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AKokotsakis polyhedronwith quadrangular base is a neighborhood of a quadrilateral in

a quad surface. Generically, a Kokotsakis polyhedron is rigid. In this article we classify

flexible Kokotsakis polyhedra with quadrangular bases. The analysis is based on the

fact that any pair of adjacent dihedral angles of a Kokotsakis polyhedron is related by a

biquadratic equation. This results in a diagramof branched covers of complex projective

lines by elliptic curves. A polyhedron is flexible if and only if all repeated fiber products

of coverings meet in the same Riemann surface, which is then the configuration space

of the polyhedron.

1 Introduction

1.1 Kokotsakis polyhedra

A Kokotsakis polyhedron is a polyhedral surface in R
3, which consists of one n-gon

(the base), n quadrilaterals attached to every side of the n-gon, and n triangles placed

between each two consecutive quadrilaterals. See Figure 1 for the case n = 5.

If all faces are viewed as rigid plates, and edges as hinges, then the polyhedron

is in general rigid. Indeed, every interior vertex has only one degree of freedom, so that
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Pérolles, Switzerland.
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Fig. 1. A Kokotsakis polyhedron with a pentagonal base.

any two dihedral angles adjacent to a vertex are related by an equation:

F12(ϕ1,ϕ2) = 0, F23(ϕ2,ϕ3) = 0, . . . Fn1(ϕn,ϕ1) = 0

In a generic case, the solutions of this system form a discrete set, and the polyhedron

cannot be deformed. A natural question is to find all special shapes that allow isometric

deformations.

Antonios Kokotsakis, a student of Carathéodory, studied these polyhedra in his

PhD thesis in 1930s. As a result, he found a necessary and sufficient condition for the

infinitesimal flexibility and described several classes of flexible polyhedra [10]. At the

same time, Sauer and Graf [20] studied the case n = 4 and also found several flexible

special cases.

1.2 The approach

We provide a classification of flexible Kokotsakis polyhedra with quadrangular base,

that is, for n = 4. The description is not absolutely explicit, see discussion at the

beginning of Section 3.

Our approach is based on a diagram of branched covers between Riemann

surfaces constructed as follows.

A substitution zi = tan ϕi
2 transforms Fi,i+1(ϕi,ϕi+1) = 0 into a polynomial equation

Pi,i+1(zi, zi+1) = 0 with zi ∈ RP1. By allowing zi to take complex values we arrive at a

Riemann surface

Ci,i+1 = {(zi, zi+1) | Pi,i+1(zi, zi+1) = 0} (1)
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with two coordinate projections

zi ∈ CP1 ← Ci,i+1 → CP1 � zi+1,

which form the following diagram

C34
��

��

CP1 C41
��

��
CP1

CP1

C23
��

��

CP1 C12
��

��

Now, if a polyhedron is flexible, then there are paths in Ci,i+1 whose projections to the

common CP1’s coincide. These paths can be lifted to a bigger diagram involving fiber

products of Ci−1,i and Ci,i+1, see Section 6.2. To find the conditions for this big commuta-

tive diagram to exist, we consider holomorphic parametrizations and study the branch

points of the surfaces and covers.

1.3 Related work

1.3.1 Branched covers, elliptic curves, and Euler–Chasles correspondences

Another example of an application of complex analysis to an algebraic problem

is Ritt’s characterization of composite and commutative polynomials [16, 18]. To achieve

that, Ritt studied the monodromy of a composition of branched covers. His approach

has partly inspired our work.

Instead of the tetrahedral angles at the interior vertices of the Kokotsakis polyhe-

dron, it ismore convenient to study the spherical quadrilaterals obtained by intersecting

these angles with a unit sphere. It was discovered by Darboux [6] that the configuration

space of a Euclidean quadrilateral is an elliptic curve. In particular, he derived from it

a very nice but little known porism on quadrilateral folding, see [9]. Darboux’s elliptic

parametrization does not extend to the spherical case, so we will use a different one.

The equation of the configuration space (1) has the form

a22z
2w2 + a20z

2 + a02w
2 + 2a11zw + a00 = 0 (2)

as was discovered by Bricard in [4]. On the other hand, this is a special case of the so-

called Euler–Chasles correspondence, which in a generic situation describes an elliptic

curve. The correspondence is 2–2, that is, to one value of z there usually correspond two

values of w, and vice versa.
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Fig. 2. Kokotsakis polyhedron with a quadrangular base as a part of a quad surface.

Thus, a Kokotsakis polyhedron is flexible if and only if the composition of associ-

ated Euler–Chasles correspondences contain an identity component. A similar problem

was studied by Krichever [11] in the context of the quantum Yang–Baxter equation. See

[7, Section 10] for a survey.

1.3.2 Flexible octahedra and cross-polytopes

A neighborhood of a face of an octahedron is a Kokotsakis polyhedron with a

triangular base. It flexes if and only if the octahedron does. Flexible octahedra were

studied and classified byBricard [4]. Bricard derived the equation 2 between the tangents

of halves of dihedral angles and used the elimination method to solve the system: the

resultant of P12 and P23 must have a common factorwith P13. Nawratil [12] studied flexible

Kokotsakis polyhedra with triangular base that cannot be extended to octahedra.

Stachel and Nawratil [13, 14, 22] applied Bricard’s method of resultants to the

Kokotsakis polyhedra with quadrangular base and obtained a partial classification of

flexible polyhedra. The case of irreducible resultants remained open.

As a generalization of Bricard’s flexible polyhedra, Gaifullin [8] studied flexible

cross-polytopes in space-forms of arbitrary dimension. Gaifullin’s approach is similar

to ours.

In a different manner, elliptic curves came up in the work of Connelly [5] who

studied flexible bipyramids. See also the work of Connelly and Alexandrov [1].

1.3.3 Quad surfaces

A Kokotsakis polyhedron with a quadrangular base can be viewed as a part of

a quadrangular mesh, see Figure 2. It is easy to see that a simply connected piece of a

quadrangular mesh is flexible if and only if each of its Kokotsakis subpolyhedra is. Quad

surfaces are a natural analog of parametrized smooth surfaces and have been studied

in this context since about a century, see the book [19].
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There was a recent surge of interest to quad surfaces. First, they give rise to

various discrete integrable systems [3, 21]. Second, they have obvious applications in

the architectural design [17]: curved facades and roofs made of quadrangular glass

panels can be found in abundance in the modern cities. Third, flexible Kokotsakis poly-

hedra (a special case called Miura-ori) found application in industry as solar panels for

spacecraft [15].

1.4 Organization of the article

Section 2 introduces the notation and describes parametrizations of the configuration

spaces of spherical quadrilaterals. It also explains the terminology later used in Section

3 to list all flexible Kokotsakis polyhedra.

In Section 4 parametrization theorems for configuration spaces of spherical

quadrilaterals are proved.

Section 5 studies couplings of two four-bar linkages, that is, the fiber products

of configuration spaces of two quadrilaterals. Involutive and reducible couplings (i.e.,

trivial fiber products) are classified.

Finally, in Section 6 the diagram of branched covers associated with a flexible

Kokotsakis polyhedron is introduced and studied based on the results of two previous

sections. The most interesting and difficult case of a polyhedron without involutive

couplings is dealt with in Section 6.6.

2 Notation and Preliminaries

Vertices of a Kokotsakis polyhedron and the values of its planar angles at the interior

vertices are denoted in Figure 3. Clearly, it is only a neighborhood of the base face

A1A2A3A4 that matters: replacing, say, the vertex B1 by any other point on the half-line

A1B1 does not affect the flexibility or rigidity of the polyhedron. We will assume that all

planar angles lie between 0 and π : 0 < αi,βi, γi, δi < π .

2.1 Spherical linkage associated with a Kokotsakis polyhedron

The idea of associatingwith a flexible polyhedron, amovable spherical linkage goes back

to Bennett [2, Section 7], who used it in his study of the motion of flexible octahedra.

For each of the four interior vertices A1, A2, A3, A4 consider its spherical image,

that is, the intersection of the cone of adjacent faces with a unit sphere centered at

the vertex. This yields four spherical quadrilaterals Qi with side lengths αi,βi, γi, δi in
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Fig. 3. Notation in a Kokotsakis polyhedron.

Fig. 4. Two coupled spherical quadrilaterals associated with the edge A1A2.

this cyclic order. Spherical images of two adjacent vertices are coupled by means of

a common dihedral angle. Equivalently, for every edge AiAi+1 we have a scissors-like

coupling of two spherical quadrilaterals, see Figure 4.

On Figure 5 two different ways to couple all four quadrilaterals Qi are shown.

The left one is a closed chain of quadrilaterals on a sphere (due to δ1 + δ2 + δ3 + δ4 = 2π ),

so that it incorporates all four couplings. The right one fits better with Figure 3 but

is in general not closed, so that the coupling between Q1 and Q4 must be encoded by

requiring the equality of marked angles.

Lemma 2.1. Every Kokotsakis polyhedron gives rise to spherical linkages as shown on

Figure 5. Vice versa, every spherical linkage of this form corresponds to some Kokotsakis

polyhedron, if we require δ1 + δ2 + δ3 + δ4 = 2π for the linkage on the right.

A Kokotsakis polyhedron is flexible if and only if either of the corresponding

spherical linkages on Figure 5 is flexible. For the linkage on the right, the two marked

angles are required to stay equal during the deformation. �
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Fig. 5. Spherical linkages with scissors-like joints associated with a Kokotsakis polyhedron.

Proof. How to associate with a Kokotsakis polyhedron a spherical linkage was

explained above. To construct a Kokotsakis polyhedron for a given chain of quadrilater-

als, start by choosing as the base any Euclidean quadrilateral with the angles δ1, δ2, δ3, δ4.

At the vertices of the base, construct tetrahedral angles that have spherical quadrilater-

als Qi as their spherical images. The fact that the corresponding angles of Qi are equal

in pairs means that these tetrahedral angles fit to form a Kokotsakis polyhedron.

During an isometric deformation of a Kokotsakis polyhedron the planar angles of

its faces remain constant. Thus isometric deformations of the polyhedron correspond to

motions of the linkages on Figure 5 (with the equal angles condition for the right one). �

Thus, in order to classify all flexible Kokotsakis polyhedra, it suffices to classify

all flexible spherical linkages as on Figure 5 with δ1 + δ2 + δ3 + δ4 = 2π .

2.2 Algebraic reformulation of the problem

For fixed lengths of the bars, the shape of the spherical linkage introduced in Section 2.1

is uniquely determined by the four angles ϕ, ψ1, ψ2, and θ on Figure 6. If we introduce

the variables

z = tan
ϕ

2
, w1 = tan

ψ1

2
, w2 = tan

ψ2

2
, u = tan

θ

2
, (3)

then the relation between each pair of adjacent angles can be expressed as a polynomial

equation in the corresponding variables:

P1(z,w1) = 0 P2(z,w2) = 0

P3(u,w1) = 0 P4(u,w2) = 0
(4)
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Fig. 6. Angles determining the shape of a spherical linkage.

Thus we have the following lemma.

Lemma 2.2. A Kokotsakis polyhedron is flexible if and only if the system of polynomial

equations (4) has a one-parameter family of solutions over the reals. �

One possible approach to the problem (modifying Bricard’s approach to a system

of three equations) is to compute the resultant R12(w1,w2) of P1 and P2 as polynomials

in z and similarly the resultant R34(w1,w2). The polyhedron is flexible if and only if the

algebraic setsR12 = 0 andR34 = 0 have a common irreducible component, which, in turn,

is equivalent to the vanishing of the resultant of R12 and R34. This plan was partially

realized by Stachel and Nawratil, but the case of irreducible R12 and R34 remained out

of reach.

2.3 Branched covers between configuration spaces

Put

Zi := {(z,wi) ∈ (CP1)2 | Pi(z,wi) = 0}, i = 1, 2

Z12 := {(z,w1,w2) ∈ (CP1)3 | P1(z,w1) = 0 = P2(z,w2)}

Then Zi is the complexified configuration space of the quadrilateral Qi, and Z12 is the

complexified configuration space of the spherical linkage formed by couplingQ1 andQ2.

(The projection of Z12 to the (w1,w2)-plane is the zero set of the resultant R12 defined in

Section 2.2.)

A component of Zi is called trivial, if it has the form z = const or wi = const.

For non-trivial components, the restrictions of the maps Z12 → Zi, i = 1, 2 are branched
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Fig. 7. An involutive coupling and the action of j12 on its configuration space.

covers between Riemann surfaces. If the solution set Zall of the system (4) is one dimen-

sional, then the map Zall → Z12 is also a branched cover, and we obtain a diagram of

branched covers shown on Figure 15, Section 6. All maps in this diagram are at most

two-fold, and the configuration spaces Zi can be classified as in Section 4. However, the

analysis of the diagram is still complicated enough, and we bring more structure in it

by distinguishing certain sorts of couplings.

First, a coupling (Q1,Q2) is called involutive, if a component of its configuration

space Z12 carries an involution that changes the value of z but preserves wi:

j12 : (w1, z,w2) �→ (w1, z
′,w2)

This means that the involutions

j1 : (w1, z) �→ (w1, z
′) and j2 : (w2, z) �→ (w2, z

′′)

on Z1 and Z2 are compatible: z′ = z′′. Geometrically, j1 is a “folding” of the quadrilateral

Q1. Therefore a coupling is involutive if and only if the two marked angles on Figure 7,

left, remain equal during the deformation. (The coupling between Q1 and Q2 on Figure 7

is chosen in the sameway as on Figure 5, right; the involutivity has amore nice geometric

meaning if the coupling is chosen as on Figure 5, left.)

A detailed study of the configuration space Z12 is the subject of Section 5.

Involutive couplings are studies in Section 5.4 and classified in Lemma 5.9.

Second, a coupling (Q1,Q2) is called reducible, if the algebraic set Z12 is reducible,

while Z1 and Z2 are not. This property is hard to visualize: the real configuration space of

a couplingmay have several connected components all of which are parts of one complex

component.

Reducibility of (Q1,Q2) is related to the reducibility of the resultant R12(w1,w2)

defined in Section 2.2. Moreover, a coupling is involutive if and only if the resultant is a

square. For more details see Section 5.1.
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2.4 Types of spherical quadrilaterals and associated parameters

Let Q be a spherical quadrilateral with side lengths α, β, γ , δ, in this cyclic order. The

form of the configuration space of Q depends on the number and the type of solutions

of the equation

α ± β ± γ ± δ = 0(mod2π) (5)

Definition 2.3. A spherical quadrilateral Q is said to be

• of elliptic type, if equation (5) has no solutions;

• of conic type, if equation (5) has exactly one solution;

• a deltoid, if it has two pairs of equal adjacent sides, and an antideltoid, if it

has two pairs of adjacent sides complementing each other to π ;

• an isogram, if pairs of opposite sides have equal lengths, and an antiisogram,

if lengths of opposite sides complement each other to π . �

Circumscribable spherical quadrilaterals are characterized by α + γ = β + δ and

thus are of conic type according to our terminology (possibly degenerating to a deltoid).

The link of a vertex of a quad surface satisfies this condition if and only if the faces

adjacent to this vertex are tangent to a circular cone. Because of this, surfaces with this

property are called conical meshes by Pottman and Wallner [17] and find an application

in the freeform architecture. We call these quadrilaterals conic for a different reason:

their configuration spaces are described by quadratic equations.

At the beginning of Section 4 we show that every spherical quadrilateral belongs

to one of the types above. The theorems below, also proved in Section 4, describe the

configuration spaces of all types of quadrilaterals. They provide a vocabulary for the

description of flexible Kokotsakis polyhedra that follows in Section 3.

The classification given in Definition 2.3 and parametrization of the configura-

tion spaces in some cases are due to Bricard [4, Section II].

Theorem 2.4 (Bricard). The configuration space Z of an (anti)isogramwith side lengths

α,β, γ , δ has the following form.

(1) If α = β = γ = δ = π

2 , then all components of Z are trivial:

Z = {z = 0} ∪ {z = ∞} ∪ {w = 0} ∪ {w = ∞}
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(2) If Q is an antiisogram and at the same time (anti)deltoid, then Z has one

non-trivial component with the equation

z = κw, where κ =
⎧⎨⎩

1
cosα

, if α = β = π − γ = π − δ

− cosα, if α = δ = π − β = π − γ
(6)

(3) If Q is an antiisogram and not an (anti)deltoid, then Z has two non-trivial

components of the form

z = κw,

where

κ ∈
{
sin α−β

2

sin α+β

2

,
cos α−β

2

cos α+β

2

}
(7)

(4) If Q is an isogram: α = γ , β = δ with not all sides equal to π

2 , then the

non-trivial components of Z are described by the equation

z = 1

κw
, (8)

where κ taking one or two values according to whether Q is a deltoid and

given by the same formulas as in the antiisogram case. �

Since κ ∈ R, we have z ∈ R ⇔ w ∈ R. This is the real part of the configuration

space.

Theorem 2.5. Let Q be a deltoid or an antideltoid that is neither isogram nor antiiso-

gram. Then the affine part of the non-trivial component of its configuration space has

the following parametrization.

1) If α = δ, β = γ or α + δ = π = β + γ , then

zm = p sin t, w = ε
√−μeit, (9)
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where

p =
√

sin2
δ

sin2
γ

− 1, m =
⎧⎨⎩1, if α = δ

−1, if α + δ = π

μ = tan δ + tan γ

tan δ − tan γ
, ε =

⎧⎨⎩m, if γ + δ > π ,

−m, if γ + δ < π

2) If α = β, γ = δ or α + β = π = γ + δ, then

z = ι
√−λeit, wn = q sin t, (10)

where

q =
√

sin2
δ

sin2
α

− 1, n =
⎧⎨⎩1, if γ = δ

−1, if γ + δ = π

λ = tan δ + tan α

tan δ − tan α
, ι =

⎧⎨⎩n, if α + δ > π ,

−n, if α + δ < π

For square roots we adopt the convention
√
x ∈ R+ ∪ iR+. �

It can be shown that p2 > 0 ⇔ μ > 0 and q2 > 0 ⇔ λ > 0. The real part of the

configuration space is parametrized by t ∈ ± π

2 + iR if both parameters are positive and

by t ∈ R ∪ (π + iR) if they are negative.

Theorem 2.6. The affine part of the configuration space of a spherical quadrilateral of

the conic type has the parametrization

zm = p sin t, wn = q sin(t + t0), (11)

Here the exponents m and n are determined according to the table

n = 1 n = −1

m = 1 α + γ = β + δ α + β = γ + δ

m = −1 α + δ = β + γ α + β + γ + δ = 2π
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The amplitudes are given by

p =
√

sin α sin δ

sin β sin γ
− 1 ∈ R>0 ∪ iR>0, q =

√
sin γ sin δ

sin α sin β
− 1 ∈ R>0 ∪ iR>0;

The phase shift satisfies

tan t0 = i

√
sin β sin δ

sin α sin γ

The indeterminacy in t0 up to the summand π is resolved in the table below: it gives an

interval in which t0 lies, depending on the values of pq and σ .

pq ∈ R>0 pq ∈ iR>0 pq ∈ R<0

σ < π iR>0
π

2 + iR>0 π + iR>0

σ > π π + iR>0
3π

2 + iR>0 iR>0

,

where

σ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α+β+γ+δ

2 , if α + γ = β + δ

−α+β+γ−δ

2 + π , if α + β = γ + δ

α+β−γ−δ

2 + π , if α + δ = β + γ

−α+β−γ+δ

2 + π , if α + β + γ + δ = 2π

�

The real part of the configuration space consists of two lines on a cylinder (plus

a singular point at infinity, which corresponds to the folded quadrilateral). The exact

parameter range depends on the signs of p2, q2 and the relation between σ and π . See [9,

Section 3.2.3], which deals with the case of a Euclidean quadrilateral.

