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The reconstruction of phylogenetic trees from discrete character data typically relies on models that assume the
characters evolve under a continuous-time Markov process operating at some overall rate λ. When λ is too high
or too low, it becomes difficult to distinguish a short interior edge from a polytomy (the tree that results from
collapsing the edge). In this note, we investigate the rate that maximizes the expected log-likelihood ratio (i.e.
the Kullback–Leibler separation) between the four-leaf unresolved (star) tree and a four-leaf binary tree with
interior edge length ϵ. For a simple two-state model, we show that as ϵ converges to 0 the optimal rate also
converges to zero when the four pendant edges have equal length. However, when the four pendant branches
have unequal length, two local optima can arise, and it is possible for the globally optimal rate to converge to a
non-zero constant as ϵ → 0. Moreover, in the setting where the four pendant branches have equal lengths and
either (i) we replace the two-state model by an infinite-state model or (ii) we retain the two-state model and
replace the Kullback–Leibler separation by Euclidean distance as the maximization goal, then the optimal rate
also converges to a non-zero constant.

1. Introduction

When discrete characters evolve on a phylogenetic tree under a
continuous-time Markov process, the states at the leaves provide
information about the identity of the underlying tree. It is known that
when the overall substitution rates becomes too high or too low, it
becomes increasingly impossible to distinguish the tree from a less
resolved tree (or indeed from any other tree) using any given number of
characters.

In particular, suppose we take a tree T with an interior edge e of
length ϵ and we search for an overall substitution rate λϵ that optimally
discriminates (under some metric or criterion) between Tϵ and T0 (i.e.
the tree that has the same topology and branch lengths as Tϵ except
that e has been collapsed (i.e. has length 0)). This optimal rate depends
in an interesting way on the tree's branch lengths (and the metric or
criterion used), as revealed by several studies over the last two decades
(see, for example, Fischer and Steel, 2009; Lewis et al., 2016;
Townsend, 2007; Townsend and Leuenberger, 2011; Yang, 1998),
and applied to the study of data sets (see, for instance, Klopfstein et al.,
2010; Townsend et al., 2012).

In this short note, we consider a more delicate question that leads
to some curious subtleties in its answer. Namely, how does λϵ behave as
ϵ tends to zero? For simplicity, we consider the four-leaf tree and two
simple substitution models. We find that the answer to this question

depends rather crucially on three things: whether the state space is
finite or infinite, the metric employed, and the degree of imbalance in
the branch lengths. Our results provide some analytic insight into
simulation-based findings reported by Klopfstein et al. (2010) (in the
second part of their section entitled ‘Optimum Rates of Evolution’);
specifically, the optimal rate in the finite-state setting can behave
differently from the optimal rate for generating characters that are
parsimony-informative and homoplasy-free.

2. Optimal rate results

Consider a binary phylogenetic tree Tϵ with four pendant edges of
length L and an interior edge of length ϵ, as shown in Fig. 1(i). Now
consider a Markovian process that generates states at the leaves of Tϵ.
We consider two models in this paper: (a) the two-state symmetric
model (sometimes referred to as the Neyman two-state model or the
Cavender-Farris-Neyman model), and (b) an infinite-allele model (in
which a change of state always leads to a new state, a model often
referred to as the infinite alleles model of Crow and Kimura (Kimura
and Crow, 1964), or the random cluster model (Steel, 2016)). For both
models the induced partition of the leaf set (in which the blocks are the
subsets of leaves in the same state) will be referred to as a character.
Thus for the two-state model, there are exactly eight possible char-
acters that can arise on Tϵ, while for the infinite-allele model, there are
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13 when ϵ > 0 or 12 when ϵ = 0 (there are 15 partitions of the set of
four leaves of Tϵ, however when ϵ > 0 (resp. ϵ = 0) two (resp. three)
have zero probability of being generated).

Suppose that the branch lengths are all multiplied by a rate factor
λ ≥ 0, and let Pϵ be the probability distribution on characters. Let P0 be
the probability distribution on characters under the corresponding
model on the star tree T0 (shown in Fig. 1(ii)).

