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The circadian system coordinates activities and functions in cells and tissues in order to 
optimize body functions in anticipation to daily changes in the environment. Disruption of 
the circadian system, due to irregular lifestyle such as rotating shift work, frequent travel 
across time-zones, or chronic stress, is correlated with several diseases such as obesity, 
cancer, and neurological disorders. Molecular mechanisms linking the circadian clock 
with neurological functions have been uncovered suggesting that disruption of the clock 
may be critically involved in the development of mood disorders. In this mini-review, I will 
summarize molecular mechanisms in which clock components play a central role for 
mood regulation. Such mechanisms have been identified in the monoaminergic system, 
the HPA axis, and neurogenesis.
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A plethora of human genetic studies have identified polymorphisms in clock genes that associate 
with psychiatric disorders [reviewed in Ref. (1)]. This suggested that abnormalities in clock genes 
may be one of the causes for the development of mood disorders. At the cellular level, clock genes 
(Bmal1, Clock, Per, Cry, Rev-erb, and Ror) make up an autoregulatory transcriptional/translational 
feedback loop with a period of about 24 h (Figure 1, top gray circle) [reviewed in Ref. (2)]. These 
clock genes and their proteins not only self-promote their own temporally fluctuating transcrip-
tion but they also regulate transcription of target genes (Figure 1) and/or modulate key molecular 
pathways via protein–protein interactions, such as the monoaminergic system, the HPA axis, or 
neurogenic pathways.

TRAnSCRiPTiOnAL ReGULATiOn OF MOnOAMine SiGnALinG 
BY CLOCK COMPOnenTS

Neuroimaging studies in humans indicated that the monoaminergic system (dopamine, serotonin, 
and noradrenaline) was altered in subjects with mood disorders (3). This was further supported by 
optogenetic studies, in which control of neuronal activity of dopamine neurons in mice modulated 
mood, anxiety, and reward, confirming the importance of the monoaminergic system in mood-
related behaviors (4, 5).

Interestingly, several studies described daily changes in dopamine, serotonin, and noradrena-
line levels [reviewed in Ref. (6)]. Because these molecules modulate arousal, motivation, and 
reward, one would expect them to be targeted at the activity period of the day in order to avoid 
conflicts with sleep signals. Hence, monoaminergic signaling is likely to be regulated by the 
circadian clock, either directly or indirectly. In the last years, several investigations aimed at 
uncovering the role of circadian clock components in the direct transcriptional regulation of 
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FiGURe 1 | Molecular regulation of clock and clock-controlled genes of the monoaminergic system and neurogenesis. The clock proteins BMAL1 
(green), CLOCK (blue), and NPAS2 (blue) bind to E-box elements present in the promoters of clock genes (Per, Cry, Rorα, and Rev-erbα) and the clock-controlled 
gene for monoamine oxidase A (Maoa). PER (red) and cryptochrome (CRY, orange) proteins inhibit the action of BMAL1/CLOCK and BMAL1/NPAS2 heterodimers, 
respectively. The nuclear receptors [retinoic orphan receptor α (RORα, rose)] and REV-ERBα (purple) both bind to RORE elements of dopamine receptor 3 (Drd3), 
fatty acid binding protein 7 (Fabp7), and tyrosine hydroxylase (Th) in a competitive manner and activate or inhibit their expression, respectively. The nuclear receptor 
Nurr1 (yellow) regulates Th via its NR promoter element. Via protein–protein interactions, PER2 can modulate the actions of REV-ERBα and Nurr1 (hatched arrow). 
This regulation results in temporally regulated expression of the dopamine synthesizing (TH, green square) and degrading enzymes (MAOA, red square) leading to 
fluctuating levels of dopamine in the striatum.
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elements important for monoaminergic signaling, such as the 
enzymes monoamine oxidase (MAO) and tyrosine hydroxylase 
(TH) both key enzymes for the degradation and synthesis of 
dopamine, respectively.