In the elliptic case introduce the notation

σ = α + β + γ + δ

2
, α = σ − α = −α + β + γ + δ

2
,

and similarly β = σ − β, γ = σ − γ , δ = σ − δ. Applying this transformation twice yields

the initial quadruple of numbers. Denote

M = sin α sin β sin γ sin δ

sin α sin β sin γ sin δ
,
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Because of the last equation of Lemma 4.2, if equation (5) has no solution, then we have

M 
= 1. More exactly, we have

M < 1 ⇔ αmin + αmax < σ < π or αmin + αmax > σ > π

M > 1 ⇔ αmin + αmax > σ < π or αmin + αmax < σ > π ,

where αmin, respectively, αmax denotes the smallest, respectively, the biggest of the

numbers α, β, γ , δ.

Theorem 2.7. The configuration space of a spherical quadrilateral of the elliptic type

has the following parametrization.

(1) If M < 1, then

z = p sn t, w = q sn(t + t0), (12)

where sn is the elliptic sine function with modulus k = √
1 −M , and the

phase shift t0 satisfies

dn t0 =
√
sin α sin γ

sin α sin γ

(2) If M > 1, then

z = p cn t, w = q cn(t + t0), (13)

where cn is the elliptic cosine function with modulus k = √
1 −M−1, and the

phase shift t0 satisfies

dn t0 =
√
sin α sin γ

sin α sin γ

In both cases the amplitudes p and q are given by

p =
√
sin α sin δ

sin α sin δ
− 1 ∈ R>0 ∪ iR>0, q =

√
sin γ sin δ

sin γ sin δ
− 1 ∈ R>0 ∪ iR>0

The value of dn t0 determines the phase shift up to a real half-period 2K. This indeter-

minacy is resolved in the table below: it gives an interval in which t0 lies, depending on
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the values of pq and σ .

pq ∈ R>0 pq ∈ iR>0 pq ∈ R<0

σ < π (0, iK ′) (K,K + iK ′) (2K, 2K + iK ′)

σ > π (2K, 2K + iK ′) (3K, 3K + iK ′) (0, iK ′)

�

The real part of the configuration space has two components in the sn-case and

one component in the cn-case. See [9, Section 3.3.5] for a discussion of the Euclidean

case.

To finish setting up the notation, consider orthodiagonal quadrilaterals, that is,

those whose side lengths satisfy the relation

cosα cos γ = cosβ cos δ

An orthodiagonal quadrilateral is either (anti)deltoid or of elliptic type, see Section 4.5.

We exclude the case when α = β = γ = δ = π

2 , as it leads only to trivial deformations,

see Theorem 2.4 and Section 6.1.

We refer to a vertex of a quadrilateral by naming the two sides incident to it. We

say that an (anti)deltoid has apices αδ and βγ , if α = δ, β = γ , or α + δ = π = β + γ .

Definition 2.8. Let Q be an orthodiagonal quadrilateral. We define the involution

factors at each of its vertices, excluding the apices if Q is an (anti)deltoid, as follows.

The involution factor at the vertex αδ is

λ :=
⎧⎨⎩

tan δ+tan α

tan δ−tan α
, if α 
= π

2 or δ 
= π

2

cosβ+cos γ

cosβ−cos γ
, if α = δ = π

2

Similarly, the involution factor at the vertex γ δ is

μ :=
⎧⎨⎩

tan δ+tan γ

tan δ−tan γ
, if γ 
= π

2 or δ 
= π

2

cosβ+cosα

cosβ−cosα
, if γ = δ = π

2

Besides, for an orthodiagonal quadrilateral of elliptic type we put

ν :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(λ−1)(μ−1)

cos δ
, if δ 
= π

2

2(μ − 1) tan α, if δ = γ = π

2

2(λ − 1) tan γ , if δ = α = π

2
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for an (anti)deltoid with apex αδ we put

ζ :=
⎧⎨⎩

μ−1
cos δ

, if δ 
= π

2

2 tan γ , if δ = α = π

2

and for an (anti)deltoid with apex γ δ we put

ξ :=
⎧⎨⎩

λ−1
cos δ

, if δ 
= π

2

2 tan α, if δ = γ = π

2

�

In the (anti)deltoid case the values of λ and μ coincide with those given in

Theorem 2.5. Also there are the identities

p2ζ 2 = 4μ, q2ξ 2 = 4λ

The involution factors are well-defined real numbers different from 0. For exam-

ple, if α = π

2 and δ 
= π

2 , then λ = ∞
−∞ = −1. If α = δ or α + δ = π , so that the denominator

or numerator in the first formula for λ vanish, then either Q is an (anti)deltoid and has

no involution factor at the vertex δα, or α = δ = π

2 , and λ is computed by the second

formula. The second formula makes sense since β 
= γ by assumption that δα is not an

apex.

2.5 Switching a boundary strip

Here we describe an operation that transforms one flexible Kokotsakis polyhedron to

another flexible one. Switching the right boundary strip consists in replacing on Figure 3

the vertex C1 by its mirror image with respect to A1 and C4 by its mirror image with

respect to A4. Switching the left, lower, and upper boundary strips is defined similarly.

In the intrinsic terms, switching the right boundary strip consists in replacing

β1,β4, γ1, γ4 by their complements toπ . It can transform the spherical quadrilateralQi, i =
1, 4 from an isogram to an antiisogram, or from deltoid to antideltoid, or changeni to−ni

if Qi was of conic type. We will use this repeatedly to simplify the case distinction. The

action of switching on the equation of the configuration space is described in Lemma 4.5.

3 The List of Flexible Kokotsakis Polyhedra

Main theorem. Every flexible Kokotsakis polyhedron with quadrangular base belongs

to one of the following classes, possibly after switching some of the boundary strips (as

described in Section 2.5).
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(1) Orthodiagonal (or T-surfaces, Graf-Sauer surfaces).

(2) Isogonal (or V-surfaces, discrete Voss surfaces).

(3) Equimodular.

(4) Conjugate-modular.

(5) Linear compounds.

(6) Linearly conjugate.

(7) Chimeras.

(8) Trivial. �

Each of these classes is further subdivided into subclasses. A subclass is

described through a system of equations on the angles αi,βi, γi, δi of the faces of the

polyhedron or on the parameters pi, qi, ti, κi, λi, etc. defined in terms of these angles in

Section 2.4. Usually the number of equations is less than the number of parameters,

and often there is a way to solve the system by the elimination method. We did not

do it for all the cases, therefore we do not guarantee that there is a flexible Kokotsakis

polyhedron in each subclass.

Another (and more serious) problem is that solving the corresponding system

of equations produces angle values αi,βi, γi, δi for which the complexified configuration

space is not empty. This does not imply the non-emptyness of its real part (i.e., the

configuration space of two coupled spherical quadrilaterals is always non-empty, but

its real part may be empty).

Also, the real part of the configuration space may (and usually does) contain

self-intersecting polyhedra. Thus, still another question is whether every subclass con-

tains a non-self-intersecting flexible polyhedron. Sometimes the self-intersections can

be removed by switching the boundary strips, see Section 2.5.

Certainly, itwould be useful to give an example of a flexible polyhedron in each of

the cases. Also onewould like to know the extrinsic geometric properties of the polyhedra

in each class, as it is the case for Bricard octahedra, or for the orthodiagonal involutive

type, the first one in the list below.

3.1 Orthodiagonal types

3.1.1 Orthodiagonal involutive type

A Kokotsakis polyhedron belongs to the orthodiagonal type, if its planar angles

satisfy the following conditions.
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(1) All spherical quadrilaterals Qi are orthodiagonal:

cosαi cos γi = cosβi cos δi

Geometrically this means that the plane C1A1A2 is orthogonal to the plane

B1A1A4 (this property is preserved during a deformation of a tetrahedral

angle), and the same holds for the corresponding pairs of planes through

the vertices A2, A3, A4. We exclude the case αi = βi = γi = δi = π

2 , as it leads

to trivial deformations only, which are described in Section 3.8.

(2) The couplings of adjacent quadrilaterals are compatible, see Definition

4.18. Geometrically this means that each of the polygonal lines C1A1A2C2,

B2A2A3B3, C3A3A4C4, B4A4A1B1 on Figure 3 remains planar during the defor-

mation. Because of condition (1) each of the AB-planes is orthogonal to each

of the AC-planes.

(3) The angles of the base quadrilateral satisfy the condition

cos δ1 cos δ3 = cos δ2 cos δ4

Together with δ1 + δ2 + δ3 + δ4 this implies that the base quadrilateral is a

trapezoid.

The compatibility condition 2) can bemademore explicit. For example, if δ1+δ4 =
δ2 + δ3 = π and αi, δi 
= π

2 for all i, then the compatibility is equivalent to

γ1 + γ4 = π , γ2 + γ3 = π ,
tan α1

tan α2
= tan α4

tan α3
= tan δ1

tan δ2

so that, in particular, the AC-planes are parallel.

This class of flexible Kokotsakis polyhedra was described by Sauer and Graf in

[20] and called “T-Flache” (from “Trapezflache”). Sauer and Graf proved their flexibility

by a geometric argument.

3.1.2 Orthodiagonal antiinvolutive type

(1) All quadrilaterals Qi are orthodiagonal and elliptic:

cosαi cos γi = cosβi cos δi, αi ± βi ± γi ± δi 
= 0(mod2π)

(2) The involution factors at common vertices are opposite:

λ1 = −λ2, μ1 = −μ4, μ2 = −μ3, λ3 = −λ4
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(3) The following relations hold:

ν2
1

λ1μ1
= ν2

3

λ3μ3
,

ν2
2

λ2μ2
= ν2

4

λ4μ4
,

ν2
1

λ1μ1
+ ν2

2

λ2μ2
= 1

3.2 Isogonal type

A polyhedron of basic isogonal type is characterized by the following conditions.

(1) All quadrilaterals Qi are antiisograms:

αi + γi = π = βi + δi, i = 1, 2, 3, 4

(2) One of the following equalities hold:

κ1κ3 = κ2κ4,

where κi are as in Theorem 2.4. Note that κi may take two values if Qi is not

an (anti)deltoid.

A general polyhedron of isogonal type can be obtained from a basic one by

switching some of the boundary strips. For example, switching the left and the right

or the upper and the lower boundary strips transforms all antiisograms to isograms.

Flexible polyhedra of isogonal type were described in [20] and named discrete

Voss surfaces. They have two flat realizations corresponding to αi + βi + γi + δi = 2π and

to αi − βi + γi − δi = 0. Miura-ori [15] is of this type.

3.3 Equimodular type

Here we have two subcases:

3.3.1 Elliptic case

Assume that

αi ± βi ± γi ± δi 
= 0(mod2π) (14)

for all choices of ±. Introduce the notation

σi := αi + βi + γi + δi

2
, αi := σi − αi = −αi + βi + γi + δi

2

19

ht
tp
://
do
c.
re
ro
.c
h



Similarly, β i := σi − βi, γ i := σi − γi, δi := σi − δi. Denote

ai := sin αi

sin αi
, bi := sin βi

sin β i

, ci := sin γi

sin γ i

, di := sin δi

sin δi
, Mi := aibicidi

The polyhedron is of equimodular elliptic type if the following three conditions

are satisfied.

(1) Quadrilaterals have equal moduli:

M1 = M2 = M3 = M4 =: M

(2) Amplitudes at common vertices are equal:

a1d1 = a2d2, b2c2 = b3c3, a3d3 = a4d4, b4c4 = b1c1

(3) The sum of shifts is a period:

t1 ± t2 ± t3 ± t4 ∈ �, � :=
⎧⎨⎩4KZ + 2iK ′

Z, if M < 1

4KZ + (2K + 2iK ′)Z, if M > 1,

where ti is determined up to the real half-period 2K by

dn ti =
⎧⎨⎩

√
aici, if M < 1

1√
aici

, if M > 1

and the indeterminacy is resolved at the end of Theorem 2.7.

Together with the restriction δ1 + δ2 + δ3 + δ4 = 2π this gives nine conditions on

sixteen angles of a Kokotsakis polyhedron. However, as follows from [10, Sections 9, 10],

these conditions are not independent, so that a polyhedron of elliptic equimodular type

depends on eight parameters instead of seven.

3.3.2 Conic case

The polyhedron is of basic equimodular conic type if the following conditions

are satisfied.

(1) All spherical quadrilaterals Qi are circumscribed: αi + γi = βi + δi.
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(2) Their amplitudes at common vertices are equal:

sin α1 sin δ1

sin β1 sin γ1
= sin α2 sin δ2

sin β2 sin γ2

sin α2 sin β2

sin γ2 sin δ2
= sin α3 sin β3

sin γ3 sin δ3

sin α3 sin δ3

sin β3 sin γ3
= sin α4 sin δ4

sin β4 sin γ4

sin α4 sin β4

sin γ4 sin δ4
= sin α1 sin β1

sin γ1 sin δ1

(3) The sum of shifts is a multiple of 2π :

t1 ± t2 ± t3 ± t4 ∈ 2πZ

Here ti ∈ C is determined up to π by

tan ti = i

√
sin βi sin δi

sin αi sin γi
,

(one of the i’s on the right-hand side is the imaginary unit), with the indeterminacy

resolved as in Theorem 2.6.

Switching all four boundary strips results in replacing condition (1) by

(1)’ All spherical quadrilaterals Qi have perimeter 2π : αi + βi + γi + δi.

This is an origami.

3.4 Conjugate-modular type

3.4.1 First elliptic conjugate-modular type

(1) All quadrilaterals Qi are elliptic of cn-type: Mi > 1 for all i.

(2) The moduli of Q1 and Q3 are equal and conjugate to those of Q2 and Q4:

M1 = M3, M2 = M4,
1

M1
+ 1

M2
= 1

(3) The amplitudes satisfy the following relations:

p1

p2
= ±i k

k′ ,
q3

q2
= ±i k

k′ ,
p3

p4
= ±i k

k′ ,
q1

q4
= ±i k

k′ ,

where k =
√
1 −M−1

1 is the Jacobi modulus of Q1.

(4) For some of the eight choices of the ± signs on the left-hand side, the

following equation hold:

t1 ± it2 ± t3 ± it4 =
⎧⎨⎩0(mod�), if p1

p2
= q3

q2
, q1q4 = p3

p4
or p1

p2
= − q3

q2
, q1q4 = − p3

p4

2K(mod�), if p1
p2

= q3
q2
, q1q4 = − p3

p4
or p1

p2
= − q3

q2
, q1q4 = p3

p4

The last condition implies that t1 ± t3 ∈ KZ + iK ′
Z and t2 ± t4 ∈ K ′

Z + iKZ.
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3.4.2 Second elliptic conjugate-modular type

(1) All quadrilaterals Qi are elliptic of cn-type: Mi > 1 for all i.

(2) The moduli of Q1 and Q4 are equal and conjugate to those of Q2 and Q3:

M1 = M4, M2 = M3,
1

M1
+ 1

M2
= 1

(3) The amplitudes satisfy the following relations:

p1

p2
= ±i k

k′ , q2 = q3,
p3

p4
= ±ik

′

k
, q4 = q1,

where k =
√
1 −M−1

1 is the Jacobi modulus of Q1.

(4) For some of the eight choices of the ± signs on the left-hand side, the

following equation hold:

t1 ± it2 ± it3 ± t4 =
⎧⎨⎩0(mod�), if p1

p2
= p4

p3

2K(mod�), if p1
p2

= − p4
p3

The last condition is rather restrictive. It implies that t1 ± t4 ∈ KZ + iK ′
Z and

t2 ± t3 ∈ K ′
Z + iKZ. If t1 ± t4 is a half-period of �, then the polyhedron is of linear

compound type described in Section 3.5.

3.5 Linear compound type

A coupling (Q1,Q2) is called linear if it results in a linear dependence between tan ψ1
2

and tan ψ2
2 :

w1 = cw2 (15)

(Strictly speaking, if one of the components of the configuration space of the coupling

has this equation.) If the coupling (Q3,Q4) is also linearwith the same value of c, then the

polyhedron is flexible, andwe say that it belongs to the linear compound type. Switching

the right or the left boundary strip transforms the linear dependence to w1w2 = c′.

Planar-symmetric and translational types from [22] are special cases of linear

compounds.

Belowwe list all linear couplings (Q1,Q2) togetherwith the corresponding values

of c.
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3.5.1 Coupling of (anti)isograms

Both Q1 and Q2 are isograms or both are antiisograms. The coefficient c in (15)

equals

c = κ2

κ1

with κi as in Theorem 2.4. Switching the lower boundary strip transforms isograms to

antiisograms.

3.5.2 Linear lateral (anti)deltoid coupling

(1) Q1 and Q2 are both deltoids or both antideltoids, coupled laterally:

αi = βi, γi = δi, or

αi + βi = π = γi + δi

(2) The coupling is involutive, that is, λ1 = λ2. If αi, δi 
= π

2 , then this is

equivalent to

tan α1

tan δ1
= tan α2

tan δ2

The coefficient c equals

c =
⎧⎨⎩

ξ2
ξ1
, if Q1 and Q2 are deltoids,

ξ1
ξ2
, if Q1 and Q2 are antideltoids

with ξi as in Definition 2.8. In particular, if δi 
= π

2 , then
ξ2
ξ1

= cos δ1
cos δ2

.

3.5.3 Linear frontal (anti)deltoid coupling

(1) Q1 and Q2 are both deltoids or both antideltoids, coupled frontally:

αi = δi, βi = γi, i = 1, 2, or

αi + δi = π = βi + γi, i = 1, 2

(2) The coupling is reducible, which means that

sin α1

sin β1
= sin α2

sin β2
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The coefficient c equals

c = ε1
√−μ1

ε2
√−μ2

= ±
√
sin(α1 + β1) sin(α2 − β2)

sin(α2 + β2) sin(α1 − β1)
,

see Theorem 2.5. Switching the lower boundary strip transforms deltoids to antideltoids

while preserving the coefficient c.

3.5.4 Linear elliptic coupling

Configuration spaces of Q1 and Q2 are elliptic curves. Besides, in the notation of

Section 3.3.1 we have

(1) Q1 and Q2 have equal moduli M1 = M2, as well as equal amplitudes at the

common vertex:

a1d1 = a2d2, b1c1 = b2c2

(2) The shift difference is a (real) half-period: t1 − t2 ∈ {0, 2K}. Or, equivalently,

a1c1 = a2c2

Then we have

c =
⎧⎨⎩

√
c1d1−1
c2d2−1 , if sin σ1 sin σ2 > 0,

−
√

c1d1−1
c2d2−1 , if sin σ1 sin σ2 < 0

3.5.5 Linear conic coupling

(1) Quadrilaterals Q1 and Q2 are either both circumscribed or both have

perimeter 2π :

αi + γi = βi + δi, i = 1, 2 (16a)

αi + βi + γi + δi = 2π , i = 1, 2 (16b)

(2) Their amplitudes at the common vertex are equal, and the shifts difference

is a half-period:

sin α1

sin β1
= sin α2

sin β2
,

sin γ1

sin δ1
= sin γ2

sin δ2
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The value of c is given by the following table

(16a) (16b)

sin σ1 sin σ2 > 0 c̄ c̄−1

sin σ1 sin σ2 < 0 −c̄ −c̄−1

, where c̄ =
√

sin γ1 sin δ1
sin α1 sin β1

−1

sin γ2 sin δ2
sin α2 sin β2

−1

3.6 Linearly conjugate types

These are polyhedra, where Q2 and Q4 are antiisograms, so that they result in linear

dependencies z = κ2w2 and u = κ4w1. Polyhedra Q1 and Q3 must be of the same type,

and their equations are related by the above linear substitutions.

3.6.1 Linearly conjugate antideltoids

(1) Q1 and Q3 are “parallel” antideltoids:

α1 + δ1 = π = β1 + γ1, α3 + β3 = π = γ3 + δ3

(2) Q2 and Q4 are antiisograms:

α2 + γ2 = π = β2 + γ2, α4 + γ4 = π = β4 + δ4

(3) The following conditions are satisfied:

κ2
4μ1 = λ3, κ4ζ1 = κ2ξ3,

where μ1, ζ1, λ3, ξ3 are as in Definition 2.8, and κ2, κ4 as in Theorem 2.4.

3.6.2 Linearly conjugate conics

(1) Q1 and Q3 are conic quadrilaterals of perimeter 2π :

α1 + β1 + γ1 + δ1 = 2π = α3 + β3 + γ3 + δ3,

and equations αi±βi±γi±δi ≡ 0(mod2π) have for i = 1, 3 no other solutions.

