
Appendix S1: Invasion criterion

One of the most useful criteria for understanding multispecies coexistence has been based

on the notion of species invasion (Case, 1990, 2000). The invasion criterion establishes

that if in a community of n-species, each species can be removed, reintroduced into the

sub-community of n− 1 species, and grow, then species coexistence is guaranteed (Case,

2000). Mathematically, the condition for species i to invade the sub-community of n− 1

species is given by the invasion growth rate rinvi . For the Lotka Volterra model defined in

the main text, let r be the vector of intrinsic growth rates and α the matrix of

competition coefficients of a given set of n-species. Let us assume that species i is

depressed to the limit at which its abundance is zero. Then the abundances, if positive,

of the n− 1 remaining species are given by the following vector

Ñ−i = (α−i,−i)
−1r−i, (S1)

where α−i,−i is the interaction matrix without row and column i, and r−i is the vector

of intrinsic growth rates without the element i. Assuming that the abundances of the

n− 1 species are positive, i.e., (Ñ−i)j > 0 for each species j, the invasion growth rate of

species i then can be defined by

rinvi = ri −
∑
k

(αi,−i)k(Ñ−i)k, (S2)

where αi,−i is the row i of the matrix of competition coefficients without the column i.

Biologically, the invasion growth rate corresponds to the per capita growth of species i

when completely depressed, and it shows that species i can invade the community if the

invasion growth rate is positive, i.e., rinvi > 0. Assuming that the competition system is

globally stable, and that each species can invade, then it is clear that this criterion does

grant the coexistence of the n-species community. Note, however, that the invasion

criterion defined above needs as a prerequisite the coexistence of all the combinations of

n− 1 species (i.e., for all cases the solution of Equation S1 has to be positive). This

prerequisite is always true for 2-species communities (if one species goes extinct then the

other one will always persist).

Importantly, the invasion criterion guarantees multispecies coexistence in the classical

Lotka-Volterra competition model. That is, let α be the interaction competition matrix

of a community of n species, and let us assume that this matrix of competition

coefficients is either positive definite or Volterra-dissipative, i.e., globally stable. Any

sub-matrix of a positive definite or Volterra-dissipative matrix is again positive definite or

Volterra-dissipative (Logofet, 1993). Biologically, this means that the global stability

property is conserved when looking at a sub-community. Additionally, the invasion

criterion assumes that all the n sub-communities of n− 1 species are feasible. This

implies that an equilibrium point with fewer species in one of the n− 1 sub-communities
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is automatically unstable. The opposite would be in contradiction to the assumption that

the sub-communities of n− 1 are all feasible. Similarly, the invasion criterion assumes

that the invasion growth rates are positive for all species. This implies that the n feasible

equilibria with n− 1 are all unstable. Therefore, the only possibility is the existence of a

feasible and stable equilibrium point for the entire community. This proves that the

invasion criterion is a sufficient condition for multispecies coexistence (Case, 2000). In

fact, the invasion criterion can be thought of as a sufficient condition for short-term

species permanence (Jansen and Sigmund, 1998). Yet, this criterion does not apply any

more in the case where at least one of the n− 1 sub-communities is not feasible.

Note that the invasion criterion needs as a prerequisite the coexistence of all the

combinations of n− 1 species (i.e., for all cases the solution of Equation S1 has to be

positive). This prerequisite is always true for 2-species communities (if one species goes

extinct then the other one will always persist). For 3-species communities, this will imply

that the region of triplet coexistence (Ω) always has to be inside the region of pairwise

coexistence (Ωall). Figure 7A illustrates this case. If the set of intrinsic growth rates is

located anywhere inside the dark region (e.g., orange point), each individual species can

be removed (the other two species will coexist as defined by their region of pairwise

coexistence), and reintroduced (the triplet will coexist as defined by the darker region).

However, Figure 7B illustrates a scenario where the region of triplet coexistence does not

fall 100% inside the region of overlap of pairwise coexistence (similar to the case shown in

Figure 6D). Importantly, if the set of intrinsic growth rates is located at the orange point

(inside the region of overlap), the invasion criterion applies just as in the case above.

However, if the set of intrinsic growth rates is located at the red point (outside the region

of overlap), then we can observe triplet coexistence but not the coexistence of species 1

and 2 in isolation (left side).