Dopamine degradation is under clock control. This was first 
suggested by the observation that the clock components BMAL1 
and NPAS2 transcriptionally activated a luciferase reporter 
driven by the murine monoamine oxidase A (Maoa) promoter 
in a circadian fashion. This indicated that these two clock 
components directly regulated Maoa transcription (Figure 1). 
This notion was further strengthened by the observation that 

BMAL1 protein was recruited to the Maoa promoter in brain 
tissue (7). Interestingly, the regulation by BMAL1/NPAS2 
was modulated by PER2 in a positive fashion, but not in the 
predicted negative manner (Figure  1). This lead to increased 
Maoa mRNA levels (7). This finding suggested potential tissue 
specific regulatory factors that turned PER2 into a positive regu-
lator of BMAL1/NPAS2-driven transcriptional regulation in 
the striatum. As a consequence of lack of PER2, not only Maoa 
mRNA but also MAOA protein levels were decreased. Hence, 
dopamine degradation was reduced, and dopamine levels in 
the nucleus accumbens were increased. This was paralleled by 
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FiGURe 2 | Hypothetical model on the interaction of circadian clock 
proteins with the glucocorticoid receptor (GR). REV-ERBα (REV, purple) 
gates nuclear localization of the GR (gray) via an unknown mechanism 
probably involving heat shock protein 90 (HSP90, yellow). GR function is 
inhibited by cryptochrome (CRY, orange) proteins and is modulated by 
CLOCK (blue) via acetylation (Ac), although it is unclear whether this 
happens in the cytoplasm and/or the nucleus. GR regulates target genes 
such as catechol-O-methyltransferase (Comt) whose protein is an enzyme 
(COMT, red square) that degrades 3,4-dihydroxyphenylacetic acid (DOPAC) 
to homovanillic acid (HVA). GR may also interact with Nurr1 to modulate 
tyrosine hydroxylase (Th) expression thereby influencing dopamine 
production.
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a depression-resistant-like phenotype and changes in neuronal 
activity in response to MAO inhibitors in mice (7). These find-
ings strongly suggested that the degradation of monoamines 
was clock modulated. It is very likely that the described clock-
mediated regulation of monoamines is relevant for humans, 
because single-nucleotide polymorphisms in Per2, Bmal1, and 
Npas2 associated in an additive fashion with seasonal affective 
disorder or winter depression (8).

A recent study showed that not only dopamine degradation 
but also dopamine synthesis is under clock influence. The mouse, 
rat, and human Th promoters were repressed by REV-ERBα, and 
they were activated by retinoic orphan receptor α (RORα) and 
nuclear receptor-related protein 1 (NURR1) (9). Chromatin 
immunoprecipitation experiments revealed that REV-ERBα 
and NURR1 were binding to the Th promoter in an antagonistic 
manner (9). In accordance with this mechanism (Figure 1), Rev-
erbα knock-out mice displayed elevated Th mRNA and protein 
levels leading to increased dopamine amounts and firing rate in 
the striatum (9, 10). As a consequence, these animals showed 
less depression-like and anxiety-like behavior compared to wild-
type animals (9). The temporal regulation of TH may be further 
modulated through protein–protein interactions. For example, 
PER2 has the potential to interact with both REV-ERBα and 
NURR1 proteins (11), which would allow temporal synchroniza-
tion of the action of these two nuclear receptors (Figure 1, top 
right, hatched arrow). This is, however, a speculation and needs 
verification.