(2) Q2 and Q4 are antiisograms:

α2 + γ2 = π = β2 + γ2, α4 + γ4 = π = β4 + δ4
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(3) The following relations hold:

q3 = |κ2|p1, q1 = |κ4|p3, t1 =
⎧⎨⎩t3, if c2c4 > 0

t3 + π , if c2c4 < 0

3.6.3 Linearly conjugate elliptics

(1) Quadrilaterals Q1 and Q3 are elliptic and have the same modulus:

M1 = M3

(2) Q2 and Q4 are antiisograms:

α2 + γ2 = π = β2 + γ2, α4 + γ4 = π = β4 + δ4

(3) The following relations hold:

p1 = |κ2|q3, p3 = |κ4|q1, t1 =
⎧⎨⎩t3, if κ2κ4 > 0

t3 + 2K, if κ2κ4 < 0

3.7 Chimeras

This is the largest class; we do not split it into smaller classes, in order not to imitate

Borges’ taxonomy of animals.

A common feature of the polyhedra listed here is that each of them contains

tetrahedral angles of different types. Potentially they could be used to join pieces of

flexible quad surfaces of equimodular, orthodiagonal, or isogonal types.

3.7.1 Conic-deltoid

(1) Quadrilaterals Q2 and Q3 have perimeter 2π :

α2 + β2 + γ2 + δ2 = 2π , α3 + β3 + γ3 + δ3 = 2π

and form a reducible coupling: q2 = q3.

(2) Quadrilaterals Q1 and Q4 are antideltoids reducibly coupled to Q2 and Q3:

α1 + δ1 = π = β1 + γ1, p1 = p2

α4 + δ4 = π = β4 + γ4, p4 = p3
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(3) The number t0 determined by

ε1
√−μ1 = ε4

√−μ4e
it0

is related to the shifts of Q2 and Q3 through

t0 = ±t1 ± t2,

where any of the four combinations of signs are allowed.

3.7.2 First orthodiagonal-isogram

(1) The quadrilateral Q1 is orthodiagonal:

cosα1 cos γ1 = cosβ1 cos δ1

(2) Q2 and Q4 are antideltoids that form involutive couplings with Q1:

α2 + β2 = π = γ2 + δ2, λ1 = λ2

α4 + δ4 = π = β4 + γ4, μ1 = μ4

(In particular, this implies that Q1 is not an (anti)deltoid.)

(3) Q3 is an isogram: α3 = γ3, β3 = δ3.

(4) the parameters of Qi must satisfy the relation

ν1 = κ3ξ2ζ4

with κ, ν, ξ , and ζ as in Theorem 2.4 and Definition 2.8. In particular, if δi 
= π

2

for i = 1, 2, 4, then this condition becomes

κ3 cos δ1 = cos δ2 cos δ4

3.7.3 Second orthodiagonal-isogram

(1) The quadrilateral Q1 is orthodiagonal:

cosα1 cos γ1 = cosβ1 cos δ1

Besides, Q1 is neither deltoid nor antideltoid.

(2) Q2 is an antideltoid forming an involutive coupling with Q1:

α2 + β2 = π = γ2 + δ2, λ1 = λ2
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(3) Q3 is a deltoid coupled with Q2 frontally, and Q4 is an antiisogram:

α3 = β3, γ3 = δ3, α4 + γ4 = β4 + δ4

(4) The following two equations hold:

κ2
4μ1 = λ3, κ4ν1 = ξ2ξ3,

with κ, λ, μ, ν, ξ as in Theorem 2.4 and Definition 2.8.

3.7.4 Conic-isogram

(1) The quadrilateral Q2 is a conic quadrilateral of perimeter 2π :

α2 + β2 + γ2 + δ2 = 2π ,

equation α2 ± β2 ± γ2 ± δ2 ≡ 0(mod2π) has no other solutions.

(2) Quadrilaterals Q1 and Q3 are antideltoids reducibly coupled with Q2:

p1 = p2, q2 = q3

(3) Q4 is an isogram with

2ε1i
√−μ1e

±it2κ4 = q3ξ3

3.7.5 Conic-antiisogram

(1) The quadrilateral Q2 is a conic quadrilateral of perimeter 2π :

α2 + β2 + γ2 + δ2 = 2π ,

equation α2 ± β2 ± γ2 ± δ2 ≡ 0(mod2π) has no other solutions.

(2) Quadrilaterals Q1 and Q3 are antideltoids reducibly coupled with Q2:

p1 = p2, q2 = q3

(3) Q4 is an antiisogram with

ε1i
√−μ1e

±it2q3ξ3κ4 = 2

28

ht
tp
://
do
c.
re
ro
.c
h



3.7.6 Frontally coupled deltoid and antideltoid versus reducibly coupled elliptics

(1) (Q1,Q2) is a frontal coupling of a deltoid with an antideltoid:

α1 = δ1, β1 = γ1, α2 + δ2 = π = β2 + γ2,

which is irreducible: sin α1
sin β1


= sin α2
sin β2

.

(2) QuadrilateralsQ3 andQ4 are ellipticwith configuration spaces parametrized

by sn and form a reducible coupling:

M3 = M4 < 1, p3 = p4

(3) either the sum or the difference of shifts equals a quarter-period with the

imaginary part K ′
2 :

±t3 ± t4 = lK + i
K ′

2

(4) The following relations hold:

μ1 = q2
1

k
, μ2 = q2

2

k
, ζ1ζ2 = 2(1 + k)

k
√
k

q1q2, if l = 0

μ1 = −q2
1

k
, μ2 = −q2

2

k
, ζ1ζ2 = 2i(1 − k)

k
√
k

q1q2, if l = 1

μ1 = q2
1

k
, μ2 = q2

2

k
, ζ1ζ2 = −2(1 + k)

k
√
k

q1q2, if l = 2

μ1 = −q2
1

k
, μ2 = −q2

2

k
, ζ1ζ2 = −2i(1 − k)

k
√
k

q1q2, if l = 3

3.7.7 Reducible conic-deltoid coupling versus isogram-deltoid coupling

(1) The quadrilateral Q3 is a conic quadrilateral of perimeter 2π :

α3 + β3 + γ3 + δ3 = 2π ,

equation α3 ± β3 ± γ3 ± δ3 ≡ 0(mod2π) has no other solutions.

(2) The quadrilateral Q4 is an antideltoid:

α4 + δ4 = π = β4 + γ4

that forms a reducible coupling with Q3:

p3 = p4
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(3) The quadrilateral Q1 is an antideltoid:

α1 + δ1 = π = β1 + γ1

(4) The quadrilateral Q2 is an antiisogram:

α2 + γ2 = π = β2 + δ2

(5) The following relations hold:

μ1 = μ4e
±2it3 , ζ1 = c2

2iε4
√−μ4e±it3

q2
,

where ± in the first equation must match the ± in the second equation, and

z = c2w2 is the equation of an irreducible component of Z2.

3.7.8 Three reducibly coupled conics versus an isogram

(1) Quadrilaterals Q3, Q4, Q1 are conic with perimeter 2π :

αi + βi + γi + δi = 2π , for i = 3, 4, 1,

and equations αi ± βi ± γi ± δi ≡ 0(mod2π) have no other solutions.

(2) Couplings (Q3,Q4) and (Q4,Q1) are reducible:

p3 = p4, q4 = q1

(3) Quadrilateral Q2 is an antiisogram:

α2 + γ2 = π = β2 + δ2

(4) The following relations hold:

q3 = |κ2|p1, t1 ± t3 ± t4 =
⎧⎨⎩0, if κ2 > 0

π , if κ2 < 0

3.7.9 Three reducibly coupled elliptics versus an isogram

(1) Quadrilaterals Q3, Q4, Q1 are elliptic and have equal moduli:

M1 = M3 = M4
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(2) Couplings (Q3,Q4) and (Q4,Q1) are reducible:

p3 = p4, q4 = q1

(3) Quadrilateral Q2 is an antiisogram:

α2 + γ2 = π = β2 + δ2

(4) The following relations hold:

p1 = |κ2|q3, t1 ± t3 ± t4 =
⎧⎨⎩0, if κ2 > 0

2K, if κ2 < 0

3.7.10 Involutively coupled orthodiagonal and antideltoid versus reducibly coupled conic

and deltoid

(1) The quadrilateral Q1 is orthodiagonal:

cosα1 cos γ1 = cosβ1 cos δ1,

but is neither deltoid nor antideltoid.

(2) Q2 is an antideltoid forming an involutive coupling with Q1:

α2 + β2 = π = γ2 + δ2, λ1 = λ2

(3) Q3 is circumscribed:

α3 = γ3, β3 = δ3

(4) Q4 is a deltoid forming with Q3 a reducible coupling:

α4 = δ4, β4 = γ4,
sin2

α4

sin2
β4

= sin α3 sin δ3

sin β3 sin γ3

(5) The following relations hold:

μ1 = μ4e
±2it3 ,

ν1

ξ2
= 2iε4

√−μ4e±it3

q3

(the ± in the first equation must match the ± in the second equation).
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Fig. 8. Trivially flexible Kokotsakis polyhedra.

Fig. 9. The only degenerate configurations that don’t count as quadrilaterals.

3.8 Trivial types

We call an isometric deformation of a Kokotsakis polyhedron trivial, if it preserves

one of the dihedral angles at the central face. In Section 6.1 trivial deformations are

classified, which leads to the four types shown on Figure 8. During an isometric defor-

mation, shaded facesmove, while white faces stay fixed in R
3. Any other trivially flexible

polyhedron is obtained from one of these by switching some of the immobile boundary

strips.

4 Configuration Space of a Spherical Four-Bar Linkage

4.1 Side lengths of a spherical quadrilateral

A spherical quadrilateral is a collection of four points (vertices) on the unit sphere,

together with a cyclic order such that no two consecutive vertices form a pair of

antipodes. Thus for any two consecutive vertices there is a unique great circle pass-

ing through them; the shortest of its arcs joining the vertices is called a side of the

quadrilateral. We allow the edges of a quadrilateral to intersect and overlap, except in

one of the ways shown on Figure 9.

Lemma 4.1. There exists a spherical quadrilateral with side lengths (α,β, γ , δ) if and

only if the inequalities

0 < α < π , α < β + γ + δ < α + 2π (17)

are fulfilled, as are all those obtained by exchanging α with β, γ , or δ. �
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Proof. The necessity of the first three inequalities in (17) follows from our definition

of a spherical quadrilateral. To prove the necessity of the fourth one, replace a vertex

by its antipode and apply the third inequality. The equality cases in the third and the

fourth inequalities correspond to degenerate quadrilaterals shown on Figure 9.

To prove the sufficiency, note that a spherical triangle with side lengths α,β, ε

exists for all ε ∈ [|α −β|,min{α +β, 2π −α −β}]. The inequalities (17) together with those

obtained by permutations imply that

[|α − β|,min{α + β, 2π − α − β}] ∩ [|γ − δ|,min{γ + δ, 2π − γ − δ}] 
= ∅,

therefore we can construct a quadrilateral by putting two triangles together. �

Recall the notation

σ = α + β + γ + δ

2
, α = σ − α = −α + β + γ + δ

2
,

β = σ − β, γ = σ − γ , δ = σ − δ. Inequalities (17) imply similar inequalities for α,β, γ , δ,

so that the latter are also side lengths of a quadrilateral.

The following lemma is proved by using standard trigonometric identities.

Lemma 4.2. For any α,β, γ , δ ∈ R and for σ , α,β, γ , δ as defined above the following

identities (and all obtained from them by permutations) hold.

α + β = γ + δ

sin α sin β − sin α sin β = sin σ sin(σ − α − β) = sin γ sin δ − sin γ sin δ

sin α sin β − sin γ sin δ = sin(σ − α − γ ) sin(σ − β − γ )

= sin α sin β − sin γ sin δ

sin σ sin(σ − α − β) sin(σ − β − γ ) sin(σ − α − γ )

= sin α sin β sin γ sin δ − sin α sin β sin γ sin δ �

4.2 The configuration space as an algebraic curve

For any numbers α,β, γ , δ that satisfy inequalities (17), the associated configuration

space is the set of all spherical quadrilaterals with side lengths α,β, γ , δ in this cyclic

order, up to an orientation-preserving isometry. A quadrilateral with given side lengths
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Fig. 10. Angles ϕ and ψ determine the shape of the quadrilateral.

is uniquely determined by the values of two adjacent angles; on the other hand, these

angles satisfy a certain relation. By performing the substitution

z = tan
ϕ

2
, w = tan

ψ

2
, (18)

where ϕ and ψ are as on Figure 10, we arrive at a polynomial equation in z and w.

Lemma 4.3 (Bricard [4]). The configuration space of quadrilaterals with side lengths α,

β, γ , δ in this cyclic order is the solution set of the equation

c22z
2w2 + c20z

2 + c02w
2 + 2c11zw + c00 = 0, where (19)

c22 = sin
α + β + γ − δ

2
sin

α − β + γ − δ

2
= sin δ sin(σ − β − δ)

c20 = sin
α − β − γ − δ

2
sin

α + β − γ − δ

2
= sin α sin(σ − β − α)

c02 = sin
α + β − γ + δ

2
sin

α − β − γ + δ

2
= sin γ sin(σ − β − γ )

c11 = − sin α sin γ

c00 = sin
α − β + γ + δ

2
sin

α + β + γ + δ

2
= sin β sin σ �

Proof can also be found in [9, 22].

The substitution (18) identifies R/2πZ with R ∪ {∞} = RP1. Therefore equation

(19) must be viewed as an equation in two projective variables. This is achieved by

bihomogenization

c22z
2
1w

2
1 + c20z

2
1w

2
0 + c02z

2
0w

2
1 + 2c11z1w1z0w0 + c00z

2
0w

2
0 = 0, (20)

where z = z1
z0
, w = w1

w0
, see [9] for more details.
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Fig. 11. Isomorphism between the spaces Z(α,β, γ , δ) and Z(α,π − β,π − γ , δ).

Definition 4.4. The solution set of equation (20) in (CP1)2 is called the complexified

configuration space of quadrilaterals with side lengths α, β, γ , δ and is denoted by

Z(α,β, γ , δ) or just briefly by Z. �

The following lemma will be useful in the next section.

Lemma 4.5. Let α,β, γ , δ be a quadruple of numbers satisfying inequalities (17). Then

the map

(CP1)2 → (CP1)2

(z,w) �→ (−z−1,w)

restricts to a bijection Z(α,β, γ , δ) → Z(π − α,π − β, γ , δ), and the map

(CP1)2 → (CP1)2

(z,w) �→ (z,−w−1)

restricts to a bijection Z(α,β, γ , δ) → Z(α,π − β,π − γ , δ). �

Proof. It suffices to prove only the first part. This can be done by making the sub-

stitutions α → π − α, β → π − β in (19). The bijection between the real parts of the

configuration spaces is established by replacing the vertex αβ by its antipode and using

tan ϕ+π

2 = −(tan ϕ

2 )−1, see Figure 11. �

4.3 Classifying configuration spaces

Here we prove Theorems 2.4–2.7.
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LetQ be a spherical quadrilateral with side lengths α, β, γ , δ in this cyclic order.

The shape of the configuration space will depend on the number of solutions of the

equation

α ± β ± γ ± δ ≡ 0(mod2π) (21)

Because of (17), there is no solution with one or three minus signs. Thus, every solution

of (21) corresponds either to the sum of two sides being equal to the sum of two others

or to the sum of all sides being equal to 2π .

If equation (21) has at least two solutions, then it is easy to show that Q has

either two pairs of sides of equal lengths or two pairs of sides, lengths in each pair

complementing each other to π . If these are pairs of opposite sides, thenQ is an isogram

or antiisogram; if these are pairs of adjacent sides, then Q is a deltoid or antideltoid. It

follows that every quadrilateral belongs to one of the types described in Definition 2.3.

Proof of Theorem 2.4. If Q is an antiisogram, then equation (19) becomes

sin(α − δ)z2 + 2 sin αzw + sin(α + δ)w2 = 0 (22)

If α = δ = π

2 , then the bihomogenization (20) yields z1z0w1w0 = 0. That is, the config-

uration space consists of four trivial components: z = 0, z = ∞, w = 0, and w = ∞.

Similarly, if α = β or α+β = π , then there are two trivial components and one non-trivial

of the form z = κw with κ given by (6). Finally, if α 
= β and α + β 
= π , then by solving

the quadratic equation (22) (for which the identity sin(α − β) sin(α + β) = sin2
α − sin2

β

might be useful) we find two non-trivial components with κ as given in (7).

If Q is an isogram, then equation (19) becomes

sin(α − β)z2w2 − 2 sin αzw + sin(α + β) = 0,

and the argument is similar. Alternatively, one can use the first switching isomorphism

of Lemma 4.5. �

To deal with the (anti)deltoid case, we need the following lemma.

Lemma 4.6. The affine algebraic curve aw2 + 2bzw + c = 0 with a, b, c 
= 0 has the

parametrization z = p sin t, w = reit, where

p =
√
ac

b2
, r =

⎧⎨⎩
√− c

a , if bc > 0

−√− c
a , if bc < 0

�
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The proof is straightforward. Recall our convention
√
x ∈ iR+ for x < 0.

The (1, 2)-bihomogenization of the curve aw2 + 2bzw + c = 0 contains two

additional points (∞, 0) and (∞,∞).

Proof of Theorem 2.5. If Q satisfies α = δ, β = γ , then equation (19) becomes

sin(δ − γ )w2 − 2 sin γ zw + sin(δ + γ ) = 0 (23)

The (2, 2)-bihomogenization (20) contains a trivial component z = ∞. The affine part of

the non-trivial component can be parametrized according to Lemma 4.6, which yields

parametrization (9) for the case m = 1. The case m = 1 follows by the first switching

isomorphism of Lemma 4.5. Finally, parametrizations (10) are obtained by exchanging

z with w and α with γ . �

Let now Q be a quadrilateral of conic type. Consider first the case when the

unique solution of equation (21) is α + γ = β + δ. Then we have

σ = α + γ = β + δ,

α = γ , β = δ, γ = α, δ = β,

σ − β − α = δ − α, σ − β − γ = δ − γ

It follows that c22 = 0 in (19) and that the other coefficients are

c20 = sin γ sin(δ − α), c02 = sin α sin(δ − γ ),

c11 = − sin α sin γ , c00 = sin σ sin δ

(24)

Lemma 4.7. The affine algebraic curve

c20z
2 + c02w

2 + 2c11zw + c00 = 0 (25)

with c20 
= 0, c02 
= 0, c00 
= 0, c211 − c20c02 
= 0 has the parametrization

z = p sin t, w = q sin(t + t0),

where the amplitudes and the phase shift are given by

p =
√

c02c00
c211 − c20c02

, q =
√

c02c00
c211 − c20c02

, cos t0 = − c11c00
(c211 − c20c02)pq

(the phase shift is determined only up to the sign). �
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Proof. It is easy to show that the functions x = sin t, y = sin(t + t0) parametrize the

curve

x2 + y2 − 2 cos t0xy − sin2 t0 = 0 (26)

Substitution x = z
p , y = w

q transforms this to

q2z2 + p2w2 − 2pq cos t0zw − p2q2 sin2 t0 = 0

and the formulas for p, q, cos t0 are found by solving the proportion

q2 : p2 : −pq cos t0 : −p2q2 sin2 t0 = c20 : c02 : c11 : c00 �

In order to apply Lemma 4.7 to the equation (19), we need the following

specialization of Lemma 4.2.

