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brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Duisburg-Essen Publications Online

https://core.ac.uk/display/83635784?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Zusammenfassung

Unterteilungsalgorithmen liefern wichtige Techniken zur schnellen Erzeugung von Kur-

ven und Oberflächen. Diese spielen auch eine zentrale Rolle in Wavelets. Ein Un-

terteilungsalgorithmus ist durch eine Maske definiert. Es ist bekannt, dass die Konver-

genz dieser Algorithmen per gemeinsamen Spektralradius charakterisiert werden kann,

der durch endlich viele Matrizen definiert ist. Allerdings ist die Berechnung des gemein-

samen Spektralradius im allgemeinen sehr schwierig.

Unser Ziel ist es im multivariaten Fall einfach zu überprüfende Kriterien zu finden,

die hinreichend und notwendig für die Konvergenz dieser Algorithmen sind. Die Ein-

fachheit der Kriterien bedeutet, dass sich die Kriterien in polynomialer Zeit bzgl. der

Masken, z.B. die Größe des Trägers von Masken, nachprüfen lassen.

Nach einem einleitenden Kapitel 1 und einem grundlegenden Kapitel 2 konzentrieren

wir uns daher in drei Schritten auf die Klasse der multivariaten Subdivisions-Schemata

mit nichtnegativen Masken. Die Dissertation ist folgendermaßen aufgebaut:

Wir beginnen zunächst in Kapitel 3 und 4 mit einer Demonstration des Zusammen-

hangs zwischen der Konvergenz des Subdivisions-Schemas und einiger Abbildungen für

Gitter. Danach geben wir ein neues hinreichendes und notwendiges Konvergenzkriteri-

um für nichtnegative Subdivisions-Schemata an. Theorem 3.3.1 stellt den zentralen

Beitrag dieses Kapitels dar.

Darauffolgend betrachten wir in Kapitel 5 und 6, dass die Konvergenz eines nicht-

negativen Subdivisions-Schemas nicht von den Werten der Maske abhängt, sondern

lediglich von ihrem Träger. Wir geben die unterschiedlichen Eigenschaften zwischen in-

neren Punkten und Randpunkten auf ihrem Träger mit Hilfe der weiterer notwendiger

Konvergenzbedingung an. Dabei stellt sich heraus, dass der Zusammenhang der Matrix

A eine einfache und adäquate Bedingung ist, um diese Eigenschaften zu garantieren.

Im letzten Kaptiel leiten wir nun einfach und schnell zu berechnende hinreichende Kon-

vergenzbedingungen für multivariate Subdivisions-Schemata mit nichtnegativer Maske

her, sofern der Träger spezielle Eigenschaften besitzt. Dabei nutzen wir obige Resultate.
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Nomenclature

(x)α the α-coordinate of the vector x ∈ R
N

[x] the integer part of x

[Ω] the convex cover of Ω

∂[Ω] boundary of the convex cover [Ω] formed by Ω

Ωγ Ωγ = Ω+ γ, for any γ ∈ Z
s with the understanding Ω0 = Ω

[Ω]o interior of the convex cover of Ω, i.e. [Ω] \ ∂[Ω]

dimL the dimension of L, where L is an affine space in R
s

|Γ| the cardinality of Γ

Γk direct sum, i.e. Γk = Γ + 2Γ + · · ·+ 2k−1Γ

Γ(a) an admissible set for the mask {a(α)}

T c complement of the set T

ak(α) the iterated mask of a(α)

c(z) the Laurent polynomial associated with the mask a(α)

A(λ) the set defined by A(λ) = {α : a(α) 6= 0 and α ≡ λ (mod 2)}

d = gcd(α : α ∈ Ω) a multi-integer d = (d1, ..., ds) such that gcd((α)i : α ∈ Ω) = di,

i = 1, ..., s

Es the set of extreme points of [0, 1]s, i.e.,

Es = {(δ1, ..., δs)
T : δi ∈ {0, 1}, i = 1, ..., s}

‖ · ‖∆ the norm, i.e. ‖x‖∆ = maxα,β∈Γ(α) |xα − xβ|

‖A‖∆ the norm of a square matrix A, i.e. ‖A‖∆ = sup‖x‖∆ 6=0
‖Ax‖∆
‖x‖∆

Ms the set of s× s unimodular matrices

ρ(A) spectral radius of a square matrix A

ρ(A1, ..., AN) joint spectral radius of {A1, ..., AN}

χT a vector in R
N such that (χT )α =







1, α ∈ T,

0, otherwise

FB a mapping for any nonnegative N ×N row-stochastic matrix B

by FB(T ) = {α ∈ Γ(a) : (BχT )α = 1} ⊆ Γ(a)

ψ an additive mapping defined by ψ(∅) = ∅ and ψ(I) ⊆ Σ,

∀ I ⊆ Σ, Σ ⊆ Z
s is a finite set
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Chapter 1

Introduction

Subdivision schemes, the iterative methods for producing smooth curves and surfaces

with a built-in multiresolution structure, have been becoming one of the most popular

methods for generating curves and surfaces in a fast way due to the facts that subdi-

vision algorithms are recursive in nature, numerically stable, easy to implement on a

computer, and therefore, have been involved in the following applications: First, they

are widely used in surface modeling in computer aided geometric design (CAGD) and

the animation industry. Second, these schemes are also intimately connected to wavelet

bases and their associated fast bank algorithms [11]. Moreover, these schemes can be

used in recursive refinements of given control points whose limit turns to be a desired

visually smooth object. Furthermore, subdivision schemes can also be used in wavelet

analysis.

Denote Z
s to be the integer lattice. A subdivision scheme is defined by a fixed finitely

supported real sequence (mask) {a(α) : α ∈ Z
s}, (for notational simplicity, we use

{a(α)} in this dissertation). We should denote the support of {a(α)} by Ω = {α :

a(α) 6= 0} and [Ω] the convex cover of Ω. The Laurent polynomial associated with this

mask is defined as

c(z) =
∑

α

a(α)zα

with z = (z1, ..., zs)
T ∈ R

s and zα = zα1

1 · · · zαs
s for α = (α1, ..., αs)

T .

Given an initial finite sequence of data values, v0 = {v0(α)}, a subdivision scheme with

1
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a mask {a(α)} defines a sequence of values vk(α) recursively by the rule

vk(α) =
∑

β

vk−1(β)a(α− 2β).

This scheme is said to be convergent if for each v0 there exists a continuous function f

such that

lim
k→∞

sup
α

|f(
α

2k
)− vk(α)| = 0 (1.1)

and f 6≡ 0 for at least one v0.

Clearly, the convergence depends only on the properties of the given mask. Moreover,

we can show the convergence of the subdivision scheme is equivalent to the uniform

convergence by the following argument. Let H be the hat function defined by

H(y) =







1− |y|, |y| ≤ 1,

0, otherwise,

and ψ(x) = H(x1) · · ·H(xs) for x = (x1, ..., xs)
T ∈ R

s. Using vk(α) we get a ”polygon”

as follows

fk(x) =
∑

β

vk(β)ψ(2kx− β).

Then it is easy to see that fk(β/2k) = vk(β) and therefore the convergence of the

subdivision scheme is equivalent to the uniform convergence of fk. On the other hand,

set a1(α) = a(α) and

ak(α) =
∑

β

ak−1(β)a(α− 2β).

An induction argument gives vk(β) =
∑

α a
k(β − 2kα)v0(α). Consequently, we have

fk(x) =
∑

β

vk(β)ψ(2kx− β)

=
∑

β

∑

α

ak(β − 2kα)v0(α)ψ(2kx− β)

=
∑

α

v0(α)
∑

β

ak(β − 2kα)ψ(2kx− β).
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Substituting β for β − 2kα, we conclude

fk(x) =
∑

α

v0(α)
∑

β

ak(β)ψ(2kx− (β + 2kα)),

=
∑

α

v0(α)
∑

β

ak(β)ψ(2k(x− α)− β).

In particular, taking v0(α) = δ0(α), where

δ0(α) =







1, for α = 0,

0, otherwise,

one has fk(x) =
∑

β a
k(β)ψ(2kx − β). Thus, the question whether for all given v0(α)

the polygon determined by mask {a(α)} converges uniformly to a curve or a surface is

equivalent to the uniform convergence of

∑

β

ak(β)ψ(2kx− β). (1.2)

Therefore, the convergence of the subdivision scheme is equivalent to the uniform con-

vergence of (1.2).

In what follows, when we say the subdivision scheme converges to ϕ, we mean (1.2)

converges to ϕ, which is also equivalent to the scheme with δ0 converges to ϕ.

A comprehensive discussion of this subject can be found in [3]. The necessary and

sufficient conditions of the convergence of the subdivision schemes with the finitely

mask are known (see e.g. [9, 10, 27]) and can be summarized as follows:

Theorem 1.0.1. A subdivision scheme associated with a fixed finitely supported real

sequence (mask) {a(α) : α ∈ Z
s} converges if and only if

∑

β∈Zs

a(α + 2β) = 1, ∀ α ∈ Z
s (1.3)

and

lim
k→∞

sup
α∈Zs, e∈Es

|ak(α)− ak(α− e)| = 0, (1.4)

where e ∈ Es := extreme points of [0, 1]s, i.e., Es = {(δ1, ..., δs)
T : δi ∈ {0, 1}, i =

1, ..., s}.
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The first condition (1.3) is called the sum rule in the literature. It is clear and easy

to check. However, the second one is rather difficult to verify. In Chapter 2 we will

give two different ways to prove this theorem, which are presented in [10, 27], and more

details can be found there. Here we sketch the main idea for the proof. Denote

ρ(∆a) := lim sup
k→∞

sup
α∈Zs, e∈Es

|ak(α)− ak(α− e)|
1

k .

We first show that (1.4) is equivalent to ρ(∆a) < 1, while ρ(∆a) is equal to the so-

called joint spectral radius of some square matrices (see [3, 5, 10]). We will present some

partial results concerning the computation of ρ(∆a) , which can be found in [2, 9, 30]

and the papers cited there. However, as we will show, by a result in [25] the calculation

of the joint spectral radius is generally NP-hard and to conquer the challenges, we

will introduce some nontrivial classes of masks with which we can simply determinate

whether ρ(∆a) < 1 for the given mask (see [2]).

Chapter 3 investigates subdivision schemes associated with nonnegative finite masks

(i.e., {a(α) ≥ 0, α ∈ Z
s}) a class of masks with various applications in geometric

modeling. Firstly we collect some results from [26] and [29] to establish a relation

between the convergence of the multivariate subdivision scheme and some mappings

about lattices, which lead to a new characterization of convergent subdivision schemes

with nonnegative masks (see Theorem 3.3.1). This chapter is mainly devoted to the

proof of Theorem 3.3.1.

In Chapter 4 we will focus on Theorem 3.3.1 and give some applications and extensions.

Using the converse-and-negative statement of Theorem 3.3.1, we will present some

examples to demonstrate the power and novel applications of our approach. Theorem

3.3.1 will also be applied to the investigation of other characterizations of convergent

subdivision schemes.

In Chapter 5 we will continue to study this subject with finite masks (needn’t be

nonnegative). We are interested in obtaining the necessary conditions of convergent

subdivision schemes in the multivariate case, by means of further analysis on the sum

rule and the distribution of support. We hope that this study will help us to get

some computable properties, which may lead to solve our problem. Knowing that the
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convergence of subdivision schemes with nonnegative masks relies on the location of

its support of the mask, we consider the position of the points in the support and the

convex cover of the support. In the last section of this chapter we will demonstrate the

different properties between the inner and boundary points in the support of the given

mask. The results show that the convergent subdivision scheme satisfies the so-called

inner-point principle.

In Chapter 5 we investigate various properties between the inner and boundary points

of the support for the mask, provided that the corresponding subdivision scheme con-

verges. However, it is unknown, whether one can use some simple conditions to guaran-

tee these properties. We find out that the so-called connectivity of a matrix A deduced

by given mask (see definition in Chapter 6) is the suitable condition. Another reason

to study the matrix A is the fact that in the univariate case the connectivity of the

matrix A and the sum rule (1.3) ensure the convergence of the nonnegative subdivision

schemes (see [31]). The intensive discussion of this matrix A is our main goal in Chap-

ter 6. At the end of this chapter we give an efficient algorithm, which shows that the

connectivity of the matrix A may be tested by depth-first search algorithm from graph

theory in linear time with respect to the size of A.

We are interested in conditions on the mask to guarantee the convergence of the sub-

division scheme. In the last chapter of this thesis, we take full advantage of the results

in previous chapters to inspire to study the multivariate subdivision schemes with non-

negative masks. Moreover those conditions can be quickly calculated. We state the

sufficient conditions for the convergence and various partial results. Theorem 7.0.1 is

one of the peak points of this thesis. We draw our inspiration from Theorem 6.2.2 and

conclude Theorem 7.0.1. For the proof we shall take advantage of Theorem 3.3.1. The

key is to find out an irreducible (or primitive) mapping and to show the uniqueness of

this mapping.



6



Chapter 2

Characterization of Convergent

Subdivision Schemes

We will present the proofs of Theorem 1.0.1 in this chapter as the starting point for our

further investigation. There exist several possible approaches to study this problem and

we will use two of them: one from [27], that uses the so-called two operators approach

and the other from Jia and Han in 1998 (see [10]), that is based on the estimation of

the norm of some matrices, which leads to the concept of the joint spectral radius of

matrices. Although Theorem 1.0.1 also remains true for Lp (by modifying the condition

(1.4) correspondingly) (see e.g. [10], [15] and [27]), we mainly focus on convergence of

multivariate subdivision schemes in the C(Rs) space.

2.1 The Laurent polynomial deduced by mask and

the necessity of sum rule

Recall that for a given mask {a(α) : α ∈ Z
s} the iteration ak(α) is defined as

ak(α) =
∑

β

ak−1(β)a(α− 2β)

with the understanding a1(α) = a(α) and c(z) is the associated Laurent polynomial of

{a(α)}. It is easy to check that ak(α) are the coefficients of the Laurent polynomial
∏k−1

l=0 c(z
2l) where zµ = zµ1 · · · z

µ
s and µ ∈ R. Indeed, by an induction argument on k we

7
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have

k−1
∏

l=0

c(z2
l

) = c(z)
k−2
∏

l=0

c(z2·2
l

) (2.1)

= (
∑

α

a(α)zα) · (
∑

β

ak−1(β)z2β)

=
∑

α,β

a(α)ak−1(β)zα+2β

=
∑

τ

(
∑

β

a(τ − 2β)ak−1(β))zτ

=
∑

α

ak(α)zα.

The other form of this product can be expressed as

k−1
∏

l=0

c(z2
l

) =
∑

α

∑

β0+2β1+···+2k−1βk−1=α

a(β0) · · · a(βk−1)z
α. (2.2)

Using (2.2), it is easy to see that the number of non-zero coefficients of the polynomial

in (2.1) can be estimated by C2ks, where C > 0 depends only on the support of the

given mask. In fact, the set of nonzero coefficients in
∏k−1

l=0 c(z
2l) is contained in

{α : α = β0 + 2β1 + · · ·+ 2k−1βk−1 and β0, β1, ..., βk−1 ∈ Ω}.

The set is of course a subset of [(2k − 1)Ω] ∩ Z
s. The number of multi-integers in this

set is bounded by 2ks|[Ω] ∩ Z
s|.

As presented in the introduction chapter, the sum rule (see the condition (1.3) of

Theorem 1.0.1) is also the necessary condition for the convergence of the subdivision

scheme [3].

Lemma 2.1.1. If a subdivision scheme associated with a fixed finitely supported real

sequence (mask) {a(α) : α ∈ Z
s} converges, then the mask satisfies the sum rule (1.3),

that is
∑

β∈Zs

a(α + 2β) = 1, ∀ α ∈ Z
s.
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Proof. Note that the sum rule (1.3) is equivalent to the equation

∑

β∈Zs

a(e+ 2β) = 1, ∀e ∈ Es. (2.3)

In fact, write α = e + 2γ for some γ ∈ Z
s and e ∈ Es, i.e., α ≡ e (mod 2) and denote

β′ = β + γ, then

∑

β∈Zs

a(α + 2β) =
∑

β∈Zs

a(e+ 2γ + 2β)

=
∑

β′∈Zs

a(e+ 2β′).

By hypothesis that the subdivision scheme converges to f with f 6≡ 0, there exists some

x0 such that f(x0) 6= 0. Let α′
k = [2kx0] be the integer part of 2

kx0, then α
′
k = 2µk + ek

for some µk ∈ Z
s and ek ∈ Es. Set αk = 2µk + e, then 2kx0 = αk + (ek − e) + ǫk and

αk ≡ e (mod 2), where ǫk = 2kx0 − [2kx0]. Therefore αk/2
k = x0 − (ek − e+ ǫk)/2

k,

lim
k→∞

αk

2k
= x0 and lim

k→∞

ek − e+ ǫk
2k

= 0.

Moreover, in view of (1.1) one has

lim
k→∞

|f(
αk

2k
)− vk(αk)| = 0.

Combining with the continuity of f and (1.1), we have

lim
k→∞

|f(x0)− vk(αk)| = 0.

Now, by the definition of the subdivision scheme, we know

vk(αk) =
∑

β∈Zs

vk−1(β)a(αk − 2β)

and therefore

f(
αk

2k
)− vk(αk) = f(

αk

2k
)−

∑

β∈Zs

a(αk − 2β)vk−1(β) (2.4)

= f(
αk

2k
)(1−

∑

β∈Zs

a(αk − 2β))−
∑

β∈Zs

a(αk − 2β)(vk−1(β)− f(
αk

2k
)).
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The second term of (2.4) can be written as
∑

β∈Zs,|αk−2β|≤C

a(αk − 2β)(vk−1(β)− f(
αk

2k
)),

which can be shown tending to zero.

Actually, the convergence of the scheme implies

lim
k→∞

sup
β

|f(
2β

2k
)− vk−1(β)| = 0

and a(αk − 2β) = 0 for αk − 2β 6∈ Ω as well. Then

lim
k→∞

|
2β − αk

2k
| ≤ lim

k→∞
|
C

2k
| = 0.

Moreover, from the continuity of f we have

lim
k→∞

|f(
2β

2k
)− f(

αk

2k
)| = 0.

Therefore,
∑

β∈Zs

a(αk − 2β)(vk−1(β)− f(
αk

2k
))

=
∑

β∈Zs,|αk−2β|≤C

a(αk − 2β)(vk−1(β)− f(
2β

2k
))

= o(1).

For the first term of (2.4), since f(x0) 6= 0, for sufficiently large k, f(αk/2
k) 6= 0.

Therefore

lim
k→∞

|1−
∑

β∈Zs

a(αk − 2β)| = 0.

Since αk ≡ e (mod 2), the sum in the last display is independent of k. Hence we

establish (2.3) and consequently (1.3).

2.2 Two operators approach

In order to elaborate the so-called two operator approach (see [27]) to establish the

second condition in Theorem 1.0.1, we first introduce some new notations. Let S be

the operator given by

Sf(·) =
∑

α

a(α)f(2 · −α),
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and define two operators A and E = (E1, ...,Es) as follows,

A
mf(·) = f(2m·), m ∈ Z and E

nf(·) = f(· − n), n ∈ R
s.

By using the Laurent polynomial c(z) the operator S can be rewritten in the form of

those two operators, namely, S = Ac(E). In fact,

Ac(E)f(·) =
∑

α

a(α)Af(· − α)

=
∑

α

a(α)f(2 · −α) = Sf(·).

Since the Lourent polynomial for the hat-function H(·) is c0(z) = 1/2z−1 + 1 + 1/2z,

we have H = Ac0(E)H. Therefore for ψ(x) = H(x1) · · ·H(xs), one has ψ = Ac′(E)ψ

where c′(z) is another polynomial. Note that Eα
A

mf(·) = E
α(f(2m·)) = f(2m(· − α))

and A
m
E
2mαf(·) = A

mf(· − 2mα) = f(2m(· − α)). Hence E
α
A

m = A
m
E
2mα and

S
k = A

k

k−1
∏

l=0

c(E2l)

with E
n = E

n
1 · · ·E

n
s provided n ∈ R. Therefore, by (2.1) we conclude that

S
kψ(·) =

∑

β

ak(β)ψ(2k · −β).

Thus, the convergence of a given subdivision scheme is equivalent to the uniform con-

vergence of Skψ, when k → ∞. In other words, to show the convergence of subdivision

schemes, we only need to find the conditions for the mask {a(α)} such that the iteration

S
kψ has a limit ϕ. If this is the case, then ϕ is the fixed point of S, i.e.,

ϕ(x) =
∑

α∈Zs

a(α)ϕ(2x− α), x ∈ R
s

and the curve or the surface generated by v0 is

f(x) =
∑

α

v0(α)ϕ(x− α).

The function ϕ obtained in this way is clearly compactly supported and the support

is contained in [Ω]. In fact, from Section 2.1 we know that ak(β) 6= 0 implies β =
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α0 + α12 + · · · + αk−12
k−1 for some α0, ..., αk−1 ∈ Ω (see (2.2)). Hence if x 6∈ [Ω] then

2kx − β 6∈ (−1, 1)s in case of ak(β) 6= 0. Consequently, Skψ(x) = 0 for those x and so

ϕ(x) = 0.

Suppose the total degree of the Laurent polynomial c(z) deduced by the mask {a(α)}

as N/2, i.e., if a(α) 6= 0 then |α| ≤ N/2. Associated with this N , define

RN := {x ∈ R
s : |x| ≤ 2N}

and let C(RN) be the set of complex-valued continuous functions with support RN

equipped with the maximal norm. Then the norm of the iteration of this operator is

given by

‖Sk(I − Ei)‖ = sup
f∈C(RN ),‖f‖6=0

‖Sk(I − Ei)f‖

‖f‖

and

ρ(∆S) := lim sup
k→∞

max
1≤i≤s

‖Sk(I − Ei)‖
1

k .

Although this is not the standard definition of the spectral radii for operators, we still

refer ρ(∆S) as to the spectral radius of S.

For two sequences {xk} and {yk}, if there exists a constant C > 0, independent of k,

such that

C−1yk ≤ xk ≤ Cyk, k = 1, 2, ...,

we denote xk ∼ yk. For a vector x = (x1, ..., xs)
T ∈ R

s, we denote (x)j as the j-

component of x, i.e., (x)j = xj.

Now we present the following main result of the two operator approach. The following

result was established in [27], which shows the necessary and sufficient conditions such

that Skψ converges to ϕ, in term of the spectral radius ρ(∆S).

Theorem 2.2.1. Suppose S = Ac(E) with
∑

α a(α) = 2s, where c(z) is the Laurent

polynomial with respect to the mask {a(α)}. Then S
kψ converges in the maximal norm

to a function ϕ ∈ C(RN) if and only if ρ(∆S) < 1.

In order to prove Theorem 2.2.1, we first claim two Lemmas (see [27]). The first Lemma

illustrates the relationship between the norms of Sk and the corresponding mask {a(α)}.
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Lemma 2.2.2. Let S = Ac(E) with c(1) = 2s. Then

‖ S
k(I − Ei) ‖∼ {max

α
|∆eia

k(α)|}, (2.5)

where ei ∈ Es is the i-th unit vector and

∆eia
k(α) = ak(α)− ak(α− ei).

Moreover,

lim inf
k→∞

max
1≤i≤s

‖ S
k(I − Ei) ‖= 0 (2.6)

implies
∑

α

a(β + 2α) = 1, ∀ β ∈ Z
s. (2.7)

Proof. For an arbitrary continuous function f ∈ C(RN), we have

S
k(I − Ei)f(·) = A

k

k−1
∏

l=0

c(E2l)(I − Ei)f(·)

= A
k
∑

α

ak(α)Eα(I − Ei)f(·)

= A
k
∑

α

ak(α) (f(· − α)− f(· − (α + ei)))

= A
k
∑

α

(

ak(α)− ak(α− ei)
)

f(· − α)

=
∑

α

{∆eia
k(α)}f(2k · −α).

Thus,

|Sk(I − Ei)f(x)| ≤ max
α

|∆eia
k(α)|

∑

α

|f(2kx− α)|.

It follows from suppf ⊆ RN that if f(2kx− α) 6= 0 then 2kx− α ∈ RN . Hence for any

x and α ∈ Z
s such that f(2kx − α) 6= 0, the number of those α is bounded by some

constant CN , dependent only on N . Therefore, we conclude that

‖ S
k(I − Ei) ‖≤ CN{max

α
|∆eia

k(α)|}. (2.8)

On the other hand, let f = ψ. Then for α′ ∈ Z
s and x′ = α′/2k we have

ψ(2kx′ − α) =

{

1, α = α′,

0, α 6= α′.
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Hence,

∆eia
k(α′) = ∆eia

k(α′)ψ(2kx′ − α′) =
∑

α

{∆eia
k(α)}ψ(2kx′ − α).

Noticing ‖ψ‖ = 1, we obtain

max
α

|∆eia
k(α)| ≤ ‖ S

k(I − Ei)ψ ‖

≤ ‖ S
k(I − Ei) ‖ ·‖ψ‖

= ‖ S
k(I − Ei) ‖ .

The assertion (2.5) directly follows from (2.8) and the last inequality.

To prove the second assertion, we use the fact that (2.7) is equivalent to c(x) = 0 for

all x ∈ {−1, 1}s and x 6= (1, 1, ..., 1)T . In fact, by the definition

c(z) =
∑

α

a(α)zα =
∑

e∈Es

ze
∑

β

a(2β + e)z2β.

Hence, for x ∈ {−1, 1}s and x 6= (1, 1, ..., 1)T , the equality x2β = 1 always holds and

c(x) =
∑

e∈Es

xe
∑

β

a(2β + e).

If s = 1, then E1 = {0, 1}. Since c(1) = 2, we obtain that c(−1) = 0 is equivalent to
∑

β a(2β) =
∑

β a(2β + 1) = 1.

In the case of s ≥ 2, let c(x) = 0 for all x ∈ {−1, 1}s and x 6= (1, 1, ..., 1)T . Now we set

η = (x1, y)
T with y ∈ {−1, 1}s−1 and e = (δ, e′)T with e′ ∈ Es−1. Then

∑

e∈Es

ηe
∑

β

a(2β+e) =
∑

e′∈Es−1

x01y
e′
∑

β

a(2β+(0, e′)T )+
∑

e′∈Es−1

x1y
e′
∑

β

a(2β+(1, e′)T ).

Thus, for x1 = −1 and y = (1, ..., 1)T we have c((−1, y)T ) = 0 and c(1) = 2s. Therefore,

∑

e′∈Es−1

∑

β

a(2β + (0, e′)T ) =
∑

e′∈Es−1

∑

β

a(2β + (1, e′)T ) = 2s−1.

Moreover, by choosing x = (−1, y)T and x = (1, y)T with y ∈ {−1, 1}s−1 \ {(1, ..., 1)T},

respectively, we obtain

∑

e′∈Es−1

ye
′
∑

β

a(2β + (0, e′)T ) =
∑

e′∈Es−1

ye
′
∑

β

a(2β + (1, e′)T ) = 0.
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Hence, by an induction argument on s, we get
∑

β a(2β + e) = 1 for all e ∈ Es, which

gives (2.7) and the vice versa.

Now we show that (2.6) implies c(x) = 0 for all x ∈ {−1, 1}s and x 6= (1, 1, ..., 1)T .

Let ei ∈ Es such that only the i-th coordinate is 1. Thus for z = (z1, ..., zs)
T we have

zei = zi and by the Abel’s transformation

(1− zi)
k−1
∏

l=0

c(z2
l

) =
∑

α

ak(α)(zα − zα+ei)

=
∑

α

∆eia
k(α)zα.

Moreover, let x ∈ {−1, 1}s such that (x)i = −1, then c(x2
l

) = 2s for l = 1, ..., k − 1. In

this case, the above identity implies

2(k−1)s+1c(x) =
∑

α

∆eia
k(α)xα.

It is easy to see that the number of α in the above sum is bounded by C2ks as mentioned

in Section 2.1. Therefore,

2(k−1)s+1|c(x)| ≤ C2ksmax
α

|∆eia
k(α)|

or

|c(x)| ≤ C2s−1 max
α

|∆eia
k(α)|.

Consequently, it follows from (2.5) that, for some constant C > 0, which does not

depend on k,

|c(x)| ≤ C max
1≤j≤s

‖Sk(I − Ej)‖.

The right hand side is independent on the choice of x and hence tending to 0, as k → ∞

by (2.6). Therefore, c(x) = 0 for all x ∈ {−1, 1}s and x 6= (1, ..., 1)T .

