ∞ with stabilizer group generated by the
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matrix

h :=

[
1 1

2 1

]
such that the Jacobian of h at p is given by

Jp(h) = exp

(
π
√
−1

4

)
.

Since the action of GL(2,F3) on C3 is the same on each factor, the point (p, p, p) ∈ C3

descends to a singularity of type 1
8(1, 1, 1) which is, according to Theorem 4.2.13, non-

canonical. However, this is not a coincidence: we refer the reader to Chapter 6, where

we prove that K3
X ≥ 4 is the sharp bound for product quotient threefolds with canonical

singularities.

Proposition 4.5.6. Let X = (C1 × C2 × C3)/G be a product quotient threefold with

numerical datum (n, T1, T2, T3), where Ti := [g′i;mi,1, . . . ,mi,ri ]. Then

i)
(
g(Ci)− 1

)
divides the integer K3

X

n

48
,

ii) ri ≤
4
(
g(Ci)− 1

)
n

− 4g′i + 4,

iii) mi,j ≤ 4g(Ci) + 2,

iv) g′i ≤ 1 +
K3
X

48
(
g(C[i+1])− 1

)(
g(C[i+2])− 1

) ≤ 1 +
K3
X

48
,

for all 1 ≤ i ≤ 3 and 1 ≤ j ≤ ri. The brackets [ · ] denote the residue mod 3;

Proof. Albeit the proof works in the same way as the proof of the corresponding result

for threefolds isogenous to a product (cf. Proposition 3.0.10), we shall sketch it:

i) follows directly from the formula

K3
X =

48

n

3∏
i=1

(
g(Ci)− 1

)
.

ii) is a direct consequence of Hurwitz’ formula and iii) follows from Wiman’s bound. To

prove iv), we estimate

g′i − 1 ≤ Θ(Ti)

2
=
g(Ci)− 1

n
=

K3
X

48
(
g(C[i+1])− 1

)(
g(C[i+2])− 1

) ≤ K3
X

48
.

The inequality on the right-hand side holds, because
(
g(C[i+1])− 1

)(
g(C[i+2])− 1

)
≥ 1.
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Chapter 5

Smooth Minimal Models

In this chapter we study product quotient threefolds

X = (C1 × C2 × C3)/G

with canonical singularities admitting a crepant resolution ρ : X̂ → X of singularities.

This is equivalent to the condition that X is Gorenstein (see Proposition 4.3.12). The

invariants of X̂ are related as follows:

48χ(O
X̂

) +K3
X̂

= 0 and 6e(X̂) +K3
X̂
≥ 0,

where the inequality on the right-hand side is strict if and only if X is singular (see

Proposition 4.3.12). From the equation on the left-hand side we observe that χ(O
X̂

) is

negative because K3
X̂

is a positive integer, just like in the case of threefolds isogenous to

a product. Our goal in this section is to give an algorithm to classify these varieties for

a fixed value of χ(O
X̂

) ≤ −1.

For threefolds isogenous to a product we have a method to compute the Hodge numbers

(see Section 2.4). Here we are confronted with the following questions:

• how can we compute the Hodge numbers of X̂?

• are the Hodge numbers independent of the chosen crepant resolution?

The answer to the second question is provided by a celebrated theorem of Kontsevich

(see [Kon95]).

Theorem 5.0.1 (cf. [Craw04, Theorem 3.6]). Let X be a complex projective variety with

at worst Gorenstein canonical singularities. If X admits a crepant resolution ρ : X̂ → X

then the Hodge numbers of X̂ are independent of the choice of the crepant resolution.

Convention: let X be a product quotient threefold with Gorenstein singularities. In
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the following we shall fix the crepant resolution

ρ : X̂ → X

obtained by resolving the Gorenstein singularities

1

mx
(1, ax,mx − ax − 1), x ∈ S := Sing(X)

as described in Section 4.2. The exceptional locus of ρ is denoted by

E :=
⊔
x∈S

∆x, where ∆x = ρ−1(x).

Now we address the first question from above. According to Proposition 4.3.5 it holds

hp,0(X̂) = 〈χp,0, χtriv〉, for all 0 ≤ p ≤ 3.

where χp,0 are the characters of the representations

φp,0 : G→ GL
(
Hp,0(C1 × C2 × C3)

)
, g 7→ [ω 7→ (g−1)∗ω].

