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Abstract

We solve the classical problem of Plateau in the setting of proper metric spaces.
Precisely, we prove that among all disc-type surfaceswith prescribed Jordan bound-
ary in a propermetric space there exists an areaminimizing discwhichmoreover has
a quasi-conformal parametrization. If the space supports a local quadratic isoperi-
metric inequality for curves we prove that such a solution is locally Hölder con-
tinuous in the interior and continuous up to the boundary. Our results generalize
corresponding results of Douglas, Radò and Morrey from the setting of Euclidean
space and Riemannian manifolds to that of proper metric spaces.

1. Introduction and Statement of Main Results

1.1. Introduction

The classical problemof Plateau asks for proof of the existence of aminimal disc
bounded by a given Jordan curve in Euclidean space. The first rigorous solutions of
Plateau’s problem for arbitrary Jordan curves were given independently by Dou-
glas [20] and Radó [50]. In a major advance,Morrey [46] extended the solutions
of Douglas and Radó to a large class of Riemannian manifolds. Beyond the setting
considered in [46], the existence and regularity of area minimizing discs is only
known in a few classes of metric spaces. In [47] Nikolaev considered the case of
metric spaces of curvature bounded from above in the sense of Alexandrov. In [44]
Mese–Zulkowski treated the case of some spaces of curvature bounded from below
in the sense of Alexandrov. Finally,Overath and von der Mosel [48] treated the
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case of R
3 endowed with a Finsler metric. The purpose of the present paper is to

generalize these results to metric spaces under minimal additional conditions.
Before describing our results, we brieflymention that there aremany other ways

to pose and sometimes to solve a Plateau type problem, see for example [18] for
some of these ways. For instance, one may minimize area among surfaces of fixed
topological type or among integral currents (generalized surfaces of arbitrary topo-
logical type). The theory of integral currents, developed by Federer and Fleming
[24] in the setting of Euclidean spaces, has been generalized by Ambrosio and
Kirchheim [7] to the setting of arbitrary complete metric spaces. Their theory al-
lows one to prove the existence of mass minimizing integral currents in compact
metric spaces and some locally non-compact ones, see [7,9,55,59]. In contrast
to the well developed regularity theory for mass minimizing integral currents in
Euclidean space, see [3], the regularity of minimal currents in metric spaces seems
to be very difficult to approach, see [6] for some progress. We will not further dis-
cuss or pursue these directions here and refer the reader to the articles above and
the references mentioned therein.
We return to the main subject of the present paper which concerns the existence

and regularity of area minimizing discs in the setting of metric spaces. Before
describing our results in more detail in Section 1.2 we give a rough description
of some of the highlights of our paper. The natural analog of smooth discs in
metric spaces are Lipschitz discs. Since Lipschitz maps lack suitable compactness
properties needed for proving the existence of area minimizers it is inevitable to
increase the range of admissible discs. As in the classical setting, a natural class to
work with is that of Sobolev maps. Various equivalent definitions of Sobolev maps
from a Euclidean domain with values in a metric space exist. Their parametrized
area or volume can be defined in analogy with the parametrized area of a Lipschitz
map via integration of a suitable Jacobian. In Riemannian manifolds this yields the
parametrized 2-dimensional Hausdorff measure. In the realm of normed spaces,
there exist several natural definitions of area coming from convex geometry. This
yields different notions of parametrized areas of Lipschitz or Sobolev maps with
values in metric spaces, one of which is the parametrized 2-dimensional Hausdorff
measure. Our results apply to many of these notions of parametrized area. For
the sake of simplicity we will first formulate our results for the one coming from
the 2-dimensional Hausdorff measure. In our first main result we show that the
classical Plateau problem has a solution in any proper metric space X . That is,
among all Sobolev discs (maps from the disc to X ) spanning a given Jordan curve
in X there exists one of minimal area. Moreover, this map can be chosen to be

√
2-

quasi-conformal. This means, roughly speaking, that infinitesimal balls are mapped
to ellipses of aspect ratio at most

√
2. Simple examples show that the constant√

2 is optimal. For a large class of metric spaces, however, we can improve the
constant and obtain a (weakly) conformal map. Similarly to the classical solution
in Euclidean space, energy minimizers play an important role in our approach. We
show that these are always

√
2-quasi-conformal, which is again optimal. In the

setting of metric spaces, however, energy minimizers need not be area minimizers
anymore as we will show and thus the classical approach to solving Plateau’s
problem fails; see however Section 11 and [42]. We circumvent this by proving a
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general lower semi-continuity result for the area which also yields new proofs of
the lower semi-continuity of various energies. In the second part of the paper we
prove interior and boundary regularity of quasi-conformal area minimizers in any
metric space admitting a local quadratic isoperimetric inequality for curves. More
precisely we prove that a quasi-conformal area minimizer is continuous up to the
boundary and locally Hölder continuous in the interior with the Hölder exponent
only depending on the isoperimetric and the quasi-conformality constants. Our
exponent is in many cases optimal.
We now pass to a precise description of the results mentioned above and to

further results and applications.

1.2. Precise Statements of Main Results

Wenowgive amore detailed description of someof themain results in our paper.
Recall that there exist several equivalent definitions of Sobolev maps from Euclid-
ean domains with values in a metric space, see for example [5,10,30,31,37,51–
53]. We recall the definition of [51] using compositions with real-valued Lipschitz
functions.
Let X = (X, d) be a complete metric space. In this introduction we will restrict

ourselves tomaps defined on the open unit disc D inR
2 with values in X . For p > 1

the Sobolev space W 1,p(D, X) may be defined as the space of measurable and
essentially separably valued maps u : D → X for which there exists a non-negative
function h ∈ L p(D) with the following property: for every x ∈ X the function
ux (z) := d(x, u(z)) belongs to the classical Sobolev space W 1,p(D) and its weak
gradient satisfies |∇ux | ≤ h almost everywhere in D. Sobolev maps with values in
X are almost everywhere approximately metrically differentiable, that is, at almost
every point z ∈ D there exists a unique seminormonR

2, denoted apmd uz , such that

ap lim
z′→z

d(u(z′), u(z)) − apmd uz(z′ − z)

|z′ − z| = 0,

see Proposition 4.3 below or [34]. Using the approximate metric differentiability
one obtains a natural notion of quasi-conformality and parametrized area of Sobolev
maps. We say that a seminorm s onR

2 is Q-quasi-conformal if s(v) ≤ Q · s(w) for
all v,w ∈ S1.Note that s ≡ 0 is allowed.Amapu ∈ W 1,p(D, X) is called Q-quasi-
conformal if its approximate metric derivative apmd uz is Q-quasi-conformal at
almost every z ∈ D. If Q = 1 then we call u conformal. We emphasize that our no-
tion of quasi-conformal map is different from the notion of quasi-conformal home-
omorphism studied in the field of quasi-conformal mappings. In fact, our spaces X
in general have arbitrary dimension and topology and thus quasi-conformal maps
in our sense will rarely be (local) homeomorphisms.
As mentioned above, there are several natural notions of parametrized area in

metric spaces. We will first introduce the one induced by the Hausdorff 2-measure
and state our results in this case before discussing to which extent they apply to
other notions. The parametrized Hausdorff area of a Sobolev map u ∈ W 1,2(D, X)
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is defined by

Area(u) :=
∫

D
J2(apmd uz) dL2(z),

where the Jacobian J2(s) of a seminorm s is given by the Hausdorff measure
(with respect to the distance s on R

2) of the Euclidean unit square. In view of
[33] and the area formula for Lipschitz maps [8] this gives a natural definition of
parametrized Hausdorff area. If u is an injective Lipschitz map or, more generally,
an injective Sobolev map satisfying Lusin’s property (N) then Area(u) is simply
the 2-dimensional Hausdorff measure of the image of u.
Given a Jordan curve � in X we denote by�(�, X) the family of Sobolev maps

u ∈ W 1,2(D, X) whose trace has a representative which is a weakly monotone
parametrization of �. A special case of our main theorem concerning a solution of
the problem of Plateau in metric spaces can be stated as follows.

Theorem 1.1. Let X be a proper metric space and � ⊂ X a Jordan curve such that
�(�, X) 
= ∅. Then there exists u ∈ �(�, X) which satisfies

Area(u) = inf {Area(u′) : u′ ∈ �(�, X)
}

(1)

and which is
√
2-quasi-conformal.

Here, a metric space is said to be proper if every closed ball of finite radius is
compact. In general, the quasi-conformality constant

√
2 in our theorem is optimal,

see Remark 6.3. However, it can be improved to conformality for a large class of
geometrically interesting spaces, see below.
In the classical proof of the solution of Plateau’s problem in Euclidean space

one first minimizes the Dirichlet energy in the class �(�, R
n) and then shows that

an energy minimizer also minimizes area. The same reasoning cannot be used in
the generality we work in. Indeed, we will prove that there exist metric spaces
biLipschitz homeomorphic to the standard two-dimensional sphere in which an
energy minimizer is not an area minimizer, see Proposition 11.6 and the remark
following it. Nevertheless, energy minimizers still play an important role in our
proof.Before explaining their role, let us recall thatKorevaar andSchoen [37] and
Reshetnyak [51] introduced different energies of a Sobolevmap u ∈ W 1,p(D, X).
Using the approximate metric derivative Reshetnyak’s energy, which we denote by
E p

+(u), and Korevaar–Schoen’s energy, which we denote by E p(u), takes the form

E p
+(u) =

∫
D

I p
+(apmd uz) dL2(z) and E p(u) =

∫
D

I p
avg(apmd uz) dL2(z),

(2)
where for a seminorm s on R

2 we define

I p
+(s) := max

{
s(v)p : v ∈ S1

}
and I p

avg(s) := π−1
∫

S1
s(v)p dH1(v), (3)

see Proposition 4.6 and the paragraph preceding Proposition 4.8. Reshetnyak’s
energy E p

+(u) is equal to the p-th power of the L p-norm of the minimal weak upper
gradient of u in the sense of [30]. If X = R

N and p = 2 then Korevaar–Schoen’s
energy corresponds to the classical Dirichlet energy. One of the main ingredients in
the proof of Theorem 1.1 is the following result, which is of independent interest:
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Theorem 1.2. Let X be a complete metric space. Suppose that u ∈ W 1,2(D, X) is
such that

E2+(u) ≤ E2+(u ◦ ψ) (4)

for every biLipschitz homeomorphism ψ : D → D. Then u is
√
2-quasi-conformal.

As is the case for Theorem 1.1, the quasi-conformality constant
√
2 is optimal

but can be improved to conformality for a large class of geometrically interesting
spaces. Reshetnyak’s energy E2+ can be replaced by Korevaar–Schoen energy E2,
however, we only obtain the quasi-conformality constant Q = 2√2 + √

6 in this
case, see Theorem 6.8, which is probably not optimal.
We turn to the question of regularity of area minimizing discs in metric spaces.

Without any further assumptions on the underlying space X one cannot expect an
area minimizer even to be continuous, not even in the setting of Riemannian mani-
folds, see [46]. We will prove interior and boundary regularity under the condition
of a local quadratic isoperimetric inequality.

Definition 1.3. A complete metric space X is said to admit a uniformly local
quadratic isoperimetric inequality if there exist l0, C > 0 such that for every
Lipschitz curve c : S1 → X of length �X (c) ≤ l0 there exists u ∈ W 1,2(D, X)

with

Area(u) ≤ C�X (c)2

and such that tr(u)(t) = c(t) for almost every t ∈ S1.

Many interesting classes of spaces admit uniformly local quadratic isoperi-
metric inequalities. These include homogeneously regular Riemannian manifolds
in the sense of [46], compact Lipschitz manifolds and, in particular, all compact
Finsler manifolds; moreover, complete CAT(κ) spaces for every κ ∈ R, compact
Alexandrov spaces, and allBanach spaces. Further examples include theHeisenberg
groups H

n of topological dimension 2n + 1 for n ≥ 2, endowed with a Carnot–
Carathéodory distance. See Section 8 for more examples and for references.
A special case of our main result concerning interior and boundary regularity

of area minimizing discs can be stated as follows.

Theorem 1.4. Let X be a complete metric space admitting a uniformly local quadratic
isoperimetric inequality with constant C. Let � ⊂ X be a Jordan curve and suppose
u ∈ �(�, X) is Q-quasi-conformal and satisfies

Area(u) = inf {Area(v) : v ∈ �(�, X)} .

Then the following statements hold:

(i) There exists p > 2 such that u ∈ W 1,p
loc (D, X); in particular, u has a continuous

representative ū which moreover satisfies Lusin’s property (N);
(ii) The representative ū is locally α-Hölder continuous with α = (4π Q2C)−1 and

extends continuously to all of D;
(iii) If � is a chord-arc curve then ū is Hölder continuous on all of D.
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Note that we do not make any assumptions on local compactness on X . The
Hölder exponent α is, in principle, allowed to be larger or equal to 1, which can be
used to prove that spaces with small isoperimetric constants have to be trees, see
Corollary 1.6 below. Unlike in the classical setting, the Hölder exponent α in the
above theorem is optimal, see Example 8.3.Wewould like tomention the following
refinement of statement (ii) of Theorem 1.4 proved in Section 8. The classical proof
of the Sobolev embedding theorems provides also in our case a very strong form of
Hölder continuity. Namely, the upper bound on the distance between points in u(D)

leading to (ii) of Theorem 1.4 is given by estimating the length of the image of some
curve connecting the corresponding points in D. This result provides, in particular,
plenty of rectifiable curves in the image u(D) and can be used to understand to
some extent the intrinsic structure of the minimal disc. We refer to the continuation
of the present paper in [43], where this structure is investigated in detail.
Our results can be improved in a large class of geometrically relevant spaces.

We say that a metric space X satisfies property (ET) if for every u ∈ W 1,2(D, X)

the approximate metric derivative apmd uz is induced by a possibly degenerate
inner product at almost every z ∈ D. Examples of such spaces include Riemannian
manifolds with continuous metric tensor, metric spaces of curvature bounded from
above or below in the sense of Alexandrov, equiregular sub-Riemannian manifolds,
and infinitesimally Hilbertian spaces with lower Ricci curvature bounds. We will
show in Section 11 that under the additional assumption that X satisfies property
(ET) the maps in Theorems 1.1 and 1.2 may be taken to be conformal, that is, 1-
quasi-conformal. Moreover, in this case Theorem 1.2 also holds with Reshetnyak’s
energy E2+ replaced by Korevaar–Schoen’s energy E2. Finally, in such spaces en-
ergy minimizers are automatically area minimizers, see Theorem 11.4. In partic-
ular, Theorem 1.2 generalizes the classical result from Euclidean space to that of
arbitrary complete metric spaces. Theorem 1.1 in conjunction with Theorem 1.4
generalizes Douglas’, Radò’s and Morrey’s solutions of Plateau’s problem from
the setting of Euclidean space and homogeneously regular Riemannian manifolds
to that of proper metric spaces admitting a uniformly local quadratic isoperimetric
inequality. It also generalizes the results [44,47,48] mentioned at the beginning of
our introduction.
As a first application of the results described above we obtain a solution of the

absolute Plateau problem described as follows. Let � be a metric space homeomor-
phic to S1 and of finite length, for example, a Jordan curve of finite length in some
metric space. We want to minimize the area of Sobolev maps u ∈ �(�, X) not only
for a fixed metric space X containing � but over all such spaces. Precisely, set

m(�) := inf{Area(v) : Y complete, ι : � ↪→ Y isometric, v ∈ �(ι(�), Y )}.

This value is closely related to Gromov’s filling area in [28]. In our setting this
infimum is indeed attained, due to the following solution of the absolute Plateau
problem.

Corollary 1.5. Let � be a metric space homeomorphic to S1 and of finite length.
Then there exist a compact metric space X, an isometric embedding ι : � ↪→ X,

6

ht
tp
://
do
c.
re
ro
.c
h



and a map u ∈ �(ι(�), X) such that

Area(u) = m(�).

Moreover, u is
√
2-quasi-conformal and has a representative which is continuous

on D and locally 14 -Hölder continuous on D.

We will discuss the exact relation with Gromov’s filling area and the relations
of solutions to the absolute Plateau problem with boundary minimal surfaces [33]
in the sequel [43] of this paper. The corollary above can be reformulated by saying
that area minimizing discs with prescribed boundary exist in all L∞-spaces and,
more generally, in every injective metric space, see Theorem 10.2.
Another simple application of our results is the following:

Corollary 1.6. Let X be a proper, geodesic metric space admitting a global quadratic
isoperimetric inequality with some constant C. If C < 1

8π then X is a metric tree,
that is, every geodesic triangle in X is isometric to a tripod.

