
Der Fakultät für Wirtschaftswissenschaften der
Universität Duisburg-Essen, Campus Essen, vorgelegte Dissertation

zum Erwerb des Grades Dr. rer. nat.

Contribution Barriers to
Open Source Projects

Dipl.-Inform., Dipl.-Math. Christoph Hannebauer,
geboren in Offenbach am Main

Datum der mündlichen Prüfung: 2016-10-19

Erstgutachter: Prof. Dr. Volker Gruhn
Zweitgutachter: Prof. Dr. Klaus Echtle

Abstract

Contribution barriers are properties of Free/Libre and Open Source Software (FLOSS) projects
that may prevent newcomers from contributing. Contribution barriers can be seen as forces that
oppose the motivations of newcomers. While there is extensive research on the motivation of
FLOSS developers, little is known about contribution barriers. However, a steady influx of new
developers is connected to the success of a FLOSS project.

The first part of this thesis adds two surveys to the existing research that target contribution
barriers and motivations of newcomers. The first exploratory survey provides the indications to
formulate research hypotheses for the second main survey with 117 responses from newcomers
in the two FLOSS projects Mozilla and GNOME. The results lead to an assessment of the
importance of the identified contribution barriers and to a new model of the joining process that
allows the identification of subgroups of newcomers affected by specific contribution barriers.

The second part of the thesis uses the pattern concept to externalize knowledge about tech-
niques lowering contribution barriers. This includes a complete categorization of the existing
work on FLOSS patterns and the first empirical evaluation of these FLOSS patterns and their
relationships. The thesis contains six FLOSS patterns that lower specific important contribution
barriers identified in the surveys.

Wikis are web-based systems that allow its users to modify the wiki’s contents. They found
on wiki principles with which they minimize contribution barriers. The last part of the thesis
explores whether a wiki, whose content is usually natural text, can also be used for software
development. Such a Wiki Development Environment (WikiDE) must fulfill the requirements of
both an Integrated Development Environment (IDE) and a wiki. The simultaneous compliance of
both sets of requirements imposes special challenges. The thesis describes an adapted contribution
process supported by an architecture concept that solves these challenges. Two components of a
WikiDE are discussed in detail. Each of them helps to lower a contribution barrier. A Proof of
Concept (PoC) realization demonstrates the feasibility of the concept.

II

Contents

Abstract II

Contents III

List of Definitions VII

1 Introduction 1
1.1 Models of FLOSS Communities . 1

1.1.1 The Onion Model . 2
1.1.2 Joining Scripts . 3
1.1.3 Steinmacher et al.’s Model . 4
1.1.4 Technical Aspects of the Joining Process 5

1.2 Contributor Motivation . 8
1.2.1 Theoretical Works . 8
1.2.2 Empirical Works . 8
1.2.3 Attractiveness . 10

1.3 Contribution Barriers . 10
1.3.1 Rationale of the Definition . 11
1.3.2 Specific Contribution Barriers . 12
1.3.3 New Developers in General Software Development Projects 13
1.3.4 Joining FLOSS Projects . 14
1.3.5 Exploring Contribution barriers . 15
1.3.6 Summary of Contribution Barriers . 19
1.3.7 The Effect of Lowered Contribution Barriers 20

1.4 Research Goals . 22
1.4.1 Identification of Contribution Barriers 23
1.4.2 Lowering Contribution Barriers . 23
1.4.3 Wiki Development Environments . 24

2 Contribution Barriers to FLOSS Projects 25
2.1 Exploratory Survey . 25

2.1.1 Demography . 26
2.1.2 Developers’ Motivation . 27
2.1.3 Contribution Barriers . 30
2.1.4 Discussion . 32
2.1.5 Conclusion . 33

2.2 Main Survey . 34
2.2.1 FLOSS Projects . 35

III

Contents

2.2.2 Research Hypotheses . 36
2.2.3 Participant selection . 38
2.2.4 Demography . 42

2.3 Contributor Motivation . 46
2.3.1 Usage Motivation . 46
2.3.2 Open Question on Modification Motivation 47
2.3.3 Closed Question on Modification Motivation 49
2.3.4 Open Question on Submission Motivation 50
2.3.5 Closed Question on Submission Motivation 52
2.3.6 Comparison to Related Work . 53

2.4 Contribution Barriers . 54
2.4.1 Open Question on Modification Barriers 55
2.4.2 Closed Question on Modification Barriers 56
2.4.3 Open Question on Submission Barriers 58
2.4.4 Closed Question on Submission Barriers 60
2.4.5 Discussion . 61

2.5 Improvement Suggestions . 63
2.5.1 Results . 64
2.5.2 Discussion . 66

2.6 Analysis . 66
2.6.1 Language and Contribution Barriers 66
2.6.2 Experience and Contribution Barriers 67
2.6.3 Projects and Contribution Barriers . 69
2.6.4 Own Need, Motivation, and Occupation 69
2.6.5 Motivation and Contribution Barriers 72

2.7 Threats to Validity . 76
2.7.1 Construct Validity . 76
2.7.2 Content Validity . 77
2.7.3 Internal Validity . 77
2.7.4 External Validity . 79

2.8 A New Model for Joining FLOSS Projects . 79
2.9 Conclusion . 80

3 FLOSS Pattern Languages 82
3.1 Introduction . 83

3.1.1 Classification of FLOSS Patterns . 83
3.1.2 Related Work on Pattern Languages and Pattern Maps 84
3.1.3 Pattern Maps for the FLOSS Pattern Language 85

3.2 Categories of FLOSS Patterns . 86
3.2.1 Integrate FLOSS Assets . 89
3.2.2 Start a New Project from Scratch . 91
3.2.3 Publish Closed Sources . 92
3.2.4 Licensing . 94
3.2.5 Architecture . 96

IV

Contents

3.2.6 Cultivate a User Community . 98
3.2.7 Tools for New Developers . 102
3.2.8 Empower the Most Suitable . 105

3.3 Patterns Lowering Contribution Barriers . 108
3.3.1 Low Contribution Barriers . 109
3.3.2 Preconfigured Build Environment . 113
3.3.3 Unit Tests for Contributors . 117
3.3.4 Low-hanging Fruit . 120
3.3.5 Bazaar Architecture . 123
3.3.6 Exposed Architecture . 128

3.4 Evaluation . 132
3.4.1 Mozilla Firefox . 133
3.4.2 Rack . 138
3.4.3 Ruby on Rails . 141
3.4.4 Spree . 144
3.4.5 Rake . 148

3.5 Discussion . 151
3.5.1 FLOSS Patterns and the Success of FLOSS Projects 151
3.5.2 Validation of Relationships . 154
3.5.3 Newly Observed Relationships . 157

3.6 Conclusion . 158

4 Wiki Development Environments 160
4.1 WikiDE Concept . 160

4.1.1 Requirements . 160
4.1.2 Existing Wiki Systems for Programming 165
4.1.3 WikiDE Contribution Process . 169
4.1.4 Architecture . 170

4.2 CI Services . 175
4.2.1 Current Limits of FLOSS CI . 176
4.2.2 Security Analysis of CI Systems . 178
4.2.3 Secure Build Servers . 182
4.2.4 Validation . 186
4.2.5 Limitations . 187
4.2.6 Related Work . 188
4.2.7 Summary . 188

4.3 Reviewer Recommendations . 189
4.3.1 Related Work . 190
4.3.2 Expertise Explorer . 195
4.3.3 Empirical Evaluation . 199
4.3.4 Results . 201
4.3.5 Threats to Validity . 206
4.3.6 Conclusion and Future Work on Reviewer Recommendations 208

V

Contents

4.4 Proof of Concept Realization . 209
4.4.1 Environment Overview . 209
4.4.2 Software Forge . 209
4.4.3 Immediate Feedback . 212
4.4.4 Reviewer Recommendations . 214
4.4.5 Limitations . 214

4.5 Summary . 216

5 Conclusion 217
5.1 Identification of Contribution Barriers . 217
5.2 FLOSS Patterns . 218
5.3 Wiki Development Environments . 219
5.4 Future Work . 219

Primary Sources 221

Secondary Sources 236

VI

List of Definitions

contribution barrier Definitions on pages 7, 10

contributor motivation Definition on page 7

FLOSS Definition on page 1

FLOSS Pattern Definition on page 82

FLOSS Project Definition on page 2

modification barrier Definitions on pages 7, 11

modification motivation Definition on page 7

multitenant CI system Definition on page 176

newcomer Definition on page 5

Own Need Definitions on pages 27, 47

social barrier Definition on page 16

Stupid Tax Definitions on pages 52

submission barrier Definitions on pages 7, 11

submission motivation Definition on page 7

usage barrier Definitions on pages 7, 11

usage motivation Definition on page 7

WikiDE Definitions on pages 24, 160

VII

1 Introduction

Users of Free/Libre and Open Source Software (FLOSS) do not only receive an executable
program but also its source code and thereby the freedom to modify the program to their
demands. Thus, developers of FLOSS give away some of their power to the users without
direct compensation. It might be astonishing that the FLOSS phenomenon even exists, on first
sight against economic pressure. Nevertheless, some FLOSS projects like Linux [P*Lin15] and
Apache [P*The15a] have been very successful and lead their respective markets [Gar15; QSu16].

Accordingly, the FLOSS phenomenon has also attracted research attention. One area of
research focuses on the communities around FLOSS projects, as they drive development and
marketing of the FLOSS project. This chapter outlines the current state of research on the
FLOSS phenomenon in general and more specifically on how and why contributors join FLOSS
projects. Furthermore, it derives own assumptions and models about FLOSS as the foundation
for later chapters. Section 1.1 describes models that have been used in research to model FLOSS
communities in general and more specifically how new contributors join a FLOSS project. Next,
Section 1.2 summarizes the current state of research on motivations of FLOSS developers.
Section 1.3 presents and discusses the research on contribution barriers to software projects,
especially FLOSS projects. The chapter concludes with the research questions of this thesis in
Section 1.4.

1.1 Models of FLOSS Communities

There are four different terms that mostly describe the same phenomenon: Free Software, Open
Source Software, Free Open Source Software (FOSS), and Free/Libre and Open Source Software.
The Free Software Foundation (FSF) uses the term Free Software to underline that its users
have several freedoms [P*Fre15]. The Open Source Initiative (OSI) uses the term Open Source
Software [P*Ope04] and underlines the superiority of its development model over traditional
closed source software development. However, both definitions base solely on the license used
for the software. Debates about the correct term are sometimes emotional and consequently
the term FOSS tries not to take sides in the debate and instead tries to be a neutral term for the
phenomenon. “Free” has a double meaning in English: First, it can refer to something available
without cost. Second, it can refer to some kind of freedom. Although Free Software can often
be acquired for free, the FSF refers to freedom. The term FLOSS tries to capture this by adding
“libre” as an unambiguous reference to the freedoms of users of FLOSS. This thesis will use
FLOSS without committing to any special ideology or license.

Since FLOSS licenses grant freedoms to modify and redistribute FLOSS, there is no legal
entity that holds the exclusive development rights for any FLOSS. As an exception, there may be
a legal entity holding the rights on the name and logos of a FLOSS artifact. Although there is

1

1 Introduction

no legal reason to see any entity as the owner of a FLOSS artifact, there is usually a community
around it: A maintainer manages modifications to the FLOSS artifact and distributes its source
code and compiled versions to its users. This community and its organizational structure together
with its technical infrastructure and the source code belonging to the FLOSS artifact shall be
called a FLOSS Project. The source code of the FLOSS project belongs to a specific application
or library, both of which are referred to as components in this thesis.

1.1.1 The Onion Model

Ye and Kishida [YK03] proposed that the community of a FLOSS project resembles an onion
with its layers. Figure 1.1 depicts this model. The core of the community are maintainers and
core developers who decide about the direction of the FLOSS project. This includes a vote on
which modifications to the application will be accepted and which will be rejected. The next
layer around the core developers are the co-developers who contribute source code to the FLOSS
project. In contrast, the next layer of active users contribute only other types of resources to
the FLOSS project, like documentation, translations, and technical support for other community
members. The outermost layer are passive users who do not contribute to the FLOSS project but
only use its application. Outside are all people who do not use the FLOSS project at all.

Core Developers

Co-Developers

Active Users

Passive Users

Outsiders

Figure 1.1: The Onion Model of FLOSS communities

The onion model assumes that an outsider moves into the FLOSS project layer by layer. Thus,
the outsider first uses the application, then joins a mailing list as an active user, afterwards
contributes code, and eventually the community may welcome the former outsider as a core
developer.

Research on FLOSS commonly uses the onion model [Duc05; Cro+05; CH06b; Rul06;
Mas+09; Gel10], often with small variations to the number of layers, but there is also criti-
cism [JS07], especially that employed developers skip the active user layer and contribute code as
their first action in the FLOSS project [Her+06]. Jergensen et al. [JSW11] also found empirical
evidence holding against the onion model, but with another explanation: While the first FLOSS
projects hosted their infrastructure on their own, today most FLOSS projects rely on software
forge services [Rie+09] like SourceForge [P*Sla15] and GitHub [P*Git15c]. They speculated
that while the onion model does not apply to single FLOSS projects hosted by a software forge

2

1.1 Models of FLOSS Communities

service, it may still be applicable to each software forge service as a whole.
The role migration in a software forge service as a whole has previously been analyzed

using Markov Chains on the example of the SourceForge community. In the corresponding
study [DR08a], the roles were defined differently to the onion model, though, distinguishing
between developers and founders. One of their results implies that the role distribution on
SourceForge was nearly stable in 2002: The fraction between gained and lost members is nearly
equal for each role.

Another example of research on migration within the community of FLOSS projects is Rob-
les and Gonzalez-Barahona’s study of core developers [RG06]. They analyzed how the group of
core developers of 19 FLOSS project changed over time and found three categories of behavior:
In 3 FLOSS projects, there was a stable group of core developers. In 9 FLOSS projects, there was
more fluctuation and the group of core developers changed. The 7 remaining FLOSS projects
were a mix, with some developers being core developers over the whole study period and some
others coming and going.

1.1.2 Joining Scripts

Von Krogh et al. [KSL03] introduced the concept of a FLOSS project’s “joining script”. The
joining script is a process that new developers should follow in order to be granted commit access
to the project’s Version Control System (VCS). In terms of the onion model, this corresponds to
the transition from active user to co-developer. Using the concept of the joining script to analyze
the Freenet project, von Krogh et al. found that users’ early mails to the mailing list allowed a
significant prediction of whether the posters would eventually become co-developers or not: If
the first post contained a bug description with accompanying code, the poster was more likely
to become a co-developer; however, if the first post was just an introduction or suggestion for
improvements, the likelihood that the poster would become a co-developer was lower.

This observation supports Raymond’s first rule of Open Source development: “Every good
work of software starts by scratching a developer’s personal itch.” [Ray00] Thus, software
developers start to modify the source code of a FLOSS project if they experience a problem with
the application that they want to fix and only then describe the problem and submit a patch.

Typically, the joining script is not fully documented. Thus, new developers need to learn the
joining script via observation or trial-and-error. This learning can be cumbersome [JS07]. Von
Krogh et al. analyzed only the Freenet project and did not claim that their analysis of Freenet’s
joining script also applies to other FLOSS projects.

More recently, Zhou and Mockus [ZM12] found empirical data that seem to contradict the
hypothesis that the first posts of promising developers usually contain code fixing their personal
problems. While they also analyzed whether users’ first posts can predict future contributions,
they did not analyze mailing lists like von Krogh et al. did. Instead, they used data from the
issue trackers of the GNOME and Mozilla projects. Zhou and Mockus used the term Long Term
Contributor (LTC) for posters that stayed on the project for at least three years and caused more
than the 10th percentile of changes per year. They used the term One Time Contributor (OTC) for
posters with only a single post in their work for the project. Zhou and Mockus showed that users
have significantly higher odds of becoming LTCs instead of OTCs (65 % higher at GNOME, and
112 % higher at Mozilla), if their first post is a comment to an existing thread instead of the start

3

1 Introduction

of a new thread, and assumed that if a user’s first post was a comment instead of a patch, it shows
a pro-community attitude.

Zhou and Mockus did not comment on this contradiction with von Krogh et al.’s work, but
one cause may be differences in the joining scripts used by GNOME and Mozilla, as opposed to
Freenet and the FLOSS projects Raymond observed. Another explanation may be differences
between the definitions of LTCs and co-developers: LTCs are defined only by their activity in
the issue tracker, regardless of whether they contribute code or not. Co-developers in contrast
are defined only by their code contributions. The onion model also assumes that a co-developer
has previously been an active user and therefore must have participated in discussions without
contributing code, and the first post is the transition between passive and active user in the onion
model.

In a case study of three FLOSS projects, Jensen and Scacchi [JS07] found different paths that
developers may take from outsiders towards the developer roles for each FLOSS project. They
further distinguish different subtracks for each path. This implies the existence of multiple joining
scripts for each FLOSS projects, upon which new developers may choose or for externals reasons
be dragged to.

1.1.3 Steinmacher et al.’s Model

Steinmacher et al. [SGR14] proposed a new model to better chart how new developers join a
FLOSS project. Figure 1.2 depicts the elements of this model. The model purposefully omits
non-code contributions and defines the stages outsider, newcomer, contributor, and member in
order of increasing importance for the FLOSS project. Four different forces either help or hinder
a developer’s migration towards the more productive states:

Outsider Newcomer Contributor MemberStages

Phases
Onboarding Contributing

Forces

RetentionAttractiveness

Hindering Factors

Motivation

Figure 1.2: Steinmacher et al.’s FLOSS joining model [SGR14]

• A FLOSS project’s Attractiveness determines whether the FLOSS project attracts both
users as well as developers. As a force, it helps Outsiders to become Newcomers.

4

1.1 Models of FLOSS Communities

• Motivation comprises the reasons why developers contribute to the FLOSS project. There-
fore, motivation helps developers in all states to reach the next stages.

• According to Steinmacher et al.’s textual description, Hindering Factors hinder newcomers
to become contributors and contributors to become members, although their diagram
suggests that Hindering Factors do not have influence on outsiders becoming newcomers.
Figure 1.2 reflects this discrepancy.

• A FLOSS project uses its Retention to let newcomers and contributors overcome Hindering
Factors and increase their motivation.

The origin of these forces is important for their differentiation. Attractiveness and Retention
are attributes of the FLOSS project, while Motivation depends on the specific developer. Both
developers and the FLOSS project may cause Hindering Factors.

Additionally, the model defines two different phases that the developers can be in. In the
Onboarding phase, a newcomer tries to place a first source code contribution. The Contributing
phase starts with the first source code contribution. Hence, all changes to the source code stem
from developers in the Contributing phase. Thus, only these developers forward the FLOSS
project with their work on the source code.

The model’s limitation to source code contributions has advantages and disadvantages. As a
disadvantage, the model cannot differentiate between different ways to join a project if these ways
differ only in terms of non-code contributions. Previous contributions as active user according to
the onion model might influence how the four defined forces effect a newcomer. An advantage
is the model’s universal applicability: Every developer joining the project must go through the
stages defined in the model.

This thesis adopts Steinmacher et al.’s definition of newcomer: A person interested to contribute
source code to the FLOSS project, but who has not yet been successful with the contribution: No
source code modification from the newcomer has yet been merged into the main code base.

1.1.4 Technical Aspects of the Joining Process1

The specific activities required for the first code contribution to a FLOSS project have received
less research attention than the general processes. Thus, this subsection derives a model for the
technical aspects of the first code contribution. In terms of the models presented above, the first
code contribution corresponds to the role migration from active user to co-developer in the onion
model, the execution of the joining script, and to the onboarding phase in Steinmacher et al.’s
model.

Figure 1.3 presents this process as a Unified Modeling Language (UML) activity diagram.
UML swim lanes separate the tasks of the newcomer from those of the core developers. The
process shall apply to most FLOSS projects and therefore abstracts from tasks that may be specific
to individual FLOSS projects. Furthermore, the process focuses on the newcomer and simplifies
the core developers’ tasks. For example, the diagram does not specify how the core developers
select the reviewers of a patch among them and which methods they use for the review.

1A preliminary version of this section was published previously [GH12b; GH12a].

5

1 Introduction

B
ui

ld
th

e
ap

pl
ic

at
io

n
M

od
if

y
th

e
ap

pl
ic

at
io

n

N
ew

co
m

er
C

or
e

D
ev

el
op

er
s

Download the
source code

Configure build
environment

Build
application

Test application
behavior

Modify
source code

Submit a patch

Patch file with
modifications

Review
modifications

Merge
modifications
to code trunk

[Application
misbehaves]

[Application
works as expected]

[Newcomer
publishes

modification]

[Newcomer keeps
modification private]

[Further
modifications

necessary]

[Modifications
accepted]

Figure 1.3: Activity diagram of a new software developer changing code in a FLOSS project

6

1.1 Models of FLOSS Communities

The joining process involves the three major activities Build the application, Modify the
application, and Submit a patch. Each of these activities involves sub-activities.

For the first major activity, Build the application, there are three sub-activities: Download
the source code, afterwards Configure build environment, which may also involve setting up
other parts of the Integrated Development Environment (IDE), and then Build application. Even
applications written in interpreted programming languages need an interpreter that may require
configuration. Of course, some newcomers may first only want to execute the application and
only afterwards think about modifying it. Nevertheless, the mentioned activities are still required,
but possibly with a different intention.

Afterwards, when newcomers Modify the application, they Test application behavior and
may notice differences to the specification. This specification will often exist only as their
personal expectation, for example when the application fails or when they need a feature that the
application is missing. However, they might also have read specification documents in the form
of tickets in the FLOSS project’s issue tracker. In any case, as long as the application misbehaves,
the newcomer will Modify source code of the application and then repeat Build application and
Test application behavior until the application works as expected.

As the last activity, the newcomer Submit a patch with the modifications back to the FLOSS
project. Depending on the FLOSS project, this might literally mean the creation of a patch file in
diff format [HM76], but can also be something like a pull request in GitHub [P*Git15c]. The
FLOSS project’s Core developers Review modifications in this patch and decide whether to accept
or reject the patch. The details of this process, like the number of reviews necessary and who
exactly is eligible to review which patch depends on the FLOSS project. A core developer with
appropriate rights will incorporate the modifications of an accepted patch into the main VCS
of the FLOSS project in the activity Merge modifications to code trunk. The newcomer has the
opportunity to rework rejected patches in further iterations of Modify the application and Build
the application until they are accepted.

Each of the three major activities may have its own motivations and difficulties. As each
activity necessarily requires the previous, one possible motivation for the earlier activities Build
the application and Modify the application may be to reach the latter. For example, some
newcomers may want to Build the application only because later they want to Modify the
application. This is not always the case, though.

Build the application is necessary for using the application. Many FLOSS projects offer
precompiled binaries, so most users will not have to perform this activity themselves. Modify
the application can be a goal in its own right, when newcomers need a modified behavior for
their own. Consequently, newcomers have motivations to use the application, to modify the
application, and to submit their modifications back to the FLOSS project. These different
types of contributor motivations will be called usage motivations, modification motivations,
and submission motivations. Analogously, the difficulties related to the corresponding activities
shall be usage barriers, modification barriers, and submission barriers. Modification barriers
and submission barriers are the two kinds of contribution barriers, which will be defined more
precisely in Section 1.3.

7

1 Introduction

1.2 Contributor Motivation

This section outlines the state of research on FLOSS contributor motivation. A detailed description
of all research work is outside the scope of this thesis, as FLOSS contributor motivation has been a
domain of extensive research over the course of the last about 15 years. Von Krogh et al. [Kro+12]
summarized the state of research on FLOSS contributor motivation as of 2011 with more details
in a literature review. This section describes the main concepts and studies, especially in regard
to new contributors.

Most, though not all research on FLOSS contributor motivation relies on self-determination
theory (SDT) [GD05]. Like some of its predecessor theories, SDT distinguishes intrinsic and
extrinsic motivations for an activity. Intrinsic motivations justify the activity itself, while extrinsic
motivations justify the activity by its output. The joy of performing an activity is an example
of an intrinsic motivation, while payment or praise for an activity are extrinsic motivations.
While intrinsic motivations are always autonomous, extrinsic motivations differ in their degree of
autonomy. A higher degree of autonomy results in a stronger motivation. Extrinsic motivations
may be internalized and then have a higher degree of autonomy. Consequentially, some studies on
contributor motivation have internalized extrinsic motivations as an additional class of motivations
next to intrinsic and purely extrinsic motivations.

Theoretical works about FLOSS contributor motivation include the application of economical
theories on FLOSS [LT02] and literature reviews [Kri06; Kro+12]. All other works known to
me rely on empirical work which are on the one hand surveys of FLOSS developers and on
the other hand analysis of public data from FLOSS projects like mailing lists. Theoretical and
empirical works are difficult to compare, as the type of result of a study strongly depends on
its methodology. Therefore this section presents theoretical and empirical works in separate
subsections. The section concludes with how FLOSS projects can stimulate their contributors’
motivations through their attractiveness.

1.2.1 Theoretical Works

Early work on developer motivation includes Lerner and Tirole’s theoretical application of
economic theories to the FLOSS phenomenon [LT02]. They explored reasons to explain the
FLOSS phenomenon without stressing altruistic motivations and found egoistic reasons to work
in FLOSS projects. They argued that there is a signaling incentive for FLOSS developers, as they
increase their market value if they demonstrate their programming skills in a FLOSS project.

Ye and Kishida [YK03] agreed that altruism is not the main motivation for FLOSS developers,
but they advanced the view that learning and social recognition are the most important intrinsic
and extrinsic motivations for FLOSS developers. They derived this position from the onion model
described in Section 1.1.1 and substantiate their claims with documented examples.

1.2.2 Empirical Works

Empirical surveys can be distinguished into open surveys, in which any interested FLOSS
developer may participate, and closed surveys, which target a specific audience like the developers
of a specific FLOSS project. While open surveys may suffer from a strong self-selection bias,

8

1.2 Contributor Motivation

closed surveys only represent the situation in a specific and possibly atypical FLOSS project.
Another type of empirical work is the analysis of public data about FLOSS projects such as VCS
and issue tracker logs or mailing lists. Analysis of public data allows only indirect conclusions
about the developers’ motivations. As a consequence of these different data sources, the empirical
results often contradict or seem to contradict each other and there is no unified theory of FLOSS
contributor motivation.

According to survey results of Hertel et al. [HNH03] and Hars and Ou [HO01], the enjoyment
of programming is a major motivator for most developers. Besides this, pragmatic reasons such as
needing the modification for their own project were most often mentioned not just in Hertel et al.’s,
but also Lakhani and Wolf’s survey [LW03]. Improvement of one’s own programming skills
was also frequently cited in these studies, and seems to be an important factor in starting FLOSS
project involvement according to Gosh [Gho05]. David et al. found particularly high numbers of
developers driven by the belief that source code should be open, and they should return something
to the community for using it [DWA03].

As Krishnamurthy pointed out [Kri06], these surveys do not differentiate between different
types of tasks within FLOSS projects. Types of tasks include but are not limited to usage
of the component, modification of the source code, and submission of resulting patches as
described in Section 1.1.4. Exceptions include a survey of the motivation of active users instead
of the developers within a FLOSS project [LH03], an analysis of the social structure in FLOSS
projects [CH05b], and Benbya and Belbaly [BB10] also addressed this in a more recent survey
of Sourceforge developers. Mair et al. [Mai+15] differentiated two types of tasks, source code
contributions and mailing list participation in the community of the statistical FLOSS project R.
However, they considered only three motivations: intrinsic, extrinsic, and hybrid. They showed
that hybrid motivations have stronger effects on participation, and particularly extrinsic motivation
is even negatively associated with mailing list participation.

Surveys that distinguish between modification motivations and submission motivations are
rare, with Shah [Sha06] being the only exception I am aware of. In a qualitative empirical
study using mailing lists and 88 interviews as data sources, she found that the primary usage
and modification motivations are the developers’ own need, as they need the modification for
themselves. Another identified reason is enjoyment of the coding task. However, the modification
motivation of newcomers was “need” in 42 out of 45 cases in her data set, i.e. they modified the
application because they wanted to use the modification for themselves. Submission motivations
were different and comparable to existing studies. Shah acknowledged that there are developers
who modify the application but do not submit their modifications back to the FLOSS project,
which is a consequence of the separation between modification and submission motivations.

Finally, most motivation surveys, again with Shah [Sha06] as the only exception, only looked
at developers that are already developers in FLOSS projects, i.e. people who have mastered the
onboarding phase. Their results are therefore likely biased towards the views of a small, but very
visible minority of expert contributors, while the group of newcomers is much less visible and
thus harder to reach.

9

1 Introduction

1.2.3 Attractiveness

According to Steinmacher et al.’s model of a FLOSS community as described in Section 1.1.3,
attractiveness is a property of a FLOSS project and a force that influences outsiders to become
users and newcomers of the FLOSS project. When focusing on contributors of source code,
attractiveness describes the properties of a FLOSS project that nourish contributor motivations of
newcomers.

Ye and Keshida [YK03] postulated that Learning is an important contributor motivation. Hence,
they suggested to design FLOSS projects in a way that enables learning, as that would increase
the attractiveness of these FLOSS projects. Specifically, they suggested to favor programming
languages that many developers want to learn over programming languages that many developers
have mastered already.

Smaller FLOSS projects typically do not host their own technical infrastructure and instead
rely on software forge services like Sourceforge [P*Sla15] and GitHub [P*Git15c] for their
infrastructure [Rie+09]. Simmons and Dillon [SD06] proposed that software forge services
should publish more metadata about their hosted FLOSS projects. With these metadata, interested
developers will find it easier to acquire an overview over a FLOSS project and therefore have a
higher chance to identify FLOSS projects that are interesting for them.

Steinmacher et al. gave the choice of license as one example for a factor influencing the
attractiveness of a FLOSS project [SGR14]. However, current research contradicts each other
on whether the choice of license has an effect on attractiveness and which type of licenses are
more attractive [SAM06; CMP07; CF09; SSN09]. Other examples of attractiveness are project
visibility, project age, and the number of developers [SGR14].

1.3 Contribution Barriers

Von Krogh et al. first introduced the term contribution barrier for hurdles that prevent newcomers
to join a FLOSS project [KSL03]. This thesis uses the following definition:

A contribution barrier is a property of a FLOSS project that has the ability to prevent motivated
people from contributing source code modifications to the FLOSS project.

There are four types of research related to contribution barriers. First, a study may research a
specific problem of FLOSS that is a contribution barrier. These studies usually do not refer to
the contribution barrier concept, as the specific problem is an obvious research problem by itself.
Second, there are studies that focus on the addition of new team members to existing software
development projects and the problems with these additions. Since FLOSS projects are special
cases of software development projects, these studies describe contribution barriers. Third, some
studies describe how new developers join FLOSS projects. Fourth are studies that explicitly try
to uncover or collect contribution barriers.

Subsection 1.3.1 discusses the rationale and implications of the above definition of the term
contribution barrier and related definitions. The remaining part of this section describes related
work of the four named types of research in detail.

10

1.3 Contribution Barriers

1.3.1 Rationale of the Definition

The definition of contribution barrier as stated at the beginning of this section is purposefully
limited to source code contributions and excludes other types of contributions such as support to
other users, documentation, or administration of a web site. These types of contributions also
have their barriers, but they can be very different to the contribution barriers as defined here and
therefore require a separate analysis that is outside the scope of this thesis.

The definition presupposes motivated people. This separates the broad field of contributor
motivation as discussed in Section 1.2 from contribution barriers.

A contribution barrier only needs the ability to prevent contributions and does not need to
have prevented actual contributions to be seen as a contribution barrier. This is necessary as
otherwise the context would influence which properties of FLOSS projects are contribution
barriers and which are not. If the definition would omit this generalization, changes to the
management of a FLOSS project would constitute new contribution barriers only after the
changes had prevented contributions. Thus, the change of management itself would not impact
contribution barriers directly, which would complicate discussions of those changes. Additionally,
it would be impossible to discuss contribution barriers independently from specific FLOSS project
contexts. Nevertheless, although a FLOSS project’s context is independent from the existence of
contribution barriers, the context has a strong influence on their importance. Thus, the context
has to be taken into account when evaluating contribution barriers.

Some research, for example that of Davidson et al. [Dav+14a], takes personal barriers into
account. Personal barriers fulfill the definition of contribution barriers except that they are
properties of the potential contributor and not of the FLOSS project. These personal barriers have
been excluded from the definition because they either originate in a FLOSS project’s contribution
barrier, in which case their separate consideration as personal barriers would be redundant, or
they are not caused by the project, in which case there is nothing a FLOSS project could do about
them.

Finally, while the definition is limited to FLOSS projects, a closed-source software development
project may have properties that are equivalent to contribution barriers of FLOSS projects.
Consequently, these properties may hinder development in the closed-source software develop-
ment project. Thus, research results on contribution barriers can be applicable beyond the scope
of FLOSS, but FLOSS is the medium of research. For example, a complex source code structure
is difficult to understand for newcomers in both FLOSS and closed source projects. By definition,
it is a contribution barrier only for FLOSS projects, but it is likely that closed source developers
experience the same kind of difficulties as FLOSS developers when dealing with a complex
source code structure.

As annunciated in Section 1.1.4, analogously to the structure of motivations, there are usage,
modification, and submission barriers. Only modification and submission barriers constitute
contribution barriers, as these directly hinder the contribution. Usage barriers will only be
considered if they are characteristically more important for the modification than for the usage.
For example, problems with the download of the application binaries is a usage barrier and
will not be considered as contribution barrier, as the download is not even necessary for the
modification – a newcomer may want to compile the application from source code anyway.
On the other hand, if the FLOSS project develops a library, the libraries’ compilation can be

11

1 Introduction

considered a contribution barrier, even if some users compile the library only for usage in their
own applications. Borderline cases are rare, though, and the differentiation between pure usage
barriers and contribution barriers is usually not difficult in practice.

The other end of the community spectrum also has its barriers: Occasional source code
contributors, the co-developers, may have to overcome hurdles before they gain commit and
review rights and become core developers. Section 1.1.2 already described related research from
Zhou and Mockus on predictors for LTCs [ZM12]. These types of hurdles can be assumed to be
very different to contribution barriers and are therefore also out of the scope of this thesis.

1.3.2 Specific Contribution Barriers

Section 1.1.2 describes the joining script as the activity an outsider has to perform to become a
developer of the FLOSS project. The joining script is an informal, social process and therefore at
most only partially documented. Adherence to the joining script can involve effort and therefore
constitutes a contribution barrier by itself. [KSL03]

Furthermore, Jensen and Scacchi [JS07] observed that the joining script can be so sophisticated
that mere understanding the joining script can be difficult for newcomers. Thus, understanding
the joining script can be a contribution barrier. They further claim that this contribution barrier
can be on a par with the technical contribution barriers.

FLOSS projects employ policies enforcing that submitted patches fulfill given requirements
before the patches are merged into the main code repository. Successful code reviews from core
developers of the patch are an omnipresent requirement. Rigby et al. [RGS08] described that
these requirements may impose submission barriers. Slow code reviews frustrate the submitter.
Furthermore, first contributions often do not adhere structural requirements. For example, a single
patch file may include changes solving multiple issues, which may be against the policy.

The first and most difficult task when working on a new project is its first build, according
to Fitzpatrick [SF09, p. 70f]. The first build requires setting up the IDE, solving issues with
platform compatibility and library dependencies. Phillips et al. [PZB14] showed that builds often
require substantial effort. The analyzed commercial companies maintained dedicated teams for
the build. This shows that the effort required for the build may surpass the effort a possibly
voluntary FLOSS developer may be willing to invest.

Midha et al. [Mid+10] proved statistically on 450 FLOSS projects that a low cyclomatic
complexity [McC76] correlates with a high number of contributions from new developers.
Therefore, a high cyclomatic complexity is a contribution barrier.

In an analysis of 1.4 million developers on GitHub, Terrell et al. [Ter+16] found evidence that
gender-related factors influence the probability that a patch submission is accepted. The first
result shows that women’s patches are more likely to be accepted than men’s. However, they
argue that this is not related to the FLOSS project but to the developer and therefore does not
qualify as a contribution barrier as per the definition of this thesis. They also show that acceptance
rate drops if the author’s gender is recognizable and that this effect is stronger for women than
for men. Thus, sensitivity to the gender of newcomers and possibly to their self-portrayals is a
contribution barrier.

12

1.3 Contribution Barriers

1.3.3 New Developers in General Software Development Projects

Brooks [Bro95, Chap. 2] analyzed the effect of new developers on the schedule of a software
development project. The new developers require training, so existing trained developers are busy
mentoring the new developers and are less productive during that time. Brooks’s Law simplifies
this dilemma as “Adding manpower to a late software project makes it later”.

