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ABSTRACT

Development of the insect compound eye requires a highly controlled interplay between
transcription factors. However, the genetic mechanisms that link early eye field specification to
photoreceptor terminal differentiation and fate maintenance remain largely unknown. Here, we
decipher the function of 2 transcription factors, Glass and Hazy, which play a central role during
photoreceptor development. The regulatory interactions between Glass and Hazy suggest that they
function together in a coherent feed-forward loop in all types of Drosophila photoreceptors. While
the glass mutant eye lacks the expression of virtually all photoreceptor genes, young hazy mutants
correctly express most phototransduction genes. Interestingly, the expression of these genes is
drastically reduced in old hazy mutants. This age-dependent loss of the phototransduction cascade
correlates with a loss of phototaxis in old hazy mutant flies. We conclude that Glass can either
directly or indirectly initiate the expression of most phototransduction proteins in a Hazy-
independent manner, and that Hazy is mainly required for the maintenance of functional
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photoreceptors in adult flies.

Introduction

Cell differentiation is typically controlled by networks of
transcription factors, which gradually shift during devel-
opment from specifying organ and cellular identity to
activating terminal gene expression in mature cells. Such
a network acts during the formation of photoreceptors
(PRs) in Drosophila.'” During early eye development,
an evolutionarily conserved set of transcription factors,
called the retinal determination network (RDN), speci-
fies eye field identity in the eye imaginal disc. RDN genes
are both necessary and sufficient for eye formation, and
thus can induce formation of ectopic eyes when misex-
pressed in other imaginal discs.*®

Recently, we have shown that PR differentiation is
critically regulated by the zinc finger transcription fac-
tor Glass. Glass provides a genetic link between the
early-acting RDN, terminal differentiation transcrip-
tion factors, and genes functioning in mature PRs,
such as those involved in the phototransduction cas-
cade (Bernardo-Garcia et al.”). In the absence of Glass,

PR precursors retain a neuronal identity but fail to
express any PR markers. Therefore, PR precursors
require Glass for differentiating into functional light-
sensing cells.

A direct target of Glass is the homeobox transcription
factor Hazy. Ectopic expression of Glass is sufficient to
induce expression of Hazy and some phototransduction
proteins. Similarly, ectopic expression of Hazy can only
induce a subset of phototransduction components. How-
ever, when co-expressed, Glass and Hazy can ectopically
induce most of the phototransduction cascade, suggest-
ing that both Glass and Hazy act synergistically during
PR development.9 Thus, the combinatorial action of these
2 transcription factors appears to play a central role in
directing PR precursors toward a terminal differentiation
program.

Here, we investigate the regulatory interaction
between Glass and Hazy. We found that, while Glass
is able to activate its own promoter, Hazy does not
appear to auto-activate its own expression nor that of
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Glass. Also, by analyzing hazy mutants we disentangle
the individual roles of Glass and Hazy in regulating
the expression of phototransduction genes. Interest-
ingly, we found that Hazy is particularly relevant to
ensure the continued expression of phototransduction
proteins in adult PRs. Young hazy mutants correctly
express most of the phototransduction components,
and show a similar attraction to white light as wild-
type flies. By contrast, the expression of most photo-
transduction proteins is reduced in old hazy mutants,
and they fail to show phototaxis. Together with previ-
ous results, our data suggest that Glass and Hazy are
required for different tasks and at different steps in PR
development. During early eye development, Glass
contributes to specifying PR identity.”'* Later, during
terminal differentiation, both Glass and Hazy activate
genes that are required for the maturation of func-
tional PRs.”'>" Finally, Hazy is required for main-
taining expression of phototransduction genes, and
thus ensures the continued functionality of adult PRs.

