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ABSTRACT

Ground surface temperatures (GST) are widely measured in mountain permafrost areas, but their time series data can 
be interrupted by gaps. Gaps complicate the calculation of aggregates and indices required for analysing temporal and 
spatial variability between loggers and sites. We present an algorithm to estimate daily mean GST and the resulting 
uncertainty. The algorithm is designed to automatically fill data gaps in a database of several tens to hundreds of time 
series, for example, the Swiss Permafrost Monitoring Network (PERMOS). Using numerous randomly generated 
artificial gaps, we validated the performance of the gap-filling routine in terms of (1) the bias resulting on annual 
means, (2) thawing and freezing degree-days, and (3) the accuracy of the uncertainty estimation. Although quantile 
mapping provided the most reliable gap-filling approach overall, linear interpolation between neighbouring values 
performed equally well for gap durations of up to 3–5 days. Finding the most similar regressors is crucial and also 
the main source of errors, particularly because of the large spatial and temporal variability of ground and snow 
properties in high-mountain terrains. Applying the gap-filling technique to the PERMOS GST data increased the total 
number of complete hydrological years available for analysis by 70 per cent (>450-filled gaps), likely without 
exceeding a maximal uncertainty of ± 0.25 °C in calculated annual mean values. 

KEY WORDS: mountain permafrost; ground surface temperatures (GST); long-term monitoring; gap-filling; uncertainty estimation;
Swiss Alps

INTRODUCTION

Ground surface temperatures (GST) are widely measured
to investigate the spatial variability of thermal conditions
in potential permafrost areas (Bonnaventure and
Lewkowicz, 2008; Etzelmüller et al., 2007; Guglielmin,
2006; Hoelzle et al., 1999; Wu et al., 2013). Indices such
as mean annual ground surface temperatures (MAGST)
and thawing and freezing degree-days (TDD, FDD, re-
spectively) are frequently used to compare sites and to re-
veal interannual changes (Gubler et al., 2011; Isaksen
et al., 2011; Luetschg et al., 2008), especially in

mountainous terrains, where topo-climatic and snow char-
acteristics vary greatly. To calculate such aggregates or in-
dices reasonably requires uninterrupted time series.
Although many GST time series within the Swiss Perma-
frost Monitoring Network (PERMOS) cover 10–15 years
(PERMOS, 2013), the majority of the data series contain
gaps of hours to years. To increase the number of com-
plete time series, the data need to be resampled to a com-
mon time interval (e.g. daily means) and gaps filled.
Ideally, estimated values of the missing data should be
combined with a statistical estimate of their uncertainties
to consider the propagation of these uncertainties for cal-
culating aggregates and indices.
This paper presents a fully automatic algorithm to treat

gaps in large sets of GST data. It considers typical terrain
and snow characteristics of high-mountain areas as well as
differences related to thermistors and their placement in
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the field. The algorithms use daily means as for input and
output to ensure a consistent calculation. Gap-filled,
synthesised output data should, however, only be used for
aggregates and not for analysing features at the daily scale
(e.g. to derive additional information such as snow charac-
teristics) (Schmid et al., 2012; Staub and Delaloye, 2016).
We do not intend to carry out reanalysis of past GST
variations nor use physically based models, and in principle,
we prefer simple techniques. We validate the applicability
of our approach using artificial gaps in the PERMOS GST
data.

