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SUMMARY 

In times of climate change and increasing carbon dioxide concentrations, three questions 

arise for ecosystem sciences: At first, which ecosystems can contribute to mitigate those 

processes? Secondly, how will ecosystems react on the changing conditions? And finally, 

is the performance of our commonly applied research methods adequate under those 

complex and continuously changing environmental conditions? This thesis is integrated in 

the joint research project FORKAST which investigates those questions. The role of 

grassland ecosystems’ source or sink, related to the carbon cycle is currently not well-

defined. At least, extensively managed grassland in mid European low mountain ranges 

may be able to contribute to climate change mitigation by carbon sequestration.  

In ecosystem sciences, two dominant approaches are used to gain access to the carbon 

cycle. On the one hand these are the micrometeorological methods as the eddy-covariance 

technique which provides a top view from the atmosphere and, on the other hand, leading 

isotopic methods used in agricultural and soil science which allow a more interior view on 

the ecosystem. In this thesis, the advantages of both are turned to account.  

In a first step, the investigated area, an extensively managed grassland in a mid European 

low mountain range, was defined as a net carbon sink. The carbon uptake accounted for –

91 g C m–2 a–1 in 2010. It has to be mentioned, too, that the long term climate 

measurements on the site revealed an upward trend of spring droughts. In a forty year time 

series a decrease of precipitation of 21 mm in April and May had been detected. Hence, the 

reaction of the carbon cycle was investigated by inducing a 1000-year spring drought event 

(i.e. 38 days without any precipitation) and comparing the carbon allocation into shoots, 

roots, soil and respiration fluxes to those detected on plots with normal precipitation. 

Therefore, a stable isotope pulse labeling experiment had been conducted. This fact 

indicated an increase of carbon allocation by 6.2% to below ground pools as soil and roots 

and a reduction of shoot respiration by 8.5% due to spring drought.  

Gaining absolute values of carbon allocation, the relative portion, provided by pulse 

labeling and tracing, was set off the absolute carbon input into the ecosystem, obtained by 

eddy-covariance measurements of the net ecosystem carbon exchange in combination with 

partitioning of that into underlying assimilation and respiration flux. With the absolute 
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carbon input of –7.1 g C m–2 d–1 and the relative allocation of the labeling, into fluxes of 

2.5, 0.8, 0.5, 2.3 and 1.0 g C m–2 d–1 into shoots, roots, soil, shoot respiration and CO2 

efflux could be determined and validated.  

Flux partitioning is an important tool in ecosystem sciences. It can be accomplished in 

different ways. The commonly applied flux partitioning model based on Lloyd–Taylor and 

Michaelis–Menten functions had been compared to dark and transparent chamber 

measurements and to a partitioning by an isotopic approach, based on isoflux 

measurements with the relaxed eddy accumulation technique. The latter comparison 

revealed a lack of sensitivity of the common flux partitioning model for ecosystem 

reactions on short term changes in the weather conditions. The isotopic model based on 

detecting the isotope discrimination worked well on grassland compared to former 

experiments over a forest. Furthermore, relaxed eddy accumulation based 13CO2 isoflux 

measurements confirmed only minor influences of atmospheric isofluxes on isotopic 

labeling experiments by detecting only a negligible portion of 13CO2 of the entire CO2 flux. 

However, there are certain restrictions for applying relaxed eddy accumulation on managed 

grassland, found in this study. Scalar similarity, a precondition for proper relaxed eddy 

accumulation fluxes, cannot be guaranteed directly after the management. It is suggested to 

wait at least 22 days in summer and 12 days in autumn after the management. The 

ecosystem needed this span of time to recover the regular source/sink distribution of water 

vapor, CO2 and temperature.  

The chamber method was applied to validate the assimilation flux, provided by the 

common flux partitioning model. This was done during the day at time of turbulent 

atmospheric conditions. In a comparison experiment between the chamber and eddy-

covariance a good agreement was found at that time. In the late afternoon and during night, 

the chamber could not reproduce present atmospheric conditions, as, for example, 

increasing stable stratification due to the oasis effect or coherent structures. This resulted in 

smaller chamber CO2 source fluxes of 26% during night and larger chamber CO2 sink 

fluxes of 14% during day. The chamber technique is important for small scale 

measurements (especially in treatment experiments). Thus, it is important to know the 

reasons for those differences to eddy-covariance.  
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ZUSAMMENFASSUNG 

Durch den Klimawandel und die steigenden Kohlendioxidkonzentrationen in der 

Atmosphäre stellen sich den Umweltwissenschaftlern drei entscheidende Fragen: 

Welche Ökosysteme können einen Betrag zu Abschwächung dieser Prozesse leisten? Wie 

werden die unterschiedlichen Ökosysteme auf die veränderten Bedingungen reagieren? 

Und reichen die gegenwärtig angewendeten Untersuchungsmethoden aus um die 

komplexen und sich ständig verändernden Umweltbedingungen angemessen erfassen zu 

können? 

Diese Arbeit befasst sich als ein Teil des Verbundprojektes FORKAST mit der 

Erforschung dieser Fragestellungen. Die Rolle von Wiesen als Kohlenstoffquelle oder -

senke ist derzeit nicht klar definiert, wobei zumindest extensiv bewirtschafteten Wiesen in 

Mitteleuropäischen Mittelgebirgen eine Senkenfähigkeit zugesprochen wird.  

Zwei Forschungsansätze prägen die Umweltwissenschaften in Bezug auf den 

Kohlenstoffkreislauf. Mikrometeorologische Methoden wie die Eddy Kovarianz Methode 

bieten eine Art Überblick aus der Atmosphäre, während sich die Boden- und 

Agrarwissenschaften über Isotopenanalysen eine Innenansicht des Ökosystems 

verschaffen. Die Vorzüge beider Forschungsfelder werden in dieser Arbeit gekoppelt. 

Der erste Schritt war die eindeutige Definition des zu untersuchenden Extensivgrünlandes 

als Kohlenstoffsenke. Die Kohlenstoffaufnahme betrug im Untersuchungsjahr 2010 91 g 

Kohlenstoff m–2 a–1. Zusätzlich wurde eine Zeitreihe über 40 Jahre mit Niederschlagsdaten 

ausgewertet, welche für das Untersuchungsgebiet eine steigende Tendenz zu Frühjahrs-

trockenheit aufzeigten. In April und Mai wurde eine Gesamtabnahme der Niederschläge 

um 21 mm festgestellt.  

Auf Grund dieser Erkenntnis sollte die Reaktion des Kohlenstoffkreislaufes untersucht 

werden. Eine 1000-jährige Frühjahrsdürre (d.h. 38 Tage ohne Niederschlag) wurde auf den 

Forschungsflächen künstlich erzeugt. Anschließend wurde die Kohlenstoffeinlagerung in 

Spross, Wurzeln, Boden und Spross- bzw. Bodenatmung auf diesen Flächen mit der unter 

normalen Niederschlagsbedingungen verglichen, wofür ein Markierungsexperiment mit 

dem stabilen Kohlenstoffisotop 13C durchgeführt wurde. Die Frühjahrsdürrevariante zeigte 
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einen Anstieg der Kohlenstoffverlagerung in Wurzeln und Boden um 6.2 % und einen 

Rückgang der Sprossatmung um 8.5 %.  

Um die Kohlenstoffverlagerung in Masseneinheiten angeben zu können, wurde die durch 

das Isotopenmarkierungsexperiment bestimmte relative Verlagerung mit der Masse an 

aufgenommenem Kohlenstoff verrechnet. Letztere betrug 7.1 g Kohlenstoff m–2 d–1 und 

konnte über die Eddy Kovarianz Methode und eine modellbasierte Aufteilung des Netto-

Ökosystemaustausches in seine Teilflüsse Assimilation und Respiration bestimmt werden. 

Es ergab sich ein Kohlenstoffeintrag von 2.5, 0.8, 0.5, 2.3 and 1.0 g Kohlenstoff m–2 d–1 in 

Spross, Wurzeln, Boden, Sprossatmung und Bodenatmung.  

Die Aufteilung des Netto-Ökosystemaustausches in die ihm zugrundeliegenden Flüsse ist 

in den Umweltwissenschaften von großer Bedeutung und kann auf unterschiedliche Weise 

bewerkstelligt werden. Die Ergebnisse des üblicherweise dafür angewendeten Modells 

nach Lloyd-Taylor und Michaelis-Menten wurden mit Messungen mit dunklen und 

transparenten Kammern und mit einem, auf Isotopenmessungen mit der Relaxed Eddy 

Accumulation Methode basierendem Modell, verglichen. 

Das letztgenannte Vergleichsexperiment machte die fehlende Sensitivität des 

üblicherweise verwendeten Aufteilungsmodells für kurzfristige Wetterveränderungen und 

die entsprechenden Reaktionen des Ökosystems, deutlich. Das auf Isotopenmessungen 

basierende Modell berücksichtigt hingegen die Isotopendiskriminierung des Ökosystems 

und somit alle damit verbundenen Prozesse. Die Probleme bei der Anwendung, die auf 

Messflächen im Wald bekannt sind, traten auf dem Wiesenstandort nicht auf.  

Zudem bestätigten die 13CO2 Isoflussmessungen mit der Relaxed Eddy Accumulation 

Methode, dass der Anteil an 13CO2 am Gesamtfluss und somit der Einfluss auf Isotopen-

markierungsexperimente vernachlässigbar ist. 

Die Anwendung der Relaxed Eddy Accumulation Methode unterliegt jedoch auf extensiv 

bewirtschafteten Wiesenstandorten einer nicht zu unterschätzenden Einschränkung. Eine 

wichtige Voraussetzung für eine korrekte Flussbestimmung, die sogenannte Skalare 

Ähnlichkeit, ist kurz nach einem Grasschnitt nicht gegeben. Nach den Erkenntnissen dieser 

Studie ist eine Anwendung der Relaxed Eddy Accumulation Methode für 22 Tage im 

Sommer und für 12 Tage im Herbst nach einem Grasschnitt nicht empfehlenswert. Diese 
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Zeit hat das Ökosystem benötigt um die normalerweise vorliegende Quellen- und 

Senkenverteilung für Wasserdampf, CO2 und Wärme  wiederherzustellen.  

Die Kammermethode wurde verwendet um den Assimilationsfluss aus dem Aufteilungs-

modell zu überprüfen. Dieser Vergleich wurde während des Tages bei ausgeprägter 

atmosphärischer Turbulenz durchgeführt. Unter diesen Bedingungen wurde in einem 

Vergleichsexperiment zwischen der Eddy Kovarianz- und der Kammermethode die beste 

Übereinstimmung gefunden. Am späten Nachmittag und während der Nacht waren die 

Kammerergebnisse durch mangelhafte Abbildung der atmosphärischen Bedingungen 

verfälscht. Währen der Nacht wurden durch Kohärente Strukturen hervorgerufene Flüsse 

nicht erfasst und am späten Nachmittag wurde die frühe, durch den Oaseneffekt 

hervorgerufene, Stabilisierung der bodennahen Luftschichten unterschätzt. In der Folge 

bestimmte die Kammer nachts einen um 26 % geringeren und tagsüber einen um 14 % 

höheren CO2-Fluss. Für Messungen im kleinskaligen Bereich, zum Beispiel auf speziell 

behandelten Flächen, ist die Kammermethode nicht zu ersetzen. Deshalb ist es unerlässlich 

die Unterschiede zur Eddy Kovarianz Methode und deren Ursachen zu kennen.  
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1 INTRODUCTION 

Climate change is real and its dependence on anthropogenic greenhouse gas emission is 

widely accepted in the scientific community. The increase of global carbon dioxide (CO2) 

concentration induced ecosystem sciences to intensify their search for counter-measures and 

for identification of potential natural carbon sources and sinks. In this context, taking 

advantage of the natural carbon sequestration in ecosystems after carbon uptake by 

photosynthesis is one idea. Thereby, the importance of forests is more often emphasized in 

the discussion than of grassland ecosystems. That is because grassland ecosystems are not 

definitely defined as carbon source or sink. The IPCC ascribed the potential role of “source 

or sink” to grassland ecosystems (IPCC, 2013). Indeed, Janssens (2003) found a certain sink 

capacity which is of high uncertainty, though, and Ciais et al. (2010) as well as Gilmanov et 

al. (2010) could not find evidence either way. In contrast to that, there is a present sink 

potential for extensively managed grassland ecosystems in mid European low mountain 

ranges (Gilmanov et al., 2007; Allard et al., 2007; Ammann et al., 2007; Hussain 

et al., 2011). However, complex interactions between phenological development, 

management and atmospheric conditions create a certain inter-annual variability that can 

temporally turn the ecosystem into a carbon source (Wohlfahrt et al., 2008). Climate change 

enhances variations in the carbon cycle due to increasing temperatures (Luo, 2007), varying 

precipitation amounts and patterns (Knapp, 2002; Chou et al., 2008), heat waves and 

droughts (Ciais et al., 2005; Joos et al., 2010) and rising atmospheric CO2 concentrations 

(Luo et al., 2006).  

In this study, an extensively managed grassland site in a Bavarian low mountain range is to 

be defined as a carbon sink or source under present conditions. Long time climate data, 

collected at the measurement site in the city of Weißenstadt (620 a.s.l., 2.5 km northeast 

from the study site) confirmed altered precipitation patterns. A comparison of the 30 year 

climate period from 1961 to 1990 with the period from 1971 to 2000 pointed out a total 

decrease of precipitation by 21 mm in April and May (Foken, 2003). This is likely to induce 

drought stress already at the beginning of the vegetative period. Therefore, it requires further 

investigation – above all, with regard to potential consequences for the carbon cycle and the 

attributed sink potential of this extensively managed grassland in a mid European low 

mountain range. This issue fits well into the "Bavarian Climate Program 2020" of the 

Bavarian State Ministry of Sciences, Research and Arts, in cooperation with Bavarian 

universities, specialist government agencies and, to a great extent, with the research 
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cooperation BayFORKAST (Impact of Climate on Ecosystems and Climatic Adaptation 

Strategies), FORKAST (Bavarian State Ministry for Environment and Consumer Protection, 

2013). Grasslands cover the surface of the Free State of Bavaria to a large percentage and - 

beneath the source/sink question, which is definitely important in terms of climate change 

mitigation – are of considerable importance for its economy. Consequently, the prospective 

value and the protection status, coming along with the resilience and the performance of the 

extensively managed grassland, have to be assessed on both counts.  

Today, the carbon balance of a terrestrial ecosystem is commonly investigated by measuring 

the NEE using the eddy-covariance technique (e.g. Baldocchi et al., 2001; Aubinet et al., 

2012). This direct method determines turbulent fluxes (Montgomery, 1948; Obukhov, 1951; 

Swinbank), requires certain correction and quality control tools (Foken and Wichura, 1996; 

Foken et al., 2004; Vickers and Mahrt, 1997) Mauder 2011 #191} and, for annual sums of 

NEE, gap filling mechanisms (Stoy et al., 2006; Ruppert et al., 2006a; Desai et al., 2008; 

Papale, 2012; Falge et al., 2001; Moffat et al., 2007). Those gap filling tools are closely 

related to flux partitioning models (FPM) which are designed for separating the NEE into its 

underlying components: ecosystem respiration (RECO) and gross primary production (GPP; 

Falge et al., 2002; Stoy et al., 2006; Desai et al., 2008; Lasslop et al., 2010; Rebmann et al., 

2012). To parameterize temperature dependant RECO equal to nighttime NEE due to missing 

assimilation, the Lloyd–Taylor function was applied (Lloyd and Taylor, 1994). Light 

response regression on the basis of the Michaelis–Menten function (Michaelis and Menten, 

1913) was used to parameterize daytime solar radiation dependant GPP. Those fluxes 

provide a better insight into the processes of the carbon cycle and have further advantages 

over the NEE as shown in the following. As the eddy-covariance method integrates the NEE 

over a large area of the meadow, the NEE is just the integrated result of all interacting 

processes that are related to the carbon cycle. Depending on whether the ecosystem is a 

carbon sink or a source in times of changing environmental conditions, it is important to 

know where carbon goes to or comes from (Gilmanov et al., 2007). At this point, 

atmospheric approaches reach their limits. Partitioning of assimilated carbon to various 

ecosystem pools can be achieved by using isotopic techniques (Buchmann, 2000, 2002; 

Kuzyakov, 2006). Thereby, natural continuous (C3 plants grow after C4 plants or vice 

versa), artificial continuous and artificial pulse labeling approaches have to be differentiated. 

Pulse labeling, being applicable the best and thus most conducted, tracer method (Kuzyakov 

and Domanski, 2000; Kuzyakov and Schneckenberger, 2004) is based on pulse-like 

insertion of a tracer to the green biomass – as the assimilating part of the ecosystem – and 
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subsequent sampling and tracing respectively in the diverse ecosystem compartments. 

Finally, it provides a relative proportion of the incorporated carbon translocated to various 

above and below ground carbon pools (Kuzyakov and Schneckenberger, 2004). However, 

the total amounts of translocated carbon remain unknown (Kuzyakov et al., 2001; Leake et 

al., 2006). This method is often used when sites with similar preconditions but different 

kinds of treatments are compared on the basis of ratios of carbon allocation (e.g. Hafner et 

al., 2012; Johnson et al., 2002; Allard et al., 2006). In this study it was initially applied to 

plots on extensively managed grassland where the already mentioned spring drought events 

were artificially induced and intensified before the labeled experiment. In comparison to the 

variant that was exposed to precipitation as usual, changes in the carbon allocation were 

detected for being able to assess the consequences when to find adequate climate change 

adaptation strategies (referring to the carbon cycle / the atmospheric CO2 concentration).  

The comparison of the atmospheric net ecosystem CO2 fluxes of both variants (spring 

drought and regular precipitation) would constitute an upgrading of those experiments. At 

the study’s relevant site, as lots of sites all over the world where the exchange of CO2 

between terrestrial ecosystems and the atmosphere is measured, the eddy-covariance 

technique is installed in place (Baldocchi et al., 2001). However, to measure small scale 

fluxes above a drought plot of 1 m2, for example, is inappropriate because it integrates the 

signal over a large flux footprint (Rannik et al., 2012). Therefore, the application of a 

complementary technique often stands to reason: the chamber method. It has to be seen 

critically of course to investigate differently treated plots with different methods, at least as 

long as both methods are not compared properly. Former comparison studies between eddy-

covariance and the chamber technique found differences, for example due to methodical 

problems under high vegetation (Subke and Tenhunen, 2004), at times with low turbulence 

intensity (van Gorsel et al., 2007), at night over complex surfaces (Myklebust et al., 2008), 

due to poor regression analysis in the chamber software (Kutzbach et al., 2007) or different 

target areas (Reth et al., 2005). Anyway, in most studies the lacking conformity during 

nighttime is mentioned. This circumstance suggests a more detailed investigation in times of 

stable stratification. There are also meteorological effects during daytime which would be 

worth investigating but still not considered in the scientific community. Closely related to 

the formation of atmospheric stability is the oasis effect that appears predominantly in the 

afternoon when a large upward latent heat flux causes cooling of the surface and thereby a 

downward sensible heat flux despite of a still incoming solar radiation (Stull, 1988; Foken, 

2008). Firstly, it seems probable that this moisture dependent effect behaves differently on 
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drought plots and on those with regular soil moisture. Secondly, there may be effects on the 

carbon fluxes which may develop differently at a covered surface (under a chamber dome) 

and an undisturbed ecosystem. The same applies to atmospheric turbulence in general which 

simply cannot be reproduced within a chamber (Kimball and Lemon, 1971; Pumpanen et al., 

2004; Rochette and Hutchinson, 2005). Atmospheric turbulence has a typical size spectrum 

and distribution of the turbulent eddies depending on height and surface structure. To a 

larger extent, low-frequency flow patterns, those are, coherent structures (Collineau and 

Brunet, 1993; Gao et al., 1989; Thomas and Foken, 2007), which are typical in the 

investigated region (Foken et al., 2012b), may cause differences between chamber and eddy-

covariance measurement results. Consequently, for a proper comparison of both techniques 

it is necessary to compare not only daily sums of the NEE but also to take various 

atmospheric conditions in the course of the diurnal cycle into account. All these basic issues 

are to be clarified in a side by side measurement of the NEE, with latest chamber technology 

and the eddy-covariance technique with adequate quality criteria.  