If X satisfies property (ET) then the corollary holds with 18π replaced by
1
4π . In

view of the Euclidean plane the constant 14π is optimal. The corollary is not new. In
fact, it follows from [56] and [58] that the corollary holds for any geodesic metric
space with the sharp constant 14π . The borderline caseC = 1

4π characterizes proper
CAT(0)-spaces, as will be shown in [41].
We finally discuss to what extent our results hold when the parametrized Haus-

dorff area is replaced by the parametrized area induced by other notions of volume.
Roughly speaking, a definition of volume in the sense of convex geometry assigns
to each 2-dimensional normed space a constant multiple of the Haar measure in a
consistent way, see Section 2.4. For example, the Busemann definition of volume
assigns the multiple of the Haar measure for which the unit ball in a 2-dimensional
normed space has measure π , thus giving rise to the 2-dimensional Hausdorff mea-
sure. Other widely used definitions of volume are Benson’s or Gromov’s mass∗
definition of volume, the symplectic or Holmes–Thompson definition of volume,
or Loewner’s definition of volume studied in [33]. Given a definition of volume μ

one obtains a Jacobian with respect to μ of a seminorm on R
2 in the same way

as above except that one replaces the Hausdorff measure with the volume μ in the
definition of jacobian. By integrating this yields the μ-area of a Sobolev map u
denoted Areaμ(u). A definition of volume is said to induce quasi-convex 2-volume
densities if any affine disc in a finite dimensional normed space has minimalμ-area
among all smooth discs with the same boundary. All the examples of definitions of
volume mentioned above induce quasi-convex 2-volume densities. We will show
that Theorem 1.1 remains true when the parametrized Hausdorff area is replaced
by theμ-area for any definition of volumeμwhich induces quasi-convex 2-volume
densities, see Theorem 7.1. The same is true for Corollaries 1.5 and 1.6, see Theo-
rem 10.1 and Corollary 10.4. Moreover, Theorem 1.4 holds for μ-area minimizers
for any definition of volume μ. We would like to mention that different choices of
areas give rise to different minimizers, unless the space X has the property (ET)
mentioned above, see Section 11. For some of these choices of area the minimizer
can be found by minimization of an appropriate energy (for instance E+ or E2).
This will be discussed in [42].
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1.3. Outlines of Proofs

We next provide outlines of proofs for some of our theorems stated above.
The twomain ingredients in the proof ofTheorem1.1 areTheorem1.2 above and

Theorem5.4 below,which provides a generalization tometric spaces of the classical
weak sequential lower semi-continuity result for quasi-convex integrands. Theo-
rem 5.4 yields the lower semi-continuity of the μ-area functional along sequences
of uniformly bounded energy whenever μ is a definition of volume which induces
quasi-convex 2-volume densities. Using Theorem1.2 togetherwith this lower semi-
continuity we obtain that for every u ∈ �(�, X) there exists v ∈ �(�, X) which is√
2-quasi-conformal and which satisfies Area(v) ≤ Area(u). We use this to pass
from an area minimizing sequence to an area minimizing sequence of uniformly
bounded energy and, together with compactness and the lower semi-continuity of
theμ-area, we obtain Theorem 1.1.Wemention that Theorem 5.4 is of independent
interest. Indeed, we will use it to provide in Corollaries 5.6 and 5.7 new proofs of
the weak lower semi-continuity of the Korevaar–Schoen energy in [37, Theorem
1.6.1] and the Reshetnyak energy [51, Theorem 4.2].
We briefly describe the strategy of proof of Theorem 1.2. Apart from establish-

ing the result in the biggest possible generality our proof also seems more natural
and transparent than the proof of the classical result that an energy minimizing
Sobolev map with values in Euclidean space or a Riemannian manifold is (weakly)
conformal. Recall that the proof of this classical result basically follows from a
computation of the derivative of the function t �→ E2(u ◦ ϕt ) for a suitable fam-
ily of diffeomorphisms ϕt of D, see for example [19, Chapter 4.5]. The classical
construction of the variation ϕt is global and requires the precise knowledge of
the derivative of the energy and depends on the values of u on all of D, also far
from the points with non-conformal derivative. The computation of the derivative
of E2(u ◦ ϕt ) still works when u is a metric space valued Sobolev map such that
apmd uz comes from a possibly degenerate inner product almost everywhere. In
particular, the classical proof can be generalized to the setting of metric spaces
satisfying property (ET) described above. However, this kind of proof breaks down
when non-Euclidean normed tangent planes appear somewhere. Our proof is lo-
cal and works by finding, modulo conformal gauges, a local variation ϕt in the
neighborhood of a point where the quasi-conformality claim does not hold.
The proof of Theorem 1.4 follows more or less literally the classical approach

going back to Morrey.

1.4. Structure and Content of the Paper

We provide a description of the content of each section of the paper and indicate
some of the more general versions of the results stated above.
In Section 2 we establish basic notation and recall some results which will be

used in the sequel. In particular, we recall the notion of a definition of volume
from convex geometry and mention the primary examples of which the Hausdorff
measure is one. We recall the concept of quasi-convex n-volume densities induced
by a definition of volume, which will play a role in the solution of Plateau’s prob-
lem. We furthermore define the notion of quasi-conformal seminorms on R

n and
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introduce generalizations to R
n of the functionals I p

+ and I p
avg on seminorms on

R
n mentioned in (3) above.
In Section 3 we recall the necessary background from the theory of Sobolev

maps from a domain in Euclidean space R
n into complete metric spaces. We will

follow the approach ofKorevaar and Schoen [37] and recall the equivalence with
Reshetnyak’s approach [51]. The reason for choosing Korevaar–Schoen’s approach
is that their theory already contains many of the ingredients which wewill need.We
will furthermore provide a proof of the equivalence of Korevaar–Schoen’s theory
with a metric space version of Hajlasz’s theory [29] yielding Lipschitz continuity
on suitable subsets, see Proposition 3.2. This will be used in the subsequent section
in order to establish the approximate metric differentiability almost everywhere of
Sobolev maps.
We begin Section 4 by recalling the definition of the approximate metric deriv-

ative apmd uz of a map u from a Euclidean domain � ⊂ R
n to a metric space

X . We then prove the approximate metric differentiability almost everywhere of
Sobolev maps u ∈ W 1,p(�, X) and a strong first order approximation for distances
of image points via the approximate metric derivative, see Proposition 4.3. As a
by-product we then obtain representations of the Korevaar–Schoen energy E p(u)

and the Reshetnyak energy E p
+(u) in terms of the functionals I p

avg and I p
+ akin to

(2) and furthermore a new proof of the main result of Logaritsch and Spadaro
[39] on the representation of the Korevaar–Schoen energy. See Proposition 4.6 and
the paragraph preceding Proposition 4.8. We furthermore introduce the notion of
parametrized μ-volume Volμ(u) of a Sobolev map u ∈ W 1,n(�, X) induced by
a definition of volume μ, see Definition 4.5. In the particular case of dimension
n = 2 the μ-volume will be denoted by Areaμ(u).
The main result of Section 5 is Theorem 5.4. It establishes a generalization

to metric spaces of the classical weak sequential lower semi-continuity of quasi-
convex integrands. Using Theorem 5.4 we provide new proofs of the weak lower
semi-continuity of the Korevaar–Schoen and the Reshetnyak energies in Corollar-
ies 5.6 and 5.7. As a further and direct consequence we obtain in Corollary 5.8 the
weak lower semi-continuity of the volume functional Volμ(·) for any definition of
volume μ inducing quasi-convex n-volume densities. This is later used in order to
prove the existence of area minimizers.
In Section 6 we prove Theorem 1.2 above and its analog for the Korevaar–

Schoen energy, Theorem 6.8.
The main result in Section 7 is Theorem 7.1, which provides our most general

existence theorem for area minimizers with prescribed Jordan boundary. Precisely,
it states that if X and � are as in Theorem 1.1 above and if μ is a definition
of volume which induces quasi-convex 2-volume densities then there exists u ∈
�(�, X)whichminimizes theμ-area Areaμ amongmaps in�(�, X). Theorem 7.1
in particular implies Theorem 1.1 above.
In Section 8 we state and prove our most general version of our results concern-

ing interior regularity of area minimizers, Theorem 8.2. We furthermore provide
many examples of spaces satisfying a uniform local quadratic isoperimetric in-
equality.
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In Section 9 we prove the boundary regularity results, Theorems 9.1 and 9.3,
which in particular imply the boundary regularity results in Theorem 1.4.
Section 10 contains the proofs of Corollaries 1.5 and 1.6, in fact, the more

general versions for μ-area for definitions of volume inducing quasi-convex vol-
ume densities. We also solve Plateau’s problem in every injective metric space,
Theorem 10.2.
In the final Section 11 we introduce the property (ET) mentioned above and

show that many geometrically interesting classes of spaces have this property. We
then prove that in spaces satisfying property (ET) energy minimizers are conformal
and areaminimizers, see Theorems 11.3 and 11.4.We also show in Proposition 11.6
that in spaces without property (ET) area minimizers with respect to two different
definitions of area are in general different. In particular, this implies that in this
setting energy minimizers need not be area minimizers.

2. Preliminaries

2.1. Basic Notation

The following notation will be used throughout the paper. The Euclidean norm
of a vector v ∈ R

n is denoted by |v|; the open unit disc in R
2 is the set

D := {v ∈ R
2 : |v| < 1}.

Given open sets U ⊂ V ⊂ R
n we write U ⊂⊂ V to mean that U ⊂ V . Lebesgue

measure on R
n is denoted by Ln . We denote by ωn the Lebesgue measure of the

unit ball in R
n . The indicator function of a set A ⊂ R

n will be denoted by 1A. An
open subset� ⊂ R

n is called Lipschitz domain if the boundary of� can be locally
written as the graph of a Lipschitz function defined on an open ball of Rn−1.
Let X = (X, d) be a metric space. The open ball in X of radius r and center

x0 ∈ X is denoted by

BX (x0, r) = {x ∈ X : d(x0, x) < r}
or simply by B(x0, r) if there is no danger of ambiguity. A Jordan curve in X is
a subset � ⊂ X which is homeomorphic to S1. Given a Jordan curve � ⊂ X , a
continuous map c : S1 → X is called weakly monotone parametrization of � if c
is the uniform limit of some homeomorphisms ci : S1 → �. For m ≥ 0 the m-
dimensional Hausdorff measure on X is denoted by Hm

X or simply by Hm if there
is no danger of ambiguity. The normalizing constant is chosen in such a way that
on Euclidean R

m the Hausdorff measureHm equals the Lebesgue measure.

2.2. Rectifiable Curves

Let X = (X, d) be a metric space. The length of a continuous curve c : I → X ,
defined on an interval I ⊂ R, is given by

�X (c) := sup
{

k∑
i=1

d(c(ti ), c(ti+1)) : k ∈ N, ti ∈ I, t1 < t2 < · · · < tk+1

}
.
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We allow I to be open, closed, or half-open. The definition naturally extends to
continuous curves defined on S1 and, more generally, on connected 1-dimensional
manifolds. A continuous curve of finite length is called rectifiable.
We will need the following elementary lemma which is akin to the lemma on

the existence of a parametrization proportional to arc-length.

Lemma 2.1. Let c : [a, b] → X be a rectifiable curve. Then there exists a sense-
preserving homeomorphism ψ : [a, b] → [a, b] such that ψ and c◦ψ are Lipschitz.

An analogous statement holds when [a, b] is replaced by S1.

Proof. Wemay assume that a = 0 and b = 1 and that furthermore l := �X (c) > 0.
Define � : [0, 1] → [0, 1] by

�(t) := 1

2l
· �X (c|[0,t]) + t

2
.

Then � is a homeomorphism and its inverse �−1 is 2-Lipschitz. We set ψ := �−1.
It is straight-forward to check that c ◦ ψ is 2l-Lipschitz. ��

2.3. Seminorms on R
n

For n ≥ 1 let Sn denote the set of all seminorms on R
n . Endow Sn with the

metric

dSn (s, s′) := max{|s(v) − s′(v)| : v ∈ Sn−1}.

Then (Sn, dSn ) is a proper metric space and may be viewed as a subset of
C0(Sn−1, R), where the latter is endowed with the supremum norm. For p ≥ 1 we
define continuous functions I p

+ : Sn → [0,∞) and I p
avg : Sn → [0,∞) by

I p
+(s) := max{s(v)p : v ∈ Sn−1}

and

I p
avg(s) := ω−1

n

∫
Sn−1

s(v)p dHn−1(v),

where ωn denotes the Lebesgue measure of the unit ball in R
n . These functions

will be used extensively later in the paper. We have the following easy fact:

Lemma 2.2. If s is a seminorm on R
n and p ≥ 1 then

n−1I p
avg(s) ≤ I p

+(s) ≤ λI p
avg(s),

where λ > 0 is a constant depending only on n and p. If n = p = 2 then λ can be
chosen to be 1.
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Proof. The first inequality follows from the fact that n · ωn = Hn−1(Sn−1). As
for the second inequality, let v0 ∈ Sn−1 be such that s(v0)p = I p

+(s). Define
a seminorm s′ on R

n by s′(rv0 + w) := |r | for all r ∈ R and every w ∈ R
n

orthogonal to v0. It follows that s(v) ≥ s′(v) · s(v0) for every v ∈ R
n and hence

s(v0)
p · I p

avg(s
′) ≤ I p

avg(s).

From this the second inequality follows with λ := (I p
avg(s′)

)−1
. Note here that λ

only depends on n and p. If n = p = 2 then

λ−1 = I2avg(s′) = π−1
∫ 2π

0
cos(θ)2 dθ = 1.

This completes the proof. ��
Definition 2.3. A seminorm s on R

n is called Q-quasi-conformal, Q ≥ 1, if
s(v) ≤ Q · s(w) for all v,w ∈ Sn−1.

If s is 1-quasi-conformal then s will be called conformal. Note that according
to our definition the trivial seminorm s = 0 is conformal. A seminorm s on R

n is
conformal if and only if n−1I p

avg(s) = I p
+(s).

Lemma 2.4. Let s be a seminorm on R
n and Q ≥ 1. Let T : R

n → R
n be linear

and bijective. If the norm v �→ |T (v)| is Q-quasi-conformal then

Q−(n−1) · In+(s) ≤ | det T |−1 · In+(s ◦ T ) ≤ Qn−1 · In+(s) (5)

and
Q−2(n−1) · In

avg(s) ≤ | det T |−1 · In
avg(s ◦ T ) ≤ Q2(n−1) · In

avg(s). (6)

Proof. Writing T as the product T = A · D · P , where D is a diagonal matrix and
A and P are orthogonal transformations we obtain that

Q−(n−1)‖T ‖n ≤ | det T | ≤ Qn−1tn, (7)

where ‖T ‖ denotes the operator norm of T and t := minv∈Sn−1 |T (v)|. The in-
equalities in (5) easily follow from this. In order to prove the inequalities in (6) we
integrate using polar coordinates to obtain for every R > 0 that∫

Sn−1
s(v)n dHn−1(v) = 2n R−2n

∫
B(0,R)

s(w)n dLn(w).

From this we infer that∫
Sn−1

s(T (v))n dHn−1(v) = 2n| det T |−1
∫

T (B(0,1))
s(v)n dLn(v).

The inequalities in (6) follow from this, the inequalities (7), and the fact that
T (B(0, 1)) ⊂ B(0, ‖T ‖). ��
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2.4. Definitions of Volume in Normed Spaces

In Euclidean space there exists essentially only one natural definition of volume,
which is the Lebesgue measure. In contrast, in the realm of normed spaces, there
exist several natural notions of volume. Recall from [4] the following definition.

Definition 2.5. A definition of volume μ is a function that assigns to each n-
dimensional normed space V , n ≥ 1, a norm μV on �n V such that the following
properties hold:

(i) If V is Euclidean then μV is induced by the Lebesgue measure;
(ii) If V , W are n-dimensional normed spaces and T : V → W linear and 1-
Lipschitz then the induced map T∗ : �n V → �nW is 1-Lipschitz;

Well-known examples of definitions of volume are the Busemann definitionμb,
the Holmes–Thompson definition μht, and the Benson (also called Gromov mass∗)
definition μm∗

of volume, see for example [4]. We also mention the Loewner (or
intrinsic Riemannian) volume μi studied by Ivanov [33].
Let μ be a definition of volume. Define the Jacobian with respect to μ of a

seminorm s on R
n by

Jμ
n (s) :=

{
μ(Rn ,s)(e1 ∧ · · · ∧ en) if s is a norm
0 otherwise,

where e1, . . . , en denote the standard unit vectors in R
n . Note that the function

s �→ Jμ
n (s) is continuous with respect to the metric dSn .

Let � ⊂ R
n be an open, bounded subset and Y a finite dimensional normed

space or a Finsler manifold. Define the parametrized μ-volume of a Lipschitz map
u : � → Y by

Volμ(u) :=
∫

�

Jμ
n (dzu) dLn(z).

When n = 2 we will write Areaμ(u) instead of Volμ(u). We will extend this defini-
tion to Sobolevmaps from� to an arbitrary completemetric space inDefinition 4.5.
The notion of parametrized volume of a Lipschitz map is a particular instance of
the volume of a generalized Lipschitz surface in a metric space defined in [33].
Recall the following definition.

Definition 2.6. Let μ be a definition of volume and n ≥ 1. Thenμ is said to induce
quasi-convex n-volume densities if for every finite dimensional normed space Y
and every linear map L : R

n → Y we have

Volμ(L|B) ≤ Volμ(ψ)

for every smooth immersion ψ : B → Y with ψ |∂ B = L|∂ B , where B denotes the
closed unit ball in R

n .

Other names exist for this property in the literature. For example, in [33] the
property is termed topologically semi-elliptic. Many known definitions of volume
induce quasi-convex n-volume densities. Indeed, if a definition of volume induces
extendibly convex n-volume densities (see for example [4] for the definition) in
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every finite dimensional normed space then it induces quasi-convex n-volume den-
sities in the sense ofDefinition 2.6. This follows directly from [4, Theorem4.23]. By
[4, Theorem 4.28], the Gromovmass∗ definition of volumeμm∗

induces extendibly
convex n-volume densities in every finite dimensional normed space for every
n ≥ 1. By [33, Theorem 6.2], the same is true for the intrinsic Riemannian volume
definition μi. By [17], the Busemann definition of volume μb induces extendibly
convex n-volume densities in every finite dimensional normed space for n = 2. A
well-known conjecture asserts that this be true for all n. The volume densities of the
Holmes–Thompson definition of volume μht are not extendibly convex, see [16].
However,μht induces quasi-convex 2-volume densities by [16, Theorem 1, Section
3.1]. In [14], a new definition of volume was introduced which induces extendibly
convex n-densities in every finite dimensional normed space for all n and which
coincides with the Busemann definition for n = 2.

3. Sobolev Maps from Euclidean to Metric Spaces

We briefly recall Korevaar–Schoen’s definition of Sobolev maps from Rie-
mannian domains to metric spaces given in [37]. Since we only need Euclidean
domains we will restrict to this setting. In Section 4 we will establish several prop-
erties of Sobolev maps which will be useful in the rest of the paper.
Throughout this section, let � ⊂ R

n be an open, bounded subset and (X, d)

a complete metric space. A map u : � → X is measurable if for every open set
V ⊂ X the preimage u−1(V ) is Lebesguemeasurable. Furthermore, u is essentially
separably valued if there exists a set N ⊂ � of measure zero such that u(�\N )

is separable. For p ≥ 1 denote by L p(�, X) the space of all measurable and
essentially separably valued maps u : � → X such that for some and thus every
x0 ∈ X the function z �→ d(x0, u(z)) belongs to L p(�). A sequence (uk) ⊂
L p(�, X) is said to converge to u ∈ L p(�, X) in L p(�, X) if∫

�

d p(u(z), uk(z)) dLn(z) → 0

as k → ∞. Given ε > 0 define

ep
ε (z, u) := (n + p) −

∫
B(z,ε)

d p(u(z), u(z′))
ε p

dLn(z′)

for all z ∈ �ε := {z′ ∈ � : dist(z′, ∂�) > ε} and ep
ε (z, u) := 0 for z ∈ �\�ε. If

ϕ ∈ Cc(�) then write

E p
ε (ϕ, u) :=

∫
�ε

ϕ(z)ep
ε (z, u) dLn(z).

The Korevaar–Schoen p-energy of a map u ∈ L p(�, X) is defined by

E p(u) := sup
ϕ∈Cc(�), 0≤ϕ≤1

lim sup
ε→0

E p
ε (ϕ, u).
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Note that E p(u) differs by a factor ofω−1
n from the p-energy defined in [37], where

ωn is the volume of the unit ball in R
n .