DATA DESCRIPTION

Characteristics of GST Time Series in Permafrost

The seasonal pattern and interannual variations of GST are
dominated by snow characteristics (Delaloye, 2004; Gisnås
et al., 2014; Park et al., 2014; Staub and Delaloye, 2016;
Zhang, 2005). When the ground is snow covered, GST
usually remain close to 0 °C at locations without permafrost
and/or where fine-grained and moist substrates occur. By
contrast, when intense ground cooling occurs (e.g. on ridges
less influenced by snow or in coarse-blocky and porous
ground material favouring convection), GST may be subject
to large interannual variations in FDD or MAGST (Gisnås
et al., 2014; Gubler et al., 2011; Hasler et al., 2015). During
the snow-free period, air temperature is the dominating
factor and the differences among GST time series are much
smaller (Guglielmin et al., 2012). The remaining spatial
variability mainly results from radiation and shading effects,
the placement depth of the sensor, as well as terrain and
subsurface properties (e.g. roughness, humidity, porosity
and thermal conductivity). The melting period in spring is
also characteristic of specific measurement locations, when
phase changes keep GST at 0 °C (zero curtain, cf. Outcalt
et al., 1990). Zero curtain effects can occasionally be
observed in autumn, if snow falls on still warm ground
and basal melting occurs. Steep bedrock or windblown loca-
tions show little or no zero curtains and generally follow the
variations of air temperature. All these characteristics imply
that the similarity of different GST time series depends
more on topography and snow characteristics than spatial
proximity. Therefore, gap-filling approaches are particularly
promising when applied to large data-sets, where similar
characteristics for several time series become more likely.

Accuracy and Pre-Processing

GST are usually recorded with low-cost miniature tempera-
ture loggers (Hoelzle et al., 1999; Lewkowicz, 2008).
Wherever zero curtains occur, offsets to 0 °C are minimised
to calibrate the sensors. Potential inhomogeneities, both
within or between time series, can relate to the sampling
resolution (ranging between 30min and 6h); the precision
of the sensors (0.23–0.27 °C for UTL-1 (75% of PERMOS

GST data); < 0.1 °C for UTL-3 (8%); 0.5 °C for iButton®
DS1922L (6%); 0.1 °C for Geoprecision M-Logs (11%));
the placement of the loggers in the field; and changes in
terrain morphology (e.g. on fast-moving rock glaciers).
While the last points cannot be improved during post-
processing, different measurement intervals can at least
partly be homogenised. Here, we linearly interpolated the
data on regular time intervals (e.g. 2 h) in a first step and
aggregated them to daily means in a second step. Days with
missing raw data or a sampling resolution of less than 4 h
were excluded. However, any other systematic data prepara-
tion procedure could be used to achieve a consistent and
comparable data basis. Time series of at least 5 years of
measurements were used for validation (see the Validation
with Artificial Gaps section). Working with daily means
allows accurate calculation of MAGST or degree-day
indices.

Gap Characteristics and Completeness of the PERMOS
GST Data

GST time series obtained within PERMOS start between
1994 and 2011 and have gaps ranging from some days to
more than a year. For the 278 loggers and the hydrological
years 2000/2001–2013/2014 shown in Figure 1a, the 150
longest GST time series are interrupted by about 300 gaps
with a mean duration of 145 days. But about 50 per cent
of the gaps are shorter than 1month and 30 per cent are
no longer than 5 days (Figure 1c). Most gaps occurred in
summer, probably because maintenance was sometimes
not done in the field but later in the laboratory (Figure 1b).
Because in the snow-free period GST are influenced by
common, atmospheric signals, covariance between different
time series is high and empirical-statistical algorithms (see
the Gap-Filling Algorithm section) are expected to perform
most reliably for filling data gaps.