Next, we estimate the quantity ρ(∆S). Although ρ(∆S) does not follow the standard

definition of the spectral radius of S, the following result shows that ρ(∆S) has the

similar property as a spectral radius, namely, the constant ρk(∆S) is a lower bound of

sup1≤i≤s ‖S
k(I − Ei)‖.



16

Lemma 2.2.3. Let S = Ac(E) with
∑

α a(β + 2α) = 1 for all β ∈ Z
s. Then, there

exists a constant C > 0 such that for all k ≥ 1,

ρk(∆S) ≤ C sup
1≤i≤s

‖Sk(I − Ei)‖.

Proof. We start from considering a simple case s = 1 to illustrate the idea of proof.

In this case the condition implies c(z) = b(z)(1 + z) for some polynomial b. Since

E
k
A

m = A
m
E

2mk and (I − E)
∏k−1

j=0(I + E
2j) = (I − E

2k), we have

S
k(I − E) = A

k

k−1
∏

j=0

b(E2j)(I + E
2j) · (I − E)

= A
k

k−1
∏

j=0

b(E2j) · (I − E
2k)

= (I − E)Tk,

where T := Ab(E).

Although the proof for s ≥ 2 is similar, we present the proof here for easy reference. To

do that, we need to compare S
k(I − Ei) with the iteration of a matrix operator. Using

the notations in the proof of Lemma 2.2.2, we have

c(z) =
∑

e∈Es

ze
∑

α

a(2α + e)z2α.

Denote be(z
2) :=

∑

α a(2α + e)z2α, then be(1) = 1. Thus, the Taylor’s formula implies

be(z
2) = 1 +

s
∑

j=1

(1− z2j )pj,e(z).

Furthermore, since
∑

e∈Es

ze =
s
∏

j=1

(1 + zj),

there exist polynomials qi,j(z) such that

(1− zi)c(z) = (1− zi)
∑

e∈Es

ze(1 +
s
∑

j=1

(1− z2j )pj,e(z)) =
s
∑

j=1

qi,j(z)(1− z2j ).
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Following the idea suggested in [3], we denote Q(z) as the matrix (qi,j(z))1≤i,j≤s. Then

the above calculation implies

(1− z1, ..., 1− zs)
T c(z) = Q(z)(1− z21 , ..., 1− z2s)

T .

Thus

(1− z1, ..., 1− zs)
T c(z)c(z2) = Q(z)(1− z21 , ..., 1− z2s)

T c(z2)

= Q(z)Q(z2)(1− z2
2

1 , ..., 1− z2
2

s ).

Consequently,

(1− z1, ..., 1− zs)
T

k−1
∏

l=0

c(z2
l

) =
k−1
∏

l=0

Q(z2
l

)(1− z2
k

1 , ..., 1− z2
k

s )T .

On the other hand, if we define T := AQ(E) to be a matrix operator and I − E :=

(I − E1, ..., I − Es)
T , then

A
k(I − E1, ..., I − Es)

T

k−1
∏

l=0

c(E2l) = A
k

k−1
∏

l=0

Q(E2l)(I − E
2k

1 , ..., I − E
2k

s )T .

That is

S
k(I − E) = T

k(I − E2k).

Again by E
k
A

m = A
m
E
2mk , we obtain

S
k(I − E) = (I − E)Tk. (2.9)

Now we show that the operator I − E on the right hand side of (2.9) can be dropped,

based on which ‖Sk(I − E)‖ ∼ ‖Tk‖ and the desired inequality follows from this esti-

mate.

In fact, for F = (f1, ..., fs)
T with fj ∈ C(RN) and j = 1, ..., s, we define in the usual

way the norm of (I − E)TkF . With this agreement we claim that

‖(I − E)TkF‖ ∼ ‖TkF‖. (2.10)

If we rewrite T
kF = (g1, ..., gs)

T , then it is clear that gj ∈ C(RN) by the definition of

the RN . Since

max
1≤j≤s

|gj(x)− gj(x− ei)| ≤ C max
1≤j≤s

|gj(x)|,
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we conclude

‖(I − E)TkF‖ ≤ C‖TkF‖. (2.11)

Let us now show

‖TkF‖ ≤ C‖(I − E)TkF‖,

for a constant C, that does not depend on k. To this end, for a fixed i = 1, ..., s, we set

Iµ := {x = (x1, ..., xs)
T ∈ RN : xi ∈ [−2N + µ− 1,−2N + µ]}, which satisfies

4N
⋃

µ=1

Iµ = RN .

For µ = 1, we have I1 = {x ∈ RN : xi ∈ [−2N,−2N + 1]}, then

‖gj‖C(I1) = ‖gj − Eigj‖C(I1) = ‖(I − Ei)gj‖C(I1) ≤ ‖(I − Ei)gj‖,

since Eigj(x) = 0 for x ∈ I1.

For 2 ≤ µ ≤ 4N ,

‖gj‖C(Iµ) = ‖gj − Eigj + Eigj‖C(Iµ)

≤ ‖(I − Ei)gj‖C(Iµ) + ‖Eigj‖C(Iµ)

≤ ‖(I − Ei)gj‖+ ‖gj‖C(Iµ−1).

Repeatedly, we conclude

‖gj‖C(Iµ−1) ≤ ‖(I − Ei)gj‖+ ‖gj‖C(Iµ−2).

Therefore, for all 1 ≤ µ ≤ 4N ,

‖gj‖C(Iµ) ≤ 2‖(I − Ei)gj‖+ ‖gj‖C(Iµ−2)

· · ·

≤ (µ− 1)‖(I − Ei)gj‖+ ‖gj‖C(I1)

≤ µ‖(I − Ei)gj‖.

According to
4N
⋃

µ=1

Iµ = RN ,
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there is a constant CN > 0 independent of gj such that

‖gj‖ ≤ CN‖(I − Ei)gj‖, i, j = 1, ..., s.

Therefore,

‖TkF‖ ≤ CN‖(I − E)TkF‖. (2.12)

The desired assertion follows from (2.11) and (2.12), i.e.

‖(I − E)TkF‖ ∼ ‖TkF‖.

After proving (2.10), we get by (2.9)

max
1≤i≤s

‖Sk(I − Ei)‖ ∼ ‖Tk‖, (2.13)

which in turn implies

ρ(∆S) = lim
k→∞

‖Tk‖
1

k .

The right side of the above equality is the usual definition for the spectral radius of T.

Therefore, one has for all k ≥ 1 the estimate

lim
l→∞

‖Tl‖
1

l ≤ ‖Tk‖
1

k .

From this inequality and (2.13), we conclude that there exists a constant C > 0 such

that for all k ≥ 1,

ρk(∆S) ≤ C sup
1≤i≤s

‖Sk(I − Ei)‖,

which gives the desired assertion.

By Lemmas 2.2.2 and 2.2.3, we obtain

ρ(∆S) = lim
k→∞

{ max
α∈Zs,1≤i≤s

|△eia
k(α)|}

1

k .

According to Theorem 2.2.1 the second condition in Theorem 1.0.1 is equivalent to

ρ(∆S) < 1. We now proceed to the proof of Theorem 2.2.1.

Proof of the Theorem 2.2.1 . We first discuss the necessity of the condition. On one

hand, if S
kψ converges to a function ϕ ∈ C(RN) in a continuous norm, then, for

i = 1, ..., s,

lim
k→∞

‖(I − E

1

2k

i )Skψ‖ = 0.
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On the other hand, using E
k
A

m = A
m
E
2mk and Lemma 2.2.2, we have for i = 1, ..., s,

‖(I − E

1

2k

i )Skψ‖ = ‖Sk(I − Ei)ψ‖ ∼ ‖Sk(I − Ei)‖.

Thus, limk→∞ ‖Sk(I − Ei)‖ = 0 and

lim inf
k→∞

max
1≤i≤s

‖Sk(I − Ei)‖ = 0.

Moreover, by Lemma 2.2.3, we have for any fixed 0 < ε < 1 and sufficiently large k ,

ρk(∆S) ≤ C sup
1≤i≤s

‖Sk(I − Ei)‖ < ε,

which implies ρ(∆S) < 1 as desired.

To show the sufficiency, we suppose ρ(∆S) < 1. Note that for ψ there is a Laurent

polynomial c′(z) such that ψ = Ac′(E)ψ. On the other hand, by the second assertion of

Lemma 2.2.2, ρ(∆S) < 1 implies
∑

α a(β + 2α) = 1 for β ∈ Z
s. Since c(x)− c′(x) = 0

for x ∈ {−1, 1}s, then the Taylor’s formula means that there exist some polynomials pj

satisfying

c(z)− c′(z) =
s
∑

j=1

(1− z2j )pj(z).

The detailed proof can be found in Lemma 2.2.3.

Hence, Sψ − ψ = Ac(E)ψ − Ac′(E)ψ = A(c(E) − c′(E))ψ. Using these two identities

and E
k
A

m = A
m
E
2mk, we obtain, for some C > 0, 0 < r < 1 and k large enough,

‖Sk+1ψ − S
kψ‖ = ‖

s
∑

j=1

S
k
A(I − E

2
j)pj(E)ψ‖

= ‖
s
∑

j=1

S
k(I − Ej)Apj(E)ψ‖

≤ C max
1≤j≤s

‖Sk(I − Ej)‖

≤ Crk.

Thus, Skψ is a Cauchy sequence, whose limit is a nonzero function ϕ as mentioned at

the beginning of this section. The proof is now complete.
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2.3 Characterization by matrices

In this section we give further characterizations for the convergence of the subdivision

scheme by the collection matrices associated with the corresponding mask. First of

all, we introduce the concept of an admissible set, based on which the matrices can be

defined.

A finite set Γ(a) ⊂ Z
s is defined to be an admissible set for the mask {a(α)} provided

that if α ∈ Γ(a) and β 6∈ Γ(a), there holds a(2β − α + e) = 0 for every e ∈ Es. It is

known (see [10]) that an admissible set Γ(a) can be characterized as follows.

Lemma 2.3.1. A finite set Γ(a) ⊂ Z
s is an admissible set if and only if

Γ(a) + Ω− e

2
∩ Z

s ⊆ Γ(a), ∀ e ∈ Es, (2.14)

where Ω is the support of mask {a(α)}.

Proof. Suppose Γ(a) is an admissible set. If (2.14) is not true, there exists β ∈ (Γ(a) +

Ω − e)/2 ∩ Z
s such that β /∈ Γ(a). By the definition of the admissible set, we get

a(2β−α+ e) = 0, for α ∈ Γ(a). That is 2β−α+ e /∈ Ω. But, on the other hand, there

is some γ ∈ Ω and α ∈ Γ(a) such that β = (α + γ − e)/2, or γ = e− α + 2β ∈ Ω, i.e.,

a(2β − α + e) = a(γ) 6= 0, which is a contradiction.

Conversely, suppose (2.14) holds. Then it follows that 2β−α+e 6∈ Ω or a(2β−α+e) = 0

for any α ∈ Γ(a) and any β 6∈ Γ(a). Hence Γ(a) is an admissible set.

In order to understand the concept of admissible sets better, we give a simple example of

the construction of admissible sets. If the mask {a(α)} has the property that a(α) = 0

for α 6∈ Γk,k′ , where k = (k1, ..., ks)
T , k′ = (k′1, ..., k

′
s)

T ∈ Z
s and

Γk,k′ = {α ∈ Z
s : α = (α1, ..., αs)

T , ki ≤ αi ≤ k′i, k
′
i − ki > 1, i = 1, ..., s},

then

Γk,k′−1 = {α ∈ Z
s : α = (α1, ..., αs)

T , ki ≤ αi ≤ k′i − 1, i = 1, ..., s}

is an admissible set for {a(α)}. In particular, any rectangle Q with side length greater

than 1, whose extreme points are in Z
s and which contains Ω, is an admissible set.

Moreover, we may also assume that Γ(a) is convex (i.e., [Γ(a)] ∩ Z
s = Γ(a)) and for
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each e ∈ Es, there is α ∈ Γ(a) such that α− e ∈ Γ(a). For a set Γ ⊂ Z
s we denote |Γ|

to be the cardinality of Γ in what follows.

Note that a square matrix A = (A(α, β))1≤α,β≤N is called a row-stochastic matrix if

it satisfies the following two conditions:

1) A(α, β) ≥ 0, ∀α, β = 1, ..., N,

2)
N
∑

β=1

A(α, β) = 1, α = 1, ..., N.

A square matrix A is a generalized row-stochastic matrix, if A satisfies the second

condition.

Suppose Γ(a) is an admissible set. Let N = |Γ(a)|. Then for each e ∈ Es the N × N

matrix Ae is defined by

Ae(α, β) = a(−α + e+ 2β), α, β ∈ Γ(a).

Here, for any N × N matrix, α stands for the row index, while β accounts for the

column index. We assume that the N points from Γ(a) have been put into some

order (e.g., using lexicographic order), which we assume to prevail also in subsequent

formulas where the components of row vectors, or of column vectors, are indexed by

pairs α, β ∈ Γ(a). Clearly, if the mask {a(α)} satisfies the sum rule (1.3), then Ae is a

generalized row-stochastic matrix for all e ∈ Es.

In order to study convergence of the subdivision scheme, we need to analyze the se-

quence (mask) {ak(α)}, k = 1, 2, ..., in term of the matrix Ae. The following result

explores the connection between the mask and the associated matrices (see [10]).

Lemma 2.3.2. Suppose α = −α0+δ1+2δ2+· · ·+2k−1δk+2kβ0, where δ1, δ2, ..., δk ∈ Es

and α0, β0 ∈ Γ(a), then

ak(α) = Aδ1 · · ·Aδk(α0, β0).

Proof. We use an induction argument on k to prove this lemma. For k = 1, suppose

α = −α0 + δ1 + 2β0, where α0, β0 ∈ Γ(a) and δ1 ∈ Es. It is easy to see

Aδ1(α0, β0) = a(−α0 + δ1 + 2β0) = a1(α).

Suppose k > 1 and the lemma holds for k − 1. Then by the hypothesis we have

Aδ2 · · ·Aδk(α
′, β′) = ak−1(α),



23

for any α′, β′ ∈ Γ(a) and α ∈ Z
s such that α = −α′ + δ2 + 2δ3 + · · ·+ 2k−2δk + 2k−1β′.

Suppose now α = −α0 + δ1 + 2δ2 + · · ·+ 2k−1δk + 2kβ0. Because Γ(a) is an admissible

set and

ak(α) =
∑

β

ak−1(β)a(α− 2β),

we obtain

Aδ1Aδ2 · · ·Aδk(α0, β0) =
∑

τ∈Γ(a)

Aδ1(α0, τ) · Aδ2 · · ·Aδk(τ, β0)

=
∑

τ∈Γ(a)

a(−α0 + δ1 + 2τ) · ak−1(−τ + δ2 + · · ·+ 2k−2δk + 2k−1β0)

=
∑

τ∈Zs

a(−α0 + δ1 + 2τ) · ak−1(−τ + δ2 + · · ·+ 2k−2δk + 2k−1β0)

=
∑

µ∈Zs

a(−α0 + δ1 + 2δ2 + · · ·+ 2k−1δk + 2kβ0 − 2µ) · ak−1(µ)

=
∑

µ∈Zs

a(α− 2µ)ak−1(µ)

= ak(α).

The induction and the calculation above give the desired assertion.

Before proceeding further we introduce the following notations. For a given mask

{a(α)}, the set Γ(a) is an admissible set with N integers, which will be arranged as

{α1, ..., αN}. For x = (xα1
, xα2

, ..., xαN
)T ∈ R

N , let

‖x‖∆ = max
α,β∈Γ(α)

|xα − xβ|

be the norm in the factor space R
N/{||x||∆ = 0 : x ∈ R

N} and for any generalized

row-stochastic matrix A of size N , we denote

‖A‖∆ = sup
‖x‖∆ 6=0

‖Ax‖∆
‖x‖∆

.

Then it is easy to verify the following lemma.

Lemma 2.3.3. Suppose A and B are two generalized row-stochastic matrices of the

same size, then

‖AB‖∆ ≤ ‖A‖∆ · ‖B‖∆.
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Now we are going to present the second proof of Theorem 1.0.1 by using the matrix

norm || · ||∆ (see also in [10]).

Theorem 2.3.4. The subdivision scheme associated with the finite mask {a(α) : α ∈

Z
s}, which satisfies the sum rule (1.3), converges if and only if there exists k0 such that

for all k ≥ k0 and all δj ∈ Es one holds

‖Aδ1 · · ·Aδk‖∆ < 1.

Proof. We start with the following assertion:

sup
γ∈Zs,e∈Es

|ak(γ)− ak(γ − e)| ≤ max
δ1,...,δk∈Es

‖Aδ1 · · ·Aδk‖∆ (2.15)

≤ N2 sup
α∈Zs,e∈Es

|ak(α)− ak(α− e)|,

wherever {a(α) : α ∈ Z
s} satisfies the sum rule (1.3).

In fact, let us begin with the first inequality of (2.15) and let γ ∈ Z
s. We distinguish

between the trivial case when ak(γ) = 0, ak(γ − e) = 0 and the more involved cases

when ak(γ) 6= 0 or ak(γ − e) 6= 0.

For the trivial case, we have nothing more to do.

In the case of ak(γ) 6= 0, it is clear that γ ∈ Ωk. Then by the definition of the admissible

set (see Section 2.3), there exist α0, α0 + e ∈ Γ(a) such that for some δj ∈ Es,

γ + α0 = δ1 + 2δ2 + · · ·+ 2k−1δk + 2kβ0.

Therefore α0 = 2kβ0 + λ− γ with the understanding λ = δ1 +2δ2 + · · ·+2k−1δk, which

implies that β0 ∈ Γ(a). It follows from Lemma 2.3.2 that

ak(γ) = Aδ1Aδ2 · · ·Aδk(α0, β0) and ak(γ − e) = Aδ1Aδ2 · · ·Aδk(α0 + e, β0).

Assume x = (xα1
, ..., xαN

)T ∈ R
N with {α1, ..., αN} = Γ(a) such that xβ0

= 1 and

xβ = 0, β 6= β0. Thus,

ak(γ) =
∑

β∈Γ(a)

Aδ1Aδ2 · · ·Aδk(α0, β)xβ and ak(γ−e) =
∑

β∈Γ(a)

Aδ1Aδ2 · · ·Aδk(α0+e, β)xβ.

We conclude by the definition of the norm and ||x||∆ = 1 that

|ak(γ)− ak(γ − e)| ≤ ‖Aδ1 · · ·Aδk‖∆.
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This inequality is also valid for the case of ak(γ − e) 6= 0. Thus, the first estimate

follows from the last inequality.

We now prove the second inequality of (2.15). As Aδ1 · · ·Aδk is generalized row-

stochastic, we have for any y ∈ R
N

‖Aδ1 · · ·Aδky‖∆ = max
α,α′∈Γ(a)

|
∑

β∈Γ(a)

(Aδ1 · · ·Aδk(α, β)− Aδ1 · · ·Aδk(α
′, β)) · yβ|

= max
α,α′∈Γ(a)

|
∑

β∈Γ(a)

(Aδ1 · · ·Aδk(α, β)− Aδ1 · · ·Aδk(α
′, β)) · (yβ − yβ′)|

≤ max
α,α′∈Γ(a)

∑

β∈Γ(a)

|(Aδ1 · · ·Aδk(α, β)− Aδ1 · · ·Aδk(α
′, β)| · ||y||∆.

That is

‖Aδ1 · · ·Aδk‖∆ ≤ max
α,α′∈Γ(a)

∑

β∈Γ(a)

|(Aδ1 · · ·Aδk(α, β)− Aδ1 · · ·Aδk(α
′, β)| (2.16)

≤ N max
α,α′,β∈Γ(a)

|(Aδ1 · · ·Aδk(α, β)− Aδ1 · · ·Aδk(α
′, β)|

≤ N max
α,α′,β∈Γ(a)

|ak(−α + λ′ + 2kβ)− ak(−α′ + λ′ + 2kβ)|,

where λ′ = δ1 + 2δ2 + · · · + 2k−1δk. Since the number of elements of Γ(a) is N , the

distance of α, α′ ∈ Γ(a) is bounded by N . The same result holds also for −α+λ′+2kβ

and −α′ + λ′ + 2kβ. With this in mind we obtain from (2.16) that

‖Aδ1 · · ·Aδk‖∆ ≤ N max
α,α′∈Zs,|α−α′|≤N

|ak(α)− ak(α′)|.

We may write α′ = α− e0 − 2e1 − · · · − 2pep for some p ≤ [log2N ] and ej ∈ Es. Thus,

|ak(α)− ak(α′)| ≤ |ak(α)− ak(α− e0)|+ |ak(α− e0)− ak(α− e0 − e1)|

+ |ak(α− e0 − e1)− ak(α− e0 − e1 − e1)|

+ |ak(α− e0 − e1 − e1)− ak(α− e0 − 2e1 − e2)|+ · · ·

+ |ak(α− e0 − · · · − (2p − 1)ep)− ak(α− e0 − · · · − 2pep)|

≤ N max
α∈Zs,e∈Es

|ak(α)− ak(α− e)|,
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which gives

‖Aδ1 · · ·Aδk‖∆ ≤ N2 sup
α∈Zs,e∈Es

|ak(α)− ak(α− e)|.

Moreover, let e1, ..., es be the canonical unit vectors of Zs. Then there holds

sup
α∈Zs,1≤j≤s

|ak(α)− ak(α− ej)| ≤ sup
α∈Zs,e∈Es

|ak(α)− ak(α− e)|

≤ s sup
α∈Zs,1≤j≤s

|ak(α)− ak(α− ej)|.

In other words, if the mask satisfies the sum rule (1.3), then

max
δ1,...,δk∈Es

‖Aδ1 · · ·Aδk‖∆ ∼ sup
α∈Zs,1≤j≤s

|ak(α)− ak(α− ej)|.

By Lemma 2.2.2 we conclude that

max
1≤i≤s

||Sk(I − Ei)|| ∼ max
δ1,...,δk∈Es

‖Aδ1 · · ·Aδk‖∆.

Consequently,

ρ(∆S) = lim inf
k→∞

max
1≤i≤s

||Sk(I − Ei)||
1

k = lim inf
k→∞

max
δ1,...,δk∈Es

‖Aδ1 · · ·Aδk‖
1

k

∆.

Then the assertion of this theorem follows from Theorem 2.2.1

Now we investigate ||Aδ1 · · ·Aδk ||∆ for the case s = 1. If the mask {a(α)} satisfies the

sum rule, then the associated Laurent polynomial can be written as c(z) = (1 + z)b(z)

for some polynomial b. It follows that

k−1
∏

j=0

c(z2
j

) =
1− z2

k

1− z

k−1
∏

j=0

b(z2
j

).

Hence (see Section 2.2),

||Sk(I − E)|| ∼ ||Tk|| ∼ max
α

|bk(α)|,

where the mask {b(α)} is associated with the Laurent polynomial b. Let B0(i, j) =

b(−i + 2j) and B1(i, j) = b(−i + 1 + 2j) be two square matrices with i, j ∈ Γ(a).

We conclude from Lemma 2.3.2 that Bδ1 · · ·Bδk(i, j) = bk(−i + λ + 2kj) with λ =

δ1 + 2δ2 + · · ·+ 2k−1δk and δj ∈ {0, 1}. Hence for some matrix norm || · || there holds

||Aδ1 · · ·Aδk ||∆ ∼ ||Bδ1 · · ·Bδk ||.
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We know that the spectral radius of a square matrix A is defined by

ρ(A) := lim
k→∞

‖Ak‖
1

k , ‖A‖ := max
‖v‖=1

{‖ Av ‖},

where ‖ · ‖ can be any given norm. Let {A1, ..., AN} be a finite collection of square

matrices of the same size and || · || a fixed matrix norm. Then the joint spectral

radius of {A1, ..., AN} (see [24]) is defined to be

ρ(A1, ..., AN) := lim
k→∞

max
j1,...,jk∈{1,...,N}

‖Ajk · · ·Aj1‖
1

k .

In recent years much progress has been made on the joint spectral radius, and in prac-

tice, it can often be computed to satisfactory precision. Moreover, it brings interesting

insights into engineering and mathematical problems. The quantity

lim sup
k→∞

max
δj∈{0,1}

||Bδ1 · · ·Bδk ||
1

k

is the joint spectral radius ρ(B0, B1) of B0 and B1. Theorem 2.3.4 implies that the

convergence of subdivision schemes can be characterized by ρ(B0, B1) < 1, when s = 1

(see [10]). Hence, there is a close connection between convergence of the subdivision

schemes and the joint spectral radius of the collection matrices associated with the

corresponding mask. However, the calculation of joint spectral radii even for those

defined by masks, seems very difficult. In fact, the decision problem is in general NP-

hard as showed in [25].

2.4 Decision of the joint spectral radius

In this section, we show that the decision of the joint spectral radius is generally NP-

hard. In 1997, Tsitsiklis and Blondel have concluded that, unless P=NP, approximating

algorithms for the joint spectral radius cannot possibly run in polynomial time. They

proved in [25] the following

Theorem 2.4.1. Let N ≥ 2. Then to decide whether the joint spectral radius ρ(A1, ..., AN) ≥

m is NP-hard.
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Proof. Clearly, we only need to show this assertion for N = 2. Suppose A0 and A1 are

square matrices with the same size. Denote

Γ = {{A0, A1} : ρ(A0, A1) ≥ m and m > 0}.

Since 3SAT is an NP-complete problem (see [8]), Γ is NP-hard, whenever 3SAT ≤p Γ,

i.e., 3SAT can be reduced in polynomial time according to the size of 3SAT to Γ. To

this end, let

3SAT = {f(x1, ..., xn) : ∃x1, ..., xn ∈ {0, 1}, f(x1, ..., xn) = 1, n ∈ N},

where f(x1, ..., xn) has the form f(x1, ..., xn) = L1 ∧ · · · ∧Ll, and clauses Li, i = 1, ..., l,

are defined by

Li = x
ǫi,1
i,1 ∨ x

ǫi,2
i,2 ∨ x

ǫi,3
i,3 , xi,1, xi,2, xi,3 ∈ {x1, ..., xn}

with the understanding

xǫ =







x, ǫ = 1,

¬x, ǫ = 0

and ¬x is the negation of variable x .

The instance of Γ with respect to f is a set of two adjacent matrices of two directed

graphs, that depend on f . We begin with the construction of those graphs G0(V,E0)

and G1(V,E1). The set of vertexes V for both graphs are the same. These are given as

follows: for each pair {Li, xj}, let wij ∈ V , i = 1, ..., l; j = 1, ..., n. The vertex w0j ∈ V

corresponds to xj, j = 1, ..., n. Finally, wi(n+1) ∈ V is associated with each Li and

s ∈ V is the start vertex. So we have a total of r := |V | = (n+1)(l+1) vertices. Next,

we construct edges in the following way:

i) For i = 1, ..., l and j = 1, ..., n−1, let E be the edges in both G0(V,E0) and G1(V,E1)

such that

(s, wi1), (w0j, w0(j+1)) and (w0n, s) ∈ E.
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ii) Moreover, let

E0,1 = {(wij, wi(j+1)) : if xj appears in Li, i = 1, ..., l; j = 1, ..., n},

E0,2 = {(wij, w0j) : if ¬xj appears in Li, i = 1, ..., l; j = 1, ..., n},

E1,1 = {(wij, w0j) : if xj appears in Li, i = 1, ..., l; j = 1, ..., n},

E1,2 = {(wij, wi(j+1)) : if ¬xj appears in Li, i = 1, ..., l; j = 1, ..., n},

E3 = {(wij, wi(j+1)) : if xj or ¬xj does not appears in Li, i = 1, ..., l; j = 1, ..., n}.

Now define E0 = E0,1 ∪E0,2 ∪E3 ∪E and E1 = E1,1 ∪E1,2 ∪E3 ∪E. Note that for each

i = 1, ..., l and each j = 1, ..., n the graphs G0(V,E0) and G1(V,E1) always have the edge

(wij, wi(j+1)). Furthermore, (wij, w0j) is an edge of G0(V,E0) only if ¬xj appears in Li.

The matrices A0 and A1 are adjacent matrices of G0(V,E0) and G1(V,E1), respectively.

We may regard in sometimes that V is arranged as {1, ..., r}. Hence, A0 = (au,v)1≤u,v≤r

is defined to be

auv =







1, (u, v) ∈ E0,

0, otherwise.

The entries of A1 are given in the same way. It is easy to see that the construction of

A0 and A1 can be realized in polynomial time with respect to the size of the instance

f .