For p > 1 the Sobolev space W 1,p(�, X) in the sense of Korevaar–Schoen is
the set of maps u ∈ L p(�, X) satisfying E p(u) < ∞. The space W 1,p

loc (�, X) is
defined analogously. If u ∈ W 1,p(�, X) and if ϕ : X → Y is a Lipschitz map into
a complete metric space Y then ϕ ◦ u ∈ W 1,p(�, Y ).
It was shown in [37, Theorem 1.5.1] that if u ∈ W 1,p(�, X) then the measures

ep
ε ( · , u)dLn converge weakly as ε → 0 to an energy density measure dep( · , u)

with total measure E p(u). Moreover, the measure dep( · , u) is absolutely con-
tinuous with respect to the Lebesgue measure by [37, Theorem 1.10]. Finally, if
X = R then W 1,p(�, X) coincides with the classical Sobolev space W 1,p(�) and
the energy density of an element u satisfies

dep( · , u) = cn,p|∇u(·)|p dLn,

where ∇u is the weak derivative of u and cn,p is a constant depending only on n
and p, see [37, Theorem 1.6.2].
In Sections 8 and 9 we will use the following terminology. Let � ⊂ R

n be
a subset biLipschitz homeomorphic to an open interval I , and let u : � → X be
a map. We write u ∈ W 1,p(�, X) if u ◦ ϕ ∈ W 1,p(I, X) for some and thus any
biLipschitz homeomorphism ϕ : I → �. This terminology naturally extends to the
case when � is biLipschitz homeomorphic to S1.
As was shown in [52], the spacesW 1,p(�, X) can be characterized using com-

positions with Lipschitz functions on X . See [5] for an earlier approach towards
metric space valued BV functions.

Proposition 3.1. Let p > 1 and u ∈ L p(�, X). Then u ∈ W 1,p(�, X) if and only
if there exists h ∈ L p(�) such that for every x ∈ X the function ux (z) := d(x, u(z))
belongs to W 1,p(�) and its weak gradient satisfies |∇ux | ≤ h almost everywhere
in �.

Moreover, if u and h are as in Proposition 3.1 then E p(u) ≤ C‖h‖p
p for some

constant C only depending on n and p, see [52]. In fact, we will see that one may
even take C = n, see (20). Finally, h in Proposition 3.1 can be chosen such that
‖h‖p

p ≤ λE p(u) for some constant λ only depending on n and p, see [52] and (20).
Apart from Proposition 3.1 the following characterization of Sobolev maps will

be important throughout our paper:

Proposition 3.2. Let p > 1 and u ∈ L p(�, X). Then u ∈ W 1,p(�, X) if and only
if there exist g ∈ L p(�) and N ⊂ � with Ln(N ) = 0 such that

d(u(z), u(z′)) ≤ |z − z′|(g(z) + g(z′)) (8)

for all z, z′ ∈ �\N contained in some ball B ⊂⊂ �. Moreover, if E p(u) < ∞ and
� is a Lipschitz domain then g may be chosen so that (8) holds for all z, z′ ∈ �\N.

Atheory of Sobolev functions based on the condition (8)when� is replaced by a
metric measure space and X = Rwas initiated in [29]. The proof of Proposition 3.2
essentially follows from arguments in [31], see also [30]. For the convenience of
the reader we give a direct and self-contained proof here.
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Proof. Suppose first that there exist g ∈ L p(�) and N ⊂ � negligible such that
(8) holds for all z, z′ ∈ �\N contained in some ball B ⊂⊂ �. If ε > 0 then

d p(u(z), u(z′))
ε p

≤ (g(z) + g(z′))p ≤ 2p−1(g p(z) + g p(z′))

for all z, z′ ∈ �ε\N with |z − z′| < ε. In particular, we have

ep
ε (z, u) ≤ 2p−1(n + p)

(
g p(z) + −

∫
B(z,ε)

g p(z′) dLn(z′)
)

for every z ∈ �ε\N . Therefore, given ϕ ∈ Cc(�) with 0 ≤ ϕ ≤ 1, we obtain

E p
ε (ϕ, u) ≤ 2p−1(n + p)

(∫
�

g p(z) dLn(z) +
∫

�ε

−
∫

B(z,ε)
g p(z′) dLn(z′) dLn(z)

)
≤ 2p(n + p)‖g‖p

p

for every ε > 0 and thus E p(u) ≤ 2p(n + p)‖g‖p
p < ∞.

Conversely, suppose E p(u) < ∞. By Proposition 3.1 there exists h ∈ L p(�)

such that for every x ∈ X the function ux (z) := d(x, u(z)) belongs to W 1,p(�)

and its weak gradient satisfies |∇ux | ≤ h almost everywhere in�. Let {zi }i∈N ⊂ �

be a countable dense subset. For each i let Bi ⊂ � be the open ball of maximal
radius centered at zi . Fix x ∈ X . There then exist negligible sets Ni ⊂ Bi such that

|ux (z) − ux (z
′)| ≤ C |z − z′|(M(|∇ux |)(z) + M(|∇ux |)(z′)) (9)

for all z, z′ ∈ Bi\Ni , by [27, Lemma 7.16] and [60, Lemma 2.83]. Here, C is
a constant depending only on n, and M(|∇ux |) denotes the maximal operator of
|∇ux |. Set N ′ := ∪Ni and note that N ′ is negligible. Define g(z) := C M(h)(z)
for all z ∈ �. Since h ∈ L p(�) it follows from the maximal function theorem that
g is in L p(�). Moreover, by (9), we have

|ux (z) − ux (z
′)| ≤ |z − z′|(g(z) + g(z′)) (10)

for all z, z′ ∈ �\N ′ such that z, z′ ∈ Bi for some i .
Since u is essentially separably valued it readily follows from the above that

there exists a negligible set N ⊂ � such that (8) holds for all z, z′ ∈ �\N contained
in some Bi . Since every ball B ⊂⊂ � is contained in Bi for some i this proves the
claim.
In order to prove the last statement of the proposition, suppose that � is a

bounded Lipschitz domain and E p(u) < ∞. We begin by making the following
observation. There exist finitely many open subsetsUi of�, i = 1, . . . , m, each of
which is biLipschitz homeomorphic to a ball and such that for all z, z′ ∈ � there
exists i such that z and z′ are both in Ui . This observation is used as follows to
prove the last statement. As explained above, for every x ∈ X and every open ball
B ⊂ � there exists NB ⊂ B negligible such that (11) holds for all z, z′ ∈ B\NB

and for a constantC only depending on n. The same is then true with B replaced by
a biLipschitz copy of B in � and with a constant C depending on n and the biLip-
schitz constant of the homeomorphism. From this, together with the observation,
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we obtain that for every x ∈ X there exist C (possibly depending on � but not on
x) and a negligible set N ⊂ � such that

|ux (z) − ux (z
′)| ≤ C |z − z′|(M(|∇ux |)(z) + M(|∇ux |)(z′)) (11)

for all z, z′ ∈ �\N . The same arguments as above show that (8) holds for all
z, z′ ∈ �\N for some negligible set N ⊂ �. ��
Proposition 3.3. Let u ∈ W 1,p(�, X) with p > n. Then u has a unique represen-
tative ū satisfying

d(ū(z), ū(z′)) ≤ C |z − z′|1− n
p (12)

for every ball B ⊂ � and all z, z′ ∈ B, where C depends only on n, p, and
E p(u). Moreover, ū satisfies Lusin’s property (N) and the set ū(�) is countably
Hn-rectifiable. Finally, if � is a Lipschitz domain then (12) holds for all z, z′ ∈ �

with a constant C depending on n, p, E p(u), and �.

We recall that a map ū : � → X is said to satisfy Lusin’s property (N) if
Hn(ū(A)) = 0 whenever A ⊂ � has measure 0. Moreover, a set A ⊂ X is called
countably Hn-rectifiable if there exist countably many Lipschitz maps ϕi : Ki ⊂
R

n → X , i ∈ N, such thatHn(A\ ∪ ϕi (Ki )) = 0.
Proof. The first and last statement of the proposition come as a consequence of
Proposition 3.1 and the remark following it together with Morrey’s inequality for
classical Sobolev functions. The fact that the continuous representative ū of u
satisfies Lusin’s property (N) then follows for example as in Proposition 2.4 of [13].
Finally, the countableHn-rectifiability of ū(�) is a consequence of Proposition 3.2
together with the fact that ū satisfies Lusin’s property (N). ��
Suppose now that � ⊂ R

n is a bounded Lipschitz domain. The trace of a
Sobolev map u ∈ W 1,p(�, X) with p > 1 can be defined as follows. Set J =
(−1, 1) and I = (−1, 0). Given x ∈ ∂� there exists an open neighborhoodU ⊂ R

n

of x , an open set V ⊂ R
n−1, and a biLipschitz homeomorphism ϕ : V × J → U

such that ϕ(V × I ) = U ∩ � and ϕ(V × {0}) = U ∩ ∂�. For Ln−1-almost every
v ∈ V the map t �→ u ◦ ϕ(v, t) is in W 1,p(I, X) and thus has an absolutely
continuous representative, again denoted by u ◦ ϕ(v, ·). For Hn−1-almost every
point z ∈ U ∩ ∂� the trace of u at z is defined by

tr(u)(z) := lim
t→0−

u ◦ ϕ(v, t),

where v ∈ V is such that ϕ(v, 0) = z. It follows from [37, Lemma 1.12.1] that
the definition of tr(u) is independent of the choice of ϕ and thus, by using a finite
number of biLipschitz homeomorphisms, is well-definedHn−1-almost everywhere
on ∂�. Furthermore, by [37, Theorem 1.12.2], the trace map tr(u) is in L p(∂�, X).
The restriction of a Sobolev map to a subdomain is a Sobolev map. Conversely,

let �1,�2 ⊂ R
n be bounded, disjoint Lipschitz domains and let W be a common

boundary component of�1 and�2. Then� = �1∪�2∪W is a Lipschitz domain.
If ui ∈ W 1,p(�i , X), i = 1, 2, are such that tr(u1) = tr(u2) almost everywhere on
W then the map u defined as ui on�i is inW 1,p(�, X), see [37, Theorem 1.12.3].
The following lemma will be needed in Section 8.
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Lemma 3.4. Let �,�′ ⊂ R
n be bounded Lipschitz domains with �′ ⊂ �. Let

p > 1 and let u ∈ W 1,p(�, X) and v ∈ W 1,p(�′, X) be such that tr(v) = tr(u|�′)
almost everywhere. Then the map ū : � → X which coincides with v on �′ and
with u on �\�′ is in W 1,p(�, X) and satisfies tr(ū) = tr(u) almost everywhere.

We note that the lemma will only be used in the case that � is an open ball.

Proof. There exist a neighborhood �0 of ∂� and a biLipschitz homeomorphism
ϕ : �0 → �0 with the following properties. The set �0 is a Lipschitz domain
decomposed by ∂� in two connected components, andϕ fixes ∂� and exchanges the
two connected components. Set�+ := �0\�. Then themap u+ = u◦ϕ : �+ → X
is contained in W 1,p(�+, X) and satisfies tr(u+)|∂� = tr(u). Set �̃ := �0 ∪ �.
By the paragraph preceding the lemma, the map w : �̃ → X which coincides with
u on � and with u+ on �+ is contained in W 1,p(�̃, X). Since �′ and �̃\�′ are
Lipschitz domains and tr(w|

�̃\�′) = tr(v) almost everywhere on ∂�′ it follows
again from the paragraph above that the map which coincides with v on �′ and
with w on �̃\�′ is contained in W 1,p(�̃, X). The restriction of this map to � is
exactly ū and satisfies tr(ū) = tr(u). ��

4. Differentiability Properties of Sobolev Maps

The aim of this section is to establish some differentiability properties of
Sobolev maps which will be used in the rest of the paper. Throughout this sec-
tion,� ⊂ R

n will be an open, bounded subset and (X, d) a complete metric space.
Recall that for a map u : � → X the metric directional derivative of u at z ∈ �

in direction v ∈ R
n is defined by

md uz(v) := lim
r→0+

d(u(z + rv), u(z))

r

if the limit exists. It was shown in [36] that if u is Lipschitz then for almost every
z ∈ � the metric directional derivative md uz(v) exists for all v ∈ R

n and defines
a seminorm on R

n . The following notion of approximate metric differentiability,
which already appears in [34], will be useful in the sequel.

Definition 4.1. Amap u : � → X is called approximatelymetrically differentiable
at z ∈ � if there exists a seminorm s on R

n such that

ap lim
z′→z

d(u(z′), u(z)) − s(z′ − z)

|z′ − z| = 0.

For the definition of approximate limit see for example [22]. The seminorm, if it
exists, is unique and will be called the approximate metric derivative of u at z and
denoted by apmd uz . It is straight-forward to check that the following holds.

Remark 4.2. If u is Lipschitz then u is approximately metrically differentiable at
z if and only if the metric directional derivative md uz(v) exists for all v ∈ R

n and
md uz is a seminorm. In this case one has apmd uz = md uz .
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Every classical Sobolev function u ∈ W 1,p(�) is approximately differentiable
at almost every z ∈ � and thus also approximately metrically differentiable at z
with

apmd uz(v) = | ap dzu(v)|
for every v ∈ R

n . Here, ap dzu denotes the approximate derivative of u at z. It was
proved in [34] that Sobolev maps to metric spaces are approximately metrically
differentiable almost everywhere. We prove the following stronger result.

Proposition 4.3. Let p > 1 and u ∈ W 1,p(�, X). Then

(i) u is approximately metrically differentiable at almost every z ∈ � and z �→
apmd uz is measurable as a map toSn; moreover, the function z �→ I1+(apmd uz)

is in L p(�);
(ii) there exist countably many compact, pairwise disjoint sets Ki ⊂ �, i ∈ N,

such that Ln(�\ ∪ Ki ) = 0 and such that the following property holds: for
every i ∈ N and every ε > 0 there exists ri (ε) > 0 such that u is approximately
metrically differentiable at every z ∈ Ki and

|d(u(z + v), u(z + w)) − apmd uz(v − w)| ≤ ε|v − w|
for every z ∈ Ki and all v,w ∈ R

n with |v|, |w| ≤ ri (ε) and such that
z + v, z + w ∈ Ki .

It is worth mentioning that for almost every z ∈ � and every v ∈ R
n we have

apmd uz(v) = |u∗(v)|(z), (13)

where |u∗(v)|(z) is the directional energy-density function defined in [37, Theorem
1.9.6]. This follows from Proposition 4.3 together with [37, Lemma 1.9.5, Theorem
1.8.1].

Proof. After possibly writing � as the countable union of (closed) cubes and
restricting u to a fixed open cube we may assume that � is an open cube and thus
is bounded and has Lipschitz boundary. By Proposition 3.2 there exist g ∈ L p(�)

and a negligible set N ⊂ � such that

d(u(z), u(z′)) ≤ |z − z′|(g(z) + g(z′))

for all z, z′ ∈ �\N . For j ≥ 1 define A j := {z ∈ �\N : g(z) ≤ j} and note that
u|A j is (2 j)-Lipschitz. Clearly, we have Ln(�\ ∪ A j ) = 0.
Denote by �∞(X) the Banach space of bounded functions on X , endowed with

the supremum norm. Using a Kuratowski embedding, we may view X as a subset
of �∞(X). Fix j ≥ 1 and let ū : � → �∞(X) be a Lipschitz extension of u|A j . By
[36, Theorem 2], the metric derivative md ūz(v) exists for almost every z ∈ � and
for all v ∈ R

n and md ūz is a seminorm. Moreover, there exist compact subsets
K ′

i ⊂ �, i ∈ N, such that md ūz exists and is a seminorm for all z ∈ K ′
i , such that

Ln(�\ ∪ K ′
i ) = 0 and the following holds: for every i ∈ N and every ε > 0 there

exists r ′
i (ε) > 0 such that

| ‖ū(z + v) − ū(z + w)‖∞ −md ūz(v − w)| ≤ ε|v − w| (14)
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for every z ∈ K ′
i and all v,w ∈ R

n with |v|, |w| ≤ r ′
i (ε) such that z + w ∈ K ′

i ; see
[57, Theorem 2.3] for this variant of [36, Theorem 2]. From this it follows that for
every z ∈ A j ∩ K ′

i , every ε > 0, and every 0 < r ≤ r ′
i (ε) we have{

z′ ∈ B(z, r) ∩ � : |d(u(z′), u(z)) −md ūz(z′ − z)|
|z′ − z| > ε

}
⊂ B(z, r)\(A j ∩ K ′

i ).

In particular, if Ki denotes the Lebesgue density points of A j ∩ K ′
i then u is

approximately metrically differentiable at every z ∈ Ki and apmd uz = md ūz .
Since the map z �→ md ūz is measurable as a limit of measurable maps it follows
that z �→ apmd uz is measurable as a map from Ki to Sn .
By (14), we moreover obtain that

|d(u(z + v), u(z + w)) − apmd uz(v − w)| ≤ ε|v − w|

for every z ∈ Ki and all v,w ∈ R
n with |v|, |w| ≤ r ′

i (ε) and such that z+v, z+w ∈
Ki . In particular, if z ∈ Ki is such that g is approximately continuous at z then

apmd uz(v) ≤ 2g(z)|v|

for every v ∈ R
n . Now, statements (i) and (ii) easily follow sinceLn(A j\∪Ki ) = 0

and Ln(�\ ∪ A j ) = 0. Note that the Ki may be taken to be compact and pairwise
disjoint by passing to smaller sets. ��
Remark 4.4. The proof shows, in particular, that if u ∈ W 1,p(�, X) and g ∈
L p(�) is such that (8) holds then

apmd uz(v) ≤ 2g(z)|v|

for almost every z ∈ � and every v ∈ R
n .

Using the approximate metric differentiability of Sobolev maps, we can extend
the definition of the parametrized volumegiven in Section 2.4 tometric space valued
Sobolev maps as follows. Let μ be a definition of volume as in Definition 2.5 and
recall the notion of Jacobian Jμ

n (s) with respect to μ of a seminorm s on R
n .

Definition 4.5. The parametrized μ-volume of a map u ∈ W 1,n(�, X) is defined
by

Volμ(u) :=
∫

�

Jμ
n (apmd uz) dLn(z).

When n = 2 we will write Areaμ(u) instead of Volμ(u).

If μ is the Busemann definition of volume and n = 2 then Areaμ(u) becomes
the parametrized 2-dimensional Hausdorff measure which was simply denoted by
Area(u) in the introduction.
The Korevaar–Schoen energy can be represented using the approximate metric

derivative as follows.
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Proposition 4.6. Let p > 1 and u ∈ W 1,p(�, X). Then the Korevaar–Schoen
energy density measure of u is given by

dep( · , u) = I p
avg(apmd u) dLn (15)

and, in particular, the Korevaar–Schoen energy of u is

E p(u) =
∫

�

I p
avg(apmd uz) dLn(z). (16)

This is a direct consequence of [37, (1.10ii)] together with (13). For the convenience
of the reader, we provide a self-contained proof which relies on Propositions 3.2
and 4.3 instead.