GAP-FILLING ALGORITHM

Approaches

Dealing with missing data is a major problem in many
research disciplines and the need for standardisation has
been identified (Falge et al., 2001; Gudmundsson et al.,
2012). The potential approaches range from process-based
models to empirical-statistical transformations, notably with
very different requirements about input data, time windows
and intervals, the applicability to reproduce the mean condi-
tions and/or to retain the short-term variability, their ease of
implementation and performance (e.g. Moffat et al., 2007).
However, no studies compare gap-filling methods explicitly
for ground temperature data measured in permafrost and
periglacial environments. Gisnås et al. (2014) used air
temperature to fill short gaps of only some days during the
snow-free period. Hasler et al. (2015) replaced missing data
with mean GST values and mean uncertainties for
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comparing annual means. Magnin et al. (2015) filled
gaps< 5days by linear interpolation (LI) between the
nearest available data points. These authors filled gaps up
to 1.5months with the average value of 30 days on each side
of the gap, as done by Hasler et al. (2011). Within
PERMOS, gaps in reference GST time series used for
reporting were filled by linear regression on the basis of
monthly means or monthly degree-day sums to calculate
the indices MAGST, TDD and FDD (PERMOS, 2013). A
more flexible use of the measured and synthesised data
requires daily means with daily uncertainty estimates.
Process-based models (Ekici et al., 2015; Lehning et al.,

2006; Westermann et al., 2013) are not applicable for large
quantities of GST time series because of the stringent
requirements on input variables (meteorological data and
calibration parameters) and the high computational effort.
Empirical-statistical methods (Gudmundsson et al., 2012;
Themessl et al., 2011) are more appropriate. Statistical
transformations are the most commonly used for bias
correction and the spatial transfer of meteorological param-
eters (Gudmundsson et al., 2012; Rajczak et al., 2015;
Tardivo and Berti, 2014).
The techniques that we used for this study are as follows.

Linear Interpolation (LI) from GST values prior to and af-
ter the gap of the same logger is independent from other
data and is mainly applied to fill short gaps of a few days.
For gaps longer than synoptic weather patterns, we required
a more sophisticated method based on similar regressor time
series and using techniques for spatial transfer and bias cor-
rection, which adjust for the shape of the distribution
(Gudmundsson et al., 2012; Rajczak et al., 2015; Themessl
et al., 2011). The quantile mapping (QM, nonparametric
statistical transformation) method was used to fill long
GST gaps of up to several months. The QM technique is
widely used to adjust simulation results (e.g. coarse-gridded
RCM output) to local station observations, and gaps in me-
teorological data have been successfully filled for several

PERMOS sites (Rajczak et al., 2015). QM uses empirical
distribution of the data and therefore does not depend on a
pre-defined distribution. QM assumes that the differences
between the regressor and target logger are stationary,
which is a simplification regarding interannual variations
and long-term trends. However, we consider that QM could
account for the high temporal and spatial variability of high-
mountain GST realistically as long as the regressor and tar-
get logger are influenced by the same processes. Therefore,
we selected the QM approach for the filling of long GST
gaps.
First, the general work flow checks the gap characteris-

tics, and selects the appropriate gap-filling approach and
(only for QM) the most suitable regressor logger
(Figure 2). Second, GST values as well as the resulting un-
certainties are estimated for the target logger. The opera-
tional programming routine (written in R; R Core Team,
2015) and a small demo data-set are available as Supple-
mentary Information.

LI of Values in Short Gaps

Calculation of Expected GST Values.
Based on GST average values before (GSTprior) and after

the gap (GSTafter), missing data (GSTsynt) at date i in the gap
of length n can be filled by LI (Equation 1 and Figure 3).

GSTsynt;i ¼ GSTprior þ GSTafter-GSTprior

nþ 1

� �
i;

with i ¼ 1; 2;…; nf g

(1)

While gaps of only 1 day are ideally interpolated just
between the two nearest neighbours (Figure 3c), longer gaps
require longer aggregation windows before and after the gap
to calculate representative values for GSTprior and GSTafter
(Figure 3d). Therefore, the length m of the aggregation

Figure 1 Data completeness and gap characteristics of the Swiss Permafrost Monitoring Network (PERMOS) ground surface temperature (GST) data for the
hydrological years 2000/2001–2013/2014 (gaps after 2012 are mainly because the data were not yet processed): (a) data completeness relative to the total
number of GST series already started (black line) and relative to the maximal number of GST loggers (in %, 278 in 2011/2012, grey line); (b) seasonal pattern

of data completeness with most data gaps in summer; (c) empirical cumulative density function of the gap duration for gaps< 500 days.
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windows is defined as:

m ¼ n
2

l m
∈N (2)

