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Abstract

A gravity-driven viscous film flow consists of a layer of a viscous fluid that flows

down an inclined or vertical substrate. The most simplified case appears, if the

substrate is considered as perfectly flat without any roughness and of infinite

extend in both directions. Then the Navier-Stokes equations can be solved

analytically and the well known Nusselt solution with its parabolic velocity

profile is at hand. Unfortunately, in real systems, like the lachrymal flow in the

eye, glaciers, avalanches or a water film on a sloped road caused by heavy rain,

this case does not apply. There is always some kind of roughness or undulation

of the substrate involved that influences the behavior of the flow. Also those

systems are not of infinite extend and so boundaries, e.g. side walls, have to be

accounted for. Depending on their exact nature, these additional factors can

have a major impact on the steady state of gravity-driven film flows.

If the volume flux of a film flow exceeds a certain threshold, waves appear at the

free surface. These waves are the reaction of the system to disturbances, like e.g.

ambient noise or external forcing. They grow or shrink on their way downstream

and develop different wave shapes, depending on the properties of the steady

flow and the external forcing. Both the onset of the free surface waves and their

evolution on their way down the substrate are heavily impacted by the substrate

undulations and the nature of the initial disturbances. It is of imperative

importance for technical applications, e.g. coating, heat exchangers or falling

film reactors, to know how exactly free surface waves can be influenced.

The present dissertation shows experimentally, how different substrate topogra-

phies affect the wave dynamics on film flows. For this, three substrates were

used, whose periodic topographies had the same wavelength and amplitude, but

diverse shapes: sinusoidal, saw-tooth-like and rectangular. Systematic mea-

surements of the wave dynamics with different external forcing frequencies and

amplitudes were carried out and referred to measurements of flows over a flat
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Abstract

substrate. Both the growth rate at the initial stages of the wave evolution and

the saturation amplitude at later stages are significantly increased by the sub-

strate’s corrugations. On the other hand, the exact shape of the topography

plays only a minor role.

Additionally, this work deals with experiments on the dynamics of solitary

waves. Previous publications defined solitary waves as wave trains with a long

area of flat film flow between the waves. Here, “truly solitary waves” were

generated by perturbing the steady film flow with exactly one period of a si-

nusoidal disturbance. Without preceding and succeeding waves, the solitary

wave can attune freely not only in the direction perpendicular to the flow, but

also parallel to it. The influence of different periods and amplitudes of these

disturbances was measured systematically. The results show that there is an

interdependency between the amplitude and length of the waves: The shorter

(longer) the waves become, the higher (lower) becomes their amplitude. At the

end of the measurement channel, all measured waves on the same film flow tend

to a similar amplitude and length. Also the waves’ velocity does not depend

linearly on the waves’ amplitude, but rather quadratically.

A higher wave amplitude also means a higher velocity of a fluid particle at

the free surface of the waves, since it is then farther away from the substrate.

The wave’s velocity grows with its amplitude, too. Streamline portrays of large

solitary waves reveal that the velocity of the fluid at the free surface can be

higher than the wave velocity. The waves do not break, but exhibit recirculation

areas underneath the free surface, if the waves surpass a critical amplitude. This

is of special interest in heat exchanger applications, since recirculation areas are

known to enhance heat transfer in the cross direction.
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Zusammenfassung

Eine schwerkraftgetriebene Filmströmung besteht aus einer Fluidschicht, die

einen geneigten oder senkrechten Untergrund hinabfließt. Der einfachste Fall

liegt vor, wenn der Untergrund als perfekt flach, ohne jede Rauigkeit und als in

beide Raumrichtungen unendlich ausgedehnt angesehen wird. Dann können

die Navier-Stokes-Gleichungen analytisch gelöst werden, mit der bekannten

Nusseltlösung und ihrem parabolischen Geschwindigkeitsprofil als Endresul-

tat. Leider ist dieser Fall auf reale Systeme wie z.B. die Tränenflüssigkeit

in den Augen, Gletscher, Lawinen oder einen Wasserfilm auf einer abfallen-

den Straße nach starkem Regen nicht anwendbar. Es ist immer eine Art von

Rauigkeit oder Unebenheit des Untergrunds vorhanden, die das Verhalten der

Strömung beeinflusst. Auch sind diese Systeme nicht unendlich ausgedehnt und

somit müssen Grenzen, z.B. Seitenwände, berücksichtigt werden. Je nach ihrer

genauen Natur können diese zusätzlichen Faktoren einen bedeutenden Einfluss

auf die stationäre schwerkraftgetriebene Filmströmung haben.

Falls der Volumenstrom einer Filmströmung einen bestimmten Schwellwert

überschreitet, entstehen an der freien Oberfläche Wellen. Diese Wellen sind

die Reaktion des Systems auf Störungen wie z.B. Rauschen aus der Umge-

bung oder externe Anregung. Sie wachsen oder schrumpfen während sie den

Strömungskanal herunterfließen und entwickeln unterschiedliche Formen, ab-

hängig von den Eigenschaften der stationären Strömung und von der Art der

externen Anregung. Sowohl die Entstehung der Oberflächenwellen als auch

deren Entwicklung auf ihrem Weg stromabwärts werden stark von Uneben-

heiten des Untergrunds und der Natur der ursprünglichen Störung beeinflusst.

Für technische Anwendungen ist es ungeheuer wichtig zu wissen, wie genau die

Oberflächenwellen manipuliert werden können.

Die vorliegende Dissertation zeigt anhand von Experimenten, wie sich ver-

schiedene Untergrundtopografien auf die Wellendynamik von Filmströmungen
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Zusammenfassung

auswirken. Dafür wurden drei Untergründe benutzt, deren periodische To-

pografien die gleiche Wellenlänge und Amplitude, aber unterschiedliche Formen

hatten: sinusförmig, sägezahnförmig und rechteckig. Systematische Messun-

gen der Wellendynamik mit verschiedenen externen Anregungsfrequenzen und

Anregungsamplituden wurden ausgeführt und auf die Messungen über einen

flachen Untergrund bezogen. Sowohl die Wachstumsraten während der An-

fangsphase der Wellenentwicklung als auch die Sättigungsamplitude während

späterer Phasen sind durch die Unebenheit des Untergrunds deutlich erhöht.

Andererseits spielt die exakte Form der Topografie nur eine untergeordnete

Rolle.

Des Weiteren beschäftigt sich diese Arbeit mit Experimenten, welche die Dy-

namik von Einzelwellen untersuchen. Bisherige Publikationen definierten Einzel-

wellen als Wellenzüge, deren Wellen durch einen langen, flachen Film getrennt

sind. Hier wurden nun ,,wahre Einzelwellen“ generiert, indem die stationäre

Filmströmung durch genau eine sinusförmige Störung angeregt wurde. Ohne

vorangehende und nachfolgende Welle konnte sich die Einzelwelle nicht nur

senkrecht zur Strömungsrichtung frei entwickeln, sondern auch parallel dazu.

Der Einfluss verschiedener Störungsperiodendauern und Störungsamplituden

wurde systematisch gemessen. Die Ergebnisse zeigen, dass sich die Länge und

Höhe der Wellen gegenseitig beeinflussen: Je kürzer (länger) die Wellen wer-

den, desto größer (kleiner) wird ihre Amplitude. Am Ende des Messkanals

tendieren alle vermessenen Wellen über die gleiche Filmströmung gegen eine

ähnliche Amplitude und Länge. Auch hängt die Geschwindigkeit der Wellen

nicht linear von ihrer Amplitude ab, sondern quadratisch.

Eine größere Wellenamplitude bedeutet auch eine höhere Geschwindigkeit eines

Flüssigkeitsteilchens an der freien Oberfläche der Wellen, da dieses dann weiter

weg vom Untergrund ist. Genauso wird die Geschwindigkeit der Wellen mit

ihrer Amplitude größer. Stromlinienbilder von großen Einzelwellen zeigen, dass

die Geschwindigkeit der Flüssigkeit an der freien Oberfläche höher sein kann als

die Wellengeschwindigkeit. Die Wellen brechen aber nicht, sondern es bilden

sich Rezirkulationsgebiete unterhalb der freien Oberfläche, wenn die Wellen

eine kritische Amplitude überschreiten. Dies ist von besonderem Interesse

für Wärmetauscher, da Rezirkulationsgebiete bekanntermaßen den Wärme-

transport in Querrichtung steigern.
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1 Introduction

When a layer of a viscous fluid flows down an inclined or vertical substrate, this

flow is called a gravity-driven viscous film flow. It appears in many different

ways in nature: A water film on a sloped road during heavy rain, the flow

of the lachrymal fluid in the eye and the movement of avalanches [1], glaciers

[2], debris or lava are just a few examples. A rich variety of waves can form

at the free surface of the liquid film and their dynamics heavily influence the

function of different technical apparatuses: For example in coating applications

[3–5], it is imperative to suppress the waves in order to obtain a smooth surface

on the coated device. On the other hand, for falling film heat exchangers

and reactors, free surface waves enhance heat transfer [6, 7] and so it is very

important to control the properties of the waves in order to control the thermal

transmission. This led to a very lively interest in the scientific community and

a large number of publications were devoted to gravity-driven film flows and

their wave dynamics.

1.1 The steady state of gravity-driven film flows

In 1916, Wilhelm Nusselt [8] solved the Navier-Stokes equations analytically

for a film flow over a flat substrate of infinite extent. He found a quadratic de-

pendency of the velocity on the distance from the substrate under the following

predeterminations: The flow was assumed to be steady, its velocity field to be

unidirectional and parallel to the substrate, the magnitude of the velocity to

be only dependent on the distance from the substrate and the shear stress at

the free surface to be zero. These assumptions exclude several features that are

often crucial in real systems, e.g. intentional or unintentional roughness and

undulations of the substrate or effects induced by the side walls.

The no-slip condition and capillary rise at the side walls of an inclined channel
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1 Introduction

lead to three-dimensional features of both the free surface shape and the velocity

field of the film flow. If, due to the capillary rise, the film at the side walls is

considerably thicker than in the middle of the channel, a pronounced velocity

overshoot near the side walls was found experimentally and numerically [9] as

well as analytically [10]. By further thinning the film, a rupture of the film in

the middle of the channel marks the transition from a film to a corner flow [11].

Because of the no-slip condition, the liquid’s velocity must be zero directly at

the side walls.

Already very small (compared to the film thickness) single undulations (e.g.

small particles) on a substrate can have a decisive impact on the free surface

shape of a film flow, as shown semi-analytically by Pozrikidis and Thoroddsen

[12] for a creeping flow. Also the influence of bumps or dents, approximated

by step-up-step-down/step-down-step-up geometries were investigated by a lu-

brication approximation [13], analytically via a Green function [14], by using

a boundary integral method [15] and experimentally [16]. The influence of

capillarity on the free surface shape was subject to analytical, numerical and

experimental work by Aksel [17]. The authors of [12–17] found a free surface

depression near step-ups of the topographies, and ridges near step-downs. The

magnitude of these features depends on the width, depth and steepness of the

mounds or trenches and on the capillary pressure at the free surface of the film

flow. Scholle and Aksel proved analytically [18] that for creeping film flows,

the volumes of depression and elevation of the free surface caused by a trench,

have to be equal.

The influence of periodical substrate corrugations on the steady state of gravity-

driven viscous film flows was researched extensively. Concerning the free sur-

face, the undulated substrate provokes an undulated free surface. If a creeping

flow is considered, the amplitude of the free surface’s undulation decreases with

an increasing film thickness [19–21]. On the other hand, a laminar film flow

with significant inertia exhibits a different reaction to substrate undulations:

The amplitude of the free surface undulations increases with the Reynolds

number (which is a measure for the influence of inertia), until a maximum (res-

onance) is reached and then decreases again [20, 22, 23]. The Reynolds number,

where this maximum is located, depends on the geometry of the substrate, the

film thickness and the hydrostatic and capillary pressure. Since the nonlinear

10



1.2 The stability of gravity-driven film flows

terms in the governing equations were omitted, this is only valid for a small

substrate waviness. A higher waviness causes higher harmonics in the free sur-

face’s shape and the resonance is shifted to higher Reynolds numbers [24–27].

Also generally, the resonance is not influenced by the exact shape (e.g. rectan-

gular or sinusoidal) of the geometry [28]. By varying the inclination angle of the

substrate, Wierschem and Aksel [29] found not only resonant waves, but also

shocks, humps and surface rollers. The other way round, it was proven that

an unknown substrate geometry can be calculated from a known free surface

shape [30–32] or velocity [33].

Additionally to the free surface, substrate corrugations also change the velocity

field of a film flow. For a Stokes flow, Pozrikidis [19] reported on flow reversal

in the troughs of different sinusoidal undulations, by using a boundary integral

formulation. These eddies are also formed, when inertia is considered, as shown

by Trifonov [22], who solved the steady Navier-Stokes equations numerically.