Next we will prove that the instance f of 3SAT is satisfiable if and only if ρ(A1, A2) ≥

l
1

n+2 , i.e., with m = l
1

n+2 , f ∈ 3SAT , which is equivalent to {A0, A1} ∈ Γ. To this end,

let α ∈ V and the r-dimensional column vector x(α) = (x1, ..., xα, ..., xr)
T such that

xi =







1, i = α,

0, i 6= α.
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We divide V to be

P1 := {w0n, wi(n+1) : i = 1, ..., l},

P2 := {w0(n−1), win : i = 1, ..., l},

· · ·

Pj := {w0(n+1−j), wi(n+2−j)},

Pj+1 := {w0(n+1−j−1), wi(n+2−j−1)},

· · ·

Pn := {w01, wi2 : i = 1, ..., l},

Pn+1 := {wi1 : i = 1, ..., l} and

Pn+2 := {s}.

Denote t(α) = h, if α ∈ Ph, for 1 ≤ h ≤ n + 2. By this definition any edge (from

G0(V,E0) or G1(V,E1)) leaving from a vertex of partition Ph, goes to a vertex of

partition Ph−1, i.e., if wh ∈ Ph, then there exists at least one wh−1 ∈ Ph−1 such that

(wh, wh−1) is an edge. Furthermore, the unique edge in both G0(V,E0) and G1(V,E1)

from partition P1 to partition Pn+2 is (w0n, s). In other words, this partition builds

with the edges in a cyclical form:

Pn+2 → Pn+1 → ...→ P2 → P1 → Pn+2.

Thus, any path in G0(V,E0) and G1(V,E1) starting from vertex α, i.e., α ∈ Pt(α), either

gets to a vertex wi(n+1), from which there is no outgoing edge, or visits node s after t(α)

steps. The transformation of this observation into matrix terms implies the following:

let α be any arbitrary vertex and t(α) be its associated partition index. If h ≡ t(α)

(mod (n+ 2)) and A is a product of h matrices of A0 and A1, then Ax(α) = µx(s) for

some µ > 0. For example, if α = wi(n+1−j) then α ∈ Pj+1. Hence

A0x(α) = δx(w0(n+1−j)) + x(wi(n+2−j)),

where

δ =







1, (wi(n+1−j), w(i−1)(n+1−j)) ∈ E0,

0, otherwise;
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and A1x(α) = (1 + ε)x(wi(n+2−j)) with

ε =







1, (wi(n+1−j), wi(n+1−j)) ∈ E1,

0, otherwise.

Moreover, A0x(w0(n+1−j)) = x(w0(n+2−j)), A1x(w0(n+1−j)) = x(w0(n+2−j)) and

A(x(w0n)) = x(s) for A = A0 or A1.

Next let δ1, ..., δn ∈ {0, 1} be a truth assignment of f . We consider the product

Aδn · · ·Aδ1 . Thus, with the vector x(wi1) there holds

Aδn · · ·Aδ1x(wi1) =







x(w0n), if the clause Li is satisfied,

x(wi(n+1)), otherwise.

On the other hand, let B be any of A0 or A1. Because

1) there are no edges leaving from wi(n+1),

2) there is one edge from w0n to s,

3) there are edges from s to wi1, for i = 1, ..., l,

we have Bx(wi(n+1)) = 0, Bx(w0n) = x(s) and Bx(s) =
∑l

i=1 x(wi1). We conclude,

therefore, that

BAδn · · ·Aδ1Bx(s) = BAδn · · ·Aδ1

l
∑

i=1

x(wi1)

= B
l
∑

i=1

Aδn · · ·Aδ1x(wi1)

= λx(s),

where λ is equal to the number of clauses that are satisfied by the given truth assign-

ment. We further notice that λ is an eigenvalue of BAδn · · ·Aδ1B with the eigenvector

x(s).

Now we prove the theorem. First assume that the instance f of 3SAT is satisfied by

the assignment xi = δi for δ1, ..., δn ∈ {0, 1} and define A to be BAδn · · ·Aδ1B with B

being any of A0 or A1. Since all l clauses of f are satisfied, we have from the above
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discussion Ax(s) = lx(s). By the definition of the joint spectral radius for two matrices

we obtain ρ(A0, A1) ≥ l
1

n+2 .

On the other hand, assume that the instance f of 3SAT is not satisfiable. Suppose

yt =
∑

α∈Pt
x(α) for t = 1, ..., n + 2 and let A be a product of n + 2 matrices of A0

and A1. Since the instance f of 3SAT is not satisfiable, the number of clauses that are

satisfied by any given truth assignment is less than l, i.e., λ < l. Consequently, we have

‖Ayt‖ ≤ (l − 1)‖yt‖ = l − 1 for t = 1, ..., n+ 2,

where ‖ · ‖ is the vector maximal norm. Now let ǫ =
∑n+2

t=1 yt and Aǫ =
∑n+2

t=1 Ayt.

Clearly, the entries of ǫ are all equal to 1. The nonzero entries of Ayt are at the same

place as the nonzero entries of yt. Hence, together with Ayt = λyt, we deduce

‖Aǫ‖ = ‖
∑

Ayt‖ = max
t

‖Ayt‖ ≤ l − 1.

The entries of A are all nonnegative and so ‖A‖ = ‖Aǫ‖ for the maximal row sum

matrix norm. Thus we have ‖A‖ ≤ l − 1, i.e., ρ(A0, A1) ≤ (l − 1)
1

n+2 .

According to Theorem 2.4.1, it is usually impractical to calculate the value of the joint

spectral radius by the definition. We see also that the direct estimation of this quantity

has an exponentially increasing cost, if P 6= NP . Therefore, it is useful in practice to

find some nontrivial classes of matrices, for that we can simply determinate the value

of ρ(A1, ..., AN).

2.5 Computability of two 2× 2 matrices

In 2000 Bröker and Zhou (see [2]) investigated the joint spectral radius constructed

by a four-coefficient mask and obtained a computable condition for the existence of a

continuous, compactly supported mask. In this section we will present that, for certain

families of 2 × 2 matrices, this joint spectral radius can be exactly calculated. The

following theorem was first proved in [2].

Theorem 2.5.1. Suppose B0 and B1 are two 2 × 2 matrices. If det(B0) ≤ 0 or

det(B1) ≤ 0, then

ρ(B0, B1) = sup
i+j≥1,i,j≥0

(ρ(Bi
0B

j
1))

1

i+j . (2.17)
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Proof. First we notice (see [1]) that the joint spectral radius ρ(A1, ..., AN) can be ob-

tained by

ρ(A1, ..., AN) = lim sup
k→∞

max
l1,...,lk∈{1,...,N}

ρ(Al1 · Al2 · · ·Alk)
1

k .

Using this result we need to estimate ρ(Bd1 · · ·Bdn) for all d1, ..., dn ∈ {0, 1} and n ≥ 1.

To this end, denote the value on the right-hand side of (2.17) by ρ. Without loss of

generality, we may assume that det(B0) ≤ 0.

We need only to prove this assertion for det(B0) < 0, because of the continuity of the

joint spectral radius with respect to the determinants of B0 and B1 (see [12]). Assume

λ1 and λ2 are the eigenvalues of B0, then det(B0) = λ1 · λ2 < 0. The matrix B0 is

similar to a diagonal matrix according to the condition on this matrix. On the other

hand, there holds ρ(B0, B1) = ρ(MB0M
−1,MB1M

−1), where M is any regular 2 × 2

matrix (see [11]). Therefore, we may suppose that B0 is a diagonal matrix and write

B0 =

(

λ1 0

0 λ2

)

.

To prove the assertion with the restriction detB0 < 0, we will divide the proof in-

to two cases according to det(B1) = 0 and det(B1) 6= 0, respectively. Write κ :=

max{ρ(B0), ρ(B1)}.

Case 1. det(B1) 6= 0. We notice that the trace of a 2 × 2 matrix B has the following

property,

| |Tr(B)| − ρ(B)| ≤ | det(B)|
1

2 .

According to this inequality, we conclude that, for any dj ∈ {0, 1},

| |Tr(Bd1Bd2 · · ·Bdn)| − ρ(Bd1Bd2 · · ·Bdn)| ≤ | det(Bd1Bd2 · · ·Bdn)|
1

2

≤ (| det(Bd1)| · | det(Bd2)| · · · | det(Bdk)|)
1

2

≤ κn.

Furthermore, because the trace is cyclical, i.e.,

Tr(A1 · · ·An) = Tr(Ai · · ·AnA1 · · ·Ai−1), (2.18)

we may write Tr(Bd1Bd2 · · ·Bdn) as Tr(Bj1
1 B

j2
0 · · ·Bjm−1

1 Bjm
0 ) with some jτ > 0 such
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that
∑m

τ=1 jτ = n. Assume jm > 1 and

Bj1
1 B

j2
0 · · ·Bjm−1

1 =

(

a b

c d

)

.

Then

Bj1
1 B

j2
0 · · ·Bjm−1

1 Bjm
0 =

(

a b

c d

)

·

(

λjm1 0

0 λjm2

)

=

(

aλjm1 bλjm2

cλjm1 dλjm2

)

.

Therefore, if a · d ≤ 0, then (aλ1) · (dλ2) ≥ 0 ( since λ1 · λ2 < 0). We obtain

|Tr(Bj1
1 B

j2
0 · · ·Bjm−1

1 Bjm
0 )| = |aλjm1 + dλjm2 |

= |(aλ1)λ
jm−1
1 + (dλ2)λ

jm−1
2 |

≤ κjm−1|aλ1 + dλ2|

= κjm−1|Tr(Bj1
1 B

j2
0 · · ·Bjm−1

1 B0)|

= κjm−1|Tr(Bjm−1

1 B0B
j1
1 B

j2
0 · · ·Bjm−3

1 B
jm−2

0 )|.

If however a · d > 0, so a and d have the same sign. We get in the same way

|Tr(Bj1
1 B

j2
0 · · ·Bjm−1

1 Bjm
0 )| ≤ κjm |Tr(Bjm−1+j1

1 Bj2
0 · · ·Bjm−3

1 B
jm−2

0 )|.

Now it is clear that if an exponent of B0 in the product is greater than 1, then (2.18)

and the above consideration imply that we can reduce this exponent to 1 or 0. Finally,

we obtain either

|Tr(Bd1Bd2 · · ·Bdn)| ≤ κl|Tr(Bn−l
1 )| ≤ 2κn

or

|Tr(Bd1Bd2 · · ·Bdn)| ≤ κτ |Tr(Bτ1
1 B0B

τ2
1 B0 · · ·B

τp
1 B0)| (2.19)

with τ + τ1 + τ2 + ...+ τp + p = n.

Let us treat (2.19). Clearly, if det(B1) < 0, then the trace on the right hand side of

(2.19) can be estimated by

|Tr(Bτ1
1 B0B

τ2
1 B0 · · ·B

τp
1 B0)| ≤ κn + κn−τ−2l|Tr((B0B1)

l)|,

since both det(B0) and det(B1) are less than 0. Consequently,

|Tr(Bd1Bd2 · · ·Bdn)| ≤ κn−2l(κ2l + |Tr((B1B2)
l)|).
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If however det(B1) > 0, let τ ′ := min{τi : i = 1, ..., p} and κ1 := supj≥0(ρ(B
j
1B0))

1

j+1 .

In view of the property of the trace we may write for some li ≥ 0,

Tr(Bτ1
1 B0B

τ2
1 B0 · · ·B

τp
1 B0) = Tr(Bl1

1 (B
τ ′

1 B0) · · ·B
lp−1

1 (Bτ ′

1 B0)(B
τ ′

1 B0)).

As det(Bτ ′

1 B0) < 0 we may regard (Bτ ′

1 B0) as the matrix B0 in the above process to

obtain either

|Tr(Bl1
1 (B

τ ′

1 B0) · · ·B
lp−1

1 (Bτ ′

1 B0)(B
τ ′

1 B0))| ≤ κτ
′+1

1 |Tr(Bl1
1 (B

τ ′

1 B0) · · ·B
lp−1

1 (Bτ ′

1 B0))|

or

|Tr(Bl1
1 (B

τ ′

1 B0) · · ·B
lp−1

1 (Bτ ′

1 B0)(B
τ ′

1 B0))| ≤ κ2τ
′+2

1 |Tr(Bl1
1 (B

τ ′

1 B0) · · ·B
lp−1

1 )|.

Hence, in this case the number of B0 in the product

Bτ1
1 B0B

τ2
1 B0 · · ·B

τp
1 B0

(i.e., Bl1
1 (B

τ ′

1 B0) · · ·B
lp−1

1 (Bτ ′

1 B0)(B
τ ′

1 B0)) can be reduced by at least one. Repeatedly,

we obtain for (2.19) in case det(B1) > 0,

|Tr(Bτ1
1 B0B

τ2
1 B0 · · ·B

τp
1 B0)| ≤ κ

τ1+τ2+···+τp+p−j−1
1 |Tr(Bj

1B0)| = κn−τ−j−1
1 |Tr(Bj

1B0)|

with some j ≥ 0. Therefore, as κ ≤ κ1 ≤ ρ we conclude from (2.18) for the case

det(B1) 6= 0 and det(B0) < 0 that

ρ(Bd1Bd2 · · ·Bdn) ≤ |Tr(Bd1Bd2 · · ·Bdn)|+ κn ≤ 3ρn.

The relation (see [1])

ρ(B0, B1) = lim sup
k→∞

sup
di∈{0,1}

(ρ(Bd1Bd2 · · ·Bdk))
1

k

implies now ρ = ρ(B0, B1) in case det(B1) 6= 0 and det(B0) < 0.

Case 2. det(B1) = 0. To relax the restriction det(B1) 6= 0 we note that there exists

a sequence ek, which satisfies limk→∞ ek = 0, such that det(B1,ek) 6= 0 for B1,ek :=

B1+ ekI, where I is the identity matrix, i.e., I = diag(1, 1). The continuity of the joint

spectral radius (see [12]) tells us that

lim
k→∞

ρ(B0, B1,ek) = ρ(B0, B1).
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In view of the above calculations for the case det(B1) 6= 0, we have for some ik and jk

ρ(B0, B1) = lim
k→∞

(ρ(Bik
0 B

jk
1,ek

))
1

ik+jk . (2.20)

We may assume that one of the ik and jk tends to infinity or for a subsequence of k.

Otherwise, if both ik and jk are bounded, our assertion is already true. Without loss

of generality we may assume jk → ∞, so

ρ(Bik
0 B

jk
1,ek

) ≤ ‖Bik
0 ‖ · ‖Bjk

1,ek
‖. (2.21)

On the other hand, for any ε > 0 there exists n such that

‖Bm
1 ‖ ≤ (ρ(B1) + ε)m, ∀ m ≥ n.

Hence, for some η > 0 we have

‖Bjk
1,ek

‖ = ‖(B1 + ekI)
jk‖ = ‖

jk
∑

m=0

(

jk

m

)

ejk−m
k Bm

1 ‖

≤

jk
∑

m=0

(

jk

m

)

ejk−m
k (ρ(B1) + ε)m + ηejk−n

k jnk

≤ (ρ(B1) + ε+ ek)
jk + ηejk−n

k jnk .

We conclude that

lim sup
k→∞

‖Bjk
1,ek

‖
1

jk ≤ ρ(B1) + ε,

which is valid for arbitrary ε > 0. Thus

lim sup
k→∞

‖Bjk
1,ek

‖
1

jk ≤ ρ(B1).

According to (2.20) and (2.21) we get

ρ(B0, B1) = lim
k→∞

(ρ(Bik
0 B

jk
1,ek

))
1

ik+jk ≤ lim
k→∞

(‖Bik
0 ‖

1

ik ‖Bjk
1,ek

‖
1

jk )

≤ max{ρ(B0), ρ(B1)}.

Therefore, ρ = ρ(B0, B1).
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From the proof of Theorem 2.5.1, the spectral radii of the following cases can be easily

calculated. More precisely, suppose B0 and B1 to be two 2× 2 matrices, we have

i) If det(B0) ≤ 0 and det(B1) ≤ 0, then

ρ(B0, B1) = max{(ρ(B0B1))
1

2 , ρ(B0), ρ(B1)}.

ii) If det(B0) ≤ 0 and det(B1) ≥ 0, then

ρ(B0, B1) = sup
j≥0

(ρ(Bj
1B0))

1

j+1 .

Moreover, in the case (ii), there exists some j′ so that

ρ(B0, B1) = max{ max
0≤j≤j′

(

ρ(Bj
1B0)

)
1

j+1 , ρ(B1)}. (2.22)

Indeed, otherwise we would have ρ(B0, B1) > ρ(B1) and for any j′ > 1,

ρ(B0, B1) = sup
j≥j′

(ρ(Bj
1B0))

1

j+1

≤ sup
j≥j′

(‖Bj
1‖

1

j+1‖B0‖
1

j+1 ),

which, however, implies ρ(B0, B1) ≤ ρ(B1).
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Chapter 3

Convergent Subdivision Schemes

with Nonnegative Masks

In many problems arising from computer-aided geometric design, the mask is nonnega-

tive (see [6] and [21]). Since the first example of B-spline subdivision (whose multivari-

ate counterparts are box spline subdivision) arose, a comprehensive discussion on the

particular convergence properties of the subdivision schemes with nonnegative masks

are presented. In 2005 the uniform convergence of nonnegative univariate subdivision

has been completely characterized in [28]. The result can be described as follows.

Theorem 3.0.1. Let {a(j) : j = 0, ..., N} be a nonnegative mask, which satisfies

a(0), a(N) 6= 0. Then the univariate subdivision scheme associated with this mask

converges if and only if

1)
∑

j a(2j) =
∑

j a(2j + 1) = 1 and 0 < a(0), a(N) < 1, and

2) the greatest common divisor of {j : a(j) 6= 0} is 1.

This result shows that the assumption (1.4) can be replaced by some very simple con-

ditions for the univariate case. Thus, the conjecture raised in [20, 26] is confirmed.

In this case, (1.4) can be tested very quickly even in linear time with respect to the

size of the mask. In 2012 the same problems are considered in [14, 18] based on the

so-called SIA matrices (refering to the properties of being stochastic, indecomposable

and aperiodic). However, for the multivariate case, the corresponding problem is still

open, i.e., whether (1.4) can be replaced by simply and computable conditions. In our

39
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investigation, we will be interested in this problem and hope to get some results, which

are as good as possible.

3.1 Results for multivariate subdivision

There are various partial results on convergence of nonnegative subdivision. It is a

remarkable fact that the convergence does not rely on the actual values of the mask

but rather on the support of the masks, i.e., {α : a(α) 6= 0} (see [7, 16, 17, 20, 22]). In

1999 Jia and Zhou (see [16]) characterised the convergence of the subdivision scheme by

using the products of matrices when the mask is nonnegative (see also [22]). Thus, the

problem of the convergence is related to several row-stochastic matrices induced by the

mask. In this way, the convergence of the subdivision scheme can be determined within

a finite number of steps by checking whether each finite product of those row-stochastic

matrices has a positive column. In [16] (see also [22]) it is shown, among others, that

the following theorem holds.

Theorem 3.1.1. The multivariate subdivision scheme with the nonnegative finite mask

{a(α)} converges if and only if

1) the mask satisfies the sum rule (1.3), and

2) for each δj ∈ Es, j = 1, ..., k, k = 2N
2

, the matrix Aδ1 · · ·Aδk has a positive column,

where N = |Γ(a)| with Γ(a) being an admissible set.

Let us recall the definition of matrix Aδ introduced in Section 2.3. For each δ ∈ Es, let

the N ×N matrix Aδ be

Aδ(α, β) = a(−α + δ + 2β), α, β ∈ Γ(a). (3.1)

Clearly, if the mask {a(α)} is nonnegative and satisfies the sum rule (1.3), then Aδ is

row-stochastic matrix for all δ ∈ Es. An interesting consequence of this characterization

is that the convergence of the subdivision scheme with a nonnegative mask relies only on

the location of its positive coefficients. However, it seems difficult to verify the second

condition of Theorem 3.1.1 since 2s2
N2

different matrices need to be checked. Although

we may use a result in [23] to reduce the number of matrices by O(2s3
N

), it seems still

unrealistic to examine so many matrices. We also note that the complexity to build

the product Aδ1 · · ·Aδk and to check the positivity of those products is O(N32N
2

).
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Some partial results have been obtained, which simplify the second condition of Theo-

rem 3.1.1. For example, the corresponding problem is solved in [29] when the support

Ω of the mask {a(α)} is the so-called centered zonotope. If a nonnegative mask satisfies

the sum rule (1.3) and its support is a centered zonotope, then the subdivision scheme

deduced from this mask is always convergent. Nevertheless, the convergence problem

for the multivariate subdivision scheme with nonnegative finite masks supported on

non-centered zonotope is unresolved.

We will focus on this subject in this dissertation and present some quickly computable

sufficient conditions on the convergence of the subdivision scheme with nonnegative

finite masks finally. At the beginning, we will use a new approach to investigate the

convergence of the subdivision schemes with nonnegative masks and try to replace the

second condition of Theorem 3.1.1 by a simple and easily calculable one.

3.2 Mappings generated by masks

We will make some reductions to transform the problems of convergence of multivariate

subdivision schemes into one of combinatorics and number theory in this section. Before

doing so we introduce more notations and lemmas, that will be applied in the process

of some proofs in the subsequent parts of this thesis.

We begin with the construction of the iterated mask {ak(α)}. Let Γ ⊂ Z
s and the

direct sum Γk, k ∈ N, be defined by

Γk = Γ + 2Γ + · · ·+ 2k−1Γ. (3.2)

Lemma 3.2.1. Let the finite mask {a(α) : α ∈ Z
s} be nonnegative and Ω be the

support of {a(α) : α ∈ Z
s}. Then Ωk = {α : ak(α) 6= 0}.

Proof. By (2.2) there holds

ak(α) =
∑

β0+2β1+···+2k−1βk−1=α

a(β0) · · · a(βk−1), ∀α ∈ Z
s.
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Assume β ∈ Ωk, so there are βj ∈ Ω, j = 0, 1, ..., k − 1, such that β = β0 + 2β1 + · · ·+

2k−1βk−1. Thus a(β0) · · · a(βk−1) > 0. Consequently,

ak(β) ≥ a(β0) · · · a(βk−1) > 0

or β ∈ {α : ak(α) 6= 0}. Conversely, if β ∈ {α : ak(α) 6= 0}, then

ak(β) =
∑

β0+2β1+···+2k−1βk−1=β

a(β0) · · · a(βk−1) > 0.

There is at least one (β0, ..., βk−1) satisfying a(β0) · · · a(βk−1) > 0. Hence, βj ∈ Ω, j =

0, ..., k − 1, and β = β0 + 2β1 + · · ·+ 2k−1βk−1 ∈ Ωk.

We see from this lemma

α ∈ Ωk ⇐⇒ α =
k−1
∑

j=0

2jγj for some γj ∈ Ω, (3.3)

which explains that the elements in the support Ωk of the iterated mask {ak(α)} can

be represented by the points in the support Ω of the mask {a(α)}. We will frequently

use this relation in the subsequent chapters. We recall that (x)α is defined to be the α-

coordinate of the vector x ∈ R
N (see Section 2.2). From the above lemma we conclude

immediately the connection between the support Ωk with the iterated mask {ak(α)}

and the admissible set for the mask {a(α)} (see also Lemma 2.3.2).

Lemma 3.2.2. Let {a(α)} be a finite nonnegative mask and satisfy the sum rule (1.3).

Let further Γ(a) be an admissible set of {a(α)} and λ ∈ Z
s satisfying 0 ≤ (λ)j ≤ (2k−1)

with k ∈ N. Then, for any α ∈ Γ(a)

ak(−α + 2kβ + λ) = 0, ∀ β 6∈ Γ(a).

Furthermore, if α ∈ Γ(a) and for some β ∈ Z
s and γ ∈ Ωk there holds

α = 2kβ + λ− γ.

Then, β ∈ Γ(a).

Proof. Without loss of generality, we take λ =
∑k

j=1 2
j−1δj with δj ∈ Es. We prove

the first assertion by induction on k. For k = 1, putting λ = δ ∈ Es (for aesthetic
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expressions, we use δ substitute δk in the case of k = 1) the statement is just the

definition of an admissible set. Suppose k > 1 and assume that the lemma in the case

of k − 1 has been verified, more precisely, take λ′ =
∑k−1

j=1 2
j−1δj with δj ∈ Es, which

satisfies 0 ≤ (λ′)j ≤ (2k−1−1) with k ∈ N such that one has ak−1(−γ+2k−1β+λ′) = 0,

for any γ ∈ Γ(a) and any β 6∈ Γ(a). Let λ = δ1 + 2λ′ with δ1 ∈ Es, then for any

α ∈ Γ(a) and any β 6∈ Γ(a), we have

ak(−α + 2kβ + λ) =
∑

η

ak−1(η)a(−α + 2kβ + λ− 2η)

=
∑

γ

ak−1(−γ + 2k−1β + λ′)a(−α + 2γ + δ1).

Because Γ(a) is an admissible set, γ in the last sum can be restricted to Γ(a). However,

for those γ by the hypothesis of induction ak−1(−γ + 2k−1β + λ′) = 0, which gives

ak(−α + 2kβ + λ) = 0 and the first assertion is proved.

The second assertion follows from the first one and Lemma 3.2.1. Suppose β /∈ Γ(a),

from the first assertion, for α ∈ Γ(a), we have

ak(−α + 2kβ + λ) = 0.

Since

α = 2kβ + λ− γ,

then

γ = −α + 2kβ + λ.

It follows that ak(γ) = 0, so γ /∈ Ωk, a contradiction which implies β ∈ Γ(a).

In order to reduce the convergence problem, we introduce a mapping FB as follows (see

[26]). First, for any T ⊆ Γ(a), let χT be a vector in R
N and N = |Γ(a)| such that

(χT )α =







1, α ∈ T,

0, otherwise.

Next we define a mapping for any nonnegative N ×N row-stochastic matrix B by

FB(T ) = {α ∈ Γ(a) : (BχT )α = 1} ⊆ Γ(a)
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and for simplicity we use Fδ instead of FAδ
, where Aδ is given by (3.1).

Recall the definition of the norm ‖ · ‖∆ (see Section 2.3). So for x ∈ R
N , we have

‖x‖∆ = max x − min x, where max x := maxα∈Γ(a)(x)α and min x := minα∈Γ(a)(x)α.

Next we shall focus on some peculiar properties of the mapping FB and afterwards

characterize the divergent subdivision scheme with a nonnegative mask by means of

the mapping FB. The following argument is similar as the univariate case in [26] (see

also [29]). We have

Lemma 3.2.3. Let B be a nonnegative row-stochastic matrix of size N = |Γ(a)|.

1) ‖Bx‖∆ ≤ ‖x‖∆ and FB(T1)
⋂

FB(T2) = ∅, if T1
⋂

T2 = ∅.

2) Let B1, B2 be two nonnegative row-stochastic matrices with the same size, then

FB1B2
(T ) = FB1

(T ) ◦ FB2
(T ),

where FB1
(T ) ◦ FB2

(T ) is also written as FB1
(FB2

(T )).

3) The subdivision scheme with a nonnegative mask, which satisfies the sum rule (1.3),

diverges if and only if there exist disjoint proper subsets T and T ′ of Γ(a), and a sequence

(δ1, δ2, ..., δm), δl ∈ Es for some m > 1, such that

T = Fδ1 ◦ · · · ◦ Fδm(T ) and T ′ = Fδ1 ◦ · · · ◦ Fδm(T
′). (3.4)

Proof. 1) Let x ∈ R
N . For α ∈ Γ(a) we have (Bx)α =

∑

β∈Γ(a)B(α, β)(x)β and

‖Bx‖∆ = max
α∈Γ(a)

∑

β∈Γ(a)

B(α, β)(x)β − min
α∈Γ(a)

∑

β∈Γ(a)

B(α, β)(x)β

= max
α,γ∈Γ(a)

|
∑

β∈Γ(a)

B(α, β)(x)β −
∑

β∈Γ(a)

B(γ, β)(x)β|.

Put (x)µ = min x. Then, we get

‖Bx‖∆ = max
α,γ∈Γ(a)

|
∑

β∈Γ(a)

B(α, β)((x)β − (x)µ)−
∑

β∈Γ(a)

B(γ, β)((x)β − (x)µ)|

≤ max
α∈Γ(a)

∑

β∈Γ(a)

B(α, β)((x)β − (x)µ)

≤ max
α∈Γ(a)

∑

β∈Γ(a)

B(α, β)‖x‖∆

= ‖x‖∆.
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To prove the rest of 1), suppose to the contrary that FB(T1)
⋂

FB(T2) 6= ∅. Let

α ∈ FB(T1)
⋂

FB(T2), then for N × N nonnegative matrix B, we obtain (BχT1
)α =

1 and (BχT2
)α = 1, which imply that

∑

j∈Γ(a)

B(α, j)(χT1
)j = 1 and

∑

j∈Γ(a)

B(α, j)(χT2
)j = 1.