Results and discussion

Hazy is a direct target of Glass in all visual organs in
the fly

PR development in the eye imaginal disc starts after the
passage of the so-called morphogenetic furrow (ME),
which sweeps across the disc from the posterior edge
toward anterior, initiating the formation of ommatidia.
RDN genes are present in the eye disc prior to the MF,
while the proneural gene atonal is transiently
expressed at the MF."? Glass expression is initiated at
the MF, and maintained in differentiating cells in the
retina.!*!® In contrast, the expression of Hazy starts
later during pupation, after all PRs have been speci-
fied.>"> We and others have shown that the expression
of a hazy(wt)-GFP reporter in compound eye PRs
depends on Glass binding to 2 sites in the hazy pro-
moter.”'? In addition to the compound eye, flies also
have PRs in the ocelli (3 separate eyes located at the
top of the adult head) and in the larval eye, also termed
Bolwig’s organ. Since both Glass and Hazy also play a
role in the development of these organs,9’“’14’16’19
hypothesized that Glass might similarly activate hazy
in PRs outside the compound eye.

we

The hazy(wt)-GFP reporter, which we have previ-
ously used to study the expression of hazy in the com-
pound eye, was also expressed in PRs of the ocelli
and Bolwig’s organ (Figs. 1A, A’, D-D"), reflecting
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the expression pattern of the endogenous Hazy pro-
tein.">'” When the hazy(wt)-GEP transgene was
placed in glass mutant background, GFP expression
was lost in the ocelli and the Bolwig’s organ (Figs. 1B,
E-E"). The wild-type embryonic Bolwig’s organ con-
sists of 12 PRs, and can be identified in stage 14
embryos because of the co-expression of Kruppel and
Fasciclin 2 (Fas2).'”?° Interestingly, in glass mutants
we only found 4 Kruppel-positive cells in the Bolwig’s
organ (Fig. 1E”), indicating an early defect in larval
eye formation. In addition, a hazy(gll,2mut)-GFP
reporter in which the Glass binding sites were mutated
was not expressed in the ocelli nor in the Bolwig’s
organ (Figs. 1C, F-F").

Together, these results corroborate our findings for
the compound eye.” We conclude that the hazy pro-
moter is directly bound and activated by Glass in all
PRs in the 3 visual organs of Drosophila.

Glass can auto-activate its own expression

We have previously shown that ectopically expressing
Glass or Hazy induces the expression of some photo-
transduction proteins in the central nervous system
(CNS). Co-expressing Glass and Hazy displays a syn-
ergistic effect on the induction of phototransduction
components. Not only the genes that are activated
by either Glass or Hazy alone become ectopically
expressed, but also additional phototransduction pro-
teins are induced, suggesting that Glass and Hazy
function together in a coherent feed-forward loop.
Glass activates the expression of Hazy and together
they are able to activate the expression of more target
genes than either Glass or Hazy could activate on their
own.” Here we tested additional regulatory interac-
tions between Glass and Hazy.

For this, we used a glass-DsRed and a hazy(wt)-GFP

reporter.g’21

glass-DsRed larvae expressed nuclear
DsRed in the Bolwig’s organ and in Glass-expressing
cells in the brain (Figs. 2A-A""), while hazy(wt)-GFP
was expressed exclusively in the Bolwig’s organ PRs
(Figs. 1D, 2B), whose axons could be seen projecting
into the brain (Fig. 2B’). Thus, both reporters faith-
fully reflect the expression patterns of Glass and
Hazy."'"* We performed flip-out experiments in
which we ectopically induced either Glass or Hazy in
the CNS of third instar larvae, and found that Glass
was able to activate the glass-DsRed reporter in a sub-

set of cells (Figs. 2C-C"). Therefore, Glass may be
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Figure 1. Expression analysis of the hazy(wt)-GFP reporter in the ocelli and Bolwig’s organ PRs. (A-C) In the case of the ocelli, these
are 3 visual organs located dorsally on the head of adult flies (A). Samples were stained with antibodies against GFP (green), and
Elav (used as a neuronal marker, magenta). The hazy(wt)-GFP reporter was expressed in the ocelli in wild-type (A, A’), but not glass
mutant background (B). A hazy(gl1,2mut)-GFP reporter in which the 2 Glass binding sites were mutated was not expressed in the
ocelli (C). (D-F) In the case of the Bolwig's organ, this is a larval eye that develops from the optic placode during embryogenesis.
Stage 14 embryos were stained with antibodies against GFP (green), Fas2 (red) and Kruppel (blue). At this stage, the developing Bol-
wig's organ is located dorsally, still in contact with the surface, and can be identified both because of its position and the co-expres-
sion of Fas2 and Kruppel.,'?%% Similar to the ocelli, the hazy(wt)-GFP reporter was expressed in the Bolwig’s organ in wild-type (D),
but not glass mutant background (E). Also, hazy(gl1,2mut)-GFP was not expressed in the Bolwig's organ (F). For each image, the 3
channels from a close-up of the Bolwig's organ were separated and are shown below in grayscale (D’-F”’). Scale bars represent