Sim and Holt [SH98] observed seven patterns occurring when new developers join a software
development project. They derived these patterns in an exploratory case study, in which they
interviewed four new developers in software development project. They also described a course
that they introduced for new developers. They believed that the course remedies some of the
obstacles identified in the patterns. The exploratory study tried to carve out possible problems of
new developers joining a software development project but did not quantify them. Consequently,
it is unclear which of the patterns are specific to the software development project of their case
study and which apply generally. Nevertheless, they found as a common theme among the seven
patterns that some tasks are more frustrating than others and this does not depend very much on
their difficulty or the time required to solve them, but in their perceived usefulness. For example,
pattern three states that administrative tasks not directly related to the programming job are
frustrating, while even difficult programming tasks do not decrease the motivation to work.

This finding may be even more important in the context of FLOSS, where there are often no
external incentives for the work like the salary in closed-source software development projects.
If a volunteer developer must perform a frustrating task in order to join a FLOSS project, the
developer possibly refrains from joining the FLOSS project. Thus, frustrating, required tasks are
by definition contribution barriers.

Begel and Simon [BS08] also stated that a problem that hinders new software developers from
being productive, i.e. programming, “frustrates them” [BS08]. They observed eight new software
developers at Microsoft over a period of about two months. These new software developers joined
Microsoft immediately after leaving University and therefore had no or almost no experience
in professional software development. Hence, the focus of their study lay on novices joining a
software development project and not on experts joining a software development project, which
would presumably better represent the situation of an onboarding newcomer in a FLOSS project.
However, they identified some difficulties that may also apply to expert newcomers. Concretely,
they collated the difficulties into the five categories Communication, Collaboration, Technical,
Cognition, and Orientation. A central, cross-domain difficulty is asking others for help. The
decision when to ask others for help is a Communication and Cognition difficulty, and whom
to ask for help is an Orientation difficulty. The new developers feared that asking too many
questions could be interpreted as a sign of incompetence, and therefore had a tendency to spend
hours on problems that could have been solved quickly with the help of a more senior teammate.
Collaboration difficulties comprised reluctance to urge other teams to finish prerequired legwork,
and reluctance to decline tasks if they exceeded the new developer’s time capacities. The later
difficulty resulted in bad prioritizations. In the Technical category, the study concluded that
“tools [. . .] were often a source of difficulty”. Participants had trouble to use the VCS, they
had no access to test systems, and the development environment was unfamiliar. They also had
difficulties to locate the position in the source code to be modified to implement a given change
request.

13

1 Introduction

In a qualitative study based on Grounded Theory, Dagenais et al. [Dag+10] interviewed 18
experienced software developers at International Business Machines Corporation (IBM) who
recently joined an ongoing software development project. They determined “Orientation Aids”
that helped the developers naturalize in a software development project, and “Obstacles” that
made the naturalization harder for them. They classified items in the four categories “Early
experimentation”, “Internalizing structures and cultures”, “Progress validation”, and “Cross-
Factor”. There are three obstacles in the early experimentation phase: First, setting up a working
IDE took between one week and two months. One of the interviewed developers dubbed this
setup time as “lost”, so this developer perceived the IDE setup as less desirable than the main
job, which is programming. The second obstacle are tools unique to the project, which is closely
related to the first obstacle. Third, and contrary to Sim and Holt, upfront courses were seen as a
cumbersome duty and slowing down the naturalization with the technical and social environment.
A lack of documentation was the only obstacle for internalizing structures and cultures. The
category progress validation comprises the three obstacles “Inadequate/No Feedback”, “Sensitive
Tasks”, and “unprofessional/no feedback”, but the paper referred to them only superficially and
never defined them, so it remains unclear what these obstacles are exactly and how they differ
from each other.

Yates [Yat14] also used Grounded Theory to analyze mentoring. She approached mentoring
from the program comprehension perspective and described current problems and improvements
of onboarding sessions, in which experts transfer knowledge to new developers. Improvement
suggestions were mostly micro-optimizations of onboarding sessions, but they also hint at general
contribution barriers: Setting up the development environment is difficult for new developers,
and each project uses its own terminology that new developers have to learn before they can
communicate effectively.

1.3.4 Joining FLOSS Projects

Herraiz et al. [Her+06] analyzed the joining scripts of the GNOME project [P*The15e]. They
recognized that there are multiple different ways to join GNOME as a developer. In particular, 7
of 8 analyzed volunteers joined GNOME adhering the onion model described in Section 1.1.1:
They first post a message on the mailing list and only afterwards they report a bug, submit a
source code modification, and eventually gain commit rights to the VCS. All members of a second
group of 12 employees and university staff members used a different sequence, starting almost
simultaneously with a message in the mailing list, bug reports, source code submissions, and
VCS commits. However, the results may be seen as debatable, since the raw data presented in the
paper seem to contain exceptions to those sequences described in the test.

Weiss et al. [WMZ06] showed that developers sometimes join FLOSS projects in groups: there
are cases where multiple developers that collaborate in one FLOSS project join another FLOSS
project together. In these cases, social contribution barriers are presumably lower than in cases
where an outsider wants to join a FLOSS project, because only in the latter cases all developers
are unknown to the outsider.

Bird et al. [Bir+07] found that joining a FLOSS project requires the acquisition of project-
specific skills. This acquisition takes time. Table 1.1 shows the median times newcomers need for
their first patch submission and acceptance for the three FLOSS projects Bird et al. had analyzed.

14

1.3 Contribution Barriers

They also showed that motivation to join a project declines over time after initial contact with
the project. Although the study did not explicitly state this, consequentially FLOSS projects that
require long naturalization will gain less new developers.

Table 1.1: Time needed to acquire project-specific skills [Bir+07]

Median time after the first email to the mailing list until . . .

FLOSS project . . . first patch submission . . . first patch acceptance

Postgres 2. month 3. month
Apache 2. month 10. month
Python 6. month 13. month

Jergensen et al. [JSW11] found evidence that the majority of FLOSS developers dedicatedly
use the VCS system, and no social mediums like mailing lists. One explanation they proposed is
that these developers may have socialized in related FLOSS projects and therefore were already
well-known in the community of the FLOSS project. This indicates that prior exposure to FLOSS
projects reduces the effect of social contribution barriers.

Practitioners have also reflected on joining scripts. Turnbull [Tur14] exposed the key parts
of typical joining scripts from a practitioner’s view. He emphasized the importance of polite
communication both of newcomers as well as of existing developers of a FLOSS project, and
explained that lack of kindness can be a contribution barrier. The technical part may sometimes be
the easier part of a contribution to a FLOSS project than engaging in its culture and community. He
pointed out that the setup of the development environment is the first step of a code modification.
This must therefore be “incredibly easy”, as newcomers may not have acquired a high enough
modification motivation yet to overcome considerable modification barriers. He argued that
contribution barriers can be lower when the first modifications are on documentation and tests:
Both are often neglected in FLOSS projects and thus the community welcomes this type of
contributions. Another modification barrier is the lack of readability of the code, and code
comments can lower this modification barrier.

1.3.5 Exploring Contribution barriers

Von Krogh et al. [KSL03] first described the concept of a “contribution barrier” in their analysis
of the Freenet project. They explained that for each module of a FLOSS project, the contribution
barrier is a set of the following four hurdles that prevent newcomers from modifying that module:

1. The module itself can be difficult to modify.

2. The programming language of the module may be unfamiliar to newcomers or just unsuited
for the task.

3. The architecture of the FLOSS project may lack Application Programming Interfaces
(APIs) to add new modules.

15

1 Introduction

4. Tight coupling between modules may require newcomers to modify more modules than
they are willing to.

These contribution barriers were derived from interviews of developers of the Freenet FLOSS
project. These contribution barriers are therefore specific to Freenet and to the time of the
interviews.

Practitioners also reflected about contribution barriers. Naramore [Nar10] asked the developers
among her Twitter followers who had not yet contributed to a FLOSS project via a Twitter poll for
their reasons to abstain from contributing. She received 264 responses. The three most frequent
replies had the following order: First, they did not have enough time. Second, they were “not sure
where or how to contribute”. Third, they lacked confidence in their skills. She also suggested
some techniques to lower these contribution barriers.

Sethanandha et al. [SMJ10a] analyzed contribution processes in FLOSS projects. First, they
reviewed current literature and then examined 10 FLOSS projects. The literature review yielded
four specific submission barriers, specifically

• differences in tool sets between projects,

• long delays for reviews,

• lost patches that never receive a review, and

• rejected patches.

Steinmacher et al. collected contribution barriers [Ste+14a; Ste+15a] from different sources:
They mined the mailing list as well as the issue tracker of the FLOSS project Hadoop and
interviewed 11 people who failed joining Hadoop [Ste+13], monitored nine students joining
FLOSS projects in a controlled experiment [Ste+14b], analyzed existing research in a systematic
literature review for contribution barriers [SSG14; Ste+15b], and interviewed 36 developers of
nine different FLOSS projects [Ste+14a].

With the results of the individual studies, Steinmacher et al. created a hierarchical classification
for 58 individual contribution barriers. Contrary to the definition in this thesis, the classification
contains a category Newcomers’ Characteristics that includes 17 barriers not depending on
the FLOSS project but only on the newcomers. Aside from Newcomers’ Characteristics, five
categories remain. Reception Issues and Cultural Differences comprise social barriers related to
the communication with the FLOSS project’s community. Contribution barriers in the category
Documentation problems cover different kinds of missing, incorrect, incomprehensible, and
inaccessible documentation. Notably, problems with code comments also fall into this category.
Steinmacher et al. also proposed the category Newcomers need orientation that describes how
newcomers may have difficulties to understand the technical and organizational structure of the
FLOSS project. The largest category of contribution barriers is Technical Hurdles depicted in
Figure 1.4.

As shown in Figure 1.4, Technical Hurdles comprise a hierarchy consisting of five sub-
categories. Local Environment Setup Hurdles contains the only technical hurdle for which
Steinmacher et al. found evidence in all four data sources, “Building workspace locally”. The

16

1.3
C

ontribution
B

arriers

Technical Hurdles

Code/Architecture
Hurdles

Code Characteristics

Bad Code Quality

Code Complexity/

Instability

Codebase Size

Bad Design Quality

Lack of Code
Standards

Outdated Code

Cognitive Problems

Understanding
the Code

Understanding
Architecture/

Code Structure

Understanding Flow
of Information

Change Request
Hurdles

Lack of Information
on How to Send
a Contribution

Delay to Get
Contribution

Accepted/Reviewed

Getting Contri-
bution Accepted

Issue to Cre-
ate a Patch

Local Environment
Setup Hurdles

Building
Workspace Locally

Platform Dependency

Library Dependency

Finding the Cor-
rect Source

Figure 1.4: Steinmacher et al.’s contribution barrier category Technical Hurdles [Ste+14a]17

1 Introduction

category Change Request Hurdles encompasses technical submission barriers occuring after
the source code modification is already complete. Another technical hurdle with substantiated
evidence is “Understanding the code”. However, its category name Cognitive Problems suggests
that Steinmacher et al. saw this more as a problem of the newcomers instead of a contribution
barrier that the FLOSS project induces. Possible sources inside the FLOSS project for these
problems of contributors are barriers in the category Code Characteristics. This category com-
prises modification barriers such as “Bad Code Quality” and “Codebase Size”, for both of which
Steinmacher et al. presented sound evidence.

Davidson et al. specialized on older developers in FLOSS projects, which includes those older
than 50 years by their definition. As part of this research, they also collected contribution barriers
that these older FLOSS developers experience. They interviewed 11 older FLOSS developers
and 6 FLOSS maintainers [Dav+14b], and they performed a diary study with 4 older FLOSS
developers in the process of joining their first FLOSS project [Dav+14a].

In the interviews, 5 of the 11 older FLOSS developers stated that they experienced technical
challenges on their first contribution, and 2 mentioned social challenges on their first contribution.
The technical challenges included difficulties understanding the source code, and adopting to the
development environment. [Dav+14b]

The diary studies identified lack of communication as the most important contribution barrier,
followed by problems setting up the development environment, and insufficient documentation.
Other contribution barriers were mentioned, but much less frequently. [Dav+14a]

Gousios et al. [GPD14] mined GitHub for data about patch submissions, or “pull requests” in
GitHub terminology. This included reasons for rejections. After a rejected patch, a developer may
improve the patch or submit a patch for another issue, and therefore still join the FLOSS project
as a developer. A patch rejection nevertheless constitutes a contribution barrier [SMJ10a], as
co-developers are likely not to submit a patch again after rejection [Bay+12]. Thus, the reasons
for rejection also indicate contribution barriers.

Of all patches identified as rejections (excluding the merged, deferred, and unknown reasons
described in the paper), the reasons for rejection were

• in 43 % of the cases, another developer was currently developing or already had developed
the same feature,

• in 24 % of the cases, the submitted patch was erroneous or otherwise incorrect,

• in 17 % of the cases, the patch did not fit the FLOSS project’s strategy, and

• in 16 % of the cases, the submission deviated from the FLOSS project’s submission
procedures.

Tsay et al. [TDH14] also mined GitHub to study patch submission, but focused on predictors
for acceptance of a patch. The predictors split into three groups: First are predictors directly
related to the patch, like the number of files that have been modified. Second are predictors related
to the contributor. Third are predictors related to the FLOSS project. In all categories, the study
found multiple statistically highly significant predictors. The three project-related predictors are
the age of the FLOSS project, its number of developers, and a measure for the popularity of
the FLOSS project among the developer community. All three predictors decrease the chances

18

1.3 Contribution Barriers

of acceptance statistically highly significantly. The FLOSS project’s popularity has the highest
impact of the three predictors. Among the most influential predictors in general is the social
distance between contributor and the FLOSS project’s community. As one interpretation, new
developers who have not yet arrived in the FLOSS project’s community may have difficulties to
get their contribution accepted.

Gousios et al.’s [GPD14] finding that the cause for 43 % of the rejections is redundant
development of a patch by multiple developers yields another interpretation: Developers watching
a FLOSS project closely notice more quickly if there is a parallel development and may resolve
the redundancy before anybody submits a patch. Thus, those developers do not submit redundant
patches to be rejected.

1.3.6 Summary of Contribution Barriers

There are multiple possible classifications of contribution barriers. This thesis mostly differentiates
between modification and submission barriers. Another remarkable classification distinguishes
between social and technical contribution barriers. Other classes in this classification are political
and juridical contribution barriers, for example requiring the contributor to sign a contract that
the contributor’s employer does not allow or a country’s export restrictions to source code
implementing strong cryptography. However, political and juridical contribution barriers seem to
have almost no relevance in research.

There are systematic studies of contribution barriers, but they rely on a thin empirical foun-
dation. Anyhow, Steinmacher et al. [Ste+15a] aggregated multiple of those studies to come to
more reliable conclusions. Assured or even quantitative propositions about contribution barrier
incidence are not possible from existing research, but some contribution barriers stand out:

• Installation, configuration, and familiarization with the tools in the development environ-
ment. This applies particularly to tools unique to the software development project. This
barrier exists not only for FLOSS projects, but is also well documented for closed source
software development projects. [SF09; Dag+10; SMJ10a; Tur14; Ste+14a; Dav+14b;
Dav+14a; Yat14]

• Redundant work is a frequent reason for rejected patches. Surprisingly, only one study
indicates this problem, although the study founds on a large data set. [GPD14]

• Low quality source code impedes contributions [KSL03; Tur14; Ste+14a]. Specifically a
high cyclomatic complexity is a contribution barrier [Mid+10]. Although this barrier is
not limited by design to FLOSS projects, I found no research connecting this problem to
closed source projects. However, the barrier is difficult to detect in small data sets as they
are typically available to studies of closed source systems.

• Understanding the joining script and adhering it is a contribution barrier by itself [KSL03;
JS07; Ste+14a].

• The patch review process involves different steps that can be contribution barriers [RGS08;
SMJ10a; Ste+14a].

19

1 Introduction

• Several studies observed lack of documentation and difficulties with communication or
general understanding [Ste+14a; Dav+14b; Dav+14a]. It remains unclear whether other,
more specific contribution barriers are the underlying cause for these observations. This
may be a modification or a submission barrier, and existing research offers little pointers to
one direction or the other, because they most commonly do not distinguish between the
two types of contribution barriers.

Generally, tasks become contribution barriers if they are frustrating. Some tasks are not frus-
trating and therefore do not act as contribution barriers, even if they are time-consuming. [SH98;
BS08]

The onboarding phase takes between 3 and 13 months in median from the first involvement
with the FLOSS project till the first acceptance of a patch [Bir+07]. The specific duration depends
on the FLOSS project and on the newcomer. During the onboarding phase, existing developers
need to spend resources to support the newcomers with onboarding. This costs resources that
cannot be used for actual development. This is also a consequence of Brooks’s Law [Bro95,
Chapter 2], which will be discussed in the next section in more detail.

1.3.7 The Effect of Lowered Contribution Barriers

Steinmacher et al. [Ste+15a] discussed two potential problems of lowered contribution barriers.
First, a higher number of co-workers in a cooperative work increases the coordination overhead
and may therefore ultimately decrease productivity. Second, contribution barriers may act as
gatekeepers that filter out those newcomers who lack technical or social skills or otherwise just
do not fit into the FLOSS project’s community. This section incorporates Steinmacher et al.’s
discussion of these problems including counterarguments and further reflects on the effects of
lowered contribution barriers.

Brooks’s Law

Brooks [Bro95, Chapter 2] discussed the problem of increased coordination overhead by adding
manpower to software projects. He argued that there are generally partitionable and unparti-
tionable tasks. While the former will speed up when assigning additional workers to them, the
latter will not benefit. Furthermore, adding workers has two disadvantages: New workers need
training before they perform well, and a task may need intercommunication between its workers.
Both negatively affect existing workers, because they must train the new workers and coordinate
with them instead of their actual work. This lost performance may be greater than the added
performance of the new workers, at least in the short term, so overall performance may actually
decline after adding new workers to a task.

Raymond argued that Brooks’s Law applies only to the core developers of a FLOSS project
and that co-developers need only very little coordination, as they work on easily separable
subtasks [Ray00]. Capiluppi and Adams [CA09] and later Adams et al. [ACB09] found empirical
support for Raymond’s argument against the intercommunication problem of Brooks’s Law in
FLOSS projects. This is a result of the community structure of FLOSS projects: Some are scale-
free networks, in which communication follows a power distribution over the community [Xu+05;

20

1.3 Contribution Barriers

WMZ06]. Nevertheless, the loss of productivity through the training phase does exists [ACB09].
However, the training phase is the lesser of the two problems [Bro95, p. 18].

Other online communities also have barriers for participation. Especially wikis are also similar
to FLOSS development, as they enable their users to contribute to the project. Assuming that
communities of FLOSS and wiki projects have similar mechanics, it is interesting to look at the
equivalent question for wikis: Do wikis suffer from a communication overhead when the number
of contributors grows? Kittur et al. showed that the coordination overhead in Wikipedia increased
over time while Wikipedia has been growing [Kit+07b]. Kittur and Kraut showed that this also
applies to other wikis: More contributors result in more inefficiency [KK10].

Contrary to Brooks’s Law, research has shown that a high influx of new developers is related to
the success of FLOSS projects [Sch+08; CSD10; CLM03; CAH03]. Additionally, Brooks argued
that complex applications need large development teams to be successful, even if they are less
efficient [Bro95, Chapter 3].

Contribution Barriers as Gatekeepers

Overcoming technical contribution barriers requires technical skill, and only those newcomers
with social skills overcome the social contribution barriers. Thus, contribution barriers keep out
newcomers with a lack of technical or social skills. Having a smaller group of skilled developers
may be better than a larger group of mostly less skilled developers. Thus, the contribution barriers
may positively act as gatekeepers for the FLOSS project. [Duc05]

Indeed, Sackman et al. found high performance differences of 25 to 1 between skilled and
unskilled programmers [GS67; SEG68]. Unskilled programmers would therefore aggravate
the problem of communication overhead described above, as their minor contributions cannot
compensate the communication overhead necessary for their integration into the development
team. However, Prechelt showed that the original figures of 25 to 1 were based on methodological
problems and the interpersonal variation is in fact only between 2 to 1 and 4 to 1 [Pre99].
Consequently, technical contribution barriers have at most a low value as gatekeepers for technical
skills.

Social contribution barriers presumably also do more harm than good: On the one hand,
Ducheneaut [Duc05] argued that contribution barriers help filter out those individuals who do
not fit into the FLOSS project. On the other hand, he admitted that contribution barriers are
also problematic for the useful newcomers. Furthermore, advertising social requirements more
explicitly, for example rules of netiquette [Ham95], would reduce the social contribution barriers
that these social requirements cause: newcomers could socialize more quickly and with less
problems.

Again, a comparison to wikis may yield additional insights. Do wiki contribution barriers have
a positive value as gatekeeper or do they lower the performance of a wiki project? Kittur et al.
found that a group of very involved core contributors in Wikipedia provided an initial thrust to
the project, but later on, casual contributors became more and more important for the overall per-
formance of Wikipedia [Kit+07a]. Kittur and Kraut also proved that article quality in Wikipedia
improved with higher numbers of contributors, and that this is only possible with increased
communication [KK08]. This is an analog to Linus’s Law of FLOSS development [Ray00,
Rule 8]. Thus, more contributors in Wikipedia increase the quality but also the communication

21

1 Introduction

overhead, but the output of the additional contributors is still greater than the communication
overhead they induce.

The Long Tail of Contributors

A number of contribution barriers identified in this section affect only newcomers. Regular
developers may contribute without the need to overcome the contribution barriers. Newcomers
presumably differ in their tolerance to contribution barriers. This tolerance depends partially
on the work time a newcomer is willing to invest into the FLOSS project. Newcomers who are
willing to contribute only little to the FLOSS project have a low tolerance, but their contribution
is small anyway. Thus, one might conclude that lowering the contribution barrier will bring
only little benefit to the FLOSS project. However, all newcomers with small contributions taken
together may provide a large accumulated contribution. This subsection presents an argument for
this point of view.

Figure 1.5 shows a simplified diagram of the different developers’ contributed work time to
a given FLOSS project in a given time frame. Figure 1.5 is not based on empirical data and
is only intended to visualize the rationale of the argument. The y-axis shows the work time
each individual developer is willing to spend on the FLOSS project in a given time frame, and
assumingly at the same time the tolerance to contribution barriers. The developers on the x-axis
are ordered by the time they are willing to spend on the FLOSS project in the given time frame,
i.e. by the value on the y-axis. There are c full-time developers and d−c new part-time developers.
Of course, this is one of the simplifications, as there may be part-time developers who are not
new to the FLOSS project. For new part-time developers, the effective work time used to actually
improve the FLOSS project is reduced by the time needed to overcome the contribution barriers.
If the time needed for the contribution barriers is higher than the time a part-time developer is
willing to spend on a FLOSS project, this part-time developer will not spend any work time to
actually improve the FLOSS project. When the contribution barriers are reduced, new part-time
developers can spend more time on actual improvements, because they need less time for the
contribution barriers. Reducing the contribution barriers also increases the number of new part-
time developers, as there are some part-time developers who are willing to spend more time on
the FLOSS project than the time needed for the reduced contribution barriers, but not for the
original contribution barriers. In Figure 1.5, this increased number of developers after lowering
the contribution barrier is n.

Thus, even small reductions to the contribution barriers may increase the number of contributors
more than proportional. Lowered contribution barriers may therefore change the community
structure of FLOSS projects towards much higher fractions of occasional contributors. According
to Linus’s Law, this improves the quality of the application of the FLOSS project [Ray00, Rule 8].

1.4 Research Goals

The preceding part of the chapter gave an overview of the current state of research on FLOSS
communities and their joining processes. It focused on contributor motivations and contribution
barriers. This section describes three open research questions that this thesis is going to answer.

22

1.4 Research Goals

c d n

c = Number of core developers

d = Number of developers with high contribution barrier

n = Number of developers with lowered contribution barrier

W
or

k
tim

e
in

ve
st

ed
pe

rd
ev

el
op

er
in

to
th

e
pr

oj
ec

ti
n

a
gi

ve
n

tim
es

pa
n

Developers ordered by contributed work time

netto work time for the project
work time won by lowering the contribution barrier

work time still needed for the contribution barrier

Figure 1.5: Model of the distribution of work time contributors are willing to spend on the FLOSS
project

1.4.1 Identification of Contribution Barriers

While the existing research identified individual contribution barriers, there is no complete and
empirically founded theory of contribution barriers and their importance. This is the goal of the
first research question of this thesis:

Research Question 1. Which contribution barriers exist and which are important for newcomers
to FLOSS projects?

Chapter 2 approaches this first research question with surveys of newcomers to FLOSS projects.
These allow a quantitative analysis of contribution barriers.

1.4.2 Lowering Contribution Barriers

As described previously, lowering contribution barriers is desirable. The results of the first
research question show which contribution barrier are relevant, but not how they might be
lowered or circumvented. This leads to the second research question:

Research Question 2. Which practices or techniques lower contribution barriers?

Patterns are a format to present problems and their solutions in a comprehensible way. This
makes them well suitable to structure available management techniques for FLOSS projects,
especially those that lower contribution barriers.

23

1 Introduction

In fact, different groups of authors have authored patterns dealing with the management of
FLOSS projects, e.g. [Wei09; Lin10]. However, these FLOSS patterns are scattered among various
publications that have drawn only few connections between them. Yet, patterns cannot stand
on their own but are part of a pattern language [Ale79] and are not completely understandable
without the context of a pattern language [CH05a].

Thus, this thesis compiles a pattern language for FLOSS in Chapter 3. It details FLOSS
patterns that lower contribution barriers and links them to the contribution barriers identified in
Chapter 2. These FLOSS patterns and the FLOSS pattern language are an answer to the second
research question.

1.4.3 Wiki Development Environments2

Wikis are web applications that store and show content to its users and provide the means to
let users edit the content. They treat all users as contributors [LC01; Ebe+08]. This is the wiki
principle.

The content of wikis is usually text. Wikipedia [P*Wik16d] is an example for a wiki with
textual content. Textual content is not a requirement for the wiki concept to work, though:
OpenStreetMap [P*Ope16c] is a wiki with maps as content. OpenStreetMap enables its users to
edit the maps using only their web browsers. Thus, OpenStreetMap proves that the wiki concept
is not restricted to textual content. Another example for a wiki with more than only textual
content is FlowWiki [Jun+11]. FlowWiki allows its users to modify workflows. These workflows
can interact with each other. This leads to the questions whether such an integrated system based
on wiki principles could also be used for software projects:

Research Question 3. Can wiki principles be used to minimize contribution barriers?

Approaching the third research question, this thesis explores how to adopt the wiki principle
to software development. This results in a Wiki Development Environment (WikiDE), which is
both an IDE and a wiki system. Such a WikiDE must fulfill the requirements of both an IDE and
a wiki system, which imposes special conceptual challenges.

Individual components necessary for the realization of a WikiDE already exist. These com-
ponents are not easily integrated, though. A WikiDE needs an architecture that integrates these
components, possibly with adaptations, into a single platform.

WikiDEs reduce or lower contribution barriers identified in the first chapters of this thesis.
WikiDEs realize some of the FLOSS patterns lowering contribution barriers and even advance
some of them. They also tackle contribution barriers for which isolated countermeasures described
by FLOSS patterns do not suffice. However, some FLOSS patterns complement WikiDEs, and
can be implemented in addition to them.

Chapter 4 derives which requirements a WikiDE must fulfill and discusses how to realize
a WikiDE. This involves the general architecture of a WikiDE and how to adapt individual
components to the requirements of a WikiDE. A Proof of Concept (PoC) realization documents
the feasibility of the approach.

2A preliminary version of this section was published previously [GH12b].

24

2 Contribution Barriers to FLOSS Projects

This chapter addresses the research question described in Section 1.4.1: Which contribution
barriers decrease a newcomer’s willingness to contribute source code to a FLOSS project?

This main research question implies more specific research goals. Which contribution barriers
exist? Which contribution barriers are easier to overcome and which are more difficult? What
factors influence whether a specific contribution barrier affects a specific newcomer?

To approach these open questions, this chapter presents two surveys and their analyses. A first,
exploratory survey in Section 2.1 provides qualitative insights about the nature of contribution
barriers. These insights allow a more precise formulation of the above-stated research questions,
the formulation of testable hypotheses about contribution barriers, and thereby clear the path
for the second, quantitative survey. The structure of this main survey is outlined in Section 2.2.
Sections 2.3 to 2.5 detail the results of the main survey. These results allow statistical tests of
the previously formulated hypotheses. Section 2.6 presents and discusses the results of these
statistical tests. Threats that endanger the validity of the survey and applied countermeasures
are the subject of Section 2.7. A new model for joining FLOSS projects based on the surveys’
findings is the subject of Section 2.8. Section 2.9 summarizes and concludes the chapter.

2.1 Exploratory Survey1

The goal of the exploratory survey was to get a realistic impression of the challenges developers
face as they take the first steps toward contributing to a FLOSS project. Mailing lists, issue
trackers, and other public archives of project communication are biased by the large amount of
experienced FLOSS developers active on these channels.

Instead, an online questionnaire was sent to 664 professional software developers from six
organizations (five software companies and one university). These developers work on commer-
cial software development projects across a variety of technologies and domains. Most of these
people are very experienced developers who use FLOSS in their projects, but their employers
have no particular policy or focus on making active contributions to FLOSS projects, so there
is no institutionalized support for making contributions, and any such endeavors stem from the
employees’ own motivation. Such an environment is a rather common starting point for most
potential FLOSS contributors.

22 participants out of this audience responded to the invitation. The invitation explained that
anyone who has modified the source code of a FLOSS application may fill out the questionnaire.
A possibly large fraction of the invited software developers had never modified the source code
of a FLOSS application and therefore refrained from participating in the survey. This explains
the relatively low return ratio of about 3 %. It means that findings need to be interpreted with a

1A preliminary version of this section was published previously [HBG14].

25

2 Contribution Barriers to FLOSS Projects

grain of salt. While the low return ratio does not suffice for a representative picture, the target
population was reasonably broad and the answers provide indications of common contribution
barriers for further analysis.

Two kinds of contribution barriers will be relevant for this survey: First, modification barriers
hinder or prevent work on the source code of the FLOSS project. Second, submission barriers
hinder or prevent developers from submitting this work back to the FLOSS project. While some
FLOSS developers may work on the source code of a FLOSS project only because they want to
submit their work back to the FLOSS project, this is not generally true. Some software developers
may as well solve the problems they currently experience with a FLOSS application and not
submit those changes back to the FLOSS project.

Analogously to the contribution barriers, motivations also exist as modification motivations
and submission motivations. Additionally, usage motivation determines why a developer gets
involved with the FLOSS project in the first place. While usage barriers do also exist, they are
not part of this survey.

In this exploratory survey, the distinction between modification and submission barriers is only
implicit. The three kinds of motivations, however, are explicitly treated differently.

The questionnaire has undergone a pretest. As a result of the first pretests, the wording
improved and some of the questions got simpler. Further pretests ensured comprehensibility and
eventually the pretesters did not indicate any ambiguities in the questions anymore. The survey
questions use the term Open Source Software (OSS) instead of FLOSS, because OSS is more
familiar to the participants.

2.1.1 Demography

The questionnaire first asked respondents to categorize their FLOSS contribution experience.
4 participants that had never modified the source code of a FLOSS project were excluded from the
rest of the questionnaire. The remaining participants had modified the source code of a FLOSS
project. However, 5 developers did not answer any further questions, so 13 respondents who
completed the whole questionnaire remained. Out of these, 4 developers indicated that they had
only modified FLOSS source code, while 9 developers responded that they had also successfully
submitted patches to projects.

Next, the questionnaire asked which FLOSS project they had modified, and in which year the
modification was made. The participants were prompted to consider only the first modification
to each FLOSS project, not succeeding modifications to the same FLOSS projects, because
only the first modification involves the typical contribution barriers. Following questions in the
questionnaire often referred to this FLOSS project. In this report, the question text will read
“project PROJ” where the actual participants were shown the name of the project they entered in
this question.

While many existing surveys focus on a small number of specific FLOSS projects and thus
may be biased by that project’s particular barriers and group dynamics [ØJ07], all of this survey’s
respondents indicated that they worked on different FLOSS projects, so their experiences have
higher external validity. The majority of modifications was made within the last 1.5 years before
the survey, while some changes also reached back as far as 2004.

26

2.1 Exploratory Survey

2.1.2 Developers’ Motivation

In order to distinguish the different forces motivating the modification of and submission to a
FLOSS project, as well as those hindering contributions, the questionnaire asked all participants
about their general relationship to the project, and their reasons for their first modification of its
source code. Those who had also submitted their modifications back to a FLOSS project were
also asked about their reasons for the submission. With the previously introduced terminology,
the survey sampled usage, modification, and submission motivations of the participants using the
following three questions. Participants could select as many answer items as they liked. They saw
the answer items to Questions 3 and 4 in randomized order and could rank the selected answer
items in order of priority. The bold labels in parentheses were not shown to the participants and
will be used as references throughout the subsequent discussion.

2. What is the relation of you/your organization to project PROJ? You/your organization . . .

a) . . . use project PROJ yourself.

b) . . . provide consulting for organizations using project PROJ.

c) . . . include libraries of project PROJ within your own software.

d) . . . want to make project PROJ interoperable with your/other software.

e) . . . have some other relation to the project. (with text box)

3. What are the reasons for you or your organization to modify the source code of project
PROJ?

a) The malfunction or missing functionality bothered me/my organization as a user of
the OSS project. (Own Need)

b) The joy of programming and/or the intellectual challenge. (Joy)

c) I wanted to submit the patch. (Submit)

d) Acquiring experience in technologies used by project PROJ. (Learning)

e) I like the developers of project PROJ and like to work with them. (Community)

f) Something else (with text box) (Other)

4. Why did you/your organization decide to submit the patch to project PROJ? You/your
organization wanted to . . .

a) . . . have your changes reviewed by others. (External Review)

b) . . . return something, because you feel obliged to do so. (Feeling Obliged)

c) . . . avoid the work of reintegrating your changes into new releases of the OSS project.
(Stupid Tax)

d) . . . gain experience in the procedures of (OSS) projects. (Learning)

e) . . . publish the source code, because you believe source code should be open. (Belief
in FLOSS)

f) . . . gain respect from the community. (Gain Respect)

27

2 Contribution Barriers to FLOSS Projects

g) . . . do something good (altruism). (Altruism)

h) . . . gain publicity (for example, you might have wanted to get job offers). (Publicity)

i) . . . fight closed source software. (Fight CS)

j) . . . achieve something else (with text box). (Other)

The primary usage motivation (Question 2) was the use of the project itself – either as a tool
they used as end users, or as a library they integrated into their own system. Other reasons such
as providing consulting for the FLOSS project, making it interoperable with one’s own products,
or evaluating the project played only a minor role for the respondents.

Figure 2.1 depicts how respondents ranked the answer items to Question 3. Only the highest
ranks 1-3 are shown and answer items are ordered by the number of selections as first rank.
The answers showed a clear picture: The majority of developers made modifications because
a malfunction or missing feature bothered them (Own Need), because they wanted to acquire
experience with the project’s technologies (Learning), and because they enjoyed the intellectual
challenge (Joy). Satisfaction derived from working with the project’s community (Community)
and submitting patches (Submit) were only minor motivators. In an interesting case, one partici-
pant wanted to “preserve part of [the participant’s own] project work spent on the usage of [the
FLOSS component],” i.e. the participant refactored work originally performed outside the FLOSS
component into it, so it could be reused in future endeavors. These results agree with Raymond’s
observation that most work starts from “scratching a personal itch” [Ray00] and especially with
Shah [Sha06] who found that Own Need is the primary modification motivation for newcomers.

0
10
20
30
40
50
60
70
80
90

Own Need Joy Submit Learning Community Other

Fr
ac

tio
n

of
an

sw
er

s
in

%

Rank 3
Rank 2
Rank 1

Figure 2.1: Number of ranked responses for reasons to modify the source code of a FLOSS
project (Question 3)

In contrast, submission motivations (Question 4) show more variation, as Figure 2.2 indi-
cates: Having one’s changes reviewed by others (External Review) and avoiding the work of
reintegrating one’s changes into new releases of the OSS project (Stupid Tax) were the most
frequently mentioned and highest-ranked reasons, with a feeling of obligation to return something
(Feeling Obliged) being a close third. These three motivations are an interesting mix spanning

28

2.1 Exploratory Survey

aspects of learning (External Review), pragmatics (Stupid Tax), and ethics (Feeling Obliged).
The complementarity of these factors, between which no compromise is necessary, together
supposedly creates a quite strong motivation that offsets the time and effort involved in submitting
a patch.