Lemma 4.8. If α + γ = β + δ =: σ , then the following identities hold.

sin α sin γ − sin β sin δ = sin(δ − α) sin(δ − γ )

sin γ sin δ − sin α sin β = sin σ sin(δ − α)

sin α sin δ − sin β sin γ = sin σ sin(δ − γ )

�

Proof of Theorem 2.6. If α + γ = β + δ, then equation (19) takes the form (25) with cij

as in (24). If equation (21) has no other solutions, then c20, c02, c00 
= 0. Besides, because

of Lemma 4.8 we have

c211 − c20c02 = sin α sin β sin γ sin δ 
= 0

Thus we are in a position to apply Lemma 4.7. It yields

p =
√
sin σ sin(δ − γ )

sin β sin γ
, q =

√
sin σ sin(δ − α)

sin α sin β
,

which coincides with the formulas given in Theorem 2.6 due to Lemma 4.8. Furthermore

we have

cos t0 = sin σ

pq sin β
, cos2 t0 = sin α sin γ

sin α sin γ − sin β sin δ
∈ R \ [0, 1] (27)
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It follows that tan2 t0 = − sin β sin δ

sin α sin γ
. Since the phase shift is determined only up to the sign,

we choose t0 with Im t0 > 0, that is, Im tan t0 > 0, which leads to the formula in Theorem

2.6. Finally, the range of cosine

iR+ �→ [0,+∞),
π

2
+ iR+ �→ (−∞, 1]

and equations (27) lead to the table determining Re t0.

The other cases can be reduced to α + γ = β + δ with the help of switching

isomorphisms of Lemma 4.5. For example, if α + β = γ + δ, then we denote

α′ := α,β ′ := π − β, γ ′ := π − γ , δ′ := δ,

so that α′ +γ ′ = β ′ + δ′. Hence the configuration space Z(α′,β ′, γ ′, δ′) has the parametriza-

tion z = p′ sin t, w = q′ sin(t ± t′0), where p′, q′, and t′0 are computed by applying the

formulas of Theorem 2.6 to the angles α′, β ′, γ ′, δ′. By composing this with the second

switching isomorphism of Lemma 4.5, we obtain the parametrization

z = p′ sin t, w−1 = −q′ sin(t + t′0) = q′ sin(t + (t′0 + π))

of the space Z(α,β, γ , δ). It remains to note that p′ = p, q′ = q, tan t0 = tan t′0. On the

other hand, we have

σ ′ = α′ + β ′ + γ ′ + δ′

2
= α − β − γ + δ

2
+ π ,

which is < π if and only if σ > π with σ given by the table in Theorem 2.6. This accounts

for t0 = t′0 + π . �

In the elliptic case we use the following lemma.

Lemma 4.9. For any given k ∈ (0, 1) and t0 ∈ C, the functions

x(t) = sn(t; k), y(t) = sn(t + t0; k)

parametrize the affine algebraic curve

x2 + y2 − k2 sn2 t0x
2y2 − 2 cn t0 dn t0xy − sn2 t0 = 0 (28)

(all elliptic functions in the formula have Jacobi modulus k).
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Similarly, the functions

x(t) = cn(t; k), y(t) = cn(t + t0; k)

parametrize the affine algebraic curve

x2 + y2 + k2 sn
2 t0

dn2 t0
x2y2 − 2

cn t0
dn2 t0

xy − (k′)2
sn2 t0
dn2 t0

= 0, (29)

where k′ = √
1 − k2 is the conjugate modulus. �

See [9] for a proof and historical references.

Proof of Theorem 2.7. IfQ is of elliptic type, then neither of the coefficients in equation

(19) vanishes. We need to show that the substitution z = px,w = qy transforms (19) into

one of the equations (28) or (29), where p, q, k, and t0 are as described in Theorem 2.7.

We don’t give an analog of Lemma 4.7, because the formulas expressing p, q, k,

and t0 through the coefficients cij are rather complicated. On the other hand, in [9] it is

explained how the values of p and q can be guessed. So let’s just substitute

z =
√
sin σ sin(σ − β − γ )

sin α sin δ
x, w =

√
sin σ sin(σ − β − α)

sin γ sin δ

(due to Lemma 4.2, these coefficients are p and q of Theorem 2.7) into

sin α sin(σ − β − α)z2 + sin γ sin(σ − β − γ )w2

+ sin δ sin(σ − β − δ)z2w2 − 2 sin α sin γ zw + sin β sin σ = 0

We obtain

x2 + y2 − sin σ sin(σ − α − γ )

sin α sin γ
x2y2

− 2pq sin α sin γ sin δ

sin σ sin(σ − α − β) sin(σ − β − γ )
xy + sin β sin δ

sin(σ − α − β) sin(σ − β − γ )
= 0 (30)

Two cases must be distinguished: M := sin α sin β sin γ sin δ

sin α sin β sin γ sin δ
< 1 and M > 1.

IfM < 1, thenwe have to show that equation (30) arises from (28) by substituting

k = √
1 −M =

√
sin σ sin(σ − α − β) sin(σ − β − γ ) sin(σ − β − δ)

sin α sin β sin γ sin δ
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and t0 as described in Theorem 2.7. From

dn t0 =
√
sin α sin γ

sin α sin γ

and sn2 t0 + k2 dn2 t0 = 1 we compute

sn2 t0 = − sin β sin δ

sin(σ − α − β) sin(σ − β − γ )
= − sin β sin δ

sin α sin γ − sin β sin δ

It follows that the constant term and the coefficient at x2y2 in (30) are equal to − sn2 t0

and −k2 sn2 t0, respectively. Further, sn2 t0 + cn2 t0 = 1 implies that

cn2 t0 = sin α sin γ

sin(σ − α − β) sin(σ − β − γ )
∈

(
− (k′)2

k2
, 0

)
∪ (1,+∞)

It follows that the square of the coefficient at xy in (30) equals 4 cn2 t0 dn
2 t0. The sign

of the coefficient resolves the +2K-indeterminacy of t0. Indeed, equating the coefficient

with −2 cn t0 dn t0 leads to

cn t0 = sin σ

pq sin δ
(31)

Together with the following information about the range of elliptic cosine:

(0, iK ′) �→ (1,+∞), (K,K + iK ′) �→
(
0,−ik

′

k

)
,

(2K, 2K + iK ′) �→ (−∞,−1), (3K, 3K + iK ′) �→
(
0, i

k′

k

)
this yields the table in Theorem 2.7.

If M > 1, then a similar argument shows that equation (30) arises from (29) by

substituting

k =
√
sin σ sin(σ − α − β) sin(σ − β − γ ) sin(σ − α − γ )

sin α sin β sin γ sin δ

and t0 as described in Theorem 2.7. The value of dn t0 implies this time that

sn2 t0 = − sin β sin δ

sin α sin γ − sin β sin δ
, cn2 t0 = sin α sin γ

sin α sin γ − sin β sin δ

The coefficient at xy yields the same formula (31) for cn t0. �
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Fig. 12. Involutions i and j on the configuration space of a quadrilateral.

4.4 Branch points and involutions

Let Z = Z(α,β, γ , δ) ⊂ (CP1)2 be the complexified configuration space of a quadrilateral

with side lengths α, β, γ , δ, see Section 4.2. An irreducible component of Z is called

trivial, if it is described by an equation of the form z = const or w = const.

If Z0 is a non-trivial component of Z, then both projections

f : Z0 → CP1 g : Z0 → CP1

(z,w) �→ z (z,w) �→ w

are branched covers. Since equation (19) has degree 2 both in z and w, the degrees of f

and g are at most 2. Let A ⊂ CP1 and B ⊂ CP1 be the branch sets of the maps f and g,

respectively. Denote by

i : Z0 → Z0 j : Z0 → Z0

(z,w) �→ (z,w ′) (z,w) �→ (z′,w)

the deck transformations of f and g (defined only if the corresponding branched cover is

two-fold). Geometrically, involutions i and j act by folding the quadrilateral along one

of its diagonals, see Figure 12.

Lemma 4.10. Branch sets and involutions of the configuration space Z of a spherical

quadrilateral Q have the following form.

(1) If Q is an (anti)isogram, then for each of the non-trivial components of Z

(there can be 0, 1, or 2 of them), the maps f and g are homeomorphisms.

(2) If Q is an (anti)deltoid with apex αδ (i.e., if either α = δ and β = γ or α + δ =
π = β + γ ), then the map g is a homeomorphism, and the map f is two-fold

with the branch set and involution

A = {±pm}, i : t �→ π − t
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Similarly, if Q is an (anti)deltoid with apex αβ, then f is a homeomorphism,

and g is a two-fold branched cover with

B = {±qn}, j : t �→ π − t

(3) If Q is a conic quadrilateral, then the curve Z ⊂ (CP1)2 is irreducible and

has a unique singular point (0−m, 0−n) (where 0−1 := ∞). On the regular part

of Z, both maps f and g are two-fold branched covers with branch sets and

involutions

A = {±pm}, i : t �→ π − t

B = {±qn}, j : t �→ (π − 2t0) − t

(4) If Q is an elliptic quadrilateral with M < 1 (i.e., Z is parametrized by sn),

then both maps f and g are two-fold branched covers with branch sets and

involutions

A =
{
±p,±p

k

}
, i : t �→ 2K − t

B =
{
±q,±q

k

}
, j : t �→ (2K − 2t0) − t

If Q has M > 1 (i.e., Z parametrized by cn), then the branch sets and

involutions are given by

A =
{
±p,±ipk

′

k

}
, i : t �→ −t

B =
{
±q,±iqk

′

k

}
, j : t �→ −2t0 − t

�

Proof. In the (anti)isogram case, the assertion follows from the fact that each non-

trivial component has the form z = cw or zw = cw−1, see Theorem 2.4. The affine curve

z = cw contains in its biprojective completion the point (∞,∞), and the curve z = cw−1

contains (0,∞) and (∞, 0), which ensures that both maps f and g are homeomorphisms.

If Q is a deltoid with apex αδ, then Z0 is the (1, 2)-biprojective completion of the

affine curve (23). It is readily seen that g is a homeomorphism (we have g−1(0) = (∞, 0)

and g−1(∞) = (∞,∞)). Formulas for the branch points of f and for the involution i follow

from the parametrization (9) of the affine part of Z0.

If Q is a conic quadrilateral with α + γ = β + δ, then the affine part of Z has the

form (25), which is a nonsingular affine curve. The biprojective completion adds a single
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point (∞,∞), whose neighborhood is equivalent to z20w
2
0 = 0. Formulas for branch sets

A and B and involutions i and j follow from the parametrization (11). For other types of

conic quadrilaterals the situation is similar.

Finally, if Q is elliptic, then the parametrization (12), respectively (13), defines

an analytic diffeomorphism C/� → Z. The branch sets A and B can be computed as the

sets of critical values of the functions z = z(t) andw = w(t), respectively. Formulas for

the involutions follow from the properties of the functions sn and cn. �

4.5 Orthodiagonal quadrilaterals

A quadrilateral is called orthodiagonal, if its diagonals are orthogonal to each other.

Lemma 4.11. A spherical quadrilateral with side lengths α,β, γ , δ in this cyclic order

is orthodiagonal if and only if any of the following equivalent conditions is fulfilled.

cosα cos γ = cosβ cos δ (32a)

sinα sin γ = sin β sin δ (32b)

In particular, isometric deformations preserve the orthodiagonality. �

Proof. Condition (32a) is equivalent to the orthodiagonality due to the spherical

Pythagorean theorem. Equivalence between (32a) and (32b) follows by simple trigonom-

etry. �

Clearly, deltoids and antideltoids are orthodiagonal. Also, an (anti)isogram is

orthodiagonal only if it is an (anti)deltoid at the same time.

Lemma 4.12. If an orthodiagonal quadrilateral is not an (anti)deltoid, then it is of

elliptic type, its configuration space has the sn-parametrization (Case 1 of Theorem 2.7),

and the phase shift t0 is a quarter-period: Im t0 = K ′
2 . Conversely, every quadrilateral

with these properties is orthodiagonal. �

Proof. By the remark preceding the theorem, if Q is not an (anti)deltoid, then it is

either conic or elliptic. Thus its configuration space has one of the parametrizations

from Theorems 2.6 and 2.7, and hence by Lemma 4.10 carries the involutions i and j.
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A simple geometric argument shows that Q is orthodiagonal if and only if i and

j commute or, equivalently, if and only if (i ◦ j)2 = id. On the other hand, since

i ◦ j(t) = t + 2t0,

the involutions i and j commute if and only if t0 is a quarter-period. In the conic case, t0

cannot be a quarter-period since Im t0 > 0. Neither can it in the cn case, since there we

have 1
4� = KZ + K+iK ′

2 Z, which has an empty intersection with KZ + (0, iK ′) � t0. Thus

the configuration space is parametrized by sn, and the lemma is proved. �

If in an orthodiagonal quadrilateral we have δ = π

2 , then due to (32a) we must

have either α = π

2 or γ = π

2 .

Lemma 4.13. The configuration space of an elliptic orthodiagonal quadrilateral is

described by one of the following equations.

(1) If δ 
= π

2 , then(
sin(δ − α)z + sin(δ + α)

z

) (
sin(δ − γ )w + sin(δ + γ )

w

)
= 4 sin α sin γ cos δ,

(2) If α = δ = π

2 , then(
(cosβ − cos γ )z + cosβ + cos γ

z

) (
w + 1

w

)
= 4 sin γ

(3) If γ = δ = π

2 , then(
z + 1

z

) (
(cosβ − cosα)w + cosβ + cosα

w

)
= 4 sin α �

Proof. Equation cosα cos γ = cosβ cos δ can be shown to imply

sin(δ − α) sin(δ − γ ) = 2 cos δ sin δ sin(σ − β − δ)

sin(δ − α) sin(δ + γ ) = 2 cos δ sin α sin(σ − β − α)

sin(δ + α) sin(δ − γ ) = 2 cos δ sin γ sin(σ − β − γ )

sin(δ + α) sin(δ + γ ) = 2 cos δ sin β sin σ

(the proof can start with sin δ sin(σ − β − δ) = 1
2 (cosβ − cos(α + γ − δ))). This shows that

the equation in the first part of the lemma is equivalent to (19). The second and the third

part are proved by similar transformations. �
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Remark 4.14. With the help of the identities from Lemma 4.2 one can show that

det

(
c22 c20

c02 c00

)
= sin α sin γ (sin β sin δ − sin α sin γ ),

where cij are the coefficients from (19). By Lemma 4.11, the right-hand side vanishes if

and only if the quadrilateral is orthodiagonal. It follows that equation (19) takes the

form (az2 + b)(cw2 +d) = zw if and only if the quadrilateral is orthodiagonal. This fact

is also expressed and proved in a different way in Lemma 4.16 below. �

The involution factors and other parameters introduced in Definition 2.8 allow

to abbreviate the equation of the configuration space of an orthodiagonal quadrilateral

in the following way.

Corollary 4.15. The configuration space of an orthodiagonal quadrilateral has the

equation

(z + λz−1)(w + μw−1) = ν, if Q is not an (anti)deltoid (33a)

z + λz−1 = ξwn, if Q is an (anti)deltoid with apex αβ (33b)

w + μw−1 = ζzm, if Q is an (anti)deltoid with apex αδ (33c)

Herem = 1, respectively, n = 1, if Q is a deltoid, andm = −1, respectively, n = −1, if Q

is antideltoid, λ, μ, ν, ξ , ζ are as in Definition 2.8. �

The involution factor λ is defined if and only if the projection g : (z,w) �→ w

restricted to the non-trivial component Z0 is a two-fold branched cover of CP1. Recall

that j : (z,w) �→ (z′,w) denotes the deck transformation of g. In general, z′ depends both

on z and w. But equations (33) show that in the orthodiagonal case z′ depends only on

z. In other words, the involution j descends to an involution f∗(j) : CP1 → CP1.

The next lemma explains the term “involution factor” and shows that the pushout

f∗(j) exists only in the orthodiagonal case.

Lemma 4.16. The involution j : (z,w) �→ (z′,w) on the configuration space of an

orthodiagonal quadrilateral acts by z′ = λz−1, where λ is as in Definition 2.8.

Conversely, if the involution j descends to an involution on CP1, then Q is an

orthodiagonal quadrilateral. �

Proof. The first part is immediate from equations (33).
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Fig. 13. A compatible coupling of orthodiagonal quadrilaterals.

If f is two-fold, then themap f∗(j) : z �→ z′ iswell defined if and only if f ◦j = f ◦j◦i.
The last equation implies that either j = j ◦ i or i ◦ j = j ◦ i holds. As j 
= j ◦ i, we conclude

that i and j must commute. This implies that t0 is a quarter-period, and thus by Lemma

4.12 the quadrilateral is orthodiagonal. �

Lemma 4.17. Coefficients λ, μ, ν in the equation (33a) are expressed in terms of the

modulus and amplitudes as follows:

(λ,μ, ν) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
p2

k ,
q2

k ,
2(1+k)

k
√
k
pq

)
, if t0 = iK ′

2(
p2

k ,
q2

k ,− 2(1+k)

k
√
k
pq

)
, if t0 = 2K + iK ′

2(
− p2

k ,− q2

k ,
2i(1−k)

k
√
k
pq

)
, if t0 = K + iK ′

2(
− p2

k ,− q2

k ,− 2i(1−k)

k
√
k
pq

)
, if t0 = 3K + iK ′

2

�

Proof. The formulas are obtained by substituting z = px and w = qy in the equations(
x + 1

kx

) (
y + 1

ky

)
= ±2(1 + k)

k
√
k

,
(
x − 1

kx

) (
y − 1

ky

)
= ±2i(1 − k)

k
√
k

describing the curves x = sn t, y = sn(t + t0) for the values of t0 given above. �

Definition 4.18. Orthodiagonal quadrilaterals Q1 and Q2 are called compatible if one

of the following holds:

• the involution factors ofQ1 andQ2 at their common vertex are equal: λ1 = λ2;

• Q1 and Q2 are frontally coupled deltoids;

• Q1 and Q2 are frontally coupled antideltoids. �

Geometrically, a coupling of compatible orthodiagonal quadrilaterals is char-

acterized by the property that during a deformation the angles marked on Figure 13

remain equal.
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Fig. 14. Coupled four-bar linkages.

The coupling (Q1,Q2) on Figure 4 is compatible orthodiagonal if and only if

during a deformation of the polyhedron on Figure 3 the points A1, A2, C1, C2 remain in

one plane, and this plane is always orthogonal to the planes B1A1A4 and B2A2A3.

5 Configuration Space of Two Coupled Four-Bar Linkages

In Section 4 we studied the complexified configuration space Z of a spherical four-bar

linkage on Figure 10, together with the projections f : Z → CP1 and g : Z → CP1 that

output the tangents of half the angles ϕ and ψ . In this section we study the configuration

space of two four-bar linkages coupled as shown on Figure 14.

5.1 Coupled four-bar linkages and fiber products of branched coverings

The configuration space Z12 of the coupling on Figure 14 is the solution set of a system

of equations:

Z12 := {(w1, z,w2) ∈ (CP1)3 | P1(z,w1) = 0, P2(z,w2) = 0}

Here P1 and P2 are polynomials whose zero sets are the configuration spaces Z1 and Z2.

Thus we have a commutative diagram

CP1 Z12

f̃1

����
��

��
�� f̃2

����
��

��
��

CP1

Z2

g2

����������

f2 ����
��

��
��

Z1

g1

		��������

f1����
��

��
��

CP1

, (34)
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where each of themaps is the restriction of a projection (CP1)3 → (CP1)2 or (CP1)2 → CP1.

It is easy to see that the commutative square in (34) is a fiber product diagram:

Z12 = Z1 ×
CP1 Z2 := {(x1, x2) ∈ Z1 × Z2 | f1(x1) = f2(x2)}

The set Z12 is an algebraic set and can have several irreducible components. In

particular, this is the case when Z1 or Z2 is reducible. We are not interested in trivial

components of Zi given by zi = const or w = const, which will be dealt with in Section

6.1. Therefore let us restrict the diagram (34) to some non-trivial components Z0
1 and Z0

2

of Z1 and Z2.

Each of themaps fi : Z0
i → CP1 is either a homeomorphismor a two-fold branched

cover. If f1 is a homeomorphism, then so is f̃1, and the branched cover f̃2 is equivalent

to f2 : Z0
2 → CP1.

The following lemma describes the fiber product Z0
1 ×

CP1 Z
0
2 in the case when both

maps f1|Z01 and f2|Z02 are two-fold branched covers. This is a simple special case of the

general description of the components of a fiber product over CP1, see [16, Section 2].

Lemma 5.1. Let f1 : Z0
1 → CP1 and f2 : Z0

2 → CP1 be two-fold branched covers with

branch sets A1,A2 ⊂ CP1, respectively. Then their fiber product Z12 has one of the

following forms.

