# **Supplementary Information**

## Effect of aging on silica aerogel properties

Subramaniam Iswar<sup>a,b</sup>, Wim J. Malfait<sup>a\*</sup>, Sandor Balog<sup>b</sup>, Frank Winnefeld<sup>c</sup>, Marco Lattuada<sup>b</sup> and Matthias M. Koebel<sup>a\*</sup>

<sup>a</sup>Laboratory for Building Energy Materials and Components, Swiss Federal

Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland

<sup>b</sup>Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland

<sup>c</sup>Laboratory for Concrete and Construction Chemistry, Swiss Federal

Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, 8600

Dübendorf, Switzerland

\*Corresponding authors: wim.malfait@empa.ch, matthias.koebel@empa.ch

#### TABLE OF CONTENT

| Sample appearance           | 2  |
|-----------------------------|----|
| SEM images                  | 3  |
| Nitrogen sorption isotherms | 4  |
| ATR-FTIR spectra            | 6  |
| NMR data                    | 7  |
| SAXS spectra                | 12 |
| Elemental analysis          | 15 |
| Rheology data               | 16 |

## Sample appearance



**Figure S1.** Supercritically dried (SCD) silica aerogels aged at 65°C for 6 aging times.

## SEM images



**Figure S2.** SEM images of ambient dried silica aerogels aged at 65°C for 6 aging times (a) 2 hrs. (b) 4 hrs. (c) 6 hrs. (d) 8 hrs. (e) 16 hrs. (f) 24 hrs.

### Nitrogen sorption isotherms



**Figure S3.** Influence of aging time on the nitrogen sorption isotherms of silica aerogel aged at (a) 55°C and (b) 75°C. The arrows indicate the increase in aging time.



**Figure S4.** Influence of aging temperature on the nitrogen sorption isotherms of silica aerogel aged for (a) 2 hours and (b) 24 hours.

### **ATR-FTIR spectra**



**Figure S5.** ATR-FTIR spectra of ambient dried silica aerogels aged at 65°C at 6 aging times (a) Si-C; Si-O-Si region and (b) C-H region.

## NMR data



**Figure S6.** Calibration curve for quantitative solid-state <sup>1</sup>H MAS NMR.



**Figure S7.** Surface modification of ambient dried silica aerogels aged at 65°C as a function of aging time expressed as (a) mmol/g, and (b) molecules/nm<sup>2</sup>.

**Table S1.** Surface modification of ambient dried silica aerogels aged at 65°C as a

function of aging time.

|            |            | Concentration |                      | Surface coverage     |                | ge                   |                      |
|------------|------------|---------------|----------------------|----------------------|----------------|----------------------|----------------------|
|            |            | (mmol/g)      |                      |                      | (r             | nolecules/nm         | 1 <sup>2</sup> )     |
| Aging time | Sbet       | TMS           | Ethoxy               | Ethoxy               | TMS            | Ethoxy               | Ethoxy               |
| (hrs.)     | (m²/<br>g) |               | CH <sub>3</sub> peak | CH <sub>2</sub> peak |                | CH <sub>3</sub> peak | CH <sub>2</sub> peak |
|            | 8/         |               |                      |                      |                |                      |                      |
| 2          | 901        | $3.01\pm0.15$ | $1.40\pm0.14$        | $1.47\pm0.14$        | $2.01\pm0.1$   | $0.93\pm0.1$         | $0.99\pm0.1$         |
| 4          | 890        | $2.96\pm0.15$ | $1.49\pm0.15$        | $1.39\pm0.14$        | $2.01 \pm 0.1$ | $1.01\pm0.1$         | $0.94\pm0.1$         |
| 6          | 883        | $2.85\pm0.14$ | $1.41\pm0.14$        | $1.50\pm0.15$        | $1.94\pm0.1$   | $0.96\pm0.1$         | $1.02\pm0.1$         |
| 8          | 858        | $2.89\pm0.14$ | $1.22\pm0.12$        | $1.34\pm0.13$        | $2.03\pm0.1$   | $0.86\pm0.1$         | $0.94\pm0.1$         |
| 16         | 844        | $2.76\pm0.14$ | $1.50\pm0.15$        | $1.43\pm0.14$        | $1.97\pm0.1$   | $1.07\pm0.1$         | $1.02\pm0.1$         |
| 24         | 816        | $2.84\pm0.14$ | $1.34\pm0.13$        | $1.33\pm0.13$        | $2.10 \pm 0.1$ | $0.99\pm0.1$         | $0.98 \pm 0.1$       |



**Figure S8.** <sup>1</sup>H-<sup>29</sup>Si cross polarization (CP) MAS NMR spectra of ambient dried silica aerogels aged at 65°C for 6 aging times and the quantitative <sup>1</sup>H-<sup>29</sup>Si single pulse (1P) MAS NMR spectrum of ambient dried silica aerogel aged at 65°C for 24 hours.