Interestingly, REV-ERBα and RORα were described to regu-
late the expression of the dopamine D3 receptor gene (Drd3) 
in an antagonistic manner (12) (Figure  1). This provided a 
molecular explanation why this receptor was expressed in a 
diurnal manner in the striatum (13). DRD3 inhibits adenylyl 
cyclase through inhibitory G-proteins [reviewed in Ref. (14)] 
and mutation of DRD3 in mice suggested an involvement of 
this receptor in mediating emotional behavior and depression 
in mice (15). A role of NPAS2 in the regulation of Drd3 has also 
been suggested (16), although it is unclear how NPAS2 would 
regulate the Drd3 promoter. Taken together, it appears that 
REV-ERBα and RORα synchronize dopamine production and 
the expression of DRD3 in the striatum probably to optimally 
restrict dopamine signaling in the striatum to a particular 
time window. This implies that the targeting of DRD3 and/or 
REV-ERBα/RORα by pharmacological agents may benefit from 
timed application. This would reduce dosage and diminish side 
effects such as weight gain, which is observed often in patients 
treated for mood disorders.

MOLeCULAR ReGULATiOn OF 
COMPOnenTS OF THe HPA AXiS 
BY CLOCK PROTeinS

Epidemiological studies suggested that stressful life events play 
a role in the etiology of depression (17), and hypercortisolemia 
was observed in a subset of patients with depression [reviewed 
in Ref. (18)]. Furthermore, antidepressant treatment appeared 
to stabilize the function of the HPA axis via the serotonergic 

system (19), suggesting an involvement of the HPA axis and 
glucocorticoids in mood regulation [reviewed in Ref. (20)].

Conditional mutagenesis in mice of the glucocorticoid recep-
tor (GR) in the nervous system provided evidence for the impor-
tance of GR signaling in emotional behavior (21). Overexpression 
of GR lead to depressive-like behavior, and these mice showed 
enhanced sensitization to cocaine (22), consistent with observa-
tions that GR may be a potential target to reduce cocaine abuse 
(23). Interestingly, GR bound to NURR1 thereby increasing the 
transcriptional potential of NURR1 to induce TH (24) (Figure 1). 
Hence, the amount of nuclear GR appeared to be important for 
this function. Although glucocorticoids displayed circadian 
rhythmicity [reviewed in Ref. (25)], GR expression was constant 
over 24 h in the liver, which applies most likely to the brain as 
well. However, GR nuclear localization appeared to be gated by 
REV-ERBα in the liver with nuclear GR levels high at zeitgeber 
time 20 (activity period of mice) (26). If this would apply to 
the brain, REV-ERBα would gate binding of GR to NURR1 for 
induction of the Th promoter (Figure  2). As illustrated above, 
mood-related behavior and dopamine levels were changed in 
Rev-erbα−/− mice, and this may also involve GR, which regulates 
catechol-O-methyltransferase (26), an enzyme degrading the 
MAOA product 3,4-dihydroxyphenylacetic acid to homovanillic 
acid. Therefore, it is likely that the monoaminergic system and the 
glucocorticoid pathway are linked via GR.

The cryptochrome (CRY) proteins interact with GR in a 
ligand-dependent manner in mouse liver leading to rhythmic 
repression of GR activity (27). Additionally, the CRY proteins 
participate in glucocorticoid-dependent suppression of the HPA 
axis and the production of endogenous glucocorticoids (27). Mice 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


4

Albrecht Molecular Clock and Mood

Frontiers in Neurology | www.frontiersin.org February 2017 | Volume 8 | Article 30

lacking Cry1 showed depression-like behavior combined with 
reduced levels of dopamine in the striatum (28). This phenotype 
was most likely the result of the effects of CRY on both pathways 
illustrated in Figures 1 and 2. Furthermore, GR was acetylated by 
CLOCK, which lead to decreased sensitivity to glucocorticoids in 
the morning in humans and to an increased sensitivity at night 
when acetylation was reversed (29).

Recently, CHRONO, a protein that acts as a repressor in the 
circadian clock mechanism similar to CRY2 appeared to have the 
potential to interact with GR as well (30). Interestingly, Chrono 
mRNA was induced in the hypothalamus after stress stimulation 
whereas Cry2 mRNA was not. This suggested that CHRONO may 
be a stress-inducible repressor of the circadian clock coupling the 
clock with the HPA axis (30). However, it is not known whether 
Chrono knock-out mice display alterations in mood-related 
behaviors.