(1) IfA1 
= A2, then both f̃1 and f̃2 are two-fold branched covers with branch sets

f −1
1 (A2) and f

−1
2 (A1), respectively. The composition f1◦ f̃2 = f2◦ f̃1 is four-fold,

and its monodromy has the form (12)(34) around A1 \ A2, (13)(24) around

A1 ∩ A2, (14)(23) around A2 \ A1. Here 1, 2, 3, 4 is an appropriate labeling of

the preimage of some point.

(2) If A1 = A2 (so that the covers f1 and f2 are equivalent), then Z12 is equivalent

to the union of two copies of Z0
1 :

Z12 = Z0,+
1 � Z0,−

1

The restrictions of f̃1 and f̃2 to Z0,+
1 and Z0,−

1 are homeomorphisms, and the

compositions

Z0
1

f̃2
−1

−→ Z0,+
1

f̃1−→ Z0
2 and Z0

1

f̃2
−1

−→ Z0,−
1

f̃1−→ Z0
2

differ by postcomposition with the deck transformation of Z0
2 (equivalently,

by precomposition with the deck transformation of Z0
1 ). �
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5.2 Reducible couplings

Definition 5.2. A coupling of spherical four-bar linkages on Figure 14 is called

reducible, if there exist non-trivial irreducible components Z0
1 and Z0

2 of Z1 and Z2,

respectively, such that the fiber product Z0
1 ×

CP1 Z
0
2 is reducible. �

By Lemma 5.1, a coupling is reducible if and only if the maps f1|Z01 and f2|Z02 are

two-fold branched covers and their sets of branch points coincide: A1 = A2. Each of the

components Z0
i can have one of the following forms, see Section 4:

• Equation (21) has no solutions; then Z0
i = Zi is an elliptic curve with the

parametrization

Zi = {(z,wi) | z = piFi(t),wi = qiFi(t + ti)}, (35)

where Fi(t) = sn(t, ki) or Fi(t) = cn(t, ki).

• Equation (21) has exactly one solution; then Z0
i = Zi is a conic with the

parametrization

Zi = {(z,wi) | zmi = pi sin t,w
ni
i = qi sin(t + ti)}, (36)

wheremi,ni = ±1 depending on the form of the solution of (21), as described

in Theorem 2.6.

• The quadrilateral Qi is either deltoid with αi = δi,βi = γi or antideltoid with

αi + δi = π = βi + γi, and

Z0
i = {(z,wi) | zmi

i = pi sin t,wi = εi
√−μie

it, }, (37)

where mi = 1 if Qi is a deltoid, and mi = −1 if Qi is antideltoid, and with εi

and μi as in Theorem 2.5.

We have |Ai| = 4 whenQi is elliptic, and |Ai| = 2 whenQi is a conic quadrilateral

or an (anti)deltoid. Therefore a reducible coupling is only possible between two elliptics,

or between two conics, or between (anti)deltoid and conic, or between two (anti)deltoids.

5.2.1 Reducible couplings of elliptic quadrilaterals

Lemma 5.3. A coupling of two elliptic quadrilateralsQ1 andQ2 is reducible if and only

if the parametrizations (35) of their configuration spaces satisfy one of the following

sets of conditions:
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(1) F1 and F2 is the same elliptic function (sn or cn), and

k1 = k2, p1 = p2 =: p

In terms of the side lengths of Q1 and Q2 this is equivalent to

sin α1 sin δ1

sin α1 sin δ1
= sin α2 sin δ2

sin α2 sin δ2
,

sin β1 sin γ1

sin β1 sin γ 1

= sin β2 sin γ2

sin β2 sin γ 2

, (38)

The components of the configuration space Z12 of the coupling have the

following parametrizations:

{w1 = q1F(t − t1), z = pF(t),w2 = q2F(t + t2)}
∪{w1 = q1F(t − t1), z = pF(t),w2 = q2F(t − t2)}

(39)

(2) F1 = cn( · , k1) and F2 = cn( · , k2) and

k2
1 + k2

2 = 1,
p1

p2
= ±ik1

k2

The components of the configuration space of the coupling have the follow-

ing parametrizations:{
w1 = q1 cn(t − t1, k1), z = p1 cn(t, k1),w2 = p1q2

p2
cn(t + it2, k1)

}
∪

{
w1 = q1 cn(t − t1, k1), z = p1 cn(t, k1),w2 = p1q2

p2
cn(t − it2, k1)

} (40)

�

Proof. Branch points are given by part (4) of Lemma 4.10. In the sn case either all four

points are real or all purely imaginary, while in the cn case there are two real and two

imaginary points. Thus we have two possibilities:{
± p1,±p1

k1

}
=

{
± p2,±p2

k2

}
if Fi = sn( · , ki){

± p1,±ip1
k′
1

k1

}
=

{
± p2,±ip2

k′
2

k2

}
if Fi = cn( · , ki)

If p1 = p2, then in both cases we have k1 = k2, which results in the case (1) of the Lemma.

The parametrization (39) follows from parametrizations (35) and from the action of the

involutions i1 and i2 on Z1 and Z2.

Recall that pi ∈ R+ ∪ iR+, so that p1 = −p2 is not possible. It remains to check if

the elements of A1 can be equal to those of A2 “crosswise.”
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In the sn-case because of pi ∈ R+ ∪ iR+ we have only the possibility

p1 = p2

k2
, p2 = p1

k1

which cannot occur because of 0 < ki < 1. In the cn-case we have

p1 = ±ip2
k′
2

k2
and p2 = ±ip1

k′
1

k1
⇔ k′

1 = k2 and
p1

p2
= ±ik1

k2
,

which leads to the Case (2) of the Lemma.

To obtain a parametrization of Z12 in the second case, use Jacobi’s imaginary

transformation:

cn(t, k′) = 1

cn(it, k)
= i

k

k′ cn(it + K + iK ′, k)

It leads to the following parametrization of Z2:

Z2 =
{
(z,w2) | z = ip2

k1

k′
1

cn t,w2 = iq2
k1

k′
1

cn(t + it2)
}

By making, if needed, the parameter change t → t + 2K, this can be rewritten as z =
p1 cn t, w2 = p1q2

p2
cn(t + it2), and we obtain (40). �

5.2.2 Reducible couplings of conic quadrilaterals

Lemma 5.4. A coupling of two conic quadrilaterals Q1 and Q2 is reducible if and only

if the parametizations (36) of their configuration spaces satisfy one of the following sets

of conditions:

(1) m1 = m2 =: m and p1 = p2 =: p. In terms of the side lengths, this is

equivalent to

sin α1 sin δ1

sin β1 sin γ1
= sin α2 sin δ2

sin β2 sin γ2
(41)

with an additional condition that each of (αi,βi, γi, δi) satisfies one of the

equations

αi + γi = βi + δi, αi + βi = γi + δi (⇔ mi = 1)

or each satisfies one of the equations

αi + δi = βi + γi, αi + βi + γi + δi = 2π (⇔ mi = −1)
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The components of the configuration space of the coupling have the follow-

ing parametrizations:

{wn1
1 = q1 sin(t − t1), z

m = p sin t,wn2
2 = q2 sin(t + t2)}

∪{wn1
1 = q1 sin(t − t1), z

m = p sin t,wn2
2 = q2 sin(t − t2)}

(42)

(2) m1 = −m2 and p1 = ± 1
p2
. The components of the configuration space of the

coupling have the following parametrizations:{
wn1

1 = q1 sin(t − t1), z
m1 = p1 sin t,w

n2
2 = q2

cos t2 + i sin t2 cos t

sin t

}
∪

{
wn1

1 = q1 sin(t − t1), z
m1 = p1 sin t,w

n2
2 = q2

cos t2 − i sin t2 cos t

sin t

} (43)

�

Proof. Branch points are given by part (3) of Lemma 4.10. Thus A1 = A2 is equivalent to

{±p1} = {±p2} if m1 = m2

{±p1} =
{
± 1

p2

}
if m1 = −m2

The parametrization of Z12 in the first case is obvious. In the second case we must set

p1 sin t = zm1 = 1

p2 sin t′
⇔ sin t = 1

sin t′
,

where t and t′ are parameters on Z1 and Z2, respectively. (If we have p1 = − 1
p2
, which

happenswhen the amplitudes are imaginary, thenmake the parameter change t �→ t+π .)

This determines two different automorphisms of CP1 = (C/2πZ)∪{i∞}. Since sin t′ = 1
sin t

implies cos t′ = ±i cot t, we have

sin(t′ ± t2) = cos t2 ± i sin t2 cos t

sin t
,

which leads to the parametrization in the Lemma. �

5.2.3 Reducible couplings involving deltoids

An (anti)deltoid Q1 is said to be frontally coupled with Q2 if the common vertex

of Q1 and Q2 is an apex of Q1. Otherwise, Q1 is said to be laterally coupled with Q2. The

map f1|Z01 in the diagram (34) is two-fold if and only if Q1 is coupled frontally.

Lemma 5.5. A coupling (Q1,Q2) with Q1 a frontally coupled (anti)deltoid is reducible

if and only if one of the following sets of conditions is satisfied.
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(1) The quadrilateral Q2 is conic, m1 = m2 =: m and p1 = p2 =: p. In terms of

the side lengths, this is equivalent to

sin2
α1

sin2
β1

= sin α2 sin δ2

sin β2 sin γ2

with the additional condition:

Q1 deltoid ⇒ α2 + γ2 = β2 + δ2 or α2 + β2 = γ2 + δ2

Q1 antideltoid ⇒ α2 + δ2 = β2 + γ2 or α2 + β2 + γ2 + δ2 = 2π

The components of Z12 can in this case be parametrized as

{w1 = ε1
√−μ1e

it, zm = p sin t,wn2
2 = q2 sin(t + t2)}

∪{w1 = ε1
√−μ1e

it, zm = p sin t,wn2
2 = q2 sin(t − t2)}

(44)

(2) The quadrilateral Q2 is conic, m1 = −m2, and p1 = ± 1
p2
.

The components of the configuration space of the coupling have the follow-

ing parametrizations:{
w1 = ε1

√−μ1e
it, zm1 = p1 sin t,w

n2
2 = q2

cos t2 + i sin t2 cos t

sin t

}
∪

{
w1 = ε1

√−μ1e
it, zm = p1 sin t,w

n2
2 = q2

cos t2 − i sin t2 cos t

sin t

} (45)

(3) Both Q1 and Q2 are frontally coupled deltoids or frontally coupled antidel-

toids (so that m1 = m2 =: m) such that p1 = p2 =: p in (37). In terms of side

lengths:

sin α1

sin β1
= sin α2

sin β2
and

either αi = δi,βi = γi

or αi + δi = π = βi + γi

for i = 1, 2

The components of the configuration space of the coupling have the follow-

ing parametrizations.

{w1 = ε1
√−μ1e

it, zm = p sin t,w2 = ε2
√−μ2e

it}
∪{w1 = ε1

√−μ1e
it, zm = p sin t,w2 = −ε2

√−μ2e
−it}

(4) Q1 is a deltoid, Q2 is an antideltoid such that p1p2 = 1.
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The components of the configuration space of the coupling have the follow-

ing parametrizations.{
w1 = ε1

√−μ1e
it, zm1 = p1 sin t,w2 = ε2

√−μ2
eit − 1

eit + 1

}
∪

{
w1 = ε1

√−μ1e
it, zm1 = p1 sin t,w2 = −ε2

√−μ2
eit + 1

eit − 1

} �

Proof. Cases (1) and (2) are treated similar to Lemma 5.4.

In the Case (3) we have A1 = A2 if and only if p1 = p2, see part (2) of Lemma

4.10. Parametrizations of the two components of the fiber product is straightforward

from (37) by taking into account the involution action t �→ π − t (or, alternatively, its

description in Lemma 4.16).

In the Case (4) we must adjoin to the parametrization (37) the equation w2 =
ε2

√−μ2eit
′
, where sin t′ sin t = 1. The latter equation is equivalent to

(ei(t+t
′) − eit + eit

′ + 1)(ei(t+t
′) + eit − eit

′ + 1) = 0, (46)

which implies the formula in the lemma. �

5.3 Fiber product and resultant

The fiber product Z12 = Z0
1 ×

CP1 Z
0
2 lies in the space (CP1)3 with coordinates (w1, z,w2),

and its projections to the (z,w1) and to the (z,w2) planes are the spaces Z0
1 and Z0

2 ,

respectively. Consider now the projection to the (w1,w2)-plane and denote by W its

image:

π : Z12 → W ,

(w1, z,w2) �→ (w1,w2),
(47)

which we call the partial configuration space of the coupling. Then we have

W := {(w1,w2) | ∃z ∈ CP1 such that (z,w1) ∈ Z0
1 , (z,w2) ∈ Z0

2}

If P0
1 and P0

2 are polynomials defining the components Z0
1 and Z0

2 , respectively, then the

set W (at least its affine part) is the zero set of the resultant of the polynomials P0
1 and

P0
2 viewed as polynomials in z.

If the coupling is reducible, then the resultant is a reducible polynomial, so that

W consists of several irreducible components. In this case it is convenient to use the
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parametrizations of the irreducible components of Z12 that we obtained in Section 5.2 in

order to obtain the descriptions of the components of W .

Lemma 5.6. The following are the equations of the irreducible components of the space

W for some of the reducible couplings.

(1) If (Q1,Q2) is a reducible non-involutive coupling of elliptic quadrilaterals,

then

a22w
2
1w

2
2 + a20w

2
1 + a02w

2
2 + 2a11w1w2 + a00 = 0

(2) If (Q1,Q2) is a reducible coupling of conic quadrilaterals such thatm1 = m2

and p1 = p2 (Case 1 of Lemma 5.4), then

a20w
2n1
1 + a02w

2n2
2 + 2a11w

n1
1 wn2

2 + a00 = 0

for some aij ∈ R, except for the components corresponding to t1 − t2 ≡
0(modπ).

(3) If (Q1,Q2) is a reducible coupling of conic quadrilaterals such thatm1 = −m2

and p1 = ± 1
p2

(Case 2 of Lemma 5.4), then

w2n1
1 w2n2

2 +a20w
2n1
1 +a02w

2n2
2 +2a11w

n1
1 wn2

2 +a10w
n1
1 +a01w

n2
2 +a00 = 0 (48)

for some aij ∈ C with a20,a02,a11,a10,a01 
= 0. The polynomial is irreducible.

(4) If Q1 is an (anti)deltoid, and Q2 is a conic quadrilateral such that m1 = m2

and p1 = p2 (Case 1 of Lemma 5.5), then

w1 + μ1e
±2it2w−1

1 = ε1
2i

√−μ1e±it2

q2
wn2

2

(5) If Q1 is an (anti)deltoid, and Q2 is a conic quadrilateral such thatm1 = ±m2

and p1 = ± 1
p2

(Case 2 of Lemma 5.5), then

w2
1 + 2aw1 + b

w2
1 − b

= cwn2
2 , (49)

where the fraction on the left-hand side is irreducible.

(6) If Q1 is a deltoid, and Q2 is an antideltoid such that p1p2 = 1 (Case (4) of

Lemma 5.5), then

w1w2 ∓ ε2
√−μ2w1 ± ε1

√−μ1w2 + ε1ε2
√−μ1

√−μ2 = 0 �
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Proof. In the Case (1) each of the components ofW has the parametrization of the form

w1 = q1F(t), w2 = q′
2F(t + t12),

where t12 is either t1 ± t2 or t1 ± it2. For an irreducible component, t12 is not a half-period

of the elliptic function F , and the component is described by a biquadratic equation of

the above form.

Similarly, in the case (2), the components of W are parametrized by

w1 = q1 sin t, w2 = q2 sin(t + (t1 ± t2))

If t1±t2 /∈ {0,π}, then the corresponding component is described by a quadratic equation

without a linear part.

In the case (3) by Lemma 5.4, part (2) we have a parametrization of the form

wn1
1 = a sin t + b cos t, wn2

2 = c + d cos t

sin t

with a, b, c,d 
= 0. It suffices to consider the case n1 = n2 = 1. One easily computes

sin t = dw1 + bc

bw2 + ad
, cos t = w1w2 − ac

bw2 + ad

By substituting this into sin2 t + cos2 t = 1 we obtain the equation

w2
1w

2
2 + d2w2

1 − b2w2
2 − 2acw1w2 + 2bcdw1 − 2abdw2 + (a2c2 + b2c2 − a2d2) = 0

The polynomial at the left-hand side is irreducible, since it describes a 2-2 correspon-

dence, and W0
1 is also a double cover over both Z1 and Z2.

In the cases (4) and (5) the equations are found by substituting w1 = c1eit into

sin(t±t2) = ei(t±t2)−e−i(t∓t2)

2i and cos(t±t2) = ei(t±t2)+e−i(t∓t2)

2 in the formulas of Lemma5.5. The

irreducibility of the rational function in the case (5) is equivalent to the non-divisibility

of the numerator by eit ± 1. This, in turn, is equivalent to tan t2 
= i that was observed in

Section 4.3 after the proof of Theorem 2.6.

Finally, equations in the case (6) follow from equation (46). �

5.4 Involutive couplings

Consider the projection (47), where Z12 is the fiber product of non-trivial components Z0
1

and Z0
2 of the configuration spaces Z1 and Z2. Let Z0

12 be some irreducible component of
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Z12. Then the map π restricted to Z0
12 is either an isomorphism or a two-fold (possibly

branched) cover.

Definition 5.7. A coupling (Q1,Q2) is called involutive, if there exists an irreducible

component Z0
12 of Z

0
1 ×

CP1 Z
0
2 such that the restriction of the projection (47) to Z0

12 is two-

fold. �

Lemma 5.8. The coupling (Q1,Q2) is involutive if and only if the maps g1 and g2

on the diagram (34) (with Z0
i in place of Zi) are two-fold, and the corresponding deck

transformations ji : Z0
i → Z0

i lift to a common involution j12 : Z0
12 → Z0

12. �

Proof. If (Q1,Q2) is involutive, then the deck transformation of the two-fold cover Z0
12 →

W0 has the form

(w1, z,w2) �→ (w1, z
′,w2) (50)

It follows that j1 and j2 are two-fold and that (50) is a common lift of their deck

transformations.

In the opposite direction, if j1 and j2 lift to an involution j12, then we have π ◦j12 =
π , and since j12 
= id, this means that π is two-fold. �

5.4.1 Classification of involutive couplings

Lemma 5.9. Any involutive coupling (Q1,Q2) has one of the following forms.

(1) The quadrilaterals Q1 and Q2 are orthodiagonal and have equal involution

factors at their common vertex: λ1 = λ2, see Definition 2.8. (In particular this

means that λi are defined, that is, if Qi is an (anti)deltoid, then it is coupled

laterally.)

(2) The quadrilaterals Q1 and Q2 are elliptic and form a reducible elliptic cou-

pling of the first type from Lemma 5.3. Besides, t1 ± t2 is a half-period of the

corresponding elliptic function.

In terms of side lengths this means that, in addition to equations (38), we

have either

sin α1 sin γ1

sin α1 sin γ 1

= sin α2 sin γ2

sin α2 sin γ 2

,
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which is equivalent to t1 − t2 ∈ {0, 2K}, or

sin α1 sin γ1

sin α1 sin γ 1

= sin α2 sin γ2

sin β2 sin δ2
,

which is equivalent to t1 + t2 being a half-period with Im(t1 + t2) = K ′.

(3) The quadrilaterals Q1 and Q2 are conic and form a reducible conic coupling

of the first type from Lemma 5.4. Besides, t1 − t2 ≡ 0(modπ).