Now, suppose that a data set D of k characters is generated by an
independent and identically distributed (i.i.d.) process on the (unre-
solved) star tree T0 (under either Model (a) or Model (b)). Let LLR
denote the log-likelihood ratio of the star tree T0 to the resolved tree Tϵ
(i.e. the logarithm of the ratio D T D T( | )/ ( | )0 ϵ ). As k grows, LLRk

1

converges in probability to its (constant) expected value, which is
precisely the Kullback–Leibler separation (see Cover and Thomas,
2006):

⎛
⎝⎜

⎞
⎠⎟∑d P P P i P i

P i
( , ) = ( ) ln ( )

( )
,

i
KL 0 ϵ 0

0

ϵ

where the summation is over all the possible characters.
Let λϵ be a value of λ that maximizes d P P( , )KL 0 ϵ . From the previous

paragraph, this is the rate that provides the largest expected likelihood
ratio in favour of the generating tree T0 over an alternative resolved
tree with an internal edge of length ϵ. We are interested in what
happens to λϵ as ϵ tends to zero. In that case, d P P( , )KL 0 ϵ also converges
to zero, but it is not immediately clear whether the optimal rate that
helps to distinguish T0 from Tϵ by maximizing d P P( , )KL 0 ϵ should be
increasing, decreasing or converging to some constant value. A large
rate improves the probability of a state-change occurring on the central
edge of Tϵ however, this comes at the price of greater randomization on
the pendant edges, which tends to obscure the signal of such a change
based on just the states at the leaves.

It turns out that the limiting behaviour of λϵ depends crucially on
whether the state space is finite or infinite. In Part (i) of the following
theorem, we consider just the two-state symmetric model (see e.g.
Chapter 7 of Steel (2016)) but we indicate in Fig. 5 that a similar result
appears to hold for the symmetric model on any number of states. The
result in Part (i) contrasts with that in Part (ii) for the infinite-allele
model, in which homoplasy (i.e. substitution to a state that has
appeared elsewhere in the tree) does not arise. This second result is
different from (but consistent with) a related result in Townsend
(2007).

Theorem 1.

(i) For the two-state symmetric model, λlim = 0.
ϵ→0 ϵ

(ii) By contrast, for the infinite-allele model, λlim = .Lϵ→0 ϵ
1
4

Proof. Part (i) Let p λ= (1 − exp( − 2 ϵ))1
2 be the probability of a state

change across the interior edge of Tϵ under the two-state model. Let p1
be the probability of generating a character on Tϵ, where one leaf is in

one partition block and the other three leaves are in a different
partition block, and let q1 be the corresponding probability on T0.
Because the four pendant edges of Tϵ and T0 have equal length, we
have:

p p q pq q= (1 − ) + = ,1 1 1 1 (1)

so q q pln( / ) = 01 1 1 .
Let p2 be the probability of generating either one of the two

characters that have a parsimony score of 2 on Tϵ, and let q2 be the
corresponding probability on T0. Once again we have:

p p q pq q= (1 − ) + = ,2 2 2 2 (2)

and so q q pln( / ) = 02 2 2 .
Let p12 be the probability of generating the character that has a

parsimony score of 1 on Tϵ and a parsimony score of 2 on T0, and let
q12 be the corresponding probability on T0. Let p0 be the probability of
generating the character that has parsimony score 0 on Tϵ and let q0 be
the corresponding probability on T0. Notice that we can write:

q α α q α α= + (1 − ) and = 2 (1 − ) ,0
4 4

12
2 2

(3)

where α e= (1 − )λL1
2

−2 . Moreover,

p p q pq= (1 − ) + ,12 12 0

and

p p q pq= (1 − ) + .0 0 12

It follows that

q q p q p q q p pq qln( / ) = − ln( / ) = − ln(1 − + / )12 12 12 12 12 12 12 0 12 (4)

and

q q p q p q q p pq qln( / ) = − ln( / ) = − ln(1 − + / ).0 0 0 0 0 0 0 12 0 (5)

Combining Eqs. (1)–(5) gives:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d P P q p

q
q

p q p
q
q

p( , ) = 0 + 0 − ln 1 − + − ln 1 − + .KL 0 ϵ 12
0

12
0

12

0

If we let θ θ λ q q= ( ) = /12 0, then:

⎛
⎝⎜

⎞
⎠⎟d P P q θ θ p

θ
θ p( , ) = − ln(1 + (1 − ) ) + ln(1 − (1 − ) ) .KL 0 ϵ 0 (6)

Notice that, by Eq. (3), we have:

θ α α
α α

e
e e

= 2 (1 − )
+ (1 − )

= 2(1 − )
(1 + ) + (1 − )

,
λL

λL λL

2 2

4 4

−4 2

−2 4 −2 4

and so, in Eq. (6), θ is a monotone increasing function from 0 (at λ = 0)
to a limiting value of 1 as λ → ∞. Note also that q q λ= ( )0 0 is a
monotone decreasing function from 1 (at λ = 0) to a limiting value of
1
8 as λ → ∞.