So when do these eddies appear? Wierschem et al. [34] (experimentally) and

Scholle et al. [35] (analytically) studied a creeping flow and found the film

thickness (and not the Reynolds number) to be the critical parameters for the

onset of eddies in the troughs. This threshold depends on the waviness of the

substrate. If inertia is involved, the eddy size increases and the eddy becomes

tilted towards the upstream position [36, 37]. This leads to competing effects

of geometry and inertia on the local flow structure of film flows [38]. Eddies

can also appear on the crest of a rectangular undulation [25]. The vortical

structures enhance the heat transfer between the substrate and the free surface

of the liquid film [39].

Wierschem et al. [40] showed that the shape of the free surface can impact the

formation of the eddies. When the free surface is strongly curved or even a

hydraulic jump appears through the resonant effects described above, eddies

can be suppressed at certain Reynolds numbers.

1.2 The stability of gravity-driven film flows

Since gravity-driven film flows are bounded by a free surface and not a rigid

wall, they are very susceptible to disturbances. Experiments, carried out by
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1 Introduction

Pjotr and Sergei Kapitza [41, 42], revealed that a film flow over a flat substrate

becomes unsteady and waves appear spontaneously at its free surface, if a

certain volume flux threshold is exceeded. This led to analytical computations

by Yih [43] and Benjamin [44], who adapted the Orr-Sommerfeld equation [45–

47] to film flows, and experiments by Liu et al. [48]. They found that a film flow

becomes unstable to infinitely long waves, when the Reynolds number surpasses

a critical value of Rec = 5/4× cotα. Hence the stability map which represents

the neutral curve in the wave number/Reynolds number plane, exhibits a long-

wave type instability.

The computations in the previous paragraph were done for the idealized case

of an infinitely broad channel without side walls. Taking side walls with the

no-slip-condition and the capillary rise into account, a stabilizing effect [49, 50]

of the side walls was found along with a transition from a long-wave to a

short-wave instability [51]. The significance of those features depends on the

Kapitza number (which is a measure for the influence of the surface tension),

the distance from the side walls and the contact angle between the fluid and

the side walls.

The stability of gravity-driven film flows also changes, if weak substrate undu-

lations are present. First analytical results, obtained by Wierschem and Aksel

[52], indicate that the flow is stabilized by undulations of moderate amplitude

and long wavelength compared to the film thickness. The stability behavior

is still of the long-wave variety, as for the flow over flat substrates. These

findings were confirmed analytically [53], numerically [54] and experimentally

[26, 27, 53]. It is also stated in these papers that the stabilizing effect of a sub-

strate can be increased by steepening the undulations. Numerical investigations

by Trifonov [55–57], who used either integral approaches or the Navier-Stokes

equations in their full statement, revealed that a flow is stabilized by corruga-

tions, if they generate a significant increase of the mean film thickness compared

to a Nusselt flow.

By carrying out numerical calculations, D’Alessio et al. [58] and Tseluiko et

al. [59] found that the flow can be stabilized or destabilized by steep substrate

undulations, depending on the amplitude and wavelength of the substrate and

the surface tension of the fluid. Heining and Aksel [60] were the first to re-

port on a completely new stability phenomenon of a film flow over strongly
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1.3 The wave dynamics on gravity-driven film flows

corrugated substrates: In their analytical and numerical study, they used an

integral boundary layer model to reveal a disjointed stability map. The authors

discarded the rather unexpected finding of separated unstable islands as an ar-

tifact caused by the linearization of the problem. Their existence, however,

could be confirmed experimentally by Pollak and Aksel [61] and numerically

by Trifonov [62], who used the full Navier-Stokes equations. Experiments by

Schörner et al. [28] also revealed that the qualitative appearance of the stabil-

ity map can generally not be changed by the substrate’s specific shape (e.g.

rectangular, saw-tooth-like or sinusoidal), without changing the wavelength or

amplitude of the undulations. Through extensive experimental work, Schörner

et al. [63] were able to unveil the influence of the fluid’s viscosity and the sub-

strate’s waviness and inclination angle on the stability. They were able to link

the first unstable island in the stability maps to the resonance phenomenon of

the steady state film flow (section 1.1). Pollak and Aksel [61] Cao et al. [64],

Trifonov [62] and Schörner et al. [63] found a transition from a long-wave type

instability to a short-wave type by either increasing the inclination angle of the

substrate or by decreasing the viscosity of the fluid.

1.3 The wave dynamics on gravity-driven film flows

The dynamics and evolution of waves that appear due to the instability of

the film flow (section 1.2) or external forcing were examined elaborately in the

literature for flows over flat substrates. Several models were derived for the

influence of a non-zero wave amplitude on the evolution of free surface waves,

e.g. [65–74]. Chang and Demekhin cover this topic in their book “Complex

wave dynamics on thin films” [75]. Also extensive numerical and experimental

studies [48, 76–88] have been carried out. They focus on the evolution of the

waves down a channel and on the steady state these waves reach eventually due

to nonlinear effects. A rich variety of waves can appear which were categorized

into families by Chang et al. [89]. Craster and Matar [90] reviewed this topic in

detail and reported the consensus that mostly, two types of waves are found in

the regarded systems: a) Nearly sinusoidally shaped waves of comparably small

wavelength and wide peaks, and b) solitary structures which are separated by

a large area of smooth film flow and have a high narrow crest and can exhibit
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multiple peaks. These solitary waves are often preceded by small ripples, called

capillary waves. The steady state, sinusoidal and solitary waves reach, can

become unstable itself and break up into three-dimensional structures [91–94].

Very little is known about the influence of substrate undulations on the wave

dynamics on gravity-driven film flows. Some publications dealt numerically

or experimentally with the wave evolution on the free surface of a film flow

over undulated substrates [27, 54, 55, 59, 95]. They described the waves as a

superposition of the steady state waves and the proceeding unsteady waves.

This leads to a dependency of the unsteady waves’ amplitude on the position

inside a substrate’s wavelength. Argyriadi et al. [27] showed that the saturation

state amplitude of free surface waves over undulated substrates is higher than

of waves over a flat substrate under otherwise equal circumstances.

1.4 Scope of this dissertation

The scope of this dissertation is twofold. One part is devoted to a better un-

derstanding of the dynamics of unsteady free surface waves on gravity-driven

film flows. Especially the influence of different substrate undulations is scru-

tinized and compared to results for a flat substrate and existing knowledge in

the literature. For a fixed steady state film flow, the waves were investigated

systematically by adding unsteady sinusoidal waves of different frequency and

amplitude and measuring their evolution down a channel. Additionally to the

flat substrate that was used as a reference, three undulated substrates with the

same wavelength and amplitude, but different shapes (sinusoidal, saw-tooth-like

and rectangular), were inserted into the channel.

The second part deals with the dynamics of solitary waves over a flat substrate.

Most publications consider wave trains, whose humps are separated by an area

of smooth free surface as solitary waves. The present work investigates “truly

solitary waves”, who are not part of a wave train. Waves of different heights

and lengths were generated and again the evolution of these waves down a

channel was measured and analyzed regarding their amplitude, speed, length

and shape. Also the flow field underneath large solitary waves was portrayed.

The dissertation is structured as follows: Chapter 2 describes the studied sys-
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1.4 Scope of this dissertation

tem and the measurement techniques that capture the properties of the steady

state (basic) flow and of the unsteady continuous and solitary waves. Chapter 3

deals with the mathematical formulation of the steady film flow and linear free

surface waves as well as with different model equations for nonlinear free surface

waves. Chapter 4 comprises the presentation and discussion of the experimental

results which are compared to numerical calculations. The dissertation closes

with concluding remarks in chapter 5.

15



16



2 Studied systems

and measurement techniques

2.1 Basic flow

The basic flow was defined as an undisturbed, steady, two-dimensional, gra-

vity-driven film flow down an open channel which was inclined by α relative to

the horizontal (figure 2.1). It can be described by its free surface position in

z-direction h0(x) and its velocity field ~u(x, z). These quantities depend on the

liquid’s kinematic viscosity ν and surface tension σ, the two-dimensional flow

rate Q̇ (calculated from the volume flux V̇ ), the inclination angle α and the

topography of the channel’s inlay.

α

x

z

V̇

V̇

V̇

exchangeable inlay

Figure 2.1: The flow circuit that was used to set up the basic film flow.
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2 Studied systems and measurement techniques

2.1.1 Topographies and inclination angle

The flow over four different substrate topographies was investigated by exchang-

ing the inlays in the channel: the flat (S0), sinusoidal (S1), saw-tooth-like (S2)

and rectangular (S3) shapes that are shown in figure 2.2. The undulated sub-

strates shared the same amplitude asub = 4mm and wavelength Lsub = 20mm.

All substrates had the same width wsub = 170mm and were bordered in y-

direction by transparent side walls. Due to the manufacturing process, the

inlays S0, S1, S2 and S3 had different counts of waves Nsub = 67, 55, 43, 61 and

hence different lengths lsub = Nsub × Lsub = {1340, 1100, 860, 1220}mm.

The channel with the exchangeable inlay was mounted on a structure which

was designed to enable the continuous variation of the inclination angle α.

This angle was measured with a Mitutoyo Pro 360 Digital Protractor 950-315

with an accuracy of ±0.1 ◦. The x-y-plane of the coordinate system was defined

by the surface of the flat inlay. With a water balance, the y-axis was positioned

exactly parallel to the horizontal. Hence, the x-axis was inclined by α with

respect to the horizontal.

Lsub

S0

Nsub = 67

x
z

Lsub

asub

S1

Nsub = 55

x
z

Lsub

asub

S2

Nsub = 43

x
z

Lsub

asub

S3

Nsub = 61

x
z

Figure 2.2: The topographies used for the measurements of the wave dynamics: flat

(S0), sinusoidal (S1), saw-tooth-like (S2) and rectangular (S3). A substrate consisted of

Nsub repetitions of the enlarged shapes on the left and right hand side. Each sketch in

the middle represents a part of one of the substrates.

18



2.1 Basic flow

2.1.2 Two-dimensional flow rate

The two-dimensional flow rate Q̇ was calculated from the three-dimensional

volume flux V̇ through the flow circuit (figure 2.1) and the channel’s width

wsub which was (170± 1)mm for all experiments:

Q̇ = V̇ /wsub. (2.1)

With this equation, it is assumed that Q̇ is constant over the width of the

channel. Because of the no-slip condition and capillary rise at the side walls,

Q̇ = Q̇(y) is a function of y. For flat topographies, Scholle and Aksel [10]

computed Q̇(y) analytically and showed that the flow rate Q̇(wsub/2) at the

channel’s center deviates with less than 1% from V̇ /wsub for the case presented

in this dissertation. Unfortunately, no such work has been done for undulated

topographies. It was assumed without prove that a similar behavior is at hand.

In order to produce the steady basic flow, a constant volume flux V̇ was pro-

vided by pumps from PF Jöhstadt type SK 80S/4 and type SK 90L/4. During

an experiment, V̇ was measured continuously by ultrasonic flow meters from

Deltawave type XUC-F. In figure 2.3 can be seen that fluctuations around the

constant value of V̇ were less than ±3 cm3/s.

0 30 60 90 120 150
136

140

144

time t (min)

V̇
(c
m

3
/
s)

Figure 2.3: The measured volume flux V̇ for the duration of a wave dynamics experi-

ment.
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2 Studied systems and measurement techniques

By solving the Navier-Stokes equations, as shown in various text books, e.g.

[96], the Nusselt film thickness dn and free surface velocity us for the flow over

the flat substrate can be calculated:

dn =
3

√

3νV̇

gwsub sinα
, (2.2)

us =
3

√

9V̇ 2g sinα

8νwsub
2

. (2.3)

Here, g = 9.81m/s2 is the gravitational constant and ν stands for the kinematic

viscosity which will be explained in section 2.1.3. The film thickness and free

surface velocity of flows over undulated substrates cannot be calculated exactly

from the Navier-Stokes equations.

2.1.3 Surface tension, viscosity and density

Within the experiments, two different Newtonian liquids were used. Both were

silicon oils from Elbesil, denoted as Elbesil 65 and Elbesil 100. Their density

ρ and dynamic viscosity η were measured and yielded the kinematic viscosity

ν = η/ρ. Also the surface tension σ was determined. The following devices

were utilized:

A Mohr-Westphal-Balance from Kern was used to obtain the density of the

liquids. The temperature of the balance was set by a thermostat from Lauda.

The dynamic viscosity of the oils was determined by an Ubbelohde capillary

viscosimeter from Schott which was dipped into a water bath, whose tempera-

ture was controlled by a thermostat, also from Schott. The surface tension was

measured with a ring-tensiometer from Lauda. A thermostat from Lauda set

the temperature of the fluid.

Since ρ, η and hence ν are temperature sensitive, the liquids’ properties were

measured in a temperature range between 21 ◦C and 26 ◦C in intervals of 1 ◦C.