In terms of the side lengths this is equivalent to

sin α1

sin β1
= sin α2

sin β2
,

sin γ1

sin δ1
= sin γ2

sin δ2

with an additional condition that each of (α1,β1, γ1, δ1) and (α2,β2, γ2, δ2)

satisfies one of the equations

α + γ = β + δ, α + β = γ + δ (⇔ m = 1)

or each of them satisfies one of the equations

α + δ = β + γ , α + β + γ + δ = 2π (⇔ m = −1) �

Proof. By assumption, both covers g1 and g2 are two-fold. Assume that the map f1 is an

isomorphism. Then, according to the classification of configuration spaces (in particular,

Lemma 4.10), the quadrilateral Q1 is an (anti)deltoid coupled to Q2 frontally. Then, by

Lemma 4.16, the deck transformation j1 acts by

z �→ λ1z
−1

If j1 and j2 have a common lift (50), then j2 must descend to an involution on CP1 given

by the same formula. By Lemma 4.16, this happens if and only if the quadrilateral Q2 is

orthodiagonal and has the same involution factor at the δα-vertex as Q1. Thus we arrive

at a special case of the situation described in part (1) of the Lemma, with a laterally

coupled (anti)deltoid as one of the orthodiagonal quadrilaterals.

From now on assume that both f1 and g1 are two-fold, that is, each of Z0
1 = Z1

and Z0
2 = Z2 is either a conic or an elliptic curve. We will distinguish two cases: when

the coupling (Q1,Q2) is reducible and when not.

If (Q1,Q2) is reducible, then consider case-by-case possible parametrizations of

the components of Z12 given in Lemmas 5.3 and 5.4.
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• w1 = q1F(t − t1), z = pF(t), w2 = q2F(t ± t2),

where F = sn or cn, and the choice of +t2 or −t2 shift yields two different components

of Z12. The involution j1 acts by

j1(t) =
⎧⎨⎩2K + 2t1 − t, if F = sn

2t1 − t, if F = cn

In order for j1 to preserve the value of w2, we must have

sn(t ± t2) = sn(2K + 2t1 − t ± t2) or cn(t ± t2) = cn(2t1 − t ± t2) ∀t,

respectively. This is equivalent to t1±t2 being a half-period of sn, respectively, cn. Hence

we have the situation described in part (2) of the Lemma. Because of Im t1, Im t2 ∈ (0,K ′)

the possible half-periods are

t1 − t2 ∈ {0, 2K} or t1 + t2 ∈
⎧⎨⎩{iK ′, 2K + iK ′}, in the sn case

{K + iK ′, 3K + iK ′}, in the cn case
(51)

The corresponding conditions on the side lengths follow from the formulas for dn t0 in

Theorem 2.7 and from the identities dn(iK ′ − t0) = i cn t0sn t0
and dn(K + iK ′ − t0) = −ik′ sn t0

cn t0
.

• w1 = q1 cn(t − t1), z = p1 cn t, w2 = p1q2
p2

cn(t ± it2)

Similar to the previous case, t1 ± it2 must be a half-period of cn, that is belong to 2KZ +
(K + iK ′)Z. This is impossible, since Im t1 ∈ (0,K ′) and Im(it2) is a multiple of K ′. Thus

this coupling cannot be involutive.

• wn1
1 = q1 sin(t − t1), zm = p sin t, wn2

2 = q2 sin(t ± t2)

Arguing as before, we see that t1 ± t2 must be a multiple of π . Since t1 and t2 have

positive imaginary parts, we have t1 − t2 = nπ . By the formula for tan ti from 2.6 this is

equivalent to

sin β1 sin δ1

sin α1 sin γ1
= sin β2 sin δ2

sin α2 sin γ2

Together with (41), this is equivalent to the condition on the side lengths in the Lemma.

• wn1
1 = q1 sin(t − t1), zm1 = p1 sin t, wn2

2 = q2
cos t2+i sin t2 cos t

sin t
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The lift on involution j1 acts by t �→ π − 2t1 − t which does not preserve the value of

w2(t), so this coupling cannot be involutive.

If the coupling (Q1,Q2) is irreducible, then we have

Z12 = {(t, t′) ∈ Z1 × Z2 | f1(t) = f2(t
′)},

where we identified Z1 and Z2 with their parameter domains. The common lift j12 of the

involutions j1 and j2 is the restriction to Z12 of the map

(j1, j2) : Z1 × Z2 → Z1 × Z2

On the other hand, we have another map of Z12 to itself:

(i1, id) : Z12 → Z12,

which changes w1 while preserving z and w2. We have

(i1, id) ◦ (j1, j2)(t, t
′) = (t + 2t1, j2(t

′)),

hence

((i1, id) ◦ (j2, j2))
2(t, t′) = (t + 4t1, t

′)

Since this maps Z12 to itself, we have f1(t + 4t1) = f1(t) for all t. That is, the phase shift

t1 is a quarter-period of the function parametrizing Z1. By an argument from Lemma

4.12, this implies that Q1 is orthodiagonal. Similarly, by using (id, i2) in place of (i1, id),

we show that Q2 is orthodiagonal. But then, by Lemma 4.16, the involutions j1 and j2

descend to CP1. They descend to the same involution z �→ z′ if and only if λ1 = λ2. Thus

we are in the situation of the part (1) of the Lemma. �

5.4.2 The partial configuration space of an involutive coupling

Lemma 5.10. Let (Q1,Q2) be an involutive coupling of orthodiagonal quadrilaterals.

Then the quotient space W := Z12/j12 is the solution set of the following equation.

(1) If neither Q1 nor Q2 is a deltoid, then

w1 + μ1w
−1
1 = ν1

ν2
(w2 + μ2w

−1
2 ), (52)
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(2) If Q2 is an (anti)deltoid laterally coupled to Q1 that is not an (anti)deltoid,

then

w1 + μ1w
−1
1 = ν1

ξ2
w−n2

2 (53)

(3) If Q1 and Q2 are laterally coupled (anti)deltoids, then

wn1
1 = ξ2

ξ1
wn2

2

Hereμi are the involution factors fromDefinition 2.8, and νi, ξi,ni are as in Corollary 4.15.

�

Proof. Follows directly from the equations of the configuration spaces given in

Corollary 4.15. �

Lemma 5.11. Let (Q1,Q2) be a reducible involutive coupling as described in parts (2)

and (3) of Lemma 5.9, and let Z0
12 be the component of its configuration space carrying

the involution j12. Then the quotient space W0 := Z0
12/j12 has the following form.

(1) If (Q1,Q2) is elliptic, and t1 − t2 is a half-period, then

w1 =
⎧⎨⎩cw2, if sin σ1 sin σ2 > 0

−cw2, if sin σ1 sin σ2 < 0
, where c =

√√√√ sin γ1 sin δ1
sin γ 1 sin δ1

− 1
sin γ2 sin δ2
sin γ 2 sin δ2

− 1

(2) If (Q1,Q2) is conic such that

αi + γi = βi + δi, i = 1, 2,

and t1 − t2 ∈ {0,π}, then

w1 =
⎧⎨⎩cw2, if sin σ1 sin σ2 > 0

−cw2, if sin σ1 sin σ2 < 0
, where c =

√√√√ sin γ1 sin δ1
sin α1 sin β1

− 1
sin γ2 sin δ2
sin α2 sin β2

− 1

(3) If (Q1,Q2) is conic such that

αi + βi + γi + δi = 2π , i = 1, 2,
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and t1 − t2 ∈ {0,π}, then

w1 =
⎧⎨⎩c−1w2, if sin σ1 sin σ2 > 0

−c−1w2, if sin σ1 sin σ2 < 0
,

where c is given by the same formula as in the previous case. �

In a reducible equimodular coupling of conic quadrilaterals, the side lengths

can satisfy conditions other than those in parts (2) and (3) (see Lemma 5.4), but we will

not need the equation of W in these cases.

Proof. Let t1 − t2 ∈ {0, 2K} be a real half-period of an elliptic function F . Then Z0
12 is the

second component in (39), and its quotient (obtained by forgetting the coordinatew2) is

described by the equation

w1 =
⎧⎨⎩

q1
q2
w2, if t1 − t2 = 0

− q1
q2
w2, if t1 − t2 = 2K

If the coupling is geometrically realizable (i.e.,W ∩ (RP1)2 is a curve), then q1 and q2 are

either both real or both imaginary. Since we also have p1 = p2, formulas in Theorem 2.7

determining Re t0 imply that Re t1 = Re t2 if and only if either σ1, σ2 < π or σ1, σ2 > π . By

observing finally that
√
x√
y =

√
x
y if x and y have the same sign, we arrive at the formula

in the Lemma.

The argument in the conic case is the same. �

5.5 Lateral coupling of deltoids

Lemma 5.12. Let Q1 and Q2 be laterally coupled deltoids:

αi = βi, γi = δi, i = 1, 2

If their coupling is non-involutive, then the configuration space Z12 is described by the

equation

aw2
1 + 2bw1w2 + cw2

2 + d = 0, (54)

where

a = 1 − d2
2

cos2 δ1
, b = − 1 − d1d2

cos δ1 cos δ2
, c = 1 − d2

1

cos2 δ2
, d = (d1 − d2)

2

and d1 = tan δ1
tan α1

, d2 = tan δ2
tan α2

. �
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Proof. The spaces Z1 and Z2 have equations of the form wi = aiz + biz−1, i = 1, 2, see

Corollary 4.15. The coupling is non-involutive if and only if

det

(
a1 b1

a2 b2

)

= 0

If this is the case, then z and z−1 can be expressed as linear functions of w1 and w2,

whose substitution in zz−1 = 1 yields equation (54). �

6 Proof of the Classification Theorem

For every Kokotsakis polyhedron, the dihedral angles at the edges of its central face

determine its shape uniquely. These angles were denoted by ψ1, ϕ, ψ2, and θ , and the

tangents of their halves byw1, z,w2, and u, respectively. See Section 2.1 and the begin-

ning of Section 2.2. Therefore a continuous isometric deformation is represented by a

non-constant map

I → (S1)4

t �→ (ψ1(t),ϕ(t),ψ2(t), θ(t)),
(55)

where I ⊂ R is a segment. Recall that the dihedral angles at each pair of adjacent edges

are related through an equation that is polynomial in the corresponding tangents of

half-angles, see (4).

6.1 Trivially flexible polyhedra

A deformation will be called trivial, if one of the functions ψ1(t), ϕ(t), ψ2(t), or θ(t) is

constant. Let us classify trivial deformations.

In every trivial deformation there is a pair of adjacent dihedral angles one of

which remains constant while the other one varies. Let ϕ(t) = const and ψ1(t) be chang-

ing. From the classification of the configuration spaces of spherical quadrilaterals in

Section 4 it follows that either ϕ(t) = 0 or ϕ(t) = π ; in the former case, Q1 is a deltoid

with α1 = δ1 and β1 = γ1, in the latter case Q1 is an antideltoid with α1 + δ1 = π = β1 + γ1.

A case-by-case analysis of the behavior of the dihedral angles ψ2(t) and θ(t) leaves us

with the following possibilities.

• Both θ(t) and ψ2(t) are changing;

• θ(t) is changing, ψ2(t) = 0 or π ;
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• θ(t) = 0 or π , while ψ2(t) is changing;
• θ(t) = 0 or π , while ψ2(t) = const /∈ {0,π}.

The corresponding flexible polyhedra are described in Section 3.8.

6.2 A diagram of branched covers

Assume that the deformation (55) is non-trivial, that is neither of the angles remains

constant during the deformation. Make the substitution (3) and consider the irreducible

components of the configuration spaces Zi containing the deformation (55):

(w1(t), z(t)) ∈ Z0
1 , (z(t),w2(t)) ∈ Z0

2 ,

(w2(t),u(t)) ∈ Z0
3 , (u(t),w1(t)) ∈ Z0

4 ∀t ∈ I

The components Z0
i are well defined since by choosing, if needed, a subinterval of I we

may assume that the path avoids singular points of all Zi.

Denote further by Z0
12 the irreducible component of the fiber product (see

Section 5.1)

Z0
1 ×

CP1 Z
0
2 = {(w1, z,w2) | P1(w1, z) = 0, P2(z,w2) = 0}

that contains the path (w1(t), z(t),w2(t)) (againwemight need to choose a subinterval for

Z0
12 to bewell defined). Define similarly Z0

23, Z
0
34, and Z

0
41. Then define Z0

123 as the irreducible

component of

Z0
12 ×Z02

Z0
23 = {(w1, z,w2,u) | P1(w1, z) = 0, P2(z,w2) = 0, P3(w2,u) = 0},

and similarly Z0
234, Z

0
341, and Z

0
412. All these algebraic sets have dimension 1, because they

are branched covers of Z0
ij, which are branched covers of Z0

i . On the other hand, the

intersection of any two of them contains a non-constant path. It follows that

Z0
123 = Z0

234 = Z0
341 = Z0

412 =: Z0
all

The set Z0
all is thus a one-dimensional irreducible component of the solution set of (4).

We obtain the diagram of branched covers on Figure 15.

6.3 Involutive polyhedra and involutive couplings

Each of the maps on Figure 15 is either an isomorphism or a two-fold branched cover.

Let us concentrate on the multiplicities of the maps hij in the center of the diagram.

Definition 6.1. Adeformation of a Kokotsakis polyhedron is called involutive, if at least

one of the maps hij is two-fold. Otherwise, the deformation is called non-involutive. �
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Fig. 15. A diagram of branched covers associated with a (non-trivially) flexible Kokotsakis

polyhedron.

(By abuse of terminology, we will sometimes say that the polyhedron is involu-

tive or non-involutive, although a priori it is possible that the same polyhedron has an

involutive and a non-involutive deformation.)

If the deformation is non-involutive, then Z0
all can be identified with each of Z0

ij

according to hij, and the big diagram collapses to a smaller one on Figure 31 in Section

6.6, where the non-involutive case is dealt with.

Lemma 6.2. An involutive polyhedron contains an involutive coupling. �

Proof. Let h34 be two-fold. Consider the commutative square

Z0
all

h12



��
��

��
�� h34

���
��

��
��

�

Z0
12

π12 ���
��

��
��

�
Z0
34,

π34����
��

��
��

W0

(56)
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Fig. 16. Possible multiplicities of maps in a fiber product.

where πij is as in (47) and W0 is an irreducible component of the partial configuration

space

W = {(w1,w2) ∈ (CP1)2 | ∃z,u ∈ CP1 such that (w1, z,w2,u) ∈ Z0
all}

This is the diagram of a fiber product, and therefore if h34 is two-fold, so is π12. By

Definition 5.7 this means that the coupling (Q1,Q2) is involutive. �

The multiplicities of the maps in a fiber product diagram can be only as shown

on Figure 16. Here a double arrow represents a two-fold branched cover, and a simple

arrow represents an isomorphism.

The case when both (Q1,Q2) and (Q3,Q4) are involutive is studied in Section

6.4. In this case the commutative square (56) might have the form of the second square

on Figure 16, so that a priori there may be non-involutive polyhedra with involutive

couplings.

If (Q1,Q2) is involutive, and (Q3,Q4) is not, then h34 is double and h12 is simple.

This case is dealt with in Section 6.5.

6.4 Combination of two involutive couplings

If (Q1,Q2) and (Q3,Q4) are involutive, then we have

Z0
12/j12 = W0 = Z0

34/j34

Equations describing the quotient of the configuration space of an involutive coupling

are given in Lemmas 5.10 and 5.11. Consider them case by case.

6.4.1 Cubic case

The space W0 is described by an equation of the form

a1w1 + b1w
−1
1 = a2w2 + b2w

−1
2
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This is the Case (1) of Lemma 5.10. Thus both couplings (Q1,Q2) and (Q3,Q4) con-

sist of compatible orthodiagonal quadrilaterals neither of which is an (anti)deltoid. By

comparing the coefficients at the corresponding terms, we obtain

μ1 = μ4, μ2 = μ3, ν1ν3 = ν2ν4

The first two equations say that the involution factors of Q1 and Q4, respectively,

of Q2 and Q3, at their common vertex are equal. The third equation is equivalent to

cos δ1 cos δ3 = cos δ2 cos δ4. Thus we get the orthodiagonal involutive type 3.1.1.

6.4.2 Rational case

The space W0 is described by an equation of the form

aw1 + bw−1
1 = w±1

2

This means that Q1 and Q2 form a compatible pair of orthodiagonal quadrilaterals, Q2

is an (anti)deltoid while Q1 not, and the same is true for the pair (Q4,Q3). By comparing

the coefficients, we obtain

μ1 = μ4, n2 = n3, ν1ξ3 = ν4ξ2

Thus Q1 and Q4 have equal involution factors at their common vertex, and Q2, Q3 are

either both deltoids or both antideltoids. By Definition 4.18 this means that all pairs

of adjacent quadrilaterals are compatible. The last equation implies cos δ1 cos δ3 =
cos δ2 cos δ4 so that we get again the orthodiagonal involutive type 3.1.1.

6.4.3 Linear case

The space W0 is described by an equation of the form

w1w2 = const or
w1

w2
= const

By switching, if needed, the right boundary strip (i.e., replacing β1, γ1, β4, and γ4 by their

complements to π ) the former case can be reduced to the latter. We thus have a linear

compound as defined in Section 3.5. By Lemmas 5.10 and 5.11 each of the couplings

(Q1,Q2) and (Q3,Q4) has one of the following forms.

• two deltoids or two antideltoids, coupled laterally and with equal involution

factors at the common vertex;
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• a reducible coupling of two elliptic quadrilaterals with the shift difference

t1 − t2 ∈ {0, 2K};
• a reducible coupling of two conic quadrilaterals with the shift difference

t1 − t2 ∈ {0,π}.

The first and the second linear couplings are listed in Sections 3.5.2 and 3.5.4. Let us

show that the third one can be reduced to the cases described in Section 3.5.5. We have

m1 = m2 by Lemma 5.9 and n1 = n2 because ofw1 = cw2, hence the side lengths of both

Q1 and Q2 satisfy the same of the four possible relations αi ± βi ± γi ± δi ≡ 0(mod2π). By

switching, if needed, the lower boundary strip, these four restrict to two possibilities

(16a) and (16b). The same can be done with the coupling (Q3,Q4).

6.5 Combination of an involutive coupling with a non-involutive

Assume that (Q1,Q2) is involutive, and (Q3,Q4) is not. The polyhedron is flexible if and

only if Wz = Wu, where

Wz := π12(Z
0
12) = Z0

12/j12, Wu := π34(Z
0
34)

We will consider all of the forms that (Q1,Q2) can take and study the multiplicities of

the maps in the diagram on Figure 15.

6.5.1 The involutive coupling is equimodular

That is, (Q1,Q2) has the form described in parts (2) and (3) of Lemma 5.9. By

switching, if needed, the boundary strips we can assume that (Q1,Q2) is one of the

linear couplings described in Sections 3.5.4 and 3.5.5.

The maps between configuration spaces have multiplicities as shown on

Figure 17, where dotted lines stand for the maps with unknownmultiplicities. However,

with the help of Figure 16 we can determine most of them, see Figure 17.

The two remaining dotted arrows are either both simple or both double. Thus

(Q3,Q4) is either a coupling of (anti)isograms or a reducible coupling of (anti)deltoids.

Theorem 2.4 and Lemma 5.5 imply that such a coupling yields a linear dependence

w1 = cw2 if and only if Q3 and Q4 are of the same type (e.g., both are antideltoids) and

allow us to compute the coefficient c. We thus have a polyhedron of linear compound

type, where (Q3,Q4) is as in Section 3.5.1 or 3.5.3.
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Fig. 17. Solving the diagram for Section 6.5.1.

Fig. 18. Solving the diagram for Section 6.5.2.

6.5.2 The involutive coupling consists of two (anti)deltoids

Modulo switching, (Q1,Q2) is as described in Section 3.5.2. Again, the diagram

can be solved as shown on Figure 18.

It follows that (Q3,Q4) has the same form as in the previous case, and we have

a linear compound coupling.

6.5.3 The involutive coupling is orthodiagonal with one (anti)deltoid

Without loss of generality, let Q2 be an (anti)deltoid, Q1 orthodiagonal elliptic.

By switching, if needed, the left boundary strip, we can transform Q2 to antideltoid.

Then, according to Lemma 5.10 we have

Wz =
{
(w1,w2) | w1 + μ1w

−1
1 = ν1

ξ2
w2

}
(57)
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Fig. 19. Solving the diagram for Section 6.5.3.

Figure 19 shows the map multiplicities that we obtain by diagram chasing. The

further case distinction depends on the multiplicity of the question mark map

Case 1. The question mark map on Figure 19 is two-fold.