Now let us set λ x= ϵ in Eq. (6), for a fixed value of x. Then

p x x O= 1
2
(1 − exp( − 2ϵ )) = ϵ + (ϵ ),2 2 3

and from Eq. (3) we have θ x L O= 2 ϵ + (ϵ ).2 2 2 3 Therefore:

⎛
⎝⎜

⎞
⎠⎟x d P P x L

xL
xℓ( )≔lim ( , )/ϵ = − 2 ln 1 + 1

2
+ ,

ϵ→0 KL 0 ϵ
2 2 2

2 (7)

and so xℓ( ) converges to
L
1

4 2 as x → ∞.

Next, suppose that λϵ does not converge to zero as ϵ → 0. Then for
some δ > 0 and some sequence of values ϵi which converges to zero, we
have:

λ δ> > 0ϵi (8)

for all i. Let λ λ θ θ λ p e≔ , ≔ ( ) and ≔ (1 − ).i i i i
λ

ϵ
1
2

−2 ϵ
i

i i Notice that θ p(1 − )i i
converges to zero as i → ∞. This is because we can write

θ p Ae e0 ≤ (1 − ) ≤ (1 − )i i
Bλ λ− −2 ϵi i i for constants A B, > 0, and differen-

Fig. 1. (i) A binary four-leaf tree Tϵ with a short interior edge of length ϵ and four
pendant edges of equal length L. (ii) The star tree obtained from Tϵ by setting ϵ = 0. (iii)
A tree exhibiting two local optima for the rate λ maximizing d P P( , )KL 0 ϵ .
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tial calculus shows that the maximal value of Ae e(1 − )Bλ λ− −2 ϵ as λ > 0
varies converges to zero as ϵ → 0. Since θi is bounded away from 0 (by
Inequality (8)), it also follows that θ p θ p θ(1/ − 1) = (1 − ) /i i i i i converges
to zero as i → ∞.

Consequently, both θ p(1 − )i and θ p θ(1 − ) /i i will both lie within
(0, 1) for all i I≥ for some sufficiently large finite value I (dependent on
δ). We now apply the following inequality and expansion which hold
for all x y, ∈ (0, 1):

∑x x x y y
j

−ln(1 + ) < − +
2
, and − ln(1 − ) =

j

j2

≥1

with x θ p θ= (1 − ) /i i i and y θ p= (1 − )i i in Eq. (6). Noting that the two
linear terms in pi from Eq. (6) cancel we obtain only quadratic and
higher terms in pi. Thus, for all i I≥ :

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑d P P q λ

p
θ

θ
θ

θ p
j

( , ) < ( )
2
(1 − )( 1 − ) +

(1 − )
.i

i
i

i
i

j

i
j

i
j

KL 0 ϵ 0

2

≥3 (9)

Moreover, q λ q( ) < (0) = 1i0 0 (by Eq. (8)) and p λ≤ ϵi i i for all i, so we
can write:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑d P P λ θ

θ
θ θ λ

j
( , )
ϵ

<
2

(1 − )( 1 − ) + ϵ
2

(1 − ) ϵ .
i

i
i

i
i

i

j

i
j

i
j

i
j

KL 0 ϵ
2

2

≥3

−3

(10)

Let y t( ) = e
e e
2(1 − )

(1 + ) + (1 − )

t
t t

−2 2
− 4 − 4 . It can be verified that

⎛
⎝⎜

⎞
⎠⎟y t y t(1 − ( )) − ( ) < 1t

y t2
1
( )

2
for all t > 0. Applying this with t λ L= 2 i , we

obtain the following bound on the first term in Inequality (10):

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

λ θ
θ

θ
L2

(1 − )( 1 − ) < 1
4

.i
i

i
i

2

2

In addition, the second term on the right in Inequality (10) converges
to zero as i grows, since the summation term is absolutely bounded
(note that λ θ(1 − ) → 0i i as λ → ∞i ) and since the numerator term out
front, ϵi, converges to 0.