Other motivating factors were gaining experience with FLOSS procedures (Learning), belief
in the open source idea (Belief in FLOSS) and altruism (Altruism), as well as to a lesser degree
community respect (Gain Respect) and personal publicity (Publicity). An aversion against
closed-source software (Fight CS) did not play a role among the respondents.

0

10

20

30

40

50

60

70

External Review

Feeling Obliged

Stupid Tax
Learning

Belief in FLOSS

Gain Respect

Altruism
Publicity

Other
Fight CS

Fr
ac

tio
n

of
an

sw
er

s
in

%

Rank 3
Rank 2
Rank 1

Figure 2.2: Number of ranked responses for submitting patches to a FLOSS project (Question 4)

The participants who had succeeded in submitting their patch were also asked whether the
expected benefit ultimately merited the invested effort. To each of the following questions, they
could respond on a five-point scale ranging from “far too much effort” to “benefit far exceeds
effort”.

5. Was the benefit of submitting your patch worth its effort?

a) Was your personal benefit worth the effort?

b) Was the benefit for your organization worth the effort?

The respondents uniformly agreed that the benefits of submitting the patch were worth the
effort, some even indicated that the benefits exceeded the effort – another reason for developers’
perseverance in the face of the contribution barriers discussed in the following section, once they
have made the decision to contribute.

In contrast, those participants who had not tried to submit their private modification back to the
FLOSS project were asked about the reason for their renunciation, and could choose any number
of the following options:

6. Why didn’t you submit your modification back to project PROJ?

29

2 Contribution Barriers to FLOSS Projects

a) Others would have no use for this modification.

b) The possibility of publishing the modification just wasn’t considered.

c) Expected time effort was too high.

d) My organization would have lost an advantage over its competitors.

e) Something else (with text box)

The four participants who had decided against submitting justified this in Question 6 with a too
high expected time effort, or the impression that others would have no use for their modification.
In one case, a submission back to the FLOSS project was not provided as a patch, but exchange
of ideas that the maintainer agreed to implement directly later. All developers however at least
considered the possibility of submitting their patch, and losing a competitive advantage was not a
concern for them, so the decision was mostly based on reasons of practicality.

2.1.3 Contribution Barriers

The next questions addressed the contribution barriers experienced by the developers. The first
two question quantitatively assessed the time needed for the modification and the submission.
The last set of questions were open questions and thus asked for free-text answers in order to
receive unbiased impressions of the contribution barriers.

Closed Questions

Based on the tasks required for a FLOSS contribution described in Section 1.1.4 (with some
tasks combined for simplification), the questionnaire first asked all respondents about the time
they spent on each task. Items 7f and 7g that refer to the actual submission of the patch were
hidden from those participants who had indicated that they had only privately modified but never
submitted anything to a FLOSS project. Respondents could select one of the time intervals “up to
10 minutes”, “up to 1 hour”, “up to 8 hours”, “up to 40 hours”, and “over 40 hours”.

7. In the whole procedure of submitting the patch, you probably had to finish a couple of
distinct tasks. Possible tasks are listed below. How much time did you spend for each of
these tasks?

a) Download the source code (or re-download current version of the source code)
(Download)

b) Build executable binaries from the source code (Build)

c) Reproduce the problem you wanted to fix (Bug Repro.)

d) Find the location to change in the source code / find the cause of the problem (Find
the Code)

e) Solve the problem (write code) (Solution)

f) Create a Diff/Patch file (Patch)

g) Submit a bug report including your patch (Submission Procedure)

30

2.1 Exploratory Survey

h) Accomplish tasks not listed above (with text box) (Other)

To reveal hidden effort that the participants had to invest in order to familiarize themselves
with the internals of the FLOSS project, but that had not been related directly to the patch in
question, the questionnaire also inquired about the time spent on any general bootstrapping effort.
Possible answers again were the same time frames as above.

8. How much time did you spend on the following tasks without relation to your patch, before
you started your work on tasks directly related to your patch?

a) Download the source code (or re-download current version of the source code)

b) Build executable binaries from the source code

h) Accomplish tasks not listed above (with text box)

The bandwidth of answers in the survey is shown in Figure 2.3. Finding the cause of a problem
and the right location in the source code (Find the Code) consistently required one of the highest
efforts, with writing the code to solve the problem (Solution) a close second. Obtaining the
current version of the source code (Download), reproducing the problem (Bug Repro.), creating
the patch (Patch), and submitting it (Submission Procedure) took more manageable time. The
highest maximum and arithmetic mean time effort was spent on building the system (Build).

The primary effort drivers Find the Code and Solution, i.e. finding and fixing the problem, are
independent of FLOSS projects – they mirror the general intellectual challenge of programming,
and are addressed by research on program comprehension, debugging, and related fields. Among
the steps that are more specific to the context of joining a FLOSS project, the effort for building
the system (Build) stands out in particular.

However, the time needed for this step also varied widely between participants. This is due
to the variety of programming environments developers need to deal with. For example, one
participant directly modified the source code of a productive system written in the programming
language PHP: Hypertext Preprocessor (PHP). Since PHP is directly interpreted by a web server,
the participant neither needed any work time to download the source code nor to build the
application from source code. Still, the setup of the interpreter environment may be a major
effort in other project environments as well. Another participant who pointed to the setup of the
development environment as the biggest barrier was modifying a component written in Python,
which is also an interpreted language. Thus, for interpreted languages, the work time needed until
the first execution of the application may be as long as the work time needed until the first build
for other projects. This means that some interpreted languages just shift this contribution barrier
from a modification barrier to a usage barrier.

Open Questions

Following these quantitative effort estimates, the questionnaire next asked those participants
who had tried to submit a patch to the FLOSS project about their qualitative experiences with
the contribution barriers. This was deliberately an open question in order to receive unbiased
responses of the contribution barriers that were most prominent in developers’ memories:

31

2 Contribution Barriers to FLOSS Projects

0
0 - 10 min

10 min - 1 h
1 - 8 h

8 - 40 h
> 40 h

Down-
load Build

Bug
Repro.

Find the
Code Solution Patch Submission

Procedure Other

Figure 2.3: Time spent on tasks required for modifying and submitting code of a FLOSS project
(Questions 7 and 8)

9. What bothered you when submitting the patch to project PROJ?

a) What was the biggest barrier that you encountered while submitting a patch to project
PROJ?

b) Before you submitted the patch to the project PROJ, had the submission procedure of
project PROJ ever discouraged/prevented you from submitting a patch? If so, what
was the specific reason for you not to submit that patch?

Of the respondents who successfully submitted a patch to a FLOSS project, two answered that
they did not experience any barriers. Among the remaining answers, the by far most frequently
mentioned barrier in Question 9 was the setup of the development environment in one form or
another.

In total, the online survey took the participants 10-15 minutes to complete. Respondents also
had the opportunity to pose questions for clarification or indicate difficulties with the questionnaire,
which none did.

2.1.4 Discussion

The survey results indicate that a major part of the contribution barrier is the effort invested until
the first build. This is in agreement with other research as presented in Section 1.3.

At first sight, the difficulty in setting up the build system may be surprising, since the partici-
pants of this survey are professional software developers who are familiar with build systems
and should already have a development environment installed and configured on their machine.
There are two explanations why the familiar development environments do not suffice for the
modifications of the source code of some FLOSS projects. The survey gives merely hints on
which explanation best describes the situation of the participants.

First, developers may not have used the programming language of the FLOSS project before
and need a new development environment for the new programming language. Often, the need for
the FLOSS component may stem from project requirements, but all of this survey’s participants
who found the setup of the development environment to be the biggest contribution barrier also
indicated that they had started to work on the FLOSS component because they wanted to acquire
experience in the technologies it uses. This indicates that developers are willing to tackle the

32

2.1 Exploratory Survey

contribution barrier even if the main reason for working on the FLOSS component is not a
pressing project need, but a learning endeavor.

Second, even if the FLOSS project uses a programming language that the existing development
environment supports, the core developers’ platform may be different from that of the new
software developers, making a platform-specific setup necessary. An example for a FLOSS
project with such limitations is Mozilla: Depending on the subproject and the branch of the
subproject modified, one version of the same development environment may be compatible while
another is not [P*Moz12].

The respondents cited difficulties to access the source code as another contribution barrier.
One participant had been discouraged from submitting patches earlier because there was “no
browse access to the ‘trunk’ version of the source code”. Making it easier for developers to get
all code, tools, and information they need should therefore be part of a FLOSS project’s strategy
for encouraging new contributors, especially given that the technological and intellectual barriers
further down the process are still hard enough, as discussed below.

As a solution to the challenges associated with building binaries from the source code, closed
source projects often use Continuous Integration (CI) systems. These CI systems automatically
check whether modifications are compatible with each other, and test them on a broad range of
platforms. A missing CI system can be a contribution barrier, as one developer in the survey
indicated:

“My productive system had a very special configuration (including dated versions
of some of the components) and I was unable to test my fix against alternative
configurations.”

A prominent example for the use of CI systems is Microsoft executing thousands of tests for
each of their security patches [P*Mic15b]. However, such a number of tests requires dedicated
test servers. Large FLOSS projects may have the financial resources to afford such a CI system.
Mozilla, for example, tests their modifications on different platforms [P*Moz15i]. In contrast,
many smaller FLOSS projects do not maintain their own server infrastructure. Instead, they rely
on software forge services such as Sourceforge [P*Sla15] and GitHub [P*Git15c] for their key
infrastructure like VCSs and issue trackers [Rie+09]. However, these software forge services
do not provide CI to FLOSS projects – in fact, the advent of CI systems since 1997 has not had
a significant impact on development practices of FLOSS projects [DR08b] even though they
may help to lower the projects’ contribution barrier. Recently, platforms emerged that offer free
CI services to FLOSS projects. Examples include Travis-CI [P*Tra15] (since early 2011) and
BuildHive [P*Clo15] (since May 2012).

2.1.5 Conclusion

This section presented the results of an exploratory survey of professional software developers
to identify contribution barriers that newcomers to FLOSS projects encounter. In contrast to
previous surveys, this survey deliberately did not target typical FLOSS communication channels
(mailing lists, issue trackers, etc.) which might have biased the results to a more expert-dominated
view, but surveyed developers outside the established communities who were asked about their

33

2 Contribution Barriers to FLOSS Projects

experiences in making their first modifications and contributions in FLOSS projects. This way,
the exploratory survey identified two prominent components of the contribution barrier that work
as opposing forces to developers’ motivation to contribute:

• Depending on the specific FLOSS project and platforms of the joining software developers,
the effort necessary until the first build of an executable application from the source code
is the largest contribution barrier. To achieve the first build, joining software developers
have to set up a development environment and configure the build scripts for their platform,
which is not trivial even for experienced developers.

• Small FLOSS projects usually cannot afford costly infrastructure such as CI systems.
This also increases the contribution barrier, as joining software developers cannot be sure
whether their modifications are compatible with all platforms that the FLOSS project
supports.

So what is the theoretical minimal contribution barrier when the available tools improve
further? Brooks [Bro87] argues that there are two types of effort in software development –
essence and accidents. While essence is the core problem to be solved, accidents are all man-
made problems around the core problem. Examples of accidents are copious programming
languages and improper development environments. Brooks pointed out that improvements of
software development tools can only reduce the effort for accidents, but never for the essence.
The survey confirms that the “essence” – the actual code understanding and fixing – incurs the
largest effort in FLOSS projects as well. The most prominent “accident”, however, was the effort
induced by setting up build environments.

Open Research Questions

While the survey measured the time effort necessary for the individual steps of a contribution,
it is not clear to what degree contributors feel reluctant to perform the necessary tasks of each
step. Some tasks may require more time to perform but are joyful and therefore do not act as
a contribution barrier. Thus, only tasks that newcomers feel averse to perform are contribution
barriers, and only for these tasks does the time needed for their execution increase the contribution
barrier. Future research should measure the contributors’ averseness to each task.

The differentiation between modification and submission motivations proved useful. The
survey identified a single primary modification motivation, that is using the modification for
oneself. The differentiation between modification and submission should also be more strongly
extended to contribution barriers.

The identified contribution barriers and motivations should be confirmed on a larger data set.
A larger data set would allow statistical analyses and stronger empirical support for the results.

2.2 Main Survey2

The main survey improves on the exploratory survey described in the last section, as it strives
for answers to the questions that the exploratory survey opened or could not answer. The main

2A preliminary version of this section was published previously [HG16b].

34

2.2 Main Survey

survey implements improvements in survey design based on the experiences from the exploratory
survey.

Consequently, this section advances the endeavor to expose contribution barriers to FLOSS
projects with a survey of 118 developers who had recently joined a FLOSS project as new
software developers. These developers described the contribution barriers they had experienced
when creating and submitting their first patch to either the Mozilla project or the GNOME project.
Insights on contribution barriers from their answers are complemented by explicitly distinguishing
modification and submission motivations.

2.2.1 FLOSS Projects

This section provides an overview over the FLOSS projects Mozilla and GNOME, as the survey’s
participants are newcomers in one of these two projects. Both projects have been the subject
of previous research. Østerlie and Jaccheri critizised that FLOSS research focuses on too few
FLOSS projects, as this disallows drawing conclusions about the FLOSS phenomenon as a whole,
and some characteristics of FLOSS projects might stay unnoticed [ØJ07]. This implies that
research results should be confirmed on less commonly researched FLOSS projects. However,
this research targets an aspect of FLOSS development that existing research has not focussed on
yet. Studying popular FLOSS projects can therefore build on existing research of these FLOSS
projects and minimizes the risk that observed characteristics are specific only for exotic FLOSS
projects.

Mozilla

Netscape made their Communicator product a FLOSS project in 1998 [P*Net98]. They found
the Mozilla Foundation to host the Mozilla project. While the Mozilla project is well known
for its browser Firefox, the Mozilla project is more diverse. Its 311 modules and submod-
ules [P*Moz15x] comprise the mail client Thunderbird, the issue tracker Bugzilla, and the
cryptographic library Network Security Services, to name three examples.

These applications usually target multiple platforms like Linux, MacOS, and Windows and
also mobile platforms like Android. Developers may also choose among multiple development
platforms including Unix operating systems and Windows. [P*Moz15d]

Research on Mozilla is diverse. It includes analysis of its early development process [MFH02]
and tools [RM02], it serves as a case study to construct general models about FLOSS proce-
dures [JS07; ZM12], and it is also a common data source to evaluate general Software Engineering
(SE) techniques [Yin+04; CC06].

Mozilla follows a process dubbed “bug-driven” development [RM02]. Mozilla uses the
pejorative term bug for every type of change request to their application, not only including
fixing defects, but also implementations of new features. This thesis uses the more neutral term
issue instead of bug. Mozilla uses the issue tracker Bugzilla, a Mozilla product itself, to keep
track of all issues [P*Moz01]. Indeed, Mozilla policy enforces an issue in Mozilla’s Bugzilla for
every modification committed to Mozilla’s main VCS trunk. This policy also enforces that every
proposed code modification must receive a positive review from either the owner of the changed

35

2 Contribution Barriers to FLOSS Projects

module or one of the module owner’s trusted delegates. This is true even for the module owners
themselves, and developers are not allowed to review their own patches. [P*Moz15f]

Mozilla’s Bugzilla instance [P*Moz01] keeps track of all issues, proposed code modifications,
and reviews. The following describes the mandatory steps for every modification to the code: A
reporter first creates an issue in Mozilla’s Bugzilla instance that describes the defect or feature
request. Then a developer, who may or may not be the reporter, is assigned to the issue. Developers
can assign themselves to issues if they have the appropriate rights. After developers have modified
code, they aggregate all modifications into a single file and attach it to the issue. This file is often
in diff format [HM76], but may for some modules be the Uniform Resource Locator (URL) to a
pull request on GitHub [P*Git15c]. Attached files may receive flags of multiple types in Bugzilla.
Of special importance are the “r” flags that indicate whether a patch has been reviewed or not.
The developer who created the attachment flags this attachment with an “r?” flag together with
the name of a core developer. This core developer is then expected to review the attachment and
report the review result by changing the attachment’s flag either to “r-” or “r+” for a declined or
accepted code modification, respectively. In case of an accepted code modification, a committer
merges the modification into the main VCS branch for the module. [Bay+12]

Any of these mandatory steps may require additional work like discussions on the code or
questions to the reporter on how to reproduce a failure. A participant may also inadvertently
hamper this process, for example when developers do not add the “r?” flag to their attachments
because they do not know that this is necessary.

GNOME

GNOME is a window manager and application collection for Unix operating systems. In 1997,
developers in the GNU’s Not Unix (GNU) community started the GNOME project [P*Ica97].
Today, the GNOME Foundation hosts the GNOME project as a non-profit organization. An
elected board governs the community [P*GNO14]. [P*The15e]

GNOME has also been the subject of research. This includes use cases for FLOSS [Fin03],
FLOSS communities [Her+06; JSW11], the project’s development process [Ger03], and its ability
to attract LTCs [ZM12].

An instance of Bugzilla serves as the issue tracker for the GNOME project [P*The15d].
Similarly to Mozilla, GNOME’s Bugzilla instance tracks all modifications to the code, so with
a few exceptions, for every code modification there must be an issue in GNOME’s Bugzilla.
Using the same flag feature that Mozilla uses, attachments to an issue in GNOME’S Bugzilla
may receive flags when reviews happen. The flags are different to Mozilla’s, though, and handled
less strictly. [P*GNO14]

Besides Bugzilla, GNOME uses the VCS git, a wiki, Internet Relay Chat (IRC), and mailing
lists as tools to support developers with their contribution [P*GNO15b]. A part of the wiki is
dedicated to help newcomers onboard the project as developers [P*GNO15a].

2.2.2 Research Hypotheses

One important specialization of this chapter’s research question is: What factors influence the
contribution barriers that a newcomer experiences? This section derives research hypotheses

36

2.2 Main Survey

from literature and results from the exploratory survey. These research hypotheses will be tested
with statistical methods in Section 2.6.

The programming language has influence on different aspects of a modification: First, each
programming language comes with its own tool chain. Some programming languages have better
tool support, others are relatively new and therefore the community had less time to develop good
tools, or the community may simply be smaller. Second, the choice of programming language
depends on the purpose of the modification. Changes to an application’s interface may require
a different programming language than changes to an application’s core. For example with
Mozilla, Graphical User Interface (GUI) changes may often require modifications of Extensible
Markup Language (XML) codes like Hypertext Markup Language (HTML) and XML User
Interface Language (XUL) or JavaScript code, while changes to Mozilla’s core libraries may
require modifications to C or C++ code. Changes to these core libraries may be more difficult, for
example because there are more dependencies of other modules that need to be considered. Third,
some programming languages are simply easier to learn and use than others [SS13; End+14].
This leads to

Hypothesis 1. The contribution barrier for modification depends on the programming language
used for the first modification.

Despite claims that programming experience and programming performance may be uncor-
related [GS67; Bro95, p. 30], research on larger data sets confirms the intuition of a correla-
tion [WSK08]. Thus, experienced developers should have less problems handling technical
problems when they try to modify a FLOSS application, and therefore perceive lower technical
contribution barriers. This leads to the following hypothesis:

Hypothesis 2. More experience of newcomers helps to lower their contribution barriers.

Each FLOSS project uses its own development tool chain, depending on the programming
languages of its source code, the platform the FLOSS application runs on, and the platforms the
developers use. Additionally, FLOSS projects differ in the attitudes and procedures they have
employed. New contributors may appreciate some of these more than others; partly, because
some procedures may actually speed up the joining of new contributors. To another part, the
attitudes and procedures simply may or may not create a welcoming atmosphere. As a third factor,
FLOSS projects have different user bases due to their supported platforms and intended use cases.
For example, users of the Eclipse IDE [P*The15c] are developers themselves, while users of
the Mozilla Firefox browser may not necessarily be technically savvy. When FLOSS projects
recruit newcomers out of their user base, as for example according to the onion model [Cro+05]
and Raymond’s “first lesson” [Ray00], the skills of these newcomers differ between FLOSS
projects. Consequently, the newcomers in one FLOSS project may easily overcome a contribution
barrier that fits their skill set, while the newcomers in another FLOSS project perceive the same
contribution barrier as an important hurdle when they lack the required skills. These factors
suggest the following hypothesis:

Hypothesis 3. Contribution barriers vary between FLOSS projects.

The exploratory survey presented in Section 2.1 shows in Section 2.1.2 that the most important
modification motivation for the respondents was their Own Need: They needed the modification

37

2 Contribution Barriers to FLOSS Projects

for their own use of the application. This is in agreement with Shah’s qualitative results [Sha06].
This may be a general rule for modification motivations:

Hypothesis 4. Most newcomers modify the FLOSS project’s source code primarily because they
need the modification for themselves.

According to the Theory of Cognitive Dissonance [Fes57], a person feels discomfort if two of
the person’s opinions contradict each other. This is particularly the case when new information
contradicts the expectation derived from existing information. This type of discomfort is called
dissonance and its reduction is a natural stimulus just like hunger. In order to reduce dissonance,
people may take a new point of view, but they may also just discard newly gained information if
it does not fit their existing views.

Before newcomers decide that they want to contribute to a FLOSS project, they have a mental
model of how a FLOSS project works and especially about the procedures and reception of their
contribution. Like any model, this mental model is incomplete, although some newcomers may be
aware of this incompleteness. Even if they are, they have unconscious or conscious assumptions
about the procedures of their contribution, as they must have founded their decision to contribute
on something. Thus, their motivation to contribute derives from this model. For example, if they
assume that a contribution to a FLOSS project gains respect for the contributor, then they may
derive the motivation to gain respect from the FLOSS community through their contribution.
Accordingly, this can be used in the other direction: Contributors’ motivations are indicators for
their assumptions about the contribution before their contribution experience.

If the contribution experience contradicts the previous assumptions, dissonance arises. The
mental model also includes assumptions about what parts of the contribution procedure are
difficult and which are not. Hence, unexpected problems create more discomfort than expected
problems. One way to reduce this dissonance is to refrain from the contribution: Either after
accepting the new information about unexpected problems or through discarding existing infor-
mation that served as foundation for the motivation, even if that information was in fact true. A
newcomer may also ignore or accept the unexpected problems and continue with the contribution,
if that is the lesser mental effort [Fes57]. Since dissonance can be a reason to refrain from
contribution, dissonance influences the perception of contribution barriers.

If this application of the Theory of Cognitive Dissonance to FLOSS contributions is correct,
the following hypothesis must hold:

Hypothesis 5. Contribution barriers are less important for contributors whose motivations
suggest that they expect these contribution barriers.

2.2.3 Participant selection

The exploratory survey in Section 2.1 targeted professional developers to report about contribution
barriers experienced when working on FLOSS projects. In contrast, the main survey presented
in this and the following sections targeted developers who had recently joined a FLOSS project.
The survey design founds on the Tailored Design Method (TDM) [Dil99] with some adaptions to
accommodate to the survey’s circumstances, especially invitations via email.

As a consequence of the changed target audience in contrast to the exploratory survey, some
questions had to be added or changed. For example, the questionnaire’s demographic section

38

2.2 Main Survey

included questions about the occupation that were unnecessary for the exploratory survey targeting
only professional developers in a known environment. Although most parts of the questionnaire
had been pretested and tested in the exploratory survey, an additional pretest for the main survey
ensured the questionnaire’s comprehensibility.

The survey targeted developers whose first patch was recently accepted by one of the FLOSS
project Mozilla or GNOME. A data collection and filtering process depicted in Figure 2.4 and
Figure 2.5 selected the participants: From April 2013 to October 2013 and from November 2013 to
January 2014, scripts based on Zhou’s and Mockus’s download and transformation scripts [ZM12]
regularly downloaded the issue tracker data from Mozilla and GNOME, respectively. The
scripts assigned all accepted patches to developers. For each developer, the chronologically first
acceptance of a patch indicated the date when this person, by this survey’s definition, became a
developer of the project. Participant candidates are those who became developers between April
2013 and October 2013 for Mozilla and between November 2013 and January 2014 for GNOME.
Afterwards, two thirds of the participant candidates had to be filtered out for the following reasons:
First, employees of Mozilla do not go through the regular contribution process of an outsider
and therefore were filtered out. The second largest group of filtered out participant candidates
had submitted patches, but the scripts had incorrectly identified them as accepted due to unusual
flag combinations in the Bugzilla flag system described in Section 2.2.1. Another reason were
developers with multiple accounts or renamed accounts, whom the scripts falsely identified as
new developers.

After filtering, 190 developers remained as invitees to answer an online questionnaire. These
subdivide in four waves for Mozilla plus two waves for GNOME. Invitations for each wave were
sent at different dates, only inviting the developers whose first patch had recently been accepted,
so their memories about the first patch were still fresh. The patch was accepted at most three
months before the first invitation, with the exception of the invitations of GNOME developers.
Figure 2.4 and Figure 2.5 also show the dates when the invitations were send out and the specific
number of developers invited. The first invitation wave for Mozilla newcomers did not include all
suitable newcomers of April 2013, but only 10 randomly selected newcomers. This helped to test
the invitation process and fix possible technical problems.

The invitees were contacted up to three times via email. The number of contacts depended on
whether they answered the survey or one of the emails, in which case they received no further
emails. The emails included one $2 gift code for amazon.com for each invitee. This accords to the
TDM, which suggests to put a $2 bank note in the invitation envelope. The TDM prescribes five
different types of contacts, like postcards, letters, and priority mail. The lower possible variance in
format of emails in contrast to written mail did not allow five different formats for email contacts.
In the spirit of TDM, the invitation emails varied in appearance: The first email had a plain text
format, the second email had a more fancy HTML format, and the third email was plain text
again, but signed with a digital certificate from the University of Duisburg-Essen’s Certification
Authority (CA). Each email included a personalized link to the web-based questionnaire. The
personalization was necessary to restrict each invitee to fill out only one questionnaire and to keep
track of the invitees who had not yet filled out the questionnaire. The personalization information
is not included in the responses to keep the questionnaire completely anonymous. The link
contained an identifier to differentiate between Mozilla and GNOME contributors, though.

Each first email further included a manually written short summary of the invitee’s first

39

2 Contribution Barriers to FLOSS Projects

Bugzilla at

bugzilla.mozilla.org

bash and perl

download scripts

About 920,000

downloaded issues

List of 25,890 developers

Bash and Java applications

for transformation

25,446 developers

 with DA < April 2013

68 developers with

DA in April 2013

193 developers with

May < DA < July 2013

68 developers with

DA in August 2013

115 developers with

2013-09 < DA < 2013-10

Sorted by date of first acceptance of a patch (DA)

Manually filtered unsuitable developers (mostly Mozilla employees or erroneous DA calculation)

10 invited

developers

53 invited

developers

22 invited

developers

57 invited

developers

2013-06/

2013-07

6 responses

(60.0 %)

34 responses

(64.2 %)

16 responses

(72.8 %)

41 responses

(71.9 %)

2013-08/

2013-09

2013-10/

2013-11

2013-12/

2014-01

Up to three contacts in ...

Data Trans-

formation

Data

Legend

Figure 2.4: Data flow for the selection and invitation of survey participants from Mozilla

40

2.2 Main Survey

Bugzilla at
bugzilla.gnome.org

bash and perl
download scripts

About 690,000
downloaded issues

List of 3,311 developers

Bash and Java applications
for transformation

3,254 developers
 with DA < November 2013

20 developers with DA
in 2013-12

37 developers with DA in 2013-11 or
2014-01

Sorted by date of first acceptance of a patch (DA)

Manually filtered unsuitable developers

18 invited developers 30 invited developers

2014-04/
2014-05

9 responses
(50.0 %)

22 responses
(73.3 %)

2014-06/
2014-07

Up to three contacts in ...

Data Trans-
formation

Data

Legend

Figure 2.5: Data flow for the selection and invitation of survey participants from GNOME

41

2 Contribution Barriers to FLOSS Projects

accepted patch to the project. The summary proved that the invitation is no mass mailing but
a personal invitation. A link to the issue for which the patch was submitted accompanied the
summary. The survey referred to this specific patch in some of the questions and the link served
as a reminder and clarification which patch the survey was referring to – this ensured that the
selection procedure had correctly identified the first patch and also clarified cases where it is not
immediately clear to the invitee which patch was the first. For example, another patch may have
been written and submitted earlier, but it still had been reviewed later than the patch referred to in
the email.

As shown in Figure 2.4 and Figure 2.5, a total of 97 Mozilla contributors and 31 GNOME
contributors responded to the survey. 5 Mozilla respondents and also 5 GNOME respondents had
answered only very few questions and especially no questions regarding contribution barriers,
therefore their responses did not flow into the analysis. Additionally, 1 Mozilla contributor’s
answers revealed that this Mozilla contributor is in fact a Mozilla employee. As the analysis
specifically targeted contributors from outside, this contributor’s response also did not flow into
the analysis. The 91 and 26 useful responses out of 132 and 48 invitations for Mozilla and
GNOME, respectively, results in a response rate of 68.8 % and 54.2 %, in total exactly 65 %.
This response rate is within the typical range of well-designed surveys [Dil99, p. 3f]. More
importantly, the response rate is higher than all other surveys targeting FLOSS developers to the
best of my knowledge, where response rates have been at most 38.1 % [HO01; LW03; WGY07;
XJS09; XJ10; BB10; Mai+15].

This paper cites respondents to the questionnaire directly and indirectly. In these citations, a
symbol “[Mn]” for Mozilla or “[Gn]” for GNOME identifies the quoted respondent, where n is a
number assigned arbitrarily to each respondent within the groups of Mozilla and GNOME.

2.2.4 Demography

The first questions for the participants of the questionnaire asked which programming language
they wrote the patch in and the number of files they had to modify. The first questions in a
questionnaire are of special importance and the following aspects that Dillman [Dil99, p. 92]
describes were taken into account: First, the first question should apply to everyone. This is
clearly the case, as the submission of a patch was a precondition for the invitation to the survey.
Second, it should be easy to understand and answer. As the participants have written the patches
themselves, they will have a firm knowledge of what programming language they used. As the
invitation email included a link to the ticket in the issue tracker, they could also easily look again
at their patch to verify the programming language and number of involved files. Third, the first
question should be interesting and relate to the general topic of the survey. Since the participants
have taken the time to write and submit their patch, they can be expected to be interested in it.
Since it is a creative work of their own, they are probably also rightfully proud of it, and therefore
feel positive talking about it. Additionally, they must have at least a basic understanding of the
programming language used for the patch, and their answer is proof of this expertise.

Besides these motivating aspects, the two questions also engaged the participants to refresh
their memories about their first patch. Thus, the comments about their negative and positive
experiences during modification of the source code and submission of the patch will reflect the
practice in FLOSS projects more accurately.

42

2.2 Main Survey

Programming Languages

Figure 2.6 shows the answers to the question of which programming language the participants used
for their modification. 3 of the 86 patches to Mozilla contained source code in two programming
languages, so the percentage total in Figure 2.6 actually comprises 103 % of the responses of
Mozilla contributors. The 24 surveyed GNOME contributors wrote their patches in only one
programming language. The category Other comprises programming languages that only one
or two respondents had used for their first patches. Thus, both projects use a wide range of
programming languages, but the composition of programming languages differs between the
two projects. For Mozilla, JavaScript was the most common programming language for first
contributions, with a ratio of 54.7 % of all first contributions, with C++ as the second-most
common with 22.1 % of first contributions. For GNOME, exactly 50 % of all first contributions
used C, while VALA was the second-most common programming language for first contributions
with a ratio of 20.8 %.

0

10

20

30

40

50

60

JavaScript C++ C VALA python Shell Other

Fr
ac

tio
n

of
an

sw
er

s
in

% Mozilla
GNOME

Figure 2.6: Programming languages that the survey participants wrote their first patch in

Occupation

The questionnaire also asked the respondents about their current occupation and their levels of
experience in different aspects of software development. In terms of occupation, newcomers
to Mozilla and GNOME are surprisingly similar, as Figure 2.7 shows. About 49.0 % of the
newcomers are employees. Another 36.5 % of the newcomers are students.

This partition of occupations is similar to results from other surveys of FLOSS developers not
restricted to newcomers. However, the ratio of students is higher in this survey: Only 14 % of
Hars and Ou’s respondents from various FLOSS projects were students [HO01]. 23 % of the
Linux kernel developers in 2000 were students [HNH03]. 19.5 % of 684 FLOSS developers
working on projects hosted on SourceForge.net [P*Sla15] in 2001 were students [LW03]. Of the
1488 FLOSS developers whom David et al. surveyed in 2003, 28.8 % were students [DWA03].
A later sample of 148 FLOSS developers, mainly from SourceForge.net, included at most 13 %
students [WGY07]. In a more recent survey, 13.1 % of 848 R package authors responded that
they were students [Mai+15].

43

2 Contribution Barriers to FLOSS Projects

0
5

10
15
20
25
30
35
40
45
50

Employee Self-employed Student Unemployed Other

Fr
ac

tio
n

of
an

sw
er

s
in

% Mozilla
GNOME

Figure 2.7: Occupation of newcomers

There are three important differences between the target population of existing research with
its lower number of students among the contributors compared to the participants of this survey:

First, the existing research is mostly about 10 years older. The structure of the FLOSS
contributor population may have changed in the meantime. Future researchers should try to
reproduce these earlier results to decide this hypothesis.

Second, the difference might be a peculiarity of Mozilla and GNOME. Mozilla employs student
programs like Google Summer of Code [P*Moz14f] and is the subject of some FLOSS university
courses as answers to other questions in this survey show. However, this cannot explain all of the
difference and it does not explain why GNOME also has a comparably high number of students.
The difference is therefore unlikely to be project-specific, especially because earlier research
confirmed their results in a wide range of different projects.

Third, this survey targets newcomers while the other research targets FLOSS developers in
general. There are two explanations of why this difference in group structure should create a
difference in the fraction of students. Firstly, those who are students on their first contribution
may have become employees after a while and may show up as employees in later surveys. This
would mean that a considerable fraction of developers choose their FLOSS projects as students
and then stick with the project. However, Hertel et al.’s participants stayed with the project
only for 17 months on average [HNH03], which contradicts that contributors stick for a longer
time with a FLOSS project after they finish their university studies. Secondly, maybe students
contribute only for a short period and then drop out of the project, while employed contributors
stick with the project after their first contributions. Thus, later samples of FLOSS contributors
would cover the employed contributors who are still with the project, but not the students who
had left after their first contributions already. Which, if any, of these two explanations is correct,
should be the subject of future research.

Experience

Table 2.1 shows how the participants self-assessed their experience in different domains relevant
for their contribution. Besides the option to skip an answer, the participants had the following
four possible choices for each domain:

44

2.2 Main Survey

1. The patch was your first experience with this.

2. Some experience. Needed instructions to work with this.

3. Experienced. Frequently worked on your own with this.

4. Expert. Instructed others in this.

The answers were interpreted numerically as 1 (lowest experience level) to 4 (highest experi-
ence level). In the following questions shown to the participants, PROJ was either Mozilla or
GNOME, and the terms in parentheses will be used for reference in this thesis. The domains
asked for are

• software development in general (Software Development),

• the organizational structure and processes of open source projects in general (FLOSS
processes),

• using the software of project PROJ (Using PROJ),

• the organizational structure and processes of project PROJ (Processes of PROJ)

• programming language/development environment used in project PROJ (Software Devel-
opment Environment (SDE) of PROJ), and

• the source code of project PROJ (PROJ’s source code).

Table 2.1: Number of answers for each level of experience and experience domain

Experience Software
Develop-
ment

FLOSS
Processes

Using
PROJ

Processes
of PROJ

SDE of
PROJ

PROJ’s
Source
Code

4 30 6 10 0 8 0
3 31 20 40 3 43 8
2 28 36 17 31 27 27
1 6 35 28 60 17 61
Arithmetic Mean 2.895 1.969 2.337 1.394 2.442 1.448

The answers show that the participants usually considered themselves fairly good software
developers, although they were mostly less experienced with the technologies used in the FLOSS
project. Some are experienced users of the FLOSS project and also know about the procedures
in other FLOSS projects, but for others this is completely new. Almost none, however, had
more than rudimentary knowledge about the specific processes and code structure of Mozilla or
GNOME.

45

2 Contribution Barriers to FLOSS Projects

2.3 Contributor Motivation3

After the demographic questions, the questionnaire asked about contribution barriers and only
afterwards about contributor motivation. This order reduced item non-response on the contribution
barrier questions, which were in the focus of this survey. For reasons of presentation, the order in
this thesis is exchanged: This section presents contributor motivations, while contribution barriers
are deferred to Section 2.4.