An extreme case showing that the invasion criterion is not a necessary condition for

species coexistence is the rock-paper-scissors dynamic, whose feasibility domain is

illustrated in Figure 7C. Here, the domain of coexistence of the three pairs of species does

not intersect (the pairwise domain does not exit). If one chooses a vector of intrinsic

growth rates in the middle of the darker region (red point), species 3 out-competes

species 2 in absence of species 1 (the point is outside of the pair-wise region described by

the left side of the outer triangle, and closer to species 3), species 1 out-competes species

3 in absence of species 2 (the point is outside of the pair-wise region described by the

right side of the outer triangle, and closer to species 1), and species 2 out-competes

species 1 in absence of species 3 (the point is outside of the pair-wise region described by

the bottom side of the outer triangle, and closer to species 2). Therefore the coexistence

of the triplet only emerges from a mechanism other than pairwise

coexistence—rock-paper-scissors competition in this case. Overall, an invasion condition
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based on one species invading the other two does not entirely capture the potential for

coexistence (Case, 2000). This potential emerging from simple population dynamics can

only be seen by moving from an algebraic into a structural approach.
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Appendix S2: Coexistence defined by community

persistence and permanence

The ecological concept of species coexistence is broad and several important but not

necessarily equivalent definitions have been proposed (Hofbauer and Sigmund, 1998).

Generally, coexistence is taken to mean the persistence of all species, which implies that

species abundances should be strictly positive over the long term (Hofbauer and

Sigmund, 1998). However, this definition of coexistence does not exclude the possibility

that the trajectories of species abundances, defined by the dynamical system, could

transiently approach zero for one or more species. In such cases, a small perturbation can

push species towards extinction. Therefore, a system is called “permanent” if all

trajectories remain bounded away from zero, i.e., the abundances never go below and

above some positive thresholds (Hofbauer and Sigmund, 1998). Thus species permanence

is a stronger condition than species persistence for coexistence. With the structural

approach to species coexistence developed, we investigate the necessary condition for

permanence, and the necessary and sufficient condition for persistence: that is the

existence of a feasible and globally stable equilibrium point.

Unfortunately, sufficient conditions for permanence in systems with more than three

species are not known (Hofbauer and Sigmund, 1998). However, global stability of a

feasible (as defined in the text) equilibrium point is a sufficient condition for species

persistence (Svirezhev and Logofet, 1983; Logofet, 1993, 2005; Rohr et al., 2014; Saavedra

et al., 2016b,a), and conditions for global stability have been studied intensively during

the past decades (summarized in Appendix S3). Importantly, in many cases, global

stability conditions can be deduced directly from the matrix of competition coefficients,

and do not involve the intrinsic growth rates. For example, matrices of pairwise

interactions as derived from a niche overlap framework (termed “dissipative” (Volterra,

1931) are always globally stable (Svirezhev and Logofet, 1983; Logofet, 1993, 2005).

Therefore, to investigate species coexistence in this manuscript we focus mostly on

feasibility explicitly assuming that global stability is satisfied.

The conditions for global stability in a matrix of competition coefficients are described in

Appendix S3, but we note that even if we instead focus on a local stability condition, our

results remain largely the same for most models of competing species. Note that

feasibility is a necessary condition for permanence and persistence, while global stability

is a sufficient condition for persistence once feasibility conditions are fulfilled. Therefore,

our structural approach can provide the necessary conditions for species coexistence

regardless of whether the systems is stable or not.
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Appendix S3: Short review of stability analysis

In this appendix we present a short review about the mathematical results about the

stability of feasible equilibrium points for ordinary differential equations of the form
dNi

dt
= Nifi(N ). We recall that an equilibrium point (N∗

i ) is called feasible when it

satisfies both the condition fi(N
∗) = 0 and N∗

i > 0 for all species i. The theory presented

here is part of classic results that can be found in the following references (Volterra, 1931;

Johnson, 1974; Goh, 1977; Svirezhev and Logofet, 1983; Hofbauer and Sigmund, 1998;

Logofet, 1993; Takeuchi, 1996; Logofet, 2005).