In summary, for sufficiently large values of i, we have
d P P( , )/ϵ <i LKL 0 ϵ

2 1
4 2 . Thus, by selecting x sufficiently large we can ensure

that xℓ( ) (given by Eq. (7), and which is based on a λ value that
converges to zero as ϵ → 0) takes a larger value for d P P( , )KL 0 ϵ than the
value λi. This completes the proof of Part (i).

For Part (ii), let y λL= 1 − exp( − ) and let ζ λ= 1 − exp( − ϵ); these
are the probabilities of a state change on a pendant and the interior
edge, respectively, in the infinite-allele model. The 12 partitions of
a b c d{ , , , } that can be generated with strictly positive probability on T0
fall into five disjoint classes (and the probabilities of generating
the partitions within a given class are the same). We label these
classes C C, …,1 5 where C abcd C a bcd b acd c abd d abc= { }, = { | , | , | , | }1 2 ,
C ac b d ad b c bc a d bd a c= { | | , | | , | | , | | }3 , C ab c d cd a b= { | | , | | }4 and C a b c d= { | | | }5 .
For i = 1, …, 5, let P i[ ]0 (resp. P i[ ])ϵ be the probability that the generated
partition lies in Class i on T0. We have:

P y P y y P y y
P y y P y y y
[1] = (1 − ) , [2] = 4 (1 − ) , [3] = 4 (1 − ) ,
[4] = 2 (1 − ) , [5] = 4 (1 − ) + .

0
4

0
3

0
2 2

0
2 2

0
3 4

Let P i[ ]ϵ be the corresponding probabilities of Tϵ. We can then write:

P i ζ P i ζD[ ] = (1 − ) [ ] + ,iϵ 0 (11)

where Di is dependent only on y. More precisely,

D D D D e e D e= = = 0, = 2 (1 − ), = (1 − ) .λL λL λL
1 2 3 4

−2 −2
5

−2 2 (12)

The expression for D4 arises because when there is a state change
across the interior edge of Tϵ then a partition in C4 occurs precisely
when there is no state change between the two leaves on one side of the
edge (with probability e λL−2 ) and there is a state change between the
two leaves on the other side of the edge (with probability e1 − λL−2 ); the

coefficient of 2 out front recognises that there are two ways that this
can occur. For D5, a state change across the interior edge of Tϵ leads to
the partition in C5 precisely if the leaves on one side of the interior edge
are in different states, and so too are the leaves on the other side of the
interior edges, and these two independent events have probability

e1 − λL−2 .
Now, each partition within any given class Ci has the same

probability of being generated on T0 (moreover, the same statement
applies for Tϵ in place of T0). This allows us to write dKL as a sum of five
terms (rather than 12) in the following way:

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠
⎟⎟∑ ∑d P P P i P i P i P i ζ P i D

P i
( , ) = − [ ] ln ( [ ]/ [ ]) = − [ ] ln 1 − [ ] −

[ ]
.

i i

i
KL 0 ϵ

=1

5

0 ϵ 0
=1

5

0
0

0

(13)

Now, Tϵ has one additional partition type that it can generate but T0
can not, namely the partition ab cd{ | }. This partition is generated by Tϵ
with probability ζe λL−4 and so P i ζe∑ [ ] = 1 −i

λL
=1
5

ϵ
−4 . By Eq. (11), we

obtain the identity

∑ ∑ ∑

∑ ∑

ζe P i ζ P i ζ D

P i ζ P i D

1 − = [ ] = (1 − ) [ ] +

= [ ] − ( [ ] − ),

λL

i i i
i

i i
i

−4

=1

5

ϵ
=1

5

0
=1

5

=1

5

0
=1

5

0

and since P i∑ [ ] = 1i=1
5

0 we deduce that:

∑ P i D e( [ ] − ) = ,
i

i
λL

=1

5

0
−4

(14)

which is equivalent to the identity D D e+ ⋯ + = 1 − λL
1 5

−4 from Eq.
(12).