The results are shown in figure 2.4, with a linear function fitted to the data

of ρ and η. The surface tension σ does not show a distinct dependence on

the temperature, but fluctuated around a constant value. A thermostat from

Haake and a PT-100 temperature sensor, controlled by a custom made LabView
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2 Studied systems and measurement techniques

Elbesil 65

Elbesil 100

σ (mN/m)

20.0± 0.1

20.2± 0.2

ρ (kg/m3)

958.3± 0.2

964.2± 0.2

η (mPas)

64.8± 0.3

100.0± 0.4

ν (mm2/s)

67.6± 0.3

103.7± 0.4

Ka

3.54± 0.02

2.01± 0.02

Table 2.1: The fluid properties and the Kapitza number with their estimated errors for

both silicon oils, at θ = (23.0± 0.2) ◦C.

2.1.4 Dimensionless quantities

The values given in sections 2.1.1 through 2.1.3 only describe a very narrow

parameter space. Using dimensionless quantities enables comparisons to cases,

where different parameters were used. The most commonly used dimensionless

numbers to describe film flows are the Kapitza and Reynolds number. The

Kapitza number Ka describes the ratio of surface tension forces to inertial

forces (Definition as in [75]):

Ka =
σ

ρg1/3ν4/3
. (2.4)

The Kapitza number only depends on the liquid’s properties (table 2.1) and

not the flow itself. The Reynolds number

Re =
usdn
ν

(2.5)

describes the ratio of inertial forces to viscous forces which depends on the

characteristic velocity us and the characteristic length dn of the flow. The

characteristic length and velocity of the film flow over the flat substrate are its

film thickness dn and free surface velocity us = u(dn) (equations 2.2 and 2.3).

Combining equation 2.5 with equations 2.1 through 2.3 yields

Re =
3Q̇

2ν
. (2.6)

The characteristic length and velocity of a film flow over the strongly undulated

substrates is not defined as easily. The first problem is that the flow field cannot

be calculated exactly from the Navier-Stokes equations. Secondly, both the
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2.1 Basic flow

local film thickness dloc(x) and the free surface velocity uloc(x) depend strongly

on the position inside a substrates wavelength and hence on the x-coordinate.

Consequently, also the Reynolds number, if computed from uloc(x) and dloc(x)

would be a function of x. In order to have a globally valid Reynolds number,

we chose to use the Reynolds number of the corresponding flow over the flat

substrate with the same flow rate Q̇ (equation 2.6). Since the Reynolds number

is calculated from the two dimensional flow rate Q̇, which in turn is derived from

the three dimensional volume flux V̇ and the channel’s width wsub (equation

2.1), and the kinematic viscosity ν, it also carries an uncertainty: ∆Re ≤ 0.5.

2.1.5 Measurement of the basic flow

The techniques described in this section and in section 2.2 were also used by

Reck and Aksel in [95]. The position of the basic flow’s free surface h0(x) was

measured by the setup sketched in figure 2.6. The fluorescent dye Quinizarin

from Sigma Aldrich was dissolved into the silicon oils and excited by a blue

line laser from Laser Components, type FP-L-450-40-10-F210. The continuous

wave radiation had the wavelength λblue = 450 nm and the power Pblue =

40mW. The laser was mounted above the middle of the channel width at its

working distance (210mm) from the flow’s free surface, in order to receive the

narrowest line possible.

20 ◦

camera

capillary rise

laser

fluorescent liquid

Figure 2.6: The experimental setup for the measurement of the free surface shape.
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The length lblue and width wblue of the laser line was calculated from the data

sheet provided by Laser Components [97]: lblue = 37mm, wblue = 0.25mm.

The fluorescent liquid was recorded by a CR600x2 camera from Optronis which

was inclined by approximately 20 ◦ with respect to the y-axis, to avoid the

capillary rise at the side walls (figure 2.6). The perspective contortion was

corrected by recording a calibration plate (figure 2.7) with the same camera and

setup. The recorded free surface is displayed in figure 2.8, exemplarily for a flow

over the sinusoidal substrate. An edge-detection algorithm was developed in

MATLAB, in order to retrieve the free surface contour h0(x) of the basic flow as

the boundary between the bright liquid and the dark air: First a Gaussian filter

had to be applied, to get rid of high frequency noise. For every column of the

recordings, the algorithm then calculated the first derivative of the brightness

distribution (graphs in figure 2.8). The coordinate of its maximum was read out

and with the help of the aforementioned calibration plate, it could be allocated

to the position of the free surface in the x-z-coordinate system. This position

was then defined as the location of the steady state free surface h0(x). The

result is shown in figure 2.9. It was not necessary to measure the velocity field

of the basic flow, because it was not needed to analyze and discuss the wave

dynamics on the film flow.

z

x

Figure 2.7: The calibration plate that was used to correct the perspective contor-

tion. The dots have the diameter 0.25mm and are 0.5mm apart. So each pixel in the

recorded images was allocated to a position in the x-z-coordinate system. The black

stripe at the lowest part of the image is the surface of the flat substrate.
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2.2 Wave dynamics

The goal of this dissertation is to describe the dynamics of both continuous

and solitary waves which run over a gravity-driven film flow. It is important to

distinguish them from the steady waves which occur due to the undulated sub-

strates (figure 2.9). Those waves are part of the basic flow and were described

in section 2.1.5.

2.2.1 Continuous waves

The continuous waves overlaid the basic flow with a non-steady addition whose

shape is denoted as hc(x, t). The waves were described by their amplitude ac,

wave number kc and phase velocity vc. A paddle that was mounted at the inlet

of the channel and driven by a direct current motor (figure 2.10) produced the

waves. The paddle’s up-and-down movement is described by

ap(t) = ap,0 cos (2πfpt) , (2.7)

with fp being the frequency and ap,0 the amplitude of the paddle movement.

The free surface shape h(x, t) of the entire unsteady flow consisted of the steady

basic flow and the unsteady continuous waves:

h(x, t) = h0(x) + hc(x, t). (2.8)

paddle

camera

laser line

Figure 2.10: Position of the paddle at the channel’s inlet. Also visible: Camera and

laser line. Reproduced with permission from [95]. c©2013, AIP Publishing LLC.
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2 Studied systems and measurement techniques

After all fragments of the unsteady wave hc,i(x, t), i = {2, ...,Nsub} had been

obtained, they were joined together by the following procedure: Due to the

overlap between the images of adjacent measurement positions, the right end

of the recorded pictures at e.g. measurement position 2 showed the same part

of the channel as the leftmost part of the recorded pictures at measurement

position 3 (figure 2.11). The measurements at these two positions did not take

place at the same time but with a delay of t2,3. Because of the periodic nature

of the waves produced by the paddle, the unsteady wave repeats itself after

each period 1/fp. That means

hc,2(x, t) = hc,2

(

x, t+
n

fp

)

(2.9)

and exemplarily for x = 40mm (figure 2.11)

hc,2(40mm, t) = hc,3

(

40mm, t+
n

fp

)

, (2.10)

with n being a natural number. With our setup, it was not possible to set the

time delay to t2,3 = n/fp. Consequently, the fragments hc,2(x, t) and hc,3(x, t+

t2,3) in figure 2.11 show a mismatch. That mismatch was erased by looking

at both amplitude-time-curves at a certain position in the overlap region, e.g.

x = 40mm. The curves hc,2(40mm, t) and hc,3(40mm, t) are plotted on the

left hand side in figure 2.12 and show a slight phase difference τ2,3. The phase

difference was then calculated by computing the Fast Fourier Transformation

F (hc,2(40mm, t)) and F (hc,3(40mm, t)) with the built-in MATLAB function

fft(). By plotting the imaginary parts I against the real parts R of the

resulting functions (figure 2.12 right hand side), one can read out the phase

difference ϕ2,3 in radian measure and calculate the phase difference τ2,3 in

seconds:

τ2,3 =
ϕ2,3

2π
·
1

fp
. (2.11)

This was carried out for all points in the overlap area between positions 2 and

3 of figure 2.11. The accuracy of τ2,3 was improved by averaging over these

points. Then the phase differences τ i,i+1 (i = {2, ...,Nsub − 1}) were calculated
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2.2 Wave dynamics

for all overlap areas between the measurement positions. Since all fragments

had to be in the same phase, all phase differences were referred to the same

measurement position, i.e. the one for i = 2 :

τ2,i =

i−1
∑

j=2

τ j,j+1. (2.12)

0 0.25 0.5 0.75 1
−0.6

−0.3

0

0.3

0.6
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z
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m
)

hc ,2(40mm, t)

hc ,3(40mm, t)

−300 −200 −100 0 100
0

50

100

150

200
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I
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.u
.)

F (hc ,2(40mm, t))

F (hc ,3(40mm, t))

ϕ2,3

Figure 2.12: The graph on the left side shows the amplitude-time-curves at the same

downstream distance from the inlet x = 40mm for the measurements at positions two

and three which have a slight phase difference. The phase difference ϕ2,3 in radian mea-

sure can be read from the graph on the right hand side which displays the imaginary

parts of the Fourier Transformations of the two amplitude-time-curves against their real

parts.

100 150 200 250 300 350 400 450
−3

0

3

x (mm)

z
(m

m
)

Figure 2.13: An example of the defragmented wave hc(x , t) for a part of the channel

with the sinusoidal inlay S1 at a random time. Reproduced with permission from [95].

c©2013, AIP Publishing LLC.
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In the last step, all fragments were joined together by superposition:

hc(x, t) =

Nsub
∑

i=2

hc,i(x, t+ τ2,i). (2.13)

An example for the resulting defragmented wave is shown in figure 2.13.

2.2.2 Solitary wave

A solitary wave hs(x, t) was characterized by its amplitude as, phase velocity vs
and full length at half maximum λs (defined as the distance between the front

and tail of the wave at as/2). It was produced by a paddle which was mounted

as in section 2.2.1, but now connected to a linear motor from LinMot. The

paddle moved up and down in a sinusoidal motion (equation 2.7), and since

only one solitary wave was required, the movement of the paddle stopped after

one period Tp = 1/fp.

Here, the basic flow was overlain by the solitary wave:

h(x, t) = h0(x) + hs(x, t) (2.14)

The recording procedure is identical to section 2.2.1, but the defragmentation

routine is different: Here, no periodic signal is present. So after one measure-

ment position had been recorded, the camera and laser were moved to the next

position. Then a new solitary wave, which was identical to the previous one,

was produced and recorded by the camera at the new position. Due to the lin-

ear motor, it was now possible to set the time between the release of the wave

and the start of the recording by the camera to exactly the same value. Con-

sequently, no mismatch between the fragments of the measurement positions i

and i+1 appeared and the fragments were simply joined together without the

need to calculate a phase difference:

hs(x, t) =

Nsub
∑

i=2

hs,i(x, t). (2.15)

A plot of an exemplary defragmented solitary wave is shown in figure 2.14.

The dynamics of solitary waves were only measured for film flows over the flat

substrate S0.
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Figure 2.14: An example of the defragmented solitary wave hs(x , t) for a part of the

channel with the flat inlay S0 at a random time.

Additionally to the solitary wave’s shape, the streamlines underneath the wave

were recorded in a coordinate system (x′, y, z) that moved with the wave’s

speed: x′ = x − vst. The procedure was published in [98]: The moving co-

ordinate system consisted of a camera (The Imaging Source, DMK 41BU02/

72BUC02) to record the streamlines of the flow and a red line laser (Laser Com-

ponents, FP-L-635-30P-10-F210) to illuminate the scattering particles in the

fluid. Both were mounted on a slide which could move along a guide rail that

was fastened parallel to the substrate in the channel. The slide was connected

to a linear motor from LinMot which had a total range of 280mm, thereof

112mm were used for acceleration and 56mm for deceleration. Consequently,

the slide moved with a constant speed over a distance of 112mm. The velocity

of the coordinate system was set to a value between 500mm/s and 1000mm/s,

depending on the wave’s speed, with an accuracy of ±2mm/s. The whole setup

is shown in figure 2.15. Again a paddle was used to generate one solitary wave

per measurement. Since the linear motor was already in use to move the slide

with the camera and the laser, the paddle was now driven by a step motor

from NanoTech for the streamline measurements. After the wave was released

by the paddle, the linear motor started moving the slide with the camera and

the laser, as soon as the wave approached the recording area. Once the slide

had reached its target velocity which was the wave’s speed vs, the wave was

exactly in front of the camera and the shutter of the camera was opened for an

exposure time of 1/21 s. The wave’s velocity vs was considered as constant for

this short period of time. Hence, the scattering particles that moved relative

to the moving coordinate system were visualized as streamlines by the camera.
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solitary wave

laser

camera

guide rail (fixed)
slide (movable)

linear motor (fixed)

side wall

z

x

y

z

x ′ = x − vst

y

Figure 2.15: Experimental setup for the measurement of the streamlines: The guide

rail was fastened parallel to the channel and hence parallel to the x-axis of the labora-

tory coordinate system. The laser and camera were mounted on the slide which was

dragged along the guide rail by the linear motor with the wave’s velocity vs . Thus, the

streamlines were recorded relative to the wave’s speed. Reproduced with permission

form [98]. c©2015, AIP Publishing LLC.
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2.2 Wave dynamics

2.2.3 Dimensionless quantities

For the reasons that were described in section 2.1.4, the characteristic quanti-

ties for the wave dynamics were made dimensionless by using the Nusselt free

surface velocity us and film thickness dn, irrespective of the kind of topography

(figure 2.2) that was used for a certain experiment. For the continuous waves,

the shape of the waves hc, the amplitude ac and the wave number kc were

normalized by the Nusselt film thickness dn and the phase velocity vc by the

Nusselt free surface velocity us:

h∗c =
hc
dn

, (2.16)

a∗c =
ac
dn

, (2.17)

k∗c = kc · 2πdn, (2.18)

v∗c =
vc
us

. (2.19)

For the solitary waves, the shape of the waves hs, the amplitude as and the full

length at half maximum λs were normalized by the Nusselt film thickness dn
and the phase velocity vs by the Nusselt free surface velocity us:

h∗s =
hs
dn

, (2.20)

a∗s =
as
dn

, (2.21)

λ∗s =
λs
dn

, (2.22)

v∗s =
vs
us

. (2.23)

33



34



3 Theoretical description of the

viscous film flow

As already mentioned, the Navier-Stokes equations cannot be solved exactly

for film flows over strongly undulated substrates. Because of that, the follow-

ing mathematical derivations for the film flow problem are restricted to flat

substrates.