Hodge decomposition and symmetry yields

h1,1(X̂) = b2(X̂)− 2h2,0(X̂) and h2,1(X̂) =
b3(X̂)

2
− h3,0(X̂),

where

bi(X̂) := dim
(
H i(X̂,C)

)
are the Betti numbers. Hence, it suffices to compute b2(X̂) and b3(X̂). As a first step,

we need to understand the relation between H∗(X,C) and H∗(X̂,C).

Proposition 5.0.2 ([BK82, Proposition 3.A.7]). Let ρ : X̂ → X be a morphism between

projective varieties. Let S ⊂ X be a closed subvariety and E := ρ−1(S). Assume that

ρ induces an isomorphism between X̂ \ E and X \ S, then there exists a long exact

cohomology sequence

. . .→ Hk(X,C)→ Hk(X̂,C)⊕Hk(S,C)→ Hk(E,C)→ Hk+1(X,C)→ . . . .

In particular e(X̂) = e(X)− e(S) + e(E).

Proof. To avoid a bulky notation, we omit the coefficients of the cohomology groups. By

assumption S is closed in X and therefore E = ρ−1(S) is closed in X̂. The long exact

sequence for cohomology with compact support yields:

84



· · · Hk
c (X \ S) Hk

c (X) Hk
c (S) Hk+1

c (X \ S) · · ·

· · · Hk
c (X̂ \ E) Hk

c (X̂) Hk
c (E) Hk+1

c (X̂ \ E) · · ·

ak

ik

bk

jk

ck

δk

ak+1

îk ĵk δ̂k

The homomorphisms ak, bk and ck are induced by (the proper map) ρ and ak is an

isomorphism for all k. Note that the cohomology groups Hk
c (X), Hk

c (S), Hk
c (X̂) and

Hk
c (E) coincide with the singular cohomology groups because the underlying spaces are

compact. A standard diagram chase shows that the sequence

· · · −→ Hk(X)
bk⊕jk−→ Hk(X̂)⊕Hk(S)

ĵk−ck−→ Hk(E)
ik+1◦a−1

k+1◦δ̂k−→ Hk+1(X) −→ · · ·

is exact.

Proposition 5.0.3. Let X =
(
C1 × C2 × C3

)
/G be a product quotient threefold with

Gorenstein singularities, then:

i) the resolution map ρ : X̂ → X induces isomorphisms

ρ∗ : Hk(X,C)→ Hk(X̂,C) for k = 1, 3 and 5

ii) the cohomology sequence from above breaks up into short exact sequences

0→ Hk(X,C)→ Hk(X̂,C)→ Hk(E,C)→ 0 for k = 2, 4.

Proof. Since

E =
⊔

x∈Sing(X)

∆x

is a disjoint union of the exceptional loci ∆x it holds

Hk(E) =
⊕
x∈S

Hk(∆x).

Note that Hk(∆x) = 0 for k odd (see Proposition 4.2.19) and Hk(S) = 0 for k ≥ 1

for dimension reasons. The vanishing of H1(E) and Proposition 5.0.2 give the following

exact sequence

0→ H0(X)→ H0(X̂)⊕H0(S)→ H0(E)→ H1(X)→ H1(X̂)→ 0.

We conclude that the map

ρ∗ : H1(X)→ H1(X̂)

is an isomorphism, because dim
(
H0(S)

)
= dim

(
H0(E)

)
= | Sing(X)| and the vector

85



spaces H0(X) and H0(X̂) are both isomorphic to C. The map

ρ∗ : H5(X)→ H5(X̂)

is surjective by the long exact cohomology sequence and the vanishing of H5(E). Ac-

cording to [Mac62, § 1.2] the quotient map π : C1×C2×C3 → X induces an isomorphism

π∗ : Hk(X)→ Hk(C1 × C2 × C3)G

for all k, which implies, in combination with the usual Poincaré duality for compact

manifolds, that Poincaré duality is valid for X. Therefore

b5(X) = b1(X) and b5(X̂) = b1(X̂)

and it follows that ρ∗ : H5(X) → H5(X̂) is an isomorphism, too. Using the above

information, the long exact cohomology sequence and the vanishing of H3(E), we obtain

the following exact sequence

0 // H2(X) // H2(X̂) // H2(E) // H3(X) // H3(X̂)

// 0 // H4(X) // H4(X̂) // H4(E) // 0.