Now, x x−ln(1 − ) ≥ for all values of x < 1 and combining this with
Eqs. (13) and (14) gives

∑ ∑d P P P i ζ P i D
P i

ζ P i D ζe( , ) ≥ [ ]· ( [ ] − )
[ ]

= ( [ ] − ) = .
i

i

i
i

λL
KL 0 ϵ

=1

5

0
0

0 =1

5

0
−4

(15)

By Eq. (13) we can write d P P a ζb( , ) = − ∑ ln(1 − ),i i iKL 0 ϵ =1
5 where ai and

bi are functions of λ defined for i = 1, 2, 3, 4, 5 by a P i= [ ]i 0 ,
b b b= = = 11 2 3 and

b a D
a

e
e

b e
e e

= − = −2
(1 − )

, = −4
(1 − )(1 + 3 )

.
λL

λL

λL

λL λL4
4 4

4

−

− 5

−2

− −

For L0 ≤ ϵ < we have ζb| | < 1i for each value of i. This is clear for
i = 1, 2, 3; the cases i=4 and i=5 require a little care as b b, → − ∞4 5 as

λ → 0. However, ζ also depends on λ and for L0 ≤ ϵ < 1
3 we have

ζb e e
e

ζb e
e

| | ≤ 2 (1 − )
(1 − )

< 2
3

and | | ≤ 1 −
1 −

< 1.
λL λ

λL

λ

λL4

− − ϵ

− 5

− ϵ

−

Thus we expand Eq. (13) via its Taylor series and write

d P P a( , ) = ∑ ∑i i j
b ζ

jKL 0 ϵ =1
5

≥1
i
j j
, and since the term for j=1 is the term

ζe λL−4 appearing in the lower bound for d P P( , )KL 0 ϵ (see Eq. (15), we
have:

∑ ∑d P P ζe a b ζ
j

0 ≤ ( , ) − ≤ | | .λL

i
i

j

i
j j

KL 0 ϵ
−4

=1

5

≥2 (16)

Notice that the term on the right of this last inequality can be written as

ζ a b·∑ | | ·∑ .i i i j
b ζ

j
2

=1
5 2

≥2
(| | )i

j−2
For each i = 1, …, 5 the term a b| |i i

2 is

bounded above by a constant times e λL− (this is clear for i = 1, 2, 3
and the above formulae for b4 and b5 ensure it also holds for i = 4, 5 as
there is a term e(1 − )λL− 2 in ai to cancel this term in the denominator
of bi

2). Consequently, from (16), we can write

d P P ζe ζ Ce0 ≤ ( , ) − ≤ ,λL cλ
KL 0 ϵ

−4 2 − (17)
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where C c, are absolute and strictly positive constants (not dependent
on λ or ϵ).

By differential calculus, λ′ = ln(1 + )Lϵ
1
ϵ

ϵ
4 maximizes ζe λL−4 , and

λlim ′ = Lϵ→0 ϵ
1
4 . Now for the value of λϵ that maximizes d P P( , )KL 0 ϵ , Eq.

(17) shows that λϵ ϵ must tend to zero as ϵ → 0, since otherwise there is
a sequence of values λϵi which tends to infinity, which leads to values
for d P P( , )KL 0 ϵ that are smaller than those obtained by setting λ λ= ′ϵ
(due to the exponential terms in Eq. (17)) which contradicts the
optimality assumption on λϵ. Thus λϵ → 0ϵ as ϵ → 0 which implies that

d P P λelim ( , )/ϵ = λL
ϵ→0 KL 0 ϵ

−4 , and this is maximized when λ = L
1
4 . This

completes the proof of Part (ii).□
Despite the contrast exhibited by Theorem 1 between the infinite-

allele and two-state setting we have a curious correspondence between
the models for the Euclidean metric (i.e. the L2 metric), as the following
result shows.

Theorem 2. For the Euclidean metric d2, the substitution rate value λ
that maximizes d P P( , )2 0 ϵ for the two-state symmetric model is given by

λ = ln (1 + )L
1
2ϵ

ϵ
2 , which converges to L

1
4 as ϵ → 0.

Proof. Using the Hadamard representation for the two-state
symmetric model (Hendy, 1989), an associated inner product
identity (Eq. 7.28 in Steel (2016)) shows that:

d P P e e( , ) = 1
2

(1 − ).Lλ λ
2 0 ϵ

−4 −2 ϵ
(18)

This function of λ has a unique local maximum at λ = ln (1 + )L
1
2ϵ

ϵ
2 .

Now, lim ln (1 + ) =L Lϵ→0
1
2ϵ

ϵ
2

1
4 , and at this value of λ we have

d P P elim ( , )/ϵ =ϵ→0 2 0 ϵ
1

2 2
−1.