Because GST data are highly autocorrelated during the
snow-covered periods, when the ground is thermally insu-
lated from air temperature variations, LI would technically
be suitable also to fill gaps of up to several weeks during

this time of the year. Such gaps were not observed, how-
ever, in the PERMOS data because they usually persist until
the next maintenance takes place in summer (no remote
control and no access to replace the logger during winter).
The analysis of artificial gaps (see the Overview and Com-
parison of the LI and the QM Approach for Short Gaps sec-
tion) showed that on average, the QM approach is more
reliable for gaps longer than 3days regarding the estimated
GST values.

Figure 2 Flow chart describing the general approach for the ground surface temperature (GST) gap-filling. Depending on the gap duration, either linear in-
terpolation (LI, for gaps of< 4 days) or quantile mapping (QM) were used to estimate missing GST data. Besides of the GST estimates (daily means), the
resulting uncertainties can also be stored as meta-information (regressor logger, residuals, etc.). The figure illustrates how the gap-filling routine could be

implemented into a monitoring database structure. SEMD= Standard error of the mean differences; SD = standard deviation.

Figure 3 Examples for artificial gaps filled using linear interpolation: (a) end of the snowmelt period in early summer; (b) when the ground is snow-free; (c) a
gap of a single day; (d) a gap of 2 weeks. The red dots represent the interpolated ground surface temperature (GST) values, and the mean uncertainty (error
bars) was approximated based on the standard deviation of GSTprior/GSTafter (see text for details). The root mean square error (RMSE) values and mean bias are

calculated between the interpolated, synthetic GST in comparison to the real values (black lines).
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Calculation of Uncertainty.
For short gaps filled by LI (Equation 1), the mean uncer-

tainty σ (°C, cf. Equation 3) can be estimated with the stan-
dard deviation (SD) calculated over all days in GSTprior and
GSTafter. This method accounts for differences in the short-
term GST variability, resulting in greater uncertainties if this
variability is larger (Figure 3a, b). These uncertainties are
supposed to be stochastic and partly self-compensating,
which is why the mean uncertainty of a GST aggregate
can be divided by the square root of observations (see the
Uncertainty Propagation for Indices section).

QM using the Best Regressor for Long Gaps

Selection of the Best Regressor Logger.
The selection of the best regressor logger (cf. Figure 2) is

the crucial task for filling gaps using the QM approach,
particularly in mountainous terrain with its extreme spatial
heterogeneity. The robustness of the transformation in-
creases further with the number of observations. The regres-
sor logger is selected based on the following criteria:

1) Completeness of measurement data during the entire gap
is required.

2) The season of the gap needs to be covered by the target
and regressor logger in at least 5 years. Gaps shorter than
30 days are extended to a minimum length of 30 days to
assess similarities with other loggers.

3) Calculation of the maximum of the Pearson product-
moment and Spearman’s rank correlation coefficients
as well as the minimum of the standard error of the mean
differences (SEMD, see below for further details) for the
remaining observations (Figure 4b). The best 5 per cent
of potential regressors for these three criteria are selected
for criterion 4.

4) Application of the QM method to the selected regressor
loggers and calculation of residuals between fitted
values and observations. The logger with the minimal
standard error of these residuals is selected as the final
regressor logger (Figure 4a, b).