The bottom row is claim ii) in the case k = 4. Next we show ii) in the case k = 2

which immediately implies i) in the case k = 3 using the exactness of the first row in

the sequence above. By Poincaré duality we have

b2(X) = b4(X) and b2(X̂) = b4(X̂),

Proposition 4.2.19 implies

b2(E) = b4(E) =
∑

x∈Sing(X)

mx − 1

2
.

Thus, the exactness of the sequence

0→ Hk(X)→ Hk(X̂)→ Hk(E)→ 0

for k = 2 follows from the exactness for k = 4 which was already shown.

Corollary 5.0.4. Let X =
(
C1 × C2 × C3

)
/G be a product quotient threefold with

Gorenstein singularities, then:

i) h1,1(X̂) = 〈χ1,1, χtriv〉+
∑

x∈Sing(X)

mx − 1

2
and
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ii) h2,1(X̂) = 〈χ2,1, χtriv〉.

Proof. According to Proposition 5.0.3 i) and ii) it holds:

b3(X̂) = b3(X) and b2(X̂) = b2(X) + b2(E).

We obtain

h2,1(X̂) =
b3(X)

2
− h3,0(X̂) = dim

(
H2,1(Y )G

)
and

h1,1(X̂) = b2(X) + b2(E)− 2h2,0(X̂) = dim
(
H1,1(Y )G

)
+ b2(E)

using Hodge decomposition, Hodge symmetry, the isomorphisms

ρ∗ : Hk(X)→ Hk(C1 × C2 × C3)G for k = 2, 3

and Proposition 4.3.5. We are done with ii). To finish the proof of i), we substitute

the Betti number b2(E) in the equation h1,1(X̂) = dim
(
H1,1(Y )G

)
+ b2(E) with the

expression ∑
x∈Sing(X)

mx − 1

2

according to Proposition 4.2.19.

To give an effective classification algorithm, we need to derive additional combinatorial

constraints on the numerical data.

Proposition 5.0.5. Let X be a singular Gorenstein product quotient threefold with

numerical datum (n, T1, T2, T3), where Ti := [g′i;mi,1, . . . ,mi,ri ]. Then for all 1 ≤ i ≤ 3

at least one mi,j is not a power of 2. In particular G can not be a 2-group.

Proof. Recall that mx is odd for all singularities

1

mx
(1, ax,mx − ax − 1)

of X. The claim follows immediately because mx must divide at least one mi,j for all

1 ≤ i ≤ 3 and x ∈ Sing(X).

Proposition 5.0.6 (cf. [BCGP12, Lemma 5.8]). Let X be a Gorenstein product quotient

threefold with numerical datum (n, T1, T2, T3), where Ti = [g′i;mi,1, . . . ,mi,ri ]. Then

mi,j

∣∣ 8
(
g(C[i+1]

)
− 1
)(
g(C[i+2])− 1

)
for all i and j. As usual, the brackets [ · ] denote the residue mod 3.
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Proof. Eachmi,j is the branching index of a branch point qi,j of the Galois cover Fi : Ci →
Ci/G. Let Wi,j be the fibre over qi,j of the natural map

pi : X → Ci/G.

Then Wi,j = mi,jDi,j , where Di,j is an irreducible Weil divisor. A general fibre Ei of

pi is isomorphic to C[i+1] × C[i+2] and contained in the smooth locus of X. Via the

adjunction formula

KEi =
(
KX + Ei

)∣∣Ei ,
we can compute the intersection product

8
(
g(C[i+1])− 1

)(
g(C[i+2])− 1

)
= K2

Ei = K2
X .Ei + 2KX .E

2
i + E3

i = K2
X .Ei.

Since fibres are numerical equivalent, it holds

K2
X .Ei = K2

X .Wi,j = mi,jK
2
X .Di,j

and the claim follows from the observation that the intersection product K2
X .Wi,j is an

integer, because KX is Cartier.