In contrast to chambers that – in combination with a darkened and transparent chamber – are 

able to determine ecosystem respiration and assimilation fluxes directly, eddy-covariance 

just provides the NEE as a combination of both. Then a more detailed information about the 

underlying fluxes is achieved usually by applying flux partitioning models (Stoy et al., 2006; 

Desai et al., 2008; Lasslop et al., 2010; Reichstein et al., 2012). However, those may provide 

fluxes with unrealistic temporal variation or magnitude (Stoy et al., 2006). An alternative in 

this context is partitioning, based on additional determination of the 13CO2 isoflux (Yakir 

and Wang, 1996; Bowling et al., 2001; Knohl and Buchmann, 2005; Ogée et al., 2004; 

Wichura, 2009; Wichura et al., 2004; Ruppert, 2008; Lloyd et al., 1996). Due to physical 

and biochemical processes as stomatal uptake of CO2 and photosynthesis, which 

discriminates against the heavier isotope 13C, the air close to the biosphere gets enriched in 
13CO2 over the day. Consequently, the biomass itself and all following compartments within 

the dynamic carbon-cycle are depleted in 13C and so is the respired CO2. Both effects 

account for a distinct diurnal cycle of the 13CO2 concentration in ecosystem air (Flanagan et 

al., 1996; Lloyd et al., 1996). Resulting 13CO2 isofluxes can be determined by hyperbolic 

relaxed eddy accumulation (HREA; (Bowling et al., 2001; Bowling et al., 2003; Wichura, 

2009; Wichura et al., 2004) inter alia. Although laser supported 13CO2 flux  measurements get 

more and more important, REA technique is still applied today. Ruppert (2008) and Wichura 

(2009) investigated an isotopic approach by Lloyd et al. (1996) for partitioning NEE above 

forest ecosystems and found some restrictions due to complicated coupling conditions 
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(Thomas and Foken, 2007). This difficulty is avoided in the current study by applying the 

measurements for this approach tested on grassland. Thereby, the commonly used FPM for 

the NEE determined by eddy-covariance can be examined by a method that is based on a 

real ecosystem process, the discrimination of heavier isotopes by the biosphere. In addition 

to the general uncertainty about the carbon source/sink behavior of grassland mentioned in 

the beginning, the management of grassland ecosystems causes anomalies in the seasonal 

carbon cycle (Flechard et al., 2005). In the same way, temperature and water vapor fluxes, 

that is, sensible and latent heat fluxes may differ before and after the management and, 

additionally, this may come along with certain restrictions for REA measurements. Errors in 

the REA flux often appear when scalar of interest and proxy scalar behave differently in 

their turbulent transportation efficiency (Ruppert et al., 2006b). This so called scalar 

similarity is required especially for hyperbolic REA because two important factors – the 

hyperbolic deadband H and the proportionality factor b – and consequently the REA flux 

would be incorrect without (Oncley et al., 1993; Ruppert et al., 2006b). b-factors are often 

treated as constant (Meyers et al., 2006; Haapanala et al., 2006), although they underlie a 

certain diurnal variation. Other studies on managed ecosystems use CO2 and water vapor 

(Baum and Ham, 2009) and mostly temperature (Myles et al., 2007; Hensen A. et al., 2009) 

as proxy scalar, sometimes shortly after the management (Nemitz et al., 2001). Thus, it has 

to be investigated thoroughly by numerous simulations with data from mown and unmown 

grassland, if this practice can be problematic and when REA experiments on managed 

grassland should not be conducted. Only with this information, correct 13CO2 isofluxes can 

be ensured. Those fluxes serve another important purpose of this study, too. Pulse labeling 

experiments with 13CO2 are applied all over the world in ecosystem research but the 

influence of atmospheric 13CO2 fluxes was generally not considered (an overview is given 

by Kuzyakov and Domanski (2000) and Yakir and Sternberg (2000)). It has to be assessed if 

the influence on experiments based on isotope measurements can be neglected. 

The overall motivation for all these technically ambitious experiments is to reduce present 

uncertainties about potential ecosystem reactions to contemporary changing environmental 

conditions. Furthermore, this is naturally based on research methods which are evaluated 

critically and in detail. Regarding this, four focal issues are revised in this study: 

(a) The pulse labeling approach used in plant and soil sciences requires an upgrade. Up to 

now, an essential constraint of the method is to gain relative portions of translocated carbon 

only. However, most studies related to carbon balance and turnover mass units are important 
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(Kuzyakov and Domanski, 2000). With a thoroughly evaluated carbon input flux to the 

ecosystem this constraint can be reserved. For this purpose, a completely novel approach 

was conceived by looking for a steady state of the relative carbon distribution to the 

different carbon pools after the pulse labeling (cf. Saggar et al., 1997; Saggar and Hedley, 

2001; Wu et al., 2010) and by setting this result off against the average absolute carbon 

input to the ecosystem during the period between labeling and steady state, determined by 

eddy-covariance in combination with a flux partitioning model. This first-time performed 

combination of methods can be seminal in a more and more integrated field of atmosphere, 

plant and soil sciences in times of presently changing environmental conditions (Appendix 

A). 

(b) From an atmospheric point of view an upgrade is required, as well. Eddy-covariance 

measurements are well established and its quality profits from sophisticated quality 

assessment tools but it also suffers from two constraints which are worth noting. For a better 

insight to the carbon cycle, NEE needs to be partitioned into its source and sink fluxes by 

flux partitioning tools. Consequently, those have to be evaluated by a method that is based 

on a real ecosystem process, the discrimination of heavier isotopes by the biosphere 

(Ruppert, 2008). Therefore, REA represents a decent technique (Appendix B). 

(c) Moreover, eddy-covariance is an atmospheric measurement technique and is installed in 

a certain height above the ground. Thus, it measures a large flux footprint (Rannik et al., 

2012) and is unsuitable for a determination of fluxes above small, in experiments often 

treated, plots, as for instance the drought plots in this study. There, the chamber method and 

adequate comparison to eddy-covariance under consideration of the atmospheric conditions 

become relevant (Appendix C). 

(d) In respect of climate change the extensively managed grassland was to define as carbon 

source of sink by determination of the annual carbon balance with the eddy-covariance 

technique and the influence of spring drought events on the carbon-cycle were to define by 

stable isotope pulse labeling (Bavarian State Ministry for Environment and Consumer 

Protection, 2013). 
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2 METHODS AND EXPERIMENTS 

In the first part of this chapter the most important scientific methods applied in this study are 

introduced. The second part describes how these methods interacted within the respective 

field experiments.  

2.1 Methods 

2.1.1 Eddy-covariance   

The eddy-covariance technique is, by definition, a direct method (Montgomery, 1948; 

Obukhov, 1951; Swinbank) for measuring turbulent fluxes. For the determination of the CO2 

flux, the concentration was measured by an open–path gas analyzer (LI–7500, LI–COR 

Biosciences, Lincoln, Nebraska USA) and the wind vector by a 3D sonic anemometer 

(CSAT3, Campbell Scientific, Inc., Logan, UT USA) at high frequency (20 Hz), 2.5 m 

above ground. Data had been stored on a data logger (CR3000, Campbell Scientific, Inc., 

Logan, UT USA) and collected daily by a computer system as a backup. Data had also been 

post processed and quality controlled, based on latest micrometeorological standards by the 

software package TK2 which had been developed at the University of Bayreuth (Mauder 

and Foken, 2004). In the meantime, this still evolving software (TK3) has become available: 

Mauder and Foken (2011) incorporates all necessary data correction and data quality tools 

(Foken et al., 2012a). It was proved successfully in comparison to six other commonly used 

software packages (Mauder et al., 2008). For every averaging interval of 30 minutes, the 

included state of the art quality flagging system evaluated stationarity and turbulence and 

marked the resulting flux with quality flags from 1 (very good quality) to 9 (very low 

quality; Foken and Wichura, 1996; Vickers and Mahrt, 1997; Foken et al., 2004). Only data 

with quality 3 or better has been used in this study. Also footprint analysis after Göckede et 

al. (2004), Göckede et al. (2006), Rannik et al. (2000) and (2012) was performed to assure 

that the measured data represented exclusively the land use type of interest: extensively 

managed grassland. 

 

2.1.2 Relaxed eddy accumulation   

The basic idea of Desjardins in 1972 (Desjardins, 1977) of separating the vertical wind into 

an up– and downward component was applied by Businger and Oncley (1990). This Eddy 



24 

Accumulation method (EA) was combined with the flux–variance–similarity to create an 

indirect method: the relaxed eddy accumulation (REA). The REA–flux 

( )REA w aF b c c↑ ↓= σ ρ −           (1) 

is derived from average up- and downward scalar concentration c↑  and c↓ , standard 

deviation of the average vertical wind velocity wσ , density of dry air aρ  and an empirical, 

dimensionless proportionality factor b that compensates for the loss of information due to 

the mentioned “relaxation” (Ruppert et al., 2006b). To reduce relative errors in flux 

determination individually simulated b–values for every measurement location and period 

have to be favored over application of a constant b (Ruppert et al., 2006b; Foken, 2008). 

Thus, b is determined from a proxy scalar, a second scalar quantity which can be measured 

with high temporal resolution (by eddy-covariance) and which behaves similarly in 

atmospheric transport (Ruppert et al., 2006b; Ruppert et al., 2012). This is described in the 

theory of scalar similarity (Kaimal et al., 1972; Pearson et al., 1998). The proportion of both 

proxy scalar fluxes, REAF  and the eddy-covariance flux (ECF w' c'= ), provides b: 

( )a w

w' c'
b

c c↑ ↓

=
ρ σ −

            (2) 

However, not until Businger and Oncley (1990) had modified the method by discarding 

fluctuations around zero – that has only a small influence on the entire flux, anyhow – by 

introducing a deadband, could the REA idea be implemented with regard to mechanical 

restrictions of the speed of valve switching.  

( )
( ) ( )( )0

0 0a w

w' c'
b w

c w w c w w↑ ↓

=
ρ σ > − < −

        (3) 

The size of the linear deadband w0 around zero is determined individually according to the 

experimental conditions and the particular scalar of interest. The same applies to b(w0) 

which has to be determined individually by associated simulations with proxy scalars.  

To maximize scalar concentration difference between up– and downdraft air samples, an 

application of a hyperbolic deadband H is recommended (Bowling et al., 1999b) and which 

is required, for example, for differences in the order of the measurement precision. By 

application of H in hyperbolic REA (HREA), b(H) is reduced to lower values around 

0.22±0.05 (Bowling et al., 1999b), 0.15–0.27 (Ruppert et al., 2006b), respectively. H is 
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based on the fluctuation of the vertical wind velocity w'  and the concentration c'  of a 

proxy scalar as well as their standard deviationsw/ cσ :  

 
w c

w' c'
H≥

σ σ
           (4) 

Adequate scalar similarity is required especially for hyperbolic REA because H depends on 

the proxy scalar concentration. Generally, b(H) and the REA flux as the final product will be 

flawed without scalar similarity between the scalar of interest and the proxy scalar (Oncley 

et al., 1993; Ruppert et al., 2006b). Differences in distribution (Andreas et al., 1998a; 

Ruppert et al., 2006b; Held et al., 2008), amount, and strength (Katul et al., 1999; Katul and 

Hsieh, 1999) of scalar sources and sinks are reasons for differences in turbulent exchange of 

the scalars and in scalar similarity. Due to the fact that scalar similarity is influenced by the 

seasonal variation of canopy physiology (Williams et al., 2007), the effect of the 

management events on the scalar similarity between CO2 and the sonic temperature and 

water vapor had been analyzed in this study by calculating correlation coefficients r (c.f. 

Gao, 1995; Katul and Hsieh, 1999; Ruppert et al., 2006b; Held et al., 2008): 

1 2

1 2

1 2

proxy proxy

proxy proxy

proxy proxy
c ,c

c c

c' c'
r =

σ σ
         (5) 

For more detailed information see Appendix B. 

 

2.1.3 Stable isotope pulse labeling 

Pulse labeling with the stable carbon isotope 13C provides information about the relative 

allocation of recently assimilated carbon to different carbon pools (Rattray et al., 1995). 

Therefore, the assimilating plant parts are exposed to the 13CO2 isotope-tracer in a 

transparent chamber for a short period of time (three hours). The chamber has to be sealed 

and, furthermore, cooling and turbulent mixing of the chamber air has to be guaranteed 

(Paterson et al., 2009). For more detailed information about the chamber construction see 

Drösler (2005) and Appendix A. Translocation of the assimilated 13C had been analyzed 

during a 21 day period in shoots, roots, soil and soil CO2 efflux on all 5 plots. Samples were 

taken immediately (0), 1, 2, 4, 9 and 21 days after the labeling, dried, weighted and milled. 

Also unlabeled natural abundance samples were taken and treated in the same way. For the 

final determination of the relative carbon input into the different compartments, several 

calculation steps were necessary. The enrichment of 13C in a certain carbon pool was derived 
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from subtracting the naturally abundant amount from the amount of 13C in the labeled pool. 

Then, the total amount of 13C in the pool was calculated by multiplication with the amount 

of total carbon in the pool. Total amounts of 13C were found immediately after the labeling 

was summed up over all investigated pools as a reference value for the recovered amount of 
13C during the subsequent sampling period. Processing in this way, the 13C amounts of every 

single pool at every point of time could be related to this total value and, additionally, the 

recovery of the tracer and thereby the relative proportion of the carbon allocation could be 

determined (cf. Hafner et al., 2012 and Appendix A).  

 

2.1.4 Flux partitioning 

In order to gain finally the absolute carbon input into the ecosystem from the NEE measured 

by eddy-covariance, two tasks were performed: Due to rejection of outliers and low quality 

data, gaps occurred within the 30–minute NEE time series that had to be filled and the NEE 

had to be partitioned into its underlying fluxes, assimilation (GPP) and respiration (RECO). 

To parameterize temperature dependant RECO, equal to nighttime NEE due to missing 

assimilation, Lloyd–Taylor function had been applied (Lloyd and Taylor, 1994; Falge et al., 

2001; Ammann et al., 2007; Reichstein et al., 2005). Light response regression on the basis 

of the Michaelis–Menten function (Michaelis and Menten, 1913) was used to parameterize 

daytime solar radiation dependant GPP (Falge et al., 2001; Ruppert et al., 2006a). For both, 

the flux partitioning model used a time–window scheme instead of the conventional 

temperature binning approach that was suitable for sites with distinct seasonal variation 

(Ammann et al., 2007).  

Applying transparent and dark soil chambers in combination represents an alternative 

partitioning method. By a simple subtraction, GPP can be determined from measured NEE 

and RECO.  

Beside the REA technique and the determination of the 13CO2 isoflux (FISO; e.g. Yakir and 

Wang, 1996; Bowling et al., 2001; Ruppert, 2008), a third approach has to be mentioned. 

Therefore, the isotope ratios of assimilated (Aδ ) and respired CO2 ( Rδ ) are determined with 

the REA device (Ruppert, 2008) and by analyzing soil respiration samples on the basis of 

the Keeling plot method (Keeling, 1958). Finally, FEC can be partitioned into assimilation  

ISO R EC
A

A R

F F
F

− δ=
δ − δ

          (6) 
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and respiration flux  

ISO A EC
R

R A

F F
F

− δ=
δ − δ

          (7) 

in accordance to Lloyd et al. (1996), Bowling et al. (2001), Bowling et al. (2003), Ruppert 

(2008) and Wichura (2009). For more detailed information please see Appendix B. 

 

2.1.5 Chamber system 

The applied system (LI–8100–104C, transparent for NEE measurements at low vegetation, 

LI–COR Biosciences, Lincoln, Nebraska USA) was an automated flow–through non–

steady–state soil chamber where sample air was constantly held circulating between the 

chamber and an infrared gas analyzer (IRGA) by a rotary pump with 1.5 L min-1 through a 

chamber volume of 4822 cm3. The CO2 flux was estimated by the rate of CO2 concentration 

change inside the chamber during a 90 second close time. The chamber had a lift–and–rotate 

drive mechanism which rotated the bowl–shaped chamber 180° away from the collar. This 

shape allowed a good mixing by means of the circulation of the sample air through the 

IRGA alone, without a ventilator (LI-COR, 2004). Barometric and, above all, turbulence–

induced pressure fluctuations above ground surface level influence the efflux from the soil. 

Thus, modern chambers are equipped with a venting tube that transmits atmospheric 

pressure changes to the chamber headspace (Rochette and Hutchinson, 2005). LI–COR had 

installed a patent–pending pressure vent with tapered cross section at the top of the chamber 

that minimizes pressure pulses at chamber closing and allows the tracking of ambient 

pressure under calm and windy conditions by eliminating the Venturi effect (Conen and 

Smith, 1998) occurring at former simple open vent tubes (Xu et al., 2006). The exchange 

through the venting tube is negligible compared to the CO2 diluting effect by water vapor 

during the measurement which in turn is corrected by the measurement software (LI-COR, 

2004). NEE is measured by a chamber with a transparent dome enabling assimilation as well 

as respiration processes inside. The transparent chamber for the NEE comparison was closed 

for 90 seconds four times during a half–hour period. In the meantime, the system was 

flushed for 135 seconds and the dark chamber for RECO was closed for 90 seconds. The 

system was then flushed with ambient air again. The closing and opening process of the 

transparent chamber as part of the flushing time lasted 13 seconds each. 

 



28 

2.2 Experiments  

2.2.1 Study area 

All experiments of this study were conducted on the extensively cultivated submontane 

grassland site “Voitsumra” at the edge of the low mountain range “Fichtelgebirge” in 

northeast Bavaria, Germany, located 624 m a.s.l. (50°05‘25‘‘N, 11°51‘25‘‘E). For the last 

10 years, the site had been used as extensively managed grassland without fertilization or 

grazing but with sporadic mowing once or twice a year. The soil type is gleysol (IUSS 

Working Group WRB) with a thickness of at least 70 cm. The average annual temperature 

and precipitation are 5.8 °C and 1066 mm, respectively (Foken, 2003). The “Großer 

Waldstein” (877 m a.s.l.) is situated north of the study site and the “Schneeberg” (1051 m 

a.s.l.) is south of it. Together, these two mountains generate a channeled wind field for the 

site with East and, especially, West as the dominating wind directions (prevailing wind 

direction 263°). Thus, disturbances of the turbulence measurements could easily be avoided 

by installing all other experimental devices close to the eddy-covariance mast but 

perpendicular to the main wind direction. The plant community is described as Molinio–

Arrhenatheretea R. Tx. 1937 – economic grassland and the most dominant of the 48 species 

are Alchemilla monticola, Juncus filiformis, Polygonum bistorta, Ranunculus acris and 

Trifolium repens.  

All experiments described in the following had been supported by an automated weather 

station which provided 10 minute averages of a range of climate data as up– and down 

welling short- and long-wave radiation, air and soil temperature, humidity and soil moisture 

and precipitation. Those data were necessary for quality assessment and as input parameters 

for flux partitioning.  

 

2.2.2 Labeling and drought experiment 

The pulse labeling experiment was conducted during summer 2010 from 16 June to 6 July 

for two different reasons. Firstly, to apply the novel coupling approach with the eddy-

covariance technique and, secondly, to evaluate potential influences of a 1000-year spring 

drought event on the carbon cycle. Therefore, the manipulation strength could be estimated 

by fitting the Gumbel distribution (Gumbel, 1958), a generalized extreme value distribution 

(GEV), to a climate data series measured at the area of research (Jentsch et al., 2007). This 

circumstance resulted in an artificial spring drought, beginning on 9 May 2010 and lasting 
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38 days. It was induced by covering five of the ten plots of the labeling experiment with 

transparent and well-aerated rain-out shelters. The stainless steel soil frames for attaching 

the labeling chambers were pre-installed three weeks before the actual labeling experiment, 

too, to keep disturbances of plants and soil as small as possible. Soil moisture was monitored 

with TDR devices on both, drought and regular, variants. Hereafter, the 13C pulse labeling 

and a 21 day tracing period was conducted to gain the relative carbon distribution under 

regular and drought conditions finally. Accompanying eddy-covariance measurements – 

conducted for the whole year 2010 for the annual carbon balance – the carbon net ecosystem 

provided exchange on the site. In combination with the flux partitioning model (see. 2.1.4), 

the absolute carbon assimilation could be set off against the relative carbon distribution 

found at the regular plots. However, on the small scale drought plots fluxes can not be 

determined by eddy-covariance technique. Therefore, the chamber method is suggested. 

 

2.2.3 Chamber – eddy-covariance comparison 

Due to the relevance of the chamber method for small scale flux measurements and the 

necessity to appraise frequently the comparability of the chamber method and eddy-

covariance, NEE, measured with both techniques, had been compared in an experiment from 

25 May to 3 June in 2011. Turbulent flux data were taken from the long term carbon balance 

measurements on the site. The size of the fluxes is closely connected to the diurnal cycle. To 

be able to investigate differences between both methods and underlying short-term effects, 

the difference between eddy-covariance and chamber flux was normalized with the eddy-

covariance flux. 

For the chamber measurements soil collars which included an area of 318 cm2 were pre-

installed 10 cm deep in the soil two weeks before the experiment to create a perfect seal and 

to avoid disturbances of the CO2 efflux by cut and wounded plant roots at the beginning of 

the measurement period. Due to the channeled wind field on the site (2.2.1), the chamber 

could be installed very closely to the eddy-covariance mast without disturbing the flux 

footprint. 

 



30 

2.2.4 Relaxed eddy accumulation experiments 

Relaxed eddy accumulation (REA) simulations serve to parameterize REA measurements 

but also to evaluate present conditions on the site for REA application. The simulations were 

accomplished in the periods before and after mowing and aftermath events on the 

extensively managed grassland site in September 2009, July 2010, September 2010 and 

August 2011. During the whole 16 days before and the 27 days after management, similar 

atmospheric conditions were investigated focusing on potential effects of the management 

on scalar similarity and the determination of the proportionality factor b. 

The real REA field experiments were accomplished during the main growth period of 2010 

on 22 June and 25 August with an adequate time lag to the last management event. The REA 

device used in this study (Fig. 1) was constructed and tested by (Ruppert et al., 2012) and 

has already been applied in other field experiments (Ruppert, 2008). REA measurements 

require high frequency vertical wind velocity and CO2 concentration data provided by the 

ultra-sonic anemometer and the infra-red gas analyzer of the eddy-covariance mast at the 

site. That one also provided the NEE flux for the comparison of Lloyd–Taylor / Michaelis–

Menten and REA-isoflux based flux partitioning (2.1.4). Isofluxes (FISO) can be derived 

from CO2 concentration (C↑↓ ) and δ13C-isotope ratio ( 13C↑↓δ ) differences in up- and 

downdrafts (Bowling et al., 1999a; Ruppert, 2008; Wichura, 2009): 

( ) ( )13 13
ISO eff w aF b H C C C C↑ ↑ ↓ ↓= σ ρ δ − δ       (8) 

aρ  is the density of dry air, σw derived from the time series of the vertical wind velocity 

measured by the ultra sonic anemometer and the proportionality factor b, in this case, was 

determined from the effectively measured CO2 fluxes measured by REA and eddy-

covariance during the experiment. 