As B is row-stochastic, we conclude from those identities that B(α, j) 6= 0 implies

(χT1
)j = 1 and (χT2

)j = 1. Consequently,

∑

j∈Γ(a),(χT1
)j=1

B(α, j) = 1 and
∑

j∈Γ(a),(χT2
)j=1

B(α, j) = 1.

Hence, T1 ∩ T2 6= ∅. The proof of 1) is complete.

2) According to the definition of the mapping FB, we have

FB1
(T ) = {α ∈ Γ(a) : (B1χT )α = 1}, FB2

(T ) = {α ∈ Γ(a) : (B2χT )α = 1}

and

FB1B2
(T ) = {α ∈ Γ(a) : (B1B2χT )α = 1}.

Moreover, assume α ∈ FB1B2
(T ), so

1 = (B1B2χT )α =
∑

j∈Γ(a)

B1B2(α, j)(χT )j.

Since B1B2(α, j) =
∑

τ∈Γ(a)B1(α, τ)B2(τ, j), we conclude by the above equation that

1 =
∑

j∈Γ(a)

∑

τ∈Γ(a)

B1(α, τ)B2(τ, j)(χT )j

=
∑

τ∈Γ(a)

B1(α, τ)





∑

j∈Γ(a)

B2(τ, j)(χT )j



 =
∑

τ∈Γ(a)

B1(α, τ)(χFB2
(T ))τ .

As B1 is row-stochastic, we must have that B1(α, τ) 6= 0 implies τ ∈ FB2
(T ), so

α ∈ FB1
(FB2

(T )).

Let now α ∈ FB1
(FB2

(T )), so
∑

τ∈Γ(a)B1(α, τ)(χFB2
(T ))τ = 1. Thus, as the above, we

obtain (B1B2χT )α = 1. Hence, α ∈ FB1B2
(T ).
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3) Firstly we give the following claim:

Suppose that there exists a k0 ∈ N such that for all k > k0, δj ∈ Es and all T ⊆ Γ(a),

Fδ1 ◦ · · · ◦ Fδk(T ) = ∅ or Fδ1 ◦ · · · ◦ Fδk(T
c) = ∅

holds, where T c := Γ(a) \ T . Then the subdivision scheme with the nonnegative mask

converges.

In fact, according to Theorem 2.3.4, we need only to prove that there is k0 ∈ N such that

for all k > k0 and all δj ∈ Es, the inequality ‖Aδ1 · · ·Aδkx‖∆ < ‖x‖∆ holds. Without

loss of generality we may suppose that max x = 1 and min x = 0, where x ∈ R
N , for

we may always normalize it to such form. So ‖x‖∆ = 1. Let T = {α ∈ Γ(a) : (x)α >

min x}, then (x)α ≤ (χT )α, α ∈ Γ(a). This deduces (Aδ1 · · ·Aδkx)α ≤ (Aδ1 · · ·AδkχT )α,

α ∈ Γ(a). On the other hand, by the definition of mapping FB and Lemma 3.2.3 (2)

we have

{α : (Aδ1 · · ·AδkχT )α = 1} = Fδ1 ◦ · · · ◦ Fδk(T ), (3.5)

{α : (Aδ1 · · ·AδkχT c)α = 1} = Fδ1 ◦ · · · ◦ Fδk(T
c). (3.6)

It is clear that (3.6) means for those α

∑

j∈Γ(a)

Aδ1 · · ·Aδk(α, j)(χT c)j = 1.

As Aδ1 · · ·Aδk is row-stochastic, we conclude then that Aδ1 · · ·Aδk(α, j) 6= 0 implies

(χT c)j = 1, i.e., (χT )j = 0. So

∑

j∈Γ(a)

Aδ1 · · ·Aδk(α, j)(χT )j = 0.

In other words,

{α : (Aδ1 · · ·AδkχT )α = 0} = Fδ1 ◦ · · · ◦ Fδk(T
c). (3.7)

Therefore by (3.5), Fδ1 ◦ · · · ◦ Fδk(T ) = ∅ means that 0 ≤ (Aδ1 · · ·AδkχT )α < 1 for all

α ∈ Γ(a). Thus,

‖Aδ1 · · ·Aδkx‖∆ ≤ max
α∈Γ(a)

(Aδ1 · · ·Aδkx)α ≤ max
α∈Γ(a)

(Aδ1 · · ·AδkχT )α < 1 = ‖x‖∆.

While by (3.7) Fδ1 ◦ · · · ◦ Fδk(T
c) = ∅ means 0 < (Aδ1 · · ·AδkχT )α ≤ 1 for all α ∈ Γ(a).

So for each α ∈ Γ(a) there exists at least one β ∈ Γ(a) such that Aδ1 · · ·Aδk(α, β) 6= 0
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and (χT )β 6= 0. Hence, β ∈ T and (x)β > 0. We conclude that (Aδ1 · · ·AδkχT )α > 0

implies (Aδ1 · · ·Aδkx)α > 0. Consequently, as 0 < (Aδ1 · · ·AδkχT )α ≤ 1 for all α ∈ Γ(a),

one has 0 < (Aδ1 · · ·Aδkx)α ≤ 1 for all those α. We obtain

‖Aδ1 · · ·Aδkx‖∆ ≤ max
α,α′∈Γ(a)

|(Aδ1 · · ·Aδkx)α − (Aδ1 · · ·Aδkx)α′ | < 1 = ‖x‖∆.

Thus, ‖Aδ1 · · ·Aδk‖∆ < 1, δj ∈ Es. The proof of this claim is complete.

Now we prove the necessity of 3). If the subdivision scheme diverges, by the above

claim, then there exist a sequence ǫj ∈ Es, j = 1, ..., n with sufficiently large n > 22N

and a proper subset T0 of Γ(a) such that

Fǫ1 ◦ · · · ◦ Fǫn(T0) 6= ∅ and Fǫ1 ◦ · · · ◦ Fǫn(T
c
0 ) 6= ∅.

Without loss of generality, we take that

Tj := Fǫn−j+1
◦ · · · ◦ Fǫn(T0)

and

Rj := Fǫn−j+1
◦ · · · ◦ Fǫn(T

c
0 ) ∀ 0 ≤ j ≤ n.

It is obvious that all Tj and Rj are nonempty. Moreover, Tj ∩ Rj = ∅. Because Γ(a)

has 2N − 1 nonempty subsets and n > 22N , there exists j1 < j2 < · · · < jk with k > 2N

such that Tji = T for some nonempty set T ⊂ Γ(a). Now, k > 2N implies that there

exist js < jt such that

Rjs = Rjt = T ′,

where T ′ is also nonempty. Hence

Fǫn−js+1
◦ · · · ◦ Fǫn−jt

(T ) = T and Fǫn−js+1
◦ · · · ◦ Fǫn−jt

(T ′) = T ′.

Now Tj∩Rj = ∅ for all j by Lemma 3.2.3(1). So in particular T ∩T ′ = ∅. The assertion

(3.4) follows by setting (δ1, ..., δm) = (ǫn−js+1, ..., ǫn−jt).

Finally we prove the sufficiency of 3). Suppose that (3.4) holds, so (Fδ1◦· · ·◦Fδm)
n(T ) 6=

∅ and (Fδ1 ◦ · · · ◦ Fδm)
n(T c) 6= ∅. Clearly T ′ ⊆ T c. It follows from (3.5) and (3.7) that

max((Aδ1 · · ·Aδm)
nχT )α = 1 and min((Aδ1 · · ·Aδm)

nχT )α = 0, respectively. Then

‖(Aδ1 · · ·Aδm)
n‖∆ = 1, n ≥ 1.

This shows that the subdivision scheme diverges.
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Remark 3.2.4. Lemma 3.2.3(3) holds under the same hypothesis but with (3.4) re-

placed by the relaxed condition:

T ⊆ Fδ1 ◦ · · · ◦ Fδm(T ) and T ′ ⊆ Fδ1 ◦ · · · ◦ Fδm(T
′)

(see the proof of Theorem 3.3.1 in Section 3.3).

Before proceeding further, we introduce another mapping Ψ, in order to compute map-

ping Fδ explicitly. To this end, let us first observe the quotient group Z
s/(2Zs). Clearly,

Z
s/(2Zs) = {< λ >: λ ∈ Z

s} and < λ >= {α ∈ Z
s : α ≡ λ (mod 2)}.

We should also denote for a given finitely supported real mask {a(α)} the set

A(λ) = {α : a(α) 6= 0 and α ≡ λ (mod 2)}, ∀λ ∈ Z
s.

Thus, A(λ) is a subset of < λ >. Let

Ψ(T ) =
⋃

δ∈Es

{
⋂

β∈A(δ)

(2T − β)}, ∀ T ⊂ Z
s.

For the sake of the demonstration of Lemma 3.2.6, firstly we construct a column index

set associated with nonzero entries of some row of matrix Aδ. Given δ ∈ Es and

α ∈ Γ(a), denote Iα = {β : Aδ(α, β) 6= 0}. Observe this column index set, then we get

the following property (see [26]).

Lemma 3.2.5. For some δ′ ∈ Es such that α ≡ δ′ − δ (mod 2), there holds

Iα =
A(δ′)− δ + α

2
∩ Z

s.

Proof. Let β ∈ Iα. By the definition of Aδ, we conclude that a(δ + 2β − α) 6= 0.

Together with δ+2β−α ≡ δ′ (mod 2), it yields that δ+2β−α ∈ A(δ′), which implies

β ∈ (A(δ′)− δ + α)/2.

Conversly, suppose β ∈ (A(δ′)−δ+α)/2 to be a multi-integer. So δ+2β−α ∈ A(δ′) ⊂ Ω

and a(δ + 2β − α) 6= 0. That is β ∈ Iα.

In [26] Wang gave the relationship between mappings Fδ and Ψ for the univariate case,

where the support of the mask is contained in {0, ..., N} and Γ(α) = {0, ..., N −1}. For

the multivariate case, the argument is similar and is generalized in [29]. For convenience,

we repeat and explain the proof.
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Lemma 3.2.6. For any T ⊆ Γ(a) and any δ ∈ Es, we have

Fδ(T ) = (Ψ(T ) + δ) ∩ Γ(a).

Furthermore, for any δl ∈ Es, l = 1, ..., k, there holds for λ =
∑k

j=1 δj2
j−1,

Fδ1 ◦ · · · ◦ Fδk(T ) = (Ψk(T ) + λ) ∩ Γ(a).

Proof. To show the first assertion, let α ∈ Fδ(T ). By the definition of mapping Fδ(T ),

we have (AδχT )α = 1, i.e.,

∑

β∈Iα

(χT )βa(δ + 2β − α) = 1.

Then Iα ⊆ T . Moreover, we obtain by Lemma 3.2.5 that

α ∈
⋂

β∈A(δ′)

(2T − β + δ).

Consequently,

Fδ(T ) ⊆
⋃

δ′∈Es

⋂

β∈A(δ′)

(2T − β + δ) = (Ψ(T ) + δ) ∩ Γ(a).

On the other hand, let α ∈ (Ψ(T ) + δ) ∩ Γ(a). By the definition of Ψ(T ), for some

δ′ ∈ Es, one has α ∈ Γ(a) and α ∈
⋂

β∈A(δ′)(2T − β + δ). It in turn implies that

α ∈ 2T − β + δ for all β ∈ A(δ′), or α + A(δ′) − δ ⊆ 2T . Thus by Lemma 3.2.5, we

have Iα ⊆ T and (χT )β = 1 whenver β ∈ Iα. Since Iα := {β : Aδ(α, β) 6= 0} and Aδ is

a row-stochastic matrix, we conclude that

∑

β∈Iα

(χT )βa(δ + 2β − α) = 1.

Therefore, α ∈ Fδ(T ) and the first assertion holds.

To prove the second assertion, we use the induction on the number of compositions.

We suppose that the second assertion holds for k − 1 ≥ 1, i.e., for λ′ =
∑k−1

j=1 δj+12
j−1,

we have

Fδ2 ◦ · · · ◦ Fδk(T ) = (Ψk−1(T ) + λ′) ∩ Γ(a).
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Then,

Fδ1 ◦ · · · ◦ Fδk(T ) = (Ψ(Fδ2 ◦ · · · ◦ Fδk(T )) + δ1) ∩ Γ(a)

= (Ψ{(Ψk−1(T ) + λ′) ∩ Γ(a)}+ δ1) ∩ Γ(a)

= (Ψk(T ) + 2λ′ + δ1) ∩ Γ(a)

= (Ψk(T ) + λ) ∩ Γ(a).

This is the second assertion.

The following lemma allows us to choose k and λ explicitly, which leads to the compu-

tation of T for some Ω (see also [29]).

Lemma 3.2.7. Let {a(α)} be a nonnegative mask and let its support be Ω. If the

corresponding subdivision scheme with this nonnegative mask, which satisfies the sum

rule (1.3), diverges, then there exist disjoint proper subsets T and T ′ of Γ(a), such that

T = (Ψk(T ) + λ) ∩ Γ(a) and T ′ = (Ψk(T ′) + λ) ∩ Γ(a), (3.8)

where λ =
∑k

j=1 δj2
j−1 with δj ∈ Es, j = 1, ..., k. In particular, we can choose k = k′m

for some k′ ≥ 1 and any fixed m ≥ m0 ≥ 1 such that 0 ≤ (λ)j ≤ (2k−1), j = 1, 2, ..., s.

Moreover, if (λ)j 6= 0, 2k − 1, then for some 0 < ε1 < ε2 < 1, there holds

ε12
k ≤ (λ)j ≤ ε22

k.

Proof. By Lemma 3.2.3(3) the divergence implies that for some disjoint proper subsets

T and T ′, there holds

T = Fδ1 ◦ · · · ◦ Fδk′
(T ) and T ′ = Fδ1 ◦ · · · ◦ Fδk′

(T ′),

for some k′ ≥ 1 and δj ∈ Es, j = 1, 2, ..., k′. Denote L := Fδ1 ◦ · · · ◦ Fδk′
and

λ =
∑k′

j=1 δj2
j−1. Then for all m ≥ 1,

T = Lm(T ) and T ′ = Lm(T ′).

It follows from Lemma 3.2.6 that for any δj ∈ Es with j = 1, ..., k′,

Fδ1 ◦ · · · ◦ Fδk′
◦ · · · ◦ Fδ1 ◦ · · · ◦ Fδk′

(T ) = (Ψmk′(T ) + λ′) ∩ Γ(a) and
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Fδ1 ◦ · · · ◦ Fδk′
◦ · · · ◦ Fδ1 ◦ · · · ◦ Fδk′

(T ′) = (Ψmk′(T ′) + λ′) ∩ Γ(a),

where

λ′ = λ+ λ2k
′

+ · · ·+ λ2(m−1)k′

= λ
m−1
∑

i=0

2ik =
λ

2k′ − 1
(2k

′m − 1).

Then

T = (Ψk′m(T ) + λ′) ∩ Γ(a) and T ′ = (Ψk′m(T ′) + λ′) ∩ Γ(a). (3.9)

We can choose sufficiently large m to meet the restrictions. Finally, substituting k =

k′m and defining λ to be λ′, we obtain (3.8) from (3.9).

3.3 New characterization of the convergence

We are now in the position to establish the main result of this chapter, which presents

the necessary and sufficient condition on the convergent subdivision scheme with finitely

supported nonnegative mask.

Theorem 3.3.1. The subdivision scheme with a nonnegative mask {a(α)}, whose sup-

port is Ω and which satisfies the sum rule (1.3), converges if and only if for any k ∈ N,

δ1, ..., δk ∈ Es and λ =
∑k

j=1 2
j−1δj, the inclusion relations for any nonempty sets T

and T ′ of Γ(a)

T − λ+ Ωk

2k
∩ Z

s ⊆ T and
T ′ − λ+ Ωk

2k
∩ Z

s ⊆ T ′

imply T ∩ T ′ 6= ∅.

Proof. We need one more technical claim before we attack the proof of this assertion.

We claim that for any k ∈ N, δ1, ..., δk ∈ Es and λ =
∑k

j=1 2
j−1δj, there holds

T ⊆ Fδ1 ◦ · · · ◦ Fδk(T ) ⇔
T − λ+ Ωk

2k
∩ Z

s ⊆ T. (3.10)

Indeed in one direction, since T ⊆ Fδ1 ◦· · ·◦Fδk(T ) = {α ∈ Γ(a) : (Aδ1 · · ·AδkχT )α = 1},

Aδ1 · · ·Aδk restricted to T is row-stochastic. On the other hand, by Lemma 2.3.2,

Aδ1 · · ·Aδk(α, β) = ak(−α + λ+ 2kβ). (3.11)
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Thus, if

β ∈
T − λ+ Ωk

2k
,

there are α ∈ T and r ∈ Ωk satisfying 2kβ − α + λ ∈ Ωk. Consequently, ak(−α + λ +

2kβ) 6= 0. As Aδ1 · · ·Aδk is row-stochastic on T , we must have β ∈ T .

In the opposite direction, because of (3.11), the condition (T − λ + Ωk)/2k ∩ Z
s ⊆ T

implies that Aδ1 · · ·Aδk is row-stochastic on T . Thus, for all α ∈ T

1 =
∑

β∈T

Aδ1 · · ·Aδk(α, β) =
∑

β∈Γ(a)

Aδ1 · · ·Aδk(α, β)(χT )β.

Hence, α ∈ Fδ1 ◦ · · · ◦ Fδk(T ). So T ⊆ Fδ1 ◦ · · · ◦ Fδk(T ).

We now return to the proof of Theorem 3.3.1 and firstly prove the necessity. Assume

T, T ′ ⊆ Γ(a) to be nonempty satisfying

T − λ+ Ωk

2k
∩ Z

s ⊆ T and
T ′ − λ+ Ωk

2k
∩ Z

s ⊆ T ′.

In view of (3.10) we obtain with λ = δ1 + 2δ2 + · · ·+ 2k−1δk

T ⊆ Fδ1 ◦ · · · ◦ Fδk(T ) and T ′ ⊆ Fδ1 ◦ · · · ◦ Fδk(T
′).

Clearly the matrix Aδ1 · · ·Aδk restricted to T and T ′, respectively, is row-stochastic. If

T ∩ T ′ 6= ∅, we have nothing more to do. Otherwise T ∩ T ′ = ∅, we claim that

Fδ1 ◦ · · · ◦ Fδk(T ) ∩ Fδ1 ◦ · · · ◦ Fδk(T
′) = ∅.

In fact, if α ∈ Fδ1 ◦ · · · ◦ Fδk(T ) ∩ Fδ1 ◦ · · · ◦ Fδk(T
′), then

1 =
∑

β∈T

Aδ1 · · ·Aδk(α, β)(χT )β =
∑

β∈T ′

Aδ1 · · ·Aδk(α, β)(χT ′)β.

We would have β ∈ T and β′ ∈ T ′ such that

Aδ1 · · ·Aδk(α, β) 6= 0 and Aδ1 · · ·Aδk(α, β
′) 6= 0.

This is however impossible, because

∑

β∈T

Aδ1 · · ·Aδk(α, β) = 1 and
∑

β∈T ′

Aδ1 · · ·Aδk(α, β) = 1.
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Now it is easy to see that Aδ1 · · ·Aδk restricted to Fδ1◦· · ·◦Fδk(T ) is again row-stochastic,

since for α ∈ Fδ1 ◦ · · · ◦ Fδk(T )

1 ≥
∑

β∈Fδ1
◦···◦Fδk

(T )

Aδ1 · · ·Aδk(α, β)(χFδ1
◦···◦Fδk

(T ))β ≥
∑

β∈T

Aδ1 · · ·Aδk(α, β)(χT )β = 1.

In other words,

Fδ1 ◦ · · · ◦ Fδk(T ) = (Fδ1 ◦ · · · ◦ Fδk)(Fδ1 ◦ · · · ◦ Fδk(T )).

The same holds also for Fδ1 ◦ · · · ◦ Fδk(T
′). Consequently, for proper disjoint subsets

T1 = Fδ1 ◦ · · · ◦ Fδk(T ) and T2 = Fδ1 ◦ · · · ◦ Fδk(T
′), we get

T1 = Fδ1 ◦ · · · ◦ Fδk(T1) and T2 = Fδ1 ◦ · · · ◦ Fδk(T2).

By Lemma 3.2.3(3), the subdivision scheme diverges. This contradiction means T∩T ′ 6=

∅, which leads to the required result.

We finally prove the sufficiency. Suppose to the contrary that the corresponding subdi-

vision scheme diverges. By Lemma 3.2.3(3), there exist disjoint proper subsets T and

T ′ of Γ(a), for some m ≥ 1 and δj ∈ Es, j = 1, ...,m,

T ⊆ Fδ1 ◦ · · · ◦ Fδm(T ) and T ′ ⊆ Fδ1 ◦ · · · ◦ Fδm(T
′).

So by (3.10), with λ = δ1 + 2δ2 + · · ·+ 2m−1δm

T − λ+ Ωm

2m
∩ Z

s ⊆ T and
T ′ − λ+ Ωm

2m
∩ Z

s ⊆ T ′.

This ends the proof of the sufficiency.

The sets in Theorem 3.3.1 have a nice property worth presenting before we go on. It

will be used to prove the theorems in the later chapters.

Corollary 3.3.2. Let k ∈ N, Ω ⊂ Z
s, |Ω| <∞ and λ ∈ Z

s. If T ⊂ Z
s satisfies

T − λ+ Ωk

2k
∩ Z

s = T, (3.12)

then (2k − 1)T + λ ⊆ [Ωk] ∩ Z
s.
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Proof. (3.12) means

(2k − 1)T + λ+ (2k − 1)Ωk

2k
∩ Z

s = (2k − 1)T + λ.

Denote L = (2k−1)T+λ, then for any x0 ∈ L, there exist xi ∈ L and ηi =
∑k−1

µ=0 2
µri,µ ∈

Ωk, ri,µ ∈ Ω, i = 1, 2, ..., such that

x0 =
x1 + η1(2

k − 1)

2k
, (3.13)

x1 =
x2 + η2(2

k − 1)

2k
,

x2 =
x3 + η3(2

k − 1)

2k
,

...

xl−1 =
xl + ηl(2

k − 1)

2k
,

....

The second formula of (3.13), which is an expression of variable x1, will be substituted

for the variable x1 in the right hand side of the first formula of (3.13). Then we get

x0 =
x2+η2(2k−1)

2k
+ η1(2

k − 1)

2k
=
x2 + η2(2

k − 1) + 2kη1(2
k − 1)

22k
.

The variable x2 in the right hand side will be replaced by the third formula of (3.13).

Repeating the above steps, x0 can be written as:

x0 =
∞
∑

i=1

ηi(2
k − 1)

2ki
=

2k − 1

2k
·

∞
∑

i=1

ηi
2k(i−1)

.

On the other hand, we have

2k − 1

2k

∞
∑

i=1

1

2k(i−1)
= 1.

Hence, x0 can be denoted as a convex combination of ηi, which means that x0 ∈ [Ωk]∩Zs.

The proof is complete.

Theorem 3.3.1 illustrates further that the convergence of the subdivision scheme does

not rely on the actual values of the mask but rather on the support of the mask. In

the next chapter, we will use this result to study the convergence of a few subdivision

schemes with finitely supported nonnegative mask.



Chapter 4

Applications of Theorem 3.3.1 and

Further Reductions

A remarkable fact of the class of nonnegative masks is that the convergence does not rely

on the actual values of the mask but rather on the support of the mask. It means that

the distribution of the support determines whether the subdivision scheme converges

or not. In the previous chapter, we have given the improved necessary and sufficient

condition on the convergence of the subdivision schemes with nonnegative finite masks

by Theorem 3.3.1. In this chapter we will use this theorem to get some applications

and extensions.

In order to understand Theorem 3.3.1 better, we give some examples to demonstrate

the power and applicability of our approach, and also introduce some theorems and

corollaries associated with our main result in this chapter. First we are concerned with

the converse-and-negative statement of Theorem 3.3.1.

Theorem 4.0.1. The subdivision scheme with a nonnegative mask {a(α)}, whose sup-

port is Ω and which satisfies the sum rule (1.3), diverges if and only if there exist

disjoint proper subsets T and T ′ of Γ(a) and a sequence (δ1, ..., δk) with δj ∈ Es, for

some k ≥ 1 and λ =
∑k

j=1 2
j−1δj such that

T − λ+ Ωk

2k
∩ Z

s ⊆ T and
T ′ − λ+ Ωk

2k
∩ Z

s ⊆ T ′. (4.1)
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4.1 Some divergent examples

By Theorem 4.0.1, we may easily determine a divergent subdivision scheme with non-

negative finite mask {a(α)}.

Example 4.1.1. For s = 1, the set Ω = {1, 2} ⊆ Z (see Figure 4.1) is the support of

the corresponding univariate subdivision scheme with the nonnegative mask {a(j)} and

[Ω] ∩ Z is the same as Ω. The sum rule (1.3) holds, i.e., a(1) = 1 and a(2) = 1. Take

T1 = {1} and T2 = {2}, then T1 ∩ T2 = ∅. Let k = 1 and λ = 0, then we have

T1 + Ω

2
∩ Z = {

1 + 1

2
} = {1} ⊆ T1 and

T2 + Ω

2
∩ Z = {

2 + 2

2
} = {2} ⊆ T2.

It is clear that the condition of Theorem 4.0.1 holds, so the subdivision scheme diverges.

0 1 2

a(1) = 1 a(2) = 1

Figure 4.1: s = 1

Example 4.1.2. For s = 2, the set Ω ⊆ Z
2 (see Figure 4.2) is the support of the

corresponding bivariate subdivision scheme with nonnegative mask {a(α)} and [Ω]∩Z
2

is the same as Ω. There are 8 points, in detail a1, a2, b1, b2, c1, c2, d1, d2, in Ω such

that

a1 ≡ a2 (mod 2), b1 ≡ b2 (mod 2), c1 ≡ c2 (mod 2) and d1 ≡ d2 (mod 2).

Without loss of generality, let a1 = (0, 0)T , a2 = (0, 2)T , b1 = (1, 0)T , b2 = (1, 3)T ,

c1 = (1, 1)T , c2 = (1, 3)T , d1 = (0, 1)T and d2 = (0, 3)T . Moreover, we choose T1 =

{a1, a2, d1, d2} and T2 = {b1, b2, c1, c2}. So T1 ∩ T2 = ∅. For k = 1 and λ = (0, 0)T ,

we have
T1 − λ+ Ω

2
∩ Z

2 ⊆ T1 and
T2 − λ+ Ω

2
∩ Z

2 ⊆ T2.

It means that T1 and T2 satisfy (4.1). Therefore, by Theorem 4.0.1, the subdivision

scheme with this nonnegative mask, whose support is Ω, diverges.
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Ω =

T1 T2

d2 c2

a2 b2

d1 c1

a1 b1

Figure 4.2: s = 2

For the 3-dimensional divergent subdivision scheme, the simplest one, we draw three

unit cubes with 16 integral points (see Figure 4.3). Then take two parallel planes

respectively, where there are 8 multi-integer points in each one. The integral points

for each plane are grouped into T1 and T2, which indeed have same construction to

Example 4.1.2 and have the same results. In order to go beyond this construction, we’ll

give a more complex example in the case s = 3.

Example 4.1.3. For s = 3, let Ω ⊆ Z
3 (see Figure 4.4) be the support of the cor-

responding three-variate subdivision scheme with the nonnegative mask {a(α)}. There

are 16 points, in detail ai, bi, ci, di, ei, fi, gi, hi with i = 1, 2 in Ω such that

ai ≡ ci (mod 2), bi ≡ ei (mod 2), hi ≡ di (mod 2) and fi ≡ gi (mod 2).

Without loss of generality, let a1 = (0, 1, 2)T , a2 = (1, 1, 2)T , b1 = (0, 2, 2)T , b2 =

(1, 2, 2)T , c1 = (0, 3, 2)T , c2 = (1, 3, 2)T , d1 = (0, 1, 3)T , d2 = (1, 1, 3)T , e1 = (0, 0, 0)T ,

e2 = (1, 0, 0)T , f1 = (0, 2, 1)T , f2 = (1, 2, 1)T , h1 = (0, 1, 1)T , h2 = (1, 1, 1)T , g1 =

(2, 2, 1)T and g2 = (−1, 2, 1)T .

