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Calculation of the hydrodynamic radius of a cluster made of interpenetrating particles having 

different sizes 

 

In the following, we will use Kirkwood-Riseman (KR) theory extended to the case of clusters 

with partially-overlapping primary particles having different size. 

We will begin by considering the general formalism of KR theory. For colloidal particles, the 

interactions with the surrounding fluid can be described in the framework of Stokes equations, 

according to which is the linear relationship between the hydrodynamic force experience by a particle 

and its relative velocity. The KR approach consists in writing that for each particle in a cluster the 

hydrodynamic force equals: 

    
Fi = 6πηRP,i ui − v i( )   (1) 

where Fi is the force acting on the ith particle, ui is the ith particle velocity and vi is the fluid velocity at 

the center of the ith particle. The fluid velocity is written as a combination of the unperturbed fluid 

velocity and of the perturbations due to all other particles in the cluster. Assuming that there the 

unperturbed velocity of the fluid is zero, one can write: 

 
   
v i = v i ' = Tij ⋅Fj

j=1≠ì

N

∑   (2) 

In Equation(2), the tensor Tij provides the relationship between the force acting on particle j and the 

corresponding velocity perturbation caused by it at the center of particle i 1. By combining the two 

previous equations, we obtain the following result: 

 
   
Fi = 6πηRP,i ui − Tij ⋅Fj

j=1≠ì

N

∑⎛

⎝⎜
⎞

⎠⎟
  (3) 
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By taking the angular average of Equation (3) (which amounts to considering the cluster as an isotropic 

object), and by summing over the total number of particles N in a cluster, we can obtain the following 

expression for the total hydrodynamic force acting on it: 

 
   
FT = Fi

i=1

N

∑ = 6πηRP,i ui − Tij ⋅Fj
j=1≠ì

N

∑⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i=1

N

∑ = 6πηRP,iu− 1
N

6πηRP,i Tij
j=1≠ì

N

∑
i=1

N

∑ FT
i=1

N

∑   (4) 

The latter equation can be rearranged as follows: 

 

   

FT =
6πη RP,i

i=1

N

∑

1+ 1
N

6πηRP,i Tij
j=1≠ì

N

∑
i=1

N

∑
u   (5) 

This leads to the following expression for the hydrodynamic radius of a cluster: 

 

   

RH =
RP,i

i=1

N

∑

1+ 1
N

6πηRP,i Tij
j=1≠ì

N

∑
i=1

N

∑
  (6) 

The only open question about the above equation, is the necessity to use a suitable expression for the 

tensor Tij, valid for partially overlapping spheres with different sizes. This requires an extension of 

Rotne-Prager-Yamakawa tensor, valid for equal size particles 2. Such an expression has been developed 

by Zuk et al.3: 
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Tij =

1
8πηRij

1+
Rp,i

2 + Rp, j
2

3Rij
2

⎛

⎝
⎜

⎞

⎠
⎟ I + 1−

Rp,i
2 + Rp, j

2

Rij
2

⎛

⎝
⎜

⎞

⎠
⎟

R iR j

Rij
2

⎛

⎝
⎜

⎞

⎠
⎟  for Rij ≥ Rp.i + Rp, j

1
6πηRp,i Rp, j

16Rij
3 Rp,i + Rp, j( )− Rp,i − Rp, j( )2

+ 3Rij
2⎛

⎝
⎞
⎠

2

32Rij
3

⎛

⎝

⎜
⎜
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⎞

⎠

⎟
⎟
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I

+
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− Rij
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⎝
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⎠

2

32Rij
3

⎛

⎝

⎜
⎜
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⎞

⎠

⎟
⎟
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R iR j
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2
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 for Rp,> − Rp,< ≤ Rij ≤ Rp,i + Rp, j

1
6πηRp,>

I  for Rij ≤ Rp,> − Rp,<

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

 (7) 

By performing the orientation average, we obtain the following final result: 

 

   

Tij =

1
6πηRij

I  for Rij ≥ Rp.i + Rp, j

1
6πηRp,i Rp, j

Rp,i + Rp, j( )
2

−
Rij

4
−

Rp,i − Rp, j( )2

4Rij

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

I  for Rp,> − Rp,< ≤ Rij ≤ Rp,i + Rp, j

1
6πηRp,>

I  for Rij ≤ Rp,> − Rp,<

⎧

⎨

⎪
⎪
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⎩

⎪
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⎪
⎪

  (8)

When Equation (8) is substituted in Equation (6), we obtain the general expression used for the 

calculation of the hydrodynamic radius of the clusters generated by the Monte Carlo code developed in 

this work. 
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Convergence on MAXN  

 

Figure S1  dm  vs Nτ  in DLCA at  φ0 = 1%  and 1.00%Rg =  for different values of MAXi . Color code: 

violet 1000MAXi = ; blue 2000MAXi = ; green 3000MAXi = ; yellow 4000MAXi = ; red 5000MAXi = . 

 

As 4000MAXi =  and 5000MAXi =  are superimposed, 5000MAXi =  has been selected as the upper 

boundary of cluster mass to be considered for the calculation of  dm  
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DLCA case – kinetic information  

i) φ  against Nτ   

  

  

Figure S2 φ  vs Nτ  in DLCA at different 0φ  and Rg . Color code: violet 0.00%Rg = ; blue 0.25%Rg =

; green 0.50%Rg = ; yellow 0.75%Rg = ; red 1.00%Rg =  
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ii) AVEN  against Nτ   

  

  

Figure S3 AVEN  vs Nτ  in DLCA at different 0φ  and Rg . Color code: violet 0.00%Rg = ; blue 

0.25%Rg = ; green 0.50%Rg = ; yellow 0.75%Rg = ; red 1.00%Rg =  
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iii)   φP  against Nτ   

  

  

Figure S4   φP  vs Nτ  in DLCA at different 0φ  and Rg . Color code: violet 0.00%Rg = ; blue 

0.25%Rg = ; green 0.50%Rg = ; yellow 0.75%Rg = ; red 1.00%Rg =  
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RLCA case – kinetic information  

i) φ  against Nτ   

  

  

Figure S5 φ  vs Nτ  in RLCA with 0.1Sp =  at different 0φ  and Rg . Color code: violet 0.00%Rg = ; 

blue 0.25%Rg = ; green 0.50%Rg = ; yellow 0.75%Rg = ; red 1.00%Rg =  
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ii) AVEN  against Nτ   

  

  

Figure S6 AVEN  vs Nτ  in RLCA with 0.1Sp =  at different 0φ  and Rg . Color code: violet 0.00%Rg = ; 

blue 0.25%Rg = ; green 0.50%Rg = ; yellow 0.75%Rg = ; red 1.00%Rg =  
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iii)   φP  against Nτ    

  

  

Figure S7   φP  vs Nτ  in RLCA at different 0φ  and Rg . Color code: violet 0.00%Rg = ; blue 

0.25%Rg = ; green 0.50%Rg = ; yellow 0.75%Rg = ; red 1.00%Rg =  
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