By maximising the Pearson correlation in criterion 3, the
regressors of best covariance with the target logger can be
selected. This is particularly important for QM because the
statistical transformation corrects for errors in the mean
and the percentiles, but not the daily correspondence
between the regressor and the target logger (Rajczak et al.,
2015). The Spearman’s rank correlation is added to identify
potential regressors, for which a strong but non-linear rela-
tionship to the data of the target logger is observed. Since
correlation is only defined for finite SD>0 (which is not
necessarily given, for example, during periods of snow-
melt), the SEMD is also used, as it is computationally effi-
cient and accounting for the number of observations. For
this study, the top 5 per cent of all statistical measures were
pre-selected in criterion 3. This pre-selection of regressor
loggers mainly reduces computation time for large data-sets
because the statistical transformation (Figure 4c, d) is only

evaluated for a subset of the potentially most suitable re-
gressor loggers. To account for seasonally differing snow
and meteorological conditions, only the days of the year
where the gap occurs were used to fit the QM model. Within
criterion 2, the minimal gap duration of short gaps is there-
fore set to 30 days to gain a representative sample of values
for fitting the QM model.

Calculation of Expected GST Values.
The relatively homogeneous evolution of GST at differ-

ent sites (PERMOS, 2013) allows the use of QM even for
filling gaps of several months (Figure 4). Most challenging
are the highly variable snow conditions influenced by
precipitation, wind, radiation and avalanches, which may
substantially differ over distances of a few metres. There-
fore, each season of the gap period should be equally repre-
sented in the calibration data (Figure 4a). The robustness to
fit means and extremes is the great advantage of the QM ap-
proach (Themessl et al., 2011). Gudmundsson et al. (2012)
provide a more detailed description of the QM technique,
and Gudmundsson (2014) the implementation and use in R.

Calculation of Uncertainty.
Hasler et al. (2015) estimated uncertainties for entire gaps

in the form of a standard error of the mean. To gain accu-
racy regarding the seasonal pattern and to be more flexible
for quantifying mean uncertainties of aggregates and indices
(see the Uncertainty Propagation for Indices section), we
suggest daily uncertainty estimates. Based on the residuals
ε between the observations and the fitted values during the
calibration period, uncertainty estimates (σ) can be approx-
imated for each day of the year. To account for the length of
the calibration period, the corrected sample SD is used with
nyear being the number of years with common observations
(Equation 3).

σ ¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nyear-1

X
ε2

s
(3)

Assuming that the calibration period (common observa-
tions in the respective season, cf. Figure 4a) covers different
meteorological and snow conditions, the interannual vari-
ability is to some extent included in this estimate. The
uncertainty estimates are larger because of larger interan-
nual variability (Figure 4c, e), especially at the beginning
and the end of the melting period, but also during winter,
when the ground is snow covered. In general, the residuals
are more likely to be systematic (and not self-compensating)
when snow insulates the ground. Therefore, we suggest
using a simplified snow detection filter similar to those
suggested by Schmid et al. (2012) and Staub and Delaloye
(2016). We considered days as snow covered when the
weekly SD of daily mean GST were ≤ 0.25 °C either for
the target or the regressor logger. Based on this snow infor-
mation, stochastic and systematic errors can be separated
(see the Uncertainty Propagation for Indices section).
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Uncertainty Propagation for Indices

According to the error propagation laws, the uncertainties
resulting from gap-filling can be calculated also for
aggregates and indices. Theoretically, stochastic errors
(σsto) should be close to a normal distribution and
self-compensating with increasing sample size nsto
(Figure 4e, f). Therefore, the mean error for a given period
i={1, 2,…, nsto} can be divided by the square root of the to-
tal number of observations or rather gap length (Equation 4).
Systematic errors (σsys) are additive and need to be averaged
over all samples j in nsys to calculate the mean uncertainty of
the gap (σgap). The stochastic errors are restricted to the

snow-free period and identified as described in the QM using
Best Regressor for Long Gaps section.