Note that cross polarization from <sup>1</sup>H enhances the relative signal intensity for the TMS and  $Q^3$  relative to  $Q^4$  as the former are in closer proximity to hydrogen from the TMS, ethoxy or silanol groups and as a result, the <sup>1</sup>H-<sup>29</sup>Si CP spectra selectively amplify the TMS and  $Q^3$  signal compared to its abundance. Nevertheless, the observed trends in the  $Q^3/Q^4$  peak area ratios between different samples are indicative of real variations in the  $Q^3$  content as all spectra were collected with the same CP conditions.



**Figure S9.** Gaussian fits to the  $Q^3$  and  $Q^4$  region of the <sup>1</sup>H-<sup>29</sup>Si cross polarization (CP) MAS NMR spectra of ambient dried silica aerogels aged at 65°C for 6 aging times. The dots denote the experimental data; the lines correspond to the fitting envelope, fitted components and fit residual.



**Figure S10.** SAXS spectra as a function of the momentum transfer vector q of supercritically dried (SCD) silica aerogels aged at 65°C for 6 aging times, indicated in the legends.



**Figure S11.** SAXS spectra as a function of the momentum transfer vector q of ambient dried silica aerogels aged at (a) 55°C and (b) 75°C, measured at aging times indicated in the legends.



**Figure S12.** SAXS spectra as a function of the momentum transfer vector q of ambient dried silica aerogel aged at 55°C for 4 hrs. The solid line denotes the experimental data; the dashed line corresponds to the fit of the scattered intensity experimental data by using the model (Main text, Equation 3-4).

## **Elemental analysis**

**Table S2.** Elemental analysis of ambient dried silica aerogels for different aging times

 and temperatures.

| Aging time<br>(hrs.)           | Carbon<br>(%)                  | Hydrogen<br>(%) |  |  |  |  |  |
|--------------------------------|--------------------------------|-----------------|--|--|--|--|--|
| Aging temperature - 55°C (APD) |                                |                 |  |  |  |  |  |
| 2                              | $15.39 \pm 1.0$                | $3.94\pm0.5$    |  |  |  |  |  |
| 4                              | $14.56\pm1.0$                  | $3.65\pm0.5$    |  |  |  |  |  |
| 6                              | $14.55\pm1.0$                  | $3.69\pm0.5$    |  |  |  |  |  |
| 8                              | $14.03\pm1.0$                  | $3.65\pm0.5$    |  |  |  |  |  |
| 16                             | $13.85\pm1.0$                  | $3.39\pm0.5$    |  |  |  |  |  |
| 24                             | $14.05\pm1.0$                  | $3.59\pm0.5$    |  |  |  |  |  |
| Aging temp                     | Aging temperature - 65°C (APD) |                 |  |  |  |  |  |
| 2                              | $14.87 \pm 1.0$                | $3.37\pm0.5$    |  |  |  |  |  |
| 4                              | $15.13\pm1.0$                  | $3.34\pm0.5$    |  |  |  |  |  |
| 6                              | $14.20\pm1.0$                  | $3.50\pm0.5$    |  |  |  |  |  |
| 8                              | $14.01 \pm 1.0$                | $3.39\pm0.5$    |  |  |  |  |  |
| 16                             | $14.02\pm1.0$                  | $3.37\pm0.5$    |  |  |  |  |  |
| 24                             | $13.54\pm1.0$                  | $3.20\pm0.5$    |  |  |  |  |  |
| Aging temperature - 75°C (APD) |                                |                 |  |  |  |  |  |
| 2                              | $14.10\pm1.0$                  | $3.68\pm0.5$    |  |  |  |  |  |
| 4                              | $14.26\pm1.0$                  | $3.64\pm0.5$    |  |  |  |  |  |
| 6                              | $14.10\pm1.0$                  | $3.55 \pm 0.5$  |  |  |  |  |  |
| 8                              | $14.10\pm1.0$                  | $3.60\pm0.5$    |  |  |  |  |  |
| 16                             | $13.86 \pm 1.0$                | $3.37\pm0.5$    |  |  |  |  |  |
| 24                             | $13.56\pm1.0$                  | $3.24\pm0.5$    |  |  |  |  |  |

### **Rheology data**



Figure S13. (a) Storage modulus (G') and (b) Loss modulus (G'') of silica alcogels aged at 65°C at different deformation strains for 6 aging times.