3.1 Steady state solution

By solving the Navier-Stokes equations, the velocity field ~u∗ = ~u/us and the

pressure distribution p∗ = p/
(

ρus
2
)

of the basic film flow over the flat substrate

are derived in dimensionless form (details shown in e.g. [96]). The dimensionless

lengths are defined by x∗ = x/dn and z∗ = z/dn, the dimensionless time by

t∗ = tus/dn. It is assumed that the velocity field of the steady gravity-driven

film flow is unidirectional in x∗-direction and that its magnitude only depends

on the z∗-coordinate (figure 3.1): ~u∗ = (U∗(z∗), 0, 0). The continuity equation

is then fulfilled identically.

steady state free surface at z∗ = 1

α

x∗

z∗ U∗(z∗)

Figure 3.1: A sketch of the dimensionless description of a steady gravity-driven film

flow. The velocity field is unidirectional in x∗-direction and does only depend on the

z∗-coordinate. The free surface has the curvature zero and is located at z∗ = 1.
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3 Theoretical description of the viscous film flow

The x- and z-component of the Navier-Stokes equations combined with equa-

tions 2.2, 2.3 and 2.6 yield:

x : 0 = −
∂P ∗

∂x∗
+

1

Re

(

2 +
∂2U∗

∂z∗2

)

(3.1)

z : 0 = −
∂P ∗

∂z∗
−

2

Re tanα
. (3.2)

P ∗ is the pressure distribution of the basic flow. The boundary condition at

the substrate is the no-slip condition. At the free surface, the tangential stress

is zero and the normal stress is equal to the pressure in the gas phase above

which is constant and can be chosen arbitrarily:

U∗ (z∗ = 0) = 0;
∂U∗

∂z∗

∣

∣

∣

∣

z∗=1

= 0; P ∗ (z∗ = 1) = const = 0. (3.3)

That leads to the solution for the velocity field ~u∗ = (U∗, 0, 0) and pressure

distribution P ∗ of the basic flow:

U∗ = −z∗2 + 2z∗ (3.4)

P ∗ =
2

Re tanα
(1− z∗) . (3.5)

If waves appear on a gravity-driven film flow, the assumptions made in this

section are not valid anymore and hence one has to return to the original

Navier-Stokes equations. Without any simplifying assumptions, an exact ana-

lytical solution of these is impossible (in fact, the proof, if the Navier-Stokes

equations have a solution, is one of the “Millennium-problems” posed by the

“Clay Mathematics Institute” in 2000 [99]). To reduce the complexity of the

equations, numerous models for the wave evolution were formulated and will

be described in the following sections 3.2 and 3.3.

3.2 Linear continuous waves

and the Orr-Sommerfeld equation

The Orr-Sommerfeld equation was first derived by William McFadden Orr [47]

and Arnold Sommerfeld [45, 46]. It was developed to decide, if an arbitrary flow
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3.2 Linear continuous waves and the Orr-Sommerfeld equation

is stable or unstable against infinitesimally small disturbances. Solving it also

returns the grade of this stability and the phase velocity of the emerging waves.

Several authors adapted the equation for film flows over flat substrates with a

free surface, e.g. Lin [65], Benjamin [44] or Yih [43]. Since the results obtained

by solving the Orr-Sommerfeld equation will be compared to the experimental

data, its derivation from the Navier-Stokes equations as well as its numerical

solution is described below and follows in large parts [43] and [75], pages 11 ff.

This dissertation deals with the two-dimensional problem and hence omits the

y-component of the flow.

unsteady free surface at z∗ = 1 + ǫĥe ik
∗

c (x
∗
−c∗t∗)

α

x∗

z∗

Figure 3.2: A sketch of the dimensionless description of the unsteady film flow. Due to

the perturbations, the curvature of the free surface is not zero and has to be taken into

account for the formulation of the boundary conditions.

In order to test the stability of this flow against small disturbances, infinitesimal

sinusoidal perturbations are added to the steady state solutions of the dimen-

sionless Navier-Stokes equations 3.4 and 3.5 and to the free surface shape (figure

3.2):

u∗(x∗, z∗, t∗) = U∗(z∗) + ǫû(z∗)eik
∗

c
(x∗

−c∗t∗) (3.6)

w∗(x∗, z∗, t∗) = ǫŵ(z∗)eik
∗

c
(x∗

−c∗t∗) (3.7)

p∗(x∗, z∗, t∗) = P ∗(z∗) + ǫp̂(z∗)eik
∗

c
(x∗

−c∗t∗) (3.8)

h∗c(x
∗, t∗) = 1 + ǫĥeik

∗

c
(x∗

−c∗t∗). (3.9)

Equations 3.6 through 3.8 are substituted into the original dimensionless Navier-

Stokes equations and the continuity equation. The perturbation factor is taken

to the limit ǫ → 0 for the linearized problem. That means, all terms propor-
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3 Theoretical description of the viscous film flow

tional to ǫ will be omitted in the following:

ik∗c û(U
∗ − c∗) + ŵ

∂U∗

∂z∗
+ ik∗c p̂ =

1

Re

(

∂2û

∂z∗2
− k∗c

2û

)

(3.10)

ik∗c ŵ(U
∗ − c∗) +

∂p̂

∂z∗
=

1

Re

(

∂2ŵ

∂z∗2
− k∗c

2ŵ

)

(3.11)

ik∗c û+
∂ŵ

∂z∗
= 0. (3.12)

After introduction of the stream function

∂ψ

∂z∗
..= û (3.13)

−
∂ψ

∂x∗
..= ŵ, (3.14)

eliminating p̂ and all x∗-derivatives leads to the Orr-Sommerfeld equation:

∂4ψ

∂z∗4
− 2k∗c

2 ∂
2ψ

∂z∗2
+ k∗c

4ψ = ik∗cRe

[

(U∗ − c∗)

(

∂2ψ

∂z∗2
− k∗c

2ψ

)

− ψ
∂2U∗

∂z∗2

]

.

(3.15)

The displacement of the free surface ĥ has to be calculated from the kinematic

boundary condition at the free surface:

~n · ~u∗ =
∂h∗c
∂t∗

(3.16)

ĥ =
ŵ(z∗ = 1)

ik∗c (U
∗ − c∗)

= −
ψ(z∗ = 1)

U∗ − c∗
, (3.17)

with ~n(x∗, t∗) being the vector normal to the unsteady free surface. The bound-

ary condition at z∗ = 0 is still the no slip condition u∗ = w∗ = 0 which combined

with 3.12 through 3.14 results in:

∂ψ

∂z∗

∣

∣

∣

∣

z∗=0

= 0 (3.18)

ψ(z∗ = 0) = 0. (3.19)

At the free surface, the tangential stress still has to be zero (~m(x∗, t∗): vector

tangential to the free surface; ~t(x∗, t∗): stress vector, dimensionless)

~m · ~t = 0, (3.20)
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3.2 Linear continuous waves and the Orr-Sommerfeld equation

but the normal stress now exhibits a jump because it has to balance out the

normal stress induced by the surface tension of the curved free surface (Young-

Laplace equation):

~n · ~t = κ∗Ka

(

2

Re5 sinα

)1/3

. (3.21)

The stress vector ~t is calculated from equations 3.6 and 3.7. The curvature

κ∗(x∗, t∗) and the vectors normal ~n and tangential ~m to the free surface are

calculated from equation 3.9. Then equations 3.17, 3.20 and 3.21 lead to the

following relations at z∗ = 1:

0 = −
ŵ

ik∗c

(

2

1− c∗
+ k∗c

2

)

+
∂û

∂z∗
(3.22)

p̂ =
1

Re

[

2
∂ŵ

∂z∗
+ ĥ

(

2

tanα
+Kak∗c

2

(

2

Re2 sinα

)1/3
)]

. (3.23)

The pressure is removed by using equation 3.10 and equation 3.5 at z∗ = h∗c ;

ŵ and its derivative by using equation 3.12. The stream function (equations

3.13 and 3.14) is again put in place and so the boundary conditions for the

Orr-Sommerfeld equation 3.15 at the free surface z∗ = 1 are:

(

k∗c
2 +

2

1− c∗

)

ψ +
∂2ψ

∂z∗2
= 0 (3.24)

∂3ψ

∂z∗3
+
∂ψ

∂z∗
[

−3k∗c
2 − ik∗cRe(1− c∗)

]

=

= −ik∗c
ψ

1− c∗

[

2

tanα
+ k∗c

2Ka

(

2

Re2 sinα

)1/3
]

. (3.25)

The Orr-Sommerfeld equation (equation 3.15) and its boundary conditions

(equations 3.18, 3.19, 3.24 and 3.25) constitute an eigenvalue problem. The

complex wave velocity c∗ is said eigenvalue and depends on Re, k∗c , α and Ka.

The real part R(c∗) is the phase velocity v∗c of the linear continuous waves

and the imaginary part multiplied with the wave number is their exponential

growth rate b∗ = I(c∗)× k∗c . When b∗ > 0, the waves grow, otherwise they are

damped on their way downstream.
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3 Theoretical description of the viscous film flow

This eigenvalue problem cannot be solved exactly for the whole parameter

space. It is possible to solve it for infinitely long waves with k∗c = 0 (0th

approximation). The Orr-Sommerfeld equation and its boundary conditions

then become:

∂4ψ

∂z∗4
= 0; (3.26)

z∗ = 0 :
∂ψ

∂z∗
= 0; ψ = 0; (3.27)

z∗ = 1 :
2

1− c∗
ψ +

∂2ψ

∂z∗2
= 0;

∂3ψ

∂z∗3
= 0. (3.28)

Integrating equation 3.26 four times and using the boundary conditions leads

only then to a nontrivial solution, if the eigenvalue

c∗ = 2. (3.29)

That means that the phase velocity of infinitely long waves vc(k
∗

c = 0) =

R(c∗)× us = 2× us is twice as high as the Nusselt free surface velocity. Their

growth rate b∗(k∗c = 0) = 0. The eigenfunction is then

ψ(k∗c = 0) = z∗2. (3.30)

For long waves with k∗c → 0 (1st approximation), the terms of the Orr-Sommer-

feld equation (equation 3.15) and the boundary conditions (equations 3.18, 3.19,

3.24, 3.25) proportional to k∗c
2 are set to zero. An exception is the term that

contains the Kapitza number in equation 3.25. High Kapitza numbers make the

term that contains them non-negligible, irrespective of the wave number. Then

the solution of the 0th approximation is substituted into the Orr-Sommerfeld

equation and its boundary conditions. The resulting eigenvalue is

c∗ = 2 + i

(

4k∗cRe

5
− k∗c

(

1

tanα
+
k∗c

2Ka

2

(

2

Re2 sinα

)1/3
))

. (3.31)

The neutral curve is located where the imaginary part of the eigenvalue I(c∗) =

0. This leads to the critical Reynolds number for k∗c → 0:

Rec =
5

4 tanα
. (3.32)
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3 Theoretical description of the viscous film flow

3.3 Model equations for nonlinear wave dynamics

There are several excellent reviews about the different model equations for the

wave evolution on gravity-driven film flows, most notably by Craster and Matar

[90], Chang [89], Kalliadasis et al. [102] and Chang and Demekhin [75]. Thus,

only a quick overview of the most prominent examples is given in this section.