 FISO is also interesting to evaluate the influence of atmospheric isotope fluxes on 

experiments based on isotope measurements, for example after an isotopic labeling.  
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Figure 1: Design of the REA device (cf. Ruppert et al., 2012) 
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3 RESULTS 

3.1 Annual carbon balance 

The NEE was directly measured by eddy-covariance in 2010 (Fig. 2) and resulted for –249 g 

C m–2 a–1. After subtraction of the harvest output of 158 g C m–2 a–1, –91 g C m–2 a–1 still 

remained (Fig. 3), identifying the site as relatively big carbon sink in relation to other 

comparable extensively managed grassland (Table 2 in Appendix A).  

 

 

 

 

 

 

 

 

Figure 2: Net ecosystem carbon exchange (NEE) in 2010 with half-hourly resolution; mowing 

and aftermath – labeled with red arrows – are clearly visible. 

 

 

 

 

 

 

 

 

Figure 3: Annual carbon budget and carbon loss by harvest in 2010; red arrows show mowing 

and aftermath  
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The existing sink capacity implicates the ecosystem to be worth further investigating if this 

potential can be upheld or maybe degrade in times of climate change. Therefore, the reaction 

on present spring drought events had to be analyzed. 

 

3.2 Effects of spring drought on carbon allocation 

38 days before the pulse labeling experiment started, five of the ten plots had been covered 

with rain-out shelters to simulate a 1000-year spring drought event. The 21-day-period of 

sampling and tracing began immediately after the 13CO2 pulse labeling on 16 June 2010. In 

doing so, differences in the 13C recovery rate during the tracer translocation period could be 

detected. From the first sampling onwards, the 13C recovery in the shoot biomass decreased 

in both variants (Fig. 4a and c). During the first day after the labeling, the loss of 13C by 

shoot respiration may be the most important reason for this as the steep increase of the 13C 

recovery in the regular variant proves (Fig. 4a). However, this increase is less pronounced in 

the drought variant (Fig. 4c). Here, the first differences become obvious, probably caused by 

reduced stomatal conductance coming along with drought stress. The maximum 13C amount 

attained by the dry and normal soil pool was not detected until one day after the labeling. In 

case of the root 13C dynamics, merely tendencies can be discussed because of the large 

variations. But, obviously, there is a larger input into the root pool in the drought version in 

sampling day 3 and 4 (Fig. 4a and c). Similar to shoot respiration, the increase of the 13C 

loss by soil CO2 efflux has its maximum during the fist day and then abates over time. At the 

end of the experiment all values are stabilizing and there are no more significant changes 

than in at least the last two samplings of each of the five pools in both variants.  

The final percentages at the end of the translocation process are illustrated in Figure 4b and 

d. Although there were no significant differences in the investigated carbon pools between 

the two variants, an increase of 6.2% stands for a tendency to higher carbon allocation to 

below ground pools as soil and roots during spring drought (Fig. 4b and d). This comes 

along with a reduced shoot respiration (-8.5%).  
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Figure 4: 13C tracer dynamics during the chase period in all carbon pools under regular 

precipitation conditions (a) and after 38 days of spring drought (c); (b) and (d) illustrate 

relative proportions of 13C recovered, that is, final distribution by percentage at the last day of 

sampling (day 21 of the chase period) in respective ecosystem carbon pools; The x–axis of (a) 

and (c) intersects at y = 1% for a better illustration. Only one value remains below 1% each 

which is the 13CO2 efflux immediately after the labeling accounting for 0.5% (regular) and 

0.7% (drought); Error bars represent standard errors of the mean (±SEM). 
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For further investigation, the absolute instead of the relative carbon allocation would be 

required. On the small drought plots, eddy-covariance measurements are not possible. The 

chamber method could be an adequate substitute for that. However, uncertainties of those 

measurements due to insufficient reproduction of the atmospheric conditions are well known 

(Rochette and Hutchinson, 2005). Thus, eddy-covariance – chamber differences had been 

evaluated in detail and the results are presented in the following. 

 

3.3 Chamber – eddy-covariance comparison 

Already the fist impression of the data of the ten day eddy-covariance – chamber side by 

side NEE measurement suggested a further and more detailed analysis. Smaller chamber 

CO2 source fluxes of 26% during the night and larger chamber CO2 sink fluxes of 14% 

during the day (negative sign) resulted in an absolute value of the chamber sink flux that 

was 40% larger than that which was measured by eddy-covariance. This is similar to other 

studies (Wang et al., 2009; Fox et al., 2008). A first indication as to the cause of the large 

difference at night may be provided by the kind and dimension of scattering of the measured 

fluxes. While daytime CO2 flux results of both techniques scatter quite similarly, nighttime 

chamber fluxes scatter less than half as much as the eddy-covariance fluxes: the chamber 

measures a virtually constant flux during the night (cf. Janssens et al., 2001). For this kind of 

aggregation of the positive chamber fluxes (cf. Laine et al., 2006), distinctly associated 

reasons could be detected, predominantly at times with high atmospheric stability (Fig. 5b), 

low wind velocity (Fig. 5c) and a cool ground surface, that is, little outgoing long-wave 

radiation (Fig. 5d). While the eddy-covariance system responds to the smallest changes of 

the atmospheric conditions as well as the nighttime ecosystem respiration flux does, the 

chamber is directly connected to the ground surface – where the ecosystem respiration is 

more or less constant – with only minor influences from the surrounding atmosphere (Lai et 

al., 2012; Norman et al., 1997; Reth et al., 2005), transferred into the chamber system 

exclusively by the pressure vent (Xu et al., 2006).While eddy-covariance measures that wide 

range of CO2 fluxes, the parameters illustrated in Figure 5b, c and d turned out to be 

responsible particularly for the uniformity of the chamber flux.  

During night, an increasing exchange by coherent structures was detected, as well. Coherent 

structures are generated by braking gravity waves or under the influence of low level jets 

(Karipot A. et al., 2008) and can cause 50–100% of the gas exchange during nighttime and 
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10–20% during day above a forest (Thomas and Foken, 2007). The influence of coherent 

structures might be less above meadows due to the negligible mixing layer (roughness 

sublayer). It was found out that some of the highest eddy-covariance fluxes in times of 

uniform chamber performance occurred together with large coherent structure fluxes (Fig. 

6b). In the experiment region, coherent motions had already been detected as a consequence 

of low-level jets reaching the ground and breaking gravity waves (Foken et al., 2012b). 

Coherent structures appear sporadically (average in this study: 38 h–1). Thus, the total size of 

the coherent structure flux is less than the typical turbulent flux, yet coherent motions 

produce a turbulence which is obviously recognized by eddy-covariance but not by the 

chamber technique. Coherent structures, as well as heating due to dewfall, cause slightly 

higher turbulent fluxes during nighttimes. The condensation heat, thereby, reduces the 

downward sensible heat flux and the strong stable stratification. Both processes are related 

to slightly higher wind velocities and to larger eddy-covariance flux results. Eddy-

covariance and chamber which measured nighttime respiration fluxes at high wind velocities 

(largest 25%, u>2.9 ms–1) are within the same range close to the bisecting line in Figure 6a 

but with a significant tendency to larger eddy-covariance fluxes. That fact coincides with a 

study of Denmead and Reicosky (2003) who found an increase of the eddy-covariance – to 

chamber–flux ratio with the wind velocity. Although the chamber reproduces the flux 

variations very well at high wind velocities, this means that it has the ability to describe 

small as well as larger fluxes, it generally underestimates the flux. Hence, at night, in 

addition to the stratification effect, situations with high wind velocities result in larger eddy-

covariance than chamber CO2 fluxes.  

In the late afternoon, CO2 sink fluxes, which had been measured by the chamber, prevail. 

Those were sustained larger and longer into the evening, resulting in a flux up to twice as 

large as the eddy-covariance flux. The reason was defined as the oasis effect, which is 

named after the moisture-dependent cooling effect occurring in oases and which is defined 

as the sensible heat flux (QH) changing to negative values in combination with a still large 

positive latent heat flux (QE) and solar radiation (Stull, 1988; Foken, 2008). In Figure 5a, 

nearly all measurements which are influenced by the oasis effect show larger chamber 

fluxes. Also two thirds of the situations with contrary eddy-covariance–chamber flux 

directions (filled circles in Figure 5a) and the higher sink fluxes of the chamber at small 

values could be explained directly by the oasis effect (large black circles in Fig 5a). 

Chamber fluxes are larger because in the chamber the long wave radiation balance is altered 

to almost zero. However, there is a physical barrier to the surrounding, increasingly stable 
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stratified air masses. This evokes reduced surface cooling, weak development of stable 

stratification and finally higher fluxes compared to eddy-covariance. With the sunset, the 

remaining assimilation potential is gone and the difference between both systems declines.  

Since the oasis effect is relevant for daytime chamber flux measurements, it is important to 

be considered for assimilation flux measurements with the chamber method, for example for 

partitioning issues. Such efforts should better be accomplished from late morning – when all 

instruments have dried from dewfall – until afternoon when the oasis effect gains more and 

more influence.  

Moreover, there are two other methods for partitioning of the NEE based on Lloyd–Taylor 

and Michaelis–Menten functions and on isoflux measurements with the relaxed eddy 

accumulation technique.  
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Figure 5. Scatter plot sections of eddy-covariance– and chamber–determined-NEE under 

particular micrometeorological conditions: a) oasis effect; b) atmospheric stability z/L > 0.7; c) 

wind velocity u < 0.9 m s–1; d) outgoing long wave radiation Iout < 319 Wm–2 – labeled with 

large black circles in each case; light grey circles represent fluxes with different directions.  
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Figure 6. Scatter plot sections of eddy-covariance– and chamber–determined NEE under 

particular micrometeorological conditions: a) largest 25% of the wind velocities (u>2.9 ms–1); 

b) largest 10% of the fluxes due to coherent structures (FCS>: 0.0015 mmol m–2 s–1) – labeled 

with large black circles in each case, light grey circles represent fluxes with different 

directions. 

 

3.4 REA application and flux partitioning 

Application of relaxed eddy accumulation (REA) on managed grassland requires a detailed 

evaluation of scalar similarity, for being the first precondition for proper determination of 

the proportionality factor b and consequently the REA-flux. In this thesis, scalar similarity 

was detected by calculating correlation coefficients r (Eq. 5) for important combinations of 

proxy scalars (CO2 and TS, CO2 and H2O). The abrupt decrease of the correlation after the 

management (see Fig. 7) suggests that both, TS and H2O are no suitable alternatives to CO2 

shortly after management. Moreover, a faster recovery of scalar similarity after autumn 

rowen (dark symbols) is indicated than after mid-summer mowing (bright symbols). This 

circumstance can be linked with greater intervention in the ecosystem in mid-summer, that 

is, removing more productive biomass than in autumn. In both cases, scalar similarity 

increased with ecosystem recovery up to pre-cutting values. 
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Figure 7. Scalar correlation coefficients between CO2 and sonic temperature TS (a) and CO2 

and water vapor H2O (b). Negative x-axis values indicate days before, positive values days after 

mowing and rowen, respectively. Dark squares represent rowen data in September 2009, 

bright upward triangles mowing in July 2010, black circles rowen in September 2010 and grey 

diamonds the late mowing in August 2011. The error bars show standard errors of the daily 

mean of r between 09:00 and 17:00 CET.  

 

A further impact on simulated b–factors was found, too. b showed a higher uncertainty and 

decreased strongly even to negative values after management. The detailed results are 

illustrated in Appendix B. As a consequence of this result, REA field experiments had been 

conducted with adequate time lag to the management events.  

On 22 June and 25 August 2010, before and long after meadow management, all parameters 

were determined in order to partition the NEE into assimilation (FA) and respiration (FR), 

based on two different approaches: the commonly applied flux partitioning model (FPM), 

based on Lloyd Taylor and Michaelis Menten functions, and the isotopic flux partitioning 

approach (Eqs. 6 and 7). In general, both partitioning approaches correlated to a certain 

extent but some noticeable differences could be found (Fig. 8). Most obvious in this context 

is the difference in the last value in Figure 8a in the evening. While the morning rise of 

photosynthetic activity was missed, the evening breakdown to a respiration-dominated 

system could be sampled by REA. At that time, there is no longer any difference between 

up- and downdraft isotope ratios, so that isoflux, and consequently assimilation and 

respiration fluxes, become zero. This comes along with the lack of photosynthesis and 

discrimination, but, above all, with turbulent fluxes that come to a standstill, as it is 

confirmed by a very small NEE. This pattern is only shown by the isotope approach and not 
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by the Lloyd Taylor and Michaelis Menten function based FPM. Apart from that, the 

isotopic flux partitioning shows a much greater variability whereas the FPM reproduces 

natural respiration changes insufficiently, causing assimilation fluxes to follow the NEE 

exactly. Sometimes both approaches provide similar fluxes but the isotopic model is able to 

describe various underlying fluxes of the NEE; that is, more intense reactions to 

environmental conditions are attributed to the ecosystem (cf. Ruppert, 2008). The rather 

constant respiration which is provided by the temperature-based FPM, results from 

relatively small temperature variations during both periods around the measurement days. 

Temperature is only one of the driving mechanisms of respiration; for example, 

photosynthetic activity supplies root exudates to soil life and accounts for a large portion of 

root-derived respiration (Kuzyakov and Gavrichkova, 2010). Discrimination of 13C is an 

input factor in the isotopic model. It is coupled directly to all assimilation-based processes. 

These become apparent with the assimilation flux which is closely connected to the 

incoming shortwave radiation. The same applies to wind velocity, essential for atmospheric 

fluxes and considered only in the isotopic model as an input parameter of the isoflux. In 

Appendix B, the dependence on those parameters is explained in detail. 

 

Figure 8. Comparison of NEE flux partitioning with isotopic background (respiration flux FR: 

black diamonds, assimilation flux FA: light grey circles) and a common FPM (dashed lines in 

same colors); the NEE measured by eddy-covariance is illustrated as dark grey solid line. 

Isotopic flux determination by REA served another purpose related to the isotope labeling 

experiment. Only a very small portion of less than 1% 13CO2 flux as part of the entire CO2 

flux was found on the grassland site. Thus, influences on isotopic tracer experiments can be 

excluded.   
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3.5 Partitioned absolute carbon fluxes into distinct carbon pools 

As already mentioned, the 13C recovery rate stabilizes at the end of the experiment (Fig. 4). 

There were no more significant changes in at least the last two samplings of each of the five 

pools in both variants. Hence, the precondition for the partitioning of the absolute carbon 

input, the isotopic steady state in the plant–soil–atmosphere system, was fulfilled (cf. Saggar 

and Hedley, 2001; Saggar et al., 1997; Wu et al., 2010) and the proportion of the tracer 

which was present at that time in the different pools could be offset against the total carbon 

input by assimilation, provided by eddy-covariance in combination with the flux partitioning 

model. This had been conducted exclusively for the 21 day tracing period after the pulse 

labeling since the transferability beyond this period was not validated by accounting for, for 

example plant physiological factors. The proportions of the inputs into the different pools 

follow naturally those in Figure 4. On average, 2.5±0.2 g C m–2 d–1 of the total input of 

7.1±0.4 g C m–2 d–1 were incorporated in the shoot and 0.8±0.3 g C m–2 d–1 in the root 

biomass. 0.5±0.1 g C m–2 d–1 remained in the soil whereas 2.3±0.3 g C m–2 d–1 and 1.0±0.1 g 

C m–2 d–1 were released to the atmosphere as shoot respiration and soil CO2 efflux, 

respectively. As a sum, the two latter fluxes represent an ecosystem respiration (RECO) of 

3.3±0.4 g C m–2 d–1 which is predestined to serve as verification parameter since it was also 

determined independently of the labeling by separating the NEE by the flux partitioning 

model: 3.5±0.2 g C m–2 d–1 (Fig. 9). The good correlation indicates that this approach – 

coupling two methods – was applied successfully. Furthermore, comparable results based on 

other approaches to gain absolute carbon inputs could be found in the literature (Kuzyakov 

and Domanski, 2000; Appendix A). 
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Figure 9. Average daily absolute input (GPP), output (RECO) and partitioned absolute carbon 

distribution after assimilation (g C m–2 d–1, ±SEM) during the chase period of the labeling 

experiment. Please note that for illustration all values, even GPP, have a positive sign. 
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CONCLUSIONS 

The main objective of this thesis is to advance investigation of the carbon cycle of 

extensively managed grassland – under consideration of contemporary changing 

environmental conditions (Bavarian State Ministry for Environment and Consumer 

Protection, 2013) – beyond commonly applied approaches. Achievements could be made 

regarding atmospheric measurement techniques as eddy-covariance and relaxed eddy 

accumulation (Appendix B), chamber measurements (Appendix C), stable isotope labeling 

(Appendix A) and flux partitioning approaches (all Appendices) by suggesting novel 

evaluation methods and combinations of those. From these achievements, the following 

conclusions can be drawn: 

(i) Carbon sink and drought effects  

Under the present environmental and site conditions, extensively managed grassland in mid 

European low mountain ranges recommends conservation and extension due to their 

mitigation capability in relation to carbon sequestration. If the grassland is mowed two times 

a year and even if the removed biomass is considered in the balance, there would still exist a 

sink capacity. The number of management events is relevant because a third cutting would 

not be compensated and the sink capability would disappear. In Bavaria, there are large 

areas of extensively managed grassland. Alteration of the land use is to avoid because 

carbon would be released to the atmosphere. In the investigated region, the changing climate 

can be observed in terms of spring drought events. Those alter the carbon allocation to 

different ecosystem compartments as roots and soil in the first instance. It is expected that 

the release of that carbon to the atmosphere is just delayed to the next precipitation event. In 

any case, further long term observation can be highly recommended as well as monitoring 

the influence of ground water at the region of interest. These factors will define future 

amounts and the quality of carbon sequestration. 

(ii) Flux partitioning  

Eddy-covariance is the preferential technique when to determine NEE. A deeper insight into 

the carbon cycle demands partitioning into gross primary production and ecosystem 

respiration. The representation of environmental influences as incoming shortwave radiation 

and wind velocity in combination with the accordance to the established common flux 

partitioning model based on Lloyd-Taylor and Michaelis Menten functions, suggests a good 

performance of the isotopic partitioning model. It also works well on the grassland site 
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compared to former studies where it was applied over forest ecosystems with special 

coupling regimes (Ruppert, 2008; Wichura, 2009). For short term experiments, it can 

enhance results of the common flux partitioning tool which depend on a relatively long time 

series of temperature and radiation. This fact limits the sensitivity for reactions of the 

ecosystem on short term changes in the weather conditions. In contrast to that, the isotope 

based approach includes ecosystem discrimination of 13C directly and, thereby, reproduces 

present environmental conditions in a better way. For partitioning and gap filling of long 

NEE datasets, the common flux partitioning model has to be preferred. REA application for 

isoflux determination in general is expensive and time consuming and is therefore applicable 

for short term and special investigations only. However, its versatility and the information 

about NEE component flux variability still justify its application in ecosystem sciences. 

 (iii)  Chamber measurements 

The evaluation of flux partitioning can also be accomplished by combined measurements of 

dark and transparent soil chambers. This works well during the day when atmospheric 

turbulence is established sufficiently. Then, state of the art chamber NEE measurements are 

in accordance with the results of eddy-covariance. During the diurnal cycle there are periods 

which suggest a contrary result. Chambers overestimate NEE during times of oasis effect in 

the late afternoon which is due to the fact that the microclimate in the chamber does not 

represent real atmospheric conditions but rather held the radiation and stratification 

conditions of the early afternoon up. During night, chambers miss present fluxes based on 

complex atmospheric phenomena as coherent structures. Due to their applicability on small 

scale experiments, chambers represent a valuable amendment in ecosystem sciences. 

However, the results have to be evaluated critically under consideration of the atmospheric 

framework conditions because those are often reproduced insufficiently (Dore et al., 2003; 

Lai et al., 2012; Rochette and Hutchinson, 2005). 

(iv) REA application 

As the influence of management events is important for the carbon sequestration potential, 

the same is true for some kinds of micrometeorological measurement techniques. Especially 

for the application of relaxed eddy accumulation which must not be applied shortly after the 

management due to serious consequences for the resulting fluxes. An essential 

determination of the reliable proportionality factor b is wrong due to lacking scalar 

similarity between the scalars shortly after the management. It is suggested to wait at least 

22 days in summer and 12 days in autumn after the management in like circumstances. 
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Then, the ecosystem has normally recovered and the regular source/sink distribution (cf. 

Andreas et al., 1998a; Ruppert et al., 2006b; Held et al., 2008) and source strength (Katul et 

al., 1999; Katul and Hsieh, 1999) regarding the scalar quantities has normalized, too. In the 

literature these restrictions were implied (Williams et al., 2007) and observed in a 

comparable way for other micrometeorological methods (Businger, 1986). 

(v) Partitioned absolute carbon input 

First time coupling of atmospheric carbon flux measurements with 13C pulse labeling 

worked well as the self-validation via ecosystem respiration and the comparison with few 

other methods presented in the literature suggest. The method combination allows a more 

detailed insight into the carbon cycle by providing absolute values of carbon input to distinct 

ecosystem compartments. One limitation is the restriction of the result to the sampling 

period shortly after the labeling. Due to the allocation pattern strongly depends on the stage 

of plant growth, weather conditions and management activities the result obtained by of a 

single pulse labeling cannot be transferred to a longer period (Gregory and Atwell, 1991; 

Kuzyakov and Domanski, 2000). However, a series of labeling pulses at regular intervals 

could provide reasonable estimates of the partitioning for the whole growth period (e.g. 