For instance, a given equilibrium point is locally stable if any small perturbation in the

population size of species is absorbed, and the system eventually returns to its equilibrium

point. A stronger dynamical stability condition is global stability. Global stability implies

that the equilibrium point is a global attractor and that the trajectories of the dynamical

system converge to the equilibrium regardless of their starting point. Global stability is

conventionally derived from a Lyapunov function (Goh, 1977; Logofet, 1993).

The condition for local stability of an equilibrium point is encapsulated in the so-called

Jacobian matrix (J), which is evaluated at the equilibrium point (Case, 2000; Strogatz,

2001). We recall that the Jacobian matrix is made of the partial derivative of the right

side of the differential equation, i.e., Jij = ∂Nifi(N)
∂Nj

. Evaluated at a feasible equilibrium

point N∗
i , the Jacobian matrix reads,

Jij = N∗
i

∂fi(N )

∂Nj

|N=N∗ .

The classic results in dynamical systems state that an equilibrium point is locally stable

(i.e., the system return to its equilibrium point after infinitesimal small perturbation) if

all the eigenvalues of the Jacobian matrix have negative real parts (or positive real parts

if the negative sign is written in front of the matrix of competition coefficients) (Case,

2000; Strogatz, 2001). If one assumes a linear function for the per capita growth

functions fi = ri −
∑

j αijNj, then the Jacobian matrix is given by Jij = −N∗
i αij. The

Jacobian informs only about the local stability of the equilibrium point at which it has

been evaluated. However, here we are not only interested in one particular equilibrium

point and whether it is locally stable, but we are interested in assessing the global

stability of any feasible equilibrium point.

From now on, we assume that the per capita growth rate is a linear function, and

therefore, the dynamical system is given by the generalized Lotka-Volterra model,
dNi

dt
= Ni(ri −

∑
j αijNj). As shown above, the elements of the Jacobian matrix are a

function of both the interaction strength (αij) and the equilibrium point (N∗
i > 0).

Therefore, for a given interaction matrix α, the eigenvalues of the Jacobian matrix are
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function of the specific value of the equilibrium point. This implies, that in theory, it is

possible to have an equilibrium point that is locally stable, while another equilibrium

point is unstable for the same matrix of competition coefficients. To overcome this

problem, one can use the concept of D-stability (Johnson, 1974; Svirezhev and Logofet,

1983; Logofet, 1993, 2005). A matrix is called D-stable if its eigenvalues have positive real

parts when the matrix is multiplied from the left by any positive diagonal matrix. Thus,

if the matrix of competition coefficients α is D-stable, this condition grants the local

stability of any feasible equilibrium point.

The notion of D-stability grants the local stability of any feasible equilibrium point,

however, it does not grant global stability. By global stability of a feasible equilibrium we

mean that all the trajectories of the dynamical system converge to that equilibrium point

independently of the initial conditions, assuming they are positive (Volterra, 1931; Goh,

1977; Svirezhev and Logofet, 1983; Hofbauer and Sigmund, 1998; Logofet, 1993;

Takeuchi, 1996; Logofet, 2005). A sufficient condition that implies global stability is for a

matrix to be Volterra-dissipative. A matrix A is Volterra-dissipative if there exist a

positive diagonal matrix D such that the matrix DA+AtD is positive definite (all the

eigenvalues are positive). It has been proved that if the matrix of competition coefficients

α is Volterra-dissipative then any feasible equilibrium is globally stable. One can even

prove that if the matrix of competition coefficients α is Volterra-dissipative then there

exists a unique global stable equilibrium point, which is not necessarily feasible (some

species may go extinct).

Volterra-dissipative matrices imply D-stability, which in turn implies that all the

eigenvalues of the interaction matrix have real positive parts (Svirezhev and Logofet,

1983; Logofet, 1993, 2005). In general it is difficult to test whether a matrix is

Volterra-dissipative. However, for some classes of matrices we have analytic results. For

example if the matrix of competition coefficients is derived from species distances in a

niche space, then this matrix is automatically Volterra-dissipative (MacArthur and

Levins, 1967; Logofet, 1993). One can test whether a matrix is Volterra-dissipative by

testing if it is positive definite. A matrix A is positive definite if the eigenvalues of its

symmetrization (A+At) are positive. A positive definite matrix is automatically

Volterra-dissipative, however, a Volterra-dissipative is not necessarily positive definite.

Positive definite is in general a very strong condition on a matrix.