σgap ¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σstoffiffiffiffiffiffiffi
nsto

p
� �2

þ σ2sys

s

¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nsto

Xnsto
i¼1

σsto;i

 !2

nsto
þ 1

nsys

Xnsys
j¼1

σsys;j

 !2

vuuuuut

(4)

Figure 4 Illustration of the quantile mapping (QM) approach to fill data gaps in an artificial 365 day gap: (a, b) comparison of the target logger and the best
regressor for the entire calibration period; (c) comparison of the fitted values after the QM transformation, based on the remaining residuals, stochastic and
systematic uncertainties are quantified; (d) illustration of the cumulative density function (CDF) of the regressor and the target logger; the results of the gap-

filling are illustrated as (e) daily means and (f) running mean annual ground surface temperatures (MAGST) in comparison with observations (black).
GST =Ground surface temperatures; SEMD= standard error of the mean differences.
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An example of uncertainty estimates for running annual
means (MAGST) is illustrated in Figure 4 f. Measurement
errors due to the limited accuracy of the sensors and the pre-
cision of the loggers (cf. the Accuracy and Pre-Processing
section) could be included analogously.

VALIDATION WITH ARTIFICIAL GAPS

Overview and Comparison of the LI and QM Approach
for Short Gaps

We validated the gap-filling routine with artificial gaps
using complete GST observations from 18 different field
sites and 173 different loggers over 10 hydrological years
(2002/2003–2011/2012). Most of these time series were
measured on gently inclined terrain and only some origi-
nated from steep bedrock. Hence, the difficulties related to
the temporally and spatially variable snow conditions (see
the Characteristics of GST Time Series in Permafrost sec-
tion) made the application and validation of the gap filling
challenging. The starting dates (day of the year), loggers
and gap durations were randomly selected but forced to
match the characteristics of the existing gaps in the
PERMOS data (Figure 1). In a first simulation, the perfor-
mance of the LI (see the LI of Values in Short Gaps section)
and the QM approach (see the QM using Best Regressor for
Long Gaps section) was compared for short gaps of up to
30 days between June and October (n ~ 24 000 gaps). This
first simulation aimed to define the threshold for the maxi-
mal gap duration, until which LI could be chosen as an
alternative for QM (cf. Figure 2). The validation showed
that the QM method performed significantly better regard-
ing the GST estimates than LI for gaps of 4 days or more.
Based on this threshold, the second validation run applied
the final gap-filling routine for gap durations between 1
and 500 days (n ~18 000 gaps, ~ 2.5 million days with miss-
ing values). For temperature data with less short-term vari-
ability (e.g. ground temperatures at depth or GST during
winter), LI would be a reasonable choice for longer gaps
as well.

Validation of the Gap-Filling Algorithm

Calculation of Expected GST Values.
Overall, the synthetic (simulated/gap-filled) GST data

agreed well with the observations. The time series of the
simulated daily mean GST was close to the observations,
with an R2 of 0.93 (root mean square error (RMSE) ~
1.6 °C), although reconstructing the correct daily values
was not the primary aim. More relevant was the perfor-
mance for aggregates and indices. Because errors partly
compensate, the RMSE of simulated and observed GST
mean values for the entire gap was even smaller
(Figure 5a). The degree-day sums FDD and TDD calculated
on the basis of gap-filled and observed data showed a high
covariance and reasonable RMSE values (Figure 5b). The

temporal variation (SD) of TDD and FDD values was
about ± 140 and±180, respectively. The spatial variations
were even larger, with SD around±230 for TDD and±255
for FDD. The largest outliers occurred during the transition
period between snowmelt and the snow-free period (cf. scat-
ters along the 0 °C lines in Figure 5a). With larger gap sizes,
the resulting bias on annual means tended to increase
(Figure 5c). In 95 per cent of the situations, the maximal bias
on MAGST (if running MAGST would be computed based
on the gap-filled data) remained below 0.5 °C, even for gaps
of 6–8 months. In the best 50 per cent of instances, the max-
imal MAGST bias did not exceed 0.25 °C. Interannual
MAGST variations observed in the PERMOS data ranged
between an amplitude of 2 and 3 °C (SD~0.5 °C) (cf.
PERMOS, 2013). More than 450 gaps could be filled in
the PERMOS GST data (Figure 1), very likely without ex-
ceeding a maximal MAGST bias of ± 0.25 °C. This increases
the number of complete hydrological years by ca. 70 per
cent, with uncertainties in the order of the precision of the
most popular miniature logger UTL-1. Since GST measured
on steep bedrock are less influenced by snow and closely fol-
low the variations of air temperature, these data-sets can be
filled, theoretically, with smaller uncertainties as long as a
suitable regressor time series is available. However, this
was not observed due to the limited number of time series
used that represent steep bedrock.