The Benney equation (derived e.g. in [67, 68, 75, 103]) is an example for

a long-wave approximation of the Navier-Stokes equations. As for the Orr-

Sommerfeld equation, non-steady waves are added to the steady state solution

of equations 3.4 and 3.5 and inserted into the original Navier-Stokes equations

and its boundary conditions. Instead of setting the amplitude of these distur-

bances to zero, the dimensionless wave number is regarded as small, k∗c ≪ 1

and hence all parameters proportional to k∗c
2 are set to zero. Also, since k∗c is

small, all derivatives in the stream wise direction x∗ are also small and thus of

order O(k∗c ). Using a stream function (equations 3.13 and 3.14) and a power

series expansion then yields the Benney equation for the evolution of the free

surface contour h∗c(x
∗, t∗):

∂h∗c
∂t∗

+
∂

∂x∗

(

2

3
h∗c

3 + k∗c

(

8

15
Reh∗c

6 −
2

3

h∗c
3

tanα

)

∂h∗c
∂x∗

)

= 0. (3.33)

For the long wave expansion described above, one has to assume a priori that

the Weber number We = 21/3 × Ka × Re−5/3 × sin−1/3 α is of order O(k−2
c )

(see e.g. [68]). Accordingly, the term in the Benney equation proportional to

We×k∗c
2 cannot be neglected and the Benney equation has to be complemented

by a surface tension term (marked purple):

∂h∗c
∂t∗

+
∂

∂x∗

(

2

3
h∗c

3 + k∗c

(

8

15
Reh∗c

6 −
2

3

h∗c
3

tanα

)

∂h∗c
∂x∗

+
2

3
k∗c

3Weh∗c
3 ∂

3h∗c
∂x∗3

)

= 0.

(3.34)

The Benney equation can be linearized (see e.g. [74, 102, 104]) analogously

to the linearization of the Navier-Stokes equations by using the ansatz from

equation 3.9 for equation 3.34. After neglecting all terms proportional to ǫ and

setting the imaginary part of the complex phase velocity to zero, one obtains
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3.3 Model equations for nonlinear wave dynamics

the neutral curve in the stability map (wave number - Reynolds number plane):

k∗c =

√

4Re− 5 cotα

5We
. (3.35)

From this equation, it can easily be seen that for k∗c = 0 the same critical wave

number is obtained as by the Orr-Sommerfeld equation (equation 3.32). Here

it has to be mentioned that equation 3.35 is only valid for Re − Rec of order

O(k∗c
2). Pumir et al. [105] revealed that the solution of the Benney equation

blows up for moderate or high Reynolds numbers, i.e the amplitude of the waves

grows without saturation and no bounded solutions are obtained. According

to these findings, Oron and Gottlieb [104] divided the stability map of the

Benney equation into three regions: The linearly stable region (i), the linearly

unstable region where the waves reach saturation (ii), and the linearly unstable

region where the waves do not reach saturation (iii). Regions (i) and (ii) are

separated by equation 3.35 and regions (ii) and (iii) by a numerically obtained

boundary. They also found that the bifurcation type changes when going from

the first-order Benney equation to second-order. This presents an evidence

of a poor convergence of the asymptotic procedure resulting in the Benney

equation. Takeshi [106] approached the problem of the unbounded solutions by

using a Padé-approximation and extended the validity of the Benney equation

to higher Reynolds numbers.

The boundary layer approach for the wave dynamics again uses k∗c ≪ 1,

see e.g. [75, 89]. Furthermore, the magnitude of the Weber number is a priori

defined as: We×Re× k∗c
−3 = O(1). That means that for Reynolds numbers of

order O(10), the Kapitza number must be of Order O(103) to fulfill k∗c ≪ 1. For

a vertical wall (α = 90 ◦), the Navier-Stokes equations, the continuity equation

and their boundary conditions become (from [75]):

∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+ w∗

∂u∗

∂z∗
=

9Ka1/3

(2Re)11/9

(

∂3h∗c
∂x∗3

+
1

3

∂2u∗

∂x∗2
+ 1

)

, (3.36)

∂u∗

∂x∗
+
∂w∗

∂z∗
= 0, (3.37)

z∗ = h∗c(x
∗, t∗) : w∗ =

∂h∗c
∂t∗

+ u∗
∂h∗c
∂x∗

,
∂u∗

∂z∗
= 0, (3.38)

z∗ = 0 : u∗ = w∗ = 0. (3.39)
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3 Theoretical description of the viscous film flow

In order to further simplify these equations, a procedure from the original

boundary layer theory (see e.g. in [96]) was adapted for gravity-driven film

flows. There, boundary layers are calculated approximately by using “methods,

where the equation of motion are not satisfied everywhere in the field but only

in integral means across the boundary layer” ([96] p. 440). Shkadov [107]

carried this out by assuming an ad hoc velocity profile for the dependence of

u∗ from the z∗-coordinate, e.g. a self-similar parabolic equation. This is then

called an integral boundary layer (IBL) model equation. Improvements on

this matter were achieved by using weighted residuals on the integral boundary

layer equation (WRIBL), as shown e.g. by Ruyer-Quil and Manneville [72],

Scheid et al. [94] and Oron and Heining [108].

Both the Benney equation and the boundary layer approach are long-wave

approximations, thus k∗c ≪ 1. Furthermore, the Weber number has to be of

order O(k∗c
2). These requirements are not met in the experiments presented

in this manuscript, so the nonlinear model equations described here are not

applicable to the results shown in the following chapter 4.
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4 Results and discussion

4.1 Continuous wave dynamics

As mentioned in section 1.3, the dynamics of free surface waves over undulated

inclines has been studied only scarcely in the literature. The experiments car-

ried out and described in this section aim to reveal the influence of different

corrugation shapes (figure 2.2) on the evolution of these waves.

4.1.1 Measured parameter space

In order to scrutinize the influence of the four different substrate topographies

(figure 2.2) S0 (flat), S1 (sinusoidal), S2 (saw-tooth-like) and S3 (rectangular)

on the dynamics of continuous waves, the respective results were gathered for

a film flow of the oil Elbesil 100 (parameters in table 2.1) at the measurement

temperature

θ = (23.0± 0.2) ◦C (4.1)

and the inclination angle

α = (10.0± 0.1) ◦. (4.2)

The volume flux V̇ of the basic flow was set to a constant value of

V̇ = (140± 3)
cm3

s
. (4.3)

The corresponding Nusselt film thickness dn, Nusselt free surface velocity us
and Reynolds number Re can then be calculated from equations 2.2, 2.3 and
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4 Results and discussion

2.5, respectively:

dn = (5.3± 0.1)mm, (4.4)

us = (232± 6)
mm

s
, (4.5)

Re = 11.9± 0.5 . (4.6)

The substrate topography S0 was used as a reference, since the wave dynamics

on flat substrates has been studied extensively in the literature, e.g. [70, 71, 75,

77, 79–81, 89, 90, 107].

In the linear regime, the growth rates and phase velocities of sinusoidal free

surface waves can be calculated numerically from the Orr-Sommerfeld-equa-

tion (section 3.2). In order to validate the experiments, these results will be

compared to the measurements of the dynamics of sinusoidal waves with a

very small amplitude over the flat substrate. Then the wave dynamics were

measured for film flows over the other three substrates S1, S2 and S3. Also

nonlinear waves with much larger amplitudes were scrutinized experimentally.

4.1.2 The wave evolution in the linear regime

The evolution of the waves in the linear regime was investigated by exciting

waves with a very small amplitude at the inlet of the channel. The paddle’s

amplitude was set to

ap,0 = 0.25mm (4.7)

and the paddle’s frequency was set to seven different values,

fp = {1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0}Hz. (4.8)

The resulting wave’s propagation down the channel was recorded with the setup

described in section 2.2.

As an example, the result for the flat substrate S0 with the paddle’s frequency

fp = 3.0Hz is shown in figure 4.1 at five different times. The graph reveals

that the initially sinusoidal waves travel downstream, grow and change their

shape on their way down the channel. Since these data were to be compared to
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4.1 Continuous wave dynamics

the calculations from the Orr-Sommerfeld equation (section 3.2), the measured

waves had to meet the criteria of linear, harmonic disturbances (equations 3.6

through 3.9). That means that waves were considered as linear, if the ratio of

the wave’s amplitude to Nusselt film thickness a∗c = ac/dn was smaller than

0.04 and if the waves showed a sinusoidal profile.

tfp = 0

tfp = 0.25

tfp = 0.5

tfp = 0.75

tfp = 1

0 200 400 600 800 1000
−0.2
−0.1

0
0.1

x (mm)

z
(m

m
)

Figure 4.1: The evolution of continuous waves hc(x , t) over the flat substrate S0;

ap,0 = 0.25mm, fp = 3.0Hz, Re = 11.9 , Ka = 2.01 .

The solution of the Orr-Sommerfeld equation yields the wave’s phase velocity

v∗c and exponential growth rate b∗ in relation to the wave number k∗c . These

three quantities were extracted from the measurements by fitting the function

h∗c(x
∗, t∗) = aeb

∗v∗

c

−1
·x∗

sin (k∗c (x
∗ − phase(t∗))) (4.9)

which was suggested by Liu et al. [48], to the shape of the waves that met the

criteria for linear waves at all 1200 recorded time steps . Figure 4.2 shows the

waves for all seven measured frequencies at one random time in dimensionless

representation. Since not all waves in figure 4.2 meet the conditions for linearity

for the whole channel, the fitting procedure was restricted to a section shorter

than the channel’s length for most paddle frequencies.
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4 Results and discussion

In the linear regime, the parameters k∗c , b
∗ and v∗c have to be considered as

constant. The phase velocity v∗c and its error were calculated from phase(t∗)

with the help of linear regression. The other fit parameters k∗c and b∗v∗c
−1 were

averaged over the 1200 time steps. The respective errors were estimated by

computing the standard deviation over the same time frame.
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Figure 4.2: The wave’s shape h∗

c (x
∗, t∗) (black lines) at a random time for S0, Ka =

2.01 , Re = 11.9 , ap,0 = 0.25mm and all seven paddle frequencies. The fit (cyan lines)

from equation 4.9 was used for the sections of the waves which met the linear criteria.
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4.1 Continuous wave dynamics

In figure 4.3 the experimental results are compared to the numerical ones. Con-

cerning the growth rates, the two curves are qualitatively very similar, but differ

from each other quantitatively. The reason for that is the finite amplitude of

the waves in the experiments, while in the numerical calculations, the ampli-

tude of the disturbances ǫ was infinitesimally small. The wave number, where

the growth rate is numerically calculated as zero is defined as the critical wave

number. Especially the values near the critical wave number are very sensitive

and show a big gap between the numerical and experimental data. The fact

that the experimental growth rates are consistently smaller than the numerical

ones indicates that the growth rates depend strongly on the amplitude of the

waves. Comparing the phase velocities in figure 4.3 exhibits very similar nu-

merical and experimental curves. Overall, the validation of the experiments is

successful, considering the finite wave amplitudes in the experiments.
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Figure 4.3: Comparison between the results obtained by solving the Orr-Sommerfeld

equation 3.15 (solid line: Re = 11.9 , dotted lines: Re = 11.9 ± 0.5 , see equation

4.6) and the ones from the experiments carried out over the flat substrate S0. The di-

mensionless wave number k∗

c , growth rate b∗ and phase velocity v∗

c are provided by

averaging the fitting parameters of equation 4.9 over 1200 time steps. The errors were

calculated from the standard deviations and are smaller than the symbols for k∗

c and v∗

c .
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4 Results and discussion

The graphs in figure 4.4 demonstrate the evolution of the waves, generated

with the same paddle amplitude and frequency as in figure 4.1, but over the

sinusoidal substrate S1. When these are compared to the waves over the flat

substrate S0 (figure 4.1), some differences are obvious: As aforementioned in

section 2.1.5, the basic flow over the sinusoidal substrate S1 exhibits steady

waves due to the undulation of the substrate. That leads to the dependence of

the unsteady wave’s amplitude on the position inside a substrate’s wavelength.

This is visible in figure 4.4 by the short dents that do not move and overlay the

longer unsteady waves. Also the unsteady waves grow much faster than the

ones that run over the flat substrate and consequently fulfill the linear criteria

for a much shorter section of the channel.
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Figure 4.4: The evolution of continuous waves hc(x , t) over the sinusoidal substrate

S1; ap,0 = 0.25mm, fp = 3.0Hz, Re = 11.9 , Ka = 2.01 .