We note that

i) there are a1, b1, c1, d1, e1, f1 and h1 in the plane S0 where S0 := {(x, y, z) : x = 0},
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Ω =

T1 T2

d2 c2

a2 b2

d1 c1

a1 b1

f2 h2

e2 g2

f1 h1

e1 g1

Figure 4.3: s = 3 (the simplest case)

S−1

a1

b1
h1 f1

c1

d1

e1

g2

S0

S1

a2

b2
h2 f2

c2

d2

e2

g1

S2

Figure 4.4: s = 3
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a1

b1

h1 f1

p1

p2

p3

c1

d1

e1

S0

Figure 4.5: Projection on S0

ii) there are a2, b2, c2, d2, e2, f2 and h2 in the plane S1 where S1 := {(x, y, z) : x = 1},

iii) there are g2 in the plane S−1 where S−1 := {(x, y, z) : x = −1} and

iv) there are g1 in the plane S2 where the plane S2 := {(x, y, z) : x = 2}.

Let

T1 = {a1, b1, c1, d1, e1, h1} and

T2 = {a2, b2, c2, d2, e2, h2, f1, f2, g1, g2}.

It is easy to see that T1 is a tringle c1d1e1 on S
0 with 6 integers a1, b1, c1, d1, e1, h1 (see

Figure 4.5 with color black) and T2 is a polyhedron whose projection on S0 is p1p2f1p3

(see Figure 4.5 with color red). It shows that T1 ∩ T2 = ∅.

For k = 1 and λ = (0, 0, 0)T we have

T1 − λ+ Ω

2
∩ Z

3 ⊆ T1 and
T2 − λ+ Ω

2
∩ Z

3 ⊆ T2.

It means that T1 and T2 satisfy (4.1). By Theorem 4.0.1, the three-variate subdivision

scheme with the nonnegative mask {a(α)}, whose support is Ω, diverges.

According to this example, we also get an observation that Ω = Ω1 ∪ Ω2 and α 6≡ β

(mod 2) for arbitrary α ∈ [Ω1] ∩ Z
3 and arbitrary β ∈ [Ω2] ∩ Z

3 in full similarity with

Example 4.1.2.
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4.2 Irreducible mapping

Comparing these three observations (see Examples 4.1.1, 4.1.2 and 4.1.3) from the

supports in the different dimension, we claim that the supports of the divergent mul-

tivariate subdivision scheme with nonnegative mask {a(α)} have the similar property.

In order to demonstrate this property, we recall that the concept of ’irreducible’, which

is used in several ways in mathematics, such as irreducible (algebraic) set (if it is not

the union of two proper algebraic subsets), irreducible polynomial over field F (if its

coefficients belong to F and it cannot be factored into the product of two polynomials

with coefficients in F ), irreducible matrix (if it is not similar via a permutation to a

block upper triangular matrix), and so on. A good understanding of the ’irreducible’ is

important in the representation of the irreducible support Ω (actually set) associated

with the nonnegative mask {a(α)} as follows.

Definition 4.2.1. A set Ω ⊆ Z
s is called reducible if there exist two disjoint subsets

Ω1 and Ω2 satisfying Ω = Ω1 ∪ Ω2 such that α 6≡ β (mod 2) for any α ∈ [Ω1] ∩ Z
s and

β ∈ [Ω2] ∩ Z
s. A set Ω that is not reducible is said to be irreducible .

Remark 4.2.2. Since uniform convergence of non-negative univariate subdivision has

been full characterized, we assume in this section that s > 1.

Let us revisit Examples 4.1.2 and 4.1.3, then we conclude that the support Ω in these

two examples are both reducible according to Definition 4.2.1. Furthermore, it is easy

to get the following result.

Corollary 4.2.3. If the support Ω of the multivariate subdivision scheme with the

nonnegative mask {a(α)} is reducible, then the corresponding multivariate subdivision

scheme diverges.

Proof. There exist two disjoint subsets Ω1 and Ω2 satisfying Ω = Ω1 ∪ Ω2 such that

α 6≡ β (mod 2) for any α ∈ [Ω1] ∩ Z
s and β ∈ [Ω2] ∩ Z

s. If we put T1 = [Ω1] ∩ Z
s and

T2 = [Ω2] ∩ Z
s, then it is clear that T1 ∩ T2 = ∅. Take k = 1 and λ = 0, then we have

T1 + Ω1

2
∩ Z

s ⊆ T1 and
T2 + Ω2

2
∩ Z

s ⊆ T2,

by the definition of the support Ω and [Ω] being the convex cover of Ω. Together with

the Theorem 4.0.1, it yields that the corresponding multivariate subdivision scheme

diverges.
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Now we give one criterion for checking the necessary condition on a convergent mul-

tivariate subdivision scheme with the nonnegative mask {a(α)}. It is easy to see that

the condition is necessary but not sufficient.

Corollary 4.2.4. If the multivariate subdivision scheme with the nonnegative mask

{a(α)}, whose support is Ω, converges , then the corresponding support Ω is irreducible.

For simplicity in the discussion of Chapter 7, we will go on introducing in this section

the property of being reducible, irreducible and primitive for a mapping among set of

integers (see [19]).

Definition 4.2.5. Let Σ ⊆ Z
s be a finite set. Let further ψ be an additive mapping

defined in the following way:

ψ(∅) = ∅ and ψ(I) ⊆ Σ, ∀ I ⊆ Σ.

We say that ψ is reducible, if there exists a nonempty proper subset I of Σ satisfying

ψ(I) ⊆ I; otherwise ψ is irreducible.

This definition leads to the following concept that ψ is primitive if for all l ∈ N, ψl

is irreducible. It is known (see [19]) that, if ψ is irreducible, there exist k ≥ 1 and

I1, I2, ..., Ik ⊆ Σ such that Ii ∩ Ij = ∅ with i 6= j and I = I1 ∪ · · · ∪ Ik,

ψ(Ii) = Ii+1, i = 1, ..., k

with the understanding Ik+1 = I1 and ψk restricted to Ii, i = 1, ..., k, is primitive.

Moreover, there is τ ∈ N such that for all α ∈ Ii

ψkτ (α) = Ii, i = 1, ..., k.

For us the additive mapping ψ has the form:

ψ(T ) :=
T − λ+ Ωk

2k
∩ Z

s,

where T ⊆ Z
s, λ ∈ Z

s and Ω ⊆ Z
s are finite sets. Instead of ψ, we may simply say, T

is irreducible with respect to Ωk and λ, if

T − λ+ Ωk

2k
∩ Z

s = T (4.2)
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and the additive mapping restricted to the power set of T is irreducible. We call T is

primitive with respect to λ and Ωk, if for all l ∈ N,

T − λ− 2kλ− · · · − 2k(l−1)λ+ Ωkl

2kl
∩ Z

s = T (4.3)

and T is irreducible with respect to λ∗ := λ+ 2kλ+ · · ·+ 2k(l−1)λ and Ωkl.

We come back to Example 4.1.1. It’s easy to see that T1 and T2 corresponding to this

divergent scheme are not only irreducible but also primitive if λ = 0. Furthermore, T1

and T2 are disjoint. The arguments for 2-dimension and 3-dimension are similar (see

Examples 4.1.2 and 4.1.3).

4.3 Further reductions

In [29], a sufficient condition of the convergent subdivision scheme with the nonnegative

mask {a(α)} is given. Here we will show that the condition in [29] is indeed also

necessary. It can be carried out by Theorem 4.0.1.

We need more notations. Let Γ(a) be a finite set of Zs (Γ(a) may not be an admissible

set). For k ∈ N and λ =
∑k

j=1 δj2
j−1 from Theorem 3.3.1 let us define B0 = {α}, where

α ∈ Γ(a), and for l = 0, 1, ...,

Bl+1 =

{

2ky + λ− rk ∈ Γ(a) : rk ∈ Ωk, y ∈
⋃

0≤j≤l

Bj

}

.

Finally, denote

B(Γ(a), α, k, λ) =
⋃

l≥0

Bl.

It follows from Lemma 3.2.6 that for k ≥ 1 and 0 ≤ (λ)j ≤ 2k − 1, j = 1, ..., s there

holds

B(Γ(a), α,mk, λ
m−1
∑

i=0

2ki) ⊆ B(Γ(a), α, k, λ), ∀ m ≥ 1. (4.4)

Indeed x ∈ B(Γ(a), α, k, λ) means that for some µ ∈ N,

x = 2µkα + λ

µ−1
∑

j=0

2kj −

µ−1
∑

j=0

2kjγk,j, γk,j ∈ Ωk, (4.5)
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where the last sum is an element of Ωµk (see (3.3)). On the other hand, by the

definition of B(Γ(a), α, k, λ) any number from Γ(a) which can be expressed as the

sum of the right hand side of (4.5) belongs to B(Γ(a), α, k, λ). Next, suppose y ∈

B(Γ(a), α,mk, λ
∑m−1

i=0 2ki). So for some γmk,j ∈ Ωmk, y can be written as

y = 2pmkα + (λ
m−1
∑

i=0

2ki)(

p−1
∑

j=0

2mkj)−

p−1
∑

j=0

2mkjγmk,j,

which yields that

y = 2pmkα + (λ

pm−1
∑

j=0

2kj)−

p−1
∑

j=0

2mkjγmk,j. (4.6)

Again by (3.3), one has
∑p−1

j=0 2
mkjγmk,j ∈ Ωpmk. Setting µ = pm we see that the right

hand side of (4.6) has the same form as (4.5). Hence, y ∈ B(Γ(a), α, k, λ) as desired.

The partial result of the following theorem first appeared in the article [29]. Here, we

use Theorem 3.3.1 for a simpler proof and for an improvement of the result given there.

Theorem 4.3.1. Let {a(α)} be a nonnegative finite mask and Γ(a) an admissible set of

{a(α)}. If {a(α)} satisfies the sum rule (1.3), then the corresponding subdivision scheme

is convergent if and only if for any given k ∈ N and 0 ≤ (λ)j ≤ 2k − 1, j = 1, ..., s,

there exists α ∈ Γ(a) such that B(Γ(a), α, k, λ) = Γ(a).

Proof. Sufficiency. Suppose to the contrary that the subdivision scheme is divergent.

Thus, according to Theorem 4.0.1 there exist disjoint proper subsets T and T ′ of Γ(a)

satisfying (4.1), i.e., there exist disjoint proper subsets T and T ′ of Γ(a), and a sequence

(δ1, ..., δk) with δj ∈ Es, for some k ≥ 1 and λ =
∑k

j=1 2
j−1δj, such that

T − λ+ Ωk

2k
∩ Z

s ⊆ T and
T ′ − λ+ Ωk

2k
∩ Z

s ⊆ T ′.

Moreover, without loss of generality, suppose α 6∈ T , i.e., B0 ⊆ Γ(a) \ T , then we have

2kα + λ− γk 6∈ T, ∀ rk ∈ Ωk.

It follows from the definition of B(Γ(a), α, k, λ) that B1 ⊆ Γ(a) \ T , ..., Bj ⊆ Γ(a) \ T

with j = 0, 1, .... Thus, we conclude B0 ∪ · · · ∪ Bj ⊆ Γ(a) \ T . In other words,

B(Γ(a), α, k, λ) ⊆ Γ(a) \ T . Together with the condition B(Γ(a), α, k, λ) = Γ(a), we
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conclude that Γ(a) ⊆ Γ(a) \ T , which implies that T = ∅. It means that the set T or

T ′ are not contained in B(Γ(a), α, k, λ) whenever α does not belong to T or T ′. Hence,

T or T ′ must be empty. Consequently, the subdivision scheme converges.

Necessity. Let the subdivision scheme be convergent. So it follows from Theorem 3.1.1

that there is k′ ≥ 1 such that for any l ≥ k′ and for any l-tuple (ǫ1, ..., ǫl) with ǫj ∈ Es

the matrix Aǫ1 · · ·Aǫl has a positive column. On the other hand, by (4.4) we need only

to show that for any given k ≥ k′ and 0 ≤ (λ)j ≤ 2k − 1 there is an α ∈ Γ(a) such that

B(Γ(a), α, k, λ) = Γ(a).

To this end, by Lemma 3.2.1 we notice that for η = ǫ1+2ǫ2+· · ·+2k−1ǫk+2kα = λ+2kα

Aǫ1 · · ·Aǫk(β, α) = ak(η − β) = ak(−β + λ+ 2kα).

Thus, we can choose α ∈ Γ(a) such that for all β ∈ Γ(a)

Aǫ1 · · ·Aǫk(β, α) > 0.

Clearly, there holds for some γk ∈ Ωk,

η − β = λ+ 2kα− β = γk.

In other words,

β = 2kα + λ− γk,

or B(Γ(a), α, k, λ) = Γ(a). This relation holds also for 1 ≤ k < k′ because of (4.4).

Later we will frequently use the following formula (see Lemma 2.3.2): for λ = ǫ1+2ǫ2+

· · ·+ 2k−1ǫk and ǫj ∈ Es

Aǫ1 · · ·Aǫk(α, β) = ak(−α + λ+ 2kβ), ∀α, β ∈ Γ(a). (4.7)

We need also the concept of connected matrices. Let B = {B(α, β)}α,β∈Γ be a square

matrix. According to this matrix we should define a directed graph G(Γ, K), whose set

of edges is given by

K = {(β, α) : β, α ∈ Γ, B(α, β) 6= 0}.
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Definition 4.3.2. Let B = {B(α, β)}α,β∈Γ be a square matrix and G(Γ, K) be the

associated directed graph. B is connected if the directed graph G(Γ, K) is so, i.e., for

some vertex β′ ∈ Γ and any α ∈ Γ \ {β′} there exists a directed path from β′ to α.

We call B is strongly connected if the directed graph G(Γ, K) is so, i.e., for any points

α, β ∈ Γ there is a directed path from α to β.

It is now clear that B(Γ, α, k, λ) = Γ means that Aǫ1 · · ·Aǫk is connected with α, where

λ = ǫ1+2ǫ2+· · ·+2k−1ǫk. In fact, the associated graph G = (Γ, K) is given by Γ = Γ(a)

and B = Aǫ1 · · ·Aǫl . Let β ∈ B(Γ(a), α, k, λ), so there is l and β1 ∈ Bl such that for

some γk ∈ Ωk

β = 2kβ1 + λ− γk.

We conclude from Lemma 3.2.1 and (4.7) that Aǫ1 · · ·Aǫk(β, β1) = ak(−β+λ+2kβ1) > 0.

By the definition of the graph G(Γ, K) one has (β1, β) ∈ K. Recursively, K contains

(α, βν), (βν , βν−1), ..., (β2, β1), (β1, β).

We obtain a directed path from α to β.

It follows from this observation and Theorem 4.3.1 that

Corollary 4.3.3. Let {a(α)} be a nonnegative finite mask satisfying the sum rule (1.3).

Let further Aǫ be given by (3.1), ǫ ∈ Es. Then Aǫ1Aǫ2 · · ·Aǫk , ǫj ∈ Es with j = 1, ..., k,

is connected if and only if for some α ∈ Γ(a)

B(Γ(a), α, k, λ) = Γ(a),

where λ = ǫ1+2ǫ2+· · ·+2k−1ǫk and ǫj ∈ Es. Furthermore, the corresponding subdivision

scheme converges if and only if any product Aǫ1Aǫ2 · · ·Aǫk , ǫj ∈ Es with j = 1, ..., k is

connected. Moreover, it follows from (4.4) that the connectivity of (Aǫ1Aǫ2 · · ·Aǫk)
l for

some l ≥ 1 implies the connectivity of Aǫ1Aǫ2 · · ·Aǫk .



66



Chapter 5

Necessary Conditions for the

Convergence

In previous chapters, we focus on the necessary and sufficient conditions on the con-

vergent subdivision schemes. The characterization has combinatorial nature. Howev-

er, this characterization is still unsatisfactory and seems rather difficult to calculate.

How can we simplify those conditions? We begin in this chapter with the investiga-

tion of the necessary conditions of convergent subdivision schemes in the multivari-

ate case. We hope that this study will help us to get some computable properties,

which may lead to solve our problem. Knowing that the convergence of subdivision

schemes with nonnegative masks relies on the location of its support of the mask, we

consider the positions of the points in the support and the convex cover of the sup-

port. In the last section we will demonstrate the different properties between the inner

and boundary points of the support, that will be applied for the study of the matrix

A(α, β) = a(−α + 2β), α, β ∈ [Ω] ∩ Z
s in the next chapter and that may help us to

design convergent subdivision schemes.

5.1 Unimodular matrices

In the following research, we will often use the concept of unimodular matrices. A

unimodular matrix M is a square matrix with integer entries having determinant 1

67
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or −1. Let Ms be the set of s× s unimodular matrices, namely,

Ms = {M : M is an s× smatrix with integer entries and | detM | = 1}.

Equivalently, it is an integer matrix that is invertible over the integers: there is an

integer matrix M−1 which is its inverse (these are equivalent under Cramer’s rule).

Thus every equation Mα = β, where M is unimodular, α, β are vectors and β is an

integer, has an integral solution. Clearly, Ms is a group under the matrix multiplication,

which has for-reaching applications in arithmetic and geometry. In particular, identity

matrix, the inverse of a unimodular matrix and product of two unimodular matrices are

again unimodular. Moreover, invertibility of unimodular matrices is in general more

numerically stable. According to the properties of unimodular matrices, we find that

the transformation of masks under a unimodular matrix does not affect the convergence

and the divergence of the corresponding subdivision scheme. As a result, we have

Lemma 5.1.1. Let {a(α) : α ∈ Z
s} be a finite mask in R

s and satisfy the sum rule

(1.3). Let further b(α) = a(Mα) for any given M ∈ Ms. Then, {b(α)} satisfies the

sum rule. Moreover, the convergence behavior of the subdivision schemes associated

with {a(α)} and {b(α)}, respectively, are the same.

Proof. By the definition of the set of unimodular matrices Ms one has

∑

β

a(M(α + 2β)) =
∑

β

a(Mα + 2Mβ).

It yields from the sum rule (1.3) that

∑

β

a(Mα + 2Mβ) = 1.

Therefore, we have
∑

β

b(α + 2β) =
∑

β

a(M(α + 2β)) = 1,

since b(α) = a(Mα) for any given M ∈ Ms .

To show the second assertion we need only to verify

bl(α) = al(Mα), l = 1, 2, ... (5.1)
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We use induction to do this. Clearly, for l = 1, b(α) = a(Mα). Suppose for l = k, the

identity (5.1) is true, i.e., bk(α) = ak(Mα). Then for l = k+1, we have by the iteration

formula (see Chapter 1)

bk+1(α) =
∑

β

bk(β)b(α− 2β)

=
∑

β

ak(Mβ)a(Mα− 2Mβ)

=
∑

γ

ak(γ)a(Mα− 2γ) = ak+1(Mα).

Therefore, if (1.4) in Theorem 1.0.1 holds for {a(α)}, so does {b(α)}, and vice versa.

5.2 Translation of masks

For any γ ∈ Z
s, let Ωγ = Ω+γ with the understanding Ω0 = Ω. The translational mask

is denoted as {b(α) : b(α) = a(α + γ)}, where {a(α) : α ∈ Z
s} is a finite mask in R

s.

Note that the translation of mask does not affect the convergence and the divergence

of the corresponding subdivision scheme. We have

Lemma 5.2.1. Let {a(α) : α ∈ Z
s} be a finite mask in R

s and satisfy the sum rule

(1.3). Let further b(α) = a(α+γ) for any given γ ∈ Z
s. Then, {b(α)} satisfies the sum

rule. Moreover, the convergence behavior of the subdivision schemes associated with

{a(α)} and {b(α)} respectively are the same.

Proof. As we have already seen by the proof of Lemma 2.1.1, the sum rule (1.3) is

equivalent to
∑

β∈Zs

a(e+ 2β) = 1, ∀ e ∈ Es.

It yields that with e ≡ α + γ (mod 2),

∑

β

b(α + 2β) =
∑

β

a((α + γ) + 2β) =
∑

β

a(e+ 2β) = 1.

So {b(α)} satisfies the sum rule as well.



70

To show the second assertion we need only to verify

bl(α) = al(α +
l−1
∑

i=0

2iγ), l = 1, 2, .... (5.2)

As b(α) = a(α + γ), (5.2) is true for l = 1. Suppose (5.2) is true, for l = k, i.e.,

bk(α) = ak(α +
∑k−1

i=0 2
iγ), then for l = k + 1, we have

bk+1(α) =
∑

β

bk(β)b(α− 2β)

=
∑

β

ak(β +
k−1
∑

i=0

2iγ))a(α + γ − 2β)

=
∑

η

ak(η)a(α + γ − 2(η −
k−1
∑

i=0

2iγ))

=
∑

η

ak(η)a(α +
k
∑

i=0

2iγ − 2η)

= ak+1(α +
k
∑

i=0

2iγ).

Therefore, if (1.4) in Theorem 1.0.1 holds for {a(α)}, so does {b(α)}, and vice versa.

5.3 Compression of subdivision schemes

In order to present more properties of convergent subdivision schemes, we introduce

in this section the concept of compression, which explores a family of subdivision

methods obtained from ’compressing’ of a given subdivision scheme into one defined on

a space of lower dimension (see also [3]).

Begin with the s × n matrix X whose columns are given by x1, ..., xn ∈ Z
s and s ≤ n

such that XZ
n = Z

s. We observe the so-called compressed mask {b(β) : β ∈ Z
s}

defined by

b(β) = 2s−n
∑

Xα=β,α∈Zn

a(α), (5.3)

which is compressed by the corresponding mask {a(α) : α ∈ Z
n}.
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For the iterated mask we get the connection between the original mask {ak(α)} and

the compressed mask {bk(β)}. That is

bk(β) = 2k(s−n)
∑

Xα=β,α∈Zn

ak(α).

To this end, we recall that {ak(α)} and {bk(β)} are generated inductively by the equa-

tions

a1(α) = a(α), ak(α) =
∑

γ∈Zn

ak−1(γ)a(α− 2γ) for k ≥ 2

and

b1(β) = b(β), bk(β) =
∑

µ∈Zs

bk−1(µ)b(β − 2µ) for k ≥ 2.

Assume that bk−1(β) = 2(k−1)(s−n)
∑

Xα=β a
k−1(α). Then by XZ

n = Z
s, we have

bk(β) =
∑

µ∈Zs

bk−1(µ)b(β − 2µ)

=
∑

µ∈Zs

(

2(k−1)(s−n)
∑

Xγ=µ,γ∈Zn

ak−1(γ)

)

·

(

2s−n
∑

Xα=β−2µ,α∈Zn

a(α)

)

.

Simple computation yields

bk(β) = 2k(s−n)
∑

µ∈Zs





∑

Xγ=µ,γ∈Zn

ak−1(γ) ·
∑

X(α−2γ)=β−2µ,α∈Zn

a(α− 2γ)





= 2k(s−n)
∑

µ∈Zs

∑

Xγ=µ

∑

X(α−2γ)=β−2µ

ak−1(γ)a(α− 2γ)

= 2k(s−n)
∑

Xα=β

∑

γ∈Zn

ak−1(γ)a(α− 2γ)

= 2k(s−n)
∑

Xα=β

ak(α).

We are now in the position to state the relationship between the original subdivision

scheme and the one formed by compression (see [3]).

Lemma 5.3.1. Let X = {x1, ..., xn} ⊆ Z
s be an s×n matrix with {Xα : α ∈ Z

n} = Z
s.

Suppose the subdivision scheme, which is determined by the mask {a(α) : α ∈ Z
n},

converges. Then the subdivision scheme determined by the compressed mask {b(β) :

β ∈ Z
s} as given in (5.3) converges.
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Proof. By hypothesis on the convergent subdivision scheme determined by the mask

{a(α) : α ∈ Z
n}, it follows from Theorem 1.0.1 and Lemma 2.1.1 that for any e ∈ En,

∑

β∈Zn

a(2β + e) = 1

and

lim
k→∞

sup
α∈Zn, e∈En

|ak(α)− ak(α− e)| = 0.

We note that we may extend X to a unimodular matrix by adding n− s suitable rows

(say Y ). Thus, M =
(

X

Y

)

∈ Mn and Y Z
n = Z

n−s. Denote c(Mα) = a(M−1Mα), for

α ∈ Z
n. Then according to (5.3), we have for β ∈ Z

s

b(β) = 2s−n
∑

Xα=β

a(α) = 2s−n
∑

Xα=β

c(Mα) (5.4)

= 2s−n
∑

Xα=β,α∈Zn

c

(

β

Y α

)

= 2s−n
∑

µ∈Zn−s

c

(

β

µ

)

.

On one hand, it follows from (5.4) that for ǫ ∈ Es

∑

β∈Zs

b(ǫ+ 2β) = 2s−n
∑

β∈Zs

∑

µ∈Zn−s,δ∈En−s

c

(

2

(

β

µ

)

+

(

ǫ

δ

))

= 2s−n
∑

δ∈En−s

∑

(βµ)∈Zn

c

(

2

(

β

µ

)

+

(

ǫ

δ

))

.

Set
(

β

µ

)

=Mα. Since MZ
n = Z

n, we deduce

∑

β∈Zs

b(ǫ+ 2β) = 2s−n
∑

δ∈En−s

∑

α∈Zn

c(M(2α +M−1

(

ǫ

δ

)

))

= 2s−n
∑

δ∈En−s

∑

α∈Zn

a(2α +M−1

(

ǫ

δ

)

) = 1.

On the other hand, it follows from (5.4) and the proof of Lemma 5.1.1 that

|bk(β)− bk(β − ǫ)| =

∣

∣

∣

∣

∣

2k(s−n)(
∑

Xα=β

ak(α)−
∑

Xα=β−ǫ

ak(α))

∣

∣

∣

∣

∣

= 2k(s−n)

∣

∣

∣

∣

∣

∣

∑

µ∈Zn−s

ck
(

β

µ

)

−
∑

µ∈Zn−s

ck
(

β − ǫ

µ

)

∣

∣

∣

∣

∣

∣

≤ 2k(s−n) · CN · 2k(n−s) max
α∈Zn,e∈En

|ak(α)− ak(α− e)|,
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where the constant CN is dependent only on the size of the mask {a(α)}. It tells us that

the subdivision scheme determined by the compressed mask {b(β) : β ∈ Z
s} satisfies

the second condition of Theorem 1.0.1. The proof is complete.

Now we look at an application of the compression. The following lemma gives us more

information about the convergent subdivision scheme (see [28] ).

Theorem 5.3.2. Let {a(α)} be a nonnegative finite mask in R
n. Assume that the

subdivision scheme associated with {a(α) : α ∈ Z
n} converges, then there holds

gcd(α : α ∈ Ωγ) = (1, ..., 1)T , ∀ γ ∈ Z
n,

where gcd(α : α ∈ Ω) is a multi-integer d = (d1, ..., ds) such that gcd((α)i : α ∈ Ω) =

di, i = 1, ..., s.

Proof. In view of Lemma 5.2.1 we may assume γ = 0. By hypothesis on the convergent

subdivision scheme determined by the mask {a(α) : α ∈ Z
n}, it follows from Theorem

5.3.1 that the compressed subdivision scheme determined by {b(β) : β ∈ Z
s} also

converges. In particular, we choose the (1 × n)-matrix Xi with 1 in the i-th column

and 0 in the other columns, i.e.,

Xi = (0, ..., 0, 1, 0, ..., 0),

which is compressed matrices for the i-th coordinate of the corresponding mask {a(α)}.

Then we get a compressed mask

b(j) = 21−n
∑

Xiα=j

a(α).

It’s clear that b(j) 6= 0 if and only if there is at least one α such that (α)i = j and

a(α) 6= 0. We have compressed the n-dimensional subdivision scheme into a univariate

subdivision scheme. Then, together with Theorem 3.0.1, the result follows.

5.4 j-dimensional faces

In order to study the boundary points of Ω better, we recall the concept of faces. The

boundary of the convex cover [Ω] formed by Ω will be denoted by ∂[Ω]. Thus, [Ω]
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is a polytope. For 0 ≤ j < s, a j-dimensional face Sj is a j-dimensional polytope.

Moreover, an (s − 1)-dimensional face Ss−1 is a facet of [Ω]. If 0 ≤ j < s − 1, then a

j-dimensional face Sj is a facet of a (j + 1)−dimensional face. For 0 ≤ j < s let us

observe the j-dimensional face Sj of [Ω]. For example, if a polytope is s-dimensional,

then

1) each extreme point (or vertex) is 0-dimensional face,

2) each edge is 1-dimensional face, and so on,

3) each facet is (s− 1)-dimensional face.

To understand the concept of j-dimensional face Sj of [Ω] easily, we give an example.