20 um in D’-F”; 30 um in A’, B-F; and 100 um in A.

able to maintain its own expression by auto-regula-
tion. In contrast, ectopic expression of Hazy did not
induce the expression of the hazy(wt)-GFP reporter
(Figs. 2D, D), suggesting that Hazy cannot activate its
own expression. Similarly, we did not observe ectopic
expression of Glass in the CNS after ectopically
expressing Hazy (Figs. 2E, E'), suggesting that Glass
expression is not activated by Hazy.

Glass can initiate the expression of most
phototransduction proteins independently of Hazy

Both Glass and Hazy are required for the expression of
PR genes.”'? Since we have shown that Glass directly
activates hazy, and that inducing the expression of
Hazy partly rescues the glass mutant phenotype,” it

would be possible that Glass mainly relies on Hazy for
activating the expression of phototransduction pro-
teins. To test this, we examined the individual role of
Hazy.

We found that young hazy mutant flies—less than
one day old—failed to express Rhodopsin 6 (Rh6) and
Transient receptor potential-like (Trpl), but did
express correctly most of the phototransduction pro-
teins that we tested: Rhodopsin 1 (Rh1), G protein « q
subunit (Geq), No receptor potential A (NorpA),
Transient receptor potential (Trp), Inactivation no
afterpotential D (InaD) and Arrestin 1 (Arrl)
(Figs. 3A-P).>**° Of these, after 10 d the levels of Rh1,
Gaq, NorpA, Trp and InaD were strongly reduced,
and only Arrl expression appeared unchanged
(Figs. 3a-p). Thus, our results indicate that Hazy is
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Figure 2. Test for additional regulatory interactions between Glass and Hazy. (A, B) We used Hoechst (blue), which labels cell nuclei, as a
counterstain to analyze the expression pattern of the glass-DsRed and hazy(wt)-GFP reporters in the CNS of third instar larvae. The glass-
DsRed reporter was expressed the nuclei of some cells in the brain (green, A). A close-up to the right shows that those neurons endoge-
nously expressing Glass (red/magenta) also co-express the reporter (green, A’). These two channels are shown separately to the right
in grayscale (A,” A"™). The hazy(wt)-GFP reporter is exclusively expressed in PRs (green, B). A grayscale image to the right shows GFP
labeling the axonal projections of the PRs in the brain (arrows, B’). (C-E) In flip-out experiments we ectopically induced either Glass or
Hazy expression in clones labeled with nuclear S-galactosidase (8Gal). We stained the CNS of third instar larvae with antibodies against
BGal (red/magenta); either DsRed, GFP or Glass (green) and with Hoechst (blue). We found that Glass ectopically induced the expression
of the glass-DsRed reporter in the ventral nerve cord (C, C’; channels are also shown separately in grayscale in C,” C"”). By contrast, Hazy
did not ectopically induce the hazy(wt)-GFP reporter (D, D’) nor Glass (E, E'). Scale bars represent 20 um in A’, C'- E’; and 80 um in A-E.

not required for initiating the expression of most pho-
totransduction proteins, but that it plays an important
role in maintaining the differentiated state of PRs.
These results contrast with an earlier description of
the hazy mutant phenotype."> The differences between
our findings and this report may be explained because
we analyzed young and old flies separately.

Since most phototransduction proteins are expressed
in the retina of young hazy mutants, we infer that Glass
does not mainly act via Hazy for initiating the expression
of most phototransduction proteins. In the case of Rh6,
Trpl, Rh1, Gaq, NorpA, Trp, InaD and Arrl, we found
that all these genes contain putative Glass binding sites
in their regulatory sequences (the GAARCC muotif,
which is present in either their promoter or their
introns).”’ Therefore, it would be possible that Glass
either directly or indirectly activates the expression of
these phototransduction components.