Kuzyakov and Schneckenberger, 2004). It is imaginable to conduct such an experiment in 

association with one of the numerous eddy-covariance measurement networks. 
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Background and Aims 

The complexity of ecosystem processes, especially under continuously changing 

environmental conditions, requires high-resolution insight into ecosystem carbon (C) fluxes. 

It is essential to gain not only information about relative C balance and fluxes (common for 

partitioning studies), but also to obtain these in absolute mass units.  
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Methods  

To evaluate absolute fluxes in belowground C pools, the results of eddy-covariance and 

stable isotope labeling – obtained in a 21-day experiment in summer 2010 – were combined. 

Eddy-covariance based net ecosystem exchange was measured on extensively managed 

grassland and separated into underlying assimilation and respiration through the use of a C 

flux partitioning model. Resultant CO2 assimilation served as absolute C input into the 

ecosystem and was further partitioned by applying the relative C distribution in subsidiary 

pools, gained by 13C pulse labeling and tracing.  

Results 

The results form eddy-covariance measurements showed that the extensively managed 

grassland was a significant net carbon sink of –91 g C m–2 a–1 in 2010. 

The mean daily assimilation of –7.1 g C m–2 d–1 was partitioned into fluxes of 2.5, 0.8, 0.5, 

2.3 and 1.0 g C m–2 d–1 into shoots, roots, soil, shoot respiration and CO2 efflux from soil, 

respectively.  

Conclusions 

We conclude that the combination of EC measurements and atmospheric flux partitioning 

with isotope labeling techniques allowed determining the absolute C input into several 

ecosystem pools. Hence, the study demonstrates an approach to expand atmospheric flux 

measurements and to gain insight into the importance of individual ecosystem pools for soil 

C cycling.  

 

Keywords: stable isotope pulse labeling; net ecosystem exchange; carbon flux; extensively 

managed grassland 
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Introduction 

Currently, two dominant approaches in ecosystem sciences are used to gain access to the 

carbon (C) cycle of terrestrial ecosystems. Micrometeorological methods like the eddy-

covariance (EC) technique provide a top view from the atmosphere (Aubinet et al. 2000; 

Aubinet et al. 2012; Baldocchi 2003; Baldocchi et al. 2001; Moncrieff et al. 1997), whereas 

leading isotopic methods used nowadays in agricultural and soil science allow a more 

interior view of the ecosystem (Kuzyakov and Domanski 2000; Yakir and Sternberg 2000). 

Both are occasionally combined with chamber methods to facilitate and expand 

investigation of CO2 fluxes (Goulden et al. 1996; Davidson et al. 2002; Dore et al. 2003; 

Subke and Tenhunen 2004; Rochette and Hutchinson 2005). While EC methods have the 

advantage of barely disturbing ecosystem processes during the experiment, isotopic methods 

are mostly destructive due to the necessity of taking e.g. plant and soil samples. Another 

difference is that isotopic labeling approaches are largely point measurements, while EC 

integrates the signal throughout a large flux-footprint (Vesala et al. 2008). 

EC is generally the favored technique on grasslands for measuring the C balance in terms of 

the net ecosystem carbon exchange (NEE), i.e., the proportion of C released and taken up by 

the ecosystem (Wohlfahrt et al. 2012). To evaluate underlying processes and responses of 

the ecosystem to environmental change, the NEE has to be separated into its components: 

ecosystem respiration (RECO) and gross primary production (GPP), by flux partitioning 

models (FPM; Falge et al. 2002; Stoy et al. 2006; Desai et al. 2008; Lasslop et al. 2010; 

Reichstein et al. 2012). These are also used to gap-fill missing or rejected data (Stoy et al. 

2006; Ruppert et al. 2006; Desai et al. 2008; Papale 2012; Falge et al. 2001; Moffat et al. 

2007). By determining temporal variations and the absolute amount of assimilated and 

released C for a certain period, the atmospheric approach reaches its limits.  

Further partitioning of total CO2 efflux or C input (GPP) into various ecosystem pools is not 

possible based on EC, but can be achieved using isotopic techniques (Buchmann 2000; 

Buchmann 2002; Kuzyakov 2006). Thereby, natural continuous (C3 plants grow after C4 

plants or vice versa), artificial continuous and artificial pulse labeling approaches have to be 

differentiated. Advantages and disadvantages of the different labeling approaches were 

discussed in several publications (Whipps, 1990; Nguyen, 2003; Werth and Kuzyakov, 

2008). Pulse labeling provides the relative distribution of recently assimilated C into various 

above and below ground pools. EC delivers the absolute C input that is representative for the 
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whole ecosystem. Combining the results of EC with that of 13CO2 pulse labeling allows 

tracing the absolute input of C into various ecosystem pools. Previous discussions in the 

literature about combining stable isotope methods with eddy-covariance technique were 

aimed at, for example, acquiring natural atmospheric iso-fluxes (Yakir and Sternberg 2000; 

Bowling et al. 2001; Wichura 2009) or, in the case of pulse labeling, evaluating and 

comparing the C cycle of various ecosystems (Gavrichkova 2009).  

Today, European grasslands are predominantly considered as C sinks but there are 

uncertainties: the IPCC did not agree with this opinion and ascribed a potential role of either 

source or sink to grassland ecosystems (IPCC 2007), while Janssens (2003) found a certain 

sink capacity but with an uncertainty that was larger than the sink itself. Also Ciais et al. 

(2010) could not sufficiently prove the detected sink capacity. Future climate change will 

even increase this uncertainty by affecting C cycling in temperate grasslands due to 

increasing temperatures (Luo 2007), varying precipitation amounts and patterns (Knapp 

2002; Chou et al. 2008), heat waves and droughts (Ciais et al. 2005; Joos et al. 2010), and 

rising atmospheric CO2 concentrations (Luo et al. 2006).  

The present study was conducted at an extensively managed grassland site in Central Europe 

during the main vegetation period 2010. Besides addressing the question whether grassland 

ecosystems function as C sink or source, the main aim of the current experiment was to 

determine the absolute C input into various ecosystem pools. For these reasons eddy-

covariance measurements and a 13CO2 pulse labeling experiment were conducted. To our 

knowledge, this is the first study combining results of EC measurements and of a CO2 pulse 

labeling experiment to determine the absolute amounts of C transferred to various pools of a 

grassland ecosystem in Central Europe.  

 

Methods 

Study area  

The experiment was conducted during summer 2010 from June 16th (DOY 167) to July 6th 

(DOY 187) on a submontane grassland site at the edge of the low mountain range 

“Fichtelgebirge”, 624 m a.s.l. (50°05‘25‘‘N, 11°51‘25‘‘E) in northeast Bavaria, Germany. 

For the last 10 years the experimental site was used as extensively managed grassland 

without fertilization or grazing, but with sporadic mowing once or twice a year. The soil 
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type is gleysol (IUSS Working Group WRB), with a thickness of at least 70 cm. The 

average annual temperature and precipitation are 5.8 °C and 1066 mm, respectively (Foken 

2003). The “Großer Waldstein” (877 m a.s.l.) lies north of the study site and the 

“Schneeberg” (1051 m a.s.l.) is to the south. These two mountains generate a channeled 

wind field on the site with East and above all West as dominating wind directions 

(prevailing wind direction 263°). The plant community can be described as Molinio–

Arrhenatheretea R. Tx. 1937 – economic grassland. With 48 species, the biodiversity is 

quite high. The most dominant species are Alchemilla monticola, Juncus filiformis, 

Polygonum bistorta, Ranunculus acris and Trifolium repens. These species were considered 

when to decide the exact location of the labeling plots to gain best possible comparability 

with the whole ecosystem. Except for single larger individuals, the canopy height was about 

0.4 m at the date of labeling.   

 

Micrometeorological determination of absolute C inp ut  

Experiment setup  

An automated weather station provided 10 minute averages of a range of climate data to 

evaluate short term effects, but also to provide the input parameters for the partitioning of 

the NEE into its source and sink components. The most important collected parameters were 

up– and down welling short– and long wave radiation, air and soil temperature, humidity 

and soil moisture and precipitation. High frequency (20 Hz, 2.5 m above ground) data were 

collected to determine turbulent fluxes, such as NEE by eddy-covariance. Water vapor and 

CO2 concentration were measured by an open–path gas analyzer (LI–7500, LI–COR 

Biosciences, Lincoln, Nebraska USA) and wind vector and sonic temperature (TS) by a 3D 

sonic anemometer (CSAT3, Campbell Scientific, Inc., Logan, Utah USA). CSAT3 and LI–

7500 were pointed in a northerly direction, normal to the prevailing wind direction of 263°. 

Thus, disturbance of the flux by the instruments was minimized (Li et al. 2013). Tower 

shading could be avoided completely due to the channeled wind regime. Data were stored on 

a data logger (CR3000, Campbell Scientific, Inc., Logan, Utah USA) and collected daily by 

a computer system as a backup. 
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Data acquisition and analysis  

The raw data for the turbulent CO2 fluxes were post processed and quality controlled based 

on micrometeorological standards, applying the software package TK2 developed at the 

University of Bayreuth (Mauder and Foken 2004). This still evolving software (TK3 is now 

available; Mauder and Foken 2011) includes all necessary data correction and data quality 

tools (Foken et al. 2012), was proved in comparison with six other commonly used software 

packages (Mauder et al. 2008) and successfully applied in numerous major field campaigns 

(Mauder et al. 2006; Mauder et al. 2007; Eigenmann et al. 2009). The included quality 

flagging system evaluated stationarity and turbulence during the averaging interval of 30 

minutes and marked the resulting flux data with quality flags from 1 (very good quality) to 9 

(very low quality; Foken and Wichura 1996; Foken et al. 2004). The flux data were then 

filtered according to these flags and only data with quality 3 or better were used during the 

whole experiment. In addition to that, footprint analysis was performed (Göckede et al. 

2004; Göckede et al. 2006). It could be assured that the signal measured by EC originated 

exclusively from the target land use type grassland (Rannik et al. 2012). Due to the 

channeled wind regime, two clubbed footprints evolved in western and eastern directions. 

Thus, disturbances of the turbulent fluxes measured by EC could be avoided by installing 

the other experimental devices directly adjacent to the EC mast but perpendicular to the 

main wind direction. 

 

NEE flux partitioning 

In order to finally gain absolute C input into the ecosystem from the NEE data, two tasks 

were performed: Due to rejection of outliers and low quality data, small gaps occurred 

within the 30 minute NEE time series that had to be filled and the NEE had to be partitioned 

into its underlying fluxes, assimilation (GPP) and respiration (RECO). To parameterize 

temperature dependant RECO, equal to nighttime NEE due to missing assimilation, the 

Lloyd-Taylor function was applied (Lloyd and Taylor 1994; Falge et al. 2001; Ammann et 

al. 2007; Reichstein et al. 2005). Light response regression on the basis of the Michaelis-

Menten function (Michaelis and Menten 1913) was used to parameterize daytime solar 

radiation dependant GPP (Falge et al. 2001; Ruppert et al. 2006). For both, the flux-

partitioning model used a time-window scheme instead of the conventional temperature 
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binning approach that was suitable for sites with distinct seasonal variation (Ammann et al. 

2007).  

 

13C pulse labeling for determination of relative prop ortion of C partitioning 

Experiment setup 

Five stainless steel soil frames (each 1 x 1 m²) with a u-shaped bar at the upper end were 

inserted up to 10 cm depth three weeks prior to labeling in order to reduce disturbances. For 
13CO2 pulse labeling the upper part of the chamber, consisting of aluminum frames (base of 

the frame 1 x 1 m², height 0.5 m) were placed into the u-shaped bar which was filled with 

water (containing a small amount of H2SO4) to ensure sealing of upper and lower parts of 

the chamber. The aluminum frames were covered with transparent LDPE-foil (thickness: 0.2 

mm; total light transmission: ~90%) shortly before the tracer addition. To minimize the 

influence of the chamber on the tracer uptake, five cooling aggregates (EZetil Iceakku, 

220g), arranged in parallel, were installed in each chamber. A fan positioned behind the 

aggregates guaranteed turbulent mixing of the chamber air and forced the air to pass the 

cooling aggregates. High temperatures were thereby avoided and the humidity was reduced 

by condensation of the water vapor at the cooling aggregates’ surfaces. Hence, the 

condensation at the chamber walls was reduced and better light conditions for the plants 

were assured. For more detailed information about the chamber construction see Drösler 

(2005). A flask, containing the 13C tracer as Na2
13CO3 (5 g 99% 13C-eniched Na2CO3), was 

placed behind the fan to assure homogenous distribution of the labeled CO2. An excess of 

5 M H2SO4 was added to the tracer solution from outside the chamber with a syringe. The 

puncture holes were afterwards sealed with tape. The labeling was done almost 

simultaneously for all five chambers with only short time shifts of some minutes. Plants 

were labeled for three hours to assure complete uptake of the 13CO2. To avoid noon 

depression of photosynthesis, labeling was conducted from 2:30 pm – 5:30 pm. In one of the 

chambers the CO2 concentration was monitored with an infrared gas analyzer (LI–820, LI–

COR Biosciences, Lincoln, Nebraska USA) at the beginning and at the end of the labeling. 

The IR-sensor of this device detects only about 30% of the 13CO2 (McDermitt et al. 1993), 

but the concentration increased at the beginning up to 1500 ppm and a concentration next to 

zero after the 3 hours was measured indicating the complete uptake of the tracer. Shortly 

before the labeling the CO2 concentration within the chamber dropped down to zero due to 
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assimilation. It is expected that this very short lack of CO2 and the high concentration after 

adding the tracer had no noticeable influence on the experiment. The reasons for that are 

explained in the following chapters. 

 

Data acquisition and analysis 

Translocation of the assimilated 13C was analyzed during a 21-day period in shoots, roots, 

soil and soil CO2 efflux on all 5 plots. Samples were taken immediately (0), 1, 2, 4, 9 and 21 

days after the labeling. Shoots were sampled from a circular area of 10 cm diameter. Soil 

samples were taken in the middle of this area from 0–30 cm depth using a soil corer (inner 

diameter: 4.6 cm). Afterwards, the holes in the soil were plugged with PVC-tubes to avoid 

changing conditions around the holes. In addition, samples from unlabeled plots were taken 

in the same way close to each of the labeled plots to determine the δ13C natural abundance 

for calculations. All samples were frozen (-20°C) until further analysis. Roots were carefully 

separated from the soil samples with tweezers. All shoot, root and soil samples were dried, 

weighed and homogenized by ball milling.  

Total C and the δ13C (‰) signatures of the samples were determined using an element 

analyzer – isotope ratio mass spectrometer (EA-IRMS, Delta Plus; Thermo Fisher Scientific, 

Bremen, Germany, interfaced to an elemental analyzer (NC 2500; CE Instruments, Milano, 

Italy) and calibrated with reference to the international standard VPDB (Vienna Peedee 

Belemnite).  

The total CO2 efflux from soil was determined on all labeled and on unlabeled (natural 

abundance) plots with the static alkali (NaOH) absorption method (Lundegardh 1921; Kirita 

1971; Singh and Gupta 1977) After cutting the vegetation to avoid any fractionation of the 

isotopic signal by photosynthesis and shoot respiration, a stainless steel soil collar (inner 

diameter 11 cm; height 10 cm) was placed 5 cm into the soil. It has to be considered that 

cutting aboveground vegetation may cause decrease in root respiration and increased 

turnover of dead root biomass. A jar with 1 M NaOH was placed into each collar and the 

collar was closed with a dark lid. Soil CO2 efflux was calculated using the following 

equation: 

( )
2

P
CO ,soil

x C
F

A t
=

⋅△
, (1) 
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with the total amount of C captured ( )
P

x C , the closed time of the collar t△  and the area 

enclosed A. Shortly after the labeling a NaOH trap was placed in each chamber. NaOH was 

exchanged at each sampling date and additionally on the 12th day after labeling. The amount 

of NaOH was adjusted to the period by increasing from 40 ml at the beginning up to 80 ml 

at the end, to be sure that the neutralization did not exceed one-third of the capacity of the 

NaOH (Gupta and Singh 1977). The amount of collected C was determined by a C/N 

analyzer (Multi N/C 2100, AnalytikJena, Germany). To obtain δ13C (‰) values, SrCO3 was 

precipitated with SrCl2, neutralized and dried for the EA-IRMS measurements. For the 

calculation of the relative proportion of 13C input into various pools (shoots, roots, soil and 

CO2 efflux were investigated) after 13CO2 pulse labeling several calculation steps were 

necessary. The enrichment of 13C in a C pool ( ( )13Ex C , atom%) was derived by subtracting 

the naturally abundant amount of 13C ( ( )13

std
x C , atom%) from the amount of 13C in the 

labeled pool P ( ( )13

P
x C , atom%): 

( ) ( ) ( )13 13 13E

P std
x C x C x C= −  (2) 

where E marks the excess on 13C of the atom fraction x ( = amount of an isotope of a 

chemical element, divided by the total amount of atoms of this element; Coplen 2011).  

The natural abundance δ13C value of soil CO2 efflux, measured beside the labeling plots, 

was determined by correcting the measured δ
13C values for the admixture of atmospheric 

CO2, based on the Miller/Tans model (Miller and Tans 2003; Pausch and Kuzyakov 2012). 

Therefore, measured δ13C values multiplied by the respective CO2 concentrations were 

plotted against the CO2 concentrations. The slope of the regression line is equivalent to the 

δ
13C value of soil CO2 efflux purified from atmospheric CO2 (Miller and Tans 2003). The 

Miller/Tans model was applied in combination with a geometric mean regression (GMR), as 

suggested for soil CO2 (Kayler et al., 2010). The standard errors for the slope of the GMR 

were taken from the respective ordinary least square regression (Sokal and Rohlf 2008). 

These standard errors may not completely characterize the uncertainty (Zobitz et al. 2006). 

By multiplication with the total C amount (( )
P

n C , g C m-2) of the pool, the 13C amount 

( ( )13

P
n C , g 13C m-2) of the pool was calculated: 

( ) ( ) ( )13 13E

PP
n C x C n C= ⋅ . (3) 
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Since all calculations were carried out with area units it has to be mentioned that in the case 

of soil and roots all results referred to the sampled soil layer from 0 to 30 cm. To gain a 

reference value for the recovered amount of 13C during the sampling period, the total 

amounts of 13C found immediately after the labeling (( )
0

13

tP
n C , g 13C m-2) were summed up 

over all investigated pools. Then the 13C amounts of every single pool at every point of time 

( ( )13

tP
n C , g 13C m-2) could be related to this total value and the recovery (R, %) of the tracer 

could be calculated using the equation: 

( )
( )
( )

0

13

13
4

13

1

t

t

t

P

P

P ( i )
i

n C
R C

n C
=

=
∑

 (4) 

where t represents any date of sampling and t0 the point of time immediately after the 

labeling, when samples were taken for the first time. These calculations were conducted 

similarly for all pool types i with one exception. In contrast to the other pools, where 

sampling was destructive and therefore spatially distributed, the 13C amount ( ( )13

P
n C , g 13C 

m–2) within the CO2 efflux (
2CO ,soilF ) was always sampled at the same position. This was 

compensated by finally summing all values of the single sampling dates. Hence, the 

complete amount of 13C was considered in that pool as well. The losses of 13C by shoot 

respiration were not measured, but could be estimated by the following equation: 

( ) ( )
4

13 13

1

100
tShoot tP P ( i )

i

R C % R C
=

= −∑  (5) 

Due to translocation to deeper soil layers was investigated and excluded, it is assumed that 

shoot respiration is the only relevant missing sink of 13C within the considered system, the 
13C recovered (%) of all four measured pools i could be summed, and then subtracted from 

100% (Hafner et al. 2012). However, a slight overestimation of the soil respiration might 

occur due to missing of small amounts of carbon leaching during the rainfall events during 

the sampling period. To assure that the 13C recovered no longer changed in time, i.e. that the 

allocation did reach a steady state, the 13C recovery in all pools was checked by applying a 

repeated measures ANOVA with a post hoc Bonferroni test. Means and standard errors of 

the means (SEM) are presented in the figures and tables.  
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To finally gain absolute C input into the particular ecosystem pools, labeling and eddy-

covariance results were combined, i.e. the relative proportion of the 13C recovered at the end 

of the C allocation was combined with the total C input into the system 

( ) ( )13

tend
P P

n C GPP R C= ⋅  (6) 

where ( )
P

n C  (g C m–2 s–1) is the absolute C input of the respective pool.  

Note that chamber conditions and CO2 concentrations during labeling may have influenced 

the photosynthetic rate. Hence, total CO2 uptake during labeling presumably differed from 

that measured by EC. However, we assume that the impact of the chamber conditions on 

relative 13C partitioning within the plant-soil system were negligible because after the short 

labeling period (3 h) the plants were again exposed to natural conditions. 

 

Results 

Absolute atmospheric CO 2 fluxes  

Plants started to growth already at the end of February, and the growth period ended in mid-

October (Fig. 1). At the beginning, the biomass growth was decelerated by a frost period in 

March, and during summer the assimilating biomass was harvested by two cutting events, 

(DOY 188 and 265, marked with ‘c’ in Fig. 1) which became apparent in the GPP and NEE 

time series.  