Proof. Define f (z) := I p
avg(apmd uz) for almost every z ∈ �. We calculate

|ep
r (z, u) − f (z)|

n + p
= r−p

∣∣∣∣ −
∫

B(z,r)

d p(u(z), u(z′)) − apmd uz(z
′ − z)p dLn(z′)

∣∣∣∣
and thus obtain with Propositions 3.2 and 4.3 that

|ep
r (z, u) − f (z)|

n + p
≤ pε(2g(z) + ε)p−1 + (2p + 2p−1)g(z)p Ln(B(z, r)\Ki )

Ln(B(z, r))

+ 2p−1 1

Ln(B(z, r))

∫
B(z,r)\Ki

g(z′)p dLn(z′)

for almost every z ∈ Ki , every ε > 0, and every 0 < r < ri (ε). Here, Ki and ri (ε)

are as in Proposition 4.3. It follows that ep
r (z, u) converges to f (z) as ε, r ↘ 0 for

almost every Lebesgue density point z of Ki . Vitali’s convergence theorem thus
yields that for every ϕ ∈ Cc(�) we have

lim
r→0 E p

r (ϕ, u) =
∫

�

ϕ(z)I p
avg(apmd uz) dLn(z).

This proves (16) and shows that the energy density measure of u is given by (15).
��

Now and for Lemma 4.7 below we assume that X is moreover separable. Fix a
countable, dense subset {xi }i∈N ⊂ X . For every N ∈ N define amap ϕN : X → �∞

N
by

ϕN (x) := (d(x, x1), . . . , d(x, xN )), (17)

where d is the metric on X . Here, �∞
N denotes R

N endowed with the sup-norm
‖ · ‖∞. Note that ϕN is 1-Lipschitz for every N ∈ N. We will need the following
auxiliary result in later sections:

Lemma 4.7. Let u ∈ W 1,p(�, X) with p > 1 and define uN := ϕN ◦ u. Then for
almost every z ∈ � we have

apmd(uN )z(v) ↗ apmd uz(v) as N → ∞
uniformly in v ∈ Sn−1. In particular, apmd(uN )z converges to apmd uz with
respect to the metric dSn .
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The lemma above implies that for almost every z ∈ � we have

apmd uz(v) = sup
i∈N

|〈∇uxi (z), v〉| (18)

for every v ∈ R
n , where uxi (z) := d(xi , u(z)). This together with Proposition 4.6

yields the representation

E p(u) = n
∫

�

−
∫

Sn−1
sup
i∈N

|〈∇uxi (z), v〉|p dHn−1(v) dLn(z)

for the Korevaar–Schoen energy, thus providing a different proof of the main result
in [39].

Proof. We first note that for all z, z′ ∈ � we have that

‖uN (z′) − uN (z)‖∞ ↗ d(u(z′), u(z))

as N ↗ ∞. From this it follows that for almost every z ∈ � and every v ∈ Sn−1
the sequence (apmd(uN )z(v)) is non-decreasing with

lim
N→∞ apmd(uN )z(v) ≤ apmd uz(v). (19)

Let v ∈ Sn−1 be fixed. We show that for almost every z ∈ � equality holds in (19).
Define f (z) := limN→∞ apmd(uN )z(v). It follows from Proposition 4.8 below
that for almost every z ∈ � and almost all s < t in R satisfying {z + rv : r ∈
[s, t]} ⊂ � we have

‖uN (z + tv) − uN (z + sv)‖∞ ≤
∫ t

s
apmd(uN )z+rv(v) dr ≤

∫ t

s
f (z + rv) dr

for every N ∈ N. From this we obtain that

d(u(z + tv), u(z + sv)) ≤
∫ t

s
f (z + rv) dr.

Hence, fromProposition 4.3 and the Lebesgue differentiation theorem,we conclude
that

apmd uz(v) ≤ f (z)

for almost every z ∈ �. This proves that for fixed v ∈ Sn−1 equality holds in (19)
for almost every z ∈ �. From this it easily follows that for almost every z ∈ � we
have that

apmd(uN )z(v) ↗ apmd uz(v)

uniformly in v ∈ Sn−1. This completes the proof. ��
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Apart from the Korevaar–Schoen energy E p(u) we will also extensively use
the following energy functional, which will play a crucial role in our paper. Given
u ∈ W 1,p(�, X) we define the energy E p

+(u) of u by

E p
+(u) :=

∫
�

I p
+(apmd uz) dLn(z),

where I p
+ is as in Section 2. This energy will be of particular importance in Sec-

tions 6 and 7. It is not difficult to see that E p
+ is precisely the energy defined in

[51] when X is separable and thus we call E p
+(u) the Reshetnyak energy. Indeed,

let {xi }i∈N ⊂ X be a countable, dense subset. Then for every i ∈ N

|∇uxi (z)|p ≤ I p
+(apmd uz)

for almost every z ∈ �, where uxi (z) := d(u(z), xi ). Hence, (18) shows that

I p
+(apmd uz) = sup

i∈N

|∇uxi (z)|p

for almost every z ∈ � and thus the energy considered in [51] is precisely given
by E p

+(u). It can furthermore be proved that E p
+(u) is the integral of ρ

p
u , where

ρu is the minimal weak upper gradient (of a Newtonian representative) of u, see
[30, Theorem 7.1.20]. We finally note that E p

+(·) is related to the Korevaar–Schoen
energy by

n−1E p(u) ≤ E p
+(u) ≤ λE p(u), (20)

where λ > 0 is a constant only depending on n and p. Moreover, one has the
equality n−1E p(u) = E p

+(u) if and only if u is conformal. These properties follow
from Lemma 2.2 and the remark after Definition 2.3.
Throughout the remainder of this section, let X be a complete metric space.

The following lemmas will be useful.

Proposition 4.8. Let I = (a, b) be an interval and let u ∈ W 1,p(I, X) with p > 1.
Then u has an absolutely continuous representative ū which satisfies

�X (ū) =
∫ b

a
apmd ut (1) dt. (21)

In particular, the length function t �→ �X (ū|(a,t)) is contained in W 1,p(I, R).

Proof. This is a consequence of Lemmas 1.9.2 and 1.9.3 in [37]. Alternatively, it
can be proved as follows. The existence of an absolutely continuous representative
ū of u is a consequence of Proposition 3.2 above and the fact that X is complete.
Then the representation (21) follows from the proof of [10, Theorem 4.1.6] together
with the fact that apmd ut (1) = md ūt (1) for almost every t ∈ (a, b). ��
Lemma 4.9. Let �′ ⊂ R

n be a bounded, open set and ϕ : �′ → � a biLipschitz
map. If u ∈ W 1,p(�, X) for some p > 1 then u ◦ ϕ ∈ W 1,p(�′, X) and

apmd(u ◦ ϕ)z = apmd uϕ(z) ◦ dzϕ

for almost every z ∈ �′.
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Proof. This is a straight-forward consequence of the existence of approximate
metric derivatives almost everywhere proved in Proposition 4.3. ��
The following proposition, which can essentially be obtained from arguments

in [37], will be used repeatedly. Let ϕ : I × U → � be a biLipschitz map, where
I = (a, b) is an open interval and U ⊂ R

n−1 an open set. For r ∈ U denote by γr

the curve in � given by γr (t) := ϕ(t, r) for t ∈ I .

Proposition 4.10. Let p > 1 and u ∈ W 1,p(�, X). Then u ◦ γr ∈ W 1,p(I, X) for
almost every r ∈ U and the length of the continuous representative of u ◦ γr is
given by

�X (u ◦ γr ) =
∫ b

a
apmd uγr (t)(γ̇r (t)) dt

for almost every r ∈ U.

An analogous statement holds when I is replaced by S1. We provide a direct
proof which does not rely on the results in [37].

Proof. By Lemma 4.9 we have that u ◦ ϕ ∈ W 1,p(I × U, X) with

apmd(u ◦ ϕ)(t,r) = apmd uγr (t) ◦ d(t,r)ϕ (22)

for almost every t and r . Proposition 3.2 and Fubini’s theorem imply that u ◦
γr ∈ W 1,p(I, X) for almost every r ∈ U . For such r the absolutely continuous
representative of u ◦ γr , again denoted by u ◦ γr , satisfies

�X (u ◦ γr ) =
∫ b

a
apmd(u ◦ γr )t (1) dt

by Proposition 4.8. Finally, Proposition 4.3 together with (22) yield that for almost
all t and r we have

apmd(u ◦ γr )t (1) = apmd(u ◦ ϕ)(t,r)(e1) = apmd uγr (t)(γ̇r (t)),

where e1 = (1, 0, . . . , 0) ∈ R
n , completing the proof. ��

The following lemma will be used in the proof of Theorem 7.1.

Lemma 4.11. Let � ⊂ R
n be a bounded Lipschitz domain, and let x0 ∈ X and

R > 0. If u ∈ W 1,p(�, X) with 1 < p ≤ n and such that

tr(u)(z) ∈ B(x0, R)

for almost every z ∈ ∂� then∫
�

d p(u(z), x0) dLn(z) ≤ C
(
R p + E p(u)

)
, (23)

where C is a constant only depending on � and n and p.
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Proof. Define a 1-Lipschitz function ϕ : X → R by

ϕ(x) := max{0, d(x, x0) − R}

and note that ϕ(x) = 0 for all x ∈ B(x0, R). Then ϕ ◦ u belongs to the classical
Sobolev spaceW 1,p(�) by [37, Theorem1.6.2]. In particular,ϕ◦u is approximately
differentiable almost everywhere with approximate derivative equal to the weak
derivative. It thus follows that at almost every z ∈ �, the weak derivative of ϕ ◦ u
is bounded by

|dz(ϕ ◦ u)(v)| ≤ apmd uz(v)

for every v ∈ R
n . By Lemma 2.2, there exists λ depending only on n and p such

that

|∇(ϕ ◦ u)(z)|p ≤ I p
+(apmd uz) ≤ λI p

avg(apmd uz)

for almost every z ∈ �, and hence

∫
�

|∇(ϕ ◦ u)(z)|p dLn(z) ≤ λE p(u).

Since tr(ϕ ◦ u) = 0 we may use the Sobolev inequality together with Hölder’s
inequality to estimate

‖ϕ ◦ u‖p ≤ C ′
(∫

�

|∇(ϕ ◦ u)(z)|p dLn(z)

) 1
p ≤ C ′λ

1
p E p(u)

1
p

for a constant C ′ only depending on n and p and �. Now, inequality (23) follows.
��

We end the section with the following useful result.

Lemma 4.12. Let p > 1. Then u ∈ W 1,p(�, X) if and only if u ∈ L p(�, X) and
u ∈ W 1,p

loc (�, X) with

∫
�

I p
+(apmd uz) dLn(z) < ∞.

If � is convex then the hypothesis that u be in L p(�, X) is not needed in the ‘if’
part.

Proof. This is a direct consequence of Proposition 3.1 and the corresponding clas-
sical statement of the proposition when X = R. ��
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5. Weak Lower Semi-Continuity of Generalized Integrands

The aim of this section is to establish a general lower semi-continuity result
for functionals on Sobolev maps with values in a metric space, Theorem 5.4. This
theoremwill be used to show that the volume functionals ofmanyvolumedefinitions
are lower semi-continuous, seeCorollary 5.8. This in turnwill be used inSection 7 to
prove the existence of area-minimizingSobolevmaps. Theorem5.4 can furthermore
be used to give new proofs of the lower semi-continuity of the Korevaar–Schoen
and Reshetnyak energies, see Corollaries 5.6 and 5.7.
We first recall from Section 2 that Sn denotes the space of seminorms on

R
n and that Sn is endowed with the metric coming from the supremum norm on

C0(Sn−1, R).

Definition 5.1. A function I : R
n × Sn → [0,∞) is called generalized integrand

onR
n if I(·, s) is measurable for every s ∈ Sn and I(z, ·) is continuous for almost

every z ∈ R
n . The function I is said to have bounded p-growth if there exist

h ∈ L1loc(R
n) and C ≥ 0 such that

I(z, s) ≤ h(z) + CI p
+(s)

for almost every z ∈ R
n .

Functions I : Sn → [0,∞) can and will be naturally identified with functions
R

n × Sn → [0,∞) independent of the first variable. The following elementary
lemma will be needed in the sequel:

Lemma 5.2. Let � ⊂ R
n be an open, bounded subset, X a complete metric space,

and p > 1. If u ∈ W 1,p(�, X) and if I : R
n × Sn → [0,∞) is a generalized

integrand on R
n then the function z �→ I(z, apmd uz) is measurable. Moreover, if

I has bounded p-growth then∫
�

I(z, apmd uz) dLn(z) ≤ C ′(1+ E p(u)),

where C ′ is a constant depending on I, �, n, and p.

Proof. SinceSn is separable, one may show exactly as in the proof of [21, Propo-
sition VIII.1.1] that there exists a Borel function Ĩ : R

n × Sn → [0,∞) such
that Ĩ(z, ·) = I(z, ·) for almost every z ∈ R

n . By Proposition 4.3, the map
z �→ apmd uz is measurable. Since Ĩ is Borel it thus follows that the function
z �→ Ĩ(z, apmd uz) is measurable. Hence the function f (z) := I(z, apmd uz) is
measurable as well. This proves the first part of the proposition.
If I has bounded p-growth then there exist h ∈ L1(Rn) and C ≥ 0 such that

f (z) ≤ h(z) + CI p
+(apmd uz)

for almost every z ∈ �. Lemma 2.2 and Proposition 4.6 thus imply that∫
�

f (z) dLn(z) ≤ ‖h‖L1(�) + λC
∫

�

I p
avg(apmd uz) dLn(z)

= ‖h‖L1(�) + λC E p(u)

for some constant λ > 0 depending only on n and p. This completes the proof. ��

26

ht
tp
://
do
c.
re
ro
.c
h



We next introduce a variant of the classical quasi-convexity of functions which
is adapted to our situation. Given a generalized integrand I on R

n we define

FI(u) :=
∫

�

I(z, apmd uz) dLn(z)

whenever u ∈ W 1,p(�, X), where � ⊂ R
n is an open, bounded subset and X a

complete metric space.

Definition 5.3. A continuous function I : Sn → [0,∞) is called quasi-convex if
for every finite dimensional normed space Y and every linear map L : R

n → Y we
have

FI(L|B) ≤ FI(ψ) (24)

for every smooth immersion ψ : B → Y with ψ |∂ B = L|∂ B , where B denotes the
closed unit ball in R

n .

Note that if ‖ · ‖ denotes the norm on Y then, by definition, (24) becomes

Ln(B) · I(‖ · ‖ ◦ L) ≤
∫

B
I(‖ · ‖ ◦ dzψ) dLn(z).

A function F : W 1,p(�, X) → R is said to be lower semi-continuous on
W 1,p(�, X) with respect to weak convergence if

F(u) ≤ lim inf
j→∞ F(u j )

for every u ∈ W 1,p(�, X) and every sequence (u j ) ⊂ W 1,p(�, X) with
sup j E p(u j ) < ∞ and such that u j → u in L p(�, X).
Inwhat follows, a functionI : Sn → [0,∞) is calledmonotone ifI(s) ≤ I(s′)

for all s, s′ ∈ Sn with s ≤ s′. The main result of the present section can be stated
as follows.

Theorem 5.4. Let I be a generalized integrand on R
n and let p > 1. Suppose I is

of bounded p-growth and I(z, ·) is monotone for almost every z ∈ R
n. Then I(z, ·)

is quasi-convex for almost every z ∈ R
n if and only if for every open, bounded

subset � ⊂ R
n and every complete metric space X the functional

FI(u) :=
∫

�

I(z, apmd uz) dLn(z)

is lower semi-continuous on W 1,p(�, X) with respect to weak convergence.

The following proposition will be useful in the proof of the theorem.

Proposition 5.5. Let I be a generalized integrand on R
n of bounded p-growth

for some p > 1. Let � ⊂ R
n be an open, bounded subset and X a complete

metric space. Then for every u ∈ W 1,p(�, X) and every ε > 0 there exists a finite
dimensional normed space Y and some 1-Lipschitz map ϕ : X → Y such that

|FI(ϕ ◦ u) − FI(u)| ≤ ε.
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Proof. We first consider the case that X is separable. Let {xi }i∈N ⊂ X be a count-
able dense subset and, for N ∈ N, let ϕN : X → �∞

N be the map defined in (17).
Fix u ∈ W 1,p(�, X) and let f, fN : � → R be the functions given by

f (z) := I(z, apmd uz) and fN (z) := I(z, apmd(ϕN ◦ u)z).

It follows from Lemma 4.7 and the properties of I that fN (z) converges to f (z)
for almost every z ∈ � and

fN (z) ≤ h(z) + CI p
+(apmd uz),

where h ∈ L1(Rn) and C ≥ 0 are independent of N . By Proposition 4.3, the func-
tion z �→ I p

+(apmd uz) is in L1(�). Thus, by the Lebesgue dominated convergence
theorem, it follows that fN converges to f in L1(�). From this the statement of
the proposition follows with Y = �∞

N and ϕ := ϕN , where N ∈ N is chosen large
enough. This proves the proposition in the case that X is separable.
We now treat the general case. After possibly changing u on a set of measure

zero we may assume that u has separable image. Let X ′ denote the closure of the
image of u. Let ε > 0. By the first case, there exists a 1-Lipschitzmapϕ′ : X ′ → �∞

N
such that

|FI(ϕ′ ◦ u) − FI(u)| ≤ ε.

Since �∞
N is an injective metric space there exists a 1-Lipschitz extension ϕ : X →

�∞
N of ϕ

′. Since FI(ϕ ◦ u) = FI(ϕ′ ◦ u) this proves the general case. ��
We turn to the proof of Theorem 5.4.

Proof of Theorem 5.4. Suppose first that I(z, ·) is quasi-convex for almost every
z ∈ R

n . Let � ⊂ R
n be an open, bounded subset and let X be a complete metric

space. Let u ∈ W 1,p(�, X) and let (u j ) ⊂ W 1,p(�, X) be such that u j → u in
L p(�, X) and sup j E p(u j ) < ∞.
We claim that it is enough to show that

FI(ϕ ◦ u) ≤ lim inf
j→∞ FI(ϕ ◦ u j ) (25)

for every finite dimensional normed spaceY and every 1-Lipschitzmapϕ : X → Y .
Indeed, let ε > 0 and let ϕ be as in Proposition 5.5. Since I(z, ·) is monotone for
almost every z ∈ � it follows thatFI(ϕ◦u j ) ≤ FI(u j ) for every j ∈ N. Therefore,
if (25) holds then we obtain

FI(u) − ε ≤ FI(ϕ ◦ u) ≤ lim inf
j→∞ FI(ϕ ◦ u j ) ≤ lim inf

j→∞ FI(u j ).