Hazy is not required for white light detection in
young flies

To further assess the impact of their age-dependent loss
of phototransduction genes we analyzed the phototactic
behavior of young versus old hazy mutant flies. It has

been previously reported that hazy mutants fail to detect
light due to the absence of many phototransduction
proteins.'>'® However, our finding suggests that young
hazy mutant flies express a set of genes sufficient for the
phototransduction machinery to detect white light.

Adult wild-type flies display a positive phototactic
behavior. In a 2-choice assay, they move toward the
light. This preference for light is very high in newly
eclosed flies and shows some reduction when the flies
get older.”® 10 day old flies are still able to distinguish
between light and darkness (Fig. 4). In contrast, glass
mutant flies do not show phototaxis from the day they
eclose (Fig. 4).> This is in agreement with our previ-
ous finding that glass mutants do not express any of
the proteins in the phototransduction cascade.” In the
case of hazy mutants, we observed normal phototactic
behavior in young flies, comparable with that of wild-
type. However, at the age of 10 d they differed from
wild-type and displayed the same disability to distin-
guish between light and darkness as glass mutants
(Fig. 4). These experiments are in agreement with our
antibody analysis above, and show that young hazy
mutants are able to detect white light, but lose this
ability over time. Thus, Hazy is required for the main-
tenance of PR functionality.
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Figure 3. Expression of phototransduction proteins in the hazy mutant retina. Head sections were taken of control and hazy"*® flies, and
stained with antibodies against different phototransduction proteins (green) and with Hoechst (used to label cell nuclei, magenta). (A-P)
One group of flies was dissected on the day they eclosed. At this age we did not detect neither Rh6 (I) nor Trpl (J) in the retina of hazy
mutants, but most of the phototransduction proteins that we tested were correctly expressed: Rh1 (K), Gaq (L), NorpA (M), Trp (N), InaD
(0) and Arr1 (P). (a-p) A second group of flies were dissected 10 d after eclosion. Neither Rh6 (i) nor Trpl (j) were expressed in the retina
of these older hazy mutants, and most phototransduction proteins showed decreased expression levels: Rh1 (k), Gaq (1), NorpA (m), Trp
(n) and InaD (o). Only Arr1 (p) expression did not seem reduced over time in the hazy mutant retina. Scale bars represent 50 p.m.
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Figure 4. Age-related changes in the phototaxis of wild-type, glass and hazy mutant flies. Box plots show the light preference indices
(PIs) of wild-type (yellow), glass (cyan) and hazy mutants (pink) of different ages. Bold lines represent medians. The upper and lower
quartiles are represented by the top and the bottom of each box. Whisker lines indicate the maximum and minimum data point that
are closer than 1.5 interquartile range of its nearest quartile. Circles indicate outliers. We used Welch's t-test for comparing the Pls
between groups (n = 7 per age and genotype) and to zero. Significance levels represent p > 0.05 (not significant, n.s.), p < 0.05 (),
p <0.01 ("), and p < 0.001 (). In a 2-choice assay, groups of wild-type flies of every age showed positive phototaxis, which decreases
with age (indicated by positive Pl values, which were significantly different from zero). glass mutants were photoneutral at all ages (their
Pls were not significantly different from zero). Newly eclosed hazy mutants showed positive phototaxis, not different from that of wild-
type flies (p = 0.67, median wild-type Pl = 0.83). Five day old hazy mutants and wild-type flies show a decreased positive phototaxis,
but their Pls are not different from each other (p = 0.30, median wild-type Pl = 0.42). Ten day old hazy mutants were photoneutral,
with their Pls comparable to zero (p = 0.08) or to glass mutants (p = 0.56), and significantly different from wild-type (median wild-type

Pl =0.22).
Conclusions

Glass and Hazy play important roles in PR specifica-
tion and maintenance.”''*** Here we have shown
that Glass activates the expression of hazy in all PRs
in the 3 visual organs of Drosophila—the compound
eye, the ocelli and the Bolwig’s organ—by binding to
the same sites in the hazy promoter. Also, in agree-
ment with a previous report, Glass is able to auto-acti-
vate its own expression,'* but we found no evidence
that Hazy either activates glass or auto-activates its
own expression. Together, our data favor a feed-for-
ward mechanism in which Hazy acts downstream of
Glass.™>