Despite the forecited dents, it was still possible to fit the function in equation

4.9 to the measured shapes of the waves. Due to the short distance, where

the linear criteria were met for most paddle frequencies, the fit could only be

made over little more than one wavelength of the unsteady wave, as exhibited

in figure 4.5. Hence, the fit parameters were error prone, but this error could

be reduced by averaging over the 1200 time steps. The error was estimated
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4.1 Continuous wave dynamics

by again computing the standard deviation. Similar results were obtained by

the measurements over the other undulated topographies S2 and S3. These

are shown in figure 4.6 exemplarily for the frequency fp = 3.0Hz, again with

equation 4.9 fitted to the experimental data in the linear regime.
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Figure 4.5: The wave’s shape h∗

c (x
∗, t∗) (black lines) at a random time for S1, Ka =

2.01 , Re = 11.9 , ap,0 = 0.25mm and all seven paddle frequencies. The fit (cyan lines)

from equation 4.9 was used for the sections of the waves which met the linear criteria.
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4 Results and discussion

Figure 4.7 compares the growth rates and phase velocities in the linear regime

for the flows over all four substrates S0 − S3. The much faster growth of the

linear waves flowing over an undulated substrate compared to the flat substrate

is confirmed. The flow is strongly destabilized by the substrate’s undulations

for the measured Reynolds number Re = 11.9 . The differences between S1,

S2 and S3 are much smaller, but still noticeable. Qualitatively, the curves of

the growth rates do not differ from each other. They have a maximum near a

wave number k∗c ≈ 0.15 and go to zero at k∗c ≈ 0.4 . For infinitely long waves

(k∗c = 0 ), the growth rate tends towards zero not only for the flat, but also

for the undulated substrates. Recent measurements of Schörner et al. [63] look

further into the destabilizing effects of substrate undulations.

The waves over the undulated substrates travel significantly slower than the

ones over the flat substrate. Here also, the differences between the results for

the undulated topographies are much smaller than between an undulated and

the flat substrate.
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Figure 4.6: The wave’s shape h∗

c (x
∗, t∗) (black lines) at a random time for fp = 3.0Hz,

Ka = 2.01 , Re = 11.9 , ap,0 = 0.25mm and all four substrates. The fit (cyan lines)

from equation 4.9 was used for the sections of the waves that met the linear criteria.
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Figure 4.7: Comparison of the growth rates (left) and phase velocities (right) of linear

free surface waves over different substrates with Re = 11.9 . The dimensionless wave

number k∗

c , growth rate b∗ and phase velocity v∗

c are provided by averaging the fitting

parameters of equation 4.9 over time. The respective errors were calculated from the

standard deviations and are smaller than the symbols for k∗

c and v∗

c .

4.1.3 The wave evolution in the nonlinear regime

Once the waves, which were excited by the paddle at the channel’s inlet, do

no longer meet the linear criteria from section 4.1.2, it is not possible to use

equation 4.9 anymore. Also comparisons to the solutions provided by the Orr-

Sommerfeld equation are no longer adequate. The nonlinear models described

in section 3.3 fail for this parameter space, too. The evolution of the waves

under different circumstances could nevertheless be measured experimentally.

Since the requirement for very small wave amplitudes is not present for nonlin-

ear waves, it was possible to use different paddle amplitudes

ap,0 = {0.25, 1.0, 4.0} mm, (4.10)

still at the same frequencies as in equation 4.8. Thus, waves of different initial

amplitudes and the same frequencies as in section 4.1.2, were produced. For

the flat substrate S0, measurements for ap,0 = 1.0mm were not carried out.

Figures 4.8 and 4.9 show the wave evolution for all four substrates, the seven

frequencies and the paddle amplitude ap,0 = 4.0mm. The waves are much

larger than in the linear regime and do not show a sinusoidal profile. The waves
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4 Results and discussion

over the flat substrate all decay on their way down the channel. Together with

figure 4.2, this shows that the waves’ growth or decay does also depend on their

amplitude. In the linear theory, the amplitude was always set to zero and so

the growth did only depend on the Reynolds, Kapitza and wave number (see

sections 3.2 and 4.1.2).

Also the shape of the wave was restricted to sinusoidal in the linear regime.
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Figure 4.8: The wave’s shape h∗
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∗, t∗) at a random time for S0 (black) and S1

(gray), Ka = 2.01 , Re = 11.9 , ap,0 = 4.0mm and all seven paddle frequencies.
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4.1 Continuous wave dynamics

Nonlinear waves change their shape on the way down the channel by transfer-

ring energy to higher harmonics of the paddle frequency. The shapes of the

waves over the different substrates show qualitative similarities, if the dents

caused by the substrate’s undulations are ignored: All waves have a steep front

and a gently falling tail. The lower the paddle frequency, the steeper the front is.

Taking a closer look at the tails, they exhibit a concave shape for the waves over
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Figure 4.9: The wave’s shape h∗

c (x
∗, t∗) at a random time for S2 (black) and S3

(gray), Ka = 2.01 , Re = 11.9 , ap,0 = 4.0mm and all seven paddle frequencies.
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the flat substrate, while the ones over all undulated substrates exhibit a convex

shape. It also looks like most waves over the undulated substrates reached a

saturation state, where they do neither change their amplitude, nor their shape

beyond a certain traveling distance. On the other hand, the waves over the flat

substrate are still decaying at the most downstream position (x∗ = 240 ).

These qualitative observations were quantified by going to the frequency space

via a Fast Fourier Transformation (MATLAB function fft()) of the amplitude-

time signal at every position in x∗-direction. An example for S0, ap,0 = 4.0mm

and fp = 3.0Hz at x∗ = {4, 240} is plotted in figure 4.10. It shows the decay

of the amplitude of the first and higher harmonic frequencies. This is also dis-

played in figure 4.11, where the amplitude of the first three harmonics is drawn

against the x∗-coordinate exemplarily for S0 and S1, ap,0 = {0.25, 1.0, 4.0}mm

and fp = {1.0, 3.0, 5.0}Hz. It is important to note here that the amplitude

evolution over S1 was averaged over a substrate’s wavelength, because the am-

plitude of a wave depends on the position inside a substrate’s wavelength (dents

in figures 4.8 and 4.9). As in the linear regime, the development of the waves

over the undulated substrate happens much faster than for the flat one (com-

pare to [108]). The amplitudes of the first three harmonics over S1 do not

change significantly over the last 200mm = 37.7 ×dn of the channel and hence

reached saturation. It can also be stated that the saturation amplitude a∗sat
does not depend on the initial amplitude of the wave, but only on its frequency.

For the flat substrate, saturation is mostly not yet reached at the end of the

channel. According to Liu et al. [79] and Alekseenko et al. [81], the waves

that flow over the flat substrate will eventually reach a steady state somewhere

downstream. Since that state is neither reached by the waves generated with

ap,0 = 0.25mm nor the ones generated with ap,0 = 4.0mm, it was only possible

to give upper and lower boundaries for their saturation amplitude a∗sat. These

were calculated by fitting a linear function to the wave’s amplitude for the last

200mm = 37.7 × dn of the measurement area. If the slope of this function was

positive, the amplitude at the most downstream position gave a lower boundary

for a∗sat, if the slope was negative, an upper boundary was at hand.

Aside from the waves over the flat substrate, the amplitudes of the first three

harmonics of all other waves generated with ap,0 = 1.0mm or ap,0 = 4.0mm

reached saturation. The wave number k∗c in the state of saturation was deter-
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mined by the phase difference in radian measure between two points in stream

wise direction which were 40mm (or two substrate wavelengths) apart:

k∗c =
phase difference · dn

40mm
. (4.11)

This was also carried out for the waves over the flat substrate, although sat-

uration was not yet reached. Yet, the wave numbers of the upper and lower

boundary saturation amplitudes differed less than the estimated error for k∗c .

Figure 4.12 reveals the dependence of the saturation amplitude a∗sat on the wave

number k∗c . Concerning the flat substrate S0, the first harmonic reached the

highest saturation amplitude for the wave number that also had the highest

growth rate (figures 4.3 and 4.7). For the wave number close to the critical

one (growth rate = zero, from the Orr-Sommerfeld equation), the saturation

amplitude of the first harmonic tends to zero. Thus, if the wave number lies

beyond the critical one, all waves of the same wave number, arbitrary shape

and amplitude will eventually vanish on their way down the channel. This also

shows that for measurements of the linear stability of film flows, it might be

more accurate to determine the critical wave number as the one, where the

saturation amplitude a∗sat of the first harmonic tends to zero, instead of where

the growth rate b∗ is zero (compare figures 4.3 and 4.12). As already discussed

in section 4.1.2, using b∗ = 0 as the condition for the critical wave number

would only be accurate, if the amplitude of the wave was zero. But this is

experimentally not doable. The amplitudes of the second and third harmonics

do not necessarily tend to zero beyond the critical wave number. Energy is

transferred from the first harmonic to the higher ones and so the amplitudes

of the higher harmonics do not vanish. That leads to an equilibrium between

the amplification of the first harmonic and the energy transfer to the higher

harmonics which are damped if they lie beyond the critical wave number.

The data for the saturation amplitudes of waves over the undulated substrates

show that, apart from a much higher growth rate, the waves also exhibit a

much higher saturation amplitude than the waves over the flat substrate. Also

the amplitude of waves that show a negative growth rate in figure 4.7, do not

necessarily go to zero. This again is a proof for the error made, if the critical

wave number is determined by the experimental measurement of the growth
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rate. Aside from that, the saturation amplitude does for all wave numbers

not depend on the paddle amplitude. The saturation amplitudes of the waves

over S1 and S2 are almost equal and it stands out that the highest saturation

amplitude is not at the same wave number as the highest growth rate (figure

4.7). For the rectangular substrate S3, the highest saturation amplitude is also

slightly shifted compared to the highest growth rate, but not as much.

There is a very distinct difference between the saturation states of the waves

over a flat and an undulated substrate. While waves over a flat substrate

will eventually reach a steady state, if observed in a coordinate system that

moves with the waves’ speed, the undulations make this impossible. If the

same moving coordinate system is used, the lower boundary of the observed

domain changes periodically. Hence no steady state can be reached for waves

over undulated substrates. Only if the amplitude is averaged over a substrate’s

wavelength, one can determine a saturation state, but not a real steady state.

4.2 Solitary wave dynamics

The dynamics of solitary waves has been studied by several authors, e.g. [48, 76,

77, 79, 82–87]. These authors define solitary waves as a limit case of continuous

waves. For example, Liu et al. [48] defined the transition between “saturated

finite amplitude waves (at high f[requencies])” and “multipeaked solitary waves

(at low f[requencies])”. They defined the waves as solitary waves, if there is a

small loop in the phase orbit (the ∂h/∂x - ∂2h/∂x2-plane). Argyriadi et al.

[77] defined solitary waves as “localized structures separated by relatively long

stretches of substrate”. But they still use “constant-frequency disturbances at

the channel inlet, with the aim of producing a regular wave train.” Similar to

Alekseenko et al. [81], the measurements in this work were done by generating

exactly one initial solitary wave with a certain length and amplitude and not

a wave train.

4.2.1 The evolution of solitary waves

For the measurements of the evolution of solitary waves, the oil Elbesil 65

(parameters in table 2.1) was filled into the flow circuit (figure 2.1). The solitary
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4.2 Solitary wave dynamics

wave dynamics were only measured over the flat substrate S0. The temperature

was set to

θ = (23.0± 0.2) ◦C (4.12)

and the inclination angle to

α = (10.0± 0.1) ◦. (4.13)

The volume flux was tuned to a constant value of

V̇ = (115± 3)
cm3

s
. (4.14)

Then the corresponding Nusselt film thickness, free surface velocity and Reynolds

number were calculated by using equations 2.2, 2.3 and 2.5:

dn = (4.3± 0.1)mm (4.15)

us = (227± 6)
mm

s
(4.16)

Re = 15.0± 0.5 . (4.17)

Contrary to the experiments in section 4.1, the paddle at the inlet of the channel

produced exactly one solitary wave, by running the function in equation 2.7 only

once and not continuously. Hence it does not make sense to define a paddle

frequency but rather the period Tp of the paddle movement. Also, the paddle

started at its lowermost position. Then equation 2.7 changes to

ap(t) = ap,0

(

1− cos

(

2π

Tp
t

))

. (4.18)

The experiments were carried out at four different paddle amplitudes

ap,0 = {0.05, 0.25, 1.0, 4.0} mm (4.19)

and eight different periods

Tp = {1000, 500, 333, 250, 200, 167, 143, 125} ms. (4.20)
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4 Results and discussion

Before the movement of the paddle started, it was dipped into the oil and so

some of the liquid was impounded behind the paddle (figure 4.13). Once the

paddle movement started, the impounded liquid was released and formed a

solitary wave, whose development down the channel was then recorded by the

setup described in section 2.2.2.

ap(t)

Figure 4.13: Paddle with the impounded liquid, ap(t) = ap,0 (1− cos (2πt/Tp)). Re-

produced with permission from [98]. c©2015, AIP Publishing LLC.