Since ε > 0 was arbitrary it follows that

FI(u) ≤ lim inf
j→∞ FI(u j ).

It remains to be proven that (25) holds. However, identifying Y with R
N via any

linear isomorphism the statement translates into the classical sequential weak lower
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semi-continuity statement of quasi-convex functionals as it is stated in Theorem II.4
of [1]. This proves the if part of the theorem.
The only if part of the theorem follows from Theorem II.5 of [1] via identifying

a given N -dimensional normed space Y withR
N via any isomorphism and by using

Rellich’s theorem. ��
Throughout the rest of this section, let � ⊂ R

n be an open, bounded subset
and X a complete metric space. Using Theorem 5.4 we can give a new proof of the
lower semi-continuity statement in [37, Theorem 1.6.1].

Corollary 5.6. Let p > 1. Then the Korevaar–Schoen energy E p(·) is lower semi-
continuous on W 1,p(�, X) with respect to weak convergence.

Proof. The function I p
avg defined in Section 2 is continuous and hence defines a

generalized integrand onR
n . Furthermore, I p

avg is monotone, of bounded p-growth,
and satisfies

E p(u) =
∫

�

I p
avg(apmd uz) dLn(z)

for every u ∈ W 1,p(�, X) by Proposition 4.6. Finally, it is not difficult to see
that I p

avg is quasi-convex in the sense of Definition 5.3. Indeed, let (Y, ‖ · ‖) be a
finite dimensional normed space and let B denote the closed unit ball in R

n . Let
L : B → Y be the restriction of a linear map and let ψ : B → Y be a smooth
immersion such that ψ |∂ B = L|∂ B . Fix v ∈ Sn−1 and denote by W ⊂ R

n the
subspace orthogonal to v. The triangle inequality and Jensen’s inequality imply
that for every y ∈ W∫

R

1B(y + tv) · ‖L(v)‖p dt ≤
∫

R

1B(y + tv) · ‖dy+tvψ(v)‖p dt.

Hence, Fubini’s theorem yields

Ln(B)‖L(v)‖p ≤
∫

B
‖dzψ(v)‖p dLn(z) (26)

and thus

Ln(B) · I p
avg(‖ · ‖ ◦ L) ≤

∫
B

I p
avg(‖ · ‖ ◦ dzψ) dLn(z).

This shows that I p
avg is quasi-convex. It thus follows from Theorem 5.4 that E p(·)

is lower semi-continuous on W 1,p(�, X) with respect to weak convergence. ��
In the same way one proves the weak lower semi-continuity of E p

+(·) and thus
partly recovers [51, Theorem 4.2].

Corollary 5.7. Let p > 1. Then the Reshetnyak energy E p
+(·) is lower semi-

continuous on W 1,p(�, X) with respect to weak convergence.

As a consequence of Theorem 5.4 we have the following result which will be
used to prove the existence of area minimizers in Section 7. Recall Definition 2.6
for the notion of quasi-convex volume densities.
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Corollary 5.8. Let μ be a definition of volume and n ≥ 1. If μ induces quasi-
convex n-volume densities then Volμ(·) is lower semi-continuous on W 1,n(�, X)

with respect to weak convergence.

Proof. The function I : Sn → [0,∞) given by I(s) := Jμ
n (s) defines a general-

ized integrand on R
n which is monotone, of bounded n-growth, and satisfies

Volμ(u) =
∫

�

I(apmd uz) dLn(z)

for every u ∈ W 1,n(�, X).
Furthermore, I is quasi-convex in the sense of Definition 5.3. Thus, the claim

follows from Theorem 5.4. ��
Corollary 5.8 will be used in Section 7 in order to prove the existence of area

minimizers.

6. Quasi-Conformality of Energy Minimizers

The main purpose of this section is to prove Theorem 1.2 from the introduction,
which is restated below as Theorem 6.2 for convenience andwhich shows that every
energy minimizing maps is (weakly) quasi-conformal with a universal constant.
This is well-known when X is Euclidean space, however, the classical proof of this
result does not carry over to the general setting of metric spaces. This comes from
the fact that it seems impossible to obtain a good description of variation of the
energy if non-Euclidean norms appear as approximate metric derivatives.
Let X be a complete metric space. Recalling from Section 2 the definition of

quasi-conformality of seminorms on R
n we now define:

Definition 6.1. A map u ∈ W 1,n(�, X), where � ⊂ R
n is open and bounded,

is called Q-quasi-conformal if apmd uz is Q-quasi-conformal for almost every
z ∈ �.

Moreover, 1-quasi-conformal Sobolev mappings will be called conformal. We
note that (RN -valued) conformalmaps according to our definition are calledweakly
conformal by some authors.
Denote by D the open unit disc in R

2. The main result of this section is:

Theorem 6.2. Let X be a complete metric space. Suppose that u ∈ W 1,2(D, X) is
such that

E2+(u) ≤ E2+(u ◦ ψ)

for every biLipschitz homeomorphism ψ : D → D. Then u is
√
2-quasi-conformal.

The proof will furthermore show the following. Suppose that u is as in the
theorem and, in addition, apmd uz is induced by an inner product for almost every
z ∈ D for which apmd uz is non-degenerate. Then u is conformal. The quasi-
conformality constant

√
2 is optimal in general as the following remark shows.
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Remark 6.3. Let �∞
2 be the 2-dimensional plane endowed with the supremum

norm. If u ∈ W 1,2(D, �∞
2 ) is non-constant then u cannot be better than

√
2-quasi-

conformal. Indeed, there exists a set A ⊂ D of positive measure such that u is
approximately differentiable with T := ap dzu non-degenerate at each z ∈ A. Let
r > 0 be the largest number so that T (D) contains r B, where B is the unit ball
of �∞

2 . By John’s theorem (see Section 3 of [12]) we have T (D) 
⊂ λr B for every
λ <

√
2; thus apmd uz cannot be better than

√
2-quasi-conformal.

In Theorem 6.8 we will obtain an analogue of Theorem 6.2 for the energy
E2(·). In this case, however, we can only bound the quasi-conformality constant
by 2

√
2+ √

6, which is probably not optimal.
Before proving the theorem we establish several auxiliary results. We start with

the following easy observation:

Lemma 6.4. Let � and �′ be bounded, open subsets of R
n and ϕ : �′ → � a

conformal biLipschitz homeomorphism. Then for every u ∈ W 1,n(�, X) we have
En+(u ◦ ϕ) = En+(u) and En(u ◦ ϕ) = En(u).

Proof. By Lemma 4.9, we have u ◦ ϕ ∈ W 1,n(�′, X) and

apmd(u ◦ ϕ)z(v) = apmd uϕ(z)(dzϕ(v))

for almost every z ∈ �′ and every v ∈ R
n . Since v �→ |dzϕ(v)| is conformal,

Lemma 2.4 implies that

In+(apmd(u ◦ ϕ)z) = | det dzϕ| · In+(apmd uϕ(z))

and
In
avg(apmd(u ◦ ϕ)z) = | det dzϕ| · In

avg(apmd uϕ(z))

for almost every z ∈ �. The lemma now follows from the change of variables
formula. ��
The following lemma proves the infinitesimal version of Theorem 6.2. It is a

reformulation of Theorem 6.2 for linear maps to normed vector spaces X .

Lemma 6.5. Let s be a seminorm on R
2 such that for every T ∈ SL2(R) we have

I2+(s) ≤ I2+(s ◦ T ). (27)

Then s is
√
2-quasi-conformal. Moreover, if s induced by an inner product then s

is conformal.

The proof will show that a norm s satisfying (27) is isotropic in the following
sense. The ellipse of maximal area contained in the unit ball with respect to the
norm s is a Euclidean disc.

Proof. If s is degenerate then it follows from (27) that s ≡ 0. We may therefore
assume that s is non-degenerate.After rescaling s, wemay also assume thatI2+(s) =
1. Denote by B the open unit ball with respect to s, that is,

B := {v ∈ R
2 : s(v) < 1}.
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Since I2+(s) = 1 we have D ⊂ B. We will show that D is the ellipse of largest area
contained in B. Arguing by contradiction we assume that there exists L ∈ GL2(R)

with | det L| > 1 and such that L(D) ⊂ B. Set λ := | det L| and define T := λ− 12 L .
Then T ∈ SL2(R) and T satisfies

s(T (v))2 = λ−1s(L(v))2 ≤ λ−1

for every v ∈ D. Thus we have I2+(s ◦ T ) ≤ λ−1 < I2+(s), contradicting (27).
Therefore, no such L exists. It follows from this that D is the ellipse of largest area
contained in B and thus, by definition, D is the Loewner ellipse for B. Therefore, by
John’s theorem (see example [4, Theorem 2.18]), we have that B ⊂ √

2D and thus
s(v) ≥ 1/√2 for every v ∈ S1. This shows that s is indeed

√
2-quasi-conformal.

Finally, if s is induced by an inner product then B is itself an ellipse. Since D ⊂ B
and D is the ellipse of largest area contained in B it follows that B = D and so s
is conformal. ��
The next simple lemma, essentially a consequence of the Lebesgue differenti-

ation theorem, allows us to obtain from an infinitesimal a local energy-decreasing
variation.

Lemma 6.6. Let � ⊂ R
n be an open, bounded subset and X a complete metric

space. Let p > 1 and u ∈ W 1,p(�, X). Let I : Sn → [0,∞) be continuous with
bounded p-growth. Then for almost every z0 ∈ �

−
∫

B(z0,r)

I(apmd uz ◦ T ) dLn(z) −→ I(apmd uz0 ◦ T ) (28)

as r → 0 for every linear map T : R
n → R

n.

Proof. It is enough to show that for every ε > 0 there exists a measurable set
A ⊂ � such that Ln(A) < ε and such that (28) holds for every z0 ∈ �\A.
Let therefore ε > 0. Let f : � → Sn be the function given by f (z) := apmd uz

if apmd uz exists and f (z) = 0 otherwise. By Lusin’s theorem [23, 2.3.5], there
exists A ⊂ � measurable with Ln(A) < ε and such that f |�\A is continuous.
We first show that for almost every z0 ∈ �\A we have

1

Ln(B(z0, r))

∫
B(z0,r)∩A

I(apmd uz ◦ T ) dLn(z) −→ 0 (29)

as r → 0 for every linear map T : R
n → R

n . By Proposition 4.3, there exists
g ∈ L p(�) such that apmd uz(v) ≤ 2g(z)|v| for almost every z ∈ � and every
v ∈ R

n . Since I is of bounded p-growth there exists C ≥ 0 such that
I(apmd uz ◦ T ) ≤ C + 2pCg(z)p‖T ‖p (30)

for almost every z ∈ � and every T : R
n → R

n linear. Here, ‖T ‖ denotes the
operator norm of T . The Lebesgue differentiation theorem together with (30) im-
mediately yields (29) for almost every z0 ∈ �\A.
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Let z0 ∈ �\A be a Lebesgue density point of �\A and such that (29) holds.
We show that (28) holds for z0. For this, let T : R

n → R
n be linear. Let δ > 0.

Since I and f |�\A are continuous there exists r0 > 0 such that B(z0, r0) ⊂ � and

|I(apmd uz ◦ T ) − I(apmd uz0 ◦ T )| ≤ δ

for every z ∈ �\A with |z − z0| ≤ r0. It thus follows that∫
B(z0,r)

|I(apmd uz ◦ T ) − I(apmd uz0 ◦ T )| dLn(z)

≤ δ · Ln(B(z0, r)\A) + Ln(B(z0, r) ∩ A) · I(apmd uz0 ◦ T )

+
∫

B(z0,r)∩A
I(apmd uz ◦ T ) dLn(z)

for every 0 < r < r0 and hence

lim sup
r→0

−
∫

B(z0,r)

|I(apmd uz ◦ T ) − I(apmd uz0 ◦ T )| dLn(z) ≤ δ.

Since δ > 0 was arbitrary we conclude that (28) holds for z0. This concludes the
proof. ��
The following elementary lemma is, together with Lemma 6.4, the key to the

localization of the variational argument.

Lemma 6.7. Let T ∈ GL2(R) and let z0 ∈ R
2 and r > 0. Then there exists a

biLipschitz homeomorphism � : R
2 → R

2 such that

�(z) = z0 + T (z − z0)

for every z ∈ B̄(z0, r) and such that � is smooth and conformal on R
2\B̄(z0, r).

Proof. After a translation and a dilation wemay assume that z0 = 0 and r = 1.We
may furthermore assume that T is diagonal with strictly positive entries. Indeed, by
the polar decomposition theoremandbydiagonalization,wemaywrite T = K ·T̂ ·L
for suitable K , L ∈ O2(R) and a diagonal matrix T̂ with strictly positive entries.
We identify R

2 with C in the usual way. We may thus assume that T is given
by T (x + iy) = ax + iby for some a, b > 0 and that z0 = 0 and r = 1.
Set D := B(0, 1) ⊂ C and define a holomorphic function � : C\D → C by
�(z) = cz + dz−1, where c, d ∈ R are such that c + d = a and c − d = b. Note
that c > 0 and |d| < c. Then � satisfies �(z) = T (z) for every z ∈ C with |z| = 1.
Moreover, � is injective and satisfies

c − |d| ≤ |�′(z)| ≤ c + |d| (31)

for all z. Since � maps the circle {|z| = r} for r ≥ 1 surjectively onto the ellipse{
x + iy : x2

(cr + d/r)2
+ y2

(cr − d/r)2
= 1

}
it follows that the image of � is all ofC\T (D). This together with (31) implies that
� is a biLipschitz homeomorphism from C\D onto C\T (D). We now extend � to
all of C by setting �(z) = T (z) for z ∈ D. It follows that � satisfies all the desired
properties. ��
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We are finally ready to prove the main theorem of this section.

Proof of Theorem 6.2. In order to prove that u is
√
2-quasi-conformal it is enough,

by Lemma 6.5, to show that for almost every z0 ∈ D we have

I2+(apmd uz0) ≤ I2+(apmd uz0 ◦ T ) (32)

for every T ∈ SL2(R). By Lemma 6.6, we have that for almost every z0 ∈ D

−
∫

B(z0,r)

I2+(apmd uz ◦ T ) dLn(z) −→ I2+(apmd uz0 ◦ T ) (33)

as r → 0 for every linear map T : R
2 → R

2. We prove by contradiction that (32)
holds for every z0 ∈ D for which (33) holds. Assume therefore that z0 ∈ D is such
that (33) holds but I2+(apmd uz0 ◦ T ) < I2+(apmd uz0) for some T ∈ SL2(R).
Let δ > 0 be so small that

I2+(apmd uz0 ◦ T ) + 3δ ≤ I2+(apmd uz0).

By (33), there exists r > 0 such that B(z0, r) ⊂⊂ D and such that

−
∫

B(z0,r)

I2+(apmd uz ◦ T ) dL2(z) ≤ I2+(apmd uz0 ◦ T ) + δ

and

−
∫

B(z0,r)

I2+(apmd uz) dL2(z) ≥ I2+(apmd uz0) − δ.

It follows that

−
∫

B(z0,r)

I2+(apmd uz ◦ T ) dL2(z) ≤ −
∫

B(z0,r)

I2+(apmd uz) dL2(z) − δ.

By Lemma 6.7, there exists a biLipschitz homeomorphism � : R
2 → R

2 such
that �(z) = z0 + T −1(z − z0) for all z ∈ B̄(z0, r) and such that � is smooth and
conformal outside B̄(z0, r).
Let ϕ : D → �(D) be a conformal diffeomorphism. Since �(S1) is smooth,

ϕ and ϕ−1 are smooth up to the boundary. In particular, ϕ is a biLipschitz home-
omorphism. Thus, ψ := �−1 ◦ ϕ is a biLipschitz homeomorphism from D onto
itself.
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We calculate using Lemma 6.4 and the properties of � that

E2+(u ◦ ψ) =
∫

D
I2+(apmd(u ◦ ψ)z) dL2(z)

=
∫

�(D)

I2+(apmd(u ◦ �−1)z) dL2(z)

=
∫

D\B̄(z0,r)

I2+(apmd uz) dL2(z)

+
∫

�(B(z0,r))

I2+(apmd u�−1(z) ◦ T ) dL2(z)

=
∫

D\B̄(z0,r)

I2+(apmd uz) dL2(z)

+
∫

B(z0,r)

I2+(apmd uz ◦ T ) dL2(z)

≤
∫

D
I2+(apmd uz) dL2(z) − δL2(B(z0, r))

= E2+(u) − δL2(B(z0, r)).

This is in contradiction with the hypothesis of the theorem. We therefore conclude
that (32) holds for almost every z0 ∈ D. This completes the proof. ��
We have the following analog of Theorem 6.2 for the energy considered by

Korevaar–Schoen:

Theorem 6.8. Let X be a complete metric space. Suppose that u ∈ W 1,2(D, X) is
such that

E2(u) ≤ E2(u ◦ ψ)

for every biLipschitz homeomorphism ψ : D → D. Then u is Q-quasi-conformal
with Q = 2√2+ √

6.

The proof of Theorem 6.8 is analogous to that of Theorem 6.2 but uses the
following lemma instead of Lemma 6.5. Since the result will not be used in the
sequel and the constant we obtain is worse than that for the E+-energy we leave
the details of the proof to the reader.

Lemma 6.9. Let s be a seminorm on R
2 such that for every T ∈ SL2(R) we have

I2avg(s) ≤ I2avg(s ◦ T ).

Then s is Q-quasi-conformal with Q = 2√2 + √
6. Moreover, if s is induced by

an inner product then s is conformal.

Proof. We use the following fact, which can be proved by a straight-forward cal-
culation. Let ‖ · ‖ be a norm on R

2 induced by an inner product and let Q̄ ≥ 1. If
‖ · ‖ satisfies

2Q̄I2avg(‖ · ‖) ≤ (Q̄2 + 1)I2avg(‖ · ‖ ◦ T )
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for every T ∈ SL2(R) then ‖ · ‖ is Q̄-quasi-conformal.
Let now s be as in the lemma. It is straight-forward to see that if s is degenerate

then s ≡ 0. We may therefore suppose that s is non-degenerate. If s is induced
by an inner product, then s is conformal by the above fact. In general, by John’s
theorem (see example [4, Theorem 2.18]), there exists a norm ‖ · ‖ on R

2 induced
by an inner product such that

‖v‖ ≤ s(v) ≤ √
2‖v‖

for every v ∈ R
2. This together with the hypothesis yields that

I2avg(‖ · ‖) ≤ 2I2avg(‖ · ‖ ◦ T )

for every T ∈ SL(2, R). The fact above thus implies that ‖·‖ is Q̄-quasi-conformal
with Q̄ = 2+ √

3. Hence, s is
√
2Q̄-quasi-conformal. ��

7. Existence of Area Minimizers and Quasi-Conformality

Given a complete metric space X and a Jordan curve � ⊂ X we define�(�, X)

to be the set of all maps u ∈ W 1,2(D, X) such that tr(u) has a continuous represen-
tative which is a weakly monotone parametrization of �. We refer to Section 2.1
for the notion of weakly monotone parametrization.
The main result of the present section can be stated as follows.