The notion that Glass and Hazy function
through a coherent feed-forward loop to activate
PR genes is further supported by our previous find-
ings that inducing the expression of Hazy partly
rescues the glass mutant phenotype, and also that
co-expressing Glass and Hazy together ectopically
than
either Glass or Hazy alone.” However, these find-

induces more phototransduction proteins

ings were based on ectopic expression of both tran-
scription factors in CNS cells in which they are

normally not expressed and where we were not
able to control their expression levels. Our analysis
of the hazy mutant phenotype rather suggests that,
by the end of terminal PR differentiation, Glass
can induce the expression of most phototransduc-
tion components even in the absence of Hazy.
Hazy itself is one of the targets of Glass and is
required to maintain the expression of most photo-
transduction components throughout adult life.
Thus, for the initial induction, Glass either directly
activates PR-specific genes, or it interacts with
other transcription factors to induce them. Hazy
might be required for the initial induction of only
a few genes, such as Rh6 or Trpl, but it is essential
for the maintenance of most phototransduction
components. Therefore, we anticipate that further
research on the direct targets of Glass will reveal
novel mechanisms for activating the expression of
PR genes. Also, it will be interesting to explore fur-
ther how Hazy functions in PR fate maintenance.
Particularly, it remains unresolved whether Hazy is
only required for maintaining PR gene expression
or if it also functions to suppress PR dedifferentia-
tion or degeneration.
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Materials and methods
Fly stocks

In the present work w'''® (courtesy of R. Stocker)
was used as wild-type control, and w'''%; hazy"*¥
was used to study the hazy mutant phenotype. The
hazy"*¥ mutant allele was provided by C. Desplan,'?
and was isogenized by crossing it to Canton-S flies
for 6 generations. Other stocks that we used are:
hazy(wt)-GFP,”  hazy(gll,2mut)-GFP,’ gl60j (Bloo-
mington Drosophila Stock Center, No. 509),'" UAS-
glass’ and UAS-hazy (courtesy of J. Bischof).”” As a
reporter for glass we used glass-DsRed flies (courtesy
of S. Kim), which are also called glass5.2-RHS.*" Flip-
out misexpression experiments were performed as
described previously’ by using hsFLP; tub(FRTcas-
sette)Gald, UAS-lacZ.nls (courtesy of E. Piddini).

Flies were raised at 25°C in a 12:12 hours light-dark
cycle on cornmeal medium supplemented with molas-
ses, fructose and yeast.

Antibody stainings

Immunohistochemistry was performed as previously
described.”'”** Antibodies against proteins in the
phototransduction cascade were kindly provided by
N. Colley and S. Britt. To compare the expression of
phototransduction proteins in control and hazy
mutants, head sections from both genotypes were
taken simultaneously, stained together on the same
slide, and imaged with identical settings on a Leica
SP5 confocal microscope.

Phototaxis assay

Our phototaxis analysis was based on a previous pro-
tocol.”” Briefly, newly eclosed flies were transferred
each day to vials containing fresh food, which we used
to stage them. For each experiment, we tested an aver-
age of 25.2 flies (ranging from 20 to 33). These flies
were kept for 10 min in darkness, and then placed
without anesthesia into a T-maze under red light con-
ditions. Our set-up consisted of 2 tubes connected to
each other, where a single LED illuminated from the
end of one of the tubes with white light (SOLAROX,
Germany, No. 50008300001). Light intensity was
moderate: we measured 418.0739 puW/cm?® with a
spectrometer (the emitted light spectrum possessed 2
intensity peaks: the first peak was at 444 nm with an
intensity of 1.494 uW/cm’/nm and half-widths of

16 nm, and the second peak was at 585 nm with an
intensity of 2.768 uW/cm’/nm and half-widths of
61.5 nm). We allowed the flies to move freely between
both tubes for 2 minutes. Then, we counted the flies in
the illuminated tube (L), in the dark tube (D), and
those in the intersection between the 2 tubes (M). The
preference index (PI) was calculated from the formula
PI = (L — D)/(D + L + M). Data were analyzed in R
with Welch’s ¢-test.
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