Now we can give our Algorithm, which is a modified version of the algorithm presented

in Chapter 3. For the full code we refer to Appendix A. Our strategy is the following.

Input: A value for the holomorphic Euler-Poincaré-characteristic χ.

Part 1: Determine the set of admissible numerical data, i.e. the set of tuples

(n, T1, T2, T3)

such that the combinatorial constraints form Proposition 4.5.6, 5.0.5 and 5.0.6, the

inequality from Proposition 4.5.1 and Hurwitz’ formula are satisfied.

In our implementation, this computation is performed by the function AdNumGorenstein.

The function just returns the admissible numerical data (n, T1, T2, T3) such that the

groups of order n are contained in the Database of Small Groups. The exceptions are

stored in the file ExcepGorensteinχ.txt.

Part 2: In the second part of the algorithm, we search for algebraic data.

For each 4-tuple (n, T1, T2, T3) contained in the set AdNumGorenstein(χ) search through

the groups of order n for groups admitting at least one generating vector of type T1, one

of T2 and of type T3. For such groups G compute all generating vectors Vi of type Ti and

consider all possible 4-tuples (G,V1, V2, V3). To each of these tuples there corresponds a

family of product quotient threefolds X with holomorphic Euler-Poincaré-characteristic
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equal to the input value χ and algebraic datum (G,V1, V2, V3). Next, compute the

basket of singularities of X from the algebraic datum. If all singularities are Gorenstein,

compute the Hodge diamond of a crepant resolution X̂ according to Proposition 4.3.5

and Corollary 5.0.4 and save the occurrence

[G,T1, T2, T3, h
3,0(X̂), h2,0(X̂), h1,0(X̂), h1,1(X̂), h2,1(X̂),B(X)] .

in the file Gorensteinχ.txt. Part 2 is performed by calling the function

ClassifyGorenstein(χ).

Main Computation

We execute the implementation for the input values χ = −1,−2 and −3. There are no

exceptional numerical data, i.e. the files ExcepGorensteinχ.txt remain empty. The

computation time on a 8× 2.5GHz Intel Xenon L5420 workstation with 16GB RAM is

given in the table below:

χ −1 −2 −3

time 22 min 43 min 9 h 55 min

We obtain the following results:

Proposition 5.0.7. There are no singular product quotient threefolds X with Gorenstein

singularities and χ(O
X̂

) = −1 or χ(O
X̂

) = −2.

Theorem 5.0.8. Let X = (C1 × C2 × C3)/G be a singular product quotient threefold

with Gorenstein singularities and χ(O
X̂

) = −3. Then the data

[G,T1, T2, T3, h
3,0(X̂), h2,0(X̂), h1,0(X̂), h1,1(X̂), h2,1(X̂),B(X)]

appears in the table below. Conversely, each row in the table is realized by at least one

family of product quotient threefolds.

No. G Id T1 T2 T3 h3,0 h2,0 h1,0 h1,1 h2,1 B

1 Z2
3 〈9, 2〉 [0; 34] [0; 34] [0; 34] 10 6 0 117 12 1/390

2 Z2
3 〈9, 2〉 [0; 34] [0; 34] [0; 34] 8 4 0 64 17 1/345

3 Z2
3 〈9, 2〉 [0; 34] [0; 34] [0; 34] 8 4 0 46 23 1/327

4 Z2
3 〈9, 2〉 [0; 34] [0; 34] [0; 34] 9 5 0 53 19 1/336

5 Z2
3 〈9, 2〉 [0; 34] [0; 34] [0; 34] 7 3 0 24 24 1/39

6 Z2
3 〈9, 2〉 [0; 34] [0; 34] [0; 34] 8 4 0 53 18 1/336

7 Z2
3 〈9, 2〉 [0; 34] [0; 34] [0; 34] 9 5 0 33 23 1/318

8 Z2
3 〈9, 2〉 [0; 34] [0; 34] [0; 34] 8 4 0 33 22 1/318

9 Z2
3 〈9, 2〉 [0; 34] [0; 34] [0; 34] 9 5 0 22 24 1/39

10 Z2
3 〈9, 2〉 [0; 34] [0; 34] [0; 34] 9 5 0 31 21 1/318

11 Z2
3 〈9, 2〉 [0; 34] [0; 34] [0; 34] 10 6 0 93 12 1/372
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No. G Id T1 T2 T3 h3,0 h2,0 h1,0 h1,1 h2,1 B