The isotopic pulse labeling was conducted on June 16th (DOY 167, left edge of grey dashed 

box in Fig. 1) and the subsequent chase period (CP, grey dashed box  in Fig. 1, Table 1), 

where samples were taken to investigate 13C dynamics and translocation, ended on July 06th 

(DOY 187) with the last sampling, shortly before the first meadow cutting. The most 

extreme precipitation events were measured in August. The fluxes at the labeling day and 

during the chase period (CP) are shown in Table 1. The mean daily sum of GPP at the 

labeling day was –6.0 g C m–2 d–1 whereas a mean GPP of –7.1±0.4 g C m–2 d–1 was 

determined for the whole chase period. Fig. 1 provides a general view of the intra-annual 

variability of the ecosystem fluxes, indicating that a number of pulse labeling experiments 

would be necessary to achieve detailed seasonal partitioning of absolute carbon fluxes. The 

labeling experiment was conducted within a long time period with a quite uniform 

assimilation flux that did not end until the first cutting (Fig. 1). 
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13C dynamics and allocation 

The sampling immediately started after the 13CO2 tracer was completely assimilated. The 
13C recovery in the shoot biomass strongly decreased from 72.3% immediately after labeling 

to 46.6% 1 day after labeling, mainly due to shoot respiration (Fig. 2). About 14.7% of 13C 

was translocated from shoots into roots directly after labeling. The 13C recovery of roots did 

not change significantly over 21 days. In contrast to the roots, the maximum 13C amount of 

the soil pool was detected one day after the labeling. Thereafter, the 13C recovery in the soil 

slightly decreased and reached 6.4% 21 days after labeling (Fig. 2b). Similar to shoot 

respiration, 13C in soil CO2 efflux was highest during the first day and then declined over 

time.  

The allocation of 13C tracer was mostly completed after 9 days and the 13C recovery in all 

pools did not change significantly between the last two samplings. Therefore, the 

precondition for the partitioning of the absolute C input, the steady state, was fulfilled. Fig. 

2b illustrates the final percentage at the end of the translocation process. The C flux back 

into the atmosphere, consisting of shoot respiration and soil CO2 efflux, dominates the 

proportion by accounting for almost half (46.7%) of the assimilated 13C. About one third 

(34.9%) remains in the shoots, while roots and soil obtain, with 12% and 6.4%, respectively, 

comparatively small proportions of 13C. Overall about 32% of assimilated 13C were allocated 

to below-ground pools. 

 

Partitioned absolute C allocation  

The absolute amount of total assimilated C (GPP) by the ecosystem during the chase period 

(CP in Table 1) was partitioned for absolute C allocation into individual pools based on the 
13C recovery of the respective pool. The 13C recovery rates could only be applied to the GPP 

from the chase period (Fig. 1), since the transferability beyond this period was not validated 

by accounting for, for example, plant physiological factors. On average, 2.5±0.2 g C m–2 d–1 

were incorporated into the shoot and 0.8±0.3 g C m–2 d–1 into the root biomass. 0.5±0.1 g C 

m–2 d–1 remained in the soil, whereas 2.3±0.3 g C m–2 d–1 and 1.0±0.1 g C m–2 d–1 were 

released to the atmosphere as shoot respiration and soil CO2 efflux, respectively. The sum of 

the soil CO2 efflux and shoot respiration (3.3±0.4 g C m-2 d-1) is in accordance with the RECO 
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of 3.5±0.2 g C m–2 d–1, determined independently by separating the NEE with the FPM (Fig. 

3).  

 

Discussion  

Discussion overview 

By combining the results of atmospheric CO2 flux measurements and 13CO2 pulse labeling, a 

new approach for partitioning ecosystem C fluxes was introduced. In the following, the 

results will be discussed in detail. Absolute atmospheric CO2 fluxes will be compared to 

further flux measurements under similar environmental conditions, and relative assimilate 

distribution will be compared to those of other 13C labeling experiments. Since there are no 

studies referring to comparable efforts in determining partitioned absolute C allocation in 

the plant-soil-atmosphere system, on-hand results are compared to studies in which these 

quantities were estimated.  

Atmospheric C fluxes 

NEE was directly measured by eddy-covariance in 2010 (–249 g C m–2 a–1). After 

subtraction of the harvest output (158 g C m–2 a–1), –91 g C m–2 a–1 still remained, 

identifying the site as being a relatively big carbon sink in relation to other comparable 

extensively managed grasslands. In Table 2, recent studies dealing with atmospheric CO2 

fluxes on such grasslands at elevations from 375 to 1770 m a.s.l., with mean annual 

temperatures from 5.5 to 9.5 °C and annual precipitation sums from 655 to 1816 mm, were 

reviewed. Although the sites were chosen in a range which was as narrow as possible in 

terms of these parameters, there are notable differences in the NEE. However, the NEE of 

the present study lies in the middle of those of the reviewed studies (Table 2). In general, the 

role of grasslands in the global carbon cycle is still uncertain, as recently described by 

Gilmanov et al. (2010). There a mean NEE of 70 g C m–2 a–1, but also maximum C sources 

up to 481 g C m–2 a–1 and maximum C sinks up to –366 g C m–2 a–1 were reviewed for 

extensively managed grasslands all over the world.  

Separating NEE into underlying assimilation (GPP) and respiration (RECO) fluxes using the 

short time window scheme was certain to capture the dynamics of this fast changing 

ecosystem (Ammann et al. 2007; Wohlfahrt et al. 2012), because it sufficiently accounted 

for seasonal parameter variability (Lasslop et al. 2010). Total annual sums in 2010 (RECO: 
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849 and GPP: –1097 g C m–2 a–1) are within the range of those reviewed in Table 2. It is 

therefore important to note that the results of this study match best to sites with certain 

restrictions relating to ecosystem productivity, e.g. low annual temperature means, 

combined with high elevations (site No. 8 and 9, Table 2). There is also good agreement 

with another low elevation site (No. 3, Table 2), but in that case GPP is probably limited by 

a lack of precipitation. With that exception, the grassland in the present study is more 

comparable to higher elevation sites due to its cold climate. This is also confirmed by RECO, 

which is on average smaller than that of the warmer sites with low elevation, but higher than 

that of high elevation sites. Ammann et al. (2007), who even applied a similar flux 

partitioning model on extensively managed grassland in Switzerland, found C fluxes more 

than one third higher, despite similar elevation and precipitation, but with a 3.2 K higher 

mean annual temperature.  

In a global context, European extensively managed grasslands are outstandingly productive. 

While Gilmanov et al. (2010) reviewed a worldwide GPP of –154±463 g C m–2 a–1, Schulze 

et al. (2010) found an average GPP for Europe that is almost ten times higher: –1343±269 g 

C m–2 a–1. This in turn is within the range of the GPP of grassland sites reviewed in Table 2, 

which are obviously representative for European extensively managed grasslands.  

Relative 13C allocation  

Isotopic pulse labeling was used to quantify the input of 13C to diverse ecosystem C pools. 

At first view, pulse labeling reveals the relative distribution of assimilated C at the moment 

of labeling and not the distribution of total unlabeled C in different plant parts (Kuzyakov 

and Domanski 2000). However, by observing 13C allocation over a certain period, up to a 

steady state within the whole plant-soil-atmosphere system, a representative proportion for 

total C is finally found (Saggar et al. 1997; Saggar and Hedley 2001; Wu et al. 2010). The 

end of the chase period was defined as occurring when the amount of 13C recovered in the 

last two samples of each pool no longer changed significantly (Saggar et al. 1997). That 

happened after 21 days (cf. Keith et al. 1986; Swinnen et al. 1994). Depending on the pools 

considered and the sampling frequency, the end of the 13C (14C) allocation period was 

defined as being between 4 and 28 days (Domanski et al. 2001; Wu et al. 2010; Hafner et al. 

2012; Ostle et al. 2000; Saggar et al. 1997). While numerous pulse labeling studies address 

the back diffusion of tracer to soil pore space occurring during the labeling (Subke et al. 

2009; Bahn et al. 2009; Staddon 2003; Leake et al. 2006), dealing with isotopic steady state 
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(after 21 days) allows this difficulty to be disregarded, as it is only relevant for the first two 

days after the labeling (Gamnitzer et al. 2011; Biasi et al. 2012). 

In accordance with Wu et al. (2010), the percentage of 13C recovered – rather than the 

isotope fraction – was used to determine the overall proportion. Calculation of the 13C 

recovered was achieved by referring to summation of 13C in all measured pools (Kaštovská 

and Šantrůčková 2007; Hafner et al. 2012) in order to not underestimate the initial fixation 

by considering only 13C found in shoots directly after labeling. About one third of the C 

remains in the shoot biomass as reviewed by Kuzyakov and Domanski (2000) for numerous 

pasture plant studies (Table 3). In contrast, agricultural plants like wheat or maize 

incorporate a lager proportion (50–60%) into the shoot (Jones et al. 2009; Table 3). During 

the chase period the amount of tracer decreased by 48% within the shoots, which is quite 

close to the 32–51% of Johnson et al. (2002) and 55% of Butler et al. (2004) and Wu et al. 

(2010). Higher rates are also possible for grasslands, e.g. 77% (Ostle et al. 2000) and 70% 

(Leake et al. 2006), even during the first day after the labeling. In this study the maximum 

decline also took place between first and second sampling, including the first night after the 

labeling, caused mainly by night–time shoot respiration and allocation to roots (Butler et al. 

2004; Leake et al. 2006). Shoot respiration dynamics agree with this finding, by increasing 

after the first sampling, which took place in the late afternoon at the labeling day. The much 

higher percentage of 13C was recovered at the second sampling resulted from the above-

mentioned night-time fluxes. However, shoot respiration dynamics seem feasible and the 

final proportion of 30% lies within the range found in the literature (Table 3).  

The proportion of below-ground C input (32%) into roots (12%), soil (6.4%) and CO2 efflux 

(13.6%) is also in line with Kuzyakov and Domanski (2000; Table 3). The relatively low 

allocation to below-ground pools, especially to the root system, may be explained on the 

general steadiness of long-established grassland root systems (Saggar et al. 1997). This can 

be also an explanation for the non-significant changes during the chase period (Fig. 2). 

However, results of other studies are quite heterogeneous, but these found mostly higher 

amounts (Table 3) and, beyond that, diverse patterns in C allocation to roots. The maximum 

amount of tracer reached the roots one (Johnson et al. 2002) or two days (Ostle et al. 2000; 

Staddon 2003), or even weeks later, but then mostly without significant differences (Rangel-

Castro et al. 2004; Leake et al. 2006; Hafner et al. 2012). A slight peak at the fourth day as 

in the current study is a realistic result if it is considered that Kuzyakov and Domanski 

(2000) suggested a period of hours to days after the labeling. CO2 efflux from soil exhibits 
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the same pattern presented by Staddon (2003) and Hafner et al. (2012): An initial peak, an 

exponentially decreasing recovery of 13C over time and a decreasing slope in the cumulative 
13CO2 efflux (Fig. 2). This pattern of the soil CO2 efflux indicates fast translocation of 

recently assimilated C through the system, probably released by root-derived respiration 

(Kuzyakov et al. 2001). However, CO2 efflux from soil was determined with the static alkali 

(NaOH) absorption method. This method is useful but has also disadvantages as e.g. 

scrubbing CO2 from the chamber headspace or missing atmospheric turbulence. Although 

those two are opposite effects, on the whole the flux rate might be overestimated. Compared 

to the other pools, 13C enrichment of bulk soil after pulse labeling was relatively low. The 

amount of 13C recovered in the soil (6.4%) is comparable to other studies, especially those 

summarized in the reviews (Table 3). A slightly higher amount of 13C was found after one 

day, but just as the weak peaks of Staddon (2003) after 12 and Rangel-Castro et al. (2004) 

after 7 days, it was not significant (Fig. 2).  

Partitioned absolute C fluxes 

Up to now, partitioned absolute amounts of allocated C were only roughly estimated, 

although in most studies addressing to C balance and turnover, total masses are important. 

Kuzyakov and Domanski (2000) calculated mean absolute values for below-ground 

translocated C by grasses and cereals from the literature: 179 g C m-2 for all studies and 220 

g C m–2 for studies longer than 100 days (i.e. 2.2 g C m-2 on average). Absolute C inputs 

found for an alpine Kobresia humilis pasture (Wu et al. 2010) were about one third smaller 

than in the present study in all compartments except the roots, when taking the length of the 

growth period into account. This results from the generally lower turnover rates in high 

altitude grasslands (Budge et al. 2011). In addition to that, the percentage of root biomass is 

considerably higher in these regions (Ammann et al. 2009; Leifeld et al. 2009; 

Unteregelsbacher et al. 2011). One further comparison allows the rough estimation of total C 

in- and outputs for pasture plants. Kuzyakov and Domanski (2000) measured fluxes that are 

on average 1.5 times lower than that of this study, but the input into the root system matches 

very well.  

Obviously, there is a lack of studies presenting absolute values of C input to distinct 

ecosystem compartments. Coupling of atmospheric C flux measurements with 13C pulse 

labeling provides partitioning of absolute C fluxes. In general, the combination of methods 

works and allows a more detailed insight into the C cycle of grasslands. One limitation is 

that the expansion beyond the chase period has to be checked independently using other 
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methods. Whereas the atmospheric fluxes are mostly representative, at least as long as 

weather conditions and management activities are within a certain range, plant physiological 

parameters – and thereby partitioning patterns – vary too much to allow transfer of the result 

of a single pulse labeling to the whole growth period  (Gregory and Atwell 1991). In 

contrast, a series of labeling pulses at regular intervals (Keith et al. 1986; Swinnen et al. 

1994; Kuzyakov et al. 1999; Kuzyakov et al. 2001; Kuzyakov and Schneckenberger 2004; 

Davenport and Thomas 1988) could provide reasonable estimates of the relative partitioning 

for the whole growth period, to be applied to the more easily available time series of C 

input, obtained by micrometeorological flux measurements. This way, mowing events or 

grazing could also be considered.  

Concluding remarks 

Application of eddy-covariance showed that the extensively managed grassland was a 

significant net carbon sink of -91 g C m-2 a-1 in 2010. The NEE flux-partitioning model 

revealed a mean underlying assimilated amount of carbon of –7.1±0.3 g C m-2 d-1 during the 

21 days of the 13C pulse labeling experiment. Pulse labeling and tracing provided relative 

partitioning of 13C input into distinct ecosystem C pools. First-time combining the results of 

these methods to an integrative approach allowed partitioning of absolute C input by 

assimilation into absolute C fluxes into shoots, roots and soil and the contributions to the 

respiration fluxes CO2-efflux and shoot respiration. Two different areas benefit from this 

combination: further separation of the NEE beyond assimilation and respiration fluxes is 

provided and labeling approaches are upgraded by finally dealing with absolute instead of 

relative C allocation. However, under the currently changing environmental conditions, both 

approaches benefit from the reduction of uncertainties by the detection and evaluation of 

individual reactions of sensitive subsidiary ecosystem pools and processes on the basis of 

mass units. The results of this study are in line with the available literature and should 

encourage combining methods of atmosphere, plant and soil science also in future studies. 

The suggested method can be also applied to C pools such as microbial biomass and 

dissolved organic carbon. Also for ecosystem modelers dealing with C pools and fluxes, it 

provides data on C incorporation in pools in absolute units.  
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Tables 

Table 1. Annual (g C m–2 a–1) and daily (g C m–2 d–1) C fluxes (±SEM) for the chase period 

(CP) and the day of labeling (June 16th) in 2010.  

 2010 (365 days) chase period (21 days) labeling day 
 annual sum mean of daily sums daily sum 

NEE –249 –3.5 ± 0.4 –1.8 

GPP –1097 –7.1 ± 0.3 –6.0 

RECO 849 3.5 ± 0.2 4.1 

harvest 158  

balance –91   
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Table 2. Atmospheric C fluxes, determined on European grassland sites with comparable parameters: elevation (m a.s.l.), annual sum of 

precipitation (RR, mm), sorted by annual mean temperature (T, °C); all sites were managed extensively, some with temporary light grazing instead 

of cutting. Harvest means harvested C yield from field. All fluxes are presented in g C m–2 a–1. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

No. Site Year Elevation  T RR Management Harvest NEE GPP RECO References 

1 
Amplero, 
Italy 

2004 900 9.5 1234 
extensive, 
cut / grazed  

 –214 –1303 1089 (Gilmanov et al. 2007) 

2 
Oensingen, 
Switzerland 

2002–
2004 

450 9.0 1109 
extensive, 
3 cuts 

311 –254 –1856 1592 (Ammann et al. 2007) 

3 
Grillenburg, 
Germany 

2003/
2004 

375 7.9 655 
extensive, 
2 and 3 cuts 

~147 –278 –1128 851 (Hussain et al. 2011) 

4 
Laqueille,  
France 

2002–
2004 

1040 7.0 1200 
extensive, 
grazed 

 –75 –1514 1440 (Allard et al. 2007) 

5 
Neustift, 
Austria 

2001–
2006 

970 6.5 852 
extensive, 
3 cuts 

~317 18 –1568 1586 (Wohlfahrt et al. 2008) 

6 
Alinyà,  
Spain 

2003/
2004 

1770 6.1 1064 
extensive,  
grazed  

 –47 –606 559 (Gilmanov et al. 2007) 

7 
Voitsumra, 
Germany 

2010 624 5.8 1066 
extensive, 
2 cuts 

158 –249 –1097 849 This study 

8 
Monte Bondone,  
Italy 

2004 1550 5.5 1189 
extensive, 
1 cut 

 –75 –1235 1160 (Gilmanov et al. 2007) 

9 
Malga Arpaco,  
Spain 

2003 1699 5.5 1816 
extensive, 
grazed 

 –443 –1083 640 (Gilmanov et al. 2007) 



97 

Table 3. Comparable partitioning studies related to species, methods and investigated compartments. All values are presented in % of recovery or % 

of (net) assimilated tracer.  

No. 
Plant / 
Conditions 

 Method 
Days after 

labeling 
Shoot 

Below 
ground 

Root Soil RECO 
Shoot 
resp. 

CO2  
efflux 

References 

1 Lolium perenne /  
controlled cond. 

14C pulse, 
% of recovery 

7 49.8 40.7 21.8 1.8 16.6 9.5 17.1 (Rattray et al. 1995) 

2 Lolium perenne / 
controlled cond. 

14C pulse, 
% of recovery 

2 40.0 60.0 14.6 30.0 15.4   (Bazot et al. 2006) 

3 Festuca, 
controlled cond. 

13C pulse, 
% of recovery 

2 43.9 54.9 39.7 4.1   11.1 (Allard et al. 2006) 

4 
White clover / 
controlled cond. 

14C pulse, 
% of recovery 

2 56.9 43.0 9.0 7.2   26.8 (Todorovic et al. 1999) 

5 
Grassland / 
field conditions 

13C pulse, 
% of recovery 

32 28.9 58.7 34.2 7.3 29.6 12.4 17.2 (Wu et al. 2010) 

6 
Grassland / 
field conditions 

13C pulse, 
% of recovery 

27 38.0 20.0 0.5 10.4 51.0 42.0 9.0 (Hafner et al. 2012) 

7 
Pasture / 
field conditions 

14C pulse,  
% of recovery 

35 26.4  34.7 2.1 36.8   (Saggar et al. 1997) 

8 
Pasture / 
field conditions 

14C pulse, 
% of recovery 

35 31.0  27.0 5.2 37.0   (Saggar and Hedley 2001) 

9 
Lolium perenne /  
controlled cond. 

14C continuous*, 
% of recovery  

 
47.8 52.1 39.7 2.6   9.8 (van Ginkel et al. 1997) 

10 
Brome grass /  
controlled cond. 

14C % rep. pulse**,  
% of assimilated*** 

 27.0  5.0 14.0  54.0   (Davenport and Thomas 1988) 

11 
21 agric.plants 
Review 

% of  
net assimilated**** 

 60 36 19 5   12 (Jones et al. 2009) 

12 
Pasture plants,  
Review  

% of  
assimilated*** 

 30 40 20 5 45 30 15 
(Kuzyakov and Domanski 
2000) 

13 
Grassland / 
field conditions 

13C pulse, 
% of recovery 

21 34.9 32.0 12.0 6.4 46.7 33.1 13.6 this study 



98 

*  Continuously labeled with 14C during the whole time of growing 

**  Weekly repeated pulse labeling, as suggested to cover whole growth period 

*** Recovery related to assimilated amount of tracer (shoot respiration is not considered, may underestimate final result by up to 30%) 

****  Recovery related to net assimilated amount of tracer (shoot respiration is considered) 
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Fig. 1. Cumulative annual fluxes of NEE, GPP and RECO (flat lines), daily sums of 

precipitation (black bars), daily means of global radiation (grey filled circles) and daily 

mean temperatures (black filled circles). The box with dashed outline begins with the pulse 

labeling and comprises the chase period (CP), beginning with the pulse labeling and ending 

shortly before the first mowing event (c). Time on x–axis in day of year (DOY). 
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Fig. 2. 13C dynamics during the chase period in all C pools (a) and relative proportion of 
13C recovered, i.e. final distribution by percentage at the last day of sampling (day 21 of 

the chase period) in the ecosystem C pools (b). The x–axis of (a) intersects at y = 1% for a 

better illustration. Only one value remains below 1%, the 13CO2 efflux immediately after 

the labeling accounting for 0.1%. Error bars represent standard errors of the mean (±SEM). 
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Fig. 3. Average daily absolute input (GPP), output (RECO) and partitioned absolute C 

distribution after assimilation (g C m–2 d–1, ±SEM) during the chase period of the labeling 

experiment. Please note that for illustration all values, even GPP, have a positive sign. 
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Abstract 

Relaxed eddy accumulation is still applied in ecosystem sciences for measuring trace gas 

fluxes. On managed grasslands, the length of time between management events and the 

application of relaxed eddy accumulation has an essential influence on the determination of 

the proportionality factor b and thereby on the resulting flux. In this study this effect is 

discussed for the first time. Also, scalar similarity between proxy scalars and scalars of 

interest is affected until the ecosystem has completely recovered. Against this background, 
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CO2 fluxes were continuously measured and 13CO2 isofluxes were determined with a high 

measurement precision on two representative days in summer 2010.  