This yields the multiplicities on Figure 20, left. Thus Q4 is an (anti)deltoid com-

patibly coupled with an orthodiagonal non-deltoid Q1 (since the map h23 is two-fold),

and Q3 is an (anti)isogram. By switching, if needed, the upper boundary strip we can

transform Q4 to an antideltoid. Let us find the equation of the space Wu.

By Theorem 2.5 and Corollary 4.15 we have

Z0
3 = {(u,w2) | u±1 = κ3w2}, Z0

4 = {(u,w1) | w1 + μ4w
−1
1 = ζ4u

−1}

The equation ofWu is obtained by substituting the first equation in the second one. We

haveWz = Wu if and only if the resulting equation is proportional to (57). Thus we must

have u−1 = κ3w2, which means that Q3 is an isogram, and

μ1 = μ4, κ3ξ2ζ4 = ν1

The first equation holds automatically, sinceQ1 andQ4 are compatible. The second one is

an additional restriction. Altogether we obtain a polyhedron described in Section 3.7.2.

Case 2. The question mark map on Figure 19 is an isomorphism.

This yields themultiplicities on Figure 20, right, where the dotted lines are either

both simple or both double. We make a further case distinction.

Case 2a. The dotted lines on Figure 20, right, are simple.

Thus Q3 is an (anti)deltoid, and Q4 is an (anti)isogram. Let us find the equation

of the space Wu.
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Fig. 20. Cases 1 and 2 of Section 6.5.3.

By Theorem 2.4 and Corollary 4.15 we have

Z0
3 = {(u,w2) | u+ λ3u

−1 = ξ3w
n2
2 }, Z0

4 = {(u,w1) | u±1 = κ4w1}

By eliminating the variable u we must obtain an equation of the form (57). It follows

that n2 = 1, so that Q3 is a deltoid. By switching, if needed, the upper boundary strip,

we can transform Q4 to an antiisogram, so that u = κ4w1. By making this substitution

and comparing the coefficients with those in (57), we obtain the necessary and sufficient

conditions for flexibility:

λ3

κ2
4

= μ1,
ξ3

κ4
= ν1

ξ2

As a result, we obtain a polyhedron described in Section 3.7.3.

Case 2b. The dotted lines on Figure 20, right, are double.

Thus Q4 is an (anti)deltoid forming a reducible coupling with Q3. It follows that

Q3 is conic. The two situation when (Q3,Q4) is reducible are described in Lemma 5.5,

and the equations for the corresponding space W are given in Lemma 5.6.

If m3 = m4, p3 = p4, then the equation of Wu is

w1 + μ4e
±2it3w−1

1 = ε4
2i

√−μ4e±it3

q3
wn3

2

which has the same form as (57) if and only if n3 = 1. By switching, if needed, the

upper boundary strip, we can achieve m3 = m4 = 1. Then the conic quadrilateral Q3 is

circumscribed, andQ4 is a deltoid. By equating the coefficients atw−1
1 andw2, we obtain

necessary and sufficient conditions of flexibility, as described in Section 3.7.10.
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Fig. 21. The diagram for Section 6.5.4.

Ifm3 = −m4, p3 = ± 1
p4
, then the setWu is described by equation of the form (49),

thus Wu = Wz cannot take place, and there is no flexible polyhedron in this case.

6.5.4 The only involutive coupling is orthodiagonal without (anti)deltoids

By Lemma 5.10 we have

Wz = {(w1,w2) | w1 + μ1w
−1
1 = ν1

ν2
(w2 + μ2w

−1
2 ) (58)

If both h23 and h41 are two-fold, then the couplings (Q2,Q3) and (Q4,Q1) are

involutive. Up to a rotation of the diagram, this situation was considered in Section 6.4.

Thus assume without loss of generality that h23 is an isomorphism. Then we obtain the

map multiplicities as on Figure 21.

Case 1. The question mark map on Figure 21 is two-fold.

This yields the multiplicities on Figure 22, left. The quadrilateral Q3 is either

conic or elliptic, thus its configuration space Z0
3 = Z3 is an irreducible curve described

by an equation of the form (19). Since Q4 is an isogram, the equation of Wu is obtained

from that of Z0
3 by a linear substitution u = cw2 or u = cw−1

2 . Therefore it cannot have

the form (58). Thus there are no flexible Kokotsakis polyhedra with this diagram.

Case 2. The question mark map on Figure 21 is an isomorphism.

This yields the multiplicities on Figure 22, right, and makes a further case

distinction necessary.

Case 2a. The dotted lines on Figure 22, right, are simple.

Then (Q3,Q4) is a lateral coupling of (anti)deltoids. By switching, if needed, the

left and/or the right boundary strips we can transform them to deltoids. Then Wu has
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Fig. 22. Cases 1 and 2 of Section 6.5.4.

equation (54) which contradicts (58) (the former polynomial cannot be a factor of the

latter). Thus there are no flexible Kokotsakis polyhedra with this diagram.

Case 2b. The dotted lines on Figure 22, right, are double.

Then (Q3,Q4) is a reducible non-involutive coupling of conic or elliptic quadri-

laterals. Equations of the reducible components of the spaceWu are described in Lemma

5.6 and are all different from (58). Hence this diagram also does not produce any flexible

Kokotsakis polyhedra.

6.6 Flexible polyhedra without involutive couplings

By the argument in Section 6.3, if a deformation contains no involutive couplings, then

the diagramonFigure 15 collapses to the diagramonFigure 31. The further classification

is based on the multiplicities of the maps hi.

If hi is two-fold and Zi is conic or elliptic, then both couplings (Qi−1,Qi) and

(Qi,Qi+1) are irreducible. This case is analyzed in Section 6.6.1. Here we find the only

flexible polyhedron whose vertices have elliptic configuration spaces coupled non-

involutively and non-reducibly (which means that all resultant polynomials Rij are

irreducible).

The cases when hi is two-fold, and the polyhedron Qi is either (anti)deltoid or

(anti)isogram, are dealt with in Sections 6.6.2 and 6.6.3. In Section 6.6.4 we study the

case when all hi are isomorphisms.

6.6.1 Irreducible coupling with a conic or elliptic quadrilateral

Lemma 6.3. Assume that the quadrilateral Q1 is conic or elliptic and that f̃2 and g̃4 are

equivalent two-fold branched covers. Then Q1, Q2, and Q4 are all elliptic.
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Fig. 23. A half of the diagram from Figure 15, under the assumption f̃2 � g̃4.

Besides, the corresponding phase shift t1 satisfies either Im t1 = iK ′
1

3 or Im t1 = iK ′
1

2

and the branch set C1 of f̃2 and g̃4 has one of the forms depicted on Figures 24 and 25. �

Proof. If f̃2 is equivalent to g̃4, then we have the situation depicted on Figure 23. Since

f̃2 is two-fold, the map f2 is also two-fold. The same holds for the map g4. The two-fold

branched covers f̃2 and g̃4 are equivalent if and only if they have the same branch set.

By Lemma 5.1, this means

f −1
1 (A2) = g−1

1 (B4) =: C1, (59)

where A2 and B4 are the branch sets of the maps f2 and g4, respectively.

As a full preimage under f1, the set C1 is invariant under the action of the deck

transformation i1 of the two-fold cover f1. Similarly, C1 is invariant under the deck

transformation j1 of g1:

i1(C1) = C1 = j1(C1)

Consider a parametrization of Z1 obtained in Theorems 2.6 and 2.7:

Z1 = {(p1F(t), q1F(t + t1))},
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Fig. 24. The sets C1 and C1 + t1 (marked with ◦) for Im t1 = iK ′
1
3 and F = sn. The sets contain two

branch points of sn (marked with ×) each.

Fig. 25. The sets C1 and C1 + t1 for Im t1 = iK ′
1
3 and F = cn. The sets contain two branch points of

cn each.

where the function F is sin, sn, or cn. By identifying Z1 with its parameter domain,

we have

f1(t) = p1F(t), g1(t) = q1F(t + t1)

Because of

i1 ◦ j1(t) = t + 2t1,

the set C1 is invariant under the shift by 2t1. This implies that F 
= sin, because the orbit

of the shift by 2t1 is infinite in C/2πZ (recall that Im t1 
= 0), while the set C1 is finite.

It follows that Q1 is elliptic, F = sn(·, k1) or cn(·, k1). Let

� =
⎧⎨⎩4K1Z + 2iK ′

1Z, if F = sn

4K1Z + (2K + 2iK ′
1)Z, if F = cn
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be the period lattice of F . We have Z1 = C/�. On the torus C/�, the orbit of the shift by

2t1 is finite if and only if Im t1 = iK ′
1
n for some n ≥ 2 (recall that Im t1 ∈ (0, iK ′

1) and Re t1

is a multiple of K1).

Equation (59) implies that C1 ⊂ C/� is invariant also under the involution

t �→ −t, if F = sn, t �→ 2K1 − t, if F = cn

Indeed, the set A2 is symmetric with respect to 0, and we have − sn t = sn(−t) and

− cn t = cn(2K1 − t). Combined with the invariance with respect to involutions i1 and j1

this implies that C1 is invariant under the group generated by three point reflections

t �→ −t, t �→ 2K1 − t, t �→ 2t1 − t

Another set of generators for the same group consists of two shifts and one point

reflection:

t �→ t + 2K1, t �→ t + 2t1, t �→ −t

Thus we have

C1 = ((x + �n) ∪ (−x + �n)) /� (60)

for some x ∈ C, where

�n := 2K1Z + 2t1Z = 2K1Z + 2iK ′
1

n
Z

Since |�n/�| = 2n, it follows that

|C1| =
⎧⎨⎩4n, if x /∈ 1

2�n

2n, if x ∈ 1
2�n

(61)

From the classification of the configuration spaces we know that |A2| = 2 (if Q2 is an

(anti)deltoid or conic quadrilateral) or |A2| = 4 (ifQ2 is an elliptic quadrilateral). Since f1

is a two-fold cover, equation (59) implies that |C1| ≤ 8. Thus, due to (61) we have n ≤ 4.

Let us show that n 
= 4. If n = 4, then by (61) x is a half-period of �n. Without

loss of generality,

x ∈ {0,K1,−t1,−t1 + K1}
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Consider first the case F = sn. If x = 0, then 0 ∈ C1, hence 0 = f1(0) ∈ A2, which is

impossible, see Lemma 4.10. If x = K1, then we have |A2| > 4 because K1 is a branch

point for the function sn(·, k1) and

|C1| = 2|A2| ⇔ C1 contains no branch points of f1

Similarly, x = −t1 would imply 0 = g1(−t1) ∈ B4, and x = −t1 + K1 would imply that C1

contains a branch point of g1. Summarizing, there is no half-period shift of �4 whose

image under f1 and g1 would consist of four points, all different from 0. In the case

F = cn the argument is similar. Thus n 
= 4.

Let us look at the case n = 3. Because of (61) and |C1| ≤ 8, the point x must be a

half-period of �3:

x ∈
{
0,K1,

iK ′
1

3
,K1 + iK ′

1

3

}

If F = sn, then x = 0 would lead to 0 ∈ A2, and x = iK ′
1

3 would lead to ∞ ∈ A2. It follows

that C1 is one of the sets depicted on Figure 24, with C1 + t1 being the other one. The

images of C1 and C1 + t1 under the map t �→ p1 sn(t, k1), respectively, t �→ q1 sn(t, k1),

consist of four points each. Thus we have |A2| = |B4| = 4, and therefore both Q2 and Q4

are elliptic quadrilaterals.

For F = cn the situation is similar. The sets C1 and C1+t1 are shown in Figure 25.

Finally, consider the case n = 2. We have Im t1 = K ′
1
2 , therefore by Lemma 4.12

the space Z1 is parametrized by F1 = sn. If x ∈ 1
2�2, then we have either Im x ≡ 0(modK ′

1)

or Im(x + t1) ≡ 0(modK ′
1). Without loss of generality, assume the former to be the case.

Then we have either

C1 = x + �2 = {0, 2K1, iK
′
1, 2K1 + iK ′

1},

in which case A2 = {0,∞}, which is a contradiction, or

C1 = x + �2 = {K1, 3K1,K1 + iK ′
1, 3K1 + iK ′

1},

in which case A2 = A1 and the coupling (Q1,Q2) is reducible, so that f̃2 is not two-fold.

This contradiction shows that x /∈ 1
2�2, so that |C1| = 8 and hence |A2| = |B4| = 4, that is,

Q2 and Q4 are elliptic.

This finishes the proof of the Lemma. �
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Fig. 26. The diagram for Lemma 6.4.

Lemma 6.4. Assume that the quadrilaterals Q1 and Q2 are elliptic and that f̃2 and

g̃4 are equivalent two-fold branched covers over Z1, and f̃1 and g̃3 are equivalent two-

fold branched covers over Z2, see Figure 26. Then the quadrilaterals Q1 and Q2 are

orthodiagonal, and their involution factors at the common vertex (see Definition 2.8)

are either equal or opposite: λ1 = ±λ2. �

Proof. By Lemma 6.3, the imaginary part of the phase shift t1 of the configuration space

Z1 equals either
K ′
1
3 or

K ′
1
2 . In the former case, equation (59) and Figures 24 and 25 provide

us with the following information about the branch set A2.

If Im t1 = K ′
1
3 and F1 = sn(·, k1), then one of the following holds:

A2 =
{
±p1,±p1 sn

(
K1 + 2iK ′

1

3
, k1

)}
(62a)

A2 =
{
±p1

k1
,±p1 sn

(
K1 + iK ′

1

3
, k1

)}
(62b)

If Im t1 = K ′
1
3 and F1 = cn(·, k1), then one of the following holds:

A2 =
{
±p1,±p1 cn

(
2iK ′

1

3
, k1

)}
(63a)

A2 =
{
±ip1

k′
1

k1
,±p1 cn

(
K1 + iK ′

1

3
, k1

)}
(63b)

If Im t1 = K ′
1
2 , then by Lemma 4.12 F1 = sn(·, k1). Hence, equations (59) and (60)

imply

A2 =
{
±p1 sn(x, k1),± p1

k1 sn(x, k1)

}
(64)

On the other hand, by Lemma 4.10 the set A2 consists of four real or four purely

imaginary points if F2 = sn(·, k2), and from two real and two purely imaginary points if
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F2 = cn(·, k2). Since

sn
(
K + 2iK ′

3

)
, sn

(
K + iK ′

3

)
, cn

(
2iK ′

3

)
∈ R, cn

(
K + iK ′

3

)
∈ iR,

each of the quadruples in (62) and (63) consists either of four real or four imaginary

points. In (64) also, we cannot have two real and two purely imaginary points, but only

four of the same kind. It follows that F2 = sn(·, k2).

By reversing the roles of Q1 and Q2 in the above argument we see that F1 =
sn(·, k1), so that the Case (63) falls out of consideration. Moreover, by Lemma 4.10 we

have

A2 =
{
±p2,±p2

k2

}
(65)

Claim 1. If Im t1 = K ′
1
3 , then k1 < k2 and either p1 = p2 or

p1
k1

= p2
k2
.

Indeed, since 0 < k1 < 1, we have |p2| <

∣∣∣ p2k2 ∣∣∣. On the other hand, due to the

monotonicity of sn on the segment [K1,K1 + iK ′
1] we have

1 < sn
(
K1 + 2iK ′

1

3
, k1

)
<

1

k1

Thus, if (62a) occurs, then the first entry in (65) equals the first entry in (62a), and the

second one equals the second one:

p2 = p1,
1

k2
= sn

(
K1 + 2iK ′

1

3
, k1

)
<

1

k1
,

which proves the claim in the situation of (62a). Similarly, if (62b) occurs, then we have

p1

k1
= p2

k2
, p1 sn

(
K1 + iK ′

1

3
, k1

)
= p2,

which also implies k1 < k2.

Claim 2. If Im t1 = K ′
1
2 , then

p21
k1

= ± p22
k2
.

This follows from taking the products of entries in (64) and (65).

By reversing the roles of Q1 and Q2 we obtain analogs of Claims 1 and 2 with k1

and k2 as well as p1 and p2 interchanged.

It follows that we cannot have Im t1 = K ′
1
3 and Im t2 = K ′

2
3 , because by Claim 1

this would imply k1 < k2 and k2 < k1. We cannot have Im t1 = K ′
1
3 and Im t2 = K ′

2
2 (or vice
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versa), because then
p21
k1

= ± p22
k2

together with p1 = p2 or p1
k1

= p2
k2

implies k1 = k2, which

contradicts k1 < k2.

Hence we have Im t1 = K ′
1
2 and Im t2 = K ′

2
2 . By Lemma 4.12 both quadrilaterals Q1

and Q2 are then orthodiagonal. Their involution factors are equal or opposite by Claim

2 and Lemma 4.17. �

Lemma 6.5. Let (Q1,Q2,Q3,Q4) represent a flexible Kokotsakis polyhedron without

involutive couplings. Assume that Q1 is elliptic or conic and that the coupling (Q1,Q2)

is irreducible. Then the polyhedron belongs to the orthodiagonal antiinvolutive type

described in Section 3.1.2. �

Proof. If (Q1,Q2) is irreducible whileQ1 is conic or elliptic, then the map f̃2 : Z12 → Z1 is

two-fold. Since there are no involutive coupling components, the coverings f̃2 and g̃4 are

equivalent, see the beginning of Section 6.6. Thus we are in the situation of Lemma 6.3.

Lemma 6.3 implies thatQ1,Q2, andQ4 are elliptic, and their configuration spaces

are all doubly covered. By non-involutivity, the double covers over Z2 and Z4 are equiv-

alent, which implies that Q3 is also elliptic. It follows that we can apply Lemma 6.4 to

any pair of adjacent quadrilaterals.

Thus all Qi are elliptic orthodiagonal quadrilaterals, and the involution factors

at their common vertices are equal or opposite. If two involution factors are equal,

then the corresponding coupling is involutive, which contradicts our assumption. Thus

we have

λ1 = −λ2, μ2 = −μ3, λ3 = −λ4, μ4 = −μ1

By Corollary 4.15, the configuration space of the polyhedron is the solution set

of the system

(z + λ1z
−1)(w1 + μ1w

−1
1 ) = ν1

(z − λ1z
−1)(w2 − μ3w

−1
2 ) = ν2

(u+ λ3u
−1)(w2 + μ3w

−1
2 ) = ν3

(u− λ3u
−1)(w1 − μ1w

−1
1 ) = ν4

By computing the resultants or by making trigonometric substitutions, we obtain the

necessary and sufficient conditions for this system to have a one-parameter set of
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Fig. 27. Solving the diagram for Section 6.6.2.

solutions:

ν2
1

λ1μ1
= ν2

3

λ3μ3
,

ν2
2

λ1μ3
= ν2

4

λ3μ1
,

ν2
1

λ1μ1
+ ν2

2

λ1μ3
= 1

Thus the polyhedron has the form described in Section 3.1.2. �

6.6.2 A double cover over an (anti)deltoid

Without loss of generality, the map h2 is two-fold, and the quadrilateral Q2 is

an (anti)deltoid. Besides, we may assume that Q2 is coupled to Q1 frontally, so that the

map f2 is two-fold and the map g2 an isomorphism. Completing fiber product squares

according to Figure 16 and using the assumption that no conic or elliptic is doubly

covered, we determine multiplicities of all but two of the other maps, see Figure 27, left

and middle.

Since the maps h1 and h2 are two-fold, the coupling (Q1,Q2) is irreducible, that

is the branch sets of f1 and f2 are different: A1 
= A2. Then the branch set f −1
2 (A1) of h2

consists of four points. Since the covering g3 is equivalent to h2, it branches also over

four points. It follows that the quadrilateral Q3 is elliptic. Similarly, Q4 is also elliptic,

so that f3 and f4 are two-fold, see Figure 27. Note that (Q3,Q4) is a reducible coupling.

The spaces Z0
1 and Z0

2 have the equations

w1 + μ1w
−1
1 = ζ1z

m1 , w2 + μ2w
−1
2 = ζ2z

m2

If m1 = m2, then the space Wz is the solution set of the equation

w1 + μ1w
−1
1 = ζ1

ζ2
(w2 + μ2w

−1
2 ),

which must be irreducible, because the coupling (Q1,Q2) is irreducible by assumption.