The above notions of stability assume a linear function for the per capita growth rate

(fi(N )), i.e., a generalized Lotka-Volterra model. In the following we present a

mathematical result that generalizes the concept of Volterra-dissipative to nonlinear

functions for the per capita growth rate (fi) (Goh, 1977). We introduce the matrix of the

partial derivative of the functions fi:

2



αij(N ) =
∂fi(N )

∂Nj

.

This matrix is function of abundances N and can intuitively be interpreted as the

linearized interaction strength at the point N . If there exists a positive diagonal matrix

D such that Dα(N) +α(N)tD is positive definite for any positive value of N > 0,

then a feasible equilibrium is globally stable. Note that the diagonal matrix D has to be

independent of the point N . The difficulty is to find the diagonal matrix D, however, if

the matrix αij(N ) is positive definite for any value of N then a feasible equilibrium is

globally stable.
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Appendix S4: Examples of dynamical models to

which our structural framework can be applied

In this appendix we provide four examples of dynamical systems describing the

competition among species to which the structural framework apply (Volterra, 1931;

Case, 2000; Brauer and Castillo-Chavez, 2012). The two first examples are time

continuous models given by ordinary differential equation. The other two examples are

time discrete models and therefore are described by difference equations.

Competition Lotka-Volterra model

The competition Lotka-Volterra model is given by the following ordinary differential

equation (Volterra, 1931; Case, 2000; Brauer and Castillo-Chavez, 2012):

dNi

dt
= Ni

(
ri −

n∑
j=1

αijNj

)
The parameters of the model correspond to the intrinsic growth rate (ri > 0) of species i,

and the competition interaction strength (αij > 0) between species i and j. The

structural framework for the niche and fitness difference applies directly to the model,

and all these quantities (Equations 13 to 15) can be computed directly. The global

stability condition is determined by assuming that the matrix of competition coefficients

(α) is Volterra-dissipative (see Appendix S3).

Saturating competition model

This is a modification of the Lotka-Volterra model by assuming a non-linear function for

the per capita growth rates (Brauer and Castillo-Chavez, 2012). For this model we

assume that the negative effect of the competition is achieved trough a saturating

function. The model is given by the following ordinary differential equation:

dNi

dt
= Ni

(
−µi +

νi
1 +

∑n
j=1 α̃ijNj

)
The parameters of the model correspond to the demographic parameters (µi > 0 and

νi > 0) of species i, and the competition interaction (α̃ij > 0) between species i and j. To

apply the structural framework to this model we need first to derive the equation for a

feasible equilibrium. A feasible equilibrium N ∗ corresponds to the solution of

−µi +
νi

1 +
∑n

j=1 α̃ijN
∗
j

= 0
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for all species i. By manipulating this equation we arrive at the following linear equation

νi − µi =
n∑
j=1

µiα̃ijN
∗
j .

By identifying ri = νi − µi and αij = µiα̃ij, we can apply the structural framework

(Equations 13 to 15). The stability condition for the model can be derived as follow. As

explained in Appendix S3, we compute the partial derivative of the per capita growth

functions. They are given by

αij(N ) =
νiα̃ij

(1 +
∑n

j=1 α̃ijNj)2
.

If the matrix α̃ is derived from a niche overlap framework, then this implies that the

matrix of partial derivatives (αij(N )) is positive definite for any value of N > 0, and

therefore, this grants the global stability of any feasible equilibrium point.

Time discrete Lotka-Volterra model

The time discrete version of the competition Lotka-Volterra model is given by the

following difference equation (Case, 2000; Brauer and Castillo-Chavez, 2012):

Ni,t+1 = Ni,te
(ri−

∑S
j=1 αijNj).

The state variable Ni,t denotes the abundance (or biomass) of species i at time t. The

parameters of the model correspond to the intrinsic growth rates (ri) of species i, and the

competition interaction strength (αij). Similarly to the time continuous model, the

structural framework (Equations 13 to 15) applies directly. The stability condition is

more difficult to derive. Indeed, even if the matrix of competition coefficients α is

positive definite or Volterra-dissipative and there exists a feasible equilibrium point,

depending on the level of intrinsic growth rate, the model may exhibit cyclic and chaotic

behavior. This phenomenon is known as the doubling-period.

Annual plant model

The annual plant model is a time discrete model that describes the dynamic of seed

banks. The state variable Ni,t corresponds to the seed bank of plant species i at time t.