TRAnSCRiPTiOnAL ReGULATiOn OF 
neUROGeneSiS BY CLOCK PROTeinS

Adult neurogenesis is an important process to replace lost or 
dysfunctional neurons with new neurons produced from neu-
ronal stem cells. Most of them are found in the subventricular 
zone lining the lateral ventricles and the subgranular zone of 
the hippocampal dentate gyrus. Environmental stimuli, such as 
stress, physical activity, sleep deprivation, enriched living condi-
tions, and jet-lag, can influence adult hippocampal neurogenesis 
in mammals (31–35). These environmental stimuli directly affect 
the circadian clock as well [reviewed in Ref. (36)], suggesting 
that the clock plays a mediator role between environmental 
change and neurogenesis. Animal studies showed that chronic 
stress and depression-inducing behavior reduced hippocampal 
neurogenesis while antidepressants enhanced it (37), suggesting 
a connection between neurogenesis and depressive behavior 
(38). Hence, change of the clock by environmental stimuli may 
affect neurogenesis, which in turn affects mood-related behav-
iors. Interestingly, neurogenesis varied over the day (39–42), 
and mutations in clock genes affected adult hippocampal 
neurogenesis (28, 43–46). The effect of the clock on this process 
was at least in part due to the control of the timing of cell-cycle 
entry and exit of quiescent neural progenitor cells (QNPs) (47). 
For example, absence of Per2 abolished the gating of cell-cycle 
entrance of QNPs (43, 47), whereas lack of Bmal1 resulted in 
constitutively high levels of proliferation and delayed cell-cycle 
exit (46, 47).

On the molecular level evidence of direct clock gene-medi-
ated regulation of neurogenesis is scarce. The mechanism of 

Clock- and Bmal1-mediated neuronal differentiation appeared 
to be associated with the neurogenic transcription factor 
NeuroD1 (48), although a direct regulation of its promoter 
by clock genes was not shown. In contrast, the regulation of 
fatty acid binding protein 7 (Fabp7), also termed brain lipid-
binding protein, by the clock component REV-ERBα has been 
elucidated (44). FABP7 facilitates the solubility of long-chain 
fatty acids and is implicated in cell growth and differentiation 
(49). It affects neuronal differentiation (50) and is a marker for 
neuronal progenitor cells (51, 52). The promoter of the Fabp7 
gene was directly suppressed by REV-ERBα, and this suppres-
sion was relieved by RORα, a positive competitor of REV-ERBα 
(Figure  1) (44). Mice lacking Rev-erbα displayed increased 
levels of FABP7, which was associated with alterations in mood-
related behaviors, changes in hippocampus-dependent cognitive 
performance, and increased hippocampal neurogenesis (44).

Taken together, this overview illustrates multiple levels of 
molecular mood regulation with REV-ERBα (and PER2 as REV-
ERBα modulator) being involved in all of the processes described; 
regulation of the monoaminergic system, the HPA axis, and 
neurogenesis.

In the future, a better understanding of the hypothetical 
molecular processes illustrated in Figure 2 will be of great impor-
tance, because it is unknown whether CRY and CLOCK affect GR 
function in the nucleus or the cytoplasm. This would distinguish 
whether the influence of these two clock components is directly 
on transcription or on modulation of GR protein stability and 
transport, which would influence GR-mediated transcription in 
an indirect manner. Furthermore, the posttranslational regula-
tion of REV-ERBα is poorly understood with the exception of 
its residues S55/S59, which are phosphorylated by GSK3β and 
may mediate cellular sensitivity to lithium (53). Time–of-day-
dependent phosphorylation sites on REV-ERBα and GR (54) may 
contribute to the gated regulation of nuclear presence of these 
two receptors and hence on the regulation of metabolism and 
mood-related behaviors.
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