Thus we haveWz 
= W0
u, because the latter is described by an irreducible equation from
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Fig. 28. The diagram in the Case 2.

part (1) of Lemma 5.6. Thus we have m1 = −m2, that is one of Q1, Q2 is a deltoid, and

the other an antideltoid.

For m1 = −m2 the equation of Wz has the form

(w1 + μ1w
−1
1 )(w2 + μ2w

−1
2 ) = ζ1ζ2 (66)

At the same time, by Lemma 5.3 W0
u has the parametrization

w1 = q1F(t), w2 = q′
2F(t + t12),

where t12 = t1 ± t2 or t12 = t1 ± it2, and q′
2 = q2, respectively,

p1q2
p2

. If this curve satisfies

an equation of the form (66), then the involution (w1,w2) �→ (w ′
1,w2) descends to CP1,

and thus t12 is a quarter-period of F , by an argument from Section 4.5. If F = cn, then

μ1 and μ2 in (66) must be purely imaginary, which is not the case. Thus we have F = sn

and t12 = t1 ± t2. By changing the sign of t12, if needed, we can assume

t12 = ±t1 ± t2 ∈ KZ + i
K ′

2

It follows that W0
u has equation of the form (z + λz−1)(w + μw−1) = ν with coeffi-

cients given by Lemma 4.17, where (q1, q2) must be substituted for (p, q). By equating

the coefficients to those in (66), we obtain conditions described in Section 3.7.6.

6.6.3 A double cover over an (anti)isogram

Without loss of generality, the map h2 is two-fold, and the quadrilateral Q2 is

an (anti)isogram.

This yields the multiplicities on Figure 28, and we make a case distinction

according to the multiplicities of the two question mark maps.

Case 1. Both question mark maps are isomorphisms.
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Fig. 29. Cases 1 and 2 of Section 6.6.3.

This leads to the diagram on Figure 29, left. ThusQ1 andQ3 are antideltoids, and

Q2 andQ4 are (anti)isograms. By switching, if needed, the lower and/or the left boundary

strips, we can transform Q1 and Q3 to deltoids, so that their configuration spaces have

equations

w1 + μ1w
−1
1 = ζ1z

−1

u+ λ3u
−1 = ξ3w

−1
2

(67)

Configuration spaces of (anti)isograms correspond to linear substitutions:

u±1 = κ4w1, z±1 = κ2w2

In order for these substitutions to transform one of the equations (67) to the other, Q2

must be an antiisogram: z = κ2w2. But Q4 may be either isogram or antiisogram (and its

type can be changed by switching the upper boundary strip). This leads us to linearly

conjugate antideltoids described in Section 3.6.1.

Case 2. One question mark map is two-fold, the other an isomorphism.

Without loss of generality, we obtain the diagram on Figure 29, right.

Then (Q3,Q4) is a reducible coupling, and Q4 is an (anti)deltoid. It follows that

Q3 is conic.

There are two types of reducible couplings between a conic quadrilateral and

an (anti)deltoid, see Lemma 5.5. For the second type, equation of an irreducible compo-

nent Z0
34 has the form (49), which differs from the equation of Z0

12 obtained by a linear

substitution in the equation of an (anti)deltoid. Thus Q3 and Q4 satisfy the conditions

described in part (1) of Lemma 5.5: m3 = m4, p3 = p4.

By Lemma 5.6, the two irreducible components of Z34 are described by equations

w1 + μ4e
±2it3w−1

1 = 2ε4i
√−μ4e±it3

q2
wn3

2
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Fig. 30. Subcases of Case 3, Section 6.6.3.

At the same time, the non-trivial irreducible component of Z12 is given by a linear

substitution z = cw±1
2 in

w1 + μ1w
−1
1 = ζ1z

m1

By switching, if needed, the lower and/or the upper boundary strips, we can transform

Q1 andQ4 to antideltoids:m1 = −1,m3 = m4 = −1. By switching the left boundary strip,

we achieve n3 = −1, so that Q3 has perimeter 2π . Then we must have z = cw2, that is Q2

is an antiisogram.

By performing the substitution, we obtain the conditions on the coefficients

described in Section 3.7.7.

Case 3. Both question mark maps are two-fold.

This leaves two possibilities shown on Figure 30.

Case 3a. Figure 30, left.

QuadrilateralsQ1 andQ3 are conic or elliptic,Q2 andQ4 are (anti)isograms. That

is, irreducible components of Z2 and Z4 correspond linear substitutions

z±1 = κ2w2, u±1 = κ4w1 (68)

that should transform the equation of Z1 into the equation of Z3 (both Z1 and Z3 are

irreducible curves). It follows that either both Q1 and Q3 are conic or both are elliptic.

If Q1 and Q3 are conic, then by switching boundary strips we can make them

both to have perimeter 2π . This means that the equations of Z1 and Z3 have the form

(19) with c00 = 0 and all other coefficients different from 0. Substitutions (68) preserve

this property if and only if ±1 = 1 in both cases, that is, if and only if Q2 and Q4

are antiisograms. The substitutions (68) must establish bijections between the branch

sets of f1 and g3, and, respectively, those of g1 and f3. This implies that the following
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conditions are necessary:

q3 = ±κ2p1, q1 = ±κ4p3

It can be seen that they are also sufficient, provided that the shifts t1 and t3 are

accordingly related, see Section 3.6.2.

If Q1 and Q3 are elliptic, then we use switching to transform Q2 and Q4 into

antiisograms, so that both exponents in (68) equal 1. Then we have

Wz =
{
w1 = q1F1(t), w2 = p1

κ2
F1(t + t1)

}
Wu =

{
w1 = p3

κ4
F3(t), w2 = q3F3(t + t3)

}

It follows that F1 and F3 is the same elliptic function with the samemodulus. If κ2, κ4 > 0,

thenwehaveWu = Wz if and only if the amplitudes and the shifts in the twoparametriza-

tions coincide. (Recall that the amplitudes belong by definition to R+ ∪ iR+.) If κ2 < 0,

then we have

Wz = {w1 = q1F1(t), w2 = −p1

κ2
F1(t + t1 + 2K)}

Dealing with the other combinations of signs of κ2 and κ4 similarly, we obtain conditions

described in Section 3.6.3.

Case 3b. Figure 30, right.

Quadrilaterals Q1, Q3, Q4 are conic or elliptic, Q2 is an (anti)isogram. Both cou-

plings (Q3,Q4) and (Q4,Q1) are reducible. Therefore either all of these quadrilaterals are

conic or all elliptic.

Let us show that in the conic case each of the reducible couplings is of the first

of the two types described in Lemma 5.4. Assume the converse; then without loss of

generality (Q3,Q4) is of the second type. Then the space W0
u is the solution set of an

irreducible equation of the form (48). The equation of Wz has a different form, since it

is obtained by a linear substitution z±1 = κ2w2 in the equation of Z1. Hence Wz 
= W0
u. It

follows that the couplings (Q3,Q4) and (Q4,Q1) satisfy m3 = m4, n4 = n1. By switching

boundary strips, we can achieve

mi = ni = −1, for i = 3, 4, 1
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It is easy to see that Q2 must be an antiisogram (cf. Case 1 of this Section). Thus we have

Wz = {w−1
1 = q1 sin t, w

−1
2 = κ2p1 sin(t + t1)}

W0
u = {w−1

1 = q4 sin t, w
−1
2 = q3 sin(t + t3 ± t4)}

If κ2 > 0, then the amplitudesmust be equal, and the shifts are either equal or opposite. If

κ2 < 0, then the shift t1 must be changed by π . We obtain a polyhedron from Section 3.7.8.

If Q3, Q4, and Q1 are elliptic, then the reducibility of the couplings (Q3,Q4) and

(Q4,Q1) implies that either all three quadrilaterals are of sn-type, have equal moduli and

equal amplitudes at common vertices, or all three are of cn-type with equal or conjugate

moduli, see Section 5.2.1. Let us show that the moduli cannot be conjugate. Assume the

converse. Then, using the parametrizations from Lemma 5.3, one can show that some

linear combination of t1, t3, t4 with coefficients ±1, ±i, involving at least one ±1 and at

least one ±i, must be a real half-period. But we cannot have, say,

t1 ± it3 ± it4 ∈ {0, 2K},

since Im t1 ∈ (0,K ′) and Im(it3), Im(it4) ∈ {0,K ′, 2K ′, 3K ′}. In the case of one ±i coefficient,
one looks at the real parts. Thus all moduli ki, i = 3, 4, 1, are equal.

By switching, the quadrilateral Q2 can be transformed to an antiisogram: z =
κ2w2. Then we have

Wz =
{
w1 = q1F(t), w2 = p1

κ2
F(t + t1)

}
W0

u = {w1 = q4F(t), w2 = q3F(t + t3 ± t4)} ,

where F = sn(·, k) or F = cn(·, k). We obtain a polyhedron from Section 3.7.9.

6.6.4 All maps hi are isomorphisms

Then for everyCP1 on Figure 31 the two covers over it have the samemultiplicity.

Up to rotation of the diagram, there are six possibilities shown on Figures 32 and 33.

Case 1. There is no doubly covered CP1.

Then all Qi are (anti)isograms, and non-trivial irreducible components of their

configuration spaces are described by the equations

z±1 = κ1w1, z±1 = κ2w2, u±1 = κ3w2, u±1 = κ4w1

In order for this system tohave a one-parameter set of solutions, the number of+1 among

the exponents must be even. By switching a boundary strip, we change the exponents
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Fig. 31. A diagram of branched covers associated with a deformation without involutive

couplings.

Fig. 32. Cases 1, 2, and 3 of Section 6.6.4.

in two consecutive equations. Therefore we can transform all exponents to +1 and thus

all quadrilaterals to antiisograms. As a result, we obtain a polyhedron described in

Section 3.2.

Case 2. One doubly covered CP1.

By switching, quadrilaterals Q3 and Q4 can be transformed to antiisograms.

Then the space W0
u has an equation of the form w1 = cw2. The coupling (Q1,Q2) is a

reducible coupling of (anti)deltoids. There are two classes of such couplings, see parts

(3) and (4) of Lemma 5.5. It is only in the Case 3 thatW0
z is described by a linear equation,

that is, if Q1 and Q2 are both deltoids or both antideltoids. Thus we obtain a compound

of linear couplings from Sections 3.5.1 and 3.5.3.

Case 3. Two doubly covered, non-adjacent CP1.

If Q1 and Q2 are both deltoids or both antideltoids, then the space W0
z is

described by a linear equation. Thus Q3 and Q4 must also be either both deltoids or

both antideltoids, and we have a compound of two linear couplings from Section 3.5.3.
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Fig. 33. Cases 4, 5, and 6 of Section 6.6.4.

IfQ1 is a deltoid, andQ2 an antideltoid (or vice versa, which is related by switch-

ing the lower boundary strip), then by the part (6) of Lemma 5.6 the spaces W0
z and W0

u

are described by equations

W0
z = {

w1w2 ∓ ε2
√−μ2w1 ± ε1

√−μ1w2 + ε1ε2
√−μ1

√−μ2 = 0
}

W0
u = {

w1w2 ∓ ε3
√−μ3w1 ± ε4

√−μ4w2 + ε3ε4
√−μ3

√−μ4 = 0
}

It follows that we must have μ2 = μ3 and μ1 = μ4, that is, the couplings (Q2,Q3) and

(Q4,Q1) are involutive. This contradicts our assumption that the polyhedron contains

no involutive couplings.

Case 4. Two doubly covered, adjacent CP1.

Similar to the Case 2 of Section 6.6.3, the reducible coupling between Q1 and Q2,

as well as that betweenQ2 andQ3 must have the form described in part (1) of Lemma 5.5.

By switching, we can achievem1 = m2 = −1 and n2 = n3 = −1, so that Q2 has perimeter

2π , and Q1 and Q3 are antideltoids.

By Lemma 5.6 the space W0
z is described by one of the equations

w1 + μ1e
±2it2w−1

1 = ε1
2i

√−μ1e±it2

q2
w−1

2

The equation of Wu is obtained by substituting in

u+ λ3u
−1 = ξ3w

−1
2

either u = κ4w1, ifQ4 is an antiisogram, or u−1 = κ4w1, ifQ4 is an isogram. The equation

of Wu has then the same form as equation of W0
z . The equality of the coefficients at

w−1
2 implies the equality of the coefficients at w−1

1 due to q2 = q3. We obtain flexible

polyhedra from Sections 3.7.4 and 3.7.5.
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Case 5. Three doubly covered CP1.

Then each of (Q1,Q2) and (Q4,Q3) is a reducible coupling of an (anti)deltoid with

a conic quadrilateral. Lemma 5.6 implies that we have either m1 = m2 and m3 = m4 or

m1 = −m2 and m3 = −m4, and furthermore n2 = n3 and q2 = q3. Thus by switching we

can achieve that Q2 and Q3 have perimeter 2π ; then Q1 and Q4 are either both deltoids

or both antideltoids.

If Q1 and Q4 are antideltoids, then we have

W0
z = {

w1 = ε1
√−μ1e

it, w−1
2 = q2 sin(t ± t2)

}
W0

u =
{
w1 = ε4

√−μ4e
it′ , w−1

2 = q3 sin(t′ ± t3)
}

The two parametrizations of w1 differ by a shift: t′ = t + t0, where

ε1
√−μ1 = ε4

√−μ4e
it0 (69)

By substituting t′ = t + t0 in the second parametrization of w2, we obtain t0 = ±t2 ± t3.

This leads to a polyhedron described in Section 3.7.1.

If Q1 and Q4 are deltoids, then we have

W0
z =

{
w1 = ε1

√−μ1e
it, w−1

2 = q2
cos t2 + i sin t2 cos t

sin t

}
W0

u =
{
w1 = ε4

√−μ4e
it, w−1

2 = q3
cos t3 + i sin t3 cos t

sin t

}
Again, by looking at w1 we obtain t′ = t + t0. But comparing the zeros of w2 in both

parametrizations we arrive at t0 ∈ {0,π}. Then (69) implies that μ1 = μ4, that is, the

coupling (Q1,Q4) is involutive. This contradicts our assumption. (Butwe obtain a flexible

polyhedron which is a compound of couplings from 3.5.2 and 3.5.5.)

Case 6. All CP1 are doubly covered.

In this case every coupling must be reducible, hence either all quadrilaterals are

elliptic or all of them are conic.

Case 6a. All quadrilaterals are elliptic.

By Lemma 4.10, in the sn case the branch points are either all real or all imag-

inary, while in the cn case two of them are real, and two imaginary. Hence either all

quadrilaterals are of sn type or all of them are of cn type.

In the sn case by Lemma 5.3 we have the following parametrizations of a

component W0
z = W0

u.
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W0
z = {w1 = q1 sn t, w2 = q2 sn(t + t1 ± t2)}

W0
u = {w1 = q4 sn t

′, w2 = q3 sn(t′ + t4 ± t3)}

The parameters t and t′ are either equal or related by t′ = 2K−t. The second substitution

leads to a reparametrization ofW0
u withw2 = q3 sn(t−t4∓t3). It follows that the spacesWz

andWu have a common irreducible component if and only if t1±t2±t3±t4 is a period of sn

for some of the eight possible choices of signs. Together with the reducibility conditions

p1 = p2, q2 = q3, p3 = p4, q4 = q1 this leads to the description of the equimodular type of

flexible polyhedra given in Section 3.3.1.

Let all quadrilaterals be of cn type. A reducible coupling of elliptic quadrilaterals

of cn type can have one of two forms described in Lemma 5.3. If all couplings are of the

first type, then the situation is similar to that in the sn case, and the polyhedron is

of equimodular type. Otherwise let k = k1 be the Jacobi modulus of Q1. Each of the

other moduli ki equals k or k′ = √
1 − k2. From the parametrization (40) the following

necessary condition for flexibility can be deduced:

t1 + ε2t2 + ε3t3 + ε4t4 ∈ {0, 2K1},

where εi = ±1 if ki = k, and εi = ±i if ki = k′. By looking at the real or imaginary part of

this linear combination, we conclude that exactly two of themoduli ki must be conjugate

to k. Without loss of generality, there are two possibilities:

k1 = k3 = k, k2 = k4 = k′ (70a)

k1 = k4 = k, k2 = k3 = k′ (70b)

In both cases we have

p1

p2
= ±ik1

k2
,

p3

p4
= ±ik3

k4

If (70a) takes place, then we have the parametrizations

W0
z =

{
w1 = q1 cn t, w2 = p1q2

p2
cn(t + t1 ± it2)

}
W0

u =
{
w1 = p3q4

p4
cn t′, w2 = q3 cn(t′ + t3 ± it4)

}
It follows that t′ = ±t or t′ = ±t+ 2K. In the former case we have q1 = p3q4

p4
, in the latter

q1 = − p3q4
p4

. By comparing the two representations of w2(t), we arrive at the description

given in Section 3.4.1.
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If (70b) takes place, then we have q1 = q4 and q2 = q3, because the corresponding

couplings are reducible and quadrilaterals have equal moduli. The parametrizations are

W0
z =

{
w1 = q1 cn t, w2 = p1q2

p2
cn(t + t1 ± it2)

}
W0

u =
{
w1 = q4 cn t

′, w2 = p4q3

p3
cn(t′ + t4 ± it3)

}
It follows that either t′ = t or t′ = −t, so that we finally arrive at

p1

p2
cn(t + t1 ± it2) = p4

p3
cn(t ± t4 ± it3)

Thus either p1
p2

= p4
p3

and t1 ± it2 ± it3 ± t4 = 0 or p1
p2

= − p4
p3

and t1 ± it2 ± it3 ± t4 = 2K. This

type is described in Section 3.4.2.

Case 6b. All quadrilaterals are conic.

If all couplings are of the type described in part (1) of Lemma 5.4, then we

can achieve by switching that mi = −1 and ni = −1 for all i. We have the following

parametrizations:

W0
z = {w1 = q1 sin t, w2 = q2 sin(t + t1 ± t2)}

W0
u = {w1 = q4 sin t

′, w2 = q3 sin(t′ + t4 ± t3)}

As q1 = q4, we have either t′ = t or t′ = π − t. By equating the two expressions for w2,

we obtain t1 ± t2 ± t3 ± t4 = 0(mod2π). Thus we have a polyhedron of conic equimodular

type, see Section 3.3.2.

If the coupling (Q1,Q2) is of the second kind, then the space W0
z is described

by an equation of the form given in part (3) of Lemma 5.6. By comparing this with the

equation in part ((2)) of the same Lemma, we conclude that the coupling (Q3,Q4) must

also be of the second kind. We claim that then (Q2,Q3) and (Q4,Q1) must be of the first

kind. Indeed, if all couplings are of the second kind, then we can achieve by switching

n1 = n2 = 1 and n3 = n4 = −1. Then the spaces W0
z and W0

u are described by equations

of the form

a22w
2
1w

2
2 + a20w

2
1 + a02w

2
2 + 2a11w1w2 + a10w1 + a01w2 + a00 = 0

a′
00w

2
1w

2
2 + a′

01w
2
1w2 + a′

10w1w
2
2 + · · · = 0,

respectively, where a01 
= 0. This contradicts the assumption W0
z = W0

u.
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Thus the only possibility, up to a cyclic shift of indices, is that (Q1,Q2) and

(Q3,Q4) are of the second kind, while (Q2,Q3) and (Q4,Q1) are of the first kind. By

switching, we can achieve n1 = n4 = −1 and n2 = n3 = −1, so that we have the

parametrizations

W0
z =

{
w−1

1 = q1 sin t, w2 = q2
cos t2 ± i sin t2 cos(t + t1)

sin(t + t1)

}
W0

u =
{
w−1

1 = q4 sin t
′, w2 = q3

cos t3 ± i sin t2 cos(t′ + t4)

sin(t′ + t4)

}
Since q1 = q4, we have either t′ = t or t′ = π − t. In the first case, by looking at the zeros

of w2, we obtain t1 = t4, so that the coupling (Q4,Q1) is involutive that contradicts the

assumption of this section. The parameters cannot be related by t′ = π − t, since this

would lead to t1 = −t4, which contradicts Im ti > 0.
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