The model is given by the following difference equation (Chesson, 1990):

Ni,t+1 = (1 − gi) siNi,t +
giλiNi,t

1 +
∑n

j=1 α̃ijgjNj,t

.

The parameters correspond to the germination rate (0 < gi < 1), the seed survival

probability (0 < si < 1), the fecundity rate (λi), and the competition strength (α̃ij). To

apply the structural framework, we first need to derive the equations determining the
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feasible equilibrium N ∗ > 0. A feasible equilibrium has to be the solution of the equation

(1 − gi) si + giλi
1+

∑n
j=1 α̃ijgjN∗

j
= 1 for all species i. By manipulating this equation we can

derive the following linear equation:

giλi
1 − (1 − gi)si

− 1 =
n∑
j=1

α̃ijgjN
∗
j .

By identifying ri = giλi
1−(1−gi)si − 1 and αij = α̃ijgj, we can apply the structural framework

(Equations 13 to 15). The stability conditions are difficult to derive analytically.

Numerical simulations tend to suggest that if the matrix of competition coefficients α̃ is

positive definite or Volterra-dissipative then a feasible equilibrium is globally stable.

However, there has been no proofs showing the conditions for global stability in

multispecies systems.
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Appendix S5: Differences between the MCT and the

structural framework for 2-species coexistence

The structural approach and MCT framework quantify niche and fitness differences in a

slightly different way. MCT’s framework incorporates the competitive imbalance between

two competitors, by multiplying each term of the inequality (Equ. 3) by
√

α22α21

α11α12
, while

the structural approach quantifies directly the solid angle defined by the same inequality

(Equ. 3). Therefore, MCT’s niche difference can be seen as the structural analog of niche

difference after removing the effects of the competitive imbalance. In the MCT approach,

removing the effects of the competitive imbalance has the advantage of revealing the

dominant competitor when the niche difference is zero.

Figure S1 shows two extreme cases illustrating the subtle but fundamental difference

between MCT’s and the structural frameworks. Specifically, the top panels (A-C) show

that if the position of the feasibility domain (area formed by the inequalities) changes due

to a changing competitive imbalance, a compensatory increase in the MCT niche

difference is required to yield the same structural analog of niche difference Ω. Similarly,

the bottom panels (D-E) show that if one interspecific competition coefficient equals zero

(i.e., one of the slopes lies on the border) any niche difference less than 1 will allow

coexistence under MCT. By contrast, the structural approach is a geometric approach

that quantifies the set of intrinsic growth rates leading to coexistence independent of

whether the competition among species is balanced (and gives different Ω in the two

cases depicted in panels d and e). Note that only the structural approach has a

probabilistic interpretation. Indeed the structural-based measure of niche difference Ω

gives the probability of having a feasible system, i.e., it is the probability of sampling a

set of growth rates in the feasibility domain (assuming that the growth rates are sampled

uniformly but with a fixed norm, where the direction of the vector of growth rates is

sampled uniformly).

We may wonder if there is a way to incorporate the competitive imbalance into the

structural approach. To do this, we first need to understand from where this fundamental

difference is arising. MCT’s niche difference is deduced from the two inequalities (2),

which give the condition of coexistence (assuming the stability condition satisfied). The

two inequalities (2) are then combined into Equation (3), which describes the upper and

lower bound that the ratio in intrinsic growth rates can tolerate to ensure coexistence.

Then the competitive imbalance term is incorporated by multiplying each term of

Equation (3) by the factor
√

α22α21

α11α12
. This leads to the classical definition of niche

difference (Equ. 4).
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Figure S1: Differences between the MCT and the structural approaches. Panels
A and B show the same area (Ω) between the two inequalities (green lines) but in different
positions characterized by the angle γ between the border (x-axis) and the centroid of the
area (orange line). Panel C shows the value of the classic niche difference as a function
of γ. Note that in the structural approach, the structural analog of niche difference (Ω)
does not change as a function of γ. The dashed lines correspond to the values of γ shown
in Panels A and B. The red line in Panel C corresponds to the renormalized structural
analog of niche difference. Panels D and E show different areas (Ω), where the bottom
slope lies on the border (x-axis). Panel F shows the value of these areas calculated as
the niche difference under the structural approach (x-axis) and the classic niche difference
(y-axis). Note that the classic niche difference is always 1. The dashed lines correspond to
the values of Ω shown in Panels D and E.