The questionnaire structures for both contributor motivations and contribution barriers are
alike. Both split into the domains of code modification and submission. For all combinations,
modification motivations, submission motivations, modification barriers, and submission bar-
riers, there is an open question and a closed question. Each open question is asked before its
corresponding closed question to ensure unbiased answers in the open question.

The questionnaire first asked in open questions about the motivation why they used the
FLOSS application, why they modified the FLOSS application, and then why they submitted
their modification as a patch to the FLOSS project. Usage can be seen as a precondition to
contribution [Cro+05]. Therefore, usage motivation influences the motivation to contribute, and
the questionnaire includes usage motivation.

Then the participants were presented closed questions about their motivation to use the FLOSS
application, modify it, and submit their modification back to the FLOSS project. For modification
and submission, the participants could pick motivations that applied for them from a list, and
put them into an order that represented the importance of the selected motivations. For usage
motivation, the questionnaire presented a multiple-choice checklist. This gave less insight about
usage motivation than the method used for modification and submission motivation, but it was
also not as much in focus of the study and cost the participants less time.

Using an open coding methodology taken from Grounded Theory [SC94], the answers to
the open questions received tags identifying the contributor motivation that the participants
mentioned. The tags have a hierarchy, so for example, wanting to help the community is a form of
altruism, and altruism itself, together with the motivation to foster FLOSS in general, belongs to
the more general category “Ideal”. 71 participants explained their modification motivation as an
open answer, and 60 participants explained their submission motivation. 82 and 91 tags describe
the answers for modification and submission motivations, respectively, so each participant gave
1.15 modification motivations and 1.52 submission motivations.

The pre-defined items for the closed questions match the motivations identified in the existing
research [Kri06; LW03]. As previous research did not distinguish between modification and sub-
mission motivations, each motivation item appears either in the closed question for modification
motivations or the closed question for submission motivations. Additionally, as a result of the
pretests and the experiences gained in the exploratory survey, the phrasing of some items are
different to those of the existing research.

2.3.1 Usage Motivation

74 participants responded to the open question of why they use project Mozilla or GNOME.
Their answers were assigned 91 codes, so each answer was assigned about 1.23 codes. Figure 2.8

3A preliminary version of this section was published previously [HG16b].

46

2.3 Contributor Motivation

shows which codes have been frequently assigned to the answers. 54.1 % of the respondents
gave answers coded with Application and thereby expressed that they used an application that the
project develops, like Mozilla Firefox. 9.5 % of the respondents use a Library that the project
develops. 24.3 % of the participants engaged with the project with a source code Modification
and possibly had the submission of their modification in mind. For example, they wanted “to get
involved in open source” [M28]. 33.8 % of the respondents explicitly mentioned that the project
was “Open Source” [M3, M7, M8, . . .], “FOSS” [M2], “FLOSS” [M38], or the like. 9 of these
“Open Source” respondents did not specify further why specifically they came in touch with the
project, admittedly because the question was not clear enough that this was asked for.

0

10

20

30

40

50

60

Application Library Modification Open Source

Fr
ac

tio
n

of
an

sw
er

s
in

%

Figure 2.8: Codes of open answers for usage motivation

The pre-defined answers to the corresponding closed question are the x-axis labels in Figure 2.9.
Participants could select any number of use cases. If they did not select any, this analysis excluded
their answer as nonresponse. Figure 2.9 shows which fraction of the remaining 94 respondents
selected each item. The answers show more clearly than the open answers that most respondents,
87.2 % specifically, use an Application for themselves. Another use case for 21.3 % of the
respondents is using a project Library in their own applications. This seems to be more important
for GNOME contributors than Mozilla contributors, with 45.0 % and 14.9 % of the respective
respondents selecting the usage motivation Library. About 20.2 % of the respondents got in touch
with the FLOSS project in order to contribute a modification to increase Interoperability with
another software. Hence, these respondents possibly favor a competitor over the FLOSS project
for usage. 5.3 % of the respondents, and especially 10.0 % of those who contributed to GNOME,
provide Consulting for other organizations that use Mozilla or GNOME. 7.4 % of the respondents,
all of them Mozilla contributors, had Other reasons to get in touch with Mozilla. For example,
M11 participated in a college student program to contribute to Mozilla, and M60 as well as M65
merely wanted to write code without using the application.

2.3.2 Open Question on Modification Motivation

Figure 2.10 shows the four tag categories assigned to more than 7 % of the respondents’ answers
to the open question for their modification motivation. There were 71 respondents to this question,
so at least 6 respondents must have given answers that belong to a category to pass the threshold.

47

2 Contribution Barriers to FLOSS Projects

0

10

20

30

40

50

60

70

80

90

Application Consulting Library Interoperability Other

Fr
ac

tio
n

of
an

sw
er

s
in

%

Mozilla
GNOME

Both

Figure 2.9: Distribution of answers for the closed question of usage motivation

0
5

10
15
20
25
30
35
40

Own Need Contribute Learning Joy

Fr
ac

tio
n

of
an

sw
er

s
in

%

Figure 2.10: Answers to the open question for modification motivation

48

2.3 Contributor Motivation

38.0 % of the respondents answered that they modified the FLOSS application due to their Own
Need: Either they themselves or their employer had experienced a bug that they fixed with their
modification, or they wanted a specific feature that they had implemented with their modification.

As a close second, 35.2 % of the respondents wrote that they wanted to Contribute to the
FLOSS project to support it. In these cases, the modification is a means to an end, as only the
submission of the modification to the FLOSS project eventually improves the FLOSS project.

About 22.5 % of all respondents mentioned that their motivation to modify the FLOSS project
was Learning. M90 wanted “to learn versioning practices”, M39 wanted to gain “experience
working with code written by others” and M7 simply wanted to improve “programming skills”.
Respondents in this group all contributed to Mozilla and not GNOME. Learning might be
especially important for Mozilla contributors, as some of them contribute to Mozilla as part of a
student program like Google Summer of Code [P*Moz14f].

6 respondents, 8.5 % of all respondents, claimed that they started the modification for the Joy
of programming.

2.3.3 Closed Question on Modification Motivation

Participants had to select modification motivations from a list and rank them in order of importance.
Figure 2.11 shows how many participants selected each motivation and ranked them as one of
the first three priorities. Different ranks have different colors. The motivations were presented in
random order for each participant to rule out any bias because of the order. Figure 2.11 presents
them ordered by the number of selections with first rank. A total of 93 participants responded to
this question.

0

10

20

30

40

50

60

70

80

90

Joy Own Need Learning Community Other

Fr
ac

tio
n

of
an

sw
er

s
in

%

Rank 3
Rank 2
Rank 1

Figure 2.11: Ranked modification motivations

Contrary to the open question, “the Joy of programming and/or the intellectual challenge”
was the most important modification motivation. For 37.6 % of the respondents, it was the
primary modification motivation, and for 86.0 % of the respondents, it was one of the top three

49

2 Contribution Barriers to FLOSS Projects

modification motivations. Even when considering only those with Joy as primary motivation, this
is more than four times as much as the 8.5 % respondents who mentioned the joy of programming
in their answer to the open question. There are two explanations for this discrepancy: First, the
participants may not be aware that the joy of programming is a possible modification motivation
and it was only brought to their attention through the closed question. They possibly saw the
joy of programming as a self-evident property of their modification that needed no mentioning.
Second, they may have seen joy of programming on another level of abstraction than other
motivations. They may have become software developers because they experienced joy when
programming generally, but they had more specific motivations for their specific modification
asked for in the questionnaire.

About 25.8 % of the respondents modified the FLOSS application primarily in order to
satisfy their Own Need, phrased in the questionnaire as “A malfunction or missing functionality
bothered me/my organization as a user of the project”. Its high importance is not surprising when
considering that this was the most often mentioned modification motivation in the answers to the
open question and that it was the by far most important modification motivation in the exploratory
survey (see Section 2.1.2). However, in deviation to the other modification motivations, only a
few respondents ranked this reason second- or third-most important, resulting in only 40.9 %
of the respondents ranking this reason as one of the top three modification motivations. Then
again, this is put into perspective by another 25.8 % of the respondents ranking this modification
motivation fourth.

Learning is the primary modification motivation for 19.4 % and one of the top three modifica-
tion motivations for 72.0 % of the respondents. More specifically, this modification motivation
was labeled “acquiring experience in technologies used by project [Mozilla or GNOME]” for the
participants. This is in line with the answers to the open question.

Getting in touch with the Community was the most important modification motivation for
14.0 % of the respondents, and one of the three most important modification motivations for
63.4 % of the respondents. The questionnaire phrased this modification motivation as “I like the
developers of project [Mozilla or GNOME] and like to work with them”.

Participants could describe Other modification motivations in free-text form. About 3.2 % of
the respondents ranked a free-text motivation as most important modification motivation, and
about 6.5 % ranked it among the three most important modification motivations. Among these,
four respondents repeated the frequent answer in the open question that they modified the FLOSS
application just to have something to submit. Three respondents explained that they modified the
FLOSS application as part of a student project like their thesis, although only one ranked this
among the three most important modification motivations.

2.3.4 Open Question on Submission Motivation

Figure 2.12 shows which answers the respondents gave to the open question about their submission
motivation. Analogously to the open question on modification motivation, each submission
motivation mentioned in the free text of an answer was assigned a code. These codes had a
hierarchy to group classes of codes. The analysis includes only codes assigned to at least 7 %
of the respondents’ answers. Among these, Figure 2.12 shows two hierarchy levels, with Ideal,
Personal, and Economic on the higher level of abstraction and the remaining motivations as more

50

2.3 Contributor Motivation

specific submission motivations. The trees below the graph indicate which motivation codes
belong to which more abstract category.

Unlike other open questions in this questionnaire, a considerable number of statements could
not be assigned codes that unambiguously represent submission motivations, and were not
included in the analysis. 13 respondents explained their submission motivation similar to M28:
“This is how my patch gets in the official source tree of Mozilla”. These answers suggest that the
submission is an end in itself and the respondents do not seem to consider that it would be an
option to keep the modification for themselves. While this indicates altruism as a matter of course,
these answers do not clearly and unambiguously imply the true motivation for submission.

0
10
20
30
40
50
60
70

Fr
ac

tio
n

of
an

sw
er

s
in

%

Ideal

Altruism Foster
FLOSS

Return
Some-
thing

Personal

Learning Fun

Economic
Stupid

Tax

Figure 2.12: Answer frequency to open questions for submission motivation

Exactly half of the respondents justified their submission to the FLOSS project as an act of
Altruism. M38’s reason “to make it available to everyone” is an example of a direct answer, M50
explained a bit more indirectly “to help out”. However, 20.0 % of the respondents who were
in the altruist category just circumscribed that they wanted to “make it [Mozilla] better” [M8],
possibly inspired by the slogan “Made to make the Web a better place” of Firefox 4 [P*Moz11]
and “make the Internet an ever better place for everyone” in The Mozilla Manifesto [P*Moz08b].
Instead of accounting this as altruism, this explanation might mean that the contributor merely
wants to create something beautiful like good software, without the explicit intent to make a
positive impact on the software’s users. However, no respondent enunciated this non-altruistic
meaning of making Mozilla better, and, to the contrary, some of these respondents seem to take it
for granted that helping other users is a strong motive by itself.

15.0 % of the respondents wanted to Foster FLOSS in general or Mozilla in particular. About
11.7 % of the respondents felt a commitment to Return Something to the FLOSS project for the
benefits gained through the usage of the FLOSS application. Together, the three preceding Ideal
submission motivations accounted for about 69.5 % of the respondent’s answers.

16.7 % of the respondents submitted their modification to the FLOSS project in hope of
Learning something about the contribution process, for example as part of a student project or
in order to improve skills needed in their future careers. 10 % of the respondent submitted the
modification for Fun. This includes cases like M49’s, who found it “very satisfying” that the
“product now has my [M49’s] contribution”. Learning and Fun constitute the main components

51

2 Contribution Barriers to FLOSS Projects

of the major category of Personal submission motivations. About 26.7 % of all answers belong
to this major category. Answers in this category describe intrinsic submission motivations with
personal benefits the contributor expects.

The last major category describes extrinsic submission motivations for Economic benefits to
the contributor, which 20 % of the respondents mentioned. As the only relevant submission
motivation in this major category, about 13.3 % of the respondents wanted to avoid paying the
so-called Stupid Tax [P*The12; P*Ell10] of FLOSS: Reintegrating a self-written modification
into every new official release of the FLOSS application. When the modification is submitted
back to the main project, their maintainers take care of the modification and the modification’s
developer can use the off-the-shelf version of the FLOSS application.

2.3.5 Closed Question on Submission Motivation

Figure 2.13 shows which items the respondents selected as submission motivations in the closed
question. As in the closed question for the modification motivation, the participants had a
randomly ordered, but pre-defined list of submission motivations that they could select and had
to bring into an order of importance. Figure 2.13 regards only the three submission motivations
ranked as most important. It is ordered by the fraction of respondents selecting each motivation
as their primary submission motivation. In total, 90 participants responded to this question.

0

10

20

30

40

50

60

70

Learning
Altruism

Foster FLOSS

Stupid Tax
Return Something

Publicity
External Review

Fight Closed Source

Gain Respect

Other

Fr
ac

tio
n

of
an

sw
er

s
in

%

Rank 3
Rank 2
Rank 1

Figure 2.13: Ranked submission motivations

For 34.4 % of the respondents, the primary submission motivation was to “gain experience
in the procedures of (OSS) projects”, i.e. Learning something. For 65.6 % of the respondents,
Learning was among the three most important submission motivations, so both metrics indicate
that Learning is the most important submission motivation. Interestingly, Learning appears to
be more important when looking at the closed question as compared to the answers to the open
question. Possibly, the respondents became aware of their motivation only through the suggested
answers in the questionnaire.

52

2.3 Contributor Motivation

As explained in Section 2.2.4, about 36.5 % of the respondents were students. This compara-
tively high fraction of student participants at least partially explains why Learning is so important
for the respondents, as students can be expected to see Learning as an important motivation:
Learning about FLOSS could be part of the students’ curriculum or a desire to learn made them
both students and FLOSS contributors. And indeed, 51.4 % of the student respondents ranked
Learning as the most important submission motivation.

Altruism was the most important submission motivation or one of the three most important
submission motivations for 22.2 % or 57.8 % of the respondents, respectively. Similarly, 20.0 %
respectively 45.6 % Foster FLOSS, or, more specifically, “publish the source code, because [they]
believe source code should be open”. Together with those 6.7 % respectively 31.1 % who wanted
to Return Something, and the 1.1 % respectively 7.8 % who wanted to Fight Closed Source, these
four motivations constitute Ideal submission motivations which appear to be the most important
group of submission motivations. This is in line with the answers to the open question.

10.0 % of the respondents submitted their modification to the FLOSS project, primarily in order
to “avoid the work of reintegrating [their] changes into new releases of the OSS project”. 20.0 %
of the respondents had this Stupid Tax among the three most important submission motivations,
so this submission motivation seems to be polarizing. Contrarily, getting an External Review of
the modified code from experts was the primary, or one of the most important three submission
motivation, for 2.2 % or 24.2 % of the respondents. This is surprising as these motivations are
similar in that they are the two motivations with technical benefits to the submitter.

3.3 % respectively 12.2 % of the respondents wanted to gain Publicity “(for example, you
might have wanted to get job offers)”. 0.0 % respectively 18.9 % wanted to gain Respect. Gaining
respect seems to be a common additional submission motivation besides others, while publicity
is a strong enough submission motivation to work as the primary submission motivation – but
may have an egoistic and therefore negative sound that comes with it, and therefore participants
do not pick this submission motivation unless it was very important for them.

Participants who felt that the pre-defined items did not represent their submission motivation
could pick Other and describe this submission motivation in a text box. Only participant M84
used this to explain that the company whom M84 worked for was paid to develop the submitted
feature, though this was only the second-most important motivation for M84.

2.3.6 Comparison to Related Work

This section compares the motivations of newcomers as found in this survey to motivations
of FLOSS contributors in general as identified in previous research. A quantitative or even
statistically sound comparison is not possible, though, as the methodology and results vary
between studies. Additionally, as explained in Section 2.2.4, the demographic structure of this
survey’s participants is different to the demographic structure of previous surveys’ participants.
The reasons for these differences are not entirely clear. These differences, like the fraction of
students in the set of survey participants, influence the motivations to contribute to FLOSS
projects [LW03].

In Hars and Ou’s survey, Learning was the primary and self-determination the secondary
motivation [HO01]. Self-determination includes hedonism and therefore the Joy of Programming.
Lakhani and Wolf [LW03] found learning as the third-most important reason for contribution. The

53

2 Contribution Barriers to FLOSS Projects

two more important were the Joy of Programming and what is dubbed Own Need in this paper.
This is also in accordance with this survey’s results. David et al.’s questionnaire items are too
different to be compared with this survey’s results [DWA03]. Hertel et al. found that hedonistic
motivation had the strongest agreement from contributors, and found “pragmatic motives” and
“social/political motives”, to which Learning belongs, as next-most important [HNH03]. Their
results are difficult to compare, though, as their factor analysis categorized motivations differently
than the survey in this thesis.

Previous research identified hedonism and Learning as primary motivations for participation
in FLOSS projects, although the scope of these categories varies from study to study. In terms
of this survey’s categories, Joy belongs to hedonism and is usually a modification motivation.
Learning can be either a modification or submission motivation and previous research did not
distinguish between these two different activities. This survey’s results indicate that Learning is
more important as a submission motivation and less important as a modification motivation. This
confirms Ducheneaut’s analysis that newcomers already have good programming skills and want
to learn how to contribute to large projects [Duc05, p. 352].

For the participants of this survey, Altruism and similar Ideal motivations are more important
than in preceding research. One reason may be that developers have Joy or Own Need as
modification motivations, and Altruism is only an important motivation for the submission –
submission motivations may go unnoticed in preceding research because they have only one
category of motivations. As another explanation, Rullani argued that monetary and signaling-
related motivations increase in importance over the time after a developer has joined a FLOSS
project [Rul06]. It is therefore unsurprising to see that these types of motivations are not important
in a survey of newcomers.

2.4 Contribution Barriers

As explained in Section 2.3, the questionnaire asked for contribution barriers immediately after
the demographic questions described in Section 2.2.4, and before the questions for contributor
motivation. The questionnaire asked in two open questions about the “biggest barriers” to modify
the source code of the project and to submit the patch to the project. These are the modification and
submission barriers, respectively. Subsequent to the open questions, the questionnaire presented
predefined contribution barriers for code modification and patch submission. Differently to the
closed questions for contributor motivation, participants were prompted to rate each predefined
contribution barrier on a scale of one to five, where one means “no obstacle at all” and five is
“almost a show stopper”. As an alternative to the one to five rating, participants could select
“not applicable”. This was treated like a one in the evaluation, though, as a contribution barrier
that is not applicable is also not an obstacle. The option “not applicable” was included because
pretests had shown that it increased participants’ understanding of the question and their answer
rate. In all cases, they could explain their choice in a text box for each contribution barrier.
The differences in format between the closed questions for contribution barriers and the closed
question for contributor motivation take into account that every participant was motivated to
modify the FLOSS application and submit the modification back, whereas contribution barriers
did not necessarily occur.

54

2.4 Contribution Barriers

Analogously to the open answers for the contributor motivation questions, the answers given
to the open questions for contribution barriers received codes. Since the contribution barrier
questions come earlier in the questionnaire, item non-response was lower than for the contributor
motivation questions. 91 and 90 participants responded to the open question asking for modifica-
tion barriers and submission barriers, respectively. These answers were assigned in total 161 and
127 codes, respectively, including 24 and 33 explicit respective mentions that the modification
or submission was easy. Thus, each respondent mentioned a mean number of 1.51 and 1.04
contribution barriers, respectively.

The contribution barriers asked for in the closed questions are similar to the items in the
exploratory survey. In contrast to the exploratory survey, the items are grouped in submission and
modification barriers, and there are a few additional contribution barriers. They still represent
typical steps that a newcomer has to go through, as presented in Section 1.1.4. The items therefore
systematically comprise all possible contribution barriers. However, relevant contribution barriers
might apply to multiple steps or one step might comprise multiple contribution barriers. Therefore,
the open questions are important, as they might, for example, mention a specific tool as a
contribution barrier that is used in multiple steps. Thus, they may also refer to cross-cutting
concerns. Using this two-way approach, the results contain contribution barriers seen from
multiple perspectives.

2.4.1 Open Question on Modification Barriers

Figure 2.14 shows codes for the answers to the open question for modification barriers. The
graph shows all codes that at least 7 % of the respondents mentioned and omits those mentioned
less often. This threshold corresponds to at least 7 mentions. This threshold applies to codes
anywhere in the hierarchy, be it major codes standing on its own or subcodes that belong to
another code. For each code, a vertical bar marks the fraction of respondents whose response
received the code directly or as a subcode. The x-axis labels the codes and tree lines designate
which codes are subcodes of others.

0
5

10
15
20
25
30
35
40

Fr
ac

tio
n

of
an

sw
er

s
in

%

Easy Under-
standing

General
Structure

Environ-
ment

Build Tests

Size of
Code
Base

Code
Style

Find
the

Code

Documen-
tation

Figure 2.14: Fraction of codes assigned for the open question on modification barriers

55

2 Contribution Barriers to FLOSS Projects

In their answer to the open question to the biggest modification barriers, 26.4 % participants
explicitly mentioned that the modification was Easy to do or that they did not encounter noteworthy
modification barriers.

Understanding comprises different types of missing prerequisite knowledge. As the most
important subcategory, understanding the General Structure of the project was the biggest hurdle
for about 14.3 % of the participants. Interestingly, General Structure was a modification barrier
only for Mozilla contributors, but not for GNOME contributors.

About 33 % of the respondents reported problems with the Environment, which made it the
second-most mentioned main category for modification barriers. As a subgroup of Environment,
14.3 % of all respondents had a problem with the Build of their project, for example because it
took too long. As an example for why the build can be such an obstacle, participant M64 “had
to set up a whole ecosystem of interdependent projects” for the build. 7.7 % of the participants
found Tests of their modification difficult. The group of participants with build problems and
those with test problems are not distinct, though, as tests require a build and sometimes the test is
the only reason for the build.

17.6 % of all respondents mentioned the Size of the Code Base as a hurdle, often without
further explanation why this is a hurdle. Some respondents’ further comments and their answers
to other questions suggest that two explanations exist: First, it is difficult to trace an observed
behavior of the application to a location in the source code. Thus, it is not clear which part of the
source code needs modification. 14.3 % of the participants answered even explicitly that it was
difficult to Find the Code to be modified instead of referring to the Size of the Code Base. Second,
the large code base inhibits understanding the project’s structure and therefore side effects of
modifications are difficult to predict.

Another 17.6 % responded with syntactical issues of Code Style as the biggest barrier to code
modifications. An example is the question whether to indent with four spaces or a tab. Consis-
tent code style is a valid requirement and increases the comprehensibility of the code [OC90].
However, given the high fraction of respondents who see this as their biggest issue, the negative
impact of its rigorous enforcement may outdo its benefits. This specific contribution barrier may
also be seen as a submission barrier, as compliance with the code style rules is enforced only on
submission.

Slightly above the threshold of noteworthiness, 7.7 % of respondents mention a lack of
Documentation as a contribution barrier.

2.4.2 Closed Question on Modification Barriers

Table 2.2 lists the answers to the closed question on modification barriers. Participants were
presented a list of modification barriers corresponding to the columns of the table and rated each
of them. The table lists how many respondents rated each modification barrier at each level of
importance, where 5 corresponds to the highest and 1 to the lowest importance. The bottom row
lists an arithmetic mean for each modification barrier, calculated by interpreting the five levels of
importance as the numbers 1 to 5.

The modification barriers were generally ranked low, with all except Find the Code ranking
lower than 2.0 as arithmetic mean. This further confirms the result from the open question
that a recognizable fraction of newcomers do not experience noteworthy difficulties with the

56

2.4 Contribution Barriers

Table 2.2: Number of answers for each level of difficulty and modification barrier in the closed
questions to modification barriers

Impor-
tance

Down-
load

Setup Build Bug
Repro.

Redun-
dant
Work

Find
the
Code

Solution Com-
munity

Other

5 1 1 1 2 2 2 0 1 1
4 2 8 5 3 3 8 3 1 0
3 7 11 18 7 6 24 13 9 0
2 17 24 23 22 16 29 35 13 1
1 71 54 48 57 65 36 47 69 70

Mean 1.418 1.755 1.821 1.582 1.489 2.101 1.714 1.409 1.069

modification in their first contribution. However, a contributor may refrain from contribution
already if only a few contribution barriers are too high while all others can be low. Therefore and
because the highest contribution barrier differs from contributor to contributor, low means for
each individual contribution barrier do not imply that contribution barriers had no impact.

The modification barrier Find the Code received the greatest arithmetic mean rank of 2.101.
The category with the same denomination for the open question on modification barriers seemed
much less important, but, as discussed above, those mentioning the Size of Code Base as a
contribution barrier in the open question may have also had trouble to Find the Code which they
wanted to modify. Interestingly, writing the actual code for the bug or feature, the Solution of the
problem, has a lower mean rank of 1.714. Contrary to the other modification barriers, nobody
found the Solution to be a “show stopper” (rank 5), and the number of answers ranking 4 on
Solution is lower than its mean suggests.

Solution and possibly Find the Code comprise the essence of the contribution, the shaping
of the abstract structures of the software [Bro87], while all other contribution barriers consist
entirely of accidents: difficulties imposed by man-made processes and rules. Considering this,
it is interesting to note that two other modification barriers have greater arithmetic means than
the actual Solution. The category Build matches the open answer of same denominator and has
an arithmetic mean of 1.821 for the closed answers. The column Setup represents “difficulties
installing the development environment” and its rankings average on 1.747.

Contributors who had fixed a defect in the application instead of adding a new feature usually
first have to find inputs on which the application fails in order to understand the cause of the
failure. Issues with this Bug Reproduction rank on an arithmetic mean of 1.582. When interpreting
the difficulty of this modification barrier, it has to be taken into account that this step does not
apply to new features and also does not apply on some defects that the contributors themselves
experienced as users and therefore started to work on the defects in the first place. If a defect is
assigned to a newcomer, the chance that Bug Reproduction is a considerable modification barrier
may be higher than the numbers suggest.

Column Redundant Work lists answers for “concerns of wasted modification effort, as someone
else might work on the task in parallel”. GNOME and Mozilla usually assign developers to

57

2 Contribution Barriers to FLOSS Projects

issues in their issue tracker Bugzilla to prevent this problem. However, newcomers usually lack
the rights to change issue assignments, and may therefore start working on the solution before
someone with the appropriate rights can assign the issue to them. With a mean rank of 1.489, this
contribution barrier is ranked less than the majority of modification barriers.

The column Download lists how participants ranked the “difficulties downloading the right
version of the source code”. Developers may have trouble downloading the source code because
they are unfamiliar with the VCS [SAA10]. Four developers explained that the download was
difficult because they were unfamiliar with Mozilla’s VCS Mercurial (hg). Especially large
FLOSS projects may have multiple VCS repositories, so developers have to find out which of
these holds the correct version of the source code. For example, Mozilla has 20 repositories in
the top level category of their VCS hg and 25 sub-categories each containing multiple further
repositories [P*Moz15a]. Some repositories are hosted on GitHub instead of hg, some are just
mirrored to GitHub [P*Moz15b]. This can confuse newcomers who are not yet familiar with the
repository structure. With an arithmetic mean rank of 1.418, this is still a minor modification
barrier.

Ranked least are problems with Community Support, having an arithmetic mean of 1.409.
This positive impression of the community also shows in several answers to open questions, for
example M18 explains that “once you’re through to IRC most of the job is done. You get pretty
handy tips to modify the source code.”

Most participants either omitted the item Other or explicitly noted that there were no other
obstacles, resulting in a mean of 1.069. This indicates that most modification barriers arise in
one of the given categories. Two answers to Other were reassigned to contribution barriers for
submission, because the participants’ comments for their answer described problems with the
submission. The other two answers other than 1 are M72’s answer of rank 2, explaining that
adapting to coding conventions was difficult, and G18’s rank 5, who was worried that component
libgxps would have no future releases and therefore G18’s contribution in libgxps will never
be released. This concern about wasted effort may be a more important modification barrier in
FLOSS projects that are less active than Mozilla and GNOME.

2.4.3 Open Question on Submission Barriers

Figure 2.15 summarizes the results of the open question on submission barriers. Its x-axis shows
codes that were assigned to answers during open coding. Again, the list contains only codes
that at least 7 % of respondents mentioned, which are at least 7 respondents. For each code, the
position on the y-axis marks the fraction of respondents who mentioned this submission barrier.
The x-axis’ labels have a tree structure that shows whether a code stands on its own or whether it
belongs to another code in the code hierarchy.

As mentioned above, respondents mentioned a mean of 1.51 modification barriers per answer,
but only 1.04 submission barriers per answer. Additionally, 36.7 % of the responses explicitly
stated that the submission was Easy, as opposed to the 26.4 % who found modification easy.
This suggests that newcomers face more problems while writing their modification than while
submitting it to the FLOSS project.

Still, some reoccurring submission barriers exist. As the most frequent submission barrier,
32.2 % of the respondents reported problems with the tools and the Environment used in the

58

2.4 Contribution Barriers

0
5

10
15
20
25
30
35
40

Fr
ac

tio
n

of
an

sw
er

s
in

%

Easy Environment

VCS Patch Bugzilla

Submission
Procedure

Review Documen-
tation

Figure 2.15: Fractions of submission barriers mentioned in the open question

submission process. More specifically, 17.8 % of all respondents experienced difficulties with
the VCS, for example when creating a pull request on GitHub or when “dealing with an ever
changing git [tree]” [M8]. Proper preparation of the contributor’s modification causes these
difficulties: Depending on the project or Mozilla subproject, the modification has to be submitted
as GitHub pull request or as a patch file created with the tool diff. In any case, the modification
must refer to a specific version of the source code. After clearing this difficulty, the Patch file
creation was another difficulty for 10.0 % of all respondents. For example, M64 wondered
whether to “submit the patch as multiple commits for readability, or squash them as a single
commit for conciseness”. 7.8 % of all responses criticize GNOME’s and Mozilla’s issue tracker
Bugzilla explicitly. Although G17 went as far as claiming that “Bugzilla is modeled after a 1970s
soviet department of motor vehicles”, other respondents explicitly praise Bugzilla and therefore
counterbalance the criticism. Hence, the answers to this questionnaire show no distinct public
opinion about Bugzilla, instead Bugzilla is polarizing.

20.0 % of the respondents had problems with the Submission Procedure. Some of the respon-
dents explained that they just did not know where to start or what they were expected to do next.
In other cases, form fields intended only for specific types of modifications confused contributors
when these form fields did not apply to their kind of modification.

For about 12.2 % of the respondents, the core developers’ Review of their patch was among
the highest submission barriers. For example, “apparently nobody noticed the patch” of M82
and those of two other respondents. Those who searched for reviewers actively had to “[f]ind
the proper engineer to review the patch” [M31]. After a reviewer was assigned, willingness to
contribute decreases steadily if “the review process takes too long” [M19].

7.8 % of the respondents either did not find enough Documentation about the submission
process required for the module they contributed to, struggled to find applicable and up-to-
date documentation in the bulk of other documentation, or needed too much time to read all
documentation that applied to their submission.

Five responses describe purely psychic rather than technical submission barriers. For example,
M16 “ended up feeling dumb” because the reviewer rejected early versions of the patch due to
code style problems. M45 and M60 indicated that they were afraid to lack the skills to solve the
problem, but eventually found the modification not very difficult. Admitting psychic contribution

59

2 Contribution Barriers to FLOSS Projects

barriers can be embarrassing, even in an anonymous questionnaire [TB10]. Therefore, some
survey participants may have kept quiet about psychic contribution barriers and the number of
cases with those problems may be higher than the five participants who actually wrote about
these problems.

2.4.4 Closed Question on Submission Barriers

Analogously to Table 2.2 for modification barriers, Table 2.3 lists the answers to the closed
question on submission barriers. Again, each column represents a submission barrier that the
participants could rate on a scale from 1 to 5, where 1 is the lowest and 5 the highest importance.
The rows contain the number of participants that ranked a contribution barrier with the particular
importance of the row. The last row shows the arithmetic mean rank for each submission barrier.

Table 2.3: Number of answers for each submission barrier per level of difficulty in the closed
questions for submission barriers

Importance Submission
Procedure

Docu-
mentation

Issue
Tracker

Bureau-
cracy

Member
Attitude

Other

5 4 0 0 1 2 0
4 6 6 1 2 0 0
3 21 12 11 6 1 0
2 22 24 24 13 12 1
1 47 51 62 65 84 63

Mean 1.980 1.710 1.500 1.402 1.222 1.016

Although the answers to the open question on submission barriers suggested that less partic-
ipants had difficulties with the submission than with the modification, the submission barrier
Submission Procedure has a relatively high mean of 1.980, making it the highest overall contribu-
tion barrier after Find the Code. When only considering the levels 4 and 5, Submission Procedure
is ranked even higher than Find the Code and all other contribution barriers. This indicates that
although the submission procedure works for a considerable fraction of contributors, it is a high
contribution barrier for some. Respondents explained high rankings with difficulties using the
VCS in the way the FLOSS project expected them to. Although partly, this seems to be a matter
of personal preference: On the one hand, M47 explained that “patch-based submissions is [sic]
a lot of effort compared to pull requests” as they are common on GitHub. On the other hand,
M11 explained the selected importance of 4 with “little experience with git” used for the Mozilla
Webmaker component to which M11 contributed.

With an arithmetic mean rank of 1.710, issues with the Documentation, called “Instructions on
homepage” in the question, were more important than the answers to the open question suggest:
While problems with the documentation were barely worth mentioning when asked in an open
question, respondents rated lacking documentation regarding the submission on par with the
modification barrier Solution. Respondents might have described their problems more directly
in the open question, while they came aware that they could have avoided the problems if the

60

2.4 Contribution Barriers

documentation would have been better after seeing the option Documentation in the closed
question.

The Issue Tracker, which is Bugzilla for both projects, was ranked with a mean of 1.500 when
asked how important as a contribution barrier it is. M72 ranked the Issue Tracker as a submission
barrier highest among all respondents, with rank 4. M72 explained that Bugzilla dictates parts of
the submission process that was especially difficult. This could also be seen as an issue of the
Submission Procedure. Thus, there are only minor submissions problems distinctively caused by
the Issue Tracker.

With an arithmetic mean rank of 1.402, “Bureaucracy/Paperwork” are usually not an issue for
the participants. Those who ranked Bureaucracy high explained that it was difficult to create an
account for Bugzilla. However, all contributors had to create accounts for Bugzilla, but 65 of
them did not see Bureaucracy as a submission barrier. As an explanation for why this is a problem
only for a few participants, Mozilla offers two types of accounts for Bugzilla: first, a login with
email address and password as it is common among many websites, and second, authentication
via Mozilla Persona [P*Moz15r]. Some contributors might be unaware of the choice and then
select Persona even if it is badly suited for these contributors’ context like browser environment
or email provider.

The participants could also rate whether the “attitude of project members” constitutes a
problem for them. This Member Attitude received the lowest mean of 1.222 among the predefined
submission barriers. The attitude of project members is therefore generally not an issue, and
10 respondents even praised the kindness of the Mozilla developers in their explanation of this
ranking. Contributors to GNOME wrote no such praise, but this peculiarity may have occurred
by chance.

Three answers in the category Other were reassigned to Submission Procedure, as these
participants explained their choice with problems of patch file creation and the VCS, which other
respondents regarded as a problem of the Submission Procedure. The one remaining answer not
ranked 1 saw follow up work as a submission barrier, although only a minor submission barrier.

2.4.5 Discussion

When a FLOSS project grows to a large size, this manifests in different symptoms that can be
interpreted as modification barriers. Consequently, participants of this study and also existing
research observe multiple of these different modification barriers and their relationship is not
directly visible. Manifestations in the open question for modification barriers include the visibly
large Size of the Code Base and more indirectly the difficulties to acquire an overview over the
organizational or technical structure of the FLOSS project. A manifestation in the closed question
for modification barriers is the difficulty to Find the Code. For both questions, these manifestions
are the biggest modification barriers. Steinmacher et al. categorizes difficulties of understanding
as “cognitive problem” [Ste+14a], suggesting that this depends on the contributor and not on the
FLOSS project and disqualifying it from this thesis’s definition of a contribution barrier as per
Section 1.3. Although people are differently susceptible to difficulties of understanding, as they are
to any contribution barrier, the existence and the impact of difficulties of understanding depends
on the FLOSS project. The size of the FLOSS project is one example, but this also includes
countermeasures and particularly a lack of countermeasures, which is also a manifestation as

61

2 Contribution Barriers to FLOSS Projects

a modification barrier. Possible countermeasures are better documentation of different types
including code comments or a simpler architecture that is easier to understand. Steinmacher et al.
found relatively high numbers of evidence for these individual manifestations that spread around
different categories [Ste+14a]. This further confirms that this is an important modification barrier.