12 A4 × Z3 〈36, 11〉 [0; 34] [0; 32, 6] [0; 32, 6] 6 2 0 42 17 1/327

13 A4 × Z3 〈36, 11〉 [0; 34] [0; 32, 6] [0; 32, 6] 7 3 0 29 17 1/318

14 A4 × Z3 〈36, 11〉 [0; 34] [0; 32, 6] [0; 32, 6] 7 3 0 18 18 1/39

15 A4 × Z3 〈36, 11〉 [0; 34] [0; 32, 6] [0; 32, 6] 6 2 0 60 11 1/345

16 A4 × Z3 〈36, 11〉 [0; 34] [0; 32, 6] [0; 32, 6] 7 3 0 49 13 1/336

Remark 5.0.9. The symbol a/mλ in the last row of the table denotes λ singularities of

type 1
m(1, a,m− a− 1) in the basket B(X).
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Chapter 6

Product Quotient Threefolds with

minimal Volume

Let X be a product quotient threefold with canonical singularities and ρ : X̂ → X be a

crepant terminalisation. Then, according to Proposition 4.3.12, the invariants χ(O
X̂

),

e(X̂) and K3
X̂

satisfy the following inequalities

i) 48χ(O
X̂

) +K3
X̂
≥ 0 and ii) 6e(X̂) +K3

X̂
≥ 0.

Until now, we considered the boundary cases, i.e. the cases where the inequalities are

actually equalities. Recall that i) is sharp if and only if X̂ is smooth and ii) is sharp if

and only if X is a threefold isogenous to a product of unmixed type which implies that i)

must be also sharp. In both cases χ(O
X̂

) is a negative integer. Away from the boundary

cases this is far from being true: the holomorphic Euler-Poincaré-characteristic χ(O
X̂

)

can be zero or even positive. However, the self-intersection K3
X̂

, which is the same as

K3
X , is always positive. In Section 4.5 we derived the inequality K3

X ≥ 1, which is sharp

once we drop the assumption that X is canonical. The main purpose of this chapter is

to determine the smallest value of K3
X that can be can be realised under the assumption

that X has canonical singularities. To solve this problem, we provide an algorithm to

classify product quotient threefolds X with canonical singularities and K3
X ≤ c, where

c is a fixed positive number serving as the input value of the algorithm. Running a

MAGMA implementation for c = 4 we find that K3
X = 4 is the minimum value.

The algorithm is the following:

Input: An upper bound c for the self-intersection K3
X .

Step 1: In the first part we determine the set of admissible numerical data

(n, T1, T2, T3)
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of product quotient threefolds with K3
X ≤ c:

• Construct the set of triples (g1, g2, g3) ∈ N3 such that 2 ≤ g1 ≤ g2 ≤ g3 and

3∏
i=1

(gi − 1) ≤ 7

8

√
7c3.

• For every triple in the output of Step 1, construct the set of 4-tuples (n, g1, g2, g3)

such that

48/c ≤ n ≤ 42 ·
√

7c, n ≤ Nmax(gi) and
48

n

3∏
i=1

(gi − 1) ≤ c.

• For every 4-tuple in the output of Step 2 construct the set of 4-tuples

(n, T1, T2, T3),

where Ti = [g′i;mi,1, . . . ,mi,ri ] are the types which satisfy the conditions of Propo-

sition 4.5.6 and Proposition 4.5.1.

In our implementation Step 1 is performed by the function AdNumSmallVol.

Step 2: In the second part of the algorithm, we search for algebraic data. For each

4-tuple (n, T1, T2, T3) contained in the set AdNumSmallVol(c) search through the groups

G of order n for groups admitting at least one generating vector of type T1, one of

type T2 and one of type T3. For such groups compute all generating vectors Vi of

type Ti for G and form all possible combinations (G,V1, V2, V3). To each of these 4-

tuples corresponds a product quotient threefold X with algebraic datum (G,V1, V2, V3).

Compute the basket of singularities of X. If all singularities are canonical, compute the

basket B(X̂) of singularities of a crepant terminalisation X̂ and the invariants

pg := pg(X̂), q2 := q2(X̂) and q1 := q1(X̂).