Moreover, a common method for the partitioning of the net ecosystem exchange into 

assimilation and respiration based on temperature and light response was compared with an 

isotopic approach directly based on the isotope discrimination of the biosphere. This 

approach worked well on the grassland site and could enhance flux partitioning results by 

better reproducing the environmental conditions. 

 

1 Introduction 

In ecosystem sciences the interface of atmosphere, biosphere and soil is of particular 

importance and affords insight into the carbon (C) cycle from various angles of view with 

various methods that, in turn, have to be adapted and evaluated. Insight from an 

atmospheric perspective is mostly achieved by chamber (Goulden et al., 1996; Davidson et 

al., 2002; Dore et al., 2003; Subke and Tenhunen, 2004) and micrometeorological 

techniques as e.g. eddy-covariance (EC; Moncrieff et al., 1997; Aubinet et al., 2000; 

Aubinet et al., 2012; Baldocchi et al., 2001; Baldocchi, 2003). While chambers are able to 

directly measure ecosystem carbon source and sink fluxes on small spatial scales, EC 

provides net ecosystem carbon exchange (NEE) on larger spatial scales. More detailed 

information about underlying fluxes can be achieved by applying flux partitioning models 

(FPMs, Stoy et al., 2006; Desai et al., 2008; Lasslop et al., 2010; Reichstein et al., 2012). 

Those are also used to gap-fill missing or excluded flux data (Falge et al., 2001; Stoy et al., 

2006; Ruppert et al., 2006a; Desai et al., 2008; Papale, 2012). Those models may provide 

fluxes with unrealistic temporal variation or magnitude (Stoy et al., 2006). However, an 

alternative is partitioning based on additional determination of the 13CO2 isoflux (Yakir 

and Wang, 1996; Bowling et al., 2001; Knohl and Buchmann, 2005; Ogée et al., 2004; 

Wichura, 2009; Wichura et al., 2004; Ruppert, 2008; Lloyd et al., 1996). Due to stomatal 

uptake of CO2 and photosynthesis of C3 vegetation discriminate against the heavier isotope 
13C, the biomass and all following compartments within the dynamic C-cycle are 13C 

depleted with respect to the atmosphere. Therefore the 13C isotopic ratio increases in the air 

during the assimilation period. Both effects account for a distinct diurnal cycle of the 
13CO2 mixing ratio in ecosystem air (Flanagan et al., 1996; Lloyd et al., 1996). Resulting 
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13CO2 isofluxes can be determined with the flux-gradient method (Flanagan et al., 1996), 

by modeling approaches (Ogée et al., 2003; Lloyd et al., 1996), by hyperbolic relaxed eddy 

accumulation (HREA, Bowling et al., 2001; Bowling et al., 2003a; Wichura, 2009; 

Wichura et al., 2004), the hybrid eddy covariance / flask gradient method (Bowling et al., 

1999a; Griffis et al., 2004) and direct isotopic eddy covariance (Griffis et al., 2008; Sturm 

et al., 2012; Wehr et al., 2013). 

This study examines the application of the REA-method on managed grasslands. European 

grassland ecosystems are still to be defined as a net carbon sink or source. For this reason, 

detailed investigation is strongly required (Ciais et al., 2010; Soussana and Lüscher, 2007). 

In addition to the general uncertainty regarding the sink/source behavior of grasslands, 

management of grassland ecosystems causes anomalies in the seasonal carbon cycle 

(Flechard et al., 2005). Such events have to be observed carefully, but potentially introduce 

certain restrictions for REA measurements. Previous studies indicated that errors in the 

REA flux often appeared when scalars of interest and proxy scalars behaved differently in 

their turbulent transportation efficiency (Ruppert et al., 2006b). This so-called scalar 

similarity is especially required for hyperbolic REA, because two important factors – the 

hyperbolic deadband H and the proportionality factor b, and consequently the REA flux – 

will be flawed without it (Oncley et al., 1993; Ruppert et al., 2006b). Even if b-factors are 

often treated as constant (Meyers et al., 2006; Haapanala et al., 2006), they show a certain 

diurnal variation. Other studies on managed ecosystems apply CO2 and water vapor (Baum 

and Ham, 2009) and mostly temperature (Myles et al., 2007; Hensen A. et al., 2009) as 

proxy scalars, sometimes shortly after the management (Nemitz et al., 2001). Whether this 

practice can be problematic was thoroughly investigated in this study by numerous 

simulations with data from mown and unmown grassland. The real REA measurements of 

this study were conducted – in correspondence with the results of the simulation – before 

(22 June), and a sufficient period of time after the mowing (25 August) in the main growth 

period of 2010. The reasons for this procedure will be explained in the following, 

especially in section 4.1. Another aim of this study is to evaluate a commonly applied 

partitioning method for the net ecosystem exchange with a small number of the labor-

intensive and sophisticated REA measurements. Ruppert (2008) and Wichura (2009) 

investigated an isotopic approach by Lloyd et al. (1996) for partitioning the net ecosystem 

exchange (NEE) above forest ecosystems, and found some restrictions due to complicated 



 106 

coupling conditions (Thomas and Foken, 2007). In the current study, this approach is 

tested above grassland and finally evaluated by comparison with a common flux 

partitioning model (FPM) based on the temperature dependence of respiration after the 

Lloyd-Taylor function (Lloyd and Taylor, 1994). For RECO parameterization, nighttime 

NEE is used because it equals ecosystem respiration (RECO) due to missing assimilation 

(Lloyd and Taylor, 1994; Falge et al., 2001; Ruppert et al., 2006a; Ammann et al., 2007; 

Reichstein et al., 2005). To parameterize daytime solar radiation dependant gross primary 

production (GPP, Falge et al., 2001; Ruppert et al., 2006a), light response regression based 

on Michaelis-Menten function (Michaelis and Menten, 1913) was applied. Instead of a 

temperature binning approach a time window scheme was applied, which is preferred for 

sites with distinct seasonal variation or treatments generating abrupt changes in ecosystem 

behavior (Ammann et al., 2007). 

In summary, this paper comprises the examination of REA application on managed 

grasslands by comparing scalar similarity and the b factor before and after management 

events. Then two real REA measurements were conducted in correspondence with the 

results of the simulation. The results of those were used to test an isotopic flux partitioning 

approach above grassland and to evaluate it by comparison with common flux partitioning. 

 

2 REA theory and framework 

The basic idea of Desjardins in 1972 (Desjardins, 1977) of separating the vertical wind into 

an up- and downward component was applied by Businger and Oncley (1990). They 

combined this eddy accumulation method (EA) with the flux-variance-similarity and 

created an indirect method: the relaxed eddy accumulation (REA), with the REA-flux 

( )REA w aF b c c↑ ↓= σ ρ −           (1) 

derived from average up- and downward mixing ratio of the scalar c↑  and c↓ , standard 

deviation of the mean vertical wind velocity wσ , density of dry air aρ  and an empirical 

and dimensionless proportionality factor b that compensates for the loss of information due 

to the mentioned “relaxation” (Ruppert et al., 2006b). Air samples are thereby taken with a 

constant flow rate and are not weighted according to the vertical wind speed (Businger and 

Oncley, 1990). b is often suggested to be unaffected by the atmospheric stability (Businger 
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and Oncley, 1990; Delany et al., 1991; Foken et al., 1995) but it can also depend on it 

(Andreas et al. 1998b). For an ideal Gaussian joint frequency distribution (JFD) of the 

vertical wind speed and the mixing ratio of the scalar, b is constant (b = 0.627; Baker et al., 

1992; Wyngaard and Moeng, 1992). But variations of b can be generated by just a small 

skewness of the JFD of w'  and c' (Katul et al., 1996; Fotiadi et al., 2005; Ruppert et al., 

2006b), the application to different trace gases (Businger and Oncley, 1990; Baker et al., 

1992; Oncley et al., 1993; Pattey et al., 1993) or the use in different ecosystem 

compartments (Gao, 1995). b may also vary significantly during individual 30-min 

integration intervals (Businger and Oncley, 1990; Baker et al., 1992; Oncley et al., 1993; 

Pattey et al., 1993; Beverland et al., 1996; Katul et al., 1996; Bowling et al., 1999a; 

Ammann and Meixner F.X, 2002; Ruppert et al., 2006b). Variations from 0.54 to 0.60 

were found for several experimental data. Consequently, to reduce relative errors in flux 

determination, individually simulated b-values for every measurement location and period 

are to be favored over application of a constant b (Ruppert et al., 2006b; Foken, 2008). 

Thus, b is determined individually by REA simulation of a proxy scalar, which can be 

additionally measured by EC. The proportion of both proxy scalar fluxes, REAF  and the EC 

flux ( ECF w' c'= ), provides b: 

( )a w

w' c'
b

c c↑ ↓

=
ρ σ −

          (2) 

Above-mentioned b-values were determined in theoretical simulations, where it is possible 

to separate up- and downdrafts exactly by sign, down to the smallest values. Not until 

Businger and Oncley (1990) modified the method by discarding fluctuations around zero – 

that have only small influences on the entire flux anyhow – with a deadband, could the 

REA idea be implemented with regard to mechanical restrictions of the speed of valve 

switching.  

( )
( ) ( )( )0

0 0a w

w' c'
b w

c w w c w w↑ ↓

=
ρ σ > − < −

       (3) 

The size of the deadband w0 around zero is determined individually according to 

experimental conditions and the particular scalar of interest. The same applies to b(w0), 

which has to be determined individually by conducting simulations with proxy scalars.  
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To maximize mixing ratio difference between up- and downdraft air samples, application 

of a hyperbolic deadband H is recommended (Bowling et al., 1999b). That is required for 

investigating, for example, differences in the order of the measurement precision. By 

application of H in hyperbolic REA (HREA), b(H) is reduced to lower values around 

0.22±0.05 (Bowling et al., 1999b), 0.15-0.27 (Ruppert et al., 2006b), respectively. H is 

based on the fluctuation of the vertical wind velocity w'  and the mixing ratio c'  of a 

proxy scalar, as well as their standard deviationswσ  and cσ :  

 
w c

w' c'
H≥

σ σ
           (4) 

Real time knowledge of wσ  and cσ was achieved, by continuous online recalculation from 

the most recent 6 min of data. Those were weighted by applying a linear function by which 

the newest data was rated three times more important than the oldest data (Ruppert et al., 

2012). Adequate scalar similarity is especially required for hyperbolic REA, because H 

depends on the mixing ratio of the proxy scalar. Generally, b(H) and the REA flux as the 

final product will be flawed without scalar similarity between the scalar of interest and the 

proxy scalar (Oncley et al., 1993; Ruppert et al., 2006b). Scalar similarity was defined by 

Kaimal et al. (1972) and Pearson et al., (1998) as similarity in the scalar time series over all 

the scalar spectra. This means that scalar quantities are transported with similar efficiency 

by turbulence elements of diverse characteristics (Ruppert et al., 2006b). Differences in 

distribution (Andreas et al., 1998a; Ruppert et al., 2006b; Held et al., 2008), amount, and 

strength (Katul et al., 1999; Katul and Hsieh, 1999) of scalar sources and sinks are reasons 

for differences in turbulent exchange of the scalars and for lacking scalar similarity. 

Furthermore, scalar similarity is influenced by the seasonal variation of canopy physiology 

(Williams et al., 2007). 

Essential for successful REA application is the choice of the right proxy scalar. Often 

temperature, measured by a sonic anemometer, is used (Graus et al., 2006; Lee et al., 2005; 

Grönholm et al., 2007; Bash and Miller, 2008; Bowling et al., 1998; Gaman et al; Ren et 

al., 2011) and sometimes both temperature and water vapor turn out to be adequate (Held 

et al., 2008). For 13CO2 isoflux measurements typically the proxy scalar CO2 is used 

(Bowling et al., 2003a; Wichura, 2009). Due to a lack of adequate high frequency 

measurements of 13CO2, scalar similarity between both cannot be evaluated, but it is 
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assumed that both scalars behave similarly. However, sources and sinks are quite different 

in strength and distribution with respect to discrimination against 13C during assimilation 

(Bowling et al., 2003a).  

 

3 Material and methods 

3.1 Study area 

All experiments relevant for this study were conducted on the extensively managed 

submontane grassland site “Voitsumra” at the edge of the low mountain range 

“Fichtelgebirge” in northeast Bavaria, Germany, located 624 m a.s.l. (50°05‘25‘‘N, 

11°51‘25‘‘E). For the last 10 years the site has been used as extensively managed 

grassland without fertilization or grazing, but with sporadic mowing once or twice a year. 

The plant community is described as Molinio-Arrhenatheretea R. Tx. 1937 – economic 

grassland (Oberdorfer, 2001) and the most dominant of the 48 species are Alchemilla 

monticola, Juncus filiformis, Polygonum bistorta, Ranunculus acris and Trifolium repens.  

 

3.2 EC measurements  

High frequency data for both EC and REA were collected 2.5 m above ground at 20 Hz. 

Water vapor and CO2 mixing ratio were measured by an open-path gas analyzer (LI-7500, 

LI-COR Biosciences, Lincoln, Nebraska USA), and wind vector and sonic temperature 

(TS) by a 3D sonic anemometer (CSAT3, Campbell Scientific, Inc., Logan, Utah USA). All 

turbulence data were stored on a data logger (CR3000, Campbell Scientific, Inc., Logan, 

Utah USA) and collected daily by a micro-computer system (MICRO-ITX, CarTFT.com) 

as a backup. To avoid inconsistencies in the wind vector time series, the inclination of the 

CSAT3 was monitored by an inclinometer on the top of the measurement mast. The 

computation of the EC-flux was accomplished by the software package TK2 developed at 

the University of Bayreuth (Mauder and Foken, 2004); TK3 has become available in the 

meantime (Mauder and Foken, 2011). This software contains all necessary data correction 

and data quality assessment tools (Foken et al., 2012b) and was approved in comparison 

with six other commonly used software packages (Mauder et al., 2008) and successfully 
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applied in considerable field campaigns (Mauder et al., 2006; Mauder et al., 2007; 

Eigenmann et al., 2009).  

Data processing for determining turbulent EC-fluxes begins with spike and outlier filtering 

(Rebmann et al., 2012). Data can then already be used for REA-simulation. All following 

steps in TK2 relating to determination, quality testing and validation of the EC-flux, are 

explained in detail by Mauder and Foken (2004), Foken (2008) and Foken et al. (2012a). 

This also includes planar fit correction (Wilczak et al., 2001), which was also applied in 

the REA controlling software (Ruppert, 2005). Wind velocity datasets of the four weeks 

before each REA field measurement were analyzed and planar fit corrections were 

implemented in the REA controlling software (Ruppert, 2005). Due to very small rotation 

angles only minor corrections were necessary. To assure that the signal measured by EC 

originated exclusively from the target land use type “grassland”, footprint analysis was 

performed (Göckede et al., 2004; Göckede et al., 2006; Rannik et al., 2012). It has been 

proven that more than 95% of the data originated from grassland and were not influenced 

by surrounding land use types such as tracks and creeks. 

 

3.3 Simulation for b(H) and H 

Due to the great importance of the b-factor for proper REA flux determination, and 

especially due to the lack of information about possible effects of management events on 

grasslands, the variation of b(H) was investigated by simulation. Therefore, a two-year 

eddy covariance data set (2010, 2011) and accompanying low frequency measurements of 

meteorological parameters were available. Hence, an adequate number of days with similar 

atmospheric conditions could be chosen within pre- and post-mowing periods to secure 

better comparability and to focus exclusively on the effects induced by management. Also 

the variation of b(H) within the diurnal cycle was evaluated. 

However, the first step was to determine the hyperbolic deadband H. The size of H was 

defined in advance and adapted according to the outcome of b. Finally, in combination 

with former studies as a reference (Ruppert, 2008), the hyperbolic deadband was defined 

constant as H = 1. During the simulation, the sign of the fluctuation of the vertical wind 

component w'  determines partitioning of the scalar of interest in up- and downdraft, just 

as during real REA sampling. In this case, the CO2 mixing ratio was used as proxy scalar. 
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The difference of the separately summed proxy scalar values ( )c c↑ ↓−  and the standard 

deviation of the vertical wind speed wσ  were calculated. By comparison of the product 

( )w c c↑ ↓σ −  to the corresponding EC-flux w' c'  – determined by high frequency 

measurements and TK2-software – individual factors b(H) could be derived (Eq. 3). That 

evaluation was also applied to other commonly used proxy scalars such as TS and water 

vapor (H2O). In order to evaluate their similarity to CO2 in the scalar time series, i.e. their 

suitability as a substitute for CO2, scalar similarity had to be verified, and this was done by 

evaluating the consistency of the correlation coefficients r. Those coefficients were 

calculated for the combinations of the scalars CO2 – H2O and CO2 – TS by the following 

equation 

1 2

1 2

1 2

proxy proxy

proxy proxy

proxy proxy
c ,c

c c

c' c'
r =

σ σ
         (5) 

as already applied in other studies with the correlation coefficient ranging from zero (no 

correlation) to one (full correlation; Gao, 1995; Katul and Hsieh, 1999; Ruppert et al., 

2006b; Held et al., 2008). To figure out possible differences before and after the 

management daily average correlation coefficients (between 9:00 and 17:00, for 16 days 

before and 27 days after the management) were calculated.  

 

3.4 REA preparation and measurements 

The REA device used in this study (Fig. 1) was constructed and tested by Ruppert et al. 

(2012) and has already been applied in other field experiments (Ruppert, 2008). REA 

measurements require high frequency vertical wind velocity and CO2 mixing ratio, 

provided by an ultra-sonic anemometer and an infra-red gas analyzer. According to the 

hyperbolic deadband (Eq. 4), these data control the mechanical valve system for taking up- 

and downdraft air samples. The filter-protected intake line of the system, tested and 

optimized for time lag and turbulent flow (Reynolds number = 2433; Ruppert et al., 2012), 

was installed close to the measurement path of the sonic anemometer. The time lag 

between the air sample in the tube and the signal of the sonic anemometer was determined 

beforehand by cross correlation analysis and provided in the REA controlling software for 
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online correction (Ruppert, 2005). Valve switching for the separation of up- and 

downdrafts (located in the REA device) was thereby synchronized with the vertical wind 

velocity fluctuation, measured by the sonic anemometer (located 2.5 m above the ground).  

All system components were either thoroughly cleaned with Acetone:Hexane 1:1 

(nanograde) and heated (glass and steel parts), or possess non-reactive surface materials as 

Teflon® or Polyethylene to avoid fractionation processes and sample contamination. 

Mylar® balloons, also with Polyethylene as the inner surface, were used as intermediate 

sample reservoirs at ambient pressure. Isotopic integrity for up to a residence time of 60 

minutes in the balloons could be achieved by repeated flushing and heating before 

application (cf. Bowling et al., 2003a and Ruppert et al., 2012). After a final leakage test 

the REA system was applied in the field. There was no need for density corrections, 

because the sample air was pre-dried with a Nafion® gas-dryer and finally dried by passing 

water traps with magnesium perchlorate granulate (Mg(ClO4)2). Between two sampling 

processes the system was flushed extensively with dry air from the measurement height to 

avoid any leftover sample air from previous sampling. More than 10 L up- and downdraft 

air were collected during each sampling process. Hence, the whole system, including 

sampling flasks for final storage for laboratory analysis, was repeatedly flushed and 

conditioned with dried air to achieve high sampling accuracy for subsequent high precision 

isotope ratio mass spectrometry (IRMS) analysis (Brand, 2005; Rothe et al., 2005; Sturm et 

al., 2004). This, as well as the CO2 mixing ratio analysis, were accomplished in the isotope 

and trace gas laboratory of the Max-Planck Institute in Jena, Germany. All 13C isotopic 

signatures in this study were analyzed in relation to 13C isotopic abundances in the 

international standards VPDB (Vienna Pee Dee Belemnite; Brand et al., 2009; Wendeberg 

et al., 2011; JRAS scale Ghosh et al., 2005; Wendeberg et al., 2011). The precision in the 

laboratory of 0.012‰ for δ13C (for more detailed information about the laboratory analysis 

see Werner et al. (2001)), the application of a hyperbolic deadband (hyperbolic relaxed 

eddy accumulation, HREA, Bowling et al., 1999b) and comprehensive REA system and 

component laboratory tests made possible the resolution of up- and downdraft isotope ratio 

and mixing ratio differences, and consequently the determination of δ13C isofluxes 

(Wichura, 2009; Ruppert et al., 2012).  

Besides the already mentioned leakage test, the balloon bag intermediate reservoirs were 

tested for sample contamination resulting from fractionation processes and chemical 
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compounds degassing from the inner balloon surface. The results proved the suitability of 

the balloons for a sample storage time of up to 2 h, although 30-40 minutes are enough for 

REA sampling (Ruppert et al., 2012). During the system test the REA device operated as in 

a real field experiment, but sampled standardized air from a compressed air tank. 