Sim and Holt [SH98] suggest that there is another individual factor besides cognitive capacity
influencing whether an individual is affected by difficulties to understand the general structure of
a software development project or not. They noticed that some newcomers approach a project
top-down and first try to get an overview before they dive into the individual parts. Others try to
understand a software system bottom-up and look at specific parts of the source code that add up
more and more to an overall understanding of the software system. Those with the bottom-up
approach seemed to have less trouble understanding the general structure of the project, because
they could extend their comprehension in small increments.

Another important contribution barrier documented by this survey are difficulties with the
technical Environment of the FLOSS project. This is both the second-most important modification
barrier and was most frequently cited in the open question for submission barriers. It is also
frequently mentioned in research: Sim and Holt recognized that setting up the development
machines is frustrating [SH98] and Dagenais et al. identified “Long IDE installation” as hurdle for
newcomers [Dag+10]. Installation issues are the second-most frequently mentioned contribution
barrier in the diary studies of Davidson et al. [Dav+14a]. In their interviews, Steinmacher et al.
count the contribution barrier “Building workspace locally” most often, and find evidence in their
three other data sources, too [Ste+14a].

According to the closed question for submission barriers, the Submission Procedure is the
greatest submission barrier. Every fifth answer to the open question for submission barriers also
mentions this submission barrier. Furthermore, Jensen and Scacchi argued that understanding
the submission process is a contribution barrier by itself already, which may be equivalent in
importance to the technical barriers [JS07].

Steinmacher et al. [Ste+14a] also defined contribution barriers that map to problems with the
Submission Procedure. These are “poor ‘how to contribute’ available” and “newcomers don’t
know what is the contribution flow” in the category “newcomers need orientation”, and “lack
of information on how to send a contribution” in the subcategory “change request hurdles” of
“technical hurdles”. They report of only spare evidence for these barriers given that it turned out
to be important in this survey. The cause for this difference may be Steinmacher et al.’s smaller
data set.

Obviously, finding a solution for the issue and implementing it in source code can be difficult.
This task is the core of the modification and it can also be a modification barrier if it is too difficult.
The survey answers show this, although only in the closed question on modification barriers and
not in the open question. As explained above, other modification barriers are more important.
Sim and Holt observed already that programming has little potential for frustration, even if it is
time-consuming [SH98]. More generally, essential tasks may be less frustrating then accidental
tasks, because the latter seem like unnecessary and therefore wasted effort. Steinmacher et al.
identified “bad code quality” and “bad design quality” as contribution barriers and especially for
the former, they found evidence in three of their four data sources [Ste+14a]. These contribution
barriers may affect the Solution. This survey found no evidence for the two particular barriers
“bad code quality” and “bad design quality”. Mozilla and GNOME possibly have a good Quality

62

2.5 Improvement Suggestions

Assurance (QA) and therefore do not suffer much from bad code and design quality.
The results from the survey show that the review process can be problematic, as this is the

third most important submission barrier in the open question. Begel and Simon also present
anecdotal evidence about problems to receive approval for a patch [BS08, Section 4.2.2]. For
FLOSS projects, Sethanandha et al. agree that reviews may need intolerably much time [SMJ10a].
Baysal et al. confirm this specifically for Mozilla [Bay+12]. Steinmacher et al. distinguish
between an “issue to create a patch” and a “delay to get contribution accepted/reviewed” [Ste+14a].
Thongtanunam et al. [Tho+15] present empirical evidence that confirms delays of 12 days in
arithmetic mean for reviews with assignment problems. They show that, depending on the specific
FLOSS project, 4 % to 30 % of all reviews have assignment problems. In summary, slow and
obscure reviews are a well evidenced submission barrier.

Some practitioners [Tur14] as well as researchers [Dav+14a] see social contribution barriers as
more important than technical contribution barriers. However, they present only weak empirical
evidence for their claims. Jensen found empirical evidence that slow answers to newcomers’ ques-
tions constitute a contribution barrier [JKK11]. Steinmacher et al. reserve two of five categories
exclusively for social contribution barriers and therefore underpin their importance [Ste+15a]. In
contrast, respondents of this survey evaluated social issues as the least important contribution
barrier in the closed question for both modification and submission barriers. In the open question,
there has not even been a noteworthy number of mentions of social issues.

The survey asked in the closed question for modification barriers whether participants feared
that others might be working on the same issue in parallel. This involves the danger that their
solution would be redundant and hence superfluous. Respondents evaluated this as only a minor
modification barrier. Steinmacher et al. did not even mention this in their classification of
contribution barriers [Ste+14a], which further supports that contributors do not see this as a
problem. However, as explained in Section 1.3.5, Gousios et al. proved that the reason for 43 % of
all patch rejections on GitHub were redundant work on the same problem [GPD14]. Newcomers
seem to underestimate this problem.

2.5 Improvement Suggestions

In a set of three open questions, the questionnaire asked the participants to suggest improvements
for the contribution experience of Mozilla or GNOME. The three questions specifically asked
how Mozilla or GNOME could better support

1. source code modifications,

2. patch submissions, and

3. issue reports.

The first two questions split the onboarding phase of newcomers into source code modification
and submission, as does the rest of the survey. Question 1 asks for methods to lower modification
barriers, Question 2 asks for methods to lower submission barriers, and Question 3 asks for
methods lowering barriers for non-source-code contributions that are otherwise not in the focus
of this survey.

63

2 Contribution Barriers to FLOSS Projects

The answers may obviously yield ideas to lower contribution barriers, but they are also
another method to measure contribution barriers: The questions let the participants think about
contribution barriers from another perspective and let them identify new or confirm known
contribution barriers.

2.5.1 Results

Analogously to the open questions for contribution barriers and motivations, each statement in the
answers received a code in an open coding phase. The code categorizes the type of improvement.
It turned out that some, but not all, suggestions impact the contribution process or tool set as
a whole. Hence, a separation of the answers into the three categories that the three questions
impose was not always possible. For example, some contributors suggested changes to the VCS
when asked for source code modifications, others suggested the same change when asked for
patch submissions. Nevertheless, having multiple questions seems still useful in retrospective, as
this encouraged the respondents to think about improvements from different angles. Additionally,
some answers are indeed specific for one of the three types of barriers.

For the reason described above, Figure 2.16 shows the results for all three questions in one
figure. Analogously to the open questions in the other sections, the list of codes on the x-axis
shows only those codes that at least 7 % of the 65 respondents mentioned, which are at least 5
respondents. A participant counted as respondent if the participant answered at least one of the
three questions. The individual codes will be discussed in the following. This discussion includes
a remark if a code has been specific to one of the three questions.

0
5

10
15
20
25
30
35
40

Fr
ac

tio
n

of
an

sw
er

s
in

%

Documen-
tation

on
Pro-

cesses

on
Archi-
tecture

Tools

Bugzilla VCS

Process

Patch
Publication

Issue
Reports

Gui-
dance

Figure 2.16: Fraction of codes assigned for the open questions for suggestions for improvements

The most common suggestion for improvement was Documentation with 35.4 %. This is much
more frequently than in the open questions for contribution barriers. This might indicate that the
existing documentation is of good quality, for example it is easy to understand, but it may not have
covered the specific problem of the contributors. However, this code should be interpreted with
caution: The most frequent response to the open question for modification barriers was trouble
Understanding some aspect of the contribution, i.e. they were missing some information. Even if

64

2.5 Improvement Suggestions

the response was more specific, the problem usually would have been solved easier, and thus with
a lower contribution barrier, if they had have some specific information prior to their contribution,
like what code style rules are mandatory. A seemingly obvious improvement to solve these issues
is therefore to have the specific necessary information documented. However, there may be cases
with a better but less obvious solution, like simplifying the process or increasing the intuitiveness
of the tools such that additional information and thus documentation becomes unnecessary.

12.3 % of all respondents specified that they missed Documentation on Processes. All of these
answers referred to the submission processes: How should you create a patch? Where should
you submit it? This seemed to be a problem mostly for GNOME contributors, while Mozilla
contributors had problems with the flag system described in Section 2.2.1. As Understanding
the General Structure of the project was an important modification barrier according to the
open question, consequently Documentation on Architecture was a common suggestion for
improvement, specifically for 10.8 % of all respondents. Interestingly, all these suggestions for
Documentation on Architecture were responses to Question 1 and all respondents were Mozilla
contributors.

As the next major code, 32.3 % of the respondents suggested improvements in the Tools
used for the contribution. The suggestions spread on a broad range of tools, such that most
individual tools fall below the 7 % threshold selected for this analysis. Two of the most mentioned
were improvements to Bugzilla with 13.8 %, and improvements to the VCS with 12.3 %. The
code Bugzilla comprises mostly suggestions to simplify different aspects of the issue and patch
submission forms. All responses with the code VCS suggest to use git or GitHub, depending
on whether the question was Question 1 or Question 2, respectively. Other suggestions include
automatic code style checks, which would help with the frequently mentioned Code Style
modification barrier, and easy ways to use unit tests.

Of all respondents, 24.6 % suggested improvements to the Process of incorporating new
contributors. This process is what von Krogh et al. referred to as Joining Script [KSL03]. As the
most frequently mentioned code in this category, with 10.8 % of all respondents mentioning it, is
Patch Publication. However, all responses that mentioned Patch Publication came from Mozilla
contributors, so this may be specific to the Mozilla Project. As another hint that this may be a
contribution barrier specific to Mozilla, two of those respondents explicitly mention hg patch
queues, an hg feature that even the hg project discourages from using [P*Mer14], but is still in
use at Mozilla [P*Moz14a]. Other responses suggest faster reviews or marking issues as easy if
they are suitable for newcomers.

10.8 % of all respondents suggested that Issue Reports should incorporate additional informa-
tion that will help developers to work on the issue. Three respondents suggested to have hints
at the solution in the issue report, especially which source code files a developer has to change
in order to work on the issue. In some cases, a core developer with a good understanding of the
code structure might very quickly assemble such a list of probable changes. This would decrease
the modification barrier Find the Code, which is the greatest contribution barrier identified in this
survey according to the means in the closed questions.

Another 7.7 % of all respondents wanted more Guidance in their contribution. [M31] suggested
to have a “‘test’ project to let the participants try-run the submit process”, as potential contributors
may be afraid to make mistakes publicly in an operational project. The others suggested that
mentors should help newcomers onboarding. According to these suggestions, mentors should

65

2 Contribution Barriers to FLOSS Projects

initiate conversation with the newcomers even if they themselves do not actively ask for help.
This is in line with Cox, who points out that some newcomers need help but then will become
very productive members of the community [Cox98]. The suggestions with the code Guidance
resemble those contribution barriers that Steinmacher et al. categorize as “Newcomers need
orientation” [Ste+14a].

2.5.2 Discussion

Sim and Holt suggest courses to help newcomers onboard software development projects [SH98].
For FLOSS projects however, this will not be possible in most cases. Furthermore, Dagenais et al.
found evidence that upfront courses are in fact counterproductive, as they prevent newcomers
from gaining first-hand experience with the environment [Dag+10].

The suggestion to check submitted patches for coding styles is not a novel suggestion of this
survey. Sethanandha et al. suggested a review system with advanced features including a check
for coding styles [SMJ10b].

Some respondents suggested mentors who actively guide newcomers. Mozilla already employs
a mentoring program [P*Moz14d], but they suggest that mentors should have a very active role.
Sim and Holt also observed that Mentoring is useful to help newcomers onboard a software
development project, but they also argue that mentoring costs much time [SH98]. Canfora et al.
specifically analyzed how mentoring in FLOSS projects works [Can+12].

2.6 Analysis

This section revisits the hypotheses defined in Section 2.2.2. Using the survey answers described
in the previous Sections 2.2.4, 2.3, and 2.4, the hypotheses are tested and discussed.

In this section, a result is considered statistically significant at a significance level of 0.05.
Results that are statistically significant at a significance level of only 0.1 are considered statistically
slightly significant.

As explained in Section 2.2.4, experience was measured on a scale from one to four, where
one represents the least and four represents the most experience. As detailed in Section 2.4,
contribution barriers were measured on a scale from one to five. One means that the contribution
barrier had no negative effect, while a contribution barrier rated five was almost a show stopper.

2.6.1 Language and Contribution Barriers

As apparent from Section 2.2.4, the most common programming languages that the survey’s
participants used for their first patch were JavaScript, C++, and C. Hypothesis 1 states that
contribution barriers depend on the programming language. Thus, I first looked which program-
ming languages occurred often and then took two groups out of the participants: The first group
consisted of the 48 participants who wrote their modification in JavaScript. The other group
consisted of 19 participants who wrote their modification with C++ as well as 16 participants who
wrote their modification in C. Treating C and C++ as the same language may conceal insights
about their differences, but has two advantages. First, a greater group increases the sample size
and therefore the probability to find statistically significant differences if they exist. Second, C

66

2.6 Analysis

is a subset of C++ and therefore a clear distinction between the two is sometimes difficult or
impossible. They also use a mostly identical development tool chain.

Obviously, programming languages may influence only those parts of the contribution barrier
that have some relation to the programming language. The items Setup and Build of the closed
question on contribution barriers for code modification served as a measure of the complexity of
the tool chain. The sum of the answers for these two items measured each respondent’s difficulty
with the tool chain. A t-test tested whether there was a difference in arithmetic mean between
the group of C/C++ programmers and the group of JavaScript programmers. As an interpreted
language, JavaScript needs no compilation and therefore has a simpler tool chain and especially
no difficulties with a build. Seo et al. found that source code in C++ leads to more compiler errors
than Java [Seo+14], which further supports that C++ builds can be difficult. Hence, the t-test
was one-sided and a lower contribution barrier for JavaScript was hypothesized. Surprisingly, the
p-value of 0.4318 indicated no significant differences.

One factor could be that only 1 JavaScript contributor submitted to GNOME and 46 submitted
to Mozilla. Differences between the two projects may have canceled out the differences between
JavaScript and C. Respondents’ comments suggest that a majority of the JavaScript contributors
submitted to Mozilla’s new Firefox OS, which has many JavaScript components. As opposed
to the common JavaScript web applications, developing for Firefox OS may require building
Firefox OS and setting up a development tool chain to work with mobile devices. Therefore, the
results are probably not representative for the programming language JavaScript in general.

Another factor that influences results of tests depending on the programming language may
be correlations of other factors with the programming language. As C and C++ are older
programming languages than JavaScript, maybe contributors of C and C++ modifications are also
more experienced with software development and therefore have less problems with technical
contribution barriers? This is not the case for the respondents of this survey. The JavaScript
developers assessed their expertise with their programming language (Development Environment
of PROJ) equally high as C/C++ developers do: The arithmetic mean is 2.57 as opposed to 2.55,
respectively. However, a one-sided t-test reveals that C/C++ may have a higher expertise with
Software Development in general than JavaScript developers: The means are 3.15 and 2.85 and
this difference is slightly significant with p=0.077. Maybe, therefore, the C/C++ developers’
higher expertise reduced the difficulties that the C/C++ development environment imposed.
Nevertheless, the results provide no convincing evidence that the programming language has an
impact on the contribution barrier and hence no support for Hypothesis 1.

2.6.2 Experience and Contribution Barriers

Hypothesis 2 predicts that experience lowers contribution barriers. This has multiple facets
that need to be analyzed independently: Experience with a specific aspect of the contribution
obviously cannot ease contribution barriers for other aspects. Specifically, experience with the
technology and the organizational procedures of the FLOSS project are independent and therefore
are treated separately.

For technological experience, this analysis tests whether experience with the technologies
used in the FLOSS project reduces the contribution barriers of the Setup of the development
environment and the Build of the application. For this analysis, the participants were divided into

67

2 Contribution Barriers to FLOSS Projects

two groups: A group of 45 unexperienced developers who had answered experience levels 1 or
2 with the Development Environment of PROJ, and a group of 51 experienced developers who
had answered experience levels 3 or 4 with the Development Environment of PROJ. A one-sided
t-test on their contribution barriers for the Setup of the development environment revealed no
significant differences (p=0.4811), and a test for the differences of their contribution barriers
for the Build of the FLOSS application was unnecessary, as the unexperienced developers had a
lower arithmetic mean for this contribution barrier of 1.79 than the experienced developers with
1.90.

For organizational experience, this analysis tests whether either experience with other FLOSS
projects or experience with the organization of Mozilla or GNOME helps to reduce barriers of
submission in Mozilla or GNOME, respectively. Experience with other FLOSS projects may
include experience of submitting a modification to these other FLOSS projects, but their processes
may be different to the processes of Mozilla or GNOME. Thus, the experience may actually not
apply fully. Experience with Mozilla or GNOME is specific to the processes for these projects,
but generally does not include the experience of submitting a modification, because the survey
asks about the first submission. The onion model assumes that an “active user” phase precedes
a code contribution, and in this phase the subsequent contributor files issues or participates
with comments [Cro+05]. Hence, the experience about the submission of a modification stems
only from observation, but not own effort. Thus, there may be hidden aspects of Mozilla’s
or GNOME’s submission procedures that become visible only when attempting to submit a
modification oneself.

Both organizational tests used the arithmetic mean of all contribution barriers for submitting a
modification rated in the closed question as a measurement for the general difficulty of submitting
a modification.

For the first of the two organizational tests, the participants were divided into two groups based
on their answer to their experience with FLOSS Processes of other projects: The unexperienced
group comprises those 26 participants answering 1 and 2, and the experienced group comprised
those 71 participants answering 3 and 4. A formal statistical test was unnecessary, because the
unexperienced group had the lower arithmetic mean of 1.488 compared to the experienced group’s
1.544, showing no indication that experience with other FLOSS projects could help submitting
a modification to Mozilla or GNOME. This substantiates Sethanandha et al.’s observation that
differences in processes and tools between FLOSS projects can be a contribution barrier [SMJ10a].

For the other organizational test, the participants were divided into an unexperienced group
of those 60 participants who had answered 1 to Processes of PROJ and those 34 participants
who had answered 2 or 3 to Processes of PROJ. This threshold is different to the others, because
no participant claimed experience of level 4 with Mozilla or GNOME and only 3 assessed their
experience with Mozilla or GNOME on level 3. For such a small group, a t-test on data that
slightly violate the condition of a normal distribution would lead to invalid results. With the
shifted threshold, the arithmetic means of the two groups’ contribution barriers for submission
are 1.504 and 1.507 for the unexperienced and the experienced group, respectively. With so close
arithmetic means and even a slightly lower contribution barrier for the unexperienced group, a
statistical test is again unnecessary: The data show no evidence that experience as active user
makes it easier to contribute code to the FLOSS project.

The analysis found no support for Hypothesis 2, neither in the case of technical experience and

68

2.6 Analysis

technical contribution barriers nor for organizational experience and organizational contribution
barriers – neither showed any association. This indicates that at least Mozilla and GNOME, maybe
FLOSS projects in general, employ procedures for submission of modifications and technical
environments that differ from other FLOSS project’s procedures and environments. Therefore,
experience with other projects do not help when joining Mozilla and GNOME. Furthermore,
an “active user” cannot see the intricacies of the submission of modifications and therefore has
no advantage in doing this over others whose first involvement with the FLOSS project is the
submission of a modification.

2.6.3 Projects and Contribution Barriers

According to Hypothesis 3, the contribution barriers of one FLOSS project are different to those
of another FLOSS project. To test this hypothesis, a metric for the overall contribution barrier
of a respondent was calculated as the sum of all answers to the closed question on contribution
barriers of this respondent. A t-test tested whether this overall contribution barrier had a different
arithmetic mean for Mozilla contributors than for GNOME contributors. With p=0.5441, there
were no statistically significant differences between Mozilla and GNOME. However, the addition
might have cancelled out differences in the individual contribution barriers.

Therefore, further t-tests compared all contribution barriers individually. Table 2.4 displays
the results: The columns Mozilla and GNOME shows the arithmetic means of all answers that
only contributors to Mozilla and GNOME, respectively, gave. The column p-value contains
the p-values for each t-test to test whether there are differences in the arithmetic means of the
Mozilla contributors compared to the GNOME contributors. Only one difference is statistically
significant at the α = 0.05 level, but this may easily be a coincidence given that there are 13
t-tests. Another difference was slightly statistically significant (p < 0.1). These results will not
be analyzed further due to the high chance of statistical error.

However, Wallis’s method to combine multiple experiments [Wal42] results in the more
meaningful compound p-values of 0.333, 0.040, and 0.891 for all contribution barriers, the
submission barriers, and the modification barriers, respectively. This suggests that Mozilla and
GNOME may indeed create different sets of submission barriers with their respective submission
procedures. The modification barriers, on the other hand, are surprisingly similar for both projects.

While this difference between submission barriers suggests a partial confirmation of Hypoth-
esis 3, the modification barriers are very similar for Mozilla and GNOME with no statistically
significant differences. This suggests that the values found for the modification barriers may be
constant for a larger set of FLOSS projects, of which Mozilla and GNOME are just two examples.
Without further studies of other projects, it is unclear to how many projects this set of FLOSS
projects with similar modification barriers extends.

2.6.4 Own Need, Motivation, and Occupation4

Hypothesis 4 says that most newcomers modify the FLOSS project’s source code primarily
because they need the modification for themselves. This means that more than half of the
respondents should have ranked Own Need as their most important modification motivation. As

4A preliminary version of this section was published previously [HG16b].

69

2 Contribution Barriers to FLOSS Projects

Table 2.4: Arithmetic means of contribution barriers by project and p-values of t-tests for inter-
project differences and compound p-values

Contribution Barrier Mozilla GNOME p-value

Submission Procedure 2.038 1.762 0.267
Documentation 1.720 1.667 0.522
Issue Tracker 1.551 1.300 0.201
Bureaucracy 1.485 1.143 0.066†

Member Attitude 1.190 1.350 0.040∗

Combined Submission Barriers 0.040∗

Download 1.390 1.524 0.453
Setup 1.701 1.952 0.471
Build 1.813 1.850 0.918
Bug Reproduction 1.639 1.367 0.147
Redundant Work 1.458 1.600 0.810
Find the Code 2.114 2.050 0.950
Solution 1.731 1.650 0.958
Community Support 1.387 1.500 0.406

Combined Modification Barriers 0.891

Combined Contribution Barriers 0.333
† significant at α = 0.1
∗ significant at α = 0.05

only 25.8 % of the respondents ranked Own Need first as a modification motivation, Hypothesis 4
must be rejected – a binomial test as post hoc analysis using Hypothesis 4 as null hypothesis
gives a p-value < 0.0001.

Without Hypothesis 4, there must be another explanation for the high number of respondents
ranking Own Need as their primary modification motivation in the exploratory survey and in
Shah’s survey [Sha06]. As the phrasing and user interface in the main and exploratory surveys
were identical, the questionnaire implementation cannot cause bias. The differences between
the participants of the exploratory survey and those of the main survey must be this explanation.
All participants in the exploratory survey are professional software developers, as explained in
Section 2.1. Thus, the high importance of the modification motivation Own Need may be due to
the participants’ occupation. This first possibility will be discussed next.

Modification Motivation and Occupation

Previous research did indeed identify associations between occupation and contributor motivation
for FLOSS developers. The results are ambiguous whether Own Need depends on occupation.
The next two paragraphs discuss the state of research and the paragraphs afterwards presents
statistical clues from this survey.

70

2.6 Analysis

In their survey, Hars and Ou [HO01] differentiate between contributors paid for their contribu-
tion, employed developers whose primary assignment is not their contribution, and contributors
who are non-professional programmers. Although the three groups vary in some contributor
motivations, they do not vary measurably in others. Interestingly, Own Need has of all included
contributor motivations the least variance between the three groups: 38.5 % of the contributors
who were paid for their contribution, again 38.5 % of the employed developers, and 36.4 % of the
non-professional programmers rate Own Need “high”. This indicates that while occupation does
influence the contributor motivation, it does not influence Own Need in particular. This seemingly
indicates that the difference between the exploratory survey and the main survey supposedly has
another reason.

Lakhani and Wolf [LW03] also collected contributor motivation and occupation data. They
found statistically significant differences in contributor motivations between contributors who
were paid for their contribution and those who were not paid. These results are difficult to
compare to the results of the main survey in this chapter: First, the main survey explicitly excludes
employees of the Mozilla Foundation, the main employer of developers working on Mozilla,
but does not distinguish explicitly between paid and unpaid contributions for the remaining
participants. Second, Lakhani and Wolf partition Own Need in “Work need only” and “Non-work
need” and so the overall number for Own Need cannot be derived from the published data for paid
and unpaid contributors, as the data do not contain the overlap between those two types of needs.
They tested both subtypes “Work need only” and “Non-work need” of Own Need successfully for
statistically significant differences between paid and non-paid contributors, but they did not test
Own Need as an aggregated motivation. The individual differences might cancel each other out
and therefore still be in concordance with Hars and Ou’s results. Therefore, a direct comparison
with Lakhani and Wolf’s results is not possible, but casts doubt on the independence between
contributor motivation and Own Need.

Next, Hypothesis 4 is restricted to employees and tested again. With this restriction the
respondent group better resembles the respondents of the exploratory survey. Of the 29 employed
respondents who answered to the closed question of modification motivation, 14 ranked Own
Need first, so this is still slightly less than 50 %. Contrary to the original unrestricted form of
Hypothesis 4, the restricted hypothesis may still be true and the too low number of employed
respondents in the main survey may have introduced a random error: Neither the restricted
hypothesis nor its opposite can be rejected with statistical significance.

In continuation of the literature discussion above, the next research question is: Do employees
rank Own Need as a more important modification motivation than non-employed contributors?
As the motivations scales are rankings and not continuous numerical data, a t-test is not possible.
Instead, a Mann-Whitney U test fits this research question, especially as it allows to consider
those respondents who did not consider Own Need as a modification motivation at all – these
respondents implicitly ranked Own Need less important than any explicit rank. In contrast to
a t-test, the Mann-Whitney U test does not need a concrete numeric value for these implicit
rankings, as it suffices to know that they are ranked with least importance. Low ranks designate a
high importance, so the null hypothesis is: The rank of Own Need for employed respondents is
at least as high as the rank for non-employed respondents. The Mann-Whitney U test yields a
p-value of 0.0781, so the difference is not significant at a significance level of α = 0.05, but only
at α = 0.1. Occupation may have an influence on Own Need, but the results are not conclusive.

71

2 Contribution Barriers to FLOSS Projects

Groups of Contributors Distinguished Through Own Need

As noted in Section 2.3.3 and visible in Figure 2.11, Own Need is more polarizing than the other
modification motivations: A comparatively low number of respondents ranked Own Need second
or third, although Own Need is the second-most popular option for the first rank. Specifically,
25.8 % of the respondents ranked Own Need as their primary modification motivation. 41.9 % of
the respondents saw Own Need as a modification motivation but not as their primary motivation:
most of them, 25.8 % of all respondents, ranked Own Need fourth. 32.3 % did not see Own Need
as modification motivation at all.

Thus, using this motivation, three main groups of contributors can be distinguished: First,
those who missed a feature or suffered from a defect in the FLOSS application, and modified
the FLOSS application to solve their problem. They ranked Own Need first. Second, those who
also missed a feature or suffered from a defect, but there was a workaround or the problem did
not impact them very much – fun of programming, the project community, and learning about
technology were more important motivations for them to modify the FLOSS application, but at
least Own Need was a modification motivation at all for them. Third, those who actively searched
for a task in the FLOSS project and who did not find a problem through their own usage of the
FLOSS application. For them, Own Need was no modification motivation at all.

2.6.5 Motivation and Contribution Barriers

Hypothesis 5 predicts a specific relation between motivations and contribution barriers: Motiva-
tions are indicators for the contributors’ mental model and those contribution barriers expected in
the mental model have less impact than those contribution barriers which are not expected. This
is a consequence of the Theory of Cognitive Dissonance [Fes57].

For tests of Hypothesis 5, participants are assigned roles derived from their motivation. Tech-
nology Learners is an example of such a motivation role, which comprises those participants for
whom learning about the technologies used in the FLOSS project was an important motivation
to contribute. Motivation roles are independent, so a participant either is or is not in a specific
motivation role, independently of the other motivation roles the participant is assigned to. As
discussed in the presentation of Hypothesis 5 in Section 2.2.2, motivation roles presuppose that
the participants had a specific model about the contribution and that they should have expected or
not expected a particular hurdle in the contribution procedure.

The Technology Learners, for example, should have expected that the FLOSS project’s tech-
nical environment has some intricacies that a newcomer has to overcome – by learning about
the FLOSS project’s technology. These hurdles manifest in a contribution barrier that the survey
measured in its closed questions for contribution barriers. Statistical tests therefore reveal whether
or not there is a difference in perception of these contribution barriers between members and
non-members of a motivation role. Differences support Hypothesis 5, while a lack of differences
opposes Hypothesis 5.

All motivation roles are listed in Table 2.5. For each motivation role, the table also lists the
number of members and non-members of the role and which contribution barriers should be lower
or greater for members of the motivation role according to Hypothesis 5. The last column p-value
lists p-values that result from one-sided t-tests that test whether the expected difference between

72

2.6 Analysis

members and non-members of the motivation role exist. For most motivation roles, multiple
different contribution barriers are tested for differences resulting in multiple p-values. Using
Wallis’ method of combining p-values from multiple experiments [Wal42], these p-values are
combined into a single p-value for each motivation role and eventually for the whole comparison.
The following paragraphs discuss the construction and rationale for the individual motivation
roles in detail.

The analysis will first take up the introductory example of Technology Learners. Defined
precisely, Technology Learners are those participants who ranked Learning as the most or
second-most important motivation to modify the FLOSS application. Their complementary role
comprises the respondents who rejected Learning as a motivation to modify the application or
ranked it only third-most important or less. There are 44 Technology Learners and 50 respondents
in the complementary role. The null hypotheses are: Technology Learners rank the contribution
barriers Setup and Build at least as high as their complementary role. As the result of t-tests, there
are statistically significant differences between Technology Learners and their complementary
role for Setup (p=0.04907) and no statistical significance for Build (p=0.2319).

The next motivation role is Joy Programmers, which includes those respondents who ranked
Joy as their primary reason to modify the application. Those who ranked Joy as the second-most
reason were assigned to the complementary role, as otherwise the Joy Programmers would be
more than 70 % of all respondents and therefore the complementary role would be too small
for a meaningful statistical comparison. There are 35 Joy Programmers, their complementary
role counts 59 respondents. Those who want to experience the joy of programming know
that programming is a challenge and specifically want to face it. Hence, the null hypotheses
are: Joy Programmers rank the contribution barriers Find the Code and Solution at least as
high as their complementary role. The corresponding t-tests show no statistically significant
differences for Find the Code (p=0.1728) and slightly statistically significant differences for
Solution (p=0.05176).

Pragmatic Patchers are those respondents who ranked Own Need as their primary or secondary
motivation to modify the application. There are 29 Pragmatic Patchers and 65 respondents in their
complementary role. Pragmatic Patchers supposedly consider patching the application as less
effort than a workaround like using another application, as that would also satisfy their motivation.
Thus, their effort estimate of the modification has an upper limit that those respondents in the
complementary role do not have. If the modification effort is nevertheless high, Pragmatic
Patchers with their lower effort estimation will therefore less likely expect this effort than their
complementary role. Hypothesis 5 suggests that this unexpected effort can be measured as
higher contribution barriers. Core contribution barriers like Solution are obviously necessary for
the modification and therefore less likely to be underestimated; thus, the unexpected effort is
operationalized via the secondary contribution barriers Download, Setup, and Build. The null
hypotheses say that Pragmatic Patchers experience the contribution barriers Download, Setup, and
Build at most as high as their complementary role. However, none of the three null hypotheses
can be rejected with t-tests: There are no statistically significant differences for these contribution
barriers. The results are p=0.2478, p=0.7426, and p=0.4598 for Download, Setup, and Build,
respectively.

I tried to shed light on the lack of differences between Pragmatic Patchers and their comple-
mentary role with a post hoc analysis. Instead of the original criterion for Pragmatic Patchers,

73

2 Contribution Barriers to FLOSS Projects

Table 2.5: Respondent motivation roles and whether they perceive contribution barriers differently
than their complementary roles, as p-value of a one-sided t-test

Motivation role Role sizes
(respondent/
complementary)

Contribution
barrier

Expected
Difference

p-value

Technology Learners 44/50
Setup < 0.0490∗

Build < 0.2319

Combined 0.0623†

Joy Programmers 35/59
Find the Code < 0.1728
Solution < 0.0518†

Combined 0.0511†

Pragmatic Patchers 29/65

Download > 0.2478
Setup > 0.7426
Build > 0.4598

Combined 0.5517

Strictly Pragmatic
Patchers (post hoc)

23/30

Download > 0.0888†

Setup > 0.2412
Build > 0.2215
Find the Code > 0.1586
Solution > 0.1035

Combined 0.0412∗

Community Joiners 36/58
Community
Support

< 0.0526†

Combined 0.0526†

FLOSS Learners 42/49

Submission Pro-
cedure

< 0.2052

Issue Tracker < 0.9671
Bureaucracy < 0.3687

Combined 0.5146

Economic Submitters 14/77

Submission Pro-
cedure

> N/A

Issue Tracker > N/A
Bureaucracy > N/A

Combined N/A

Groups combined 0.0301∗
† significant at α = 0.1
∗ significant at α = 0.05

74

2.6 Analysis

the Strictly Pragmatic Patchers were limited to only those respondents who ranked Own Need
as a primary motivation. The contribution barriers for these Strictly Pragmatic Patchers were
compared with those of the respondents who saw Own Need as no motivation at all. This cor-
responds to two of the three groups identified in the discussion in Section 2.6.4. Additionally,
the post hoc analysis includes the contribution barriers Find The Code and Solution, as these
are among the highest modification barriers according to the closed question for modification
barriers, and thus are more likely to be the source of an unexpectedly high modification effort.
Just like the three contribution barriers already tested, Find the Code and Solution were not
significantly different between Pragmatic Patchers and their complementary role (p=0.7197 and
p=0.2015). The differences between the Strictly Pragmatic Patchers and those who had no
Own Need at all were only slightly significant for Download (p=0.08887) and not significant
for Setup (p=0.2412), Build (p=0.2215), Find the Code (p=0.1586), and Solution (p=0.1035).
However, combining these p-values using Wallis’ method [Wal42] yields a significant difference
(p=0.04129) between Strictly Pragmatic Patchers and the respondents without Own Need. This
result is even more outstanding when considering that the roles of Strictly Pragmatic Patchers and
respondents without Own Need were smaller than Pragmatic Patchers and their complementary
role: Although statistical tests generally yield lower p-values for larger groups if an effect exists,
Strictly Pragmatic Patchers still show statistically detectable differences to respondents without
Own Need. This indicates that the a priori differentiation between Pragmatic Patchers and their
complementary role did not very well match real differentiations between motivation roles of
contributors. Strictly Pragmatic Patchers and respondents without Own Need better characterize
motivation roles than Pragmatic Patchers and their complementary role.

Those respondents who ranked Community as a modification motivation on first or second
place are called Community Joiners. There are 36 Community Joiners and 58 respondents in the
complementary role. As a consequence of their motivation, Community Joiners expect social
interaction with the community of the FLOSS project. They want to get in contact not purely
because of an immediate need, instead social contacts have value for them in their own right.
Their complementary role on the other hand may find it unexpected if it is necessary to get
in touch with multiple members of the community in order to solve the issue. Thus, the null
hypothesis is that Community Joiners rank the modification barrier Community numerically at
least as high as their complementary role. The resulting t-test shows that the null hypothesis can
almost be rejected with statistical significance (p=0.05256).

The motivation for modification determined who belonged to the previously defined motivation
roles and who does not. In contrast, FLOSS Learners are the respondents whose first or second
motivation for their submission to the FLOSS project was Learning. Analogously to Technology
Learners, FLOSS Learners know that each FLOSS project has its own processes and its own
culture, because their motivation is to learn about these specifics. Their complementary role
may focus on technical aspects of the contribution and forget about the submission procedure. If
the submission requires effort, the complementary role may not expect it and experience a high
submission barrier. Hence the null hypotheses: FLOSS Learners rank the submission barriers
Submission Procedure, Issue Tracker, and Bureaucracy at most as high as their complementary
role. Contrary to Technology Learners, t-tests could not statistically significantly reject the
three null hypotheses for FLOSS Learners, neither for Submission Procedure (p=0.2052), Issue
Tracker (p=0.9671), nor Bureaucracy (p=0.3687). Possibly, both FLOSS Learners and their

75

2 Contribution Barriers to FLOSS Projects

complementary role knew about and expect the efforts of the submission, but only the former saw
it as a motivation for submission, while the latter just found it to be a necessary task.