Figure 4.14 shows the evolution of a solitary wave, created with the paddle am-

plitude ap,0 = 0.05mm = 0.012×dn. Since the solitary wave is only located at a

certain area of the channel, only this area is plotted. Each graph shows the soli-

tary wave at three different times and since the wave travels downstream also at

three different locations. The waves with shorter periods (Tp = {143, 250}ms)

exhibit the same qualitative behavior: Shortly behind the inlet at time t0, they

have a sinusoidal shape and directly in front of and behind the waves, the film

returns to the flat Nusselt solution. Further downstream, at time t0 + 2.16 s,

the waves are slightly distorted and behind the main waves, secondary ones

appear. This phenomenon was described as “parasitic waves” by Argyriadi et

al [77]. At the last time step, the solitary waves changed their shape from

sinusoidal to saw-tooth-like with a steep front and a gently falling tail which

was also observed for nonlinear continuous waves of low frequencies in section

4.1. When the solitary wave was produced with the period Tp = 500ms, a

slightly different shape is formed: The wave does not show a sinusoidal profile,

but has a flat top. At the second time step, the wave has already developed

a saw-tooth-like shape and also the parasitic wave behind the first one. These

features solidify themselves at the third position. A completely different wave

profile is developed, when the paddle period is increased to Tp = 1000ms. At
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4.2 Solitary wave dynamics

t0, a wave profile with a flat top which has the length of about 50 × dn is

visible. This area can be approximated as a Nusselt film with a film thickness

of dn + hs(x
∗ ≈ 50 ) which is very unstable, since the basic flow is already

unstable. This instability leads to a separation of the solitary wave into two

waves at t0+2.16 s (compare to Alekseenko et al. [81]). This trend continues to

the third position, where also the parasitic wave is visible behind the divided

solitary wave. For Tp = 500ms the flat top of the solitary wave at the first

position was not long enough (about 25 × dn) to be considered as a Nusselt

flow with a higher film thickness and thus did not command a separation of the

solitary wave into two waves.
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Figure 4.14: The wave’s shape h∗

s (x
∗, t∗) at three time steps t0, t0 + 2.16 s and t0 +

4.32 s and hence three different x∗-locations. Ka = 3.54 , Re = 15 , ap,0 = 0.05mm and

four paddle periods.

The solitary waves that were created with the paddle amplitudes ap,0 = 1.0mm =

0.23 × dn and ap,0 = 4.0mm = 0.93 × dn are shown in figures 4.15 and 4.16,

respectively. Similar to figure 4.14, a saw-tooth-like shape is visible, with a

steepening front until it is almost perpendicular to the basic flow’s free surface.

Also, the parasitic waves behind the solitary waves are present for all paddle
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4 Results and discussion

periods. On their way down the channel, the parasitic waves grow in ampli-

tude, and the distance to the solitary waves becomes noticeably larger at the

same time. Since the liquid film in front of the parasitic waves has a lower free

surface height than the film in front of the solitary waves, their velocities and

saturation amplitudes have to differ significantly. This leads to wave packages

that consist of: the solitary wave → a depression area → the parasitic wave →

possibly another depression area, depending on the amplitude of the parasitic

wave. The system of the solitary and the parasitic wave can never reach a

steady state, because the depression area between the two will always grow.

Likewise, the distance between the separated waves (e.g. figure 4.15, Tp =

1000ms) increases due to the different amplitudes the separated waves have.

This is accompanied by a deepening of the dent between these two waves. The

wave package in this case consists of: the first part of the separated wave (from

here on referred to as the solitary wave) → a small depression area which grows

in width and depth on its way downstream → the second part of the separated

wave (from here on referred to as the secondary wave) → a depression area

→ the parasitic wave → possibly another depression area, depending on the

amplitude of the parasitic wave.

So, depending on the initial conditions of the solitary waves, two qualitatively

different developments of the waves are possible. It seems like the important

condition is not the amplitude of the initial wave, but its length. All waves

created with a paddle period of 1000ms feature a separation into two waves,

but none with a lower Tp (figures 4.14 - 4.16). Since the difference between

the highest two paddle periods (1000ms to 500ms) is very large, no definite

statement is possible. Overall, the combined contribution of the solitary wave

and successive waves and depressions to the flow rate has to be zero, because

after the paddle finished its movement, the basic flow has to be reestablished.

It is important to note that there are no waves preceding the solitary wave.

They were numerically and experimentally observed by several authors, e.g.

[76, 77, 79, 81, 82, 109] and were called “capillary ripples” which require high

Kapitza numbers. Here, the Kapitza number is about three magnitudes lower

than in the aforementioned publications, where aqueous solutions were used.
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The development of the solitary wave is further examined in the following. For

that, in figure 4.16, three key parameters are defined: The wave’s amplitude

a∗s(x
∗), its length λ∗s(x

∗) at a∗s/2 (full length at half maximum) and its position

x∗(t∗). The first derivative of x∗(t∗) gives the phase velocity v∗s (x
∗).

The evolution curve of the solitary wave’s amplitude a∗s(x
∗) is shown in the up-

permost row of figure 4.17. For the smallest paddle amplitude (ap,0 = 0.05mm),

all waves grow monotonously and qualitatively equally. For the paddle ampli-

tudes ap,0 = 1.0mm, the amplitude first grows rapidly until a buckle is reached.

Then the growth is slowed down and even becomes negative in some cases. Then

the amplitude starts growing again, until a threshold of a∗s ≈ 0.9 is reached.

When setting the paddle amplitude to ap,0 = 4.0mm, the first rapid growth

does not take place, since the initial amplitude of the wave is already very high.

Depending on the paddle period, the wave first either grows or shrinks and then

approximates the aforementioned threshold.

During the rapid growth of the amplitude, the length λ∗s of the solitary wave

decreases just as quickly (figure 4.17, center row, ap,0 = 1.0mm). Once the

shortening becomes less pronounced, the growth of the amplitude slows down.

It even becomes negative, if the wave’s length increases again (ap,0 = 1.0mm

and ap,0 = 4.0mm). As soon as the wave’s length does not change as much, the

amplitude of the wave moves towards the aforementioned threshold of a∗s ≈ 0.9 .

The wave’s velocity v∗s (figure 4.17, lowermost row) depends heavily on the

paddle amplitude: the higher the amplitude, the higher the velocity. The

dependency of the wave’s velocity on its amplitude is well documented in the

literature, e.g. [79, 81, 89] and visible, if one compares the uppermost and

lowermost rows in figure 4.17. In order to do this, the mean velocity and

mean amplitude for each of the measured solitary waves beyond x∗ = 300 ,

where most parameters became constant, were calculated and plotted in figure

4.18. The graph shows a monotonous increase of the wave’s velocity with its

amplitude. But, other than reported by some of the aforementioned papers,

the dependency is not linear. This can have the following reasons: Firstly,

the waves measured in this work did not always reach a steady state, and are

still developing beyond x∗ = 300 , as can be seen in figure 4.17. This effect is

rather small, though: On the right hand side of figure 4.18, the errors ∆v∗s and

∆a∗s were estimated by computing the standard deviations over the averaged

66



4.2 Solitary wave dynamics

0 100 200 300
0

0.3

0.6

0.9

1.2

x∗

a
∗ s

1000ms

500ms

250ms

143ms

ap,0 = 0.05mm

0 100 200 300

x∗

ap,0 = 1.0mm

0 100 200 300 400

x∗

ap,0 = 4.0mm

0 100 200 300
0

10

20

30

40

x∗

λ
∗ s

0 100 200 300

x∗

1000ms

500ms

250ms

143ms

0 100 200 300 400

x∗

0 100 200 300
1.5

2

2.5

3

3.5

x∗

v
∗ s

1000ms

500ms

250ms

143ms

0 100 200 300

x∗

0 100 200 300 400

x∗

Figure 4.17: The evolution of a solitary wave’s amplitude a∗s (top row), length λ∗

s

(middle row) and velocity v∗

s (bottom row) for three different paddle amplitudes

ap,0 = {0.05, 1.0, 4.0}mm (from left to right) and four paddle periods. The first part

of the black curve on the left hand side of the λ∗

s evolution is overlain by heavy noise,

because of the break-up mechanism of the solitary wave (see figure 4.14).
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values. The error is always smaller than five percent of the respective mean

value. Secondly, the results obtained in [79, 89] are exclusively for wave trains

and not for single solitary waves that were scrutinized for this dissertation.

These “truly solitary waves” are not confined by preceding and succeeding

waves and can so develop freely not only in the z∗- but also in the x∗-direction

(figures 4.14 through 4.17). This seems to have a decisive impact on the wave’s

velocity. Alekseenko et al. [81] suggested to use a quadratic function instead

of a linear one. This was derived from the assumption that the velocity profile

inside a solitary wave is also quadratic. Regarding the extremely steep front

of the solitary waves (figures 4.15 and 4.16), it seems very unlikely that this

is the case for the present waves. Though it is possible to fit a quadratic

function v∗s (a
∗

s) = 1.07a∗s
2 + 1.91 to the data in figure 4.18, this function is not

in agreement with the derived one in [81]: v∗s (a
∗

s) = a∗s
2 + 2a∗s + 2.
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Figure 4.18: Left: The velocity v∗

s vs a∗s . Both are mean values computed from the

waves which nearly reached saturation (x∗ ≥ 300 ). All paddle amplitudes (equation

4.19) and paddle periods (equation 4.20) are considered. Right: The standard devia-

tions of a∗s and v∗

s .
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4.2.2 Streamlines underneath solitary waves

When the waves grow in amplitude, the velocity of the fluid directly at the free

surface should also become higher, since it is farther away from the substrate

(see e.g. [81]). Simultaneously, also the velocity of the solitary waves grows with

its amplitude (figure 4.18). If there were a point where the highest velocity in

the fluid becomes larger than the wave’s velocity, the question arises, why the

waves do not break at that point.

x ′

y
z

as + dn

Acirc

Figure 4.19: Example for streamlines in a reference frame (x ′ = x − vst, y , z) that

moves with the speed vs of the solitary wave. The free surface of the liquid reflected

the streamlines, thus there are streamlines visible above the free surface. This made it

possible to localize the free surface and mark it with a purple line. The cyan line shows

the separation between the recirculation area which lies directly at the free surface of

the wave, and the flowing film. The recirculation runs clockwise and the flowing film

below goes from right to left, due to the moving coordinate system. The wave’s am-

plitude as and the size of the recirculation area Acirc were measured. The black area

below the wave front is a shadow from the laser light casted by the wave front. Repro-

duced with permission from [98]. c©2015, AIP Publishing LLC.
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4 Results and discussion

These open questions were tackled by visualizing the streamlines underneath

the free surface of the solitary waves. The idea behind this came from several

numerical predictions of recirculation areas that appear underneath a solitary

wave, when it is regarded in a reference frame that moves with the wave’s

speed [71, 84, 86, 110–113]. This explains, how the velocity of a fluid particle

can become higher than the wave’s velocity without a wave breaking.

Since there was no experimental prove that these recirculation areas indeed ex-

ist, Reck and Aksel [98] used the setup described in section 2.2.2 to record the

streamlines underneath a solitary wave in a reference frame that moved with

the wave’s speed vs. The experimental confirmation for the existence of recircu-

lation areas underneath large solitary waves is shown in figure 4.19. The recir-

culation area lies directly underneath the free surface and its center is located

in the front part of the wave. In figure 4.20, the streamlines of three solitary

waves with different amplitudes a∗s are shown. Because the same paddle ampli-

tude of ap,0/dn = 1.16 was used for all three pictures, the different amplitudes

are the consequence of different paddle periods Tpus/dn = {10.9, 16.3, 27.2} .

The recirculation areas do not appear, if the wave’s amplitude a∗s ist too small,

as is the case in the uppermost picture. If the amplitude is sufficiently large,

a recirculation area is visible (middle and lowermost picture of figure 4.20).

Furthermore, the size of the recirculation area is bigger for a larger ampli-

tude. The numerical computations published in [71, 84, 86, 110, 111] predict

that the recirculation area appears underneath the wave peak and not directly

behind the front of the wave as in the recordings in figure 4.20. The main

difference to the experiments in this dissertation is the Kapitza number. The

experiments here were carried out with silicon oil with Ka = 3.54 , whereas the

numerical calculations in the forecited papers dealt with aqueous solutions and

Ka = O(103).

Rohlfs and Scheid [112] predicted via a weighted integral boundary layer model

that the onset of recirculation areas underneath free surface waves depends only

on the wave amplitude to film thickness ratio. In order to test this, the wave’s

amplitude as and the size of the recirculation area Acirc were extracted from

the streamline pictures by visual judgment (figure 4.19). Since the speed of

the moving reference frame (consisting of a camera and a laser mounted on a

movable platform, see section 2.2.2) was set equal to the wave’s speed, vs was
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a∗s = 0.87

a∗s = 0.95

a∗s = 1.07

Figure 4.20: Exemplary streamlines of waves over a film flow of Re = 15 , α = 10 ◦ at

x∗ = 350 . The parts of the images above the free surfaces were removed (compare to

figure 4.19). Paddle amplitude ap,0/dn = 1.16 . Top, Tpus/dn = 10.9 : no recirculation

area appears because the wave’s amplitude is too small. Middle, Tpus/dn = 16.3 and

bottom, Tpus/dn = 27.2 : recirculation area appears and its size depends on the wave’s

amplitude. Reproduced with permission from [98]. c©2015, AIP Publishing LLC.
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also noted. The measurements of the wave’s amplitude as and phase velocity

vs in section 4.2.1 could only be used as a qualitative guideline, because a

different paddle was used for the generation of the solitary waves, as described

in section 2.2.2. A variety of initial solitary waves were produced by setting

seven different dimensionless paddle periods Tpus/dn between 11 and 71 , and

five different dimensionless paddle amplitudes ap,0/dn between 0.21 and 1.5 .