Theorem 7.1. Let μ be a definition of volume which induces quasi-convex 2-volume
densities. Let X be a proper metric space and � ⊂ X a Jordan curve. If �(�, X) 
=
∅ then there exists u ∈ �(�, X) which satisfies

Areaμ(u) = inf {Areaμ(u′) : u′ ∈ �(�, X)
}

and which is
√
2-quasi-conformal.

Remark 6.3 shows that the quasi-conformality factor
√
2 cannot be improved

in general. We refer to Definition 4.5 for the parametrized μ-area Areaμ(u) and to
Section 2.4 for examples of definitions of volume inducing quasi-convex 2-volume
densities. Since the Busemann (Hausdorff) definition of volume induces quasi-
convex 2-volume densities, see Section 2.4, Theorem 7.1, in particular, implies
Theorem 1.1. It is well-known that if X is Euclidean space then every energy
minimizer is an area minimizer. We will show in Section 11 that this is no longer
true in the setting of general metric spaces.
The proof of Theorem 7.1 will be given after establishing several auxiliary

results.

Lemma 7.2. Let μ be a definition of volume and � ⊂ R
n an open, bounded subset.

Let X be a complete metric space and u ∈ W 1,n(�, X). Then

Volμ(u) ≤ En+(u) and Volμ(u) ≤ C En(u),

where C only depends on n. If u is Q-quasi-conformal then

En+(u) ≤ Qn Volμ(u) and En(u) ≤ nQn Volμ(u).

For n = 2 the constant C can be taken to be 1.
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In particular, if u is conformal then

En(u) = nEn+(u) = nVolμ(u).

Proof. Since μ is monotone it follows that

Jμ
n (apmd uz) ≤ In+(apmd uz)

for almost every z ∈ � and thus Volμ(u) ≤ En+(u) upon integration. Moreover,
integrating the above inequality and using Lemma 2.2 and Proposition 4.6 yields
Volμ(u) ≤ C En(u) for some constant C depending only on n. If n = 2 then C be
taken to be 1 by Lemma 2.2. This proves the first part of the lemma.
If u is Q-quasi-conformal then, by the monotonicity of μ, we obtain

In+(apmd uz) ≤ QnJμ
n (apmd uz)

for almost every z ∈ � and thus En+(u) ≤ Qn Volμ(u) upon integration. Moreover,
Lemma 2.2, Proposition 4.6 and the inequality above yields

En(u) ≤ nEn+(u) ≤ nQn Volμ(u).

This concludes the proof. ��
We have the following variant of the Courant-Lebesgue Lemma which is valid

for general complete metric spaces.

Lemma 7.3. Let (X, d) be a complete metric space and u ∈ W 1,2(D, X). Let
z0 ∈ D and δ ∈ (0, 1). For each r ∈ (0, 1) let γr be an arc-length parametrization
of {z ∈ D : |z−z0| = r}. Then there exists A ⊂ (δ,

√
δ) of strictly positive measure

such that u ◦ γr has an absolutely continuous representative of length

�X (u ◦ γr ) ≤ π

(
2E2(u)

| log δ|
) 1
2

(34)

for every r ∈ A. In particular, if |z0| ≥ 1− δ then

d(tr(u)(yr ), tr(u)(zr )) ≤ π

(
2E2(u)

| log δ|
) 1
2

(35)

for almost every r ∈ A, where yr and zr are the points in S1 at distance r from z0.

The proof is a straight-forward adaptation of the classical proof for Euclidean
spaces. For the classical proof see for example [19].
Let X be a complete metric space and � ⊂ X a Jordan curve. Fix three dis-

tinct points p1, p2, p3 ∈ S1 and three distinct points p̄1, p̄2, p̄3 ∈ �. A map
u ∈ �(�, X) is said to satisfy the 3-point condition with respect to {p1, p2, p3}
and { p̄1, p̄2, p̄3} if the continuous representative of tr(u), again denoted by tr(u),
satisfies

tr(u)(pi ) = p̄i for i = 1, 2, 3. (36)

Using Lemma 7.3 one may establish exactly as in the Euclidean case the propo-
sition below.

37

ht
tp
://
do
c.
re
ro
.c
h



Proposition 7.4. Let X, �, pi , and p̄i be as above and let M > 0. Then the family{
tr(u) : u ∈ �(�, X) satisfies the 3-point condition (36) and E2(u) ≤ M

}
is equi-continuous.

In the above, tr(u) refers to the continuous representative of tr(u).

Proof. This follows as in the Euclidean case except that the classical Courant-
Lebesgue Lemma is replaced by Lemma 7.3. We refer for example to [19, pp. 257–
258] for the proof in the classical case. ��
Using the proposition above we can prove:

Proposition 7.5. Let X be a proper metric space, � ⊂ X a Jordan curve, and
(u j ) ⊂ �(�, X) a sequence such that

sup
j

E2+(u j ) < ∞.

Then there exist v ∈ �(�, X), a subsequence (u jk ) and Moebius transformations
ψk : D → D such that u jk ◦ ψk converges to v in L2(D, X).

Proof. For each j ∈ N let ψ j : D → D be a Moebius transformation such that
v j := u j ◦ψ j satisfies the 3-point condition (36). By Lemmas 2.2 and 6.4 we have

E2(v j ) ≤ 2E2+(v j ) = 2E2+(u j )

and hence sup j E2(v j ) < ∞. Fix x0 ∈ �. By Lemma 4.11, we have

sup
j∈N

∫
D

d2(v j (z), x0) dL2(z) < ∞

and hence [37, Theorem 1.13] implies that there exist v ∈ W 1,2(D, X) and a
subsequence (v jk ) which converges to v in L2(D, X). It remains to show that
v ∈ �(�, X). By Proposition 7.4, the sequence (tr(v jk )) is equi-continuous and
thus we may assume, after possibly passing to a further subsequence, that (tr(v jk ))

converges uniformly to a continuousmap c : S1 → X . Then c is aweaklymonotone
parametrization of�. By [37, Theorem1.12.2], the traces tr(v jk ) converge to tr(v) in
L2(S1, X); hence tr(v) = c almost everywhere on S1. This shows that v ∈ �(�, X)

and concludes the proof. ��
We are ready to prove the main result of the present section.

Proof of Theorem 7.1. We first claim that for every u ∈ �(�, X) there exists
v ∈ �(�, X) which is

√
2-quasi-conformal and satisfies

Areaμ(v) ≤ Areaμ(u).

For this let u ∈ �(�, X) and define

�u := {v ∈ �(�, X) : Areaμ(v) ≤ Areaμ(u)},
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which is non-empty since u ∈ �u . Let (u j ) ⊂ �u be a sequence such that
E2+(u j ) → m as j → ∞, where

m := inf
{

E2+(u′) : u′ ∈ �u

}
.

By Proposition 7.5 there exist v ∈ �(�, X), a subsequence (u jk ), and Moebius
transformations ψk such that vk := u jk ◦ ψk converges to v in L2(D, X). By
Lemma 6.4 and Corollary 5.7 we have

E2+(v) ≤ lim inf
k→∞ E2+(vk) = lim inf

k→∞ E2+(u jk ) = m

and Corollary 5.8 implies that

Areaμ(v) ≤ lim inf
j→∞ Areaμ(un j ) ≤ Areaμ(u).

In particular, v ∈ �u and E2+(v) = m. For every biLipschitz homeomorphism
ψ : D → D we have v ◦ ψ ∈ �u and therefore

E2+(v) = m ≤ E2+(v ◦ ψ).

Theorem 6.2 thus implies that v is
√
2-quasi-conformal. This proves the claim.

Let now (u j ) ⊂ �(�, X) be a sequence with Areaμ(u j ) → m′ as j → ∞,
where

m′ := inf{Areaμ(u′) : u′ ∈ �(�, X)}.
By the first part of the proof, we may assume that each u j is

√
2-quasi-conformal.

In particular, by Lemma 7.2, we have E2+(u j ) ≤ 2Areaμ(u j ) for every j and thus
sup j E2+(u j ) < ∞. Thus, we obtain as above that after possibly pre-composing
with a Moebius transformation and passing to a subsequence, (u j ) converges to
some u ∈ �(�, X) in L2(D, X) and

Areaμ(u) = m′.

Finally, by the first part of the proof, we may assume that u is
√
2-quasi-conformal.

This concludes the proof. ��
We note that one can use the same methods to obtain the existence of energy

minimizers as follows.

Theorem 7.6. Let X be a proper metric space and � ⊂ X a Jordan curve. If
�(�, X) 
= ∅ then there exists u ∈ �(�, X) satisfying

E2+(u) = inf
{

E2+(u′) : u′ ∈ �(�, X)
}

.

Every such u is
√
2-quasi-conformal.

Ananalogous result holds for E2+ replaced by E2 and
√
2 replaced by 2

√
2+√

6.

Proof. The first statement follows from Proposition 7.5, Lemma 6.4, and Corol-
lary 5.7. The second statement is a consequence of Theorem 6.2. ��
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8. Interior Regularity of Area Minimizing Discs

The aim of this section is to prove Theorem8.2 below,which establishes interior
regularity of μ-area minimizers for arbitrary μ and which generalizes the interior
regularity results stated in the introduction.
We begin by extendingDefinition 1.3 to arbitrary volumes and by giving classes

of spaces satisfying the definition.

Definition 8.1. Let μ be a definition of volume, and C, l0 > 0. A complete metric
space X is said to admit a uniformly l0-local quadratic isoperimetric inequality
with constant C for μ if for every Lipschitz curve c : S1 → X of length �X (c) ≤ l0
there exists u ∈ W 1,2(D, X) with

Areaμ(u) ≤ C�X (c)2

and such that tr(u)(t) = c(t) for almost every t ∈ S1.

If the above holds for Lipschitz curves of arbitrary length then X is said to admit
a (global) quadratic isoperimetric inequality with constant C for μ.
In what follows, if a choice of definition of volume μ has been fixed, a uni-

formly l0-local quadratic isoperimetric inequality with constant C for μ will sim-
ply be called a (C, l0)-isoperimetric inequality. We observe that if X admits a
(C, l0)-isoperimetric inequality for some definition of volume μ then X admits a
(2C, l0)-isoperimetric inequality for any other definition of volume because any
two definitions of volume induce areas of Sobolev maps which differ by a factor
of at most 2. Note, however, that area minimizers with respect to two different
definitions of volume, spanning the same curve, need not have anything to do with
each other, see Proposition 11.6.
Many interesting classes of spaces admit a uniformly local quadratic isoperimet-

ric inequality. This includes homogeneously regular Riemannian manifolds in the
sense of [46], compact Lipschitz manifolds and, in particular, all compact Finsler
manifolds. It furthermore includes complete metric spaces all of whose balls of
radius at most l0 are γ -Lipschitz contractible with fixed γ in the sense of [56]. In
particular, this applies to complete CAT(κ) spaces, κ ∈ R, and compactAlexandrov
spaces by [49], and, in fact, also to non-compact volume non-collapsed Alexan-
drov spaces, cf. [49]. It moreover applies to complete metric spaces with a convex
bicombing in the sense of [55] or [38] and, in particular, to all Banach spaces and
all injective metric spaces. Further examples of spaces admitting a uniformly lo-
cal quadratic isoperimetric inequality are given by the Heisenberg groups H

n of
topological dimension 2n + 1 for n ≥ 2, endowed with a Carnot–Carathéodory
distance. This follows for example from [2]. In all the spaces mentioned above the
isoperimetric filling of a Lipschitz curve c is given by a Lipschitz map of μ-area
bounded by C�X (c)2 for a suitable constant C . In the case of spaces satisfying
the local γ -Lipschitz contractibility condition mentioned above, the constant C
depends only on γ .
The following theorem summarizes our main results concerning the interior

regularity of area minimizing discs:
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Theorem 8.2. Let X be a complete metric space admitting a uniformly local quadratic
isoperimetric inequality with constant C. Let μ be a definition of volume and let
Q ≥ 1. If u ∈ W 1,2(D, X) is Q-quasi-conformal and satisfies

Areaμ(u) = inf
{
Areaμ(v) : v ∈ W 1,2(D, X), tr(v) = tr(u) almost everywhere

}
then the following statements hold:

(i) There exists p > 2 such that u ∈ W 1,p
loc (D, X); in particular, u has a continuous

representative ū which moreover satisfies Lusin’s property (N);
(ii) The representative ū is locally α-Hölder continuous with α = (4π Q2C)−1.

Note that no assumption is made on μ and no local compactness condition
is made on X . Statement (i) and the first part of statement (ii) of Theorem 1.4
are consequences of Theorem 8.2. The following example shows that, in the case
Q = 1, the Hölder exponent α = 1

4πC is optimal.

Example 8.3. Let S ⊂ S2 be a round circle of radius r ∈ (0, 1] in the unit sphere
S2 ⊂ R

3 and let X be the cone over S, endowed with the intrinsic metric. Then
X is a complete metric space admitting a global quadratic isoperimetric inequality
with constant C = 1

4πr for any definition of volume μ, see for example [45]. Let
ϕ : S1 → S be a natural identification (one which stretches lengths by a constant
factor). Then the map u : D → X given by u(0) = 0 and u(z) = |z|rϕ(z/|z|) if
z 
= 0 is in the Sobolev space W 1,2(D, X), it is conformal and satisfies

Areaμ(u) = inf
{
Areaμ(v) : v ∈ W 1,2(D, X), tr(v) = tr(u) almost everywhere

}
.

Moreover, u is r -Hölder continuous but not s-Hölder continuous for any s > r .

Statement (i) of Theorem 8.2 will be proved in Proposition 8.4 while statement
(ii) follows fromProposition 8.7. The proof of Proposition 8.4 uses the isoperimetric
inequality in conjunction with a strengthening of Gehring’s lemma. The proof of
Proposition 8.7 follows the classical approach of Morrey and uses, in particular,
Morrey’s growth lemma.
Throughout the remainder of this section, let μ be a definition of volume, let

C > 0, l0 > 0, Q ≥ 1, and let X be a complete metric space X admitting a
(C, l0)-isoperimetric inequality. Unless otherwise stated, let u ∈ W 1,2(D, X) be
Q-quasi-conformal and such that

Areaμ(u) = inf
{
Areaμ(v) : v ∈ W 1,2(D, X), tr(v) = tr(u) almost everywhere

}
.

Our first proposition establishes higher integrability of u.

Proposition 8.4. There exists p > 2 such that u ∈ W 1,p
loc (D, X). In particular, u

has a locally Hölder continuous representative ū, and ū satisfies Lusin’s property
(N).

The proof is based on the local isoperimetric inequality. We first establish two
lemmas, the first of which shows that short curves with a W 1,2-parametrization
have an isoperimetric filling.

41

ht
tp
://
do
c.
re
ro
.c
h



Lemma 8.5. Let c : S1 → X be a continuous curve with �X (c) ≤ l0. If c ∈
W 1,2(S1, X) then there exists v ∈ W 1,2(D, X) with

Areaμ(v) ≤ C�X (c)2

and such that tr(v) = c almost everywhere on S1.

Regarding the notation c ∈ W 1,2(S1, X)we refer to the terminology introduced
in the paragraph preceding Proposition 3.1.

Proof. We may assume that l := �X (c) > 0. Let c̄ : S1 → X be the constant
speed parametrization of c. By the local isoperimetric inequality there exists w ∈
W 1,2(D, X) with

Areaμ(w) ≤ C�X (c)2

and such that tr(w) = c̄ almost everywhere on S1. Let v : B̄(0, 2) → X be the map
which coincides with w on D and which gives a ‘linear’ reparametrization from
c to c̄ on the annulus Ā := B̄(0, 2)\D. More precisely, view c and c̄ as curves
parametrized on [0, 1] by composing with the map s �→ e2π is and let � : [0, 1] →
[0, 1] be the normalized length function given be �(s) := l−1 · �X (c|[0,s]). Define
v on D by v := w and define v on Ā by

v(re2π is) := c̄ ((2− r)s + (r − 1)�(s)) .

Since � ∈ W 1,2((0, 1)) ∩ C0([0, 1]) by Proposition 4.8 and since c = c̄ ◦ � it
follows that v| Ā ∈ W 1,2(A, X)∩C0( Ā, X) and that v coincides with c on the outer
boundary of A and with c̄ on the inner boundary of A. Thus, Lemma 3.4 implies
that v ∈ W 1,2(B(0, 2), X) and tr(v)(2z) = c(z) for almost every z ∈ S1. Since
Areaμ(v|A) = 0 we moreover have that

Areaμ(v) ≤ C�X (c)2.

Identifying B(0, 2) with D via the scaling map we obtain the desired isoperimetric
filling of c. ��
For thenext lemma, letu satisfy thehypotheses stated in theparagraphpreceding

Proposition 8.4. Actually, the quasi-conformality condition on u is not needed for
this lemma.

Lemma 8.6. Let � ⊂ D be a domain enclosed by some biLipschitz curve in D.
If tr(u|�) has a continuous representative, denoted by u|∂�, such that u|∂� ∈
W 1,2(∂�, X) and if �X (u|∂�) ≤ l0 or Areaμ(u|�) ≤ Cl20 then

Areaμ(u|�) ≤ C�X (u|∂�)2.

Proof. Let � be as in the statement and let β : S1 → ∂� be a biLipschitz homeo-
morphism. Suppose that tr(u|�) has a continuous representative, which we de-
note by u|∂�, such that u|∂� ◦ β ∈ W 1,2(S1, X) and that �X (u|∂�) ≤ l0 or
Areaμ(u|�) ≤ Cl20 .
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We may assume that �X (u|∂�) ≤ l0 since otherwise the statement is trivially
true. By Lemma 8.5, there exists v ∈ W 1,2(D, X) such that

Areaμ(v) ≤ C�X (u|∂�)2

and such that tr(v) = u|∂� ◦ β almost everywhere. Let ϕ : D → � be a biLip-
schitz map extending β. Such ϕ exists by [54, Theorem A]. By Lemma 3.4, the
map ū : D → X which agrees with u on D\� and with v ◦ ϕ−1 on � is contained
in W 1,2(D, X) and satisfies tr(ū) = tr(u) almost everywhere. Since u is an area-
minimizer it follows that

Areaμ(u) ≤ Areaμ(ū) ≤ Areaμ(u|D\�) + C�X (u|∂�)2

and hence Areaμ(u|�) ≤ C�X (u|∂�)2. This proves the proposition. ��
Using Lemma 8.6 we can give the proof of Proposition 8.4 as follows.