According to a previous system test in 2003 (19 samples, standard deviation: 0.014‰; 

Ruppert, 2008), the accuracy of the system for δ
13C could be maintained after the restarting 

in 2012 (10 Samples 0.011‰; Ruppert et al., 2012). Hence, the precision of the applied 

sampling operations was close to that of the mass spectrometer. The mean up- and 

downdraft isotope ratio difference accounted for 0.15±0.04‰ and was larger than the 

instrument precision by a factor of 13. Consequently, the measurement precision accounted 

for only 8% and the up- and downdraft difference could be resolved very well. 

 

3.5 Isoflux and partitioning  

With adequate resolution of CO2 and δ13C-isotope mixing ratio differences in up- and 

downdrafts, δ13C isofluxes (FISO) can be derived by introducing the δ-notation1 to Eq. (1) 

(Bowling et al., 1999a; Ruppert, 2008; Wichura, 2009) and rewriting as: 

( ) ( )13 13
ISO eff w aF b H C C C C↑ ↑ ↓ ↓= σ ρ δ − δ .      (6) 

C↑  and C↓  represent the CO2 mixing ratios, and 13C↑δ  and 13C↓δ  the isotope mixing 

ratios of up- and downdrafts. ( )effb H  was determined by applying H to Eq. (3) and by 

using effectively measured CO2 REA and eddy fluxes. σw was derived from the time series 

of the vertical wind velocity, measured by the ultra sonic anemometer. Besides FISO, 

information about the isotopic ratios of assimilated and respired CO2 is also necessary for 

CO2 flux partitioning based on isotopic signatures. Aδ , the isotopic ratio of assimilated 

CO2, was derived by subtracting the ecosystem discrimination of 13C (∆e) from the isotopic 

ratio of the CO2, leaving the respective air column (i.e., the signature of the air between 

ground surface and REA sample inlet) that is affected by the assimilating biosphere 

                                                 

1 The isotope ratios are expressed as isotopic signatures in δ–notation. All isotopic signatures are reported 

relative to 13C isotopic abundances in the international standards VPDB (see 3.4). 
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(Wichura, 2009). Equation (7) is based on the mass balance equations of Lloyd et al. 

(1996; see also Bowling et al., 2001 and Bowling et al., 2003) and represents the tool to 

determine Aδ  that can not be measured directly: 

13
A eC↑δ = δ −△           (7) 

Equation (8) is based on the general definition of isotopic discrimination ∆ by Farquhar et 

al. (1989). In Buchmann et al. (1997, see also Buchmann et al., 1998), this definition was 

utilized to derive the ecosystem discrimination ∆e. Ruppert (2008) found that on small 

timescales ∆e can be defined as the ecosystem discrimination of the atmospheric exchange 

at measurement height against isotopes in the lower boundary layer air: 

13

1
c

e
c

C↓δ − δ
=

+ δ
△           (8) 

13C↓δ  thereby represents the source air from above the measurement height. cδ  is the 

signature of the turbulent exchange which can be measured directly (Ruppert, 2008): 

( )
13 13

c

C C C C

C C
↑ ↑ ↓ ↓

↑ ↓

δ − δ
δ =

−
         (9) 

Rδ , the isotopic ratio of respired CO2, was determined by the Keeling plot method 

(intercept of a plot of 13Cδ  vs. inverse carbon concentration of respiration samples; 

Keeling, 1958). Those samples were taken with the static alkali (NaOH) absorption method 

(Lundegardh, 1921; Kirita, 1971; Singh and Gupta, 1977). Dark chambers avoided 

assimilation and released CO2 was captured in the solution as sodium carbonate for 

laboratory analysis. This method allows determination of concentration as well as isotopic 

ratio during night and daytime. It is well-known and often discussed that chamber methods 

cannot completely reproduce influences of atmospheric turbulence on the flux (Kimball 

and Lemon, 1971; Pumpanen et al., 2004; Rochette and Hutchinson, 2005), but alternative 

nighttime isotopic measurements with atmospheric methods (REA, laser techniques) for 

determining Rδ  have a similar problem with different turbulence regimes, coming along 

with different atmospheric stratification, at night and daytime (Bowling et al., 2001).  

Knowing FISO, Aδ  and Rδ , FEC could be partitioned into assimilation  
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ISO R EC
A

A R

F F
F

− δ=
δ − δ

                  (10) 

and respiration flux 

ISO A EC
R

R A

F F
F

− δ=
δ − δ

                  (11) 

in accordance to Lloyd et al. (1996), Bowling et al. (2001), Bowling et al. (2003a), Ruppert 

(2008) and Wichura (2009). Both equations were derived from the CO2 mass balance of a 

defined air column between ground surface and measurement height, considering CO2 

entering and leaving the column, CO2 gain by respiration and loss by assimilation. By 

assuming adequate turbulent mixing and stationary conditions, after introduction of the 

corresponding CO2 isotope ratios to the mass balance elements and after mathematical 

conversion, AF  und RF  can be calculated. In order to finally evaluate the quality of the 

partitioning tool based on isotopic signatures, results were compared with a common flux 

partitioning model (FPM) based on Lloyd-Taylor (Lloyd and Taylor, 1994) and Michaelis-

Menten functions (Michaelis and Menten, 1913). 

 

4 Results and discussion   

4.1 Simulation of REA on managed grassland 

To measure isofluxes of 13CO2, the CO2 mixing ratio is naturally the preferred proxy scalar 

used to control the sampling process and to determine hyperbolic deadband (H) and 

proportionality factor b. Because there is consistent distribution of relevant values in the 

different quadrants, and in order that the hyperbolic thresholds do not lead to the exclusion 

of too much data, H = 1 was chosen in accordance to Eq. (4) after simulation (cf. Ruppert 

et al., 2006b). Correct REA fluxes require correct b-factors. By investigating managed 

grassland, influences of mowing and rowen on the seasonal cycle have to be considered. 

Ongoing EC measurements provided data for REA simulation before and after cutting 

events. Days with similar weather conditions up to ten days before and twenty days after 

the management were used to compute b(H) – on the basis of a hyperbolic deadband – by 

day. Those periods showed completely different results (Fig. 2). Before the management, 

mean b(H) was 0.2, with an interquartile variation of about 20% (with exception of the 
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early morning and evening hours). After the management, b(H) was found to have been 

reduced by half, but the variation had increased by more than 80% (Fig. 2b). While the 

mixing ratio differences of up- and downdrafts used in Eq. (3) remain negative (C sink) in 

almost all cases, including after the management, the EC derived CO2 flux represented a 

higher NEE, which ranged up to positive and respiration dominated values. Both, the 

reduction and the larger variations of b(H) can be attributed to the management-induced 

source/sink changes of the proxy scalar CO2.  

However, determination of b(H) with TS and H2O as proxy scalars seems to be less 

influenced by management events (not shown in this study), but those can lack required 

scalar similarity to 13C as scalars of interest. This is an essential precondition for high 

quality REA measurements and must be controlled with adequate effort. In this study on 

all days of simulation scalar similarity between CO2 and H2O and TS was evaluated by 

calculating scalar correlation coefficients (Eq. 5). For both combinations (CO2 and TS, CO2 

and H2O), Figure 3 demonstrates an abrupt decrease of the correlation after the 

management. Thus, neither TS nor H2O are suitable alternatives to CO2 shortly after 

management. Figure 3 also indicates faster recovery of scalar similarity after autumn 

rowen (dark symbols) than after mid summer mowing (bright symbols). This can be linked 

to greater intervention in the ecosystem in mid summer, i.e. removing more productive 

biomass than in autumn. In both cases scalar similarity increased with ecosystem recovery 

up to pre-cutting values. The lack of scalar similarity after the management confirms 

dependence on plant physiology (Williams et al., 2007) and source-sink influences 

(Andreas et al., 1998a; Katul et al., 1999; Katul and Hsieh, 1999; Ruppert et al., 2006b; 

Held et al., 2008; Ruppert, 2008). In general, it is suggested that REA not be applied 

shortly after management events due to the fact that b can only be properly determined 

before management events and after an adequate period of ecosystem recovery. Under the 

environmental conditions present in this study, it is suggested that REA not be applied for 

22 days after the summer mowing and for 12 days after the rowen in autumn (Fig. 3). 

Present diurnal variations of b(H) advise against application of constant b factors.  
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4.2 REA measurements 

REA measurements in this study were conducted prior to, and five weeks after, summer 

mowing to fulfill the precondition of an undisturbed ecosystem. Apart from the selection 

according to the meadow management, two REA measurement days with different wind 

conditions were chosen. With an average of 2 m s–1, the wind velocity (u) on 22 June 2010 

was half as large as on 25 August 2010 (on average 4 m s–1 during the measurement 

period). On both days mean air temperature (T) and mean incoming shortwave radiation 

(K in) were comparable to some extent. FISO as well as δ
13C values partly follow fluctuations 

of Kin, although REA sampling processes lasted 40 minutes to generate adequate amounts 

of sample air, and unfortunately integrated over very different radiation conditions (Fig. 4). 

First, the enrichment of 13C in the atmosphere can be observed in Figure 4e. Sufficient 

water availability due to a high ground water level and moderate air temperature (≤ 17 °C) 

excludes reduced stomatal conductance, i.e. noon depression. High enrichment of 13C at 

noon on 22 June relies on increased assimilation. This assumption is supported by the 

development of the NEE that shows the largest C uptake during that time (Fig. 5a). The 

pattern of FISO acts to a certain extent in accordance with the differences of the δ13C values 

of up- and downdrafts. On both days the ranges of FISO match results of other studies 

(Bowling et al., 2001; Wichura, 2009). This also applies to the evening break-down of FISO 

due to missing up- and downdraft isotope ratio differences, coming along with absent 

shortwave radiation and consequently biosphere activity (last sampling on 22 June). With 

the exception of this last measurement, adequate δ
13C differences between up- and 

downdraft samples were always achieved (on average 0.15 ±0.04‰; precision of IRMS 

Jena: 0.012‰, Werner et al., 2001). In addition to its dependence on wind velocity, i.e. wσ  

in Eq. (6), factor b is decisive for FISO. Therefore ( )effb H  was calculated from directly 

measured REA up- and downdraft samples and appropriate EC fluxes. In contrast to 

simulated b(H), effective b-factors ( )effb H  do not overestimate the CO2 mixing ratio 

differences (i.e. underestimate the necessary size of b), due to a certain inevitable 

imprecision of the physical sample separation process of the measurement system 

compared to the simulation. Sample carry-over during the real REA measurement can 

also be a reason for that. Thus, effective b-factors were slightly higher (0.28±0.05) than 
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the simulated values shown in Figure 2. This has already been observed in previous studies 

(Baker et al., 1992; Beverland et al., 1996; Moncrieff et al., 1998; Ruppert et al., 2012).  

 

4.3 Flux partitioning 

To partition NEE into assimilation and respiration fluxes based on the isotopic method, 

their isotopic signatures Aδ  and Rδ , as well as FISO and FEC, are required (Eqs. 10 and 11). 

Aδ  and Rδ  are sensitive factors in the model that have to be discussed in detail (Ogée et 

al., 2004; Ruppert, 2008). Determination of Rδ  is based on the Keeling plot method 

(Keeling, 1958). Therefore, samples were taken with the static alkali absorption method in 

dark soil chambers. The complex assignment of Rδ  values to temporally varying 

photosynthetic activity due to time lag effects (Knohl and Buchmann, 2005), and unsolved 

problems applying night-time Rδ  measurements, suggest the application of integrative 

static chamber measurements. However, it is possible to improve resolution of the Rδ  data 

with modern laser 13Cδ  measurements involving considerable expense (Griffis et al., 

2004; Bowling et al., 2003b). Independent of the kind of data acquisition, the sensitivity of 

Rδ  related to 13Cδ  measurements has to be evaluated (Zobitz et al., 2006; Pataki, 2003). In 

this study the Keeling plot intercept accounted for –24.9‰ (Fig. 6) with a standard error of 

1.7‰, within a 95% confidence interval of ±4.3‰.  

On 22 June and 25 August in 2010, before and long after meadow mowing, all parameters 

were determined in order to partition NEE into assimilation (FA) and respiration (FR; Fig. 

5) based on two different approaches: the common flux partitioning model (FPM), based 

on Lloyd Taylor and Michaelis Menten functions, and the isotopic flux partitioning 

approach (Eqs. 10 and 11). On both days NEE (Fig. 5) shows variations according to 

incoming shortwave radiation (Fig. 4), with maximum CO2 sink capacity of almost 0.02 

mmol m–2 s–1 during the day. While the morning rise of photosynthetic activity was not 

sampled, evening breakdown to a respiration-dominated system was captured. The last 

value in Figure 5a in the evening shows a special case. There is no longer any difference 

between up- and downdraft isotope ratios, so that isoflux, and consequently assimilation 

and respiration fluxes, become zero. This comes along with a lack of photosynthesis and 

discrimination, but above all with turbulent fluxes that come to a standstill, as confirmed 
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by a very small NEE (Fig. 5) and low wind velocity and incoming shortwave radiation 

(Fig. 4). This pattern is not shown by the Lloyd Taylor and Michaelis Menten function 

based FPM. Apart from that, the isotopic flux partitioning shows a much greater 

variability, whereas the FPM insufficiently reproduces natural respiration changes, causing 

assimilation fluxes to exactly follow the NEE. Sometimes both approaches provide 

partially similar fluxes, but the isotopic model is able to describe various underlying fluxes 

of the NEE; that is, more intense reactions to environmental conditions are attributed to the 

ecosystem (Ruppert, 2008). The quite constant respiration provided by the temperature-

based FPM results from relatively small temperature variations during both periods around 

the measurement days. Temperature is only one of the driving mechanisms of respiration; 

for example, photosynthetic activity supplies root exudates to soil life and accounts for a 

large portion of root-derived respiration (Kuzyakov and Gavrichkova, 2010). 

Discrimination of 13C is an input factor in the isotopic model. It is directly coupled to all 

assimilation-based processes. These become apparent in the assimilation flux closely 

connected to the incoming shortwave radiation. The same applies to wind velocity, 

essential for atmospheric fluxes and considered only in the isotopic model as an input 

parameter of FISO. The diurnal cycle of the assimilation flux – determined from FISO – (Fig. 

5) can be explained clearly by the diurnal cycles of incoming shortwave radiation and wind 

velocity (Fig. 4). Especially incoming shortwave radiation drives surface temperature and 

assimilation dependent, soil organic matter derived respiration (Kuzyakov and 

Gavrichkova, 2010). Almost all values of the isotopic model show these dependences to 

some extent. This representation of environmental influences in combination with the 

accordance to the established common flux partitioning model suggests good performance 

of the isotopic model, and there is no evidence for comparable restrictions found for 

complicated coupling regimes in high vegetation ecosystems (Ruppert, 2008; Wichura, 

2009). 

 

Conclusions 

Detailed investigation of pre- and post mowing conditions by REA-simulations on 

managed grassland demonstrated serious constraints for REA-application directly after 

management. At this time, simulated b-factors showed larger uncertainty and decreased 
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strongly because the mixing ratio differences in the simulation did not follow the NEE 

determined by EC to have positive fluxes. Also, the scalar similarity assumption was not 

fulfilled for the evaluated proxy scalars CO2, T and H2O after management. Consequently, 

REA technique cannot be applied shortly after meadow management without the risk of 

huge REA-flux errors. This restriction should be carefully considered in future REA-

studies. A distinct decision of when to use REA again depends on environmental 

conditions and plant community structure. Both factors are decisive for plant community 

recovery and hence the development of scalar concentration and flux behavior. For several 

scalar quantities plant physiology monitoring and consideration of the state of the 

ecosystem recovery could be helpful. This study suggests waiting at least 22 days in 

summer and 12 days in autumn after management in like circumstances. With carefully 

evaluated b-factors, application of a hyperbolic deadband and high precision laboratory 

analysis, up- and downdraft differences can be resolved and isofluxes can be derived.  

The NEE was partitioned by an isotopic modeling approach based on information about 

isotopic ratios of assimilation and respiration fluxes, EC- and isoflux, respectively. It 

turned out that the isotopic approach works well on the grassland experiment site 

compared to former studies where it was applied over forest ecosystems with special 

coupling regimes. Moreover, it can enhance results of a common flux partitioning tool 

based on Lloyd-Taylor and Michaelis Menten functions. An advantage is a better 

reproduction of environmental conditions, due to directly including ecosystem 

discrimination of 13C and wind velocity into the model. However, the method is very 

sensitive and requires exact determination of the isotopic signatures (Ruppert, 2008). Also 

given uncertainties regarding determination of respiration characteristics have to be further 

investigated. Chamber measurements require detailed consideration of atmospheric 

conditions (Riederer et al., 2013). 

REA application in general is expensive and time consuming and is therefore only 

applicable for short term and special investigations. Its versatility and the information 

about NEE component flux variability gained through its use justify its application in 

ecosystem sciences. However, in the future it will be more and more replaced by e.g. direct 

isotopic eddy covariance measurements that are also adapted for long term experiments 

(Wehr et al., 2013). 
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Figures 

 

 

Figure 1. Design of the whole-air REA system (Ruppert et al., 2012) 

 
 
 
 

 

 

Figure 2. Daytime b(H) before (a) and after cutting events (b); data from rowen in 2009, 

mowing and rowen in 2010 and mowing in 2011, median (solid line), 25% and 75% 

quantile (dashed line) of 16 days before and of 27 days after management are illustrated, H 

= 1.0, (proxy) scalar = CO2. 
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Figure 3. Absolute scalar correlation coefficients between CO2 and sonic temperature TS 

(a) and CO2 and water vapor H2O (b). Negative x-axis values indicate days before, positive 

values days after mowing and rowen, respectively. Dark squares represent rowen data in 

September 2009, bright upward triangles mowing in July 2010, black circles rowen in 

September 2010 and grey diamonds the late mowing in August 2011. The error bars show 

standard errors of the daily mean of r between 09:00 and 17:00 CET.  
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Figure 4. Incoming shortwave radiation Kin (grey dashed line with circles), temperature T 

and wind velocity u (bold black line) are illustrated in a) and d); dark upward triangles in 

b) and e) represent isotopic composition of updraft, dark squares of downdraft CO2, bright 

symbols represent CO2 mixing ratios; c) and f) show the δ13CO2 isoflux (FISO, dark 

diamonds, set in the middle of the 40 minute measurement interval; bright lines show the 

CO2 flux.  
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Figure 5. Comparison of NEE flux partitioning with isotopic background (respiration flux 

FR: black diamonds, assimilation flux FA: light grey circles) and a common FPM (dashed 

lines in same colors); the NEE measured by eddy-covariance is illustrated as dark grey 

solid line. 

 

 

 

Figure 6. Keeling plot of respiration samples for determination of isotopic ratio of 

respiration; δR; Keeling plot intercept: -24.9 with a standard error of 1.7‰, within a 95% 

confidence interval of ±4.3‰. The solid line indicates the orthogonal regression line. 

R = correlation coefficient. 
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Abstract 

Carbon dioxide flux measurements in ecosystem sciences are mostly conducted by eddy 

covariance technique or the closed chamber method. But there is a lack of detailed 

comparisons that assess present differences and uncertainties. To determine underlying 

processes, a ten–day, side–by–side measurement of the net ecosystem exchange with both 

techniques was evaluated with regard to various atmospheric conditions during the diurnal 
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cycle. It was found that, depending on the particular atmospheric condition, the chamber 

carbon dioxide flux was either: (i) equal to the carbon dioxide flux measured by the 

reference method eddy covariance, by day with well developed atmospheric turbulence, 

(ii) higher, in the afternoon in times of oasis effect, (iii) lower, predominantly at night 

while large coherent structure fluxes or high wind velocities prevailed, or, (iv) showed less 

variation in the flux pattern, at night while stable stratification was present. At night – 

when respiration forms the net ecosystem exchange – lower chamber carbon dioxide fluxes 

were found. In the afternoon – when the ecosystem is still a net carbon sink – the carbon 

dioxide fluxes measured by the chamber prevailed. These two complementary aspects 

resulted in an overestimation of the ecosystem sink capacity by the chamber of 40 % in this 

study.  

 

1   Introduction 

Net ecosystem exchange (NEE) of grasslands is today predominantly determined by eddy 

covariance (EC) technique (Moncrieff et al., 1997; Baldocchi, 2003; Foken et al., 2012a; 

Wohlfahrt et al., 2012) and the chamber method (Davidson et al., 2002; Subke and 

Tenhunen, 2004; Denmead, 2008). The chamber method also becomes relevant when 

measuring underlying fluxes of NEE (e.g. ecosystem respiration, RECO) directly and 

separately. Also gross primary production (GPP) of the biosphere can be easily determined 

by combining the use of dark (RECO) and transparent chambers (NEE) and simple 

subtraction of the resulting fluxes.  