Example 5.4.1. (see Figur 5.1) Consider a 3-dimensional convex polytope [Ω], where

Ω is a cube, starting from the origin, with edges parallel to the axes and the length of

2, i.e.,

Ω := {(x, y, z) : 0 ≤ x ≤ 2, 0 ≤ y ≤ 2 and 0 ≤ z ≤ 2} ∩ Z
s.

(0,0,0)

(2,0,0) (2,2,0)

(0,2,0)

(0,0,2)

(2,0,2) (2,2,2)

(0,2,2)

Figure 5.1: Cube

Now we have: S0 is any point of 8 extreme points (or vertexes) of the cube [Ω], i.e.,

(0, 0, 0)T , (0, 2, 0)T , (2, 2, 0)T , (2, 0, 0)T , (0, 0, 2)T , (0, 2, 2)T , (2, 0, 2)T and (2, 2, 2)T ; S1

is any edge of 12 edges of the cube [Ω]; S2 is any face of 6 square faces of the cube [Ω].
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5.5 New results concerning with the necessary con-

ditions

It was shown in Theorem 3.0.1 that if the univariate subdivision scheme with the

nonnegative mask converges, then the boundary points of the corresponding support

have the behaviour, i.e., 0 < a(0) < 1 and 0 < a(N) < 1. Furthermore, |a(0)| < 1

and |a(N)| < 1 without the restriction of the positivity. Thus, it is of some interest to

consider whether the boundary points of the support have the similar behavior for the

multivariate case. Indeed we get more involved results.

We are now in a position to present some necessary conditions, which show the rela-

tionship between the convergence of a subdivision scheme and the position of points in

the support.

Let us recall the definition of the set A(λ) introduced in Section 3.2. We denote for a

given finitely supported real mask {a(α)} the set

A(λ) = {α : a(α) 6= 0 and α ≡ λ (mod 2)}, ∀λ ∈ Z
s.

Denote |A(λ)| to be the number of the elements in the set A(λ). The recursion formula

and the sum rule (1.3) tell us that for each λ ∈ Z
s the set A(λ) has at least one element

or |A(λ)| ≥ 1. Moreover, the sum rule (1.3) implies

∑

α∈A(λ)

a(α) = 1, ∀λ ∈ Z
s, m = 1, 2, .... (5.5)

We state the necessary condition of the convergence on the subdivision schemes, which

describes the behavior of the points in the support of the mask as follows.

Theorem 5.5.1. Let {a(α) : α ∈ Z
s} be a finite mask in R

s. Assume that the

subdivision scheme associated with {a(α)} converges to a continuous function ϕ. If

|A(λ)| = 1 for some λ ∈ Z
s, then the only one element of A(λ) (say α′) belongs to

Ω \ ∂[Ω] and ϕ(α′) = 1. Furthermore, for any j-dimensional face Sj of the polytope [Ω]

and 0 ≤ j < s there holds

|
∑

α∈Sj∩Ω

a(α)| < 2j. (5.6)
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If, in addition, the mask {a(α)} is nonnegative, then there is at most one β ∈ Z
s

satisfying ϕ(β) = 1 and

0 <
∑

α∈Sj∩Ω

a(α) < 2j, 0 ≤ j < s. (5.7)

Proof. Suppose the subdivision scheme with mask {a(α)} converges, then by Theorem

1.0.1, one has the sum rule (1.3)

∑

β

a(α + 2β) = 1, ∀ α ∈ Z
s.

Together with the condition of |A(λ)| = 1 for some λ ∈ Es, i.e., there is only one

element α′ in set A(λ). It follows from (5.5) that a(α′) = 1.

On the one hand, by the definition of the convergence of the subdivision scheme, we

have for the continuous function ϕ,

lim
k→∞

sup
α

|ϕ(
α

2k
)− ak(α)| = 0. (5.8)

It follows from the properties of the hat function and limk→∞ fk(x) = ϕ(x) that

ϕ(x) = 0, ∀ x ∈ ∂[Ω]. (5.9)

On the other hand, since ak(α) =
∑

β a
k−1(β)a(α− 2β), one has

ak((2k − 1)α′) =
∑

β

ak−1(β)a((2k − 1)α′ − 2β)

= a(α′)ak−1((2k−1 − 1)α′),

since there is only one element β = (2k−1 − 1)α′ such that a((2k − 1)α′ − 2β) 6= 0.

Recursively,

ak((2k − 1)α′) = a(α′)ak−1((2k−1 − 1)α′)

= (a(α′))2ak−2(α′(2k−2 − 1))

· · ·

= (a(α′))k,
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which yields ak((2k − 1)α′) = 1. Furthermore, by (5.8) one has

lim
k→∞

|ϕ(
(2k − 1)α′

2k
)− ak((2k − 1)α′)| = 0,

i.e., limk→∞ ϕ((2k − 1)α′/2k) = 1. It follows from the continuity of ϕ that

lim
k→∞

ϕ(
(2k − 1)α′

2k
) = ϕ( lim

k→∞

(2k − 1)α′

2k
)

= ϕ(α′).

Therefore ϕ(α′) = 1, which yields that α′ must be an inner point of [Ω] according to

(5.9).

Now let us prove (5.6). It follows from Lemmas 5.1.1 and 5.2.1 that the subdivision

scheme associated with {a′(α)} = {a(M−1α − β)} for any fixed β ∈ Z
s and M ∈ Ms

is also convergent. On the other hand, the support of {a′(α)} is M(β + Ω) where Ω is

the support of {a(α)} .

Let Sj be a j-dimensional face of [Ω]. SoM(Sj+β) is a j-dimensional face of [M(Ω+β)].

It is well-known (see e.g. [13] Chapter 14) for any j vectors xi ∈ Z
s, i = 1, ..., j, there is

a unimodular matrixM ′ ∈ Ms such that the first s−j components ofM ′xi, i = 1, ..., j,

are zero. More precisely, there holds

M ′(x1, ..., xj) = (η1, ..., ηj)

with ηi = (0, ..., 0, ηs−j+1,i, ..., ηs,i)
T , i = 1, ..., j. Therefore, for a fixed 0 ≤ j′ < s

we can choose a unimodular matrix M ∈ Ms and a vector β ∈ Z
s such that 0 ∈

M(Sj′ + β) ∩M(Ω + β) and M(Sj′ + β) is orthogonal to the space Z
s−j′ embedded in

Z
s, i.e. Zs−j′ is the subspace of Zs whose last j′ components are zero.

Next by the definition of the compressed mask (see (5.3)), we write out the mask in

Z
s−j′ as follows,

b(α) =
1

2j′
∑

u|
Zs−j′=α

a′(u).

According to the choice of M and β, there holds 0 ∈ M(Sj′ + β) ∩M(Ω + β). Conse-
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quently, we have

b(0) =
1

2j′
∑

u|
Zs−j′=0

a′(u)

=
1

2j′
∑

u∈M(Sj′+β)∩M(Ω+β)

a(M−1u− β)

=
1

2j′
∑

u∈Sj′∩Ω

a(u),

which tells us that in order to get the inequality (5.6) we need only to verify |b(0)| < 1.

It’s clear that |b(0)| < 1, if b(0) = 0. It remains to show |b(0)| < 1 for b(0) 6= 0. The fact

that Sj′ is a j
′-dimensional face implies that 0 is an extreme point of [{α : b(α) 6= 0}].

Furthermore, Lemma 5.3.1 means that the subdivision scheme determined by the com-

pressed mask {b(α)} converges. Without loss the generality we suppose that this sub-

division scheme converges to ϕb, so the support of ϕb is contained in the polytope

[{α : b(α) 6= 0}]. We know also that 0 is an extreme point of this polytope, which

yields ϕb(0) = 0. On the other hand, by the definition, we have

lim
k→∞

|ϕb(0)− bk(0)| = 0.

However, by (2.2) we get with the choice β = 0 that

bk(0) =
∑

β0+2β1+···+2k−1βk−1=0

b(β0) · · · b(βk−1)

for all β0, ..., βk−1 ∈ {α : b(α) 6= 0}. As 0 is an extreme point one must have βi = 0,

i = 0, ..., k − 1. Hence, bk(0) = (b(0))k. Noticing |bk(0)| = o(1), so |b(0)| < 1.

Now we show the assertions for the nonnegative mask. By hypothesis that {a(α)} is

nonnegative, it follows from the definition of a compressed mask that {b(α)} is also

nonnegative and b(0) > 0. Then (5.7) follows from (5.6).

It remains to show that there is at most one β ∈ Z
s satisfying ϕ(β) = 1. Suppose that

there exist α1 and α2 with α1 6= α2 such that

ϕ(α1) = 1 and ϕ(α2) = 1.
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However, since ϕ is nonnegative, we obtain from identity (see [3])
∑

α ϕ(x − α) = 1

that

1 =
∑

α

ϕ(α1 + α2 − α) = ϕ(α1) + ϕ(α2) +
∑

α 6=α1,α2

ϕ(α1 + α2 − α) ≥ 2.

Thus, there is at most one β ∈ Z
s such that ϕ(β) = 1.

For convenience of expression, we define the property of the convergent subdivision

schemes in Theorem 5.5.1 as inner-point principle. More precisely, it possesses the

following two properties.

1). If |A(λ)| = 1 for some λ ∈ Z
s, then the only one element of A(λ) (say α′) belongs

to Ω \ ∂[Ω].

2). |A(λ)| ≥ 1, ∀λ ∈ Z
s. There is at most one set A(λ), λ ∈ Z

s, with |A(λ)| = 1.

The following necessary condition on the convergent subdivision scheme with a finite

nonnegative mask is inspired from Theorem 5.5.1 and Example 4.1.2 in Section 4.1. For

an affine space L in R
s, we denote dimL to be the dimension of L.

Corollary 5.5.2. Let {a(α)} be a finite nonnegative mask and Ω ⊂ Z
s be the support.

Assume that the corresponding subdivision scheme converges. If there exist two affine

spaces L1 and L2 with 0 ≤ dimL1, dimL2 ≤ s such that

∑

α∈L1∩Ω

a(α) = 2dimL1 and
∑

α∈L2∩Ω

a(α) = 2dimL2 , (5.10)

then L1 ∩ L2 6= ∅ and
∑

α∈L1∩L2∩Ω

a(α) = 2dimL1∩L2 . (5.11)

Proof. Assume l = dimL1. Then there are 2l integer points

α1, α2, ..., α2l ∈ L1 ∩ Z
s

such that

αi 6≡ αj (mod 2), for i, j = 1, ..., 2l and i 6= j.

We know that the subdivision scheme converges, which implies (5.5), i.e.,

∑

α∈A(αj)

a(α) = 1, j = 1, ..., 2l.
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It follows from (5.10) and (5.5) that A(αj) ⊆ L1, j = 1, 2, ..., 2l. Assume β ∈ L1 ∩ Z
s.

So there exists a number γ ∈ Ω with β ≡ γ (mod 2), which belongs to L1. In other

words,
β + γ

2
∈ L1 ∩ Z

s

or
(L1 ∩ Z

s) + Ω

2
∩ Z

s ⊆ L1 ∩ Z
s.

Consequently, according to the definition of the irreducible mapping (see (4.2)), we

obtain T ⊆ L1 ∩ Z
s, which is irreducible with respec to Ω and λ = 0, i.e.

T + Ω

2
∩ Z

s = T.

On the other hand, by the hypothesis that the subdivision scheme converges, we con-

clude from Theorem 3.3.1 and the definition of the irreducible mapping (4.2) (in detail

T is minimal) that T is unique. The same argument used above can also be applied to

derive the same assertion for T by L2 instead of L1. To be specific, T ⊆ L2 ∩ Z
s. We

find, therefore, that T ⊆ L1 ∩ L2 ∩ Z
s, which means L1 ∩ L2 6= ∅.

Next we show that (5.11) is valid. We know that L1 ∩L2 is again an affine space. Take

α ∈ L1 ∩ L2 ∩ Z
s. Then all γ ∈ Ω, which satisfies γ ≡ α (mod 2), must belong to

L1 ∩ L2. It follows from (5.5) that

∑

α∈L1∩L2∩Ω

a(α) = 2dim(L1∩L2).

The proof is complete.



Chapter 6

Connectivity of a Matrix

In Chapter 5 we have investigated the different properties between the inner and bound-

ary points of the support for the mask, when the corresponding subdivision scheme

converges. However, it is unknown, whether one can use some simple conditions to

guarantee those properties. We find out that the so-called connectivity of a matrix A

deduced by a given mask (see the definition below) is the suitable condition. Another

motivation to discuss the behaviour of the matrix A is that we believe firmly that the

convergence of the subdivision scheme with a nonnegative mask can be described by

the matrix A. For the univariate case it is already known that the connectivity of the

matrix A and the sum rule imply the convergence (see [31]), although for the bivariate

case the connectivity of the matrix A is not enough, as the example in Section 6.1

shows. The study of this matrix A is our main focus in this chapter. To this end, let

A be the square matrix given by

A(α, β) = a(−α + 2β), α, β ∈ [Ω] ∩ Z
s. (6.1)

So A is a row-stochastic matrix if the mask {a(α)} is nonnegative and the sum rule

(1.3) is satisfied. Indeed, let α ∈ [Ω] ∩ Z
s. Hence, a(−α+ 2β) 6= 0 means −α+ 2β = γ

for some γ ∈ Ω, which in turn implies β = (α + γ)/2 ∈ [Ω] ∩ Z
s. In other words,

if α ∈ [Ω] ∩ Z
s and β 6∈ [Ω] ∩ Z

s then a(−α + 2β) = 0. We get therefore for any

α ∈ [Ω] ∩ Z
s,

∑

β∈[Ω]∩Zs

a(−α + 2β) =
∑

β∈Zs

a(−α + 2β) = 1

81
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or
∑

β∈[Ω]∩Zs

A(α, β) = 1.

In this chapter, we present some properties concerning with the matrix A. Moreover, we

try to make use of the related methods from graph theory to consider the convergence

of the subdivision schemes. Furthermore we give an efficient algorithm, which shows

that the connectivity of the matrix A may be tested by depth-first search algorithm

from graph theory in linear time with respect to the size of A.

6.1 Convergence and connectivity of A

The connectivity of a square matrix is defined by Definition 4.3.2 in Section 4.3. The

following theorem shows that the connectivity of Al, where A is given by (6.1), is

necessary for the convergence of the subdivision scheme with nonnegative finite masks.

Theorem 6.1.1. If the subdivision scheme with a nonnegative finite mask {a(α)} con-

verges, then {a(α)} satisfies the sum rule (1.3) and Al , l = 1, ..., N , is connected, where

A is given by (6.1) and N = |[Ω] ∩ Z
s|.

Proof. According to Theorem 3.1.1, if the subdivision scheme with the nonnegative

mask {a(α)} converges, then the sum rule (1.3) is certainly fulfilled and we need to prove

the second assertion. Again from Theorem 3.1.1 we conclude that for the admissible

set Γ(a) of {a(α)} with [Ω] ∩ Z
s ⊆ Γ(a), there is an α0 ∈ Γ(a) and k ≥ 1 such that

the α0-column of Ak
0 is positive, where A0 is the |Γ(a)| × |Γ(a)| matrix defined by (3.1)

with δ = 0, i.e.,

A0(α, β) = a(−α + 2β), α, β ∈ Γ(a).

In other words, we choose α0 ∈ Γ(a) and for all α ∈ Γ(a), ak(−α + 2kα0) > 0, which

yields −α + 2kα0 ∈ Ωk. This holds in particular for all α ∈ [Ω] ∩ Z
s. It follows from

Lemma 3.2.1 and (3.3) that for some γj ∈ Ω we have

α = 2kα0 −
k−1
∑

j=0

2jγj or α0 =
1

2k

(

α +
k−1
∑

j=0

2jγj

)

∈ [Ω].

On the other hand, we notice that for α, β ∈ [Ω] ∩ Z
s there holds Ak(α, β) = Ak

0(α, β).

Therefore the α0-column of Ak is also positive. It follows from Corollary 4.3.3 that Al,

l = 1, ..., N , is connected.
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We note from the above proof that α0 lies in [Ω] \ ∂[Ω]. To see this we choose α ∈

[Ω] \ ∂[Ω], then as a convex combination of integers α and γj ∈ Ω the number α0 must

belong to [Ω] \ ∂[Ω]. Later we need this fact.

In the remainder of this section, we focus on the discussion how (or whether) the

connectivity of the matrix A influences the convergence of the subdivision scheme with

nonnegative finite mask {a(α)}.

Lemma 6.1.2. Let the nonnegative finite mask {a(α)} satisfy the sum rule (1.3). If Al

is connected, then for any M ∈ Ms and any finite convex set Γ ⊂ Z
s, i.e., [Γ]∩Z

s = Γ,

such that M([Ω] ∩ Z
s) ⊆ Γ, the matrix B defined by

B(α, β) = al(−M−1α + 2lM−1β), α, β ∈ Γ

is row-stochastic and connected with some β ∈ ([MΩ] ∩ Z
s) \ ∂[MΩ] .

Proof. By Lemma 3.2.1 we know that the support of the mask {al(α)} is Ωl. So the

support of the mask {al(M−1α)} is MΩl, which may also be referred to as (MΩ)l.

On one hand, since the nonnegative mask {a(α)} satisfies the sum rule (1.3), A is a

row-stochastic matrix and

∑

β∈[Ω]∩Zs

A(α, β) = 1, ∀α ∈ [Ω] ∩ Z
s.

Then

∑

β∈[Ω]∩Zs

Al(α, β) = 1, i.e.,
∑

β∈[Ω]∩Zs

al(−α + 2lβ) = 1, ∀α ∈ [Ω] ∩ Z
s.

It follows from Lemmas 5.1.1 and 5.2.1 that for all α ∈ [Ω] ∩ Z
s

∑

β∈[Ω]∩Zs

B(α, β) = 1, i.e.,
∑

β∈[Ω]∩Zs

al(−M−1α + 2lM−1β) = 1.

On the other hand, let α ∈ Γ, γ ∈ MΩl satisfying (α + γ)/2l ∈ Z
s. Denote β =

(α + γ)/2l. Then by the hypothesis that the set Γ is convex and M [Ω] ∩ Z
s ⊆ Γ,

we conclude β ∈ Γ. So γ = −α + 2lβ 6∈ MΩl, if β 6∈ Γ and α ∈ Γ. In other

words, al(−M−1γ) = al(−M−1α + 2lM−1β) = 0. Hence, for fixed α ∈ Γ the number
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al(−M−1α + 2lM−1β) 6= 0 implies β ∈ Γ. It follows from the sum rule (1.3) that for

any α ∈ Γ,
∑

β∈Γ

al(−M−1α + 2lM−1β) =
∑

β∈Zs

al(−M−1α + 2lM−1β) = 1,

which means that B is row-stochastic.

We now show that the matrix B is connected with some β ∈ ([MΩ]∩Z
s) \ ∂[MΩ]. Let

α ∈ Γ and assume that Al is connected withM−1β ∈ ([Ω]∩Z
s)\∂[Ω]. To carry out the

assertion, we recall the definition of graph G([Ω]∩Z
s, K) according to a square matrix

Al, whose set of edges is given by

K = {(ν, µ) : ν, µ ∈ [Ω] ∩ Z
s, Al(µ, ν) 6= 0}

and the notation of graph G(Γ, K ′) according to the square matrix B, whose set of

edges is given by K ′ = {(v, u) : u, v ∈ Γ, B(u, v) 6= 0}, where

B(u, v) = al(−M−1u+ 2lM−1v), u, v ∈ Γ.

Then we divide the proof into following two cases.

Case 1. We prove that B restricted toM([Ω]∩Z
s) is connected. LetM−1α ∈ [Ω]∩Z

s.

Since Al is connected with a vertexM−1β ∈ ([Ω]∩Zs)\∂[Ω], we have a path fromM−1β

to M−1α in G([Ω] ∩ Z
s, K). Hence, we have a path from β to α in G(M [Ω] ∩ Z

s, K ′′),

where K ′′ is a subset of K ′ restricted to M [Ω] ∩ Z
s. In other words, the matrix B

restricted to M([Ω] ∩ Z
s) is connected with β ∈ ([MΩ] ∩ Z

s) \ ∂[MΩ].

Case 2. We now treat the case α 6∈M [Ω]∩Z
s, i.e., α ∈ Γ\(M [Ω]∩Z

s), then due to the

row-stochastic property of B there exists α1 ∈ Γ such that al(−M−1α+2lM−1α1) 6= 0,

i.e., for some γ0 ∈MΩl one has

α = 2lα1 − γ0.

If α1 ∈ M [Ω] ∩ Z
s, we have nothing more to do, because there is a path from β to

α1, as we have proved in Case 1. Otherwise, we obtain recursively α1, ..., αm in Γ

such that γj = −αj + 2lαj+1, j = 0, ...,m − 1. We conclude for some γν ∈ MΩl and

ν = 0, 1, 2, ...,m− 1

α = 2lα1 − γ0 = 2l(2lα2 − γ1)− γ0 = 22lα2 − 2lγ1 − γ0

= 2mlαm −
m−1
∑

ν=0

2νlγν .
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On the other hand, because |Γ| <∞, we obtain in this way a subsequence mi ∈ N with

α0 = limi→∞ αmi
. We know γν/(2

l − 1) ∈M [Ω] for all ν. So we get

α0 = lim
i→∞

αmi

= lim
i→∞

α +
∑mi−1

ν=0 2νlγν
2mil

∈ lim
i→∞

α + (20l + 21l + · · ·+ 2(mi−1)l)M [Ωl]

2mil
.

Therefore

α0 ∈ lim
i→∞

α + (1−2mil

1−2l
)M [Ωl]

2mil

⊆ lim
i→∞

(

α

2mil
+

(2mil − 1)M [Ω]

2mil

)

⊆ M [Ω].

Again as |Γ| < ∞, there is a path from α0 to α. But we know from Case 1 that there

is also a path from β to α0. Because of the arbitrariness of α ∈ Γ \ (M [Ω] ∩ Z
s), we

obtain finally that B is connected with some β ∈ (M [Ω] ∩ Z
s) \ ∂[MΩ].

The connectivity of A and the sum rule (1.3) imply also the inner-point principle men-

tioned in Section 5.5 (see Theorem 5.5.1), which will be confirmed by the following

Theorem 6.1.3. Let the nonnegative finite mask {a(α)} satisfy the sum rule (1.3).

Then the connectivity of A implies gcd{α : α ∈ Ωβ} = (1, ..., 1)T for all β ∈ Z
s and

that there is at most one set A(δ), δ ∈ Es, with |A(δ)| = 1. Moreover, for any 0 ≤ j < s

and any j-dimensional face Sj of [Ω] one has

0 <
∑

α∈Sj∩Ω

a(α) < 2j. (6.2)

Proof. We note Ωβ = Ω+β for β ∈ Z
s (see Section 5.2). Denote gcd{α : α ∈ Ωβ} = d,

with d = (d1, ..., ds)
T . The sum rule (1.3) implies that every component of d is odd.

Hence, if 2lα ≡ 0 (mod d) for some α ∈ Z
s and l ∈ N then α ≡ 0 (mod d). On the

other hand, the connectivity of A means that one has α0 ∈ [Ω] ∩ Z
s such that for any

α ∈ ([Ω] ∩ Z
s) \ {α0} there is j ≥ 1 so that for some γl ∈ Ω

α = 2jα0 −

j−1
∑

l=0

2lγl, (6.3)
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that is,

α + β = 2j(α0 + β)−

j−1
∑

l=0

2l(γl + β).

We get by choosing α ∈ Ω that 2j(α0 + β) ≡ 0 (mod d). Hence, α0 + β ≡ 0 (mod d),

which gives α+β ≡ 0 (mod d) for all α ∈ [Ω]∩Z
s. By Lemma 6.1.2 this relation holds

also for any convex set Γ ⊇ [Ω] ∩ Z
s instead of [Ω] ∩ Z

s. We may therefore let Γ ⊇ Es.

Thus, α + β ≡ 0 (mod d) for all α ∈ Es, which yields d = (1, ..., 1)T .

To show that there is at most one set A(δ) for some δ ∈ Es with |A(δ)| = 1, we assume

A(δ′) = {r} for some δ′ ∈ Es. Clearly, r ∈ [Ω] ∩ Z
s. The connectivity of A implies

r = 2jα0 −

j−1
∑

l=0

2lγl.

It is easy to see r ≡ γ0 (mod 2). Hence, together with the definition of A(δ′) we have

γ0 = r and

r = 2j−1α0 −

j−2
∑

l=0

2lγl+1,

which in turn implies γ1 = r. Recursively, γl = r, l = 0, 1, ..., j−1, or α0 = r. Therefore,

there is at most one such set.

To verify the inequalities (6.2) we begin with the observation of the case j = 0. We

notice that S0 ∩ Ω contains only one extreme point of [Ω] (say α1). It is clear 0 <

a(α1) ≤ 1 and now we need to prove a(α1) 6= 1. To see this, we let a(α1) = 1. On one

hand, it follows from Theorem 5.5.1 that the set A(δ), which contains α1, has only one

element. Then we have from the above proof, that A is connected with respect to α1,

i.e., for any α ∈ [Ω] ∩ Z
s \ {α1}, there are j ∈ N and γl ∈ Ω such that

α = 2jα1 −

j−1
∑

l=0

2lγl.

However, by Lemma 6.1.2, the element α1 must be an inner point of [Ω]. This contrac-

tion means that (6.2) is true for j = 0.

Next we observe (6.2) for the case 1 ≤ j < s. Let Sj be a j−dimensional face. We may

assume that 0 ∈ Sj ∩ Ω. Indeed, if 0 6∈ Sj ∩ Ω, we can just shift the mask {a(α)} with

some β′ ∈ Z
s so that 0 ∈ (Sj + β′)∩Ωβ′ and {a′(α)} = {a(α− β′)}, which satisfies also
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the sum rule (1.3). Moreover, the matrix A with entries a′(−α+2β), α, β ∈ [Ωβ′ ]∩Z
s,

is also connected.

Now we have j linearly independent vectors γ1, ..., γj ∈ Ω such that each element x in

Sj is a linear combination of γ1, ..., γj. We have just as in the proof of Lemma 5.5.1 a

unimodular matrix M ∈ Ms such that the first s − j components of Mγi are zero for

i = 1, ..., j (see e.g. [13] Chapter 14). More precisely, there holds

M(γ1, ..., γj) = (η1, ..., ηj)

with ηi = (0, ..., 0, ηs−j+1,i, ..., ηs,i)
T , i = 1, ..., j. Thus, under the mapping M the

relation (6.3) can be written as for any α ∈ M([Ω] ∩ Z
s) there is τ ≥ 1 such that for

some γl ∈ Ω

α = 2τMα0 −
τ−1
∑

l=0

2lMγl. (6.4)

Hence, the matrix B given by B(α, β) = a′(−α + 2β), α, β ∈ M([Ω] ∩ Z
s), is again

connected, where a′(α) = a(M−1α). Clearly, {a′(α)} also satisfies the sum rule (1.3).

In what follows we should project MΩ on the space Z
s−j deduced by the first s − j

vectors of Zs. Obviously, as 0 ∈ Sj and the first s− j components of MSj are zero, the

projector of MSj on Z
s−j is the single point zero, i.e. MSj|Zs−j = 0. Furthermore,

b(α) =
1

2j

∑

β|
Zs−j=α

a′(β)

is also a nonnegative mask in Z
s−j. It is easy to see that {α : b(α) 6= 0} = MΩ|Zs−j .

Moreover, since {a′(α)} satisfies the sum rule (1.3) we have for any δ ∈ Es−j

∑

α

b(2α + δ) =
1

2j

∑

α∈Zs−j

∑

β|
Zs−j=2α+δ

a′(β) =
1

2j

∑

α∈Zs−j

∑

β∈Zj

a′((2α + δ, β)T )

=
1

2j

∑

α∈Zs−j

∑

η∈Ej

∑

β∈Zj

a′((2α + δ, 2β + η)T )

=
1

2j

∑

η∈Ej





∑

α∈Zs−j

∑

β∈Zj

a′((2α + δ, 2β + η)T )



 =
1

2j

∑

η∈Ej

1 = 1.

Hence, the mask {b(α)} satisfies the sum rule (1.3).
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But (6.4) tells us

α|Zs−j = 2τ (Mα0)|Zs−j −
τ−1
∑

l=0

2l(Mγl)|Zs−j .

Hence the matrix A defined by {b(α)} is also connected. On the other hand, as MSj

is a face of [MΩ], the zero is an extreme point of [MΩ]|Zs−j . Thus, the assertion (6.2)

for j = 0 implies 0 < b(0) < 1. However, since

b(0) =
1

2j

∑

β|
Zs−j=0

a′(β) =
1

2j

∑

β∈M(Sj∩Ω)

a′(β)

=
1

2j

∑

M−1β∈Sj∩Ω

a(M−1β)

=
1

2j

∑

β∈Sj∩Ω

a(β),

we conclude that (6.2) is also true for 1 ≤ j ≤ s− 1.