Proof of Proposition 8.4. Let r0 > 0 be such that Areaμ(u|D∩B(z0,2r0)) ≤ Cl20 for
every z0 ∈ D.
We first show that the function f (z) := I1+(apmd uz) satisfies the local weak

reverse Hölder inequality

(
−
∫

W
f 2(z) dL2(z)

) 1
2 ≤ C1 −

∫
2W

f (z) dL2(z) (37)

for some constant C1 and for every square W of edge length at most 2r0 such that
2W ⊂ D, where 2W denotes the square with same center as W but twice the edge
length. For this, fix a square W centered at some point z0 ∈ D and of edge length
2r , where r ≤ r0, in such a way that 2W ⊂ D. For almost every 0 < s < 2r the
map tr(u|B(z0,s)) has an absolutely continuous representative, denoted by u|∂ B(z0,s),
such that u|∂ B(z0,s) ∈ W 1,2(∂ B(z0, s), X), and such that

�X (u|∂ B(z0,s)) =
∫

∂ B(z0,s)
apmd uz(v(z)) dH1(z) ≤

∫
∂ B(z0,s)

f (z) dH1(z),

where v(z) ∈ S1 is the vector orthogonal to z − z0. Hence, Lemma 8.6 shows that

Areaμ(u|W ) ≤ Areaμ(u|B(z0,s)) ≤ C

(∫
∂ B(z0,s)

f (z) dH1(z)
)2

for almost every
√
2r < s < 2r and thus, Lemma 7.2 yields

(∫
W

f 2(z) dL2(z)
) 1
2 ≤ Q Areaμ(u|W )

1
2

≤ Q
√

C −
∫ 2r

√
2r

∫
∂ B(z0,s)

f (z) dH1(z) dL1(s)

≤ Q
√

C(2− √
2)−1r−1

∫
2W

f (z) dL2(z).
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Thus, inequality (37) holds with a constant C1 depending only on C and Q. Since
f satisfies (37) a strengthening of Gehring’s lemma, see for example Theorem 1.5
in [35], implies that there exists p > 2 such that f ∈ L p

loc(D). This together

with Proposition 3.1 and the Sobolev inequality implies that u ∈ W 1,p
loc (D, X).

The remaining statements of the proposition follow from Proposition 3.3. This
concludes the proof. ��
The following proposition shows that the continuous representative of u is

locally α-Hölder continuous with α = 1
4π Q2C

. As already mentioned in the intro-
duction, the Hölder continuity is obtained by finding curves in D whose images in
X have small lengths. Before stating the proposition we define for z1, z2 ∈ D

A(z1, z2) := B(z1, |z1 − z2|) ∩ B(z2, |z1 − z2|)

and denote the closure of A(z1, z2) by Ā(z1, z2). Note that

diam(A(z1, z2)) = √
3|z1 − z2| and L2(A(z1, z2)) ≥ π

3
|z1 − z2|2. (38)

As before, we assume that u satisfies the hypotheses stated in the paragraph
preceding Proposition 8.4.

Proposition 8.7. If u ∈ C0(D, X) then for every0 < δ < 1and all z1, z2 ∈ B̄(0, δ)
there exists a piecewise affine curve γ in Ā(z1, z2)∩ B̄(0, δ) from z1 to z2 such that

�X (u ◦ γ ) ≤ L · |z1 − z2|α,

where α = 1
4π Q2C

and where L does not depend on z1 and z2. In particular, for

every 0 < δ < 1 the restriction of u to B̄(0, δ) is α-Hölder continuous.

If X admits a global quadratic isoperimetric inequality or if Areaμ(u) ≤ Cl20
then L depends only on E2(u), α, and δ and is increasing in E2(u) and δ.
For the proof of Proposition 8.7 we need the following two lemmas, essentially

due to Morrey. The first lemma gives a bound on energy growth on balls in D and
the second lemma relates the energy of balls to the lengths of some curves.

Lemma 8.8. If z0 ∈ D and 0 < r0 ≤ 1−|z0| are such thatAreaμ(u|B(z0,r0)) ≤ Cl20
then ∫

B(z0,r)

I1+(apmd uz) dL2(z) ≤
[
π E2+(u|B(z0,s))

] 1
2

s−αr1+α

for all 0 ≤ r ≤ s ≤ r0, where α := 1
4π Q2C

.

In particular, for every 0 ≤ r ≤ r0 we have

∫
B(z0,r)

I1+(apmd uz) dL2(z) ≤
[
π E2+(u)

] 1
2

rα
0

· r1+α.
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Proof. As in the proof of Proposition 8.4 for almost every 0 < r < r0 the map
tr(u|B(z0,r)) has an absolutely continuous representative, denoted by u|∂ B(z0,r), such
that u|∂ B(z0,r) ∈ W 1,2(∂ B(z0, r), X), and such that

�X (u|∂ B(z0,r)) ≤
∫

∂ B(z0,r)

I1+(apmd uz) dH1(z).

For such r , Jensen’s inequality yields

�X (u|∂ B(z0,r))
2 ≤ 2πr

∫
∂ B(z0,r)

I2+(apmd uz) dH1(z). (39)

It follows from Lemma 8.6 that

Areaμ(u|B(z0,r)) ≤ C�X (u|∂ B(z0,r))
2 ≤ 2πC · r ·

∫
∂ B(z0,r)

I2+(apmd uz) dH1(z)

= 2πC · r · d
dr

E2+(u|B(z0,r))

for almost every 0 < r < r0. From Lemma 7.2 we thus obtain

E2+(u|B(z0,r)) ≤ Q2 · Areaμ(u|B(z0,r)) ≤ Q2 · 2πC · r · d
dr

E2+(u|B(z0,r)). (40)

Hence, upon integration, we get

E2+(u|B(z0,r)) ≤ E2+(u|B(z0,s))

s2α
· r2α

for all 0 < r ≤ s ≤ r0. By Hölder’s inequality,

∫
B(z0,r)

I1+(apmd uz) dL2(z) ≤
[
π E2+(u|B(z0,r))

] 1
2 r ≤

[
π E2+(u|B(z0,s))

] 1
2 s−αr1+α.

This completes the proof. ��
Lemma 8.9. Let v ∈ W 1,2(D, X) ∩ C0(D, X) and let A ⊂ D be a convex subset
with L2(A) > 0. Then for all z1, z2 ∈ A there exists a piecewise affine curve γ in
A, joining z1 with z2, and such that

�X (v ◦ γ ) ≤ 2−1 diam(A)2 −
∫

A

(
I1+(apmd vz)

|z − z1| + I1+(apmd vz)

|z − z2|

)
dL2(z). (41)

Proof. Given z ∈ A, denote by γz the piecewise affine curve in A from z1 to z2
going through z. Then for almost every z ∈ A we have

�X (v ◦ γz) =
2∑

i=1

∫ 1

0
apmd vzi +t (z−zi )(z − zi ) dt

≤
2∑

i=1

∫ 1

0
I1+(apmd vzi +t (z−zi )) · |z − zi | dt.
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Set d := diam(A). For i = 1, 2 we have

−
∫

A

∫ 1

0
I1+(apmd vzi +t (z−zi )) · |z − zi | dt dL2(z)

= 1

L2(A)

∫
S1

∫ d

0
1A(zi + sw)s

∫ s

0
I1+(apmd vzi +tw) dt ds dH1(w)

≤ 1

L2(A)

∫
S1

∫ d

0
s
∫ d

0
1A(zi + tw)I1+(apmd vzi +tw) dt ds dH1(w)

= d2

2L2(A)

∫
S1

∫ d

0
1A(zi + tw)I1+(apmd vzi +tw) dt dH1(w)

= d2

2
−
∫

A

I1+(apmd vz)

|z − zi | dL2(z).

There thus exists a subset B ⊂ A of positive measure such that (41) holds for every
z ∈ B. This completes the proof. ��
Using the lemmas above we prove Proposition 8.7.

Proof of Proposition 8.7. Let r0 > 0 be such that Areaμ(u|D∩B(z0,r0)) ≤ Cl20 for
every z0 ∈ D. Let 0 < δ < 1 and let z1, z2 ∈ B̄(0, δ). Define A := Ā(z1, z2) ∩
B̄(0, δ). Suppose first that |z1 − z2| ≤ η := min{1 − δ, r0}. By Lemma 8.9 there
exists a piecewise affine curve γ in A, joining z1 with z2, and such that

�X (u ◦ γ ) ≤ 2−1 diam(A)2 −
∫

A

(
I1+(apmd uz)

|z − z1| + I1+(apmd uz)

|z − z2|

)
dL2(z). (42)

Set r := |z1 − z2|. By Lemma 8.8, we have for i = 1, 2 that∫
B(zi ,s)

I1+(apmd uz) dL2(z) ≤
[
π E2+(u)

] 1
2
η−αs1+α

and hence∫
B(zi ,s)\B(zi ,2−1s)

I1+(apmd uz)

|z − zi | dL2(z) ≤ 2
[
π E2+(u)

] 1
2
η−αsα

for every 0 ≤ s ≤ r . By summing over annuli we obtain

∫
B(zi ,r)

I1+(apmd uz)

|z − zi | dL2(z) ≤ 2
[
π E2+(u)

] 1
2

(1− 2−α)ηα
· rα.

Since 2L2(A) ≥ L2(A(z1, z2)) it follows with (42) and (38) that

�X (u ◦ γ ) ≤ 36E2+(u)
1
2√

π(1− 2−α)ηα
· |z1 − z2|α.

This proves the proposition in the special case that |z1− z2| ≤ min{1− δ, r0}. The
general case follows from the special case by subdividing the segment from z1 and
z2. ��
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9. Continuity Up to the Boundary of Area Minimizing Discs

The main results of this section are Theorems 9.1 and 9.3. They imply, in
particular, the second part of statement (ii) as well as statement (iii) of Theorem 1.4.
Let μ be a definition of volume, C, l0 > 0, and let X be a complete metric

space admitting a (C, l0)-isoperimetric inequality.

Theorem 9.1. Suppose u ∈ W 1,2(D, X) ∩ C0(D, X) is quasi-conformal and sat-
isfies

Areaμ(u) = inf
{
Areaμ(v) : v ∈ W 1,2(D, X), tr(v) = tr(u) almost everywhere

}
.

If tr(u) has a continuous representative then the map ū : D → X defined by

ū(x) :=
{

u(x) x ∈ D
tr(u)(x) x ∈ S1

is continuous.

The proof relies on the following estimate, which will be applied to a repara-
metrized piece of the area minimizer:

Lemma 9.2. Let (X, d) be a complete metric space, � ∈ (0, 1) and ε > 0. Then
for every v ∈ W 1,2(D, X) ∩ C0(D, X) satisfying

(i) d(tr(v)(z), v(0)) ≥ ε for almost every z ∈ S1, and
(ii) d(v(z), v(0)) < ε/2 for all z ∈ D with |z| < �

we have

E2(v|v−1(B(v(0),ε))) ≥ π�ε2

8
.

Proof. By continuity of v and hypothesis (i) there exists for almost every w ∈ S1

some number �̄ ∈ (0, 1) such that d(v(0), v(�̄w)) ≥ 3ε
4 . Let �̄(w) be the smallest

such �̄ and observe that �̄(w) > � and d(v(0), v(�̄(w)w)) = 3ε
4 . Thus for every

such w we have
ε

4
≤ d(v(�w), v(�̄(w)w)) ≤ �X (u ◦ γw), (43)

where γw : [�, �̄(w)] → D is the affine curve given by γw(r) := rw. For almost
every w ∈ S1 the curve u ◦ γw is absolutely continuous and satisfies

�X (v ◦ γw) =
∫ �̄(w)

�

apmd vγw(r)(w) dr ≤
∫ �̄(w)

�

I1+(apmd vrw) dr.

This together with (43) and Hölder’s inequality implies

∫ �̄(w)

�

I2+(apmd vrw) dr ≥
(ε

4

)2
.
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Integrating in polar coordinates and using the fact that v ◦ γw(r) ∈ B(v(0), ε) for
almost every w ∈ S1 and all r ∈ [0, �̄(w)) we conclude that

E2+(v|v−1(B(v(0),ε))) ≥
∫

S1

∫ �̄(w)

�

r · I2+(apmd vrw) dr dH1(w) ≥ π�ε2

8
.

The claim now follows with Lemma 2.2. ��
Proof of Theorem 9.1. Let ū be defined as in the statement of the theorem. Note
that ū|D and ū|S1 are continuous. In order to prove that ū is continuous on D it thus
suffices to show that the auxiliary function r̄ : D\{0} → [0,∞) given by

r̄(x) := d(ū(x), ū(x/|x |))
satisfies r̄(x) → 0 as |x | → 1.
In order to show this we will apply Lemma 9.2 to a suitable map v defined

below. Let Q ≥ 1 be such that u is Q-quasi-conformal. Set α := 1
4π Q2C

and let
L be the constant from Proposition 8.7 in the case noted after the proposition with
the parameters E2(u), α, and where the δ appearing there is to be taken to equal 12 .

Let ε ∈ (0, 1) and set � := min
{
[(2L)−1ε] 1α , 12

}
. Choose δ ∈ (0, 1) so small that

π ·
(
2E2(u)

| log δ|
) 1
2

< ε

and such that d(ū(z), ū(z′)) < ε for all z, z′ ∈ S1 with |z − z′| <
√

δ and

E2
(

u|D∩B(z,
√

δ)

)
< min

{
π�ε2

8
, Cl20

}

for every z ∈ S1.Weclaim that r̄(x) < 3ε for every x ∈ Dwith |x | > 1−δ. Suppose
this iswrong andfix an x forwhich this fails. ByLemma7.3, there exists r ∈ (δ,

√
δ)

such that the curve γ : (a1, a2) → D parametrizing {z ∈ D : |z − x/|x || = r}
satisfies

�X (u ◦ γ ) ≤ π ·
(
2E2(u)

| log δ|
) 1
2

< ε

and limt→ai u ◦ γ (t) = ū(limt→ai γ (t)) for i = 1, 2.
Set � := D ∩ B(x/|x |, r). From the choice of δ and r it follows that

E2(u|�) ≤ E2(u|D∩B(x/|x |,√δ)) < min

{
π�ε2

8
, Cl20

}
(44)

and that tr(u|�) has a continuous representative, simply given by ū|∂�, whose image
is contained in the ball B(x1, 2ε) with center x1 := ū(x/|x |).
Let ϕ : D → � be a conformal diffeomorphism which maps the origin to x .

Then themap v := u◦ϕ is continuous and satisfies v ∈ W 1,2(D, X) byLemma4.12
and is Q-quasi-conformal with E2(v) = E2(u|�). If we can show that v satisfies
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the hypotheses of Lemma 9.2 with ε and � given as above then Lemma 9.2 and
(44) yield

π�ε2

8
≤ E2(v|v−1(B(v(0),ε))) ≤ E2(v) = E2(u|�) <

π�ε2

8
,

which is impossible. Therefore, we must have r̄(x) ≤ 3ε as claimed.
It thus remains to show that v satisfies the hypotheses of Lemma 9.2. As already

mentioned, v is continuous and satisfies v ∈ W 1,2(D, X). In order to establish
property (i) of Lemma 9.2 note first that ϕ extends to a homeomorphism from D to
� which is locally biLipschitz away from the preimage of the two ‘corners’ of ∂�.
It follows that tr(v) has a continuous representative, denoted by the same symbol,
satisfying

tr(v) = tr(u|�) ◦ ϕ|S1 = ū|∂� ◦ ϕ|S1

everywhere. Since r̄(x) ≥ 3ε we obtain that
d(v(0), tr(v)(z)) ≥ d(u(x), x1) − d(x1, tr(v)(z)) ≥ r̄(x) − 2ε ≥ ε

for every z ∈ S1, showing (i). We will use Proposition 8.7 to establish (ii). For this
we first claim

Areaμ(v) = inf
{
Areaμ(w) : w ∈ W 1,2(D, X), tr(w) = tr(v) almost everywhere

}
.

(45)
In order to see this, let w ∈ W 1,2(D, X) be such that tr(w) = tr(v) almost every-
where. Then w ◦ ϕ−1 ∈ W 1,2(�, X) and, moreover,

tr(w ◦ ϕ−1) = tr(w) ◦ ϕ−1|∂� = tr(u|�)

almost everywhere on ∂�. The area minimizing property of u and the discussion
at the end of Section 3 then yield

Areaμ(v) = Areaμ(u|�) ≤ Areaμ(w ◦ ϕ−1) = Areaμ(w),

which proves (45). Lemma 7.2 and (44) imply

Areaμ(v) ≤ E2(v) < Cl20

and hence Proposition 8.7 implies that the restriction of v to the closed ball B̄(0, 12 )
is α-Hölder continuous with constant L . It follows that

d(v(z), v(0)) ≤ L|z|α < L�α ≤ ε

2

for every |z| < �, establishing (ii). We conclude that v satisfies the hypotheses of
Lemma 9.2. This completes the proof. ��
As for the secondmain result of this section recall that a rectifiable Jordan curve

� ⊂ X is called a chord-arc curve if there exists λ ≥ 1 such that for any x, y ∈ �

the length of the shorter of the two segments in � connecting x and y is bounded
from above by λ · d(x, y).
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Theorem 9.3. Let � ⊂ X be a chord-arc curve and suppose u ∈ �(�, X) is
quasi-conformal and satisfies

Areaμ(u) = inf {Areaμ(v) : v ∈ �(�, X)
}
. (46)

Then the continuous representative of u is Hölder continuous on all of D.

In fact, after possibly pre-composing with a Moebius transformation the con-
tinuous representative ū of u is β-Hölder on all of D with

β = 1

4π Q2C(1+ 2λ)2
.

Here, Q is the quasi-conformality factor, λ the parameter in the chord-arc condition
for �, and C is the isoperimetric constant. If Areaμ(u) ≤ Cl20 then it will further-
more follow that the Hölder constant L of ū is given by L = M(β) · �X (�) for
some decreasing function M(β). Note that Theorem 9.3 implies statement (iii) of
Theorem 1.4.