Theorems 1 and 2 are illustrated in Fig. 2 and 3. Here, the edge
lengths of the tree are L=1 (for each of the four pendant edges) and
ϵ = 0.05 and ϵ = 0.1. The values were calculated using Eqs. (6) and (13)
(using Maple), and are consistent with the expressions used in the
derivation and statement of Theorems 1 and 2.

The Kullback–Leibler separation is closely related to the Fisher
information (Lehmann and Casella, 1998), and the usefulness of the
Fisher information in phylogenetic trees has first been studied in
Goldman (1998). It follows from large sample theory that the variance

of an efficient estimator of the edge length ϵ, based on the data set D for
a large number k of characters (and with L and λ being known), is
inversely proportional to the Fisher information with respect to the
parameter ϵ. The Fisher information is defined by:

⎡
⎣⎢

⎤
⎦⎥ ∑I d

d
P i P i d

d
P i(ϵ) = −

ϵ
ln ( ) = − ( )

ϵ
ln ( ).

i

2

2 ϵ ϵ

2

2 ϵ

For the two-state symmetric model, we can expand P iln ( )ϵ in a Taylor
series around ϵ = 0 to obtain:

Fig. 2. Kullback–Leibler separation of P0 and Pϵ for a quartet tree with exterior edges of lengths L=1 and interior edge of length ϵ = 0.05 and ϵ = 0.1 as functions of λ, for the two-state
and infinite-allele models (calculated using Eqs. (6) and (13) respectively). The graph on the left is consistent with a progression of the optimal λ value towards zero as ϵ decreases. For
the infinite-allele model (right), the optimal λ value converges to = 0.25L

1
4 as ϵ → 0, and d P P( , )KL 0 ϵ converges to eL

ϵ
4

−1.

Fig. 3. The Euclidean distance d2 between P0 and Pϵ for a quartet tree with exterior
edges of lengths L=1 and interior edge of length ϵ = 0.05 and ϵ = 0.1 as functions of λ, for
the two-state model (calculated using Eq. (18)). The optimal λ value converges to

= 0.25L
1
4 as ϵ → 0, giving eϵ

2 2
−1 as the asymptotic value of d P P( , )2 0 ϵ .
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⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )

d P P P i P i
P i

P i P i P i

P i d
d

P i d
d

P i O

d
d

P i P i d
d

P i O

I O

( , ) = ∑ ( )ln ( )
( )

= ∑ ( )(ln ( ) − ln ( ))
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In the two-state model with L=1, analysis of the coefficient of ϵ2 in Eq.
(6) (using Mathematica) provides the following explicit description of
the Fisher information term I(0):

I λ λ λ
λ λ

(0) = 8 exp( − 4 )cosh (2 )
(3 + cosh(4 ))sinh (2 )

.
2 2

2 (20)

Let ϵ̂ be an asymptotically efficient estimator of the short edge
length, i.e. one whose variance asymptotically achieves the Cramér-Rao
bound (see Ch. 6.2 in Lehmann and Casella, 1998). Then its relative
error, based on a large number k of i.i.d. generated characters, is
roughly

kIrelative error(ϵ̂)≔ var(ϵ̂)
ϵ

≈ 1/ (ϵ)
ϵ

.

From (19), we get, for small values of ϵ, the following approximation
under the two-state symmetric model:

k d P Prelative error(ϵ̂) ≈ [2 ( , )] .KL 0 ϵ
−1

From this we see that the optimal rate λϵ minimizes the relative
estimation error for the edge length, again underlying the usefulness of
Kullback–Leibler separation in this setting.

3. Unequal pendant edge lengths

Theorem 1(i) is not generally valid for quartets when we drop the
assumption of equal edge lengths. Fig. 4 shows the Kullback–Leibler
separation d P P( , )KL 0 ϵ dependent on λ for a quartet tree with interior
edge length ϵ = 0.05 and unequal lengths of 1 and 10 on the pendant
edges on one side of the interior edge e, and also 1 and 10 on the
pendant edges on other side of e (as shown in Fig. 1(iii)).

There is still a local maximum which tends to 0 as ϵ → 0 but the
global maximum λϵ stays bounded away from 0.