Now let us look at the case of s = 1. From Theorem 6.1.3 it is easy to see that the

connectivity of A and the sum rule (1.3) imply 1) and 2) of Theorem 3.0.1. In other

words, we have that the subdivision scheme with a nonnegative finite mask in this case

converges if and only if the matrix A is connected and the sum rule (1.3) is fulfilled.

However, in the case of s ≥ 2 these two conditions (the connectivity of A and the sum

rule (1.3)) cannot sufficiently ensure the convergence of the subdivision scheme with a

nonnegative finite mask. We illustrate this fact by the following example (see Figure

6.1).

Example 6.1.1. Let s = 2, we observe the subdivision scheme with the mask

a((0, 0)T ) = a((0, 1)T ) = a((1, 2)T ) = a((2, 2)T ) =
1

2
,

a((3, 1)T ) = a((3, 0)T ) = a((2,−1)T ) = a((1,−1)T ) =
1

2

and

a((1, 0)T ) = a((2, 0)T ) = a((1, 1)T ) = a((2, 1)T ) = 0.

It’s easy to check that the sum rule (1.3) is fulfilled and the matrix A is connected.

However A2 is not connected. Hence, according to Theorem 6.1.1 this subdivision

scheme is not convergent.
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(0,0)

(1,-1) (2,-1)

(3,0)

(3,1)

(2,2)(1,2)

(0,1) (1,1)

(2,0)(1,0)

(2,1)

Figure 6.1: Octagon

Theorems 6.1.3 and 5.5.1 provide a property of the convergent subdivision schemes, i.e.,

the so-called inner-point principle. In the following section, we will continue to study

the related properties.

Our first application of the inner-point principle gives the special expression of λ under

certain conditions.

Corollary 6.1.4. Let {a(α)} be a finite nonnegative mask and Ω ⊂ Z
s be the support.

Assume that Ω satisfies the inner-point principle. If there exists T ⊆ Z
s with |T | = 1

such that for some k ∈ N and λ = δ0 + 2δ1 + · · ·+ 2k−1δk−1 with δj ∈ Es,

T − λ+ Ωk

2k
∩ Z

s = T,

then λ = δ(2k − 1) for some δ ∈ Es.

Proof. Without loss of generality, we may write {α0} = T0 = T and

T0 − δ0 + Ω

2
∩ Z

s =: T1, (6.5)

T1 − δ1 + Ω

2
∩ Z

s =: T2,

· · ·

Tk−1 − δk−1 + Ω

2
∩ Z

s = T0.

Then we conclude |Tk−1| = 1. Indeed, if |Tk−1| 6= 1, i.e., there are at least two elements

αk−1, α
′
k−1 in Tk−1. We may assume first that αk−1 6≡ α′

k−1 (mod 2). Suppose |A(α′
k−1−
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δk−1)| = 1. Then since Ω satisfies the inner-point principle, for the other element

αk−1 − δk−1, we have |A(αk−1 − δk−1)| ≥ 2. Let r, r′ ∈ A(αk−1 − δk−1). It follows that

α0 =
αk−1 − δk−1 + r

2
∈ T0 and α0 =

αk−1 − δk−1 + r′

2
∈ T0,

which shows r = r′ and so a(r) = 1. This is a contradiction to the fact that Ω

satisfies the inner-point principle. Consequently, it follows from (6.5) that |Tj| = 1,

j = 0, 1, ..., k − 1. Furthermore, there exists only one r ∈ Ω such that αk−1 − δk−1 ≡ r

(mod 2). We obtain, therefore, that αj−δj ≡ r (mod 2), j = 0, 1, ..., k−1. Or again by

recursion (6.5), we have α0 = 2kα0+λ−r(2
k−1), which yields that λ = (r−α0)·(2

k−1).

Thus (2k − 1)|(λ)τ , τ = 1, ..., s. The restriction 0 ≤ (λ)τ ≤ 2k − 1 implies (λ)τ = 0 or

2k − 1, τ = 1, ..., s. In other words, there is δ ∈ Es such that λ = δ(2k − 1).

The case αk−1 ≡ α′
k−1 (mod 2) can be treated in the same way.

6.2 More about the connectivity

We continue to study the matrices A defined by (6.1). The following result is a con-

sequence about the irreducible mapping (see Section 4.2). Indeed similar results are

obtained also by [14] and [18].

Lemma 6.2.1. Let the nonnegative finite mask {a(α)} satisfy the sum rule (1.3). Let A

defined by (6.1) be connected with β0 and G([Ω]∩Z
s, K) be the directed graph generated

by A. Further denote Γ1 to be a strongly connected component of G([Ω]∩Z
s, K), which

contains β0, and B to be the submatrix of A given by

B(α, β) = A(α, β), ∀α, β ∈ Γ1.

Then B is row-stochastic. Moreover either there exists an L ≥ 1 such that all entries

of BL are positive or for some 1 < J ≤ |Γ1| there is a decomposition U1, U2,...,UJ of Γ1

such that B|Ui+1×Ui
, i = 1, ..., J , is row-stochastic and all other entries of B are zero,

where UJ+1 = U1.

Proof. It is easy to see that B is row-stochastic. To show the other assertions, we define

the mapping ψ in the following way: for any nonempty set T ⊆ [Ω] ∩ Z
s, let

ψ(T ) =
T + Ω

2
∩ Z

s ⊆ [Ω] ∩ Z
s.
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Then ψ restricted to Γ1 is irreducible. According to [19] either ψ on Γ1 is primitive, or

Γ1 = U1 ∪ U2 ∪ · · · ∪ UJ such that

ψ(Uj) = Uj+1, j = 1, ..., J.

In the first case, there is L such that

Γ1 = ψL({α}), ∀ α ∈ Γ1.

The assertions of this lemma follow if we translate the above into B.

Now we use the connectivity of the matrix A to develop some useful property on the

convergent subdivision scheme. It follows from Lemmas 6.1.2 and 6.2.1 that

Theorem 6.2.2. Suppose the nonnegative finite mask {a(α)} satisfy the sum rule (1.3).

If Al, l ≥ 1, is connected, where A is defined by (6.1), then Ak has a positive column

whenever k ≥ 2N
2

. Furthermore, if Γ1 ⊂ Z
s is a convex and finite set such that

[Ω] ∩ Z
s ⊆ Γ1, then the above condition on A implies that for τ ≥ 2|Γ1|2 the matrix Bτ

has a positive column, where

B(α, β) = a(−α + 2β), ∀ α, β ∈ Γ1.

.

Proof. In order to facilitate the expression, we write at first Γ = [Ω]∩Z
s. By hypothesis

on the connectivity of A and Lemma 6.1.2, for some α1 ∈ Γ \ ∂Γ and any α ∈ Γ1 \ {α1}

there is j ≥ 1 so that for some γi ∈ Ω

α = 2jα1 −

j−1
∑

i=0

2iγi. (6.6)

So the matrix B is connected. Next, we need to prove the matrix Bτ has a positive

column for τ ≥ 2|Γ1|2 . To this end, we need the concept of A(λ) introduced in Section

3.2. More precisely, for a given finitely supported real mask {a(α)}

A(λ) = {α : a(α) 6= 0 and α ≡ λ (mod 2)}, ∀λ ∈ Z
s
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and the set A(λ) hat at least one element, because of the sum rule (1.3). We should

divide the proof into two cases according to whether |A(δ)| = 1 for some δ ∈ Es or not.

Case 1. Suppose that there is δ′ ∈ Es such that |A(δ′)| = 1. It follows from Lemma

6.1.3 that for all δ ∈ Es \{δ′} the set A(δ) has at least two elements. Moreover, denote

A(δ′) = {r}, then r ∈ Ω. We conclude from the proof of Lemma 6.1.3 that α1 = r.

Then, α1 = 2α1 − r and for any h ∈ N and γi = r

α1 = 2hα1 −
h−1
∑

i=0

2iγi. (6.7)

For each α ∈ Γ1 \ {α1} let j(α) be the smallest satisfying (6.6) and J be the maximum

among all such j(α), i.e., J = max{j(α) : α ∈ Γ1 \ {α1}}. Clearly |J | ≤ |Γ1| ≤ 2|Γ1|.

Thus, for any 1 ≤ j ≤ J we have h ≥ 0 such that j + h = J . Combining the last

identity 6.7 with (6.6) we conclude that j in (6.6) can always be replaced by J , which

means that BJ(α, α1) > 0, and in other words, the α1-column of BJ is positive.

Case 2. Suppose |A(δ)| ≥ 2 for all δ ∈ Es. Denote Γ1 = Γ′ ∪ Γ′′ with Γ′ being the

strongly connected component of G(Γ1, K) deduce by B and α1 ∈ Γ′. According to

(6.6) we conclude that the parents of each vertex in Γ′ also belong to Γ′ . Let C be the

restriction of A given by C(α, β) = B(α, β), α, β ∈ Γ′. So C is again a row-stochastic

matrix. We can therefore arrange B as

B =

(

C 0

D1 F

)

and Bl =

(

C l 0

Dl F l

)

.

It follows from the connectivity of the matrix Bl that C l is also connected. Thus, for

any M1,M2 ∈ M|Γ′| the matrix M1CM2 cannot be block diagonal with more than one

block. It follows from Lemma 6.2.1 that for some k ≥ 1 all entries of Ck are positive.

It remains to show that for some τ ≥ 1 there is at least one positive column of Bτ .

Clearly (D1, F ) is row-stochastic and D1 6= 0, since B is connected. Thus, assume

D1(α
′, β) > 0 for one β ∈ Γ′. It follows from the positivity of Ck that Dk+1(α

′, β) > 0

for all β ∈ Γ′. Write

D1 =

(

D1
1

D2
1

)

and F =

(

F1 F2

F3 F4

)
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such that F1 and F4 are square matrices and D2
1 is zero, the number of the row of D1

1

and F1 is the same and the number of the row of D2
1 and F4 is the same. Note that

F3 6= 0, since B is connected, then without loss the generality, we assume that the first

row of F3 is not all zeros.

Adding this nonzero row of F3 to F1 and making corresponding changes for the other

matrices we obtain that D1
k+2 is positive. Repeating this process we conclude that

there is a m ≥ 1 such that the Γ′ columns of Bk+m are positive. Finally, since the

signs of the entries have total 2|Γ1|2 possibilities, so among Bj, j = 1, ..., 2|Γ1|2 we have

1 ≤ j1 < j2 ≤ 2|Γ1|2 such that sgn(Bj1) = sgn(Bj2), where the sign matrix of a given

nonnegative matrix B is defined by

sgn(B)(α, β) :=







1, if B(α, β) > 0,

0, if B(α, β) = 0.

We may choose k + m = 2|Γ1|2 . Consequently, Bk has a positive column whenever

k ≥ 2|Γ1|2 .

We are in a position to present the relation between the connection of the square

matrix A and the eigenvalues of A. The matrix A possesses the so-called 1-condition,

if 1, r2, ..., rN are the eigenvalues of the matrix A and |rj| < 1, j = 2, ..., N .

Let 1, r2, ..., rN be the eigenvalues of the matrix A. From Lemma 6.2.1 and Theorem

6.2.2 it is now clear that the conditions on A in Theorem 6.2.2 imply that the eigen-

values of A satisfy |rj| < 1, j = 2, ..., N . Conversely, Aj must be connected and the

decomposition in the sense of Lemma 6.2.1 does not exist. So from the proof of Theo-

rem 6.2.2 there is a k such that Ak has a positive column, which yields the connectivity

of Aj, j = 1, 2, .... For matrix A given by (6.1) the following conditions are equivalent:

1. |rj| < 1, j = 2, ..., N , i.e., A possesses the 1-condition.

2. Aj is connected for j = 1, 2, ....

3. Ak has a positive column for some k ≥ 1.

Using Theorems 3.1.1 and 3.3.1 in the case of k = 1 and δ0 = 0, it is not hard to show

that the following corollary holds.

Corollary 6.2.3. Let the finite mask {a(α) : α ∈ Z
s} be nonnegative and Ω be the

support of the mask {a(α)}. The matrix A denoted by (6.1) possesses the 1-condition ,
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if and only if, for T, T ′ ⊆ [Ω] ∩ Z
s, the inclusion relations

T + Ω

2
∩ Z

s ⊆ T and
T ′ + Ω

2
∩ Z

s ⊆ T ′

imply T ∩ T ′ 6= ∅.

In this chapter we have investigated the connectivity of the matrix A. But how can we

examine whether a given row-stochastic matrix is connected? The following algorithm

shows that the connectivity of the matrix A may be tested by depth-first search algo-

rithm from graph theory in linear time with respect to the size of A (see [4]). As the

connectivity does not depend on the actual values of A we may assume sgn(A) = A.

Our algorithm is as follows.

Algorithm CHECK (A):

(1) build the graph G(Γ, K) from A;

(2) calculate all strongly connected components of G(Γ, K), say Γ1, Γ2,..., Γm;

(3) build a new graph G′(V,E), where V = {1, ...,m} and

E = {(i, j) : i, j ∈ V, if there is an edge from Γi to Γj};

(4) if there are at least two vertexes of V whose in-degree is zero, return false, otherwise

return true.

A strongly connected component of a directed graph G(Γ, K) is the maximal set of

vertexes Γ′ ⊆ Γ such that every pair of vertexes u and v in Γ′ are reachable from each

other. The in-degree of a vertex is the number of edges which is incident to this vertex.

Let the size of A be N ×N , so to build G(Γ, K) in the form of adjacency list one needs

the complexity O(N2). To find all strongly connected components of G(Γ, K) and to

construct the new graph G′(V,E) one needs O(|Γ| + |K|) = O(N2) as shown in [4].

Finally, finding the vertex in G′(V,E) with zero in-degree costs O(|Γ|+ |K|). Thus, the

complexity of CHECK (A) is O(N2).

The matrix A is connected if and only if the output of CHECK (A) is true. Indeed,

if G′(V,E) has more than one vertex with zero in-degree then G(Γ, K) cannot be con-

nected. To see this let a and b two vertexes of G′(V,E) with zero in-degree. So there

is no path in G′(V,E) between a and b, which in turn implies that there is no paths

among the corresponding strongly connected components of G(Γ, K). On the other
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hand, as G′(V,E) is acyclic, there is at least one vertex with in-degree zero. If there is

only one vertex v ∈ V with zero in-degree then for any u ∈ V \ {v} one can always find

a path from v to u. Assume the strongly component corresponding to v is Γ1, hence,

any vertex from Γj, j 6= 1 can be reached from the vertexes of Γ1, in particular from a

vertex of Γ1. In other words, A is connected.
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Chapter 7

Sufficient Conditions for the

Convergence

In the previous chapters, we have studied the necessary and sufficient conditions on

the convergent subdivision schemes with the finite nonnegative mask {a(α)}. Those

results may help us to understand the distribution of the supports of those masks,

for which the subdivision schemes converge. Unfortunately, it is still rather difficult

from those results to obtain quickly computable criteria for the convergence. In the

last chapter of this thesis, we take full advantage of the results in previous to study

the multivariate subdivision scheme with nonnegative masks, whose support possesses

some special properties.

We draw our inspiration from Theorem 6.2.2 and conclude the following result as well.

Theorem 7.0.1. Let the nonnegative finite mask {a(α) : α ∈ Z
s} satisfy the sum rule

(1.3) and Ω = {α : a(α) 6= 0} the support of this mask. If for some l ≥ 2 the set Ωl is

convex and [Ω]o ∩ Z
s 6= ∅, then the subdivision scheme associated with {a(α) : α ∈ Z

s}

converges.

Obviously, the condition [Ω]o ∩Z
s 6= ∅ is necessary. In fact the mask given by a(α) = 1

for α ∈ Es satisfies the sum rule and (Es)i is convex for any i ≥ 1. However, the subdivi-

sion scheme defined by this mask does not converge in the continuous norm. Moreover,

Example 4.1.3 shows that in general l ≥ 2 in Theorem 7.0.1 cannot be replaced by

l ≥ 1. It turns out that the substance of this result consists in the investigation of the

properties of the convex sets. Therefore in the first section of this chapter, we discuss

97
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some properties of the convex set Ωl in detail. In the second section, we will focus on

the proof of the above result.

7.1 On the convex set Ω
l

We begin in this section with the investigation of Ωl. The behaviour of Ωl provides

some useful information concerning the primitive sets (see Section 4.2), that will lead

to the proof of Theorem 7.0.1.

Lemma 7.1.1. Let Ω ⊆ Z
s. If for some l ≥ 2 the set Ωl is convex, so is Ωτl for all

τ ∈ N.

Proof. By hypothesis the integer set Ωl is convex with some l ≥ 2. We prove firstly

that, for any r1, ..., r2l−1 ∈ Ω,
2l−1
∑

j=1

rj ∈ Ωl. (7.1)

Indeed, if r ∈ Ω, then in view of (3.3) and the definition of Ωl (see (3.2)),

(2l − 1)r = r + 2r + · · ·+ 2l−1r ∈ Ωl.

Hence, (2l − 1)rj ∈ Ωl, j = 1, ..., 2l − 1. Because Ωl is convex, the convex combination

2l−1
∑

j=1

rj =
1

2l − 1
((2l − 1)r1 + · · ·+ (2l − 1)r2l−1)

belongs to Ωl.

To show the assertion of this lemma let x, y ∈ Ωlτ and x ≡ y (mod 2). Then there are

rj, r
′
j ∈ Ω satisfying

x =
lτ−1
∑

j=0

2jrj and y =
lτ−1
∑

j=0

2jr′j.

Write

lτ−1
∑

j=0

2jrj =
l−1
∑

j=0

2jrj +
2l−1
∑

j=l

2jrj +
3l−1
∑

j=2l

2jrj + · · ·+
τl−1
∑

j=(τ−1)l

2jrj

=
τ−1
∑

µ=0

2µl
l−1
∑

j=0

2jrµl+j.
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Similarly,
lτ−1
∑

j=0

2jr′j =
τ−1
∑

µ=0

2µl
l−1
∑

j=0

2jr′µl+j.

Thus, we have

x+ y

2
=

1

2

l−1
∑

j=0

2j(rj + r′j) +
τ−1
∑

µ=1

2µl−1

l−1
∑

j=0

2j(rµl+j + r′µl+j). (7.2)

Clearly,
∑l−1

j=0 2
jrj ≡

∑l−1
j=0 2

jr′j (mod 2), because x ≡ y (mod 2). As Ωl is convex, the

first term in (7.2) belongs to Ωl. The definition of Ωl (see (3.2)) and (3.3) tell us that

there are ηj ∈ Ω, j = 0, ..., l − 1 such that

1

2

l−1
∑

j=0

2j(rj + r′j) =
l−1
∑

j=0

2jηj.

So (7.2) can be rewritten as

x+ y

2
=

l−1
∑

j=0

2jηj +
τ−1
∑

µ=1

2µl−1

l−1
∑

j=0

2j(rµl+j + r′µl+j). (7.3)

Next we prove that for ξ, ξi, ξ
′
i ∈ Ω, i = 0, 1, ..., l−1, there are η, ηi ∈ Ω, i = 0, 1, ..., l−1,

so that

ξ +
l−1
∑

i=0

2i(ξi + ξ′i) = η + 2
l−1
∑

i=0

2iηi. (7.4)

Indeed, we may regard

ξ +
l−2
∑

i=0

2i(ξi + ξ′i)

as a sum of total 2l − 1 members of Ω. Thus, by (7.1) there are ηi ∈ Ω, i = 0, ..., l − 1,

so that

ξ +
l−2
∑

i=0

2i(ξi + ξ′i) =
l−1
∑

i=0

2iηi.

Consequently,

ξ +
l−1
∑

i=0

2i(ξi + ξ′i) =
l−1
∑

i=0

2iηi + 2l−1(ξl−1 + ξ′l−1)

= η0 + 2(
l−1
∑

j=1

2j−1ηj + 2l−2(ξl−1 + ξ′l−1)).
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We may again regard
l−1
∑

j=1

2j−1ηj + 2l−2(ξl−1 + ξ′l−1)

as the sum of total 2l−1 members of Ω. So there exist ςj ∈ Ω, j = 0, ..., l−1, satisfying

l−1
∑

j=1

2j−1ηj + 2l−2(ξl−1 + ξ′l−1) =
l−1
∑

j=0

2jςj.

That is

ξ +
l−1
∑

i=0

2i(ξi + ξ′i) = η0 + 2
l−1
∑

j=0

2jςj.

The last equation is (7.4), if η0 is replaced by η and ςj by ηj, j = 0, ..., l − 1.

Applying (7.4) to the sum of 2l−1ηl−1 and the second term in (7.3) with µ = 1, we

obtain (perhaps with a new ηl−1 ∈ Ω)

x+ y

2
=

l−1
∑

j=0

2jηj + 2l
l−1
∑

j=0

2jηl+j +
τ−1
∑

µ=2

2µl−1

l−1
∑

j=0

2j(rµl+j + r′µl+j).

Similarly, 22l−1η2l−1 together with the sum of µ = 2 can be rewritten as

22l−1

(

η2l−1 +
l−1
∑

j=0

2j(r2l+j + r′2l+j)

)

= 22l−1

(

η2l−1 + 2
l−1
∑

j=0

2jη2l+j

)

,

where the η2l−1 ∈ Ω on the right hand side may not be the same as η2l−1 ∈ Ω on the

left hand side. Repeating this process, we obtain finally

x+ y

2
=

τ−1
∑

µ=0

2µl
l−1
∑

j=0

2jηµl+j =
τ−1
∑

µ=0

(µ+1)l−1
∑

j=µl

2jηj =
lτ−1
∑

j=0

2jηj ∈ Ωlτ .

We have already seen that for any x, y ∈ Ωlτ with x ≡ y (mod 2), then the integer

(x + y)/2 belongs to Ωlτ . To show the convexity of Ωlτ we have to prove that if

x, y ∈ Ωlτ and all integers, which can be expressed as a sum of δx + (1 − δ)y =: z for

some 0 ≤ δ ≤ 1, belong also to Ωlτ . To this end, let x = a0 + 2la1 + · · · + 2l(τ−1)aτ−1

and y = b0 + 2lb1 + · · ·+ 2l(τ−1)bτ−1, for some ai, bi ∈ Ωl, i = 0, ..., τ − 1.

We may assume 0 ∈ Ωl. So the integer z belongs to the convex cover Σ deduced by

{0, pa0, ..., paτ−1, pb0, ..., pbτ−1}, where p = (2lτ − 1)/(2l − 1). We prove that Σ ∩ Z
s ⊆
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Ωlτ . In fact, let c0, cj,i ∈ {0, a0, ..., aτ−1, b0, ..., bτ−1}. Clearly all integers of the form

c0+
∑τ−1

µ=1 2
lµcµ,i belongs to Ωlτ . Thus, for fixed c0 the middle point of any two of these

integers belongs to Ωlτ . That is

c0 + 2l−1(c1,i + c1,j) +
τ−1
∑

µ=2

2lµ−1(cµ,i + cµ,j) ∈ Ωlτ .

Consequently,

c0 +
2l
∑

i=1

c1,i +
τ−1
∑

µ=2

2l(µ−1)

2l
∑

i=1

cµ,i ∈ Ωlτ .

Repeatedly, any sum of q(≤ p) integers from {0, a0, ..., aτ−1, b0, ..., bτ−1} is a member of

Ωlτ . Thus in Σ the integers belongs to Ωlτ , which can be written as a sum of p integers

from {0, a0, ..., aτ−1, b0, ..., bτ−1}.

Let Σ′ be the convex cover of {0, a0, ..., aτ−1, b0, ..., bτ−1}. So Σ′ ∩Z
s ⊆ Ωl because Ωl is

convex. If in Σ there exist other integers which cannot be written as a sum of p integers

from {0, a0, ..., aτ−1, b0, ..., bτ−1}, then there exist integers in Σ′, which are different to

{0, a0, ..., aτ−1, b0, ..., bτ−1}. Let x ∈ Σ′ ∩ Z
s be different to {0, a0, ..., aτ−1, b0, ..., bτ−1}.

So x ∈ Ωl and

x+ 2lc1,i + · · ·+ 2l(τ−1)cτ−1,i ∈ Ωlτ .

Our consideration implies that any sum of x and q(≤ p− 1) integers from

{0, a0, ..., aτ−1, b0, ..., bτ−1}

is a member of Ωlτ . That is that any sum of p intergers from {0, x, a0, ..., aτ−1, b0, ..., bτ−1}

belongs to Ωlτ . If there is again integer in Σ, that cannot be expressed as a sum of

p members from {0, x, a0, ..., aτ−1, b0, ..., bτ−1}, so we have y ∈ Σ′ ∩ Z
s be different to

{0, x, a0, ..., aτ−1, b0, ..., bτ−1} and any sum of p members from

{0, x, y, a0, ..., aτ−1, b0, ..., bτ−1}

is in Ωlτ .

In this way, any sum of q(≤ p) members of Ωl belongs to Ωlτ . Consequently, Σ∩Zs ⊆ Ωlτ

and Ωlτ is convex.

To prove Theorem 7.0.1, we also need some technical lemmas. The next one shows the

relation between the irreducibility and the primitivity with respect to the convex set.
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Lemma 7.1.2. Let the set Ω ⊆ Z
s be finite and further Ωl be convex for some l ≥ 2.

If T is irreducible with respect to Ωp and λ ∈ Z
s, i.e.,

T − λ+ Ωp

2p
∩ Z

s = T,

and l|p, then T is primitive.

Proof. If T is not primitive, then there exist k ≥ 2 and a disjoint partition of T (say

T1, T2,...,Tk) such that

Ti − λ+ Ωp

2p
∩ Z

s = Ti+1, i = 1, ..., k

with Tk+1 = T1 (see Section 4.2 for the details). Thus, if we can prove that for any

x ∈ T there is r ∈ Ωp satisfying

x− λ+ r

2p
= x,

then k = 1, which shows the primitivity of T . To this end, let x ∈ T . Lemma 7.1.1

tells us that Ωp is convex. Hence, by Corollary 3.3.2 we have (2p − 1)x + λ ∈ Ωp.

Consequently, write r = (2p − 1)x+ λ and it follows that

x− λ+ r

2p
=
x− λ+ (2p − 1)x+ λ

2p
= x.

In other words, k = 1. This completes the proof of the lemma.

We will propose the properties of the primitive sets with respect to the convex set Ωl.

Lemma 7.1.3. Let T1 and T2 be primitive with respect to the convex set Ωl for some

l ≥ 2 and λ ∈ Z
s. If there are x1, ..., xw ∈ T1 and xw+1, ..., xw+t ∈ T2 with w, t ≥ 1 such

that

a =
w+t
∑

i=1

αixi ∈ Z
s, for 0 < αi < 1 and

w+t
∑

i=1

αi = 1,

then T1 = T2.

Proof. We may assume 2lαi > 1, i = 1, ..., w+ t. Otherwise, we consider Ωτl with τ ∈ N

instead of Ωl. Lemma 7.1.2 tells us T1 and T2 are still primitive with respect to Ωτl and
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λ∗ = λ+2lλ+ · · ·+2l(τ−1)λ (see also (4.3)). We can therefore take τ large enough such

that 2τlαi > 1. Let now

µ =
w+t
∑

i=1

2lαixi − x1 + λ = (2lα1 − 1)x1 +
w+t
∑

i=2

2lαixi + λ ∈ Z
s.

From Corollary 3.3.2 we know that

(2l − 1)xi + λ ∈ Ωl, i = 1, ..., w + t.

Thus µ can be rewritten as the convex combination of (2l−1)xi+λ with i = 1, ..., w+ t,

i.e.,

µ =
2lα1 − 1

2l − 1

(

(2l − 1)x1 + λ
)

+
w+t
∑

i=2

2lαi

2l − 1

(

(2l − 1)xi + λ
)

∈ Ωl.

It follows from x1 ∈ T1 and the definition of the primitivity that

x1 − λ+ µ

2l
=

w+t
∑

i=1

αixi = a ∈ T1.

Similarly, for xw+t ∈ T2, we have

ν =
w+t
∑

i=1

2lαixi − xw+t + λ ∈ Ωl,

which implies that
xw+t − λ+ ν

2l
= a ∈ T2.

Thus T1 ∩ T2 6= ∅. But T1 and T2 are primitive. It follows from the definition of the

primitivity that T1 = T2.

The following lemma gives us more information about the primitive set with respect to

the convex set Ωl.