The results were improved by recording six images per setting and calculating

the mean values to receive Acirc and as. The uncertainties in the measurements

of the size of the recirculation area ∆Acirc and the wave’s amplitude ∆as were

determined by the standard deviation. The non-dimensional values were:

A∗

circ =
Acirc

dn2
, (4.21)

a∗s =
as
dn

, (4.22)

and the respective errors:

∆A∗

circ =
∆Acirc

dn2
, (4.23)

∆a∗s =
∆as
dn

. (4.24)

These errors were obtained by using the largest respective standard deviation,

since the measurements were done by visual judgment. Additionally, the ampli-

tude of the solitary wave changed slightly during the recording time of 1/21 s.

The wave traveled less than 50mm ≈ 12 × dn during that timespan. The

positions in which the streamlines were recorded were at x ≈ 900mm and

x ≈ 1500mm (in dimensionless values: x∗ = 210 and x∗ = 350 for Re = 15 ,

α = 10 ◦). The top row of figure 4.17 shows a maximal change in amplitude of

0.015 over these parts of the channel. Together with the standard deviations

from the six measurements, the errors are:

∆A∗

circ = 0.2 (4.25)

∆a∗s = 0.02 . (4.26)

First, the influence of the initial conditions of the solitary wave, i.e. the paddle

period and amplitude, on the size of the recirculation area was scrutinized.
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4 Results and discussion

wise direction, as previously demonstrated for Re = 15 . It is influenced by the

Reynolds number: For the same amplitude (e.g. a∗s + 1 = 2.00 ) of the solitary

wave, but different Reynolds numbers of the basic flow, the size of the recircula-

tion areas differs. Consequently, the critical wave amplitude for the onset of the

recirculation area a∗crit depends on the Reynolds number and can be extracted

from figure 4.23: a∗crit(Re = 10 ) = 0.98± 0.02 , a∗crit(Re = 15 ) = 0.88± 0.02 ,

a∗crit(Re = 20 ) = 0.82± 0.02 .

The dependency of the solitary wave’s velocity on its amplitude was measured

and plotted in figure 4.18 for Re = 15 and α = 10 ◦. In order to work with a

similar model as proposed by Alekseenko et al. [81], a parabolic function was

fitted through these data:

v∗s = 1.07a∗s
2 + 1.91. (4.29)

In a first approximation, the velocity of a fluid particle at the free surface peak

of a solitary wave is taken as:

u∗(a∗s) = (a∗s + 1)2. (4.30)

A recirculation area appears, if the velocity of a particle at the free surface is

at least equal to the wave velocity:

v∗s ≤ u∗(a∗s), (4.31)

1.07a∗s
2 + 1.91 ≤ (a∗s + 1)2, (4.32)

⇒ a∗s ≥ 0.46. (4.33)

The critical amplitude which was extracted from figure 4.23, was a∗crit(Re =

15 ) = 0.88 ± 0.02 . The discrepancy of the calculated value to the measured

one has the following reasons: Firstly, the parabolic models that were assumed

for both the velocity of the wave and the fluid at its free surface are not very

accurate for solitary waves with a front as steep as the ones present in this study.

Secondly, the recirculation area does not appear underneath the highest point

of the wave, but directly behind its front (figures 4.19 and 4.20). That means

that the fastest fluid particle is not located at the wave’s peak, but somewhere

in the front. So the actual point, where the recirculation area appears first, lies
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4.2 Solitary wave dynamics

lower than the wave height defined in figure 4.16. The exact position of this

point could not be determined from the measurements.

It was proven, that recirculation areas appear, if a wave’s amplitude exceeds

a certain threshold which does neither depend on the distance from the inlet,

the initial conditions, nor on the inclination angle of the substrate. The critical

amplitude does change with the basic flow’s Reynolds number.
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5 Conclusions

The dissertation at hand dealt with the dynamics of waves that appear at the

free surface of two-dimensional gravity-driven viscous film flows. New measure-

ments were presented and compared to existing theoretical models and results

from the literature. The focus was set to two special cases: The dynamics

of continuous waves over different substrate topographies and the dynamics of

solitary waves over a flat substrate. Both were measured by similar experimen-

tal setups that were described in chapter 2. The streamlines underneath large

solitary waves were also portrayed, to reveal the existence of recirculation areas

underneath these waves.

5.1 Continuous wave dynamics

The dynamics of the continuous waves were measured systematically for four

different substrate topographies (figure 2.2): flat (called S0), sinusoidal (S1),

saw-tooth-like (S2) and rectangular (S3). Both the inclination angle α of the

substrates and the volume flux V̇ of the Newtonian oil Elbesil 100 through the

flow circuit (figure 2.1) were kept constant at α = 10 ◦ and V̇ = 140 cm3/s,

respectively. With equations 2.1 and 2.6, the Reynolds number Re could be

calculated: Re = 11.9 . A wave generator at the inlet of the channel pro-

duced continuous waves by the sinusoidal up and down movement of a paddle

(equation 2.7). Seven different paddle frequencies between 1.0Hz and 5.0Hz

and three different paddle amplitudes between 0.25mm and 4.0mm generated

waves of different wave numbers and wave amplitudes.

First, the experiments were validated by comparing the results of the measure-

ments of waves in the linear regime over the flat substrate to results obtained

by solving the Orr-Sommerfeld equation (equation 3.15) numerically. Waves

were defined as linear, as long as their amplitude to film thickness ratio was
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smaller than 0.04 and as long as their shape remained harmonic. When these

criteria were fulfilled, it was possible to fit a sinusoidal function with an expo-

nentially growing amplitude (equation 4.9) to the measured wave shapes (figure

4.2). From the fitting parameters, the exponential growth rate, the wave num-

ber and the phase velocity could be extracted and compared to the numerical

results (figure 4.3). It was shown that the measured and calculated phase ve-

locities are equal, but the growth rates differ. The reason for the difference is as

follows: For the derivation of the Orr-Sommerfeld equation, the amplitude of

the waves was set to exactly zero, while in the experiments, a finite amplitude

had to be present. Considering this, the validation of the experimental setup

for the measurement of wave dynamics was successful.

Staying in the linear regime, the influence of the substrate’s undulations was

analyzed next and compared to the flat substrate. The waves over the un-

dulated substrates (figures 4.5 and 4.6) exhibited a superposition between the

steady waves, provoked by the substrate undulations, and the unsteady free

surface waves. If the contributions of the steady waves were ignored, it was

again possible to fit equation 4.9 to the measured wave shapes and to compare

the growth rates and phase velocities of the waves over the different substrates

(figure 4.7). It was displayed that the growth rates were much higher for the

undulated substrates compared to the flat substrate. The exact shape of the

undulation played only a minor role. The phase velocity of the waves over the

undulated substrates was much lower than for the flat one. Again, the exact

nature of the undulation had only a minor influence. The qualitative behavior

of the growth rate and the phase velocity was similar for all topographies.

When the waves were outside the linear regime, nonlinear effects altered their

evolution significantly (figures 4.8 and 4.9). They changed their shape from si-

nusoidal to saw-tooth like, by transferring energy to higher harmonics of their

initial wave number. If these higher harmonic wave numbers lay beyond the

critical one, they were damped. This led to an equilibrium between the ampli-

fication of the first harmonic (which lay below the critical wave number) and

energy transfer to higher harmonics. Thus a saturation state will eventually

be reached for all nonlinear waves (figure 4.12). What stood out for the flat

substrate was the fact that for the neutral wave number that was calculated

from the Orr-Sommerfeld equation, the saturation amplitude was zero. But
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the growth rate at this point was already significantly negative. That means,

in this case it was better to define the neutral wave number experimentally by

the lowest wave number whose saturation amplitude became zero, rather than

by the wave number whose growth rate was zero. The saturation state differed

both quantitatively and qualitatively between the flat and the undulated sub-

strates. The saturation amplitude was about six times higher for the waves

over undulated substrates. Also the saturation state of the waves over the flat

substrate was a true steady state in a coordinate system that moved with the

waves’ velocity. But due to the undulations, a true steady state could not be

reached for waves over the other topographies.

5.2 Solitary wave dynamics

The solitary waves analyzed in this dissertation were fundamentally different

from most studies in the literature: Instead of producing regular wave trains,

exactly one wave was generated at the channel’s inlet (equation 4.18). Accord-

ingly, the waves were able to attune freely not only in the direction perpen-

dicular to the substrate, but also in the direction parallel to it. Only the flat

substrate was used for this case and the inclination angle was set to α = 10 ◦.

The volume flux and temperature of the oil Elbesil 65 in the flow circuit (fig-

ure 2.1) were held constant, so that the Reynolds number was also constant

at Re = 15.0 . Eight different paddle periods between 1000ms and 125ms

and four different paddle amplitudes between 0.05mm and 4.0mm generated

different initial solitary waves.

Regarding the waves’ shape qualitatively in figures 4.14 through 4.16, a couple

of observations were made: Generally, the waves grew in height and the front of

the waves steepened, until it was almost perpendicular to the substrate. After

the depression area that followed the main wave, a second wave developed which

was called a “parasitic wave”. This parasitic wave had to be much slower than

the solitary wave because of the preceding depression area and its much lower

film thickness. Due to the low surface tension of the Elbesil 65 (table 2.1), no

capillary ripples were observed. A special case was made for the longest solitary

waves: In the first stage of figure 4.14, the wave had a long and flat top. In

the later stages, this wave broke up into two waves with a small depression
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area in between. The break-up is also visible in figures 4.15 and 4.16, but less

pronounced. This phenomenon was explained by considering the flat initial

state of the solitary wave as a film flow with a higher film thickness than the

waveless state. Since this film flow was unstable, waves had to appear on top

of the flat solitary wave. The length of the wave was finite and hence only one

dent appeared and split the solitary wave. If the wave had been longer, the

solitary wave should have broken up into more parts. The waves with lower

initial lengths were too short to be considered as a flat film flow and so did not

exhibit a break-up.

In the quantitative assessment of the solitary waves, the focus was put on the

main wave and not the parasitic wave or the second part of the broken-up wave.

Figure 4.16 shows the definition of its key parameters: Its amplitude, its length

and its position, from which its velocity was derived. Figure 4.17 displays their

development down the channel. It was demonstrated that the wave’s amplitude

and length did not develop independently, but a shortening/lengthening of the

wave gave rise to a increase/decrease of the wave’s amplitude. As soon as

the length became constant, the amplitude tended to the same value for all

waves. Also the wave’s velocity depended nonlinearly on its amplitude. In a

first approximation, a quadratic function could be fitted to the measured data

(figure 4.18).

In order to gain more insight on the dynamics of solitary waves, the streamlines

underneath large solitary waves were portrayed in a reference frame that moved

with the wave’s speed. The wave was considered as steady in that reference

frame during the short recording time. It was proven experimentally that re-

circulation areas underneath sufficiently large waves appear (figures 4.19 and

4.20). The critical wave amplitude for their appearance did neither depend

on the initial conditions of the wave, on the measurement position in stream

wise direction (figure 4.21), nor on the inclination angle of the substrate (figure

4.22). It did depend on the Reynolds number (figure 4.23).

82



5.3 Summary and outlook

5.3 Summary and outlook

Overall, the present work presents new experimental results on the dynamics

of free surface waves on gravity-driven film flows. Especially the influence of

substrate topographies on continuous waves and the behavior of solitary waves

was scrutinized systematically. In the study of the continuous wave dynamics,

only a small parameter space was covered by the experiments that were ana-

lyzed, i.e. the wavelength, amplitude and inclination angle of the substrate and

the Reynolds number were kept constant. So changing one of these parame-

ters, e.g. the wavelength of the undulations, should give further insight into the

continuous wave dynamics. Complementary numerical calculations of the full

Navier-Stokes equations will also help in understanding the mechanisms be-

hind the measured results and also a larger parameter space can be covered by

numerical investigations. Concerning the solitary wave dynamics, the recircu-

lation areas underneath large solitary waves are of special interest to heat and

mass transfer applications. There, it is crucial to identify the exact parameters

that influence the onset of these recirculation areas.
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waren eine großartige Hilfe bei der Entwicklung, Durchführung und Auswertung
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