This idiosyncratic shape of the curve in the highly asymmetric case
can be explained as follows: If two edges on each side of the central
edge are very long, they can essentially be ignored (the state at each of
the two leaves is almost completely random) and the states at the leaves
of the two shorter edges of lengths 1 are more informative for inferring
the total length of 2 + ϵ of the path joining them, and thereby for
deciding whether or not ϵ = 0. Let

p λ(ϵ) = 1
2
(1 + exp( − 2 (2 + ϵ)))

be the probability that the two characters at the leaves of the unit-
length edges are in the same state. Then the Fisher information with
respect to ϵ, when we ignore the characters at the leaves of the two long
edges, is the given by:

I p d
d

p p d
d

p

λ
λ

(ϵ) = − (ϵ)
ϵ

ln (ϵ) − (1 − (ϵ))
ϵ

ln (1 − (ϵ))

= 4
exp(4 (2 + ϵ)) − 1

.

2

2

2

2

2

2

(21)

Fig. 4 shows Iϵ (0)/22
2 as a function of λ (the dotted line). Clearly, the

global maximum is explained by the estimation of ϵ via the two unit-
length edges. As for Fig. 2, the values were calculated by simulating
characters over a range of λ values (using the R statistical package).

By lessening the imbalance between the pendant edge lengths it is
possible to make the two local optima for the rates have equal (global)
optimal values; which provides an example where the global optimal
rate for maximizing d P P( , )KL 0 ϵ is not unique. When the edge length
imbalance decreases further, simulations suggest that Theorem 1(i)
remains valid (i.e. the limit λ → 0ϵ as ϵ → 0 does not just hold for the
special setting in which all pendant edges have exactly equal lengths).

3.1. Concluding comments

For the biologist, Theorem 1 (i) provides a caution: in resolving a
near-polytomy, it is tempting to search for genetic data that have
evolved fast enough to have undergone substitution events on the
interior edge; however, a slower-evolving data set may, in fact, be more
likely to distinguish the resolved tree from an unresolved phylogeny.
For infinite-allele models, however, Theorem 1(ii) ensures there is a
positive optimal rate regardless of how short the interior edge is
(consistent with a related result from Townsend (2007)). Theorem 1
applies to balanced trees, and we also saw that for sufficiently
unbalanced trees, these findings can change due to the appearance of
a second local optimal rate that eventually becomes the global optimal
rate (cf Fig. 4). Moreover, as Fig Fig 5 indicates, the results established
for the two-state symmetric model appear to hold for other finite-state
models such as the four-state symmetric model (often referred to as the
‘Jukes-Cantor (1969)' model (JC69); for details see Steel (2016),
Section 7.2.2).

We have assumed throughout that the lengths of the four pendant
edges of the tree remain fixed as the interior edge shrinks to zero. If the
pendent edges are also allowed to shrink, then Theorem 1 no longer
applies. For example, consider the binary tree T′ϵ that has an interior
edge of length ϵ and four pendant edges of length Lϵ. Then as ϵ → 0,
the optimal rate λϵ now increases towards infinity rather than
decreasing to zero as ϵ → 0. The reason for this is quite simple.
Consider the tree T1 that has an interior edges of length 1 and four
pendant edges each of length L. This tree has some optimal rate λ* that
maximizes dKL. Now T′ϵ is obtained from T1 by multiplying each edge
length of T1 by λϵ. Thus, for Tϵ, the optimal rate is given by
λ λ= */ϵ → ∞ϵ as ϵ → 0.

Finally, we have considered d P P( , )KL 0 ϵ rather than d P P( , )KL ϵ 0 ,
partly because the former is easier to analyse mathematically, and
is well-defined in the infinite-allele setting (d P P( , )KL ϵ 0 is not well-
defined for this model since the partition ab cd{ | } has positive

Fig. 4. Kullback–Leibler separation (solid line) for a quartet tree with exterior edges of
lengths 1 and 10 on both sides of the interior edge of length ϵ = 0.05 as a function of λ.
The dotted line shows the Fisher information term from Eq. (21).
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probability under Pϵ for ϵ > 0 and zero probability under P0).
However, a more fundamental reason for our choice of d P P( , )KL 0 ϵ is
that it is more natural to consider the unresolved tree (ϵ = 0) as the
null hypothesis and the resolved tree as the alternative hypothesis
because one typically wishes to disprove the null which in our case
means to reject the polytomy.
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