Calculation of Uncertainty.
At the daily scale, the differences between estimated

uncertainties and the observed absolute bias (synthetic-ob-
served GST values) were smallest during winter and largest
at the end of the spring zero curtain because of the spatially
and temporally variable snow disappearance (Figure 6a).
The median difference remained close to 0 °C all year,
which means that uncertainty was not systematically over-
or underestimated. The remaining scatter visible in
Figure 6a was also due to the limited significance of the un-
certainty estimation at a daily scale (see the Uncertainty
Propagation for Indices section). Regarding the aggregation
level of entire gaps, the estimated uncertainties were slightly
larger than the observed absolute bias, 0.045 °C on average.
For ~ 60 per cent of all gaps (~70% of all reconstructed daily
mean values), the observed absolute errors were smaller
than the estimated uncertainty and the differences were gen-
erally small (RMSE=0.21 °C) and normally distributed
(Figure 6b, c). However, the correlation between the
estimated uncertainties and the observed absolute bias was
limited (R2= 0.37).
The uncertainty estimation for the shortest gaps of up to

3 days, for which the mean uncertainty was estimated based
on the short-term variability before and after the gap accord-
ing to the LI approach (see the LI of Values in Short Gaps
section), is very accurate (R2= 0.86; RMSE=0.27 °C). The
high autocorrelation of the GST time series at short time-
scales probably accounts for this high covariance between
estimated uncertainty and observed bias. But the first valida-
tion run, which compared the LI and the QM approach for
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gap durations between 1 and 30 days, revealed that in ~ 60
per cent of the situations the uncertainty estimation of the
LI method performed better than that of QM. However, to
fill gaps in GST time series, we recommend the QM method
for gap durations in the order of weeks because it estimates
the GST values more accurately. But for data with low daily
and seasonal variation (e.g. ground temperatures measured
at depth or GST during the snow-covered period), the LI
method also holds promise for uncertainty estimation.
To improve the uncertainty estimation for the QM ap-

proach, the interannual variability could be assessed in more
detail using separated validation data (e.g. by means of
cross-validation techniques). Each year of the common ob-
servation period could be validated separately by excluding
it from calibration. However, this would only make sense
for time series of at least 10 years. Alternatively, expected
GST values could be calculated for numerous regressor
loggers and the daily uncertainty values estimated from
the resulting differences. The latter approach would

probably be more adequate for the usually short GST time
series and take into account the spatial variability.
The validation using artificial data gaps also gave insights

about the similarities of the different GST time series. For al-
most 50 per cent of the gaps where QM was applied, the se-
lected regressor logger was from the same study site (usually
located within 50–500m distance). For gaps during winter,
this proportion was slightly higher. For short gaps during
summer, only ~ 35 per cent of the regressor loggers origi-
nated from the same site, which means that in the majority
of situations, the most similar GST time series were poten-
tially several tens or even hundreds of kilometres away.
Moreover, each target logger used on average seven differ-
ent regressor loggers (4% of all available loggers). Among
these preferred regressor loggers, the most frequently used
filled 57 per cent of all gaps of the corresponding target log-
ger. These observations demonstrate how a large set of dis-
tributed time series can be used to fill data gaps, especially
in heterogeneous mountain terrain. They also illustrate the