As explained in the main text, simple inequalities equivalent to the MCT’s ones for

n-species do not exist. Therefore, there is no straightforward way to incorporate the

competitive imbalance in the structural approach. Note that in the two species case,

incorporating the competitive imbalance is equivalent to renormalizing the intrinsic

growth rates of the two species by r1 → r1/
√
α11α12 and by r2 → r2/

√
α21α22. Then we

also need to renormalize the interaction strengths as follows[
α11 α12

α21 α22

]
−→

[
α11/
√
α11α12 α12/

√
α11α12

α21/
√
α21α22 α22/

√
α21α22

]
.

Finally, we can recompute the solid angle with the renormalized interaction strengths.

For two species, the renormalized solid angle behaves in a similar way as the classical

2



niche difference (shown by the red line on Figure S1.C). More generally, in dimension n,

we may renormalize the interaction strengths as follows

αij −→
αij

n
√∏n

k=1 αik

and compute the solid angle (Ω) based on the renormalized interaction strength.

However, this renormalization as in MCT’s approach is informative if no interspecific

interaction is close to zero (see discussion above). Moreover, the comparison of niche

differences (at any n-dimensional side in the simplex, is only possible under a structural

approach. Under MCT’s framework, as we would require to re-scale the matrix of

competition coefficients for each pairwise case (or n-dimensional side in the simplex),

each niche difference would lead to different units (defined by the particular re-scaling),

making impossible their straight comparison across matrices or dimensions. In fact, to

make all niche differences with the same units, one would need to remove the re-scaling,

going back to the structural approach.
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Appendix S6: Mathematical derivation and numerical

estimation of the structural analog of niche difference

Ω

The structural analog of niche difference is mathematically defined as the normalized

solid angle of the cone defining the feasibility domain. We recall that this cone is

generated by the column-vectors of the interaction strength matrix:

DF (α) = {r = N∗
1v1 +N∗

2v2 + · · ·+N∗
nvn, with N∗

1 > 0, N∗
2 > 0, . . . , N∗

n > 0} ,

where

α =

α11 · · · α1n

...
. . .

...

αn1 · · · αnn

 =


...

...
...

v1 v2 . . . vn
...

...
...

 .
The solid angle of such a cone can be computed by the following multiple integration (for

the mathematical derivation and details see Ribando, 2006):

Ω =
2n| det(α)|

πn/2

∫
· · ·

∫
Rn

≥0

e−x
TαTαxdx.

The solid angle has been normalized such that Ω = 1 in absence of interspecific

interaction (αij = 0, i 6= j). Moreover, by setting αTα = 1
2
Σ−1, the above integration

transforms into:

Ω =
2n

(2π)n/2
√
| det(Σ)|

∫
· · ·

∫
Rn

≥0

e−x
T 1

2
Σ−1xdx,

which is (up to a multiplicative factor of 2n) the cumulative distribution of a multivariate

normal distribution centered in zero and of variance-covariance Σ. The cumulative

distribution of a multivariate normal distribution can efficiently be estimated using the

quasi Monte-Carlo algorithm developed by A. Genz (Genz and Bretz, 2009; Genz et al.,

2016).
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Appendix S7: Geometric shapes of the feasibility

domain

Here, we explore the different geometric shapes of the feasibility domain and their effect

on multispecies coexistence. To do this, we randomly generated 20 thousand globally

stable communities with different number of species, where the interaction matrices were

drawn following a niche framework (see below). For each generated community, its

structural analog of niche difference Ω was calculated, and then different vectors of

intrinsic growth rates r were sampled and used to compute the number of coexisting

species and the structural analog of fitness difference θ. The number of coexisting species

was computed by solving the abundances at equilibrium N∗
i (abundances greater than

zero are considered as coexisting species). The structural analog of fitness difference was

computed by comparing the sampled vector r and the corresponding centroid of the

feasibility domain rc.

We find that for communities with more than 2 species, there is no longer the clear

division between regions of coexistence and exclusion, as in the 2-species case (Fig. S1).