Save the occurrence

[G,T1, T2, T3, pg, q2, q1, e(X̂),K3
X ,B(X̂)]

in the file SmallVolχ.txt. Step 2 is performed calling ClassifySmallVol(c).

For the full code we refer to Appendix A. Running the implementation for the value

c = 4, we obtain the following theorem.

Theorem 6.0.1. Let X := (C1 × C2 × C3)/G be a product quotient threefold with

canonical singularities, K3
X ≤ 4 and let ρ : X̂ → X be a crepant partial resolution with
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terminal singularities. Then K3
X = 4 and the data

[G,T1, T2, T3, pg, q2, q1, e,K
3
X ,B(X̂)]

appears in the table below. Conversely, each row in the table is realized by at least one

family of product quotient threefolds.

No. G Id T1 T2 T3 pg q2 q1 e K3 B

1 D6 〈12, 4〉 [0; 23, 3], [0; 23, 3] [0; 23, 3] 0 3 0 40 4 1/312, 1/244

2 Z3 × Z2
2 〈12, 5〉 [0; 2, 62] [0; 2, 62] [0; 2, 62] 0 2 0 28 4 1/64, 1/310, 1/216

3 Z3 × Z2
2 〈12, 5〉 [0; 2, 62] [0; 2, 62] [0; 2, 62] 0 4 0 40 4 1/68, 1/38, 1/236

4 Z3 × Z2
2 〈12, 5〉 [0; 2, 62] [0; 2, 62] [0; 2, 62] 0 1 0 24 4 1/312, 1/212

5 Z3 × Z2
2 〈12, 5〉 [0; 2, 62] [0; 2, 62] [0; 2, 62] 1 3 0 28 4 1/64, 1/310, 1/216

6 Z3 × Z2
2 〈12, 5〉 [0; 2, 62] [0; 2, 62] [0; 2, 62] 2 3 0 24 4 1/312, 1/212

7 SL(2,F3) 〈24, 3〉 [0; 32, 4] [0; 32, 4] [0; 32, 6] 0 3 0 52 4 1/330, 1/212

Remark 6.0.2. The symbol a/mλ in the last row of the table denotes λ singularities of

type 1
m(1, a,m− a) in the basket B(X̂).

Remark 6.0.3. When we run the algorithm for larger values of c, we also obtain threefolds,

such that K3
X is not an integer. The smallest value of K3

X , where this phenomena

happens, is 72/5.
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Appendix A

MAGMA Codes

In this appendix, we provide the MAGMA implementations of our algorithms. The code

is contained in the accompanying CD-ROM 1 which has the following directory tree

Isogenous

Examples

MainIso

SubIso

Singular

MainSing

SubSing

OutputFiles

Figure A.1: directory tree CD-ROM

We briefly describe the content and structure of the main-folders Isogenous, Singular

and OutputFiles.

1) The folder Isogenous consists of three sub-folders. The sub-folder MainIso con-

tains the implementation of the algorithm from Chapter 3 in the unmixed, index

two, index three and index six case. The corresponding MAGMA files are:

– MainUnmixed.magma,

– MainIndexTwo.magma,

1See also http://www.staff.uni-bayreuth.de/~bt300503.
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– MainIndexThree.magma,

– MainIndexSix.magma.

In the files above, we combine several subroutines, which perform a specific task

within the algorithm: the computation of the types and the generating vectors, the

verification of the freeness conditions and the computation of the Hodge numbers

using the Chevalley-Weil formula. These subroutines are stored in the second

sub-folder SubIso:

– ChevalleyWeil.magma,

– FreenessCond.magma,

– GenVectors.magma,

– HodgeDiamond.magma,

– Types.magma.

The reason why we split up the program is to avoid redundancy and to achieve a

better readability of the code.

The third sub-folder Examples contains two files:

– ExampleIndexSix.magma,

– ExampleRigid.magma.

They are used to perform the computations in Example 3.0.15 a) and b).

2) The folder Singular consists of two sub-folders. The first one: MainSing con-

tains the implementation of the algorithms from Chapter 5 and Chapter 6. The

corresponding MAGMA files are:

– MainGorenstein.magma,

– MainSmallVol.magma.