Figure 5 Comparison of simulated (synthetic/gap filled) and observed ground surface temperatures (GST) for ~ 18 000 gaps (~2.5 million daily mean values):
(a) scatterplot based on mean ground surface temperatures (MGST) for entire gaps; (b) scatterplot comparing simulated and observed thawing (TDD) and
freezing degree-days (FDD); (c) maximal bias resulting on mean annual ground surface temperature as a function of the gap duration: each point corresponds
to one artificial gap, the red lines show the limits of one standard deviation (SD) (68% quantile) and the blue lines for two SD (95% quantile) of the absolute

annual bias. RMSE =Root mean square error.
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relevance of snow and the point-specific topo-climatic con-
ditions in high-mountain terrains for the evolution of GST
at various timescales. In this regard, the diversity of the po-
tential regressor time series is more important than their
quantity, especially for filling gaps during winter.
It could be interesting to assess in more detail the mini-

mal number of time series required to apply the gap-filling
approach (e.g. for the entire Swiss Alps). Possibly, 30–50
continuous time series measured in very diverse ground
and snow properties and characterising the precipitation
effects of three to five main regions could be sufficient to fill
the majority of data gaps in the PERMOS GST data-set. The
more time series are available, the higher the chances are to
find appropriate regressors.

CONCLUSIONS

We introduce an automatic procedure to fill gaps in GST
data sets on the basis of daily mean values. The approach
is optimised to consider spatial and temporal variations
which result from the heterogeneous terrain and snow

characteristics of high-mountain regions. A validation was
done using artificial gaps and GST data from PERMOS.
The main conclusions on the use and limitations of the pre-
sented approach are:

• Linear interpolation (LI) works well to fill gaps shorter
than 1week. Analysis with artificial gaps showed that LI
performed as good as or better than the more complex
quantile mapping (QM) approach for gaps up to 3 days′
duration. The uncertainty estimation of the LI method
was slightly more robust than that of the QM approach
for gap durations of up to 1month.

• Since QM corrects well for mean biases, even gaps of
several months′ duration may be filled with reasonable
bias on MAGST in the order of the precision of the com-
mon UTL-1 data logger. Maximal MAGST bias resulting
from 1year gaps usually did not exceed±0.5 °C, which
corresponds to the SD of interannual MAGST variations.
A high number of potential regressors as well as long
periods with common observations probably make the
approximation of GST values and the quantification of
uncertainties more reliable.

Figure 6 Comparison of estimated uncertainties and the true absolute (abs.) bias: (a) seasonal pattern based on daily mean values (the red line indicates the
median, the blue lines illustrate the 5% and 95% quantiles); (b) scatterplot comparing the estimated mean uncertainties and the mean absolute bias for entire

gaps; (c) density distribution of the same data as shown in (b). RMSE = Root mean square error.
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• Validation with artificial gaps showed that the resulting
mean error was usually smaller than the estimated uncer-
tainty. Although the uncertainty estimation and error
propagation approach is conservative regarding the
effects of snow, the results are imperfect, particularly
during snow disappearance. The uncertainties of the
GST estimates might be quantified more reliably based
on an ensemble of several simulations using numerous
regressor loggers.

• Selection of the regressor logger is crucial for accurately
representing the specific ground thermal conditions with
the QM approach. Interannual variations in the snow
and meteorological conditions need to be captured. The
QM technique also performed well for GST measured
on steep bedrock and the uppermost thermistors of bore-
holes. To increase the quantity of potential regressors,
air temperatures and ground temperatures measured
reasonably close to the surface can be included, even
from distant locations. In the Swiss Alps, several GST
time series showed high covariance even between differ-
ent regions of up to 200 km distance, especially during
the snow-free period.

• The application of the gap-filling approach on the
PERMOS GST data illustrated the high relevance of
point-specific terrain, snow and micro-meteorological

characteristics for the evolution of GST at timescales of
days to several months.

The processing routine (R code) as well as a small sample
GST data-set are available as Supplementary Information.
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