The motivation role Economic Submitters consists of those respondents whose first-ranked or
second-ranked motivation for submission is avoiding the Stupid Tax. Analogously to Pragmatic
Patchers, Economic Submitters assume that less effort is necessary for the submission of their
modification than for the possibly repeated reintegration of their modification into newer ver-
sions of the FLOSS application. Thus, they should rank submission barriers higher than their
complementary role. However, only 14 respondents are Economic Submitters. This is a small
size for a statistical test, and therefore statistical significance is unlikely even if an effect exists.
Consequently, no differences were tested and the analysis does not take Economic Submitters
into account.

In summary, this subsection analyzed five motivation roles. Statistical tests revealed slightly
significant differences for three motivation roles. The remaining two motivation roles Pragmatic
Patchers and FLOSS Learners showed no statistical significant differences. However, a post hoc
analysis revealed that adapting the motivation role of Pragmatic Patchers to Strictly Pragmatic
Patchers yields a significant difference. One motivation role, Economic Submitters, has not been
analysed as the sample was too small. The results for the five valid motivation roles, excluding
the post hoc analysis of Strictly Pragmatic Patchers and omitting the missing test for Economic
Submitters, combine into a p-value of 0.0301 using Wallis’ method [Wal42]. Thus, the result
supports Hypothesis 5: Contribution barriers depend on the contributors’ motivation.

2.7 Threats to Validity

This section discusses different types of threats to the survey and how the survey set-up ensured
validity in spite of these threats. First, construct validity describes how the survey measured
the data that it was supposed to measure. Next, the survey questions shall adequately cover
contribution barriers to ensure content validity. Third, the conclusions drawn in the discussions
and Section 2.6 must have internal validity. Lastly, threats to external validity endanger the
application of this survey’s conclusions to FLOSS projects other than Mozilla and GNOME.

2.7.1 Construct Validity

Incomprehensible or ambiguous questions endanger construct validity, as the participants’ an-
swers would not fit to the questions. However, both the exploratory and the main survey received
thorough pretests and the first participants were invited only after the pretesters had not misunder-
stood any question. The participants’ answer also showed few signs of misunderstanding and
those were discussed in the description of results.

One metric for the importance of contribution barriers in the survey were arithmetic means of
scale scores, which are similar to Likert scores. Likert scores are ordinal and there is criticism that
arithmetic means and parametric tests like the t-test may not be used on ordinal scales [Gai80].
On the other hand, other researchers point out that this criticism founds on a confusion between
measurement theory and statistical theory and that the type of scale does not influence the statisti-
cal method used [Lor53; Gai80]. Therefore the arithmetic means of ordinal scaled contribution

76

2.7 Threats to Validity

barriers must not be interpreted as means of actual importance of contribution barriers, but as
means of measured and ordinal scaled importance.

As described in Section 2.2.4, the survey measured experience through self-assessment. Par-
ticipants might over- or undererstimate their abilities, or simply lie about their own ability.
This would induce high measurement errors for this question. However, empirical evaluation
showed that self-assessment is superior to other types of measurements of programming skills
like university marks [KH11].

2.7.2 Content Validity

Answers to closed questions in surveys strongly depend on which answers the participants can
choose from. For example, survey participants tend to choose an average option, even if the
average is very high or very low in absolute numbers [Dil99, Chapter 2]. The survey’s central
questions, those about contribution barriers and motivation, therefore had an open and a closed
form. For each question, the survey presented the open question first and afterwards the closed
question. This ensured that the participants had no preconceptions when answering to the open
question. The closed question let participants think about answers that they did not consider in the
open question. For example, an item might have influenced their decisions only subconsciously,
so they did not answer it in the open question but agreed with it in the closed question as they had
to think about it. This was supposedly the case for the Joy of programming in the question for
modification motivation. Furthermore, answers to the closed question were less ambiguous and
are better suited for statistical evaluation.

The closed questions for motivation explicitly asked for the motivation at the time of the
participants’ first modification and submission. This is different to the participants’ motivation at
the time of the survey, as they had learned more about the FLOSS project in between and found
out which motivations were reasonable and which were not. Nevertheless, participants might have
chosen motivations that sounded plausible for them, although they may not had initially thought
of them and therefore they did not influence their decision to contribute. This is an alternative
explanation for answers occurring only in the closed but not in the open questions. This threat
cannot be ruled out completely and its possibility has to be evaluated for every case where the
number of closed answers exceeds the number of equivalent open answers. As described in
Section 2.2.3, the participants were invited shortly after their first contribution, so their memories
about the contribution were still fresh, which further limits this threat.

2.7.3 Internal Validity

The analysis in Section 2.6 frequently used t-tests on scores from ordinal scales similar to Likert
scales to prove or disprove statistical hypotheses. t-tests require normally distributed variables,
which is never the case for Likert scores. Nevertheless, the t-test is robust to minor violations to
its requirements [Nor10] and works well especially with Likert scores [WD10]. Nevertheless,
the data analyzed in Section 2.6.4 deviated too much from the requirements of a t-test and a
Whitney-Mann U test was used as alternative. Consequently, the statistical methods were in all
cases appropriate for the data.

77

2 Contribution Barriers to FLOSS Projects

There may be a self-selection bias, as the set of survey invitees and survey participants are
not identical. However, as explained in Section 2.2.3, the response rate of 65 % is high for a
survey [Dil99, p. 3f]. Therefore the identified contribution barriers and motivations really exist
for a major number of FLOSS contributors.

During the Second World War, the Allies collected which zones of their returning bombers
were hit by the enemy. They wanted to know where they should reinforce their bombers’ armor.
Because planes must be lightweight, there is only limited capacity for armor. Wald [Wal80,
Part V] showed with statistical arguments the surprising result that the armor should be reinforced
in those zones that received low number of hits – because bombers hit in these zones had not
returned from combat and were therefore vulnerable in these zones. This type of selection bias
is called survivorship bias. The bomber situation can be seen as an analogy to contributors
in FLOSS projects who try to drop their contribution on the FLOSS project, but contribution
barriers of different kinds may hit them and therefore prevent the contribution. The survey only
invited contributors with successful patches, those who had overcome the contribution barriers.
Continuing the analogy would lead to the conclusion that the contribution barriers identified in
the survey are not important, because obviously the contributors were able to overcome them, and
that the really important contribution barriers are those that none of the participants experienced.
However, Wald formulated two assumptions which do not hold for contribution barriers.

First, Wald assumes that the probability that a hit downs a bomber is independent from
previous hits on the same bomber. For FLOSS projects, it is more plausible that contribution
barriers accumulate in some way and that potential contributors cancel their contribution if
all experienced contribution barriers together exceed their level of tolerance induced by their
motivation to contribute. In this case, the distribution of contribution barriers among successful
contributors approximates the distribution of contribution barriers among all potential contributors.
Nevertheless, to a lesser degree Wald’s survivorship bias still applies to contribution barriers,
and it is stronger for contribution barriers that have a greater individual impact, as contributors
experiencing these contribution barriers are underrepresented in the set of successful contributors.

Second, Wald assumes that the probability for a bullet to hit a specific zone of the bomber is
known. He approximates this in an example with the size of each zone. In the case of FLOSS
projects, it is not only relevant whether a specific contribution barrier has a high or low probability
to cancel a contribution, but also for how many contributions the contribution barrier arises. A
frequent contribution barrier with low individual impact on the contribution may have the same
overall effect as an infrequent contribution barrier with high individual impact on the contribution.
The distribution of contribution barriers among successful contributors not only shows each
contribution barrier’s individual impact, but also its occurrence frequency in the base set, which
is interesting in the case of contribution barriers. For bombers, armor in small zones is less costly
than armor in large zones, because more armor is required and it will be heavier for large zones.
Therefore, the vulnerability of a zone is more interesting than its probability to get hit. In contrast,
lowering a contribution barrier does not necessarily depend on its occurrence frequency and
therefore a mixed measure of impact and occurrence frequency is more useful than one of them
alone. This further lessens the survivorship bias.

78

2.8 A New Model for Joining FLOSS Projects

2.7.4 External Validity

As shown in Section 2.6.3, Mozilla’s and GNOME’s modification barriers are surprisingly similar.
This indicates that the modification barriers identified in this survey apply to a larger class of
FLOSS projects, of which Mozilla and GNOME are two examples. Nevertheless, there may be
FLOSS projects of different classes that have a different composition of modification barriers.
For example, small FLOSS projects are potentially different to Mozilla and GNOME. Mozilla’s
and GNOME’s submission barriers were different and therefore it is unclear to which degree they
apply to other FLOSS projects.

Furthermore, both Mozilla and GNOME are very successful FLOSS projects. As the success
of a FLOSS project depends on the project’s ability to gain new developers [Xu+05; CM07], both
GNOME and Mozilla supposedly have a relatively low level of contribution barriers. The results
in Section 2.4 support this assumption. Thus, other FLOSS projects may have a generally higher
level of contribution barriers.

Some further results, like the lack of relationship between programming language and contri-
bution barriers as predicted by Hypothesis 1, may be specific to Mozilla and GNOME. Possible
reasons were discussed in the appropriate sections. Other further results like the confirmation of
Hypothesis 5 found on general theories which do not depend on the choice of the FLOSS project.
These results can be assumed to hold also for other FLOSS projects.

2.8 A New Model for Joining FLOSS Projects

This section describes a model for new contributors joining a FLOSS project. It is based on
the previous findings, especially the relationship between contribution barriers and contributor
motivations, and on previous research. The overall impact of all contribution barriers on a
newcomer is determined by which contribution barriers occur and the strength of their individual
impact. Both factors can be assessed individually, as will be shown in the following.

Von Krogh et al. argued that new contributors have to adhere a specific process called the joining
script to become co-developers of a FLOSS project [KSL03]. Jensen and Scacchi noted that
there are different paths towards the core roles of FLOSS project [JS07]. Herraiz et al. [Her+06]
specifically showed that GNOME employs at least two joining scripts. Moreover, Herraiz et al.
showed that quite discriminably volunteer developers use one joining script while employed
developers use another. Since every joining script comes with its own steps and tasks, the joining
script defines which contribution barriers are in effect.

All newcomers have their own mental model of the FLOSS project. The mental model
determines the impact of each individual contribution barrier. If a task needs more time to
be carried out, this increases related contribution barriers; however, it is more important how
“frustrating” the contribution barriers are. More specifically, Hypothesis 5 implies that unexpected
tasks have higher contribution barriers than expected tasks. Additionally, tasks that are perceived
to create value induce lower contribution barriers than tasks that are considered unnecessary.

The mental model of the FLOSS project also determines the newcomers’ motivations. The
proof of Hypothesis 5 shows that this relationship can be reversed: Specific motivations imply
specific ideas of the FLOSS project and therefore whether each specific task is expected or not.
In particular, the survey identified in Section 2.6.5 four roles of newcomers that experience

79

2 Contribution Barriers to FLOSS Projects

especially low or especially high contribution barriers of some kinds. Future research should try
to identify more of these particular groups.

Demographic properties influence which joining script newcomers use and they also determine
their motivations, their mental model of the FLOSS project, and consequently which contribution
barriers have high impact and which have only low impact. For example, learning is an important
motivation for students. For members of the role Technology Learners, the modification barriers
for setting up a development environment have less impact. Students are volunteer developers and
therefore advance slowly through supporting roles in the FLOSS project before they contribute
code [Her+06]. Barriers that hinder non-code contributions would therefore indirectly hinder
code contributions from students. The consequences of this insight on the management of each
FLOSS project depends on the project’s goals.

Each FLOSS project attracts contributors with different demographies. Thus, it could be
reasonable to lower particularly those contribution barriers that strongly affect the contributors
who are the most attracted by the FLOSS project. This would maximize developer influx.
Inversely, a FLOSS project might increase attractiveness for contributors of demographies that
the FLOSS project has low contribution barriers already. However, the latter option is not in the
scope of this thesis, as the mechanisms of attractiveness are a field of research on their own.

Section 2.2.4 discusses evidence that contributors of some demographies stay longer with a
FLOSS project than others. Additionally, the first activities of a person in a FLOSS project can
be used as an indicator whether the person will contribute over a long term [ZM12]. Hence,
lowering contribution barriers for contributors of these demographies may be desirable.

Another approach would be lowering contribution barriers for contributors of underrepresented
demographies. This would diversify the FLOSS project’s group of developers and thereby help to
implement requirements of users belonging to the previously underrepresented demographies.

2.9 Conclusion

This chapter addressed the first of three core research question of this thesis: Which contribution
barriers exist and what is their individual effect? An exploratory survey gave qualitative insights
about contribution barriers and helped to create a succeeding, more comprehensive survey. 117
useful responses to this main survey delivered enough data for a statistical analysis of five
hypotheses that were formulated as a result of the exploratory survey. The following summarizes
the insights gained from the survey and its analysis.

Existing research does not differentiate between modification and submission in regard to
contributor motivations and contribution barriers. Existing research focuses more on submission
motivations than modification motivations, although this survey’s results in Section 2.4 show that
modification barriers are more important than submission barriers. Future research on motivation
should pay additional attention to modification motivations.

Section 2.4 identified that five contribution barriers are of high importance. These contribution
barriers, roughly in order of importance, are

• difficulties to understand the structure of the FLOSS project and its architecture, and
consequently difficulties to find the part of the source code that needs to be changed. This
can be a consequence of a large project size.

80

2.9 Conclusion

• Setting up and configuring the development environment can be frustrating for newcomers.

• Newcomers have trouble to grasp the submission process and consequently sometimes get
lost in the submission of their patch.

• Programming the actual solution can be challenging, but it is usually not frustrating.

• Getting the reviews required for acceptance of the patch can be troublesome.

Generally, accidental tasks, which newcomers feel unnecessary, are more frustrating than
essential tasks, which are considered at the core of the contribution. Accordingly, issues with the
code style were an important contribution barrier for 17.6 % of the respondents. FLOSS projects
should take care not to introduce these types of contribution barriers.

The five hypotheses formulated in Section 2.2.2 were tested in Section 2.6. The results
delivered no statistical evidence for a dependency between contribution barriers and programming
languages, neither was there evidence that contribution barriers could be lowered by experience
of different kinds.

FLOSS projects can be classified such that all FLOSS projects in one class have similar
contribution barriers. Mozilla and GNOME belong to one class regarding their modification
barriers, but they differ in terms of submission barriers.

Contributors can be split into three groups of very roughly equal size: The first modifies
the application because they need the modification for themselves. The second also uses the
modification, but this is only a subordinate modification motivation for them. The third group
does not even use the modification, but have completely different reasons for their modification.
Contributor occupation may be a factor determining to which group a contributor belongs. These
groups differ in what they perceive as contribution barriers.

The contributors’ motivations are indicators for their mental model about the FLOSS project.
As a consequence, more groups than those discussed above can be identified using their motivation.
These groups are different in their perception of contribution barriers. Expected contribution
barrier have less impact than unexpected contribution barriers.

These findings lead to a new model for joining FLOSS projects. The demography of new-
comers determine on the one hand which joining path these newcomers take and thereby which
contribution barriers they encounter. The demography also determines which contribution barriers
the newcomers expect and thereby the impact of each individual contribution barrier. FLOSS
projects may adapt their joining scripts to the demographies they want as contributors.

81

3 FLOSS Pattern Languages

As pointed out in Section 1.1, the definitions of Open Source Software [P*Ope04] and Free
Software [P*Fre15] depend only on the license used for the FLOSS project and not on the
development style. Researchers have observed and described different characteristics of software
development in FLOSS projects [Ray00; GA04] and their communities [Kri02; YK03]. Devel-
opment methods differ strongly between FLOSS projects. However, there are not only two or
three types of FLOSS development methods, instead there are several interrelated aspects of the
development method that occur in different variants.

The pattern approach introduced by Alexander allows the description of individual parts of
a method, independently from other parts and still showing their interrelations [Ale79]. Kelly
suggested that this pattern approach may be applicable to FLOSS development, and that the best
practices of running FLOSS projects may constitute its own FLOSS Pattern language [Kel06]. In
fact, several authors picked up the idea and authored FLOSS patterns that they had observed in
practice and drawn from literature, e.g. [Wei09; Lin10; HWG10].

Each pattern describes at its core a solution to a problem occurring in a context [Ale+77,
p. x]. Accordingly, each FLOSS pattern describes the context of a FLOSS project, a problem that
this FLOSS project faces, and a solution to the problem based on experience. Patterns describe
existing and not new solutions. Thus, pattern authors usually are not the original creators of
solutions but only their observers. This is similar to natural sciences, which do not create new
laws of nature, but observe patterns in natural behavior and describe the invariants of the observed
behavior. This is the same for patterns, which describe invariants of problems and solutions in
other disciplines [Ale79].

Contribution barriers are one type of problem for FLOSS projects, and consequently, it is
possible to write FLOSS patterns describing how to lower these contribution barriers. The
contribution barriers itself were identified and described in Chapter 2. Section 3.2 categorizes all
FLOSS patterns published until 2015-12 and describe their relationships as a pattern language.
Sections 3.1 reviews the pattern literature and introduces some conventions for this categorization.
Section 3.3 contains seven complete FLOSS patterns that lower contribution barriers identified in
Chapter 2.

Patterns include examples of their application. Therefore, FLOSS patterns are empirically jus-
tified and they are known to have been applied in practice. As such, they are reliable observations
of FLOSS development methods. However, Open HUB listed 670 563 FLOSS projects already as
of 2015-10-27 [P*Ope15b], and so a few examples in each pattern do not prove that the FLOSS
pattern is common. In fact, it could still be the very rare exception and in the theoretical extreme,
the given examples could be the only applications of the FLOSS pattern at all. Therefore, the
chapter contains an evaluation of application frequency of the FLOSS patterns.

Section 3.4 presents the execution of this evaluation and Section 3.5 discusses its findings.
The evaluation takes the reversed approach compared to examples given in patterns: first, five

82

3.1 Introduction

FLOSS projects were selected and then it was evaluated which FLOSS patterns they use. Very
common FLOSS patterns will occur in this selection with high probability, while uncommon
patterns do not occur or do not occur often in the selection. This evaluation also puts the proposed
relationships to the test.

3.1 Introduction

This section presents a review of literature on patterns and some definitions required for the
survey of all FLOSS patterns in Section 3.2.

Currently, there are 40 FLOSS patterns described in 13 monographs [HWG10; HWG11;
HLG14; Lin10; Lin11; Lin12; Wei09; Wei10; Wei11; Wei15; WN13; WHG13; ZHG16].
Although patterns are supposed to facilitate the reader’s understanding of a domain, it is difficult
to gain an overview of this large number of patterns distributed in several publications, with no
apparent order in these FLOSS patterns. The first goal of the survey is to give a concise overview
of all FLOSS patterns and thereby serve as a guideline that helps readers to find the FLOSS
patterns relevant for their situation.

As part of this endeavor, the FLOSS patterns have been categorized into eight categories.
Additionally, some FLOSS patterns are similar and it turned out that they describe different
aspects of the same problem and solution. These FLOSS patterns have been combined. Resulting
FLOSS patterns, whether unchanged or combined, are described as thumbnails according to
the Problem/Solution Summary Pattern of the pattern language for pattern writing [MD98] in
Section 3.2.

FLOSS patterns currently stand mostly on their own, as current research did not put much
emphasis on the relationship between patterns, especially between patterns of different authors.
Partly, this is due to the publication order of patterns, as obviously a work can only reference
previously published patterns. Sometimes earlier FLOSS patterns rest upon later FLOSS patterns,
possibly without the authors’ knowledge, and these relations have yet to be revealed. Thus, the
second goal of the survey is the identification of relationships between FLOSS patterns.

3.1.1 Classification of FLOSS Patterns

Each of the eight FLOSS pattern categories has its own subsection in Section 3.2. A category
subsection starts with a summary of the patterns in the category as described in the Pattern
Language Summary Pattern [MD98]. This summary introduces the patterns as a whole and
describes their relations. A diagram known as pattern map visualizes the patterns in the category.
Section 3.1.3 describes the pattern maps used in this thesis in more detail. The remainder of the
category subsection contains thumbnails of all patterns in the category.

According to the Problem/Solution Summary Pattern [MD98], thumbnails of patterns present
patterns in a strongly abbreviated form, limited to the name of the pattern, the problem that the
pattern tackles, and the main idea of the solution. The thumbnail of a pattern gives a basic idea
of the pattern, but it is insufficient for its implementation. In this study, thumbnails of patterns
additionally include an icon symbolizing each pattern for easier recognition. Furthermore, a
verification section follows each thumbnail of a pattern in preparation of the evaluation. This

83

3 FLOSS Pattern Languages

verification section was not part of the original pattern and is instead derived from it. The
verification section describes objective criteria that allow to check whether a given FLOSS project
applies the FLOSS pattern or not.

Some FLOSS patterns described in this study have been published in multiple papers by
different names, sometimes by different authors. The original publications do not explicitly state
that these patterns are refinements of previously published patterns. In fact, at least in some cases
the authors of refined patterns have not been aware that the refined patterns resemble previously
published patterns. Indeed, these different versions of the same pattern differ in emphasis and
highlight slightly different aspects of the pattern. A hard proof that these patterns are the same is
impossible and therefore up to discussion. Consequentially, thumbnails of these deduplicated
patterns additionally contain a deduplication section with arguments showing why the different
variants represent the same pattern.

3.1.2 Related Work on Pattern Languages and Pattern Maps

Alexander explained that patterns cannot stand on their own, but have relations constituting a
pattern language [Ale79]. Alexander et al. [Ale+77] presented their architectural pattern language
in order of application size, starting with the structure of countries and regions and ending with
specific arrangements of interiors in a house. In Alexander et al.’s pattern language, each pattern
usually relies on more specific patterns that come later in the pattern language.

A diagram that visualizes a pattern language, especially the classification of patterns and their
relationships, is called a pattern map. Alexander et al. [Ale+77] did not use a pattern map. Other
authors have no common let alone standardized notation for pattern maps. Hence, authors of
pattern languages focusing on software development teams and organizations varied in their use
of pattern maps and similar visualizations of pattern languages.

The following paragraphs present a survey of related work about pattern languages and the
different kinds of pattern maps. This lays the groundwork for structuring and visualizing the
FLOSS pattern language.

Pattern languages can be seen as graphs, with patterns being nodes that have edges to the
patterns required or useful for their implementation. This graph structure is a common technique
used for pattern maps.

For example, Fowler [Fow96] showed pattern names in a figure with arrows between two
patterns when the first influences the second. Furthermore, the patterns’ x-axis positions des-
ignate their complexity. Their positions on the y-axis show to which of two major categories
they belong. In contrast, Cunningham [Cun96] used the position of the pattern name in the
diagram to indicate who (first dimension) implements the pattern on which type of work (second
dimension). Again, related patterns are connected, although only with a line instead of an arrow.
Cunningham explained that a relationship means that after application of a pattern, the related
pattern may be applicable. These connections seem similar to Alexander’s interpretation of
pattern relationships [Ale79]. Coplien and Harrison [CH05a] described this notion in more detail:
Every project applies pattern after pattern in any order that the pattern relations allow. Each such
series of pattern applications is called a sequence. They used example sequences to illustrate the
use of their pattern languages.

Notably, Weir [Wei98] and Roberts and Johnson [RJ98] used a different approach to visualize

84

3.1 Introduction

patterns: Each pattern spans a time frame on the chronological x-axis, indicating in which phases
of the design process it is applicable. Hannebauer et al. also applied this to a set of FLOSS
patterns [HWG11].

Another type of pattern map can be seen in different works from Kelly [Kel06; Kel07]. These
pattern maps categorize the patterns into families and lead the readers with questions to applicable
patterns.

Previous work on FLOSS patterns also frequently visualized FLOSS patterns as nodes in
directed graphs, e.g. [Wei09; Lin10]. This often implies a chronological order or order of
dependency, but also includes more complex relationships. In some cases, edges include labels to
denote their meanings. However, as explained before, previous work have referenced FLOSS
patterns from other works only rarely. Consequently, it is unclear how patterns of different works
relate to each other. This work addresses this gap and givse an overview over the FLOSS pattern
language as a whole.

There is a pattern language about writing patterns which includes a section specifically about
pattern languages [MD98]. The pattern Common Problems Highlighted Pattern [MD98] of this
pattern language describes the case where multiple different patterns solve the same problem.
Thus, these patterns are alternatives and at most one of them should be used at once. Ratzka
connected alternative patterns in his pattern map with an arrow with two heads [Rat13, p. 123].

Where applicable, the pattern language on writing patterns has been used as a guide for
the FLOSS pattern language developed in this chapter. As discussed above, two types of
relationships stand out in the related work: First, a pattern may depend on another pattern.
Second, implementation of a pattern may exclude implementation of another pattern.

3.1.3 Pattern Maps for the FLOSS Pattern Language

Figure 3.1 shows an example of a pattern map as used in this thesis. A pattern is represented as a
rectangle containing a pattern symbol and a pattern name in small caps. In the example, Pattern
A is a pattern with a symbol shaped like an A.

The pattern maps in this thesis were limited to the two types of relationship identified in
the related work to keep them simple and understandable. The first type of relationship are
alternatives that exclude each other. Pattern A and Pattern B are alternatives, indicated by a line
with a circled Z. At most one of the two or more alternatives can be implemented.

The second type of relationship is indicated by arrows, like the ones from Super Pattern to
Pattern A and from Super Pattern to Pattern B. Arrows indicate that the starting pattern uses
or requires the ending pattern. In this example, when choosing to implement Super Pattern, it
is also advisable or required to implement Pattern A and/or Pattern B. Whether it is strictly
required or only sensible depends on the specific pattern combination and is not visible in this
type of pattern map.

In some cases, one of multiple alternatives must be implemented, for example because another
pattern requires this. The example in Figure 3.1 might mean that Super Pattern requires either
Pattern A or Pattern B, but this is not clear from the pattern map alone and readers would have
to look at the patterns in detail.

All FLOSS patterns were unambiguously categorized to one of eight categories. In the pattern
maps, a box for each category surrounds all patterns of that category and the box contains the

85

3 FLOSS Pattern Languages

S
Super Pattern

A
Pattern A

B
Pattern B

X
External
Pattern

Category Name

Another
Category

Z

Figure 3.1: Example Pattern Map

category name in boldface. Each category has its own color that fills the category box (not shown
in Figure 3.1). Besides the categorization, pattern positions have no further meaning, although
more specialized patterns tend to be placed lower or more on the right in the figures.

The pattern map for each category section shows all FLOSS patterns that belong to this category
and also all other FLOSS patterns that they depend on. External Pattern is an example of such a
pattern belonging to Another Category. However, for the sake of conciseness, dependencies are
included only in one direction: The pattern maps do not show patterns that depend on patterns
of the current category, but only patterns with arrows from the current category. In the example,
there might be Another External Pattern depending on Pattern A, but it is not shown because
no pattern of the current category depends on this Another External Pattern. Patterns in other
categories also have their respective category boxes. These category boxes are open on one side
to indicate that there are other patterns not shown in the pattern map belonging to the category.

3.2 Categories of FLOSS Patterns

Figure 3.2 and Figure 3.3 are the two parts of a pattern map including all FLOSS patterns collected
in this study.

Figure 3.2 contains organizational FLOSS patterns. Organizational FLOSS patterns are espe-
cially interesting for commercial companies, as the category Publish Closed Sources comprises
FLOSS patterns to transform a closed-source project into a FLOSS project, and the depicted
FLOSS patterns in the category Architecture hint at methods to earn money with a FLOSS project.
FLOSS patterns in the category Licensing help to choose a licensing model for a FLOSS project
that fits the purposes of its maintainer. While this covers the power over the source code from
a copyright perspective, FLOSS patterns in the category Empower the Most Suitable focus on
social aspects and help to channel the power over the FLOSS project’s community.

Figure 3.3 contains performance FLOSS patterns: how can a project improve its software

86

3.2 Categories of FLOSS Patterns

Manage
Complements [WN13]

IP Modularity
[Wei15]

€

€

Dual Product [Wei15]

€

€

Sell Complements
[Wei10]

Architecture

from Bazaar
Architecture

Due Diligence [Lin10]
Cleanup Before

Publishing [Lin10]

Donate Code [Wei11]

Publish Closed Sources

Run a Tight
Ship [Wei11; Lin10]

Maintainer
Handover [HWG10]

Single
Maintainer [HLG14]

Pool Resources
[Wei09;

Wei10; Wei11]

Meritocracy [HLG14]

Z

Empower the
Most Suitable

Dual License [Lin11]

Reciprocal
License [Lin11]

Permissive
License [Lin11]

Approved Open Source
License [Lin11]

Licensing

Z

from Low
Contribution

Barriers

Z

Figure 3.2: Pattern map for organizational FLOSS patterns

87

3 FLOSS Pattern Languages

Crowd of Bug
Detectors [HWG11]

Create Pull [Wei11]

Support the
Community [Wei15]

Public Inspection
[ZHG16]

Frequent
Releases [Wei09]

Central Information
Platform [HWG11]

Open Dialog [Wei09]
Parallel

Development [Wei09]

Cultivate a User Community

Credible
Promise [Wei09]

?
Market

Evaluation [Lin12]

Start a New Project from Scratch

Contribute
Back [Wei10]

Respect the
License [Lin10]

Bootstrap [Wei09;
Wei10; Lin12]

Integrate FLOSS Assets

Low-hanging
Fruit [HWG10]

Unit Tests for
Contributors

[WHG13]

Preconfigured
Build Environment

[WHG13]

Low Contribution
Barriers [HWG10]

Tools for New
Developers

Exposed Architecture
[HWG10]

Bazaar Architecture
[HWG10; WN13]

Architecture

to Cleanup
Before Publishing

Figure 3.3: Pattern map for performance FLOSS patterns

88

3.2 Categories of FLOSS Patterns

development using FLOSS? The category Integrate FLOSS Assets contains the only FLOSS
patterns that can also be used in closed-source software development projects. All other FLOSS
patterns target maintainers of FLOSS projects. Start a New Project from Scratch describes the
situation where a FLOSS project starts without a closed-source predecessor. The patterns in
Cultivate a User Community describe how to attract new users and how to activate them for
contributions. The special case of source code contributions is covered by the FLOSS patterns in
the category Tools for New Developers and partly by the two depicted FLOSS patterns in the
category Architecture.

The order of categories in this section corresponds to the order in which readers likely apply
them. The first category, Integrate FLOSS Assets, targets the broadest audience, as both FLOSS
maintainers and developers of closed software can apply its FLOSS patterns. The following
two categories deal with the beginnings of FLOSS projects. This goes on to the last category,
Empower the Most Suitable, which provides FLOSS patterns for large-scale FLOSS projects that
require formal organization to keep their structure.

3.2.1 Integrate FLOSS Assets

While the other patterns in the FLOSS pattern language target maintainers of FLOSS projects,
the patterns in this section are not specific to maintainers. Instead, they target general software
development projects that want to use FLOSS components maintained by other parties. Figure 3.4
shows the three patterns and their dependencies: Bootstrap describes how to quickly build
an application based on FLOSS components. When using FLOSS components, Respect the
License helps to avoid legal problems, and Contribute Back shows the advantages of returning
modifications on the FLOSS components back to their projects.

Respect the
License [Lin10]

Contribute
Back [Wei10]

Bootstrap [Wei09;
Wei10; Lin12]

Integrate FLOSS Assets

Figure 3.4: Pattern Map for Integrate FLOSS Assets

89

3 FLOSS Pattern Languages

Bootstrap [Wei10]

(also known as Build On the Shoulders of Others [Wei09], Building on Open Source [Lin12])
Problem: How do you keep the costs for developing your product low?
Solution: Integrate assets from FLOSS projects.
Verification: Bootstrap is considered fulfilled for a FLOSS project A if it depends on at least
one separately maintained FLOSS project B. This is the case if one of the following criteria is
fulfilled: First, A builds only if a static library of B is present. Second, A runs only if a dynamic
library of B is present. Third, the source code of A incorporates a considerable amount of source
code from B, where considerable shall be defined as 300 Lines of Code (LOC) in this case.
De-duplication: The patterns Build On the Shoulders of Others [Wei09], Bootstrap [Wei10],
and Building on Open Source [Lin12] describe how FLOSS components can be used to quickly
develop an initial version of a software product. Only Bootstrap explicitly mentions the lower
costs of this approach, although Build On the Shoulders of Others also talks about cost savings
in its opening text. Related to this, Building on Open Source argues for the reduced cost of
a failure when using the pattern, and adds the additional aspect that FLOSS components may
be replaced by commercial components once the product turns out to be a success. Bootstrap
refers to Build On the Shoulders of Others, so a difference seems to be intended, but it does not
become clear from the pattern texts.

Respect the License [Lin10]

Problem: How to prevent problems with licensing after your product is released?
Solution: Check Licenses of FLOSS components you use starting early in the development
process.
Verification: This pattern targets users of FLOSS libraries. Therefore, there are two possibilities
to verify the usage of this pattern: First, it may be verified whether users of the FLOSS project
under research Respect the License. Second, it may be verified whether the FLOSS project under
research Respects the License when using libraries of other FLOSS projects.

The first option theoretically includes checking every software project that exists, as any project
might use libraries of the FLOSS project under research. Thus, this is not possible to validate.

For the second option, a verification needs to check whether the FLOSS project under research
publishes its component under a license that is compatible with one of the licenses of each
FLOSS library used. If this is not the case, this pattern was probably not applied. However,
this conclusion does not work the other way around: If all licenses are compatible, there is no
objective way to judge from the outside whether they are compatible by chance or because of
careful checks. Thus, this pattern will not be used in the verification.

Contribute Back [Wei10]

Problem: How do you keep aligned with the FLOSS project?
Solution: Contribute non-core modifications back to the FLOSS project.

90

3.2 Categories of FLOSS Patterns

Verification: As with Respect the License, there are two possibilities to verify the usage of this
pattern: First, other projects may Contribute Back to the FLOSS project under research. Second,
the FLOSS project under research may Contribute Back to the FLOSS project it depends on. The
first case is more a statement about other projects than about the FLOSS project under research,
although the FLOSS project under research may influence its contributions via other patterns,
for example those in Section 3.2.7. The second case involves a definition problem: As FLOSS
projects do not necessarily formally employ their developers, a developer might contribute to two
(or more) FLOSS projects A and B, where A depends on B. If the developer is seen as a member
of FLOSS project A, then A Contributes Back to B. If the developer is seen both as a member of
A and of B, then the contributions to B are merely normal work and A does not apply the pattern.
Thus, this pattern will not be used in the verification.

3.2.2 Start a New Project from Scratch

The FLOSS patterns in this section apply only to new greenfield FLOSS projects. Figure 3.5
shows the two FLOSS patterns and their relation. Market Evaluation explains how FLOSS
facilitates the production of what Ries calls a Minimum Viable Product (MVP) [Rie11], a
prototype for testing whether there is demand for a real product. This first software version should
show a Credible Promise to attract early adopters.

Bootstrap helps to build the core features for Credible Promise. Support the Community
attracts a user base from which to recruit developers with the Credible Promise.

?
Market

Evaluation [Lin12]
Credible

Promise [Wei09]

Support the
Community [Wei15]

Bootstrap [Wei09;
Wei10; Lin12]

Start a New Project from Scratch

Integrate
FLOSS Assets

Cultivate a User
Community

Figure 3.5: Patterns in the category Start a New Project from Scratch

91

3 FLOSS Pattern Languages

Market Evaluation [Lin12]

Problem: How to facilitate interest in your software, determine if it is the right product and
attract the early adopters, and cross the chasm and get the market majority to adopt your product?
Solution: Establish a beachhead by releasing your component from the start as FLOSS. ?
Verification: With the first public announcement of the project, the source code must be available
under a FLOSS license.

Credible Promise [Wei09]

Problem: How do you mobilize developers to contribute to your project?
Solution: Build a critical mass of functionality early in your project that demonstrates that the
project is doable and has merit.
Verification: With the first public announcement of the FLOSS project, a compilable or pre-
compiled version of the component must be available. For applications, this version must run on
at least one platform and support at least one core feature. For libraries, a test or demo application
must also be available that fulfills the criterion for applications.