As above, we use specific subroutines. They are stored in the folder SubSing:

– BasketOfSings.magma,

– CohInvariants.magma.
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The first file is used to compute the basket of singularities of a product quotient

threefold and the second one to determine the cohomological invariants. It should

be mentioned that the routines in the folder Singular also use subroutines con-

tained in SubIso.

3) The folder OutputFiles contains the following txt files:

– Unmixed-1.txt,

– IndexTwo-1.txt,

– IndexThree-1.txt,

– Gorenstein-3.txt,

– SmallVol4.txt.

The first three files provide the full list of examples of threefolds X isogenous

to a product of curves with χ(OX) = −1 obtained by an absolutely faithful G-

action, see [Theorem (A) p.48], [Theorem (B) p.50] and [Theorem (C) p.52]. To

produce these files, we shall load the MAGMA programs MainUnmixed.magma,

MainIndexTwo.magma and MainIndexThree.magma and call the functions

– ClassifyUnmixed(χ),

– ClassifyIndexTwo(χ),

– ClassifyIndexThree(χ)

for χ = −1, respectively. Recall, there are no examples in the index six case with

χ(OX) = −1 which are obtained by an absolutely faithful G-action (cf. [Theorem

(C) p.52]). To verify this claim we load the program MainIndexSix.magma and

call the function ClassifyIndexSix(χ) for χ = −1.

The file Gorenstein-3.txt contains the classification of crepant resolutions X̂ of

singular Gorenstein product quotient threefolds X with χ(O
X̂

) = −3 ( cf. Theorem

5.0.8). To produce this file, we load MainGorenstein.magma and execute the

function ClassifyGorenstein(χ) for χ = −3.

The last file SmallVol4.txt contains the full list of examples of product quotient

threefolds X with K3
X ≤ 4 (cf. Theorem 6.0.1). To produce it, we load the program

MainSmallVol.magma and execute the function ClassifySmallVol(c) for c = 4.
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[El81] R. Elkik, Rationalité des singularités canoniques. Invent. Math., Vol. 64, (1981),

1–6.

[FG15] D. Frapporti, C. Gleissner, On threefolds isogenous to a product of curves.

arXiv:1412.6365v2, (2015).

[FK80] H. M. Farkas, I. Kra, Riemann surfaces. Graduate Texts in Mathematics, Vol.

71, Springer-Verlag, New York-Berlin, (1980).

[Fl81] H. Flenner, Rational singularities. Arch. Math. (Basel), Vol. 36, (1981), 35–44.

[F81] O. Forster, Lectures on Riemann surfaces. Graduate Texts in Mathematics 81,

Springer-Verlag, Berlin, (1981).

[Fuj74] A. Fujiki, On resolutions of cyclic quotient singularities. Publ. Res. Inst. Math.

Sci., Vol. 10, (1974/75), 293–328.

[Ful93] W. Fulton, Introduction to toric varieties. Annals of Mathematics Studies,

Princeton University press (1993).

[GH78] P. Griffiths, J. Harris, Principles of algebraic geometry. A Wiley-interscience

publication, John Wiley & Sons, New York, (1978).

[H89] B. Hunt, Complex manifold geography in dimension 2 and 3. J. Differential Geom.,

Vol. 30, No. 1, (1989), 51–153.

[Hat02] A. Hatcher, Algebraic topology. Cambridge university press, (2002).

[Hu05] D. Huybrechts, Complex geometry. Universitext, Springer-Verlag, Berlin, (2005).

98



[Isa76] I.M. Isaacs, Character theory of finite groups. Academic Press [Harcourt Brace

Jovanovich, Publishers], New York-London, (1976).

[IR96] Y. Ito, M. Reid, The McKay correspondence for finite subgroups of SL(3,C). In:

Higher-dimensional complex varieties, de Gruyter, Berlin, (1996), 221–240.

[Ko89] J. Kollar, Flops. Nagoya Math. J., Vol. 113, (1989), 15–36.

[KM98] J. Kollár, S. Mori, Birational geometry of algebraic varieties. Cambridge Uni-

versity Press, Cambridge, (1998).

[Kon95] M. Kontsevich, Motivic integration. Lecture at Orsay, (1995).
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