While the combination of high structural analog of niche differences and low structural

analog of fitness differences yield higher chances of coexistence as in the 2-species case,

now communities with the same combination of structural analog of niche and fitness

differences can have a different number of coexisting species. These findings reveal that,

in contrast to the 2-species case, multispecies coexistence cannot be predicted with niche

and fitness differences only. The reason is that two multispecies communities with the

same structural analog of niche difference may not tolerate the same structural analog of

fitness difference. This happens because various geometric shapes of the feasibility

domain (defined by the pairwise interactions) can produce the same structural analog of

niche difference Ω (Figs. S2A and S2B). This variable geometry implies that a community

can tolerate a greater structural analog of fitness difference in some directions than others.

The above limitations reveal a challenge when defining the structural analog of niche

difference in systems with more than two competitors, and this involves taking into

account the shape of the feasibility domain. Unfortunately this is not an easy task, but

one possible solution involves computing the asymmetry of the feasibility domain. This

asymmetry can be estimated by the variation among all the n-faces of the given

multidimensional cone. This can be computed by the variance of all the n-structural

analog of niche differences generated by removing each of the n-species in the community

independently. For instance, if we have a 3-species system, the feasibility domain will

form a 3-dimensional cone and can be projected on the 2-dimensional simplex. The

projection corresponds to a triangle, and each of its sides corresponds to the length of the

feasibility domain of each pairwise interaction. If the pairwise interactions are symmetric

and equal, this variance would be zero. The higher the variance is, the higher the

1



asymmetry of the feasibility domain.

Figure S2C shows that for distinct 3-species communities with the same structural analog

of niche difference, the higher the variance or asymmetry in their feasibility domain, the

lower their minimum structural analog of fitness difference that can be tolerated in any

particular direction. Note that while the minimum structural analog of fitness difference

is a good indicator of the level of tolerance under random perturbations, the natural

variation in intrinsic growth rates may tend to fall in one particular direction. Thus,

systems with high asymmetry do not need to be vulnerable systems necessarily.

Niche framework

We generated 10 thousand random matrices following a niche overlap framework

(MacArthur and Levins, 1967; Levins, 1968). These matrices are by definition globally

stable, requiring only to have feasible equilibrium points to fulfill our conditions of

species coexistence. Specifically, these matrices were generated using the following

procedure. For a matrix of dimension S, assuming a one dimensional niche space, the

diet of species i is described by the niche utilization function. These functions are usually

taken as a Gaussian-like curve:

gi(x) =
ai√
2πσi

e
−x−µi

2σ2
i ,

where σi is the niche width of species i, ai is the amplitude, and µi the diet center. Then

the competition coefficients are calculated as

αij =

∫
gi(x)gj(x)dx.

Therefore, we can write

αij =
aiaj√
σ2
i + σ2

j

e
− 1

2

(µi−µj)
2

(σ2
i
+σ2

j
) .

Note that the matrix α is in general not symmetric, unless we assume the same niche

width and niche amplitude for all species. Recall that these interaction matrices are by

definition positive definite thus Volterra-dissipative, and therefore, a feasible equilibrium

point is globally stable (MacArthur and Levins, 1967; Svirezhev and Logofet, 1983;

Logofet, 1993).
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Figure S1: Structural analog of niche and fitness differences for n-species com-
munities. Panel A and B show, respectively, the average number of coexisting species
in (globally stable) randomly generated communities of 3 and 10 species as a function of
structural analog of niche (Ω) and fitness differences (θ). The darker (greener) the region,
the more the expected number of species that can coexist with a given combination of
structural analog of niche and fitness differences. Higher structural analog of fitness dif-
ferences can be computed in combination with lower structural analog of niche differences
because of geometric constraints, and must not be interpreted as if lower structural analog
of niche differences can tolerate higher structural analog of fitness differences.
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Figure S2: Structural analog of niche, fitness, and asymmetry. Panels A and B
show the projected feasibility domain of two distinct communities with 3 species. Both
communities have the same structural analog of niche difference (green area of feasibility
domain), but different geometric shapes (defined by their pairwise interactions). The
black vectors inside the feasibility domains correspond to the minimum structural analog
of fitness difference (θ) that can be tolerated in any direction. Panel C shows the minimum
tolerated structural analog of fitness difference as a function of the asymmetry in feasibility
domain. Each point corresponds to a different 3-species community, all with the same
structural analog of niche difference (Ω).
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