Numerous comparison experiments between different chambers (Pumpanen et al., 2004; 

Rochette and Hutchinson, 2005) and between chamber– and EC–data (Subke and 

Tenhunen, 2004; Kutzbach et al., 2007; Myklebust et al., 2008, Wang et al., 2013) can be 

found in the literature. Comparisons between chamber and EC–measurements are also 

available for other trace gases, for example Werle and Kormann (2001) found that 

chambers may overestimate CH4 emissions by up to 60–80%. Differences were for 

example found due to methodological problems under high vegetation (Subke and 

Tenhunen, 2004), at times with low turbulence intensity (van Gorsel et al., 2007), at night 

over complex surfaces (Myklebust et al., 2008), due to poor regression analysis in the 

chamber software (Kutzbach et al., 2007) or different target areas (Reth et al., 2005). The 
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EC method is, by definition, a direct measuring method (Montgomery, 1948; Obukhov, 

1951; Swinbank, 1951) for determining turbulent fluxes. However, several conditions must 

be fulfilled before the method can be applied as a reference method. Most important in this 

context are steady state conditions, flat and homogeneous terrain and turbulent exchange 

conditions (Lee et al., 2004; Foken 2008; Aubinet et al., 2012). The control of these 

conditions is achieved by applying data quality tools (Foken and Wichura, 1996; Vickers 

and Mahrt, 1997; Foken et al., 2004), the application of which has recently come to 

represent the state of the art. In contrast to EC – that measures an integrated signal from a 

large flux footprint area (Rannik et al., 2012) – it is often challenging to achieve adequate 

representativeness with the chamber method on ecosystem scales (Reth et al., 2005; Laine 

et al., 2006; Denmead, 2008; Fox et al., 2008). In any case, both EC and chamber methods 

must be reviewed for inaccuracies (Davidson et al., 2002), and due to the fact that real 

fluxes are always unknown under field conditions, it is impossible to validate flux 

measurements by any technique (Rochette and Hutchinson, 2005).  

Chamber measurement technique has improved during recent years and eliminated many 

chamber effects (Rochette and Hutchinson, 2005) to the point where pressure 

inconsistencies between in– and outside the chamber at various wind velocities can be 

avoided (Xu et al., 2006). But some challenges still remain, for example inside chambers, 

atmospheric turbulence cannot be reproduced (Kimball and Lemon, 1971; Pumpanen et al., 

2004; Rochette and Hutchinson, 2005) even when ventilators are used for mixing (Kimball 

and Lemon, 1972).  

Atmospheric turbulence has a typical size spectrum and distribution of the turbulent 

eddies, depending on height and surface structure. In particular, larger, low–frequency 

flow patterns, i.e. coherent structures (Collineau and Brunet, 1993; Gao et al., 1989; 

Thomas and Foken, 2007), may cause differences between chamber and EC measurement 

results. Another cause of flux differences can be differing atmospheric stratification. 

Closed chambers completely cover the ecosystem during the measurement process and 

thereby alter the natural long wave radiation balance to almost zero. This causes reduced 

surface cooling, weak development of stable stratification and finally higher fluxes 

compared to EC. 
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In this study it is not the differences in NEE between two measurement principles in 

general, but rather the changing differences under varying atmospheric conditions in the 

course of the diurnal cycle, which is investigated.  

 

2   Material and Methods 

2.1   Study area 

The comparison experiment was conducted from May 25th to June 3rd in 2011 on an 

extensively managed submontane grassland site at the edge of the low mountain range 

“Fichtelgebirge” in northeast Bavaria, Germany. The site is located on flat terrain 624 m 

a.s.l. (50°05‘25‘‘N, 11°51‘25‘‘E) between the “Großer Waldstein” (elevation: 877 m) to 

the north and the “Schneeberg” (1051 m) to the south. Thus, a channeled wind field in 

west–east direction with west (263°) as prevailing wind direction is created at the site. 

Most of the data were collected under ideal weather conditions without rainfall and with 

sufficient global radiation. Weak data due to dewfall on the instruments and one heavy 

rainfall event (38.2 mm) in the night of May 31st to June 1st were excluded. The canopy 

height was about 20 cm. Thus, the chamber could be installed without any cutting of the 

vegetation.  

 

2.2   Eddy covariance  

For the determination of the CO2 flux, the concentration was measured by an open–path 

gas analyzer (LI–7500, LI–COR Biosciences, Lincoln, Nebraska USA), and the wind 

vector by a 3D sonic anemometer (CSAT3, Campbell Scientific, Inc., Logan, UT USA) at 

high frequency (20 Hz), 2.5 m above ground. Data were stored on a data logger (CR3000, 

Campbell Scientific, Inc., Logan, UT USA) and collected daily by a computer system as a 

backup. Data were post processed and quality controlled based on latest 

micrometeorological standards by the software package TK2, developed at the University 

of Bayreuth (Mauder and Foken, 2004). This still evolving software (TK3 has become 

available in the meantime: Mauder and Foken, 2011) incorporates all necessary data 

correction and data quality tools (Foken et al., 2012b). It was successfully proved in 

comparison with six other commonly used software packages (Mauder et al., 2008). For 
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every averaging interval of 30 minutes the included quality flagging system evaluated 

stationarity and turbulence and marked the resulting flux with quality flags from 1 (very 

good quality) to 9 (very low quality) (Foken and Wichura, 1996; Foken et al., 2004). In 

this study only data with quality 3 or better were used. Also footprint analysis (not shown 

here) after (Göckede et al., 2004; Göckede et al., 2006; Rannik et al., 2000) was performed 

to assure that the measured data exclusively represented the target land use type grassland, 

i.e. the ecosystem measured by the chamber (cf. Reth et al., 2005). Due to the channeled 

wind regime, two club–shaped footprints evolved in the western and eastern directions. 

Thus, disturbances of the turbulence measurements could be easily avoided by installing 

all other experimental devices close to the EC mast, but perpendicular to the main wind 

direction. Accompanying measurements of important micrometeorological parameters 

such as up– and downwelling short– and long wave radiation, air and soil temperature, 

humidity and soil moisture and precipitation were accomplished by an automated weather 

station and stored as 10-minute averages.  

 

2.3   Chamber system 

The applied system (LI–8100–104C, transparent for NEE measurements at low vegetation, 

LI–COR Biosciences, Lincoln, Nebraska USA) was an automated flow–through non–

steady–state soil chamber, where sample air was constantly circulated between the 

chamber and an infrared gas analyzer (IRGA) by a rotary pump with 1.5 L min-1 through a 

chamber volume of 4822 cm3. The CO2 flux was estimated from the rate of CO2 

concentration change inside the chamber during a close time of 90 seconds. The chamber 

was designed to minimize perturbations to the surrounding environmental conditions. for 

example the base plate was perforated to avoid heating of the surface and a concentration 

gradient–induced impedance of soil respiration (LI–COR, 2004). The soil collars which 

included an area of 318 cm2 were pre–installed 10 cm deep in the soil two weeks before 

the experiment to create a perfect seal and to avoid disturbances of the CO2 efflux by cut 

and wounded plant roots at the beginning of the measurement period. Due to the channeled 

wind field on the site (see section 2.1), the chamber could be installed very close to the 

eddy covariance mast without disturbing the flux footprint. The chamber had a lift–and–

rotate drive mechanism that rotated the bowl–shaped chamber 180° away from the collar. 
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This shape allowed good mixing by means of the circulation of the sample air through the 

IRGA alone, without a ventilator (LI–COR, 2004). Barometric– and – above all – 

turbulence–induced pressure fluctuations above the ground surface influence the efflux 

from the soil. Thus, modern chambers are equipped with a venting tube that transmits 

atmospheric pressure changes to the chamber headspace (Rochette and Hutchinson, 2005). 

LI–COR installed a patent–pending pressure vent with tapered cross section at the top of 

the chamber, that minimizes pressure pulses at chamber closing and allows the tracking of 

ambient pressure under calm and windy conditions by eliminating the Venturi effect 

(Conen and Smith, 1998) occurring at former simple open vent tubes (Xu et al., 2006). The 

exchange through the venting tube is negligible compared to the CO2 diluting effect by 

water vapor during the measurement which in turn is corrected by the measurement 

software (LI–COR, 2004). For RECO measurements a dark chamber is used that avoids CO2 

uptake by assimilation. NEE is measured by a chamber with a transparent dome that 

enables CO2 uptake by assimilation as well as respiration processes inside. The transparent 

chamber for the NEE comparison was closed for 90 seconds four times during a half–hour 

period. In the meantime the system was flushed for 135 seconds, the dark chamber was 

measuring for 90 seconds (data were required for another study and not used in this one) 

and the system was flushed with ambient air again. The closing and opening process of the 

transparent chamber as part of the flushing time lasted 13 seconds each. 

 

2.4   Typical exchange conditions 

The application of the eddy covariance technique requires turbulent conditions (Foken et 

al., 2012a). Ecologists often evaluate this using a friction velocity threshold (Goulden et 

al., 1996) but more precise is a test on steady–state conditions and the fulfillment of typical 

similarity conditions (Foken and Wichura, 1996). At daytime in most cases both criteria 

are fulfilled whereas nighttime exchange conditions are more challenging.  

Already in the late afternoon stable stratification of the near surface air layer begins with 

cooling due to evaporation and the long wave upwelling radiation outbalancing the long 

wave downwelling radiation. Exchange is poor under stable conditions and, for example, 

the respiration causes the carbon dioxide concentration to increase in the first centimeters 

of the atmosphere up to a partial pressure equivalent to that in the soil, which consequently 
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reduces the gas exchange. However, an ecosystem covered with a chamber dome is 

subjected to balanced outgoing and incoming long wave radiation and therefore less 

cooling at that time of the day. Naturally under those conditions the so called oasis effect 

occurs, which is named after the moisture–dependent cooling effect occurring in oases and 

which is defined as a sensible heat flux (QH) changing to negative values in combination 

with a still large positive latent heat flux (QE) and solar radiation (Stull, 1988; Foken, 

2008). A lack of sensible heat causes reduction of buoyancy and consequently turbulence. 

This is directly detected by the EC technique, i.e. exactly the measurement of turbulent 

fluxes (Aubinet et al., 2012). In addition to the radiation effect, the reaction of the chamber 

system is also less pronounced due to the physical barrier to the surrounding, increasingly 

stable stratified, air masses. With the sunset the remaining assimilation potential is gone, 

the difference between both systems declines, and other processes come to the fore.  

Under stable stratification and low turbulence the flux–contribution of coherent structures 

to the entire flux increases (Collineau and Brunet, 1993; Gao et al., 1989; Thomas and 

Foken, 2007; Holmes et al., 2012). These well–organized structures, with typical periods 

of 10–100 s, are caused by strong roughness or landscape heterogeneities such as tree lines, 

bushes and ditches. Coherent structures in a steady state can be measured by eddy 

covariance technique (Desjardins, 1977). Analyzing methods for coherent structures are 

based on, for example, wavelet technology and were presented by Collineau and Brunet 

(1993), Thomas and Foken (2005) and Serafimovich et al. (2011). In the present study, we 

applied the method described by Thomas and Foken (2005) to determine the flux by 

coherent structures (FCS) and its contribution to the entire flux (FCS Fent
–1). 

 

3   Results and discussion 

Scatter charts are often utilized in literature when measurement technique comparisons are 

discussed. However, they provide only a first impression of the overall behavior of both 

systems, and in this study Figure 1 is intended as an introduction to further detailed 

breakdown of the behavior into underlying processes. So as not to adulterate the 

comparison results, data with bad quality were excluded by the quality flagging system (16 

%) and no gap filling procedures were conducted. In any event, only data were used when 

both systems provided data of high quality. Data gaps were predominantly occurring at 
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night, when CO2 source fluxes (positive sign) prevailed. Thus, the resulting mean CO2 

values of –4.0 (EC) and –5.6 µmol m–2 s–1 (chamber) for the overall 10–day balance might 

be overestimated. Hence, at that time, both EC and chamber define the ecosystem to be a 

CO2 sink, but the absolute value of the chamber sink flux was 40 % larger than that of EC. 

This is similar to other studies (Wang et al., 2009; Fox et al., 2008) and includes – in our 

case – smaller chamber CO2 source fluxes of 26 % during the night and larger chamber 

CO2 sink fluxes of 14 % during the day (negative sign). A first indication as to the cause of 

the large difference at night may be provided by the kind and dimension of scattering of 

the measured fluxes, presented in Figure 1 as interquartile ranges. While daytime CO2 

fluxes of both techniques scatter quite similarly, with interquartile ranges of 0.0086 mmol 

CO2 m
–2 s–1 and 0.0094 mmol CO2 m

–2 s–1, respectively, for positive nighttime CO2 fluxes, 

much larger scattering in EC data (interquartile range: 0.0039 mmol CO2 m
–2 s–1) than in 

chamber data (0.0018 mmol CO2 m–2 s–1) could be recognized (see Figure 1 and cf. 

Janssens et al., 2001). 

This kind of aggregation of the positive chamber fluxes (cf. Laine et al., 2006) had various 

associated reasons that are explained in the following. There must be also an explanation 

for the domination of the chamber in small negative CO2 fluxes, not only when both 

systems showed fluxes with opposite directions (Fig.1, light grey filled circles) but also 

when both were negative. To investigate underlying short–term effects on the 

comparability, EC–chamber flux differences –normalized with the EC–flux – were 

calculated and illustrated as mean diurnal cycles of the whole measurement period (Fig.2a) 

The characteristics of the normalized EC–chamber flux difference suggested a 

classification into four different periods. The early morning transition time was affected by 

sunrise, developing turbulence and temporary wet instruments due to dewfall, and this 

prevented proper data analysis for this period. Later, during the day, when the atmospheric 

turbulence was well developed, the mean difference was almost zero, i.e. both systems 

worked well and showed similar results. In contrast, in the late afternoon, CO2 sink fluxes 

within the chamber were sustained longer and were larger, resulting in a flux up to twice as 

large as the EC flux (Fig. 2a). The reason was defined as the oasis effect, i.e. cooling and 

stabilization effects outside the chamber (see section 2.4). In Figure 2b just the normalized 

flux differences during periods of prevailing oasis effect are considered, which precisely 

reproduces the late– and to a small extent early afternoon chamber dominance. Nearly all 
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measurements influenced by the oasis effect show larger chamber fluxes (Fig. 3a). Also 

two thirds of the situations with contrary EC–chamber flux directions (filled circles, Fig 1 

and Fig 3a) and the higher sink fluxes of the chamber at small values could be directly 

explained by the oasis effect (black circles, Fig 3a). With the sunset this effect disappears, 

as does the assimilation potential of the ecosystem, and the difference between both 

systems declines.  

After a short evening transition time the fourth period with typical nighttime conditions 

arises – characterized by predominantly stable stratification (Fig. 2d) and increasing 

exchange by coherent structures (Fig. 2c). For mid–latitudes this is the typical diurnal 

cycle for stratification (Foken, 2008). Coherent structures can cause 50–100 % of the gas 

exchange during nighttime and 10–20 % during the day above a forest (Thomas and 

Foken, 2007). The influence of coherent structures might be less above meadows due to 

the negligible mixing layer (roughness sublayer). In contrast to daytime CO2 fluxes that 

scatter quite similarly (see interquartile ranges in Figure 1), nighttime chamber fluxes 

scatter less than half as much as the EC fluxes: The chamber measures a virtually constant 

flux during the night. As Figure 3b, c and d illustrate, this predominantly occurs at times 

with high atmospheric stability, presenting along with low wind velocity and a cool ground 

surface, i.e. little outgoing long wave radiation. While the EC system responds to the 

smallest changes of the atmospheric conditions as well as the nighttime ecosystem 

respiration flux does, the chamber is directly connected to the ground surface – where the 

ecosystem respiration is more or less constant – with only minor influences from the 

surrounding atmosphere (Norman et al., 1997; Reth et al., 2005; Lai et al., 2012), 

transferred into the chamber system exclusively by the pressure vent (Xu et al., 2006). 

Besides coherent motions, which are generated by braking gravity waves or under the 

influence of low level jets (Karipot et al. 2008), heating due to dewfall causes slightly 

higher turbulent fluxes during nighttimes. The condensation heat thereby reduces the 

downward sensible heat flux and the strong stable stratification. Both processes are related 

to slightly higher wind velocities (Fig. 4b) and larger EC flux results (Fig. 1). While EC 

measures that wide range of CO2 fluxes, the parameters illustrated in Figure 3b, c and d 

turned out to be particularly responsible for the uniformity of the chamber flux. To clarify 

under which conditions the EC flux is notably larger or smaller than the chamber flux, 

nighttime data with higher EC fluxes were compared to those that show higher chamber 
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fluxes. A Student’s t–test for dependent samples indicated no differences for the flux by 

coherent structures (FCS), z/L and Iout, but did so for the wind velocity u and the friction 

velocity u* (Fig. 4; u* is not presented since the result is equivalent to u).  

However, EC and chamber nighttime respiration fluxes measured at high wind velocities 

(largest 25 %, u>2.9 ms–1) are within the same range close to the bisecting line in Figure 5a 

but with a significant tendency to larger EC fluxes. This coincides with a study of 

Denmead and Reicosky (2003), who found an increase of the EC– to chamber–flux ratio 

with the wind velocity. Although the chamber reproduces the flux variations very well at 

high wind velocities, i.e., it is able to describe small as well as larger fluxes, it generally 

underestimates the flux. Hence, at night, in addition to the stratification effect, situations 

with high wind velocities result in larger EC than chamber CO2 fluxes. But these cannot 

really explain the highest EC fluxes in times of uniform chamber performance. It was 

found that some of those situations occurred together with large coherent structure fluxes 

(FCS, Fig. 5b). In the experiment region, coherent motions were already detected as a 

consequence of low–level jets reaching the ground and breaking gravity waves (Foken et 

al., 2012c). Coherent structures appear sporadically (average in this study: 38 h–1). Thus, 

the total size of the coherent structure flux is less than the typical turbulent flux, yet 

coherent motions produce turbulence that obviously is recognized by EC, but not by the 

chamber technique (Fig. 5b).  

 

4   Conclusions 

Ecosystem processes are coupled to atmospheric conditions. A measurement system 

should be able to represent the resulting fluxes in a reasonable way. Otherwise, already 

small differences at small temporal scales may sum up to large errors in the estimation of 

the resulting flux. Because the difference between chamber and EC flux strongly depends 

on the diurnal variation of the atmospheric conditions, especially sporadic short term 

chamber measurements as well as repeated chamber measurements at specific times of day 

are likely to be biased.  

Chamber fluxes are larger than EC fluxes in the late afternoon due to surface cooling and 

development of stable stratification, which in turn reduces the turbulent exchange. During 
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times of this oasis effect, the flux regime of the day is upheld longer in the evening within 

the chamber and the real atmospheric conditions are not represented.  

During the night a quite uniform chamber flux and an EC flux with a much higher 

variability were observed. Detailed investigation of the relevant parameters revealed that 

the nighttime stable stratification, together with low wind velocities and low outgoing long 

wave radiation, support the uniformity of the chamber but not the EC flux. A greater 

variation of the chamber flux data was only found at times with high wind velocities and 

high friction velocities, respectively, which also resulted in a certain agreement with EC, 

but with overall higher EC fluxes. Hence, the chamber is less sensitive to atmospheric 

conditions that control the flux, because it is always less coupled to the surrounding 

atmosphere than EC (Lai et al., 2012; Dore et al., 2003; Reth et al., 2005). 

Coherent structures were also expected to cause higher EC fluxes in general, but it was 

found that this was only the case with the very largest coherent structure fluxes. Those 

could explain a number of situations with larger EC fluxes.  

Although at our experimental site EC provides satisfying results for the whole diurnal 

cycle – assuming that data quality regarding turbulence and stationarity is properly 

controlled – chamber flux measurements require accompanying assessment of at least wind 

velocity, radiation and temperature, to evaluate atmospheric conditions to some extent. 

Above all, during the night the strongest forcing parameters, global radiation and the CO2 

sink flux by assimilation are missing. Since the long wave radiation balance is almost zero 

within the chamber anyway and the night time respiration flux from the soil is more 

constant than the CO2 flux during the day, there should be nothing left to trigger variations 

in the chamber CO2 flux, which do, however, occur.  

The positive message is that both techniques show proper and comparable results from late 

morning – when all instruments have dried from dewfall – until afternoon, when the oasis 

effect gains more and more influence.  

Chamber measurement technique has made progress in the last years but its insensitivity to 

various atmospheric conditions suggests such micrometeorological tools as EC are 

preferable for the investigation of those processes and the determination of ecosystem 

fluxes.  
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Figure 1. Scatter plot of EC– and chamber–determined NEE, light grey filled circles 

represent CO2 fluxes with opposite directions, black bars show interquartile ranges of EC–/ 

chamber CO2 source and sink fluxes, respectively (opposite CO2 fluxes excluded). 
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Figure 2. Mean diurnal cycles of a) normalized EC–chamber CO2 flux differences, b) 

normalized EC–chamber CO2 flux differences during times with oasis effect (OE), c) 

absolute proportion of fluxes by coherent structures and d) the stratification defined by the 

stability parameter z/L (z: height, L: Obukhov length); the bars below indicate different 

regimes of atmospheric mixing during the day; incoming shortwave radiation reaches 80 

Wm-2 at 5:30 and finally at 19:00; time in CET=UTC+1; error bars indicate variation 

within the 10–day period. 
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Figure 3. Scatter plot sections of EC– and chamber–determined NEE under particular 

micrometeorological conditions: a) oasis effect; b) atmospheric stability z/L > 0.7; c) wind 

velocity u < 0.9 m s–1; d) outgoing long wave radiation Iout < 319 Wm–2 – labeled with 

large black circles in each case; light grey circles represent fluxes with different directions.  
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Figure 4. Comparison of a) nighttime atmospheric stability (z/L), b) wind velocity (u), c) 

CO2 flux by coherent structures (FCS) and d) long wave outgoing radiation (Iout) while 

either EC or chamber CO2 fluxes are larger, highly significant difference (Student’s t–test 

for dependent samples, * = p<0.01) found only in case of u (as well as u*). 
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Figure 5. Scatter plot sections of EC– and chamber–determined NEE under particular 

micrometeorological conditions: a) largest 25 % of the wind velocities (u>2.9 ms–1); b) 

largest 10 % of the fluxes due to coherent structures (FCS>: 0.0015 mmol m–2 s–1) – labeled 

with large black circles in each case, light grey circles represent fluxes with different 

directions. 
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