Lemma 7.1.4. Let Ω ⊆ Z
s and |Ω| < ∞. Let further λ ∈ Z

s, k ∈ N and T ⊆ Z
s

satisfying
T − λ+ Ωk

2k
∩ Z

s = T

be primitive. If Ωl is convex for some l ≥ 2, so is T .
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Proof. Denote λ∗ = λ + 2kλ + · · · + 2k(lτ−1)λ. It follows from the property of the

primitivity of T (see (4.3)) that

T − λ∗ + Ωklτ

2klτ
∩ Z

s = T

For large enough τ we have

−α + λ∗ + 2klτβ ∈ Ωklτ , ∀ α, β ∈ T.

Let x, y ∈ T such that δx+(1− δ)y ∈ Z
s for some 0 < δ < 1. So −x+λ∗+2klτx ∈ Ωklτ

and −x+ λ∗ + 2klτy ∈ Ωklτ . We obtain that

δ(−x+ λ∗ + 2klτx) + (1− δ)(−x+ λ∗ + 2klτy) = −x+ λ∗ + 2klτ (δx+ (1− δ)y)

is an integer and belongs to Ωklτ . Thus for some r ∈ Ωklτ ,

δx+ (1− δ)y =
x− λ∗ + r

2klτ
∈ T.

Hence T is convex.

7.2 Proof of Theorem 7.0.1

We are now ready to prove Theorem 7.0.1. In what follows, we shall take advantage of

Theorem 3.3.1 (see Section 3.3 for details). The key is now for given λ and k to choose

the irreducible (or primitive) mapping and to show the uniqueness of this mapping.

Proof of Theorem 7.0.1. Using Theorem 3.3.1 to prove Theorem 7.0.1 we have to show

that for any k ∈ N, λ ∈ Z
s with 0 ≤ (λ)j ≤ 2k − 1, j = 1, ..., s, if

T − λ+ Ωk

2k
∩ Z

s ⊆ T and
T ′ − λ+ Ωk

2k
∩ Z

s ⊆ T ′

then T ∩T ′ 6= ∅. It is clear that any such set T contains a subset T0, which is irreducible

and satisfies
T0 − λ+ Ωk

2k
∩ Z

s = T0.

Therefore, we need only show that for any k ∈ N, λ ∈ Z
s with 0 ≤ (λ)j ≤ 2k − 1,

j = 1, ..., s, there is only one irreducible T0. Clearly, if T0 is not primitive, then there is

a partition of T0 = T1 ∪ · · · ∪ Tp with p ≥ 2 such that

Tj − λ+ Ωk

2k
∩ Z

s = Tj+1
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with the understanding Tp+1 = T1 (see Section 4.2 for the details). Moreover, Tj,

j = 1, ..., p, is primitive with respect to Ωkpτ and λ∗(τ) = λ(2kpτ − 1)/(2k − 1) for all

τ ≥ 1. In other words, for the primitive set Tj, j = 1, ..., p, there holds

Tj − λ∗(τ) + Ωkpτ

2kpτ
∩ Z

s = Tj, τ = 1, 2, ....

On the other hand, if we define the matrix Bj as

Bj(α, β) = akp(−α + λ∗(1) + 2kpβ), ∀ α, β ∈ Tj,

then it follows from the sum rule (1.3) of the nonnegative mask {a(α)} that Bj is row-

stochastic. The primitivity of Tj, j = 1, ..., p, implies that for some τ ′ ≥ 1 all entries of

Bτ ′

j , j = 1, ..., p, are positive. By the construction of Bj we obtain

Bτ ′

j (α, β) = akpτ
′

(−α + λ∗(τ ′) + 2kpτ
′

β) > 0, ∀ α, β ∈ Tj, j = 1, ..., p.

Thus, we conclude that for all τ ≥ τ ′

− α + λ∗(τ) + 2kpτβ ∈ Ωkpτ , ∀ α, β ∈ Tj, j = 1, ..., p. (7.5)

The arbitrariness of τ ≥ τ ′ allows us to choose τ ≥ τ ′ so that l|(kpτ). The above

discussion tells us that to prove the desired assertion we need only to verify: for any

given k ∈ N such that l|k and λ ∈ Z
s with 0 ≤ (λ)j ≤ 2k − 1 there exists only one

primitive or irreducible T ( see Lemma 7.1.2) with respect to Ωk and λ, i.e.,

T − λ+ Ωk

2k
∩ Z

s = T

and the set T is primitive and l|k.

By the way the sum rule implies that the volume of [Ω] is greater than 0. Hence, if

x ∈ [Ω]o, then there is ǫ0 > 0 such that x + ǫ ∈ [Ω] for ǫ ∈ R
s and |ǫ| ≤ ǫ0. We will

divide the proof into two cases according to different values of λ.

Case 1. λ = (2k − 1)δ, δ ∈ Es and l|k.

We observe firstly δ = 0. Let T be primitive with respect to Ωk and λ = 0 . Then

T + Ωk

2k
∩ Z

s = T.
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We claim that T is also primitive with respect to Ω and λ = 0. Otherwise, denote

T0 = T , we have

T0 + Ω

2
∩ Z

s = T1,

T1 + Ω

2
∩ Z

s = T2,

· · ·

Tk−1 + Ω

2
∩ Z

s = T0.

Then, T1 ⊆ T0. To see this, let x1 ∈ T1. So there are x0 ∈ T0 and r ∈ Ω satisfying

x1 = (x0 + r)/2. Let β = (2k−1 − 1)x0 + 2k−1r. Since l|k, the set Ωk is convex (see

Lemma 7.1.1 ). Corollary 3.3.2 tells us (2k − 1)x0, (2
k − 1)r ∈ Ωk. Finally the number

β can be represented as a convex combination of (2k − 1)x0 and (2k − 1)r:

β =
2k−1 − 1

2k − 1
(2k − 1)x0 +

2k−1

2k − 1
(2k − 1)r ∈ Ωk.

Now we obtain
x0 + β

2k
=
x0 + r

2
= x1.

Consequently, x1 ∈ T0 or T1 ⊆ T0. Recursively we get

T0 ⊆ Tk−1 ⊆ · · · ⊆ T1 ⊆ T0.

Therefore, Tj = T , j = 1, ..., k − 1 and

T + Ω

2
∩ Z

s = T.

Obviously, T is primitive with respect to Ω and λ = 0.

Next we will apply the conditions of this theorem to construct a primitive set T and to

show that T is unique. By assumption we can find a multi-integer x ∈ [Ω]o∩Z
s. Define

T1 :=
x+ Ω

2
∩ Z

s, T2 :=
T1 + Ω

2
∩ Z

s, ..., Ti+1 :=
Ti + Ω

2
∩ Z

s, ....

Then Ti ⊆ [Ω]o∩Z
s. The sum rule (1.3) implies Ti 6= ∅. Because [Ω]∩Z

s is finite, there

exist i and µ such that Ti = Ti+µ. In other words,

Ti + Ωµ

2µ
∩ Z

s = Ti.
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Ti contains a subset T ′, that is irreducible with respect to Ωµ and λ = 0. If T ′ is not

primitive, then we have p and T ⊂ T ′ so that T is primitive with respect to Ωµpτ and

λ = 0 for all τ = 1, 2, .... Taking τ = l, we conclude that T is also primitive with

respect to Ω and λ = 0 as mentioned above. Moreover T ⊆ [Ω]o ∩ Z
s. The number of

elements in T is finite, hence, for some ǫ0 > 0 there holds

T + ǫ ⊆ [Ω], ∀ ǫ ∈ R
s, |ǫ| ≤ ǫ0.

Clearly, [Ω] = [Ωτ/(2τ − 1)] for any τ ≥ 1 (see Corollary 3.3.2). Let β ∈ T be fixed.

Then any y ∈ [Ω]∩Z
s can be written as y = β+b. Moreover, for sufficiently large τ ∈ N

all those b satisfy |b|/(2τ −1) ≤ ǫ0. We may choose τ with l|τ . So, by Lemma 7.1.1 and

the conditions of this theorem, Ωτ is convex. Consequently, as β − b/(2τ − 1) ∈ [Ω], we

obtain (2τ −1)β− b ∈ Ωτ for all those b. Now we have {(β+ b)+(2τ −1)β− b}/2τ = β.

In other words, for any y ∈ [Ω]∩Z
s there is r ∈ Ωτ satisfying (y+ r)/2τ = β. Let L be

an another primitive set with respect to Ωk and λ = 0. Then, L ⊆ [Ω] ∩ Z
s and

β ∈
L+ Ωτ

2τ
∩ Z

s = L.

By Lemma 7.1.3 both T and L are the same. Therefore, there is only one primitive set

with respect to Ωk and λ = 0.

The assertion for δ 6= 0 follows from the following relation:

L− (2k − 1)δ + Ωk

2k
∩ Z

s = L ⇐⇒
L+ δ + Ωk

2k
∩ Z

s = L+ δ.

Therefore the first case is as announced.

Case 2. λ 6= (2k − 1)δ, δ ∈ Es, l|k.

The proof for this case is much more involved, although the idea is the same as in Case

1. In order to pave the way for the proof we first make some simplifies. Let T be

primitive with respect to Ωk and λ. Suppose λ = (η1, ..., ηs)
T and gcd(η1, ..., ηs) = p. It

follows that 0 ≤ p ≤ 2k−1. If p = 0 or p = 2k−1, we have nothing more to do, because

λ = (2k − 1)δ with δ ∈ Es (see Case 1). If 1 ≤ p < 2k − 1, we have an s× s unimodular

matrix M ∈ Ms (see Section 5.1) satisfying Mλ = pe1 with e1 = (1, 0, ..., 0)T ∈ Es.

Using this M we get
MT −Mλ+ (MΩ)k

2k
∩ Z

s =MT.



108

Clearly,MT is also primitive with respect to (MΩ)k andMλ. If we write p =
∑k−1

j=0 2
jǫj

with ǫj ∈ {0, 1}, then there exists j0 such that ǫj0 = 0. Next we write

λ′ =
k−1
∑

i=0

2ie1ǫj0+i = e1ǫj0 + 2e1ǫj0+1 + · · ·+ 2k−1e1ǫj0+k−1,

where j0 + i is cyclic, i.e.,

j0 + i =







j0 + i, if j0 + i ≤ k − 1,

j0 + i− k, if j0 + i > k − 1.

Clearly, λ′ ≡ 0 (mod 2). On the other hand, denote T0 = MT we obtain from the

above

Tj0 − e1ǫj0 +MΩ

2
∩ Z

s =
Tj0 +MΩ

2
∩ Z

s = Tj0+1,

Tj0+1 − e1ǫj0+1 +MΩ

2
∩ Z

s = Tj0+2,

· · ·

Tj0+k−1 − e1ǫj0+k−1 +MΩ

2
∩ Z

s = Tj0 .

Obviously, Tj0 is primitive with respect to (MΩ)k and λ′. Therefore in the following

proof we may assume, without loss of generality, that our λ has already this property,

in particular λ ≡ 0 (mod 2).

The key is to find a primitive set T with respect to Ωk and λ such that (2k − 1)T +λ ⊆

[Ωk]o. Let us begin with the discussion of the uniqueness of such set T . If we have

such a set T , then for any τ ≥ 1 the set T is also primitive with respect to Ωτk and

λ∗ = λ(2kτ − 1)/(2k − 1). Moreover, (2τk − 1)T + λ∗ ⊆ [Ωτk]o and with u = λ/(2k − 1)

the set T + u is a subset of [Ω]o. The finiteness of T implies that there exists an ǫ0 > 0

satisfying

T + u+ ǫ ⊆ [Ω], ∀ ǫ ∈ R
s, |ǫ| ≤ ǫ0.

Thus, for the integer b that can be written as (2τk − 1)ǫ with |ǫ| ≤ ǫ0, we get

(2τk − 1)T + b+ λ∗ ⊆ Ωτk.

This relation implies that for any β ∈ T there is r := (2τk − 1)β + b + λ∗ ∈ Ωτk such

that
(2τk − 1)β + b+ λ∗ + (2τk − 1)r

2τk
= (2τk − 1)β + b+ λ∗.
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Hence, for any β ∈ T and any such number b there is r ∈ Ωτk satisfying

(β − b)− λ∗ + r

2τk
= β

or
(β − b)− λ∗ + r

2τk
∈ T.

Let τ be large enough. Then any multi-integer α from the admissible set Γ(a) can be

expressed as β − b for some β ∈ T and b = (2τk − 1)ǫ with |ǫ| ≤ ǫ0. Hence, for any

α ∈ Γ(a) there is r ∈ Ωτk such that

α− λ∗ + r

2τk
∈ T.

Clearly, any primitive set is a subset of Γ(a). Let T ′ be another primitive set with

respect to Ωk and λ. Thus, T ′ is a subset of Γ(a). Moreover, T ′ is also primitive with

respect to Ωτk and λ∗. The above relation shows however that for α ∈ T ′ and some

r ∈ Ωτk, we have
α− λ∗ + r

2τk
∈ T ∩ T ′.

Therefore, by Lemma 7.1.3, T = T ′.

We have seen that (2k − 1)T + λ ⊆ [Ωk]o implies the uniqueness of T .

We now turn to the existence of such a set T , if there is α ∈ Z
s satisfying (2k−1)α+λ ∈

[Ωk]o. To see this, we define

T0 :=
α− λ+ Ωk

2k
∩ Z

s, T1 :=
T0 − λ+ Ωk

2k
∩ Z

s, ..., Tj+1 :=
Tj − λ+ Ωk

2k
∩ Z

s, ....

Clearly, for j = 0, 1, ... the set (2k−1)Tj+λ is a subset of [Ωk]o. The finiteness of Tj means

that there are τ ≥ 1 and j such that Tj = Tj+τ . That is with λ
∗ = λ(2kτ − 1)/(2k − 1)

Tj − λ∗ + Ωτk

2τk
∩ Z

s = Tj.

From this Tj we can get a primitive set T ⊆ Tj with respect to Ωτk and λ∗. Obviously,

(2k − 1)T + λ ⊆ [Ωk]o.

Our task is now to show that there is either a primitive set T with respect to Ωk and

λ satisfying (2k − 1)T + λ ⊆ [Ωk]o or an α ∈ Z
s such that (2k − 1)α + λ ∈ [Ωk]o.

Let T be a primitive set with respect to Ωk and λ. We remember

(2k − 1)T + λ+ (2k − 1)Ωk

2k
∩ Z

s = (2k − 1)T + λ. (7.6)



110

We know also that T is primitive with respect to Ωkτ and λ∗(τ) = λ(2kτ − 1)/(2k − 1)

for all τ ≥ 1. On the other hand, by (7.5) for sufficiently large τ

−α + λ∗(τ) + 2kτβ ∈ Ωkτ , ∀α, β ∈ T.

In the following proof we may therefore assume that our k instead of kτ already satisfies

this relation. Moreover, we may also assume that our k is large enough.

From Lemma 7.1.4 the T is convex and from Corollary 6.1.4 the set T contains at least

2 members.

To prove (2k−1)T +λ ⊆ [Ωk]o, suppose to the contrary that ((2k−1)T +λ)∩∂[Ωk] 6= ∅.

Then there is a j-dimensional face Sk
j of [Ωk] satisfying ((2k − 1)T + λ) ∩ Sk

j 6= ∅. We

know that Sk
j is again a polytope and whose faces are still faces of [Ωk]. We may

therefore choose the dimension of Sk
j to be minimal. Let t ∈ ((2k − 1)T + λ) ∩ Sk

j . So

t = (2k − 1)β + λ for some β ∈ T . In view of (7.5) our choice of k means

−α + λ+ 2kβ ∈ Ωk, ∀α, β ∈ T.

Multiplying both sides by (2k − 1) we obtain

−((2k − 1)α + λ) + 2k((2k − 1)β + λ) ∈ (2k − 1)Ωk, ∀ α, β ∈ T.

Thus, for any given x ∈ (2k − 1)T + λ there is r ∈ Ωk such that

x+ (2k − 1)r

2k
= t

or

(2k − 1)T + λ = {x ∈ (2k − 1)T + λ : −x+ 2kt ∈ (2k − 1)Ωk}. (7.7)

If j = 0, then t is an extreme point of Ωk. So as a convex combination of x and r we

must have t = x = r. This is however impossible because |T | ≥ 2. Hence, 1 ≤ j ≤ s−1

and t is an inner point of Sk
j , i.e., t ∈ (Sk

j )
o. Recalling (7.6), we have x1 ∈ (2k−1)T +λ

and r ∈ Ωk so that (x1 + (2k − 1)r)/2k = t.

In order to prove that for 1 ≤ j ≤ s− 1,

(2k − 1)T + λ ⊆ (Sk
j )

o, (7.8)

we distinguish between a trivial case when j = s− 1 and the more involved case when

j < s − 1. In the first case that j = s − 1, both x1 and r must lie on the same side
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of Sk
j . But t is the convex combination of x1 and r. So x1, r ∈ Sk

j . The minimality

of j implies that x1 ∈ (Sk
j )

o. Hence, for all x ∈ (2k − 1)T + λ and r ∈ Ωk such that

(x+ (2k − 1)r)/2k = t we have x ∈ (Sk
j )

o. In other words,

{x ∈ (2k − 1)T + λ : −x+ 2kt ∈ (2k − 1)Ωk} ⊆ (Sk
j )

o.

It follows from this relation and (7.7) that the inclusion (7.8) holds for j = s− 1.

In the second case that j < s − 1, there exist µ-dimensional faces Sk
µ of [Ωk], µ =

j, j + 1, ..., s − 1, such that Sk
j ⊂ Sk

j+1 ⊂ · · · ⊂ Sk
s−1. Regard t as a point of Sk

s−1,

so x1 ∈ Sk
s−1. However, t ∈ Sk

s−2, hence x1 ∈ Sk
s−2. We conclude recursively that

x1 ∈ Sk
ν , ν = s−1, s−2, ..., j, and therefore x1 ∈ Sk

j . The minimality of j implies again

x1 ∈ (Sk
j )

o, i.e., x1 is an inner point of Sk
j . Consequently, the above inclusion (7.8) is

also valid for j < s− 1.

On the other hand, since [Ωk/(2k − 1)] = [Ω], the set Sj := [Sk
j /(2

k − 1)] is a j-

dimensional face of [Ω]. Clearly, the set Sj does not depend on k. Let u = λ/(2k − 1).

We obtain from (7.8) that T + u ⊆ (Sj)
o.

Before moving further, let us provide with some notations. Denote Lj to be a j-

dimensional affine space that contains Sj and nj+1, ...,ns ∈ Z
s the unit normal vectors

of Lj, where nj+1, ...,ns are chosen in the following way: first there are µ-dimensional

faces Sµ, µ = j+1, ..., s−1 such that Sj ⊂ Sj+1 ⊂ · · · ⊂ Ss−1. Let Lµ be µ-dimensional

affine space, which contains Sµ. Finally, if we regard Lµ as a µ-dimensional affine space

in (µ + 1)-dimensional space, which is imbedded in R
s, then the vector nµ+1 belongs

to this (µ + 1)-dimensional space and is orthogonal to Lµ, µ = s − 1, ..., j + 1. More

precisely, Lj ⊂ Lj+1 ⊂ · · · ⊂ Ls−1 and ni+1, ...,ns are orthogonal to Li, i = j, ..., s− 1.

Since Si ⊂ Li, we have also that ni+1, ...,ns are orthogonal to Si, i = j, ..., s− 1.

If necessary we may also regard T as a primitive set with respect to Ωkν and λ(ν) =

λ(2kν − 1)/(2k − 1) for ν = 1, 2, .... Hence, (2kν − 1)T + λ(ν) ⊆ (Skν
j )o and Skν

j is a

j-dimensional face of Ωkν . Moreover nj+1, ...,ns are the normal vectors of Skν
j .

With this in mind let us observe that [Ω]o ∩ Z
s 6= ∅. So there is an integer α ∈ [Ω]o.



112

Consequently, we define

T0 :=
α− λ+ Ωk

2k
∩ Z

s, (7.9)

T1 :=
T0 − λ+ Ωk

2k
∩ Z

s,

...,

Tµ+1 :=
Tµ − λ+ Ωk

2k
∩ Z

s,

....

There are only two possible cases: either for some µ ≥ 0 the set (2k − 1)Tµ + λ has at

least one inner point of [Ωk] or for all µ ≥ 0 the set (2k − 1)Tµ + λ contains no inner

points of [Ωk].

By the first case we have an x ∈ Z
s. The number (2k − 1)x + λ is an inner point of

[Ωk], which implies the uniqueness of the primitive set T and (2k − 1)T + λ ⊆ [Ωk]o.

This however contradicts our assumption.

In the second case, because of the finiteness of Tµ we have µ and ν such that Tµ = Tµ+ν

and with λ(ν) = λ(2kν − 1)/(2k − 1)

Tµ − λ(ν) + Ωkν

2kν
∩ Z

s = Tµ.

From this equation and Lemma 7.1.2 we obtain a primitive set T ′ ⊆ Tµ with respect

to Ωkν and λ(ν). Moreover, the set (2kν − 1)T ′ + λ(ν) contains no inner points of [Ωkν ]

and (2kν − 1)T ′ + λ(ν) ⊆ [Ωkν ] by Corollary 3.3.2. So for some 1 ≤ i < s there is a

i-dimensional face Skν
i of [Ωkν ] such that (2kν − 1)T ′ + λ(ν) ⊆ (Skν

i )o. In view of (7.9)

any b ∈ (2kν − 1)T ′ + λ(ν) ⊆ (Skν
i )o is a convex combination of (2kν − 1)α + λ(ν) and

the members from Ωkν , so there are ci > 0, i = 1, ...,m, satisfying c1 + · · ·+ cm = 1 and

b = c1((2
kν − 1)α+λ(ν))+ c2r2+ · · ·+ cmrm for some rτ ∈ Ωkν . The number (regarded

as vector) λ(ν) cannot be orthogonal to the normal vectors of Skν
i . For otherwise we

will have b− c1λ(ν) ∈ Lkν
i , which is an i-dimensional affine space and contains Skν

i . We

observe the number

b− c1λ(ν) = c1(2
kν − 1)α + c2r2 + · · ·+ cmrm.

The right hand side is a convex combination of the numbers from [Ωkν ] since (2kν−1)α ∈
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[Ωkν ]o∩Z
s . So b− c1λ(ν) belongs to [Ωkν ]. However, as b− c1λ(ν) ∈ Lkν

i ∩ [Ωkν ] = Skν
i ,

this is impossible. So λ(ν) is not orthogonal to normal vectors of Skν
i .

On the other hand, Case 1 tells us that the matrix A defined by (6.1) is connected.

Hence, by Theorem 6.1.3 for any j-dimensional face Sj of Ω, 0 ≤ j ≤ s− 1

0 <
∑

α∈Sj∩Ω

a(α) < 2j. (7.10)

To finish the proof we need also the following fact: under some unimodular matrix

M ∈ Ms the set MΩ contains Es. To see this let without loss of generality 0 be

an extreme point of [Ω], i.e. 0-dimensional face. Let 0, α ∈ [Ω] ∩ Z
s belong to a

1-dimensional face, such that the segment [0, α] contains no any other integers. We

have α ∈ Ω. Indeed, as Ωl is convex, α ∈ Ωl. So there are some γj ∈ Ω satisfying

α = γ0 + 2γ1 + · · · + 2l−1γl−1. Thus all γj belong to this 1-dimensional face. Since in

the segment [0, α] there are no any other integers, we must have a = γ0. Moreover,

let integers 0, α and β belong to 1-dimensional faces of a 2-dimensional face, such

that the segment [0, α, β, α + β] contains no other integers. We prove α + β ∈ Ω.

In fact, the above proof tells us α, β ∈ Ω. The convexity of Ωl implies 2α, 2β ∈ Ωl

and as well as α + β = (2α + 2β)/2 ∈ Ωl. On the other hand, α + β belongs to a

2-dimensional space, that contains this 2-dimensional face. We have again γj ∈ Ω

satisfying α + β = γ0 + 2γ1 + · · · + 2l−1γl−1. Consequently, α + β ∈ Ω. Therefore

under some unimodular matrix M ∈ Ms the set M{0, α, β, α + β} is E2 imbedded in

Z
s and belongs to MΩ. In the same way, if for those α, β there is 0 < δ < 1 such

that δα + (1 − δ)β is an integer, then δα + (1 − δ)β ∈ Ω for the largest δ and some

unimodular matrix M ∈ Ms the set M{0, α, δα + (1− δ)β, (1 + δ)α + (1− δ)β} is E2

imbedded in Z
s. Inductive arguments provide the desired assertion.

Let us go back to our proof. We may assume that 0 is an extreme point of Ω. Thus, we

have already seen that under some unimodular matrix M ∈ Ms, Ω contains MEs. We

notice u = λ/(2k − 1) = λ(ν)/(2kν − 1). Denote J := T ′. For simplification purposes,

we should write k and λ instead of kν and λ(ν), respectively. Thus, J is primitive with

respect to λ and Ωk. In particular, J+u ⊆ (Si)
o, that is contained in the i-dimensional

affine space Li, and
J − λ+ Ωk

2k
∩ Z

s = J.

It follows from Theorem 6.1.3 that for any r ∈ Si ∩ Ω the set A(r) has at least two
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elements. Let x ∈ J . The last display means that for some τ ≥ 1 and γj ∈ Ω

x = 2kτx+ λ(τ)−
kτ−1
∑

j=0

2jγj.

As (2kτ − 1)x + λ(τ) ∈ Skτ
i , we obtain γj ∈ Si, j = 0, ..., kτ − 1. In other words,

A(x) ⊆ Si ∩ Ω has at least two elements. Thus,

⋃

x∈J

A(x) ⊆ Si ∩ Ω.

Consequently, for any those J and Si we have always Si ∩MEs 6= ∅ and 0 belongs to

Si.

Let Ss−1 be an (s− 1)-dimensional face and Ls−1 affine space satisfying Si ⊂ Li−1 and

Ss−1 ⊂ Ls−1, respectively. Then J ⊂ Ls−1 − u. The inequality (7.10) guarantees that

there are an integer y ∈ Ls−1 − u and r′ ∈ Ω satisfying y ≡ r′ (mod 2) and r′ 6∈ Ss−1.

We may choose y ∈ Ls−1 − u such that either the segment [r′, y + u] cuts through

an (s − 1)-dimensional face of [Ω], that does not contain 0, or r′ belongs to this face.

Noticing λ = δ0 + 2δ1 + · · · + 2k−1δk−1 with δ0 = 0, we define x1 = (y + r′)/2. Let

rj ∈ Ω, j = 1, ..., k − 1 and x2, x3, ..., xk ∈ Z
s such that xj − δj ≡ rj (mod 2) and

xj+1 = (xj − δj + rj)/2, j = 1, ..., k − 1. Hence for r∗ = r′ + 2r1 + · · ·+ 2k−1rk we have

(y − λ+ r∗)/2k = xk.

Replacing α by xk in (7.9) we obtain in this way a primitive set J ′ with respect to Ωkµ

and λ(µ) for some µ ∈ N. (2kµ−1)J ′+λ(µ) lies again in some face of [Ωkµ]. Let x ∈ J ′.

So for some τ ∈ N and γv ∈ Ωk the integer xk can be expressed as

xk = 2kτx+ λ(τ)−
τ−1
∑

j=0

2kjγj.

But y = 2kxk + λ− r∗ we conclude

y = 2k(2kτx+ λ(τ)−
τ−1
∑

j=0

2kjγj) + λ− r∗

= 2k(τ+1)x+ λ(τ + 1)− r∗ − 2k
τ−1
∑

j=0

2kjγj.

Noticing

λ(τ + 1) = λ · (
2k(τ+1) − 1

2k − 1
) = u · (2k(τ+1) − 1).
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We obtain y + u = 2k(τ+1)(x+ u)− r∗ − 2k
∑τ−1

j=0 2
kjγj or

x+ u =
(y + u) + r∗ + 2k

∑τ−1
j=0 2

kjγj

2k(τ+1)
. (7.11)

The number x + u belongs to some face of [Ω] and is an inner point of this face. We

may regard that this face is i′-dimensional. Noticing r∗ = r′ + 2r1 + · · ·+ 2k−1rk.

Since y+u ∈ Ls−1, all y+u, γj, r
′, r1, r2,...,rk lie on the same side of Ls−1. As r

′ 6∈ Ss−1,

this i′-dimensional face cannot be contained in Ss−1. Moreover, our choice of y implies

that this face does not contain 0.

Thus, all cases that we have considered lead to the contradiction. That means finally

that our assumption at the beginning was wrong. Therefore, the primitive set T has

the property (2k − 1)T + λ ⊆ [Ωk]o. Theorem 7.0.1 is now fully proved.
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