3.2.3 Publish Closed Sources

This section incorporates FLOSS patterns targeted at organizations developing closed source
software. The pattern map in Figure 3.6 depicts these FLOSS patterns and their dependencies.
These FLOSS patterns help to open up the closed development process. As visible in Figure 3.6,
the FLOSS patterns circle around the core FLOSS pattern Donate Code that describes the main
step of publishing the closed source code. Cleanup Before Publishing and DueDiligence describe
preparation steps before publishing that help being successful and prevent legal problems in the
project, respectively.

A Permissive License allows everyone to use components published with Donate Code. IP
Modularity helps to deal with those parts of the code that shall not be published after Due
Diligence.

Donate Code [Wei11]

Problem: How do you extend the lifespan of your proprietary code?
Solution: Relinquish control over the code by releasing it under a flexible FLOSS license that
allows others to build on it easily.
Verification: An organization must have developed the component for internal use or to sell it
without releasing its source code. Its first release under a FLOSS license must be a working
component already. This study considers this requirement fulfilled if there have been binary
releases before the source code release or if the source code consists of at least 10 000 LOC. The
last condition takes into account components developed internally or sold on marketing channels
hidden from analysis of public data. The specific value of 10 000 LOC is an approximation of the

92

3.2 Categories of FLOSS Patterns

Donate Code [Wei11]

Due Diligence [Lin10]
Cleanup Before

Publishing [Lin10]
IP Modularity

[Wei15]

Permissive
License [Lin11]

Publish Closed Sources Licensing

Architecture

Figure 3.6: Pattern Map for Publish Closed Sources

average code size of a component on its first release. This threshold is based on expert opinion
only and therefore subjective, but the number of LOC in actual FLOSS projects on their first
release will presumably be much lower or greater than 10 000 LOC and therefore the specific
value is not important for most verifications.

Cleanup Before Publishing [Lin10]

Problem: How to prepare the publication of a component as FLOSS in a way that attracts and
not discourages acceptance and contributions and prevents problems with intellectual property?
Solution: Cleanup the structure, source, documentation, and supporting material of your project
material before you publish it.
Verification: As the state of the component before its publication is usually hidden, analyses
from outside cannot decide whether the quality of the component has been increased in a cleanup
process before publishing or whether it has already been this way. Although counterexamples of
projects not using this pattern might be identified in some cases, this pattern is not verified in the
analysis.

Due Diligence [Lin10]

Problem: How to reduce the risk of being attacked because of claimed intellectual property
violations like copyright, patent, trade secrets, or license violations?
Solution: Check for copied or otherwise integrated code, intellectual property, or patented
technology. Ensure that the reuse complies with licenses and regulations.

93

3 FLOSS Pattern Languages

Verification: Similarly to Cleanup before Publishing, there are cases where the existence of
checks through the application of Due Diligence can neither be confirmed nor rejected. Thus,
this pattern is also not verified in the analysis.

3.2.4 Licensing

The FSF as well as the OSI define Free Software and Open Source by their licenses [P*Fre15;
P*Ope04]. Figure 3.7 shows FLOSS patterns that help to choose the right license for a FLOSS
project. While an Approved Open Source License is generally recommended, maintainers can still
choose between a Permissive License and a Reciprocal License. The latter allows the combination
with a commercial license in the Dual License model. Notably, the FLOSS pattern Dual License
does not cover any combination of two licenses, but of two specific kinds. In fact, Permissive
License and Reciprocal License are exclusive alternatives and therefore cannot be combined.

Approved Open Source
License [Lin11]

Reciprocal
License [Lin11]

Permissive
License [Lin11]

Dual License [Lin11]

Run a Tight Ship
[Wei11; Lin10]

Licensing

Empower the
Most Suitable

Z

Figure 3.7: Pattern Map for Licensing

External contributors must assign copyright to the maintainer for the Dual License model.
Therefore, the maintainer must Run a Tight Ship in the FLOSS project or not accept external
contributions at all.

Not depicted in Figure 3.7 is the relationship to Respect the License, as it most commonly has
no influence on the choice of the license for one’s own software development project. However,
if one of the incorporated FLOSS components uses a Reciprocal License, then the own software
development project must also distribute its product under a Reciprocal License.

94

3.2 Categories of FLOSS Patterns

Dual License [Lin11]

Problem: How to encourage people to pay for your FLOSS component?
Solution: Release your software component with two (or more) licenses.
Verification: Users of a FLOSS project applying this pattern can choose between at least two
licenses. At least one of the licenses requires users of the component to pay royalties. At least
one other license is considered a Reciprocal License.

Reciprocal License [Lin11]

(also known as Copyleft License [Lin11])
Problem: How do you choose the type of FLOSS license so that it supports your business model?
Solution: Choose a license which requires derived or combined works to be released under the
identical license.
Verification: The project must distribute its component and source code under at least one
license that either the FSF lists as copyleft license [P*Fre16] or that is not on the FSF’s list but its
conditions use the copyleft method [P*Fre13].

Permissive License [Lin11]

Problem: How do you choose the type of FLOSS license so that it supports your business model?
Solution: Publish your component under a license which permits distribution with modifications
without enforcing the publication of the source.
Verification: The project must distribute its component and source code under at least one license
that either

• the FSF lists as permissive free software license [P*Fre16] or

• that is not on the FSF’s list but it meets the requirements for an Open Source license [P*Ope04]
and does not use the copyleft method [P*Fre13].

Approved Open Source License [Lin11]

Problem: How to choose the FLOSS license for your component?
Solution: Use an existing FLOSS license which best fits your needs.
Verification: The project must distribute its component and source code under at least one license
that

• the FSF lists as compatible to the GNU General Public License (GPL) [P*Fre16] or

• the OSI lists in the categories “Licenses that are popular and widely used or with strong
communities” or “Special purpose licenses” [P*Ope14].

95

3 FLOSS Pattern Languages

3.2.5 Architecture

The FLOSS patterns in this section describe how to divide the software into modules and how to
manage the resulting architecture. Figure 3.8 shows the FLOSS patterns and their relationships.

Manage Complements
[WN13]

Exposed Architecture
[HWG10]

IP Modularity
[Wei15]

Bazaar Architecture
[HWG10; WN13]

€

€

Dual Product [Wei15]

€

€

Sell Complements
[Wei10]

Run a Tight Ship
[Wei11; Lin10]

Dual License [Lin11]

Architecture

Empower
the Most
Suitable

Licensing

Z

Figure 3.8: Pattern Map for Architecture

A Bazaar Architecture allows easy integration of contributions from the community, but it
requires to carefully Manage Complements submitted to the FLOSS project. Contributors see in
the Exposed Architecture where to integrate their contributions.

For commercial maintainers of FLOSS projects, the business model has strong influence on
the architecture. There are multiple ways to Sell Complements for the FLOSS application, one of
which is a Dual Product: One basic version is free and another extended version must be paid
for. In this case, maintainers must have IP Modularity in their architecture to separate free from
paid modules. Another possibility is a Dual License. In both cases, maintainers Run a Tight Ship
to use external contributions for their commercial products.

96

3.2 Categories of FLOSS Patterns

Bazaar Architecture [HWG11]

(also known as Modular Architecture [WN13])
Problem: It is difficult for newcomers to add innovative features that have not been anticipated
and require modifications of the architecture.
Solution: Plan the architecture of your software as a flat hierarchy of optional modules.
Verification: One requirement for this pattern is the existence of multiple modules in the project.
At least 75 % of its modules must have less than 50 source code files, excluding build scripts and
tests. At least 75 % of commits must modify the files of only one module.
De-duplication: Both Bazaar Architecture [HWG11] and Modular Architecture [WN13]
explain that changes to the software may require knowledge not only about the changed part of the
source code, but also about related parts of the source code. With more dependencies, contributors
have to acquire more knowledge about the code before they can change something. For both
FLOSS patterns, the solution is an improved modularization. Bazaar Architecture argues for a
flat dependency tree while Modular Architecture describes techniques to refactor modules with
many dependencies. Thus, the two FLOSS patterns differ in their specific implementation, but the
problem and the general method of creating an “architecture for participation” [MRB06; WN13]
is the same. Notably, both FLOSS patterns include UNIX and Mozilla as examples, but this is no
evidence for their equivalence: The specific subsystems and events in Mozilla and UNIX used as
examples are disjoint.

Exposed Architecture [HWG10]

Problem: Developers will not add features to the FLOSS project when they do not know where
to add their code.
Solution: Publish the component’s architecture.
Verification: The project’s documentation must describe the application’s architecture to realize
this pattern. Multiple architecture diagrams or extensive textual descriptions both satisfy this
condition.

Sell Complements [Wei10]

Problem: How do you monetize a FLOSS product?
Solution: Sell products or services (such as hardware or support) that complement the FLOSS

€

€

product.
Verification: The FLOSS project’s maintainer is a commercial company and sells complimentary
services for the FLOSS component.

Dual Product [Wei15]

Problem: You want to entice commercial users to pay for a FLOSS product.
Solution: Keep parts of the FLOSS project closed, and sell a commercial version of the product

€

€

97

3 FLOSS Pattern Languages

with exclusive features.
Verification: The FLOSS project’s maintainer is a commercial company and sells another version
of the same product that includes the FLOSS application and offers additional features or offers the
FLOSS application as a service. If the FLOSS project’s maintainer is unclear, every organization
counts as maintainer that is responsible for at least one fifth of the commits to the FLOSS project’s
VCS within the study period.

Manage Complements [WN13]

Problem: How to extend the code while maintaining the architectural integrity of the overall
system?
Solution: Establish a contribution process, set guidelines and provide a development toolkit to
manage complement development.
Verification: The project must provide an API for its main application that allows others to
develop complements. A complement is either an add-on or a complementary application. An
add-on is an executable package that the main application loads at runtime. A complementary
application is a stand-alone application that accesses data or functions of the main application
through its API while it is running.

IP Modularity [Wei15]

Problem: You need to manage open and closed components of a dual product.
Solution: Align intellectual property (IP) with product architecture.
Verification: This pattern guides companies on how to partition the architecture into closed
and open parts. Since the closed parts and especially their usage of IP are invisible from the
outside, this pattern cannot be verified without internal knowledge. The analysis in this study will
therefore skip verification of this pattern.

3.2.6 Cultivate a User Community

The success of a FLOSS project depends on its users [Xu+05], but FLOSS projects must also be
able to draw on their capital of users [CM07]. Figure 3.9 shows patterns that help with this goal.

Attracting users via both Public Inspection and Support the Community helps to Create Pull
for the FLOSS project and thereby grow a large and active community. New FLOSS project may
also use Credible Promise to Create Pull. Because of Linus’s Law [Ray00], a large community
can work as a Crowd of Bug Detectors.

Possible ways to Support the Community are an OpenDialog, a Central Information Platform,
and Frequent Releases. An Exposed Architecture can be one element of an Open Dialog. For
Frequent Releases, it is advisable to use Parallel Development to separate stable from unstable
releases.

Another way to attract users is to demonstrate the FLOSS project’s quality via Public Inspection.
These Public Inspections must always refer to recent releases to be useful, so a requirement is
Frequent Releases.

98

3.2 Categories of FLOSS Patterns

Crowd of Bug
Detectors [HWG11]

Create Pull [Wei11]

Support the
Community [Wei15]

Public Inspection
[ZHG16]

Frequent
Releases [Wei09]

Central Information
Platform [HWG11]

Open Dialog [Wei09]

Parallel
Development [Wei09]

Credible
Promise [Wei09]

Exposed Architecture
[HWG10]

Cultivate a User
Community

Start a New Project
from Scratch

Architecture

Figure 3.9: Pattern Map for Cultivate a User Community

99

3 FLOSS Pattern Languages

FLOSS patterns that distinctively support source code contributions are excluded from this
category because of their distinguished importance for the FLOSS project. This category of
FLOSS patterns is treated separately in Section 3.2.7.

Create Pull [Wei11]

Problem: How do you market your FLOSS product?
Solution: Make it easy to access your product and leverage distributors, partners, as well as
community members to market your product.
Verification: Commercial software companies use this FLOSS pattern to market their products.
It describes an intention to use FLOSS and the effects that help market services around a FLOSS
product. It is therefore only used in FLOSS projects with a commercial software company as
maintainer. For FLOSS projects with commercial maintainers, the positive effects described in
the FLOSS pattern are natural consequences of being FLOSS and no result of deliberate actions
of the project’s maintainers. Create Pull mentions no distinctive features of projects using this
FLOSS pattern, except a forum for the community. The analysis will therefore not verify this
FLOSS pattern.

Crowd of Bug Detectors [HWG11]

Problem: Developers do not fix some of the bugs because they occur only seldom or never in
their environments.
Solution: Take bug reports seriously and encourage your users to file bug reports.
Verification: For projects where the developers may commit changes without corresponding
issue report in the issue tracker, Crowd of Bug Detectors is considered applied if reactions to
reported issues take less than 24 hours in average.

This is different for projects with the policy that every commit must have a matching issue
report in the issue tracker. In this case, issue reports filed by users will be compared to issue
reports filed by developers. The average duration till the first answer to users’ issue reports must
be lower than the average duration till the first answer in developers’ issue reports.

Issue reports may be bug reports and feature requests. The former describe faults, i.e. dif-
ferences between program behavior and specification, while the latter describe changes to the
specification. The FLOSS pattern focuses on bug reports, but these are often hard to distinguish
from feature requests, because FLOSS projects seldom use formal specification documents.
Therefore, the verification does not distinguish between bug reports and feature requests.

Support the Community [Wei15]

Problem: You need to build a healthy community around your project.
Solution: Support the community without expecting an immediate return. It’s all about respect
and building legitimacy, one step at a time.

100

3.2 Categories of FLOSS Patterns

Verification: The pattern describes five aspects in its solution part to implement the pattern. One
aspect is automatically fulfilled for an active FLOSS project (i). Three of the aspects correspond
to other FLOSS patterns, specifically Approved Open Source License [Lin11] (ii), Central
Information Platform [HWG11] (iii), and Open Dialog [Wei09] (iv). The fifth aspect directs the
maintainer to support community members without charge instead of only offering paid support.
This fifth aspect is considered fulfilled if at least 75 % of the support inquiries receive answers
within 72 hours, and at most 10 % of support inquiries receive answers with offers for premium
support.

Public Inspection [ZHG16]

Problem: Demanding users abstain from the FLOSS project, because they are afraid that the
project’s quality is too low.
Solution: Let an independent third party measure your software quality and visualize current
results publicly in real-time.
Verification: An independent third party must measure a non-obvious quality property of the
FLOSS project’s software and the FLOSS project must visualize the result on its web-site.
Visualizations include badges, diagrams, and textual markup. The visualization must update
automatically when the measurement changes. The third party must measure multiple FLOSS
projects, as this allows comparisons of the results.

Frequent Releases [Wei09]

Problem: How do you move a FLOSS project along quickly?
Solution: Release code in small, quick increments.
Verification: A release is a downloadable package with an executable version of the component.
In this context, executable usually means binary data. There are two exceptions where source
code also counts as executable: First, if the component is interpreted instead of compiled. Second,
if the project never releases compiled versions, for example because it is a library that needs to
be compiled along with the application that uses it. This FLOSS pattern is applied if a FLOSS
project publishes new releases of its component at least once a month.

Parallel Development [Wei09]

Problem: How do you balance the need of users for stability with the need to explore new
directions for your project?
Solution: Maintain separate release streams, those with the official stable releases and others for
experimental development.
Verification: The project’s VCS must contain a main branch and multiple additional branches.
Only merges from other branches add new features to the main branch. Fixes of defects may go
directly into the main branch.

101

3 FLOSS Pattern Languages

Central Information Platform [HWG11]

Problem: The project provides different kinds of development and support resources to its users,
but a user has to find the right system for every task.
Solution: Provide a central information platform that describes and links to all tools and resources
that the project uses.
Verification: The existence of a web site that holds or links to all important resources of the
project needs to be tested. Furthermore, it has to be verified that the web site is up to date and no
additional alternative web sites with apparently similar purposes exist. If for some reason the
location of the web site changed, the old web site is often kept for several reasons. Reasons for
keeping the old website includes preventing broken links and conserving information which is
not transferred to the new web site. However, such an old site needs to be marked as outdated
and point to the new site. Finally, all of the FLOSS project’s resources are expected to link back
to the main web site.

Open Dialog [Wei09]

Problem: How do you engage others in your project?
Solution: Conduct the project in the open, maintaining a two-way dialog with project participants
(users and external developers).
Verification: The FLOSS project must discuss its plans and technical decisions on a publicly
visible platform like a wiki, a forum, or a mailing list. There must be a documented way how
outsiders may gain write access to this platform, e.g. send emails to the mailing list.

3.2.7 Tools for New Developers

Figure 3.10 shows the patterns of this section. The success of a FLOSS project depends on
its ability to attract new developers [BGD07; CM07; ACB09], which is only possible with
Low Contribution Barriers. There are three other, more specific FLOSS patterns in this
category, which help to achieve Low Contribution Barriers. Each tackles a specific modification
barrier and presents a technique to lower it. Specifically, Preconfigured Build Environment lets
newcomers skip the sometimes cumbersome setup of the development environment. Unit Tests
for Contributors allow newcomers to test their modifications before they publish them. Low-
Hanging Fruit particularly reduce the essential difficulty of a contribution, allowing newcomers
to choose a problem suiting their abilities.

Both a Bazaar Architecture and an Exposed Architecture help developers to integrate new
features into the software and therefore foster Low Contribution Barriers. Similarly, Cleanup
Before Publishing reduces the work required for a modification. Some developers go through
a phase of being active users before they become developers [YK03; Her+06]. Support the
Community helps to grow an active user base and provides a joining script with Low Contribution
Barriers for these active users.

102

3.2 Categories of FLOSS Patterns

Low-hanging
Fruit [HWG10]

Unit Tests for
Contributors

[WHG13]

Preconfigured
Build Environment

[WHG13]

Low Contribution
Barriers [HWG10]

Bazaar Architecture
[HWG10; WN13]

Exposed Architecture
[HWG10]

Support the
Community [Wei15]

Cleanup Before
Publishing [Lin10]

Tools for New
Developers

Architecture

Cultivate a User
Community

Publish Closed
Sources

Figure 3.10: Pattern Map for Tools for New Developers

103

3 FLOSS Pattern Languages

Low Contribution Barriers [HWG10]

(also known as User Contributions [HWG10])
Problem: The existing developers cannot fulfill the expectations of the grown user base.
Solution: Lower the contribution barriers to your FLOSS project, so your users can satisfy their
demand themselves.
Verification: A FLOSS project implementing this FLOSS pattern regularly receives source code
contributions from developers that had not contributed source code to the FLOSS project before.
Developers stayed with the Linux kernel projects for 17 months on average [HNH03], so in order
to at least hold a steady number of developers, the Linux kernel projects have to recruit 1

17 of all
current developers every month. More generally, this FLOSS pattern is considered fulfilled if
at least 5 % of all active developers in any month were newcomers. Developers are considered
newcomers in a given month if they contributed source code to the FLOSS project for their first
time in this month.

Preconfigured Build Environment [WHG13]

Problem: Newcomers get stuck when setting up the build environment.
Solution: Provide a Virtual Machine with a preconfigured build environment.
Verification: A FLOSS project must provide a download package supporting the build to realize
this FLOSS pattern. The download package contains all build tools and dependencies or must at
least automatically download all missing dependencies. Except from starting a Virtual Machine
(VM) or installation script, the first build must not require more steps than later builds.

Unit Tests for Contributors [WHG13]

Problem: Newcomers avoid modifications as they are afraid to introduce new bugs.
Solution: Provide easy access to unit tests even for newcomers.
Verification: To successfully apply this FLOSS pattern, the source code must contain unit tests.
The unit tests do not need configuration except for the configuration of the application under test
itself. Alternatively, a CI system builds and tests all commits. In this case, it must build and test
even pending commits from newcomers.

Low-hanging Fruit [HWG10]

Problem: Newcomers cannot work on the FLOSS project’s issues because they have too much
to learn before they could be helpful.
Solution: Mark some issues as easy and leave them open for newcomers.
Verification: The FLOSS pattern is applied if some of the issues in the issue tracker are tagged
“good first bug” or with an equivalent phrase. A separate list of tasks for newcomers also fulfills
this FLOSS pattern.

104

3.2 Categories of FLOSS Patterns

3.2.8 Empower the Most Suitable

FLOSS licenses ensure that there is no legal owner of the software who has the exclusive rights
to decide how to develop the FLOSS component. Legal power over a component is the primary
subject of the FLOSS patterns in the category Licensing and also of Donate Code.

Nevertheless, there is usually a community around any FLOSS application with a social
hierarchy that determines who has social power in the FLOSS project. The core developers and
maintainers rank highest in this hierarchy and decide about the direction of the project [YK03].
The FLOSS project’s power model determines who these maintainers are. Figure 3.11 shows
FLOSS patterns describing these power models. SingleMaintainer and Meritocracy are very
common basic models that exclude each other, with only special exceptions. When organizations
Run a Tight Ship on FLOSS projects, the locus of power is outside the FLOSS project’s volunteer
community.

A SingleMaintainermay transfer power over a FLOSS project to a successor with a Maintainer
Handover. When multiple companies want to Pool Resources, they typically use a Meritocracy
to direct the corresponding FLOSS project.

Single Maintainer
[HLG14]

Meritocracy [HLG14]
Run a Tight Ship
[Lin10; Wei11]

Maintainer
Handover [HWG10]

Pool Resources
[Wei09;

Wei10; Wei11]

Z

Empower the
Most Suitable

Figure 3.11: Pattern Map for Empower the Most Suitable

Run a Tight Ship [Wei11]

(also known as Contributor Agreement [Lin10])
Problem: How do you keep control of the project’s direction?
Solution: Maintain full ownership of the code.
Verification: Power over the FLOSS project does not stem from inside, i.e. the development team,
but from an organization not originating in the development team. This is the case if a commercial
organization holds the copyright over the code and requires non-employed contributors to transfer

105

3 FLOSS Pattern Languages

copyright non-exclusively to the commercial organization. It is also the case if the commercial
organization pays the FLOSS project’s maintainers for maintaining the FLOSS project and holds
copyright over name and logo.
De-duplication: The solution of Run a Tight Ship [Wei11] describes two alternatives for its
realization: Either write all source code yourself or let all external contributors transfer the
rights to you. The latter possibility specifically refers to Contributor Agreement [Lin10] by
its previous name Assign Copyright. Writing all source code yourself can be seen as a special
case of Contributor Agreement in which no external contributors exist. This special case is
not very interesting for a pattern on FLOSS, so it does not deserve a FLOSS pattern on its own.
Consequences, examples, as well as related patterns for the two FLOSS patterns intersect to a high
degree, further substantiating their equivalence. However, Contributor Agreement generally
puts more emphasis on legal aspects of the pattern, while Run a Tight Ship emphasizes how to
keep the power over the FLOSS project. Ultimately, each FLOSS pattern cannot exist without the
other, making them two aspects of the same FLOSS pattern.

Maintainer Handover [HWG10]

Problem: How can the development pace be kept when the FLOSS project is about to lose its
maintainer?
Solution: Appoint a new maintainer if you do not want to continue maintaining the FLOSS
project.
Verification: For each FLOSS project, it will be analyzed whether there was a change of
ownership. Possible outcomes are

no change, when the current maintainer is still the original maintainer,

smooth transition, if no or only few problems with the new maintainer have occurred,

abandoned, when nobody maintains the FLOSS project anymore,

branched, if the maintainer left the FLOSS project, but instead of a handover, a new develop-
ment branch was initiated, and

complicated transition, when the FLOSS project has been taken over, but the transition was
not smooth and ended in or lead to conflicts. A significant share of users or developers
must have left the project because of the transition.

Pool Resources [Wei10]

(also known as One Solution [Wei09] and Good Enough [Wei09], No Single Vendor in
Charge [Wei10], and Foundation [Wei11])
Problem: How do you attract other companies to contribute to a FLOSS project that you have
created?
Solution: Pool resources with other companies to jointly develop a common stack of FLOSS
assets that the companies can all build on to develop their individual products.

106

3.2 Categories of FLOSS Patterns

Verification: This FLOSS pattern applies to all FLOSS projects maintained by a foundation.
For other FLOSS projects, the FLOSS pattern may still be fulfilled if the FLOSS project

has no legal form, for example, participating companies may cooperate via a GitHub organi-
zation [P*Nea10]. In this case, the FLOSS pattern is also considered applied when external
organizations with commercial interest in the FLOSS project contribute at least 20 % of all
commits together. All organizations are considered external except for the company with the
most contributions, so this main company does not count to the 20 % of commits.
De-duplication: In its earliest description, the FLOSS pattern already has two names, One
Solution and Good Enough [Wei09]. This FLOSS pattern helps to decide which parts of
a product should be kept closed and which parts should be offered as FLOSS. This has the
advantage that externals contribute to the FLOSS parts. Pool Resources [Wei10] goes one step
further and specifies that likely candidates for these externals are competitors, as they most
likely have the same use cases and therefore need the same components for their software. The
same paper shortly mentions No Single Vendor in Charge [Wei10], which was published later
as Foundation [Wei11]. The pattern Foundation is specific about the legal framework when
implementing Pool Resources and the two papers depict them as two separate patterns, with
Pool Resources being applicable after Foundation.

The strongest argument to treat them as a single FLOSS pattern is that neither can exist without
the other: It is useless to have a Foundation maintain a FLOSS project in the sense of the FLOSS
pattern Foundation if there are no external contributors who Pool Resources with the Foundation.
As described above, the papers themselves describe the dependency in the other direction already:
It is unlikely that competitors Pool Resources with you if you remain in control over the source
code and there is no Foundation. All three versions of the FLOSS pattern include Eclipse as an
implementation example, further supporting that the three versions describe different aspects of
the same FLOSS pattern instead of separate FLOSS patterns.

Single Maintainer [HLG14]

(also known as Benevolent Dictator [HLG14])
Problem: How can a FLOSS project quickly create an organizational structure to enable commu-
nity contributions?
Solution: Concentrate all power in the FLOSS project in the hands of one capable individual.
Verification: The FLOSS project’s maintainer is a single natural person. If the community
discusses problems, for example on the mailing list, the maintainer still has the last word on every
discussion. There can be community decision processes, but they are only recommendations for
the maintainer and the maintainer sometimes decides differently.

Meritocracy [HLG14]

Problem: How should key decisions of the FLOSS project be made such that the maximum
number of developers identify with the decisions?
Solution: The more a person contributes to the project, the more influence is granted to that
person.

107

3 FLOSS Pattern Languages

Verification: The FLOSS project has formal statutes that specify one or more committees. The
committees elect each other or themselves and steer the project.

3.3 Patterns Lowering Contribution Barriers

This section contains six full FLOSS patterns that lower contribution barriers. The first four
of them belong to the category Tools for New Developers. They depend on four other FLOSS
patterns in other categories that help to lower contribution barriers. This section includes two
of them, Bazaar Architecture and Exposed Architecture, both of which belong to the section
Architecture. The two FLOSS patterns Cleanup Before Publishing [Lin10] and Support the
Community [Wei15] referred to in Section 3.2.7 also lower contribution barriers and thematically
fit into this section. However, I am not the author of these two FLOSS patterns, so they are not
part of this section.

There are multiple formats for patterns. This paper uses a format similar to Kelly’s pattern
format [Kel06]. Each FLOSS pattern comprises

• the name of the FLOSS pattern,

• an icon symbolizing the FLOSS pattern,

• the context in which the FLOSS pattern may be applied,

• a short description of the problem that the FLOSS pattern solves,

• forces that implementors of the FLOSS pattern have to consider, usually making the
problem more difficult to solve,

• the solution of the problem,

• good and bad consequences of the solution that are labeled with a! and%, respectively.
Each consequence describes the effect of applying the solution on a force,

• the known uses and sources serving as examples for the application of the FLOSS pattern,

• related patterns that are influenced by or influence the FLOSS pattern at hand, and

• objective verification criteria to check whether a FLOSS project applies the FLOSS pattern.
These are the same criteria as those in Section 3.2.

The target audience of the FLOSS patterns presented in this section are maintainers of FLOSS
projects. They may implement the solution described in the FLOSS pattern and therewith solve
the problem described in the FLOSS pattern. Thus, FLOSS patterns directly address this target
audience, especially in the solution part and use “you” to refer to FLOSS project maintainers.

108

3.3 Patterns Lowering Contribution Barriers

3.3.1 Low Contribution Barriers1

also known as User Contributions

Context:

When a project gathers momentum, a constant flow of user requests, questions and comments
comes in.

Problem:

The existing developers cannot fulfill the expectations of the grown user base.

Forces:

• 90 % suitability. The FLOSS project can solve a problem for its potential users, but not
perfectly. Each user has additional requirements that the component not yet fulfills.

• High demand of many users. The success of a FLOSS project depends on the number
of users it can attract [CAH03; YK03; SSN09], but more users also have more different
feature requirements. The benefits of a larger user base like more and more detailed bug
reports and more code contributions from those users may be lower than the additional
effort required to meet their growing demand.

• Dichotomy of domain and implementation expertise. Users have inherent knowledge
of what the project should deliver, but the developers cannot access this knowledge di-
rectly [Bro10, Chapter 15].

• Project-specific development expertise. Some of the users are experienced software
developers and know the programming language and technologies used in the FLOSS
project from other projects already. They are willing and able to develop patches that would
satisfy the requirements of themselves and other users, but they have little or no knowledge
about the architecture and coding style of the FLOSS project.

• Goal differences. The core developers may have their own ideas where the project should
be going, but these ideas might be different from the users’ requirements.

1A preliminary version of this section was published previously [HWG10].

109

3 FLOSS Pattern Languages

Solution:

Lower the contribution barriers to your FLOSS project, so your users can satisfy their
demand themselves.

As described in Section 2.8, each FLOSS project offers different joining scripts to recruit new
developers. The demographic background of a newcomer is an important factor to determine
which joining script the newcomer uses. The joining script determines which contribution barriers
apply. The demographic background also determines the newcomer’s perspective on the FLOSS
project and thereby the extent by which each contribution barrier hinders the newcomer.

It is effective to recruit developers from the same audience that also creates the demand,
because these developers know the requirements already. Thus, if for example private users are
not yet satisfied with the FLOSS project and have additional requirements, then the contribution
barriers relevant for private users should be lowered. As private users usually become active users
before they become developers [Her+06], you should take care of your issue tracker, so your
users can report errors and request new features. You should also create and maintain support
forums and answer to support requests of your users.

If, on the other hand, organizations use your component and adapt it to their needs, then
the newcomers are Strictly Pragmatic Patchers as defined in Section 2.6.5. As shown, these
newcomers are especially sensitive to modification barriers. These newcomers must be able to
access the source code of your component easily and they must be given the right to change it.
Describe how to build the software from the source code and provide tools that help with this task.
Explain your own requirements for code patches like coding style and design considerations.

If your FLOSS project is a library or framework, your users have expertise with the program-
ming language and IDE. You should focus on submission barriers in order to have them submit
their modifications back to your FLOSS project. In all cases, you should clearly point out how to
contribute.

When you receive contributions, take them seriously. If a patch has insufficient quality, help
the contributor to improve the patch. “Stroke” your users whenever they send in patches and
feedback [Ray00].

Consequences:

The consequences are discussed in more detail in Section 1.3.7.

! Users are developers. Users can adapt the component to their own need if the component
is easy to modify. They contribute these modifications back to the FLOSS project if patches
are easy to submit.

! The long tail. When the number of users is large enough, then only a small fraction
of users needs to contribute back in order to handle a significant share of the project’s
workload. Their contributions can easily equal or exceed the workload that the core
developers contribute.

! Implicit requirements engineering. Having users and developers in a double role allows
projects to exist without “precise specifications or requirements documents” [GA04]. The

110

3.3 Patterns Lowering Contribution Barriers

requirements specification phase of the release cycle can be skipped, which enables more
frequent releases and a higher fraction of the effort put into the FLOSS project can be used
for the actual development.

% Brooks’s Law. The core developers now need to split time between reacting to input from
newcomers and pursuing their own scheme. They need to help newcomers adapt code
contributions to the FLOSS project’s coding style and filter out the code that does not work
together with the FLOSS project’s architecture. This mentoring may cost more work time
than it provides [Bro95, Chapter 2].

% Lost gatekeeper. Newcomers acquire influence on the software development and therefore
the core developers lose some of their influence. The core developers need to open up for
other people’s ideas. If the newcomers are less perspicacious than the core developers due
to lowered contribution barriers, their influence may have a negative impact on the FLOSS
project.

Known Uses and Sources:

This pattern is one of the key elements of what Raymond [Ray00] described as the bazaar
development style. Accordingly, Raymond’s own project “fetchmail” employed the FLOSS
pattern and also the Linux kernel [P*Lin15], Raymond’s primary object of observation. Other
examples include Mozilla Firefox [P*Moz15m].

Gacek and Arief identified a characteristic “Developers are always users” and found it to be
common among all FLOSS projects [GA04]. Raymond also advises that “treating your users as co-
developers is your least-hassle route to rapid code improvement and effective debugging.” [Ray00,
advice six].

Other research suggests that in fact only part of the successful FLOSS projects employ this
pattern: On the one hand, Krishnamurthy [Kri02] has shown that the number of developers in
successful FLOSS projects increases over time: The age of a FLOSS project in months correlates
with the number of its developer with a coefficient of 0.228 in his data set. On the other hand,
Figure 4 in his article reveals that the major part of FLOSS projects that have been running
for longer than 20 months still do not have more than five developers. This suggests that these
projects have recruited none or only few developers and thus, they have not successfully used
the pattern Low Contribution Barriers, at least not to the extent that users became developers.
Capiluppi and Michlmayr [CM07] showed that FLOSS projects may have two different statuses.
If they are in a “cathedral” status, a more or less constant group of developers creates the source
code. They reach a “bazaar” status if more developers join than leave the FLOSS project, and
then the number of developers as well as the amount of their output keeps growing. They also
present Wine [P*cod15] as a FLOSS project with “bazaar” status, so Wine also implements this
FLOSS pattern.

Related Patterns:

Section 2.9 summarizes important contribution barriers. The following FLOSS patterns lower
contribution barriers, especially the two most important ones listed in Section 2.9:

111

3 FLOSS Pattern Languages

While Exposed Architecture helps newcomers to understand the overall structure of the
FLOSS project, a Bazaar Architecture reduces the architectural complexity in the first place.
Both let newcomers more quickly find the right location in the source code that they shall modify
and therefore lower the most important contribution barrier listed in Section 2.9, difficulties to
understand the structure of the FLOSS project.

The FLOSS pattern Preconfigured Build Environment lowers modification barriers especially
for those newcomers who do not want to hassle around with the technical details of the FLOSS
project. It reduces the amount of work necessary for the often frustrating task of setting up and
configuring a developmnet environment.

Low-hanging Fruit reduces the essential difficulty to modify the software, but only for those
newcomers who do not already have a specific modification in mind. This lowers a modification
barrier and lets newcomers more easily Find the Code (see Section 2.4) to be modified if it is
used appropriately.

Unit Tests for Contributors lets newcomers more easily test their modifications before
submission. This can reduce submission barriers, as it reduces the probability that reviewers
request improvements on the patch from newcomers before the patch is accepted.

If a closed source project is about to be published as a FLOSS project, Cleanup Before
Publishing [Lin10] helps to lower the modification barrier induced by incomprehensible source
code.

The pattern Support the Community [Wei15] lowers barriers to become an active user. These
are not contribution barriers as defined in Section 1.3, but as a consequence, eventually more
volunteer developers will join the FLOSS project.

Verification:

A FLOSS project implementing this FLOSS pattern regularly receives source code contributions
from developers that had not contributed source code to the FLOSS project before. Developers
stayed with the Linux kernel projects for 17 months on average [HNH03], so in order to at least
hold a steady number of developers, the Linux kernel projects have to recruit 1

17 of all current
developers every month. More generally, this FLOSS pattern is considered fulfilled if at least 5 %
of all active developers in any month were newcomers. Developers are considered newcomers in
a given month if they contributed source code to the FLOSS project for their first time in this
month.

112

3.3 Patterns Lowering Contribution Barriers

3.3.2 Preconfigured Build Environment2

Context:

Your FLOSS project is growing already and wants to benefit from Low Contribution Barriers.
Maybe, you Bootstrapped [Wei10] your development by building on other FLOSS compo-
nents. The technical structure and the number of dependencies of the FLOSS project require a
sophisticated build process that needs substantial configuration effort.

Problem:

Newcomers get stuck when setting up the build environment.

Forces:

• Disproportionate configuration effort. As shown in Chapter 2, setting up the devel-
opment environment is an important modification barrier. The build environment is an
essential part of the development environment. Setting up the build environment is not
easier if the proposed modification is small. Therefore, the smaller a proposed modification
is, the worse is the ratio between required effort to build the modification and the benefit of
the modification. Thus, this encumbers especially small patches, but these are especially
welcome to FLOSS projects [WND08].