Proof. By Theorems 8.2 and 9.1 we may assume that u is continuous on all of
D. Fix three points p1, p2, p3 ∈ S1 at equal distance from each other and let
q1, q2, q3 ∈ � be three points such that the three segments into which they divide
� have equal length.After possibly pre-composinguwith aMoebius transformation
we may assume that u satisfies the 3-point condition u(pi ) = qi for i = 1, 2, 3.
Let 0 < r0 ≤ 1

2 be such that Areaμ(u|D∩B(z,r0)) ≤ Cl20 for every z ∈ D. We claim
that it is enough to prove that

Area(u|D∩B(z,r)) ≤ C(1+ 2λ)2 · �X (u|D∩∂ B(z,r))
2 (47)

for every z ∈ D and almost every r ∈ (0, r0). Indeed, if (47) is true then one argues
as in the proof of Lemma 8.8 to obtain∫

B(z,r)

I1+(apmd uw) dL2(w) ≤
[
π E2+(u)

] 1
2

r−β
0 r1+β

for every z ∈ D and every r ∈ (0, r0). Finally, the proof of Proposition 8.7 shows
that for all z1, z2 ∈ D one has

d(u(z1), u(z2)) ≤ K · r2β−1
0

1− 2−β
· E2+(u)

1
2 · |z1 − z2|β

for some universal constant K . From this the statement of the theorem follows.
Note that if Areaμ(u) ≤ Cl20 then r0 can be taken to be 12 . In this case we have
E2+(u) ≤ Q2 Area(u) ≤ Q2C�X (�)2 and hence

d(u(z1), u(z2)) ≤ M(β) · �X (�) · |z1 − z2|β

with M(β) = K
[√

β(1− 2−β)
]−1
for some universal constant K , yielding the

remark after the theorem.
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It remains to show that (47) holds. For this, let z ∈ D. Then u|D∩∂ B(z,r) ∈
W 1,2(D ∩ ∂ B(z, r), X) for almost every r ∈ (0, r0). Fix such r . If 0 < r < 1− |z|
then

Area(u|B(z,r)) ≤ C�X (u|∂ B(z,r))
2,

by Lemma 8.6, and hence (47) in this case. If r > 1 − |z| then denote by a and
b the intersection points of S1 with ∂ B(z, r). Since u|S1 satisfies the three-point
condition and weakly monotonically parametrizes � it follows that

�X (u|S1∩B(z,r)) ≤ 2
3

· �X (�) ≤ 2 · �X (u|S1\B(z,r))

and hence the chord-arc property implies

�X (u|S1∩B(z,r)) ≤ 2λ · d(u(a), u(b)) ≤ 2λ · �X (u|D∩∂ B(z,r)). (48)

Set� := D∩B(z, r), and let β : S1 → ∂� be an orientation preserving biLipschitz
homeomorphism. By (48) we have

�X (u ◦ β) ≤ (1+ 2λ) · �X (u|D∩∂ B(z,r)). (49)

Let J ⊂ S1 be the segment that gets mapped by β to S1 ∩ B(z, r). Define a
homeomorphism ψ : S1 → S1 such that ψ |S1\J is the identity and such that on J
the mapψ is a homeomorphism of J as in Lemma 2.1 for the curve u ◦β. It follows
that u ◦ β ◦ ψ ∈ W 1,2(S1, X). Now, employing an argument similar to that in the
proof of Lemma 8.6, and using (49) as well as the fact that u satisfies (46), one
shows that (47) holds. Indeed, by Lemma 8.5, there exists v ∈ W 1,2(D, X) such
that

Areaμ(v) ≤ C�X (u ◦ β)2

and such that tr(v) = u ◦ β ◦ ψ almost everywhere. Let � : S1 → S1 be the
homeomorphism which is given by β ◦ ψ ◦ β−1 on β(J ) and which is the identity
on S1\β(J ). Let ϕ : D → � be a biLipschitz map extending β. Such ϕ exists by
[54, Theorem A]. Let ū : D → X be the map which agrees with u on D\� and
with v ◦ ϕ−1 on �. A similar argument as in the proof of Lemma 3.4 shows that
ū ∈ W 1,2(D, X) and tr(ū) = u ◦ � almost everywhere. Since u satisfies (46) it
follows that

Areaμ(u) ≤ Areaμ(ū) ≤ Areaμ(u|D\�) + C�X (u ◦ β)2

and hence

Areaμ(u|�) ≤ C�X (u ◦ β)2 ≤ C(1+ 2λ)2 · �X (u|D∩∂ B(z,r))
2.

This proves (47) and completes the proof of the theorem. ��
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10. Proofs of Corollaries 1.5 and 1.6

Throughout this section, let μ be a definition of volume which induces quasi-
convex 2-volume densities.
Corollary 1.6 is a special case of the following result.

Theorem 10.1. Let X be a proper, geodesic metric space admitting a global quadratic
isoperimetric inequality with some constant C for μ. If C < 1

8π then X is a metric
tree, that is, every geodesic triangle in X is isometric to a tripod.

Proof. lt suffices to show that X does not contain any rectifiable Jordan curve.
Suppose to the contrary that there exists a rectifiable Jordan curve� in X . The global
quadratic isoperimetric inequality implies that�(�, X) 
= ∅. By Theorem 7.1 there
exists u ∈ �(�, X)which is

√
2-quasi-conformal andminimizes theμ-area among

all maps in �(�, X). By Theorem 8.2, we may assume u to be locally α-Hölder
continuous with α = 1

8πC . Since α > 1 it follows that u is constant on D, thus
contradicting the fact that tr(u) is a weakly monotone parametrization of the Jordan
curve �. If X satisfies property (ET) then u may be chosen to be conformal and
hence locally α-Hölder continuous on D with α = 1

4πC . Therefore, ifC < 1
4π then

α > 1 and it follows that u is constant. ��
Recall that a metric space X is injective if it is an absolute 1-Lipschitz retract.

Equivalently, X is injective if for every metric space Y , every subset A ⊂ Y , and
every Lipschitz map from A to X there exists a Lipschitz extension to all of Y with
the same Lipschitz constant. Examples of such spaces include metric trees, �∞(W )

for every setW , and L∞(Z , μ) for anymeasure space (Z , μ). Every injective space
is complete and geodesic, see for example [38].

Theorem 10.2. Let X be an injective metric space and � ⊂ X a rectifiable Jordan
curve. Then there exists u ∈ �(�, X) such that

Areaμ(u) = inf {Areaμ(v) : v ∈ �(�, X)
}

and such that u is
√
2-quasi-conformal. Moreover, u ∈ W 1,p

loc (D, X) for some
p > 2, and u has a representative which is continuous on D and locally 14 -Hölder
continuous on D.

No assumption on local compactness of X is needed. It applies, in particular,
to all L∞-spaces.
We begin with the following lemma:

Lemma 10.3. Let X be an injective metric space. Then X admits a global isoperi-
metric inequality with constant 12π for μ.

Proof. Let c : S1 → X be a Lipschitz curve such that r := �X (c) > 0. Let
c̄ : S1 → X be the constant speed parametrization of c. Endow S1 with the length
metric. Then c is (2π)−1r -Lipschitz and, since X is injective, it has a (2π)−1r -
Lipschitz extension ϕ to the standard upper hemisphere S2+. Pre-composing ϕ with
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a bijective Lipschitz map from D to S2+ which restricts to the identity on S1 we
obtain a Lipschitz extension w : D → X of c whose μ-area is bounded above by

Areaμ(w) ≤ Lip(ϕ)2 · Area(S2+) ≤ (2π)−1r2.

Now, one constructs exactly as in Lemma 8.5 a map v : B̄(0, 2) → X which
coincides with w on D and which gives a ‘linear’ reparametrization from c to c̄ on
the annulus B̄(0, 2)\D. Since c is a Lipschitz map it follows from the construction
that v is Lipschitz; moreover, Areaμ(v|A) = 0. Identifying B̄(0, 2) with D via
the scaling map we thus obtain a Lipschitz extension of c to D whose μ-area is
bounded by (2π)−1r2. This completes the proof. ��
Proof of Theorem 10.2. By [32], there exists an injective hull Y of �, which is
moreover compact and isometrically embeds into X , see also [38]. Since Y is
injective there exists a 1-Lipschitz retraction r : X → Y . By Lemma 10.3, Y
admits a global isoperimetric inequality with constant C = 1

2π for μ. In particular,
we have that �(�, Y ) 
= ∅.
By Theorem 7.1, there exists u ∈ �(�, Y ) which is

√
2-quasi-conformal and

minimizes theμ-area among all maps in�(�, Y ). Since r is a 1-Lipschitz retraction
it follows that u also minimizes the μ-area among all maps in �(�, X).
Theorem 8.2 shows that u ∈ W 1,p

loc (D, X) for some p > 2 and that u has a
representative which is locally α-Hölder with α = 1

8πC = 1
4 . By Theorem 9.1,

the continuous representative of u extends continuously to D. This completes the
proof. ��
Given a metric space � homeomorphic to S1 and of finite length, define

m(�, μ) := inf{Areaμ(v) : Y complete, ι : � ↪→ Y isometric, v ∈ �(ι(�), Y )}.
Corollary 1.5 is a special case of the following result.

Corollary 10.4. There exist a compact metric space X, an isometric embedding
ι : � ↪→ X, and a map u ∈ �(ι(�), X) such that

Areaμ(u) = m(�, μ).

Moreover, u is
√
2-quasi-conformal and has a representative which is continuous

on D and locally 14 -Hölder continuous on D.

Proof. Let X be an injective hull of �, see [32]. By Theorem 10.2 there exists
u ∈ �(�, X) with minimal area among maps in �(�, X) and which satisfies the
regularity properties required in Corollary 10.4. Finally, since X is an injective met-
ric space and since the area does not increase under compositions with 1-Lipschitz
maps, we have

m(�, μ) = inf{Areaμ(v) : v ∈ �(�, X)}
and hence Areaμ(u) = m(�, μ). This completes the proof. ��
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11. The Infinitesimally Euclidean Case

In what follows let (X, d) be a complete metric space.

Definition 11.1. We say that X has property (ET) if for every u ∈ W 1,2(D, X) the
approximate metric derivative apmd uz is induced by a possibly degenerate inner
product at almost every z ∈ D.

Many geometrically interesting classes of spaces have property (ET). For in-
stance, this is the case for Riemannian manifolds with continuous metric tensor,
metric spaces of curvature bounded from above or below in the sense of Alexan-
drov, and equiregular sub-Riemannian manifolds. In order to see this, we only need
to observe that in every such space no metric blow-up (tangent cone) at any point
may contain non-Euclidean normedmetric spaces. Then the result follows from the
proposition below. We refer to [15] for basics on ultralimits and to [40] for more
about blow-ups and tangent cones.

Proposition 11.2. Let ω be a non-principal ultrafilter on N. Suppose that for every
x ∈ X, there is some sequence r j → ∞ such that the ultralimit Xω of the sequence
(X, r j d, x) does not contain isometrically embedded 2-dimensional non-Euclidean
normed spaces. Then X has property (ET).

Proof. This follows directly from Proposition 4.3. ��
Another interesting class of spaceswith property (ET) is given by infinitesimally

Hilbertian metric spaces with (synthetic) Ricci curvature bounded below. More
precisely, if (X, d,m) is an infinitesimally Hilbertian CD∗(K , N ) space for some
K ∈ R and N ∈ [1,∞), see for example [26] for the terminology, then (X, d)

has property (ET). Indeed, for each x ∈ X the collection of (measured) tangents of
(X, d,m) is non-empty and each tangent (Y, dY , n) is an infinitesimally Hilbertian
CD∗(0, N ) space, see (2.7) of [26]. In particular, by [11], the support of themeasure
n is all of Y . Thus, if Y contains a normed plane V then the Splitting Theorem [25]
implies that V must be Euclidean. From this and Proposition 11.2 it follows that X
has property (ET).
The validity of property (ET) simplifies many results and formulas.

Theorem 11.3. Let X satisfy property (ET) and let u ∈ W 1,2(D, X). If

E2+(u) ≤ E2+(u ◦ ψ)

for every biLipschitz homeomorphism ψ : D → D then u is conformal. The same
statement holds when E2+ is replaced by E2.

Proof. This follows from the same arguments as in the proof of Theorem 6.2.
Indeed, since apmd uz comes from an inner product for almost every z ∈ D for
which apmd uz is non-degenerate, it follows from (32) andLemma6.5 that apmd uz

is conformal for almost every z ∈ D. Hence, u is conformal. Using Lemma 6.9
instead of Lemma 6.5 one obtains the second statement. ��
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If X satisfies property (ET) then for every u ∈ W 1,2(D, X) and any two def-
initions of volume μ1 and μ2 one has Areaμ1(u) = Areaμ2(u) by property (i) of
Definition 2.5. We will therefore simply write Area(u) in this case.

Theorem 11.4. Let X be a proper metric space satisfying property (ET) and let
� ⊂ X be a Jordan curve. If u ∈ �(�, X) satisfies

E2+(u) = inf
{

E2+(u′) : u′ ∈ �(�, X)
}

then u is conformal and an area minimizer, that is,

Area(u) = inf {Area(u′) : u′ ∈ �(�, X)
}
.

The same statement holds when E2+ is replaced by E2.

Proof. The fact that u is conformal is a direct consequence of Theorem 11.3. We
show that u is an area minimizer. Arguing by contradiction we assume there exists
v ∈ �(�, X) such that

Area(v) < Area(u).

Arguing exactly as in the first part of the proof of Theorem 7.1 but using
Theorem 11.3 instead of Theorem 6.2, one shows that there exists w ∈ �(�, X)

which is conformal and satisfies

Area(w) ≤ Area(v).

Together with Lemma 7.2 one thus obtains that

E2+(w) = Area(w) < Area(u) = E2+(u)

which contradicts the fact thatuminimizes E2+. It follows thatu is an areaminimizer.
The proof for E2 is analogous. ��
Combining Theorem 11.4 with Theorem 7.6 we obtain the existence of confor-

mal area minimizers.

Corollary 11.5. Let X be a proper metric space satisfying property (ET) and let
� ⊂ X be a Jordan curve. If �(�, X) 
= ∅ then there exists u ∈ �(�, X) which
minimizes the E2+-energy among all maps in �(�, X). Every such u is conformal
and minimizes the area among all maps in �(�, X).

The same holds with E2+ replaced by the Korevaar–Schoen energy E2.
We now show that in spaces without property (ET) areaminimizers with respect

to two different definitions of area are in general different.

Proposition 11.6. Let μ and μ̄ be quasi-convex definitions of volume such that
μV 
= μ̄V for some normed plane V . Then there exist a metric space X biLipschitz
homeomorphic to S2 and a closed biLipschitz curve � in X such that for every
u ∈ �(�, X) with

Areaμ(u) = inf {Areaμ(v) : v ∈ �(�, X)
}

there is some v ∈ �(�, X) with Areaμ̄(v) < Areaμ̄(u).
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It follows, in particular, that energyminimizers with respect to a fixed definition
of energy (for example the Reshetnyak or Korevaar–Schoen energy) can in general
only be area minimizers with respect to at most one definition of area. In [42] we
show that Reshetnyak energy minimizers are in fact area minimizers with respect
to the intrinsic Riemannian volume μi and that, more generally, for every suitable
notion of quasi-convex energy Ẽ there is an induced quasi-convex definition of area
μ̃ such that Ẽ-energy minimizers are μ̃-area minimizers.

Proof. Let ‖ · ‖ be a norm on R
2 such that μV 
= μ̄V for V = (R2, ‖ · ‖). We may

assume that μV < μ̄V , the proof for the other case being analogous. Let λ > 0 be
such that

μV (D) < λ2π < μ̄V (D),

where D denotes the Euclidean unit disc as usual. Let D1 and D2 be two copies of
D. Endow D1 with the metric coming from the norm ‖ · ‖ and D2 with λ times the
Euclidean metric. Let X be the metric space obtained by gluing D1 and D2 along
their boundaries, endowed with the quotient metric. Then X is biLipschitz homeo-
morphic to the standard sphere S2 and, in particular, admits a (C, l0)-isoperimetric
inequality for some C, l0 > 0 for every definition of volume. Embed Di into X via
the natural inclusion and denote by � ⊂ X the boundary of Di . Then � is a closed
biLipschitz curve. For j = 1, 2, let u j : D → D j ↪→ X be the natural inclusion.
Then u j ∈ �(�, X) and Areaμ̄(u2) = λ2π and Areaμ(u1) = μV (D).
Let u ∈ �(�, X) be such that

Areaμ(u) = inf {Areaμ(u′) : u′ ∈ �(�, X)
}
.

Since �(�, X) is not empty such u exists by Theorem 7.1. We claim that

Areaμ̄(u) ≥ μ̄V (D) (50)

and thus Areaμ̄(u) ≥ μ̄V (D) > λ2π = Areaμ̄(u2), which shows that u is not an
area minimizer in �(�, X) for μ̄.
It remains to prove (50). Due to the quasi-convexity of μ, μ̄, and E2+ and

Proposition 7.5 we find a map û ∈ �(�, X) which has minimal E2+-energy among
allmaps v ∈ �(�, X) satisfyingAreaμ(v) = Areaμ(u) andAreaμ̄(v) ≤ Areaμ̄(u).
By Theorem 6.2, such a map û is quasi-conformal.
By Proposition 8.4 and Theorem 9.1, we may assume that û is continuous on

D and satisfies Lusin’s property (N). In particular, there exists i ∈ {1, 2} such that
Di ⊂ û(D). Since

μV (D) = Areaμ(u1) ≥ Areaμ(û)

the area formula thus implies that i = 1 and hence that Areaμ̄(û) ≥ μ̄V (D). Since
Areaμ̄(u) ≥ Areaμ̄(û) this proves (50) and completes the proof. ��
We conclude the paper by noting that property (ET) implies a corresponding

property in all dimensions.

Proposition 11.7. Let X satisfy property (ET), let n ∈ N, and let � ⊂ R
n be an

open, bounded subset. Then for any u ∈ W 1,2(�, X) and almost every point z ∈ �
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the approximate metric derivative apmd uz is induced by a possibly degenerate
inner product.

Proof. We may assume that � is a ball since the claim is local. We now argue
by contradiction and assume that u ∈ W 1,2(�, X) is such that, on a set of strictly
positive measure, apmd uz is not induced by a possibly degenerate inner product.
Fix a countable dense set of 2-planes Vi inR

n . Slicing� by translates of the Vi , we
find a point z ∈ � at which apmd uz exists and is non-degenerate, is not induced
by an inner product, but is such that the restriction of apmd uz to each Vi is given
by an inner product. However, by the parallelogram identity, a norm comes from
an inner product if and only if its restriction to each 2-plane comes from an inner
product. By the density of the planes Vi this leads to a contradiction. ��
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