• Reuse creates dependencies. Reusing existing libraries is often more effective than re-
developing the required functionality. Reusing FLOSS libraries from other projects is
therefore common and desirable among FLOSS projects. FLOSS projects can Boot-
strap [Wei10] using other FLOSS projects, but with every reused library, there is an
additional dependency. Additional dependencies complicate the build process and its setup
becomes more difficult. As the dependencies may have other dependencies, the transitive
closure of all dependencies can be much larger than the number of direct dependencies.

• Platform diversity. In company environments, a central Information Technology (IT)
department often manages the configuration of all computers. Consequentially, the number
of different configurations of the developers’ computers is small and build configurations

2A preliminary version of this section was published previously [WHG13].

113

3 FLOSS Pattern Languages

working on one machine are likely to also work on others. In FLOSS projects, however, the
developers have no common computer configuration. Hence, build processes often require
adaption to run on a specific computer.

• Changing build processes. As a FLOSS project evolves, it starts to depend on additional
libraries, support new platforms, and acquire new features. Each of these changes also
changes the build process. The FLOSS project flourishes, but developers that once have
mastered the build process and have gotten their computers to build the main component
constantly have to keep pace with configuration changes. This requires a constant effort on
the developers’ side. Developers that only have little spare time to put into the project are
left behind.

• Prior experience. Joining developers may have experience with similiar software devel-
opment projects. They profit from this experience and maybe they can even partly reuse
their existing build systems to build the component of the joined FLOSS project. This
decreases the effort to set up the build environment, but it does not change the effort for
joining developers without experience in the specific technology used by the joined FLOSS
project.

• Interpreted languages. Interpreters execute source code without building binaries. For
example, most standard web browsers contain interpreters to run JavaScript programs.
No build environment must be set up for FLOSS projects written in JavaScript, but many
FLOSS projects are written in other languages, as some types of components are difficult
or impossible to write in interpreted languages. Examples are Operating System (OS)s
that must be compiled to machine code and virtualization environments that themselves
interpret JavaScript or similar languages.

• Nobody in charge. Newcomers suffer from build configurations that are difficult to set up,
but they are not competent enough to simplify these build configurations. Core developers
have the abilities to simplify the build configurations but they suffer only little from those
build configurations, as they have configured their build environment already. Nobody has
both the personal motivation and ability to simplify the build configurations and, thus, the
build configurations stay difficult to set up.

Solution:

Provide a Virtual Machine with a preconfigured build environment.
Put all dependencies and required build tools into one package, so interested developers have to

download only a single file to build your component. You should strive to minimize configuration
time for the build environment. Still, there are multiple alternatives to realize this requirement,
depending on the type of component your FLOSS project develops.

As the first alternative, you may in fact set up a build environment on a VM and ensure that
this build environment builds your component without any additional configuration. You can then
offer the VM as a download on the FLOSS project website. If possible, use a widely accepted
format for the VM, so all interested developers may start the VM on their host machines.

114

3.3 Patterns Lowering Contribution Barriers

The second alternative is only a subsystem instead of a whole VM. Examples for such subsys-
tems are Cygwin [P*Red15] and MinGW/MSYS [P*Min08]. These subsystems provide Linux
functionality on Microsoft Windows. Because such a subsystem is still difficult to configure, you
can preconfigure a subsystem with the tools and dependencies required to build your FLOSS
project’s component and offer it as a download on the FLOSS project’s website.

Third, an even leaner solution is a portable IDE as the download package. This is of course only
possible if an appropriate portable IDE exists for the programming language and environment of
the FLOSS project. Additionally, all required libraries and other dependencies must be packaged
into one package with the IDE – again, this is not possible for all programming languages and
environments. Such a portable IDE depends only on data within the package. For this solution, it
may be necessary to package IDEs in multiple different configurations. For example if every IDE
package supports only a single OS, but the developers of the FLOSS project use different OSs,
you should provide one IDE package for every OS.

For some FLOSS projects, a well made Makefile [P*Fre14], a Microsoft Visual Studio project
file [P*Mic16a], or a similar type of build script suffices. This is arguably a fourth alternative
to implement this pattern. Instead, these cases may be considered FLOSS projects that do not
need to implement this pattern, as their native build processes are simple enough already. A build
script is usually the first step to carry out one of the other alternatives.

Consequences:

! Lowered contribution barrier for newcomers. Build VMs ease the build of the compo-
nent. Newcomers experience lower barriers for their first contribution and are therefore
more likely to also contribute smaller modifications that have not been worth the effort
before. The FLOSS project therefore attracts more newcomers.

! One package for everything. The build VM contains all dependencies of the FLOSS
project along with the other build tools. Newcomers can immediately build the component
without searching for and building dependencies first.

! Cross-platform support. Build VMs provide an additional layer between the build scripts
and the developers’ host OS. Therefore, the developers’ host OSs are less important now
and developers may run any OS and still join the FLOSS project.

% Outdated build VMs. Maintaining build VMs takes time. If the core developers neglect
this maintenance, the build VMs become outdated and cannot build the latest versions of
the component [P*Moz09].

% VM proliferation [Pri08]. Developers who are active in a high number of FLOSS projects
or subprojects may have to store a lot of build VMs from each of these projects or subpro-
jects. They may lose track of their build VMs and spend time searching for the right build
VM for their current project. As a consequence of this confusion, they may download the
same build VMs multiple times which even worsens the problem.

! Easy access to complex components. Build VMs compile even complex components

115

3 FLOSS Pattern Languages

without much configuration effort if they are preconfigured correctly. Newcomers have
little trouble to modify these complex components.

! Barrier to become a core developers. While build VMs suffice for smaller source code
modifications, they may lack the flexibility needed for larger source code modifications.
Newcomers still need to get in touch with the details of the build processes if they want
to become developers. Still, build VMs are an intermediate step on the way to a regular
developer and make the slope more gentle, although they do not lower the overall work
necessary.

Known Uses and Sources:

For Mozilla Firefox developers using Microsoft Windows as their operating system, Mozilla
provides a package called MozillaBuild. MozillaBuild contains development tools, the MSYS
environment to provide Unix functionality under Windows, and the programs necessary to
compile the Firefox source code, among other things [P*Moz15l].

Another example are the preconfigured download packages for the Eclipse IDE. At least for
simple plugins, the package Eclipse for RCP and RAP Developers contains all prerequisites to
work on the source code of plugins [P*The16].

Related Patterns:

A successful build is only the first step to Low Contribution Barriers. Newcomers may fail
to fix complicated defects or add advanced features at the beginning. These newcomers need
Low-Hanging Fruit to get started with the development on the FLOSS project. If the FLOSS
project has a Bazaar Architecture, joining developers will integrate their modifications into the
existing source code more easily – and if the FLOSS project also has an Exposed Architecture,
they will even know where to integrate these modifications.

Verification:

A FLOSS project must provide a download package supporting the build to realize this FLOSS
pattern. The download package contains all build tools and dependencies or must at least
automatically download all missing dependencies. Except from starting a VM or installation
script, the first build must not require more steps than later builds.

116

3.3 Patterns Lowering Contribution Barriers

3.3.3 Unit Tests for Contributors3

Context:

You maintain a FLOSS project with Low Contribution Barriers that has grown to a complexity
that makes it difficult to foresee all side effects of changes. This applies especially to newcomers,
who have not yet acquired insight in the interdependencies between the FLOSS project’s modules.

Problem:

Newcomers avoid modifications as they are afraid to introduce new bugs.

Forces:

• Fixes with hidden defects. After developers have modified the source code, they want to
check whether their modification behaves as intended. For the fix of an easily reproducible
defect, this check guarantees that the modification really fixes the defect as it was supposed
to. But even in this simple case, the modification may still cause unpredicted side effects
that induce new defects in the component.

• Embarrassing mistakes. Submitting patches back to the FLOSS project serves as a defect
check, because the core developers review submitted patches. Newcomers might be willing
to invest their resources for the submission of their patches, but they are afraid to publish
erroneous patches, as it is embarrassing for them when others can see their mistakes. This
was mentioned as a submission barrier in Section 2.4.3, although only infrequently.

• Agile architecture. The developers are also users. If the developers find a new use case
for the application, they might immediately start to develop an additional feature for the
component, changing the architecture and interfaces on the way. This allows the FLOSS
project to quickly react to emerging market demands, but the FLOSS project must be
managed and the software architecture designed in a way that allows developers to change
the component design quickly in any direction – even if the developers had only been users
before they started to work on the new feature.

3A preliminary version of this section was published previously [WHG13].

117

3 FLOSS Pattern Languages

• Platform specific bugs. Developers may intensively test a patched component on their
platforms, but this does not ensure that the patches are free of defects. The patch can be
incompatible to platforms that the developers had no access to for their tests.

• Test effort. Developers may quickly run superficial, manual tests, but it requires much
more time to write automated unit tests.

• Understanding patches. If there are enough beta testers or co-developers, they will
quickly find bugs that recent modifications have induced, but then the users who experience
the malfunction need to put effort in reproducing the malfunction and finding its cause.
Even if they can track down the cause to a single patch, they still have to understand the
rationale of the patch before they can fix the defect [Tao+12].

Solution:

Provide easy access to unit tests even for newcomers.
For applications that run on a variety of platforms and configurations, automated unit tests are

the only way to have at least some basic checks that these platforms and configurations are still
working. A single developer cannot cope with more than a few different platforms. In these cases,
provide test servers for all supported platforms and configurations. Even if it is a high effort at
the beginning, this pays off quickly, as manual tests may be reduced.

Regular tests are best achieved with a CI systems like Jenkins [P*Jen15], Hudson [P*Ora15a],
or CruiseControl [P*Cru15]. These systems support different test frameworks, so later addition
of automated tests is easy. CI is also available as a service which is often free for small FLOSS
projects, for example Travis CI [P*Tra15] and CircleCI [P*Cir15a].

However, it is insufficient to restrict CI services to the core developers and the main develop-
ment branch. The earlier a bug is detected, the easier it is to fix [Fow06]. Therefore, newcomers
shall also be able to run unit tests. Include the code for unit tests into your Preconfigured Build
Environment, so newcomers can run these unit tests locally on their machines. A Preconfigured
Build Environment is also a good starting point for the configuration of a CI system, since you
can reuse your build scripts.

Consequences:

! Second line of defense. Patches may induce side effects not detected by any test. In this
case, the tests have been useless. However, there are cases where the tests detect problems
that without the tests would have gone into the release of the application. Overall stability
is therefore increased.

! Confident developers. As all patches are tested before they are published, their developers
are confident that the patches do not contain obvious defects. The patch developers know
that even if the patches introduce new defects, it’s a joint mistake, as also the test developer
has missed a test case. Joint mistakes are less embarrassing and submitting a patch is less
fearsome.

118

3.3 Patterns Lowering Contribution Barriers

% Test dependencies. Although the tests are not delivered as part of the component release
and they are not needed for the actual functionality, they are still part of the software
architecture. The tests therefore add complexity to the architecture and all main components
have tests that depend on these main components. Thus, interface or architectural changes
now also require modifications to the tests. This reduces flexibility as more work is required
for such types of changes. Also, the existing tests cannot detect flaws introduced with
architectural changes, because the new interfaces require new tests.

! Platform compatibility. Automated build systems create ports of the application for all
target platforms. Thus, the applications are tested on all of these target platforms and the
application is guaranteed to provide at least the tested functionality on all platforms.

! Tests as examples. Beside the increased stability, developers benefit from tests if they use
the test source code as example source code for other purposes. The effort required to write
the tests therefore pays off faster.

! Fixes for oneself’s defects. Some defects in the patches are now detected early, so the
original developers of the patches may fix these defects before any other developers come
into contact with the defect. As the original developers of the patches know the rationale
and the structure of the patch, they need much less effort to fix the defects than other
developers would have needed.

Known Uses and Sources:

Mozilla tests all changes in their code base automatically [P*Moz15i]. Travis-CI [P*Tra15] and
CircleCI [P*Cir15a] provide CI with tests for FLOSS projects hosted on GitHub. FLOSS projects
like The Legion of the Bouncy Castle [P*Leg15] include unit tests in their source code packages.
Facebook provided unit tests for developers of facebook apps and plugins, like tests for iOS
apps [P*Fac15] and for PHP plugins [P*Fac14].

Related Patterns:

Unit tests allows fast and automated tests of the application. This is a precondition for Frequent
Releases [Wei09], as every release requires tests. Frequent Releases would require much manual
effort if no automated tests are in place. Consider more intensive tests for the less frequent,
official releases in a Parallel Development [Wei09] strand.

Verification:

To successfully apply this FLOSS pattern, the source code must contain unit tests. The unit
tests do not need configuration except for the configuration of the application under test itself.
Alternatively, a CI system builds and tests all commits. In this case, it must build and test even
pending commits from newcomers.

119

3 FLOSS Pattern Languages

3.3.4 Low-hanging Fruit4

Context:

The FLOSS project grows and gets more and more complex. The core developers grew up
with the project’s code and know how to handle it. Because of Low Contribution Barriers,
newcomers approach the FLOSS project who are yet missing the overview over the FLOSS
project’s structure.

Problem:

Newcomers cannot work on the FLOSS project’s issues because they have too much to
learn before they could be helpful.

Forces:

• No Own Need. As shown in Section 2.3 and discussed in more detail in Section 2.6.4, about
one third of the newcomers approach a FLOSS project without a specific modification
for their own in mind. Instead they hope that the FLOSS project offers programming
opportunities. They search the FLOSS project for open issues, but they join only if they
find issues appropriate for them.

• Opportunity for beginners. As evaluated in Section 2.2.4, about one third of all new-
comers are students, and Learning is the primary modification motivation for about one
fifth of all newcomers, as shown in Sections 2.3. Thus, there is a considerable fraction of
newcomers who are not yet professional software developers and use FLOSS projects to
improve their programming skills. They want to work on interesting, real issues, but will
become frustrated if the solution is too difficult for them.

• Lack of project-specific knowledge. The FLOSS project’s user base may include experi-
enced developers who would be valuable for the FLOSS project if they joined, but even
these experienced developers lack project-specific knowledge. As shown in Section 2.6.2,
general SE knowledge or even experience with other FLOSS projects is of little help with
contribution barriers.

4A preliminary version of this section was published previously [HWG10].

120

3.3 Patterns Lowering Contribution Barriers

• Survival of the hardest. When developers work on the open issues of a project, solving
easy issues gives a more immediate sense of achievement and leads to quicker improve-
ments. These tasks may therefore seem to be the ones to be worked on first. However, if
the experienced developers quickly solve all easy problems, only the difficult ones are left
for newcomers.

Solution:

Mark some issues as easy and leave them open for newcomers.
Experienced developers of the project shall focus on the hard tasks that only they can solve.

Leave some of the easy tasks open. Newcomers are more motivated to work on these problems
and therefore pass the Onboarding phase [SGR14] more smoothly. Choose the tasks to be left
open with care: They should not be so critical that the software quality suffers much until they
are fixed, and they should not be so urgent that the core developers are forced to fix them because
none of the newcomers have worked on them in time.

You should announce easy tasks left open for newcomers on the FLOSS project’s web site.
This could be a list of tasks for newcomers or there could be a tag for tasks in the issue tracker
that indicates which tasks are suitable for newcomers. Name an experienced developer as mentor
for each newcomer task. The mentor will provide help for the newcomer who wants to work on
the announced task.

A first code contribution is only the first step in the Onboarding phase. You should encourage
newcomers to contribute further. If the source code has insufficient quality, core developers
should not take over the issue and write new, higher quality source code themselves. Instead,
they should point out the weaknesses of the original contribution, give examples of source code
meeting the quality standards, and provide help with the tools that the other developers are using
for this kind of problem. It is the primary goal to teach newcomers the abilities of a developer of
the FLOSS project and resolving the issue is only secondary.

Consequences:

! Joining script for issue searchers. Those who try to join a FLOSS project by searching
for an issue to work on now experience a lower modification barrier. They can select
issues specifically suited for newcomers. Over time, newcomers learn more and more
about the FLOSS project and contribute more regularly. In the long term, there will be
a higher number of developers with project knowledge and the FLOSS project improves
more quickly.

! Easier solution. Highlighting easy issues reduces the modification barrier for creating the
Solution as described in Section 2.4.2. Methods to reduce these essential modification
barriers are sparse [Bro87].

! Less overview required. It is especially interesting to highlight those issues as appropriate
for newcomers that require little knowledge about the general architecture of the FLOSS
project and its code structure. This lowers the modification barriers Find the Code and

121

3 FLOSS Pattern Languages

Understanding the General Structure of the code, which are among the most important
contribution barriers, as shown in Sections 2.4.1 and 2.4.2.

% Short-term losses. In the short term, core developers spend more time instructing new-
comers than they save by not working on the easy tasks. The component will gain less
features and bug fixes temporarily, since there are issues that are easy to implement, but
which are left open on purpose. Additionally, some issues seem to be easy, but they are
difficult. These issues will be unfinished for a long time, because newcomers fail to solve
them.

% Lower retention. Core developers now spend more time on difficult tasks. While this is a
better use of their valuable time, they finish tasks only seldom. This can be discouraging.

Known Uses and Sources:

The Google Summer of Code [P*Goo15a] is a program that encourages students to work on
FLOSS projects. Every participating FLOSS project clearly defines a work package that can be
solved in a three month time frame. The students are supported by mentors from the FLOSS
projects that help to get started with the work. The students gain programming practice and the
FLOSS projects get additional contributions. Also, the students may gain knowledge about the
FLOSS project and may stay as developers with the project.

One research thread in End User Programming (EUP) tries to reduce the big leap from a
user to a developer into a “gentle slope” [MSH92, p. 382]. Naramore suggested to “Save some
low-hanging fruit for beginners” [Nar10], so new developers of FLOSS projects incrementally
learn what is needed to participate in the project. This incremental learning in a gentle slope is a
joining script with low contribution barriers for those about one third of newcomers who actively
seek issues to be solved, as described in Section 2.6.4.

Related Patterns:

This pattern is one method to reduce modification barriers and therefore achieve Low Contribu-
tion Barriers. Bazaar Architecture can help to encapsulate issues such that they are easier for
newcomers. Alternatively or additionally to this FLOSS pattern, you might document an Exposed
Architecture, so your users can figure out how to fix the difficult tasks on their own.

Verification:

The FLOSS pattern is applied if some of the issues in the issue tracker are tagged “good first
bug” or with an equivalent phrase. A separate list of tasks for newcomers also fulfills this FLOSS
pattern.

122

3.3 Patterns Lowering Contribution Barriers

3.3.5 Bazaar Architecture5

also known as Modular Architecture [WN13]

Context:

The FLOSS project strives for Low Contribution Barriers and more and more newcomers try to
extend the component developed by the FLOSS project.

Problem:

It is difficult for newcomers to add innovative features that have not been anticipated and
require modifications of the architecture.

Forces:

• Unsupported code. Features require support and maintenance that the original program-
mer of the feature can provide best. But this costs time and effort and some developers do
not want to work on the project beyond their initial contribution.

• Knowledge requirements for newcomers. Adding features can require changes in many
parts of the FLOSS project, but newcomers may not want to dig this deep into the architec-
ture.

• API for features. Providing interfaces for feature additions relieves newcomers from
learning the details of the whole architecture. They only need to understand the respective
interfaces, but the core developers have to invest their time into the development of these
interfaces.

• Modularity. When the software grows, architectural complexity increases and modulariza-
tion becomes necessary. A modularized architecture allows having one development team
for each module. The effort of communication between the development teams is reduced
if the modules are coupled loosely. Small development teams may integrate newcomers
more easily than large development teams, but newcomers nevertheless need to understand
the FLOSS project’s structure for finding the right development team to join. Joining this
small development team can still be difficult if these particular core developers happen to
be unavailable.

5A preliminary version of this section was published previously [HWG11].

123

3 FLOSS Pattern Languages

• Module dependencies. Modules break a complex system into less complex parts. Changes
to the system may require only changes to one of the modules. Thus, developers may add
features without understanding the whole system, instead they only have to understand and
change the module to which the new features belong. This is obviously easier, but other
modules may depend on the behavior of the changed module. In this case, new features
in the changed module can cause defects in other modules that the developers could not
predict just by looking on the changed module alone. Raymond observed that defects occur
at the interfaces between modules of different teams [Ray00, chapter How Many Eyeballs
Tame Complexity]. New features therefore introduce new defects.

Solution:

Plan the architecture of your software as a flat hierarchy of optional modules.
Modularity is an agreed-upon aim in software development. However, you should strive for

more than just modularity. Parnas pointed out that the decomposition of an application and its
hierarchical structure are two independent properties [Par72]. It would be contrary to the goals
of this pattern to build highly modularized software with a strict hierarchy, where all modules
in the top layers of the hierarchy depend on all modules in the lower layers. Such a cathedral
architecture [Ray00] is a top-down structure that divides the component into modules, modules
into submodules, and so on. A cathedral architecture prevents developers from changing or
removing a module in the middle or at the base of a hierarchy without changing the modules
situated higher in the hierarchy. Dependencies can prevent the reuse of individual modules of the
component in other projects.

In contrast, use a bazaar architecture that strives for a flat hierarchy with all or most modules
on the same level. Design your component to have many interfaces, but keep them optional. This
way, your component can be extended in all directions, but only a small number of modules are
required to run the component. Design the interfaces such that newcomers can add modules with
new features. Try to encapsulate the required core functionality in modules that newcomers will
not change, so new features do not collide with changes made by the core developers or other
newcomers.

One method to allow easy extension of an application with optional modules are add-on and
plug-in APIs. Users need only the core modules to use the application and choose the functionality
they need by installing additional plug-ins. Developers have a clearly defined interface to extend
the application. This is especially useful when the FLOSS project provides a central market
for developers to offer their add-ons and for users to search for these add-ons and rate them. A
market is not necessarily a bazaar, though, and the full potential of the bazaar development style
is only achieved if also the core application is modularized and loosely coupled.

The architecture of a component mirrors the structure of the organization that produced
it [Con68]. Changing the component’s architecture to a bazaar therefore requires the organization
to become a bazaar. However, a bazaar project structure does not need to be and cannot be
enforced, because freedom to leave or join the project is the key element of the bazaar project
structure. Instead, you can only foster the bazaar project structure with low contribution barriers
like a bazaar architecture.

124

3.3 Patterns Lowering Contribution Barriers

Consequences:

! Dynamic organization. The FLOSS project will now be a bazaar organization. A bazaar
organization can quickly adapt to changes in the staff, in other words the project contributors.
Even if the original developers of a module leave the project, the software as a whole will
still be maintainable: The program requires only a few core modules, all others are optional.
Furthermore, a new module replaces a neglected module without changes to other modules
if the new module adheres to the same interfaces as the neglected module.

! Newcomer contributions. Developers have an easy time adding features and joining the
FLOSS project, since they only have to learn about the interfaces they are going to use for
their new features. If any changes to the existing modules are necessary, they are limited to
the few modules whose interfaces the new feature uses.

% Development costs for interfaces. Every change may be implemented directly and some
changes may be encapsulated by an interface. Defining a new interface requires more effort
than changing it directly, but using an existing interface requires less effort. Modularity
therefore comes at the price of increased development time in the short term. Modularity
may not pay off its overhead.

! Dynamic architecture. A newly developed module can reuse the modules that already
exist. Reusing existing modules speeds up development. If the modules are reused often,
modularity can lead to saving more development time than its initial architectural overhead
costs.

! Exchangeable modules. The flat hierarchy reduces the number of dependencies, so it is
easier to replace or change a module.

Known Uses and Sources:

Plug-in APIs are common among commercial and even more in FLOSS projects. Microsoft
Outlook [P*Mic16b], Mozilla Firefox [P*Moz15c], and MediaWiki [P*Med16] are some of the
many examples.

Some projects put even the basic functions into plug-ins and reduce the main program to the
smallest core possible. This allows other plug-ins to have the same degree of functionality that
the components of the standard program have. Examples are Trac [P*tra15] with its compo-
nent architecture and the Jenkins CI system with its build steps and source control interfaces
implemented as plug-ins [P*Jen16].

In the UNIX operating system and its derivatives, there is one tool for each task and these
tools are different from each other. The tools use text streams to communicate with each other.
It is therefore easy to replace, add, or remove tools from the system while the system stays
operable. [MPT78]

Raymond [Ray00] described a development method he coined as bazaar development style
as opposed to the classical cathedral style. He indicated that the basic principles of the bazaar
development style are the “UNIX gospel” of small tools with defined purpose and the additional

125

3 FLOSS Pattern Languages

principles Torvalds introduced with the Linux kernel project. Only these additional principles
enable FLOSS projects to use the bazaar style even if the software size exceeds a certain threshold.
Bazaar Architecture describes the modularity aspect, the “UNIX gospel”, and not the bazaar
development style as a whole.

Conway’s Law also implies that a large and scattered developer community is only possible
with a highly modular approach [Con68]. Fink [Fin03, Chapter 9] describes an organizational
structure to support the bazaar development style. On the basis of Fink’s description, Figure 3.12
sketches a possible realization of such an organizational structure. The Primary Architect keeps
the FLOSS project’s vision and takes the technical lead. The Release Architect is on standby
to take over the role of the Primary Architect when the Primary Architect is not available. The
Subsystem Architects constitute a hierarchy of which the uppermost layer is appointed by Primary
and Release Architect. They have clear responsibilities, each for a module or submodule of the
software. The Engineering Talents are the contributors of the FLOSS project. Newcomers should
optimally interact with only one Subsystem Architect, as their contributions needs modifications
to only one module.

Primary Architect Release Architect

Subsystem Architects

Engineering Talents

appoints appoints

attracts

Figure 3.12: Project structure of a development team using a Bazaar Architecture, see [Fin03,
Chapter 9]

Respondents to the question in Section 2.4.2 rated Find the Code as the most severe contribution
barrier. In some cases, respondents may not have found the right location to modify the code
because too many modules had to be modified. This can happen if the code was improperly
structured, a problem that the Bazaar Architecture solves.

Related Patterns:

Very small projects in terms of lines of code do not need to be modularized, as there are not so
many places to modify the code when adding features. Thus, the FLOSS project must have been
growing and therefore already have achieved Low Contribution Barriers through other FLOSS
patterns before the problem characterized in this Bazaar Architecture arises.

126

3.3 Patterns Lowering Contribution Barriers

The developers might then have two problems when adding new features: First, there must
be a place to add the new code. Second, the developers must find it. Only the first problem is
tackled by the Bazaar Architecture, while an Exposed Architecture resolves the second one.
Depending on the type of project and type of feature, developers may actually have only one
of the two problems. If the software has a plug-in API, developers of a plug-in do not need a
deep understanding of the overall architecture, instead they use only the plug-in API, defined in a
Plug-In Contract [Mar99].

Verification:

One requirement for this pattern is the existence of multiple modules in the project. At least 75 %
of its modules must have less than 50 source code files, excluding build scripts and tests. At least
75 % of commits must modify the files of only one module.

127

3 FLOSS Pattern Languages

3.3.6 Exposed Architecture6

Context:

As the FLOSS project grows, software complexity increases and it becomes more and more
difficult to understand the structure of the component and the FLOSS project.

Problem:

Developers will not add features to the FLOSS project when they do not know where to
add their code.

Forces:

• Understanding the General Structure. Newcomers need some starting points to add
features, but they have trouble finding the module where this feature is best to be added.
If they are not willing to spend a lot of their time to understand the software architecture,
they either need help from the core developers or they give up before getting productive.
Even if they do not give up, they have to spend time searching the code for the right place
to add the feature. Sections 2.4.1 and 2.4.2 show that Understanding the General Structure
and Find the Code are important modification barriers.

• Mentoring. Core developers can guide newcomers and explain the code structure to them,
but they need time for this mentoring. If they are not available or if newcomers do not
request their help, for example because they are too shy, the joining process gets stuck and
may fail eventually.

• Implicit architecture. Software architecture is a well respected aspect in traditional soft-
ware development. Development of the architecture is considered in the budget and there
are architects dedicated to the task of delivering an architecture. An explicit architecture
is necessary to plan further budgeting and the organization of the development teams.
In a FLOSS project, the core developers will probably also have some idea about the
architecture in mind, but that idea is rarely explicitly documented since no formal budget-
ing is necessary and developers do not have to be strictly assigned to a team within the
organization.

6A preliminary version of this section was published previously [HWG10].

128

3.3 Patterns Lowering Contribution Barriers

• Code decay. Even if newcomers find a way to add a feature, it may not be at the optimal
place in the code because of their lack of overview. The software may be working, but
software quality decreases over time, as extensions and fixes will be inserted in suboptimal
places [Eic+01].

• Conway’s Law. The organizational structure of the project team is a representation of
their software’s architecture [Con68]. Small project teams reorganize themselves and
their software’s architecture quickly when the need arises. Occasional contributors may
understand the architecture at some point, but this knowledge may quickly become obsolete.

Solution:

Publish the component’s architecture.
You can publish the architecture in different places, illustrated by Figure 3.13: In a dedicated

document, in a well documented source code, or in the FLOSS project’s structure. Choose one of
those places and publish this decision. Of course, combinations are also possible and sometimes
advisable.

architecture

documentationsource code
FLOSS project

structure

«instance of»
«instance of»

«depends on»

Figure 3.13: Relation between architecture, source code, documentation, and FLOSS project
structure

Dedicated documents for the software’s architecture is the best way for outsiders to understand
the structure and dependencies of the project. Ensure that these documents are thoroughly
maintained, otherwise they may damage more than they help.

Up to a certain project size, a self-describing source code is the least effort way to provide
outsiders with an understanding of the program architecture. For larger projects, it is still a good
idea to have self-describing source codes, so readers understand the structure inside each module.
There are generally two complementary ways to create self-describing source code.

First, literate programming advocates source code with extensive explanation, such that it can
be read like a book and is easy to understand by itself [Knu84]. Tools like JavaDoc [P*Ora15b]
and Sandcastle [P*EWS15] create code documentation from source code and its comments. This
also requires extensive use of sensible comments, as there is no use to method comments that do
not say more than the method’s and parameters’ names already did.

Second, another approach known as Clean Code vouches to avoid comments at all and still
have self-describing code [Mar08]. An important aspect of this are variable and function names
that accurately explain the purpose of the named variable or function.

129

3 FLOSS Pattern Languages

Lay your FLOSS project structure open. Show who is responsible for which part of the
software. Publish the information required to allow newcomers to overview the open tasks for
each module and contact the module maintainers.

Consequences:

! Lowered modification barrier. Newcomers will find the place where to change code more
easily. This reduces an important modification barrier and so the number of developers
increases.

! Less mentoring effort. These new developers use less time searching the code and
discussing with the core develpers about the right place where to add patches. This
saves time and less patches have to be dismissed when they do not fit into the software
architecture.

! Reflections on architecture. Developers are aware of the architecture and can potentially
improve the architecture.

! Ongoing code decay. Understanding the architecture is key to find the best place to add
new code. Good architecture documentation helps with this tasks and therefore code decay
is reduced. However, the current architecture may just be unsuitable for the intended
modification. In this case, a newcomer may use the documentation to find the optimal
place to add new code, but this may still not be a good place. Newcomers may dismiss
their contributions although they have understood the project and software architecture.
This risk exists whether or not the documentation has been published.

% Documentation maintenance. Time spend on architecture cannot be used to develop new
features and a formal structure might also suppress creativity. Nevertheless, it is crucial that
the architecture documentation is up-to-date, as all benefits are gone if the documentation
does not match the actual architecture of the components.

Known Uses and Sources:

The UML modeling tool ArgoUML [P*Arg09a] documents its own architecture as UML di-
agrams [P*Arg09b]. Also, they document their processes like issue handling in UML dia-
grams [P*Arg09c].

Gacek and Arief [GA04] have found out that some FLOSS projects have exposed architectures
while others have closed architectures. They call this property of a FLOSS project “Visibility of
software architecture”. An architecture can be kept secret intentionally, which may be another
FLOSS pattern. In this case, there are some forces that want to discourage others from joining
the project. More likely, the architecture is hidden unintentionally if no developer ever formally
wrote down the architectural considerations of the project.

The architecture of a software project has several different representations. When the project
starts, the first developers have a mental representation of the architecture. This mental represen-
tation can be written down in some formal way like UML. The source code also represents the

130

3.3 Patterns Lowering Contribution Barriers

architecture as soon as it is written, although it may be more difficult to read the architecture just
from the source code. Following Conway’s Law, the organizational structure of the project team
is another representation of the architecture [Con68].

Related Patterns:

An Exposed Architecture reduces an important modification barrier and, thus, helps to achieve
Low Contribution Barriers. As discussed in the consequences, the component of a FLOSS
project with an Exposed Architecture may lack interfaces to encapsulate newcomers’ modifica-
tions, so finding a good place to add a modification may still be a modification barrier. A Bazaar
Architecture is a complementing FLOSS pattern to solve this problem.

It is not only sufficient to have an Exposed Architecture, it must also be clear to all newcomers
that it exists. Therefore, it is a good idea to provide a Central Information Platform [HWG11]
and promote the Exposed Architecture there.

In some cases, a Plug-In Contract [Mar99] can be an alternative to an Exposed Architecture.
It does not help with changes to the core modules, but also allows addition of new features.

Verification:

The project’s documentation must describe the application’s architecture to realize this pattern.
Multiple architecture diagrams or extensive textual descriptions both satisfy this condition.

131

3 FLOSS Pattern Languages

3.4 Evaluation

In its section Known Uses and Sources, each FLOSS pattern lists examples of FLOSS projects
that apply the FLOSS pattern. The examples prove that the FLOSS patterns are not just theoretical
constructs, but that they can be applied successfully in practice. Furthermore, examples help
readers to gain an understanding of how to implement the FLOSS pattern in practice. Although
examples are an important part of a FLOSS pattern, they do not show whether a FLOSS pattern
is a universal common practice in FLOSS projects or whether it is a rare special case. Much less,
there is no empirical data showing which FLOSS patterns are crucial for the success of a FLOSS
project and which FLOSS patterns are just nice-to-haves or only applicable in special situations.

This section contributes to close this research gap with an empirical study on five FLOSS
projects. The verification part of the pattern thumbnails in the previous sections described
objective criteria with which the application of each FLOSS pattern in each FLOSS project will
be evaluated in this analysis. This allows reproduction of the results on the selected and other
FLOSS projects.

This section documents the verifications of FLOSS patterns on the five selected FLOSS projects.
The documentation serves three purposes. First, readers may reproduce the study on the selected
FLOSS projects and evaluate the methodology. Second, the section is also an example for the
application of the FLOSS patterns’ verification sections and help illustrate their usage. Third,
patterns generally help to understand the complex structures, so this analysis based on FLOSS
patterns gives insight into the inner workings of the five selected FLOSS projects and serves as
case studies for the mechanics of FLOSS projects.

The five selected FLOSS projects are Firefox, Rack, Ruby on Rails, Spree, and Rake. The
analysis deliberately used FLOSS projects of different kinds to get a more representative picture
of the FLOSS ecosystem. Firefox is an application for end users and is written in various
programming languages, while the other four target developers and use Ruby. Although they
target developers, Rake is an application, while Rack, Ruby on Rails, and Spree are libraries or
frameworks. In terms of the total number of commits, Rack and Rake are one order of magnitude
smaller than Spree and Ruby on Rails, while Firefox is another order of magnitude larger. Spree
is backed by a commercial company that employs most of its developers, while Ruby on Rails
is more a community project with less direct involvement by a single company. However, all
selected FLOSS projects have in common that they are successful. Success of FLOSS projects
may have many meanings [CAH03], but no measure is equally applicable to all FLOSS projects,
especially if they are so different as the ones selected for this analysis. Therefore, the analysis
omits a precise and complex, but also unnecessary definition of what success means and instead
substantiates each FLOSS project’s success individually with evidence in the introduction of the
respective FLOSS project’s subsection. For example, the FLOSS projects all serve a considerable
fraction of users in their application domain.

Successful FLOSS projects more likely chose their applied FLOSS patterns well. For example,
if the selected FLOSS projects all disregarded a specific FLOSS pattern, this FLOSS pattern is
obviously not necessary for the success of FLOSS projects. Conclusions in the other direction
have to be drawn with more caution: A universally applied FLOSS pattern may have helped these
FLOSS projects to succeed, but maybe it just did not do any harm.

As a secondary goal, the evaluation shows which patterns are commonly used together and

132

3.4 Evaluation

which patterns exclude each other. Thus, the evaluation also puts the relationships between
FLOSS patterns described in the previous sections to the test.

The evaluation has to be taken with a grain of salt, though: Due to the effort necessary to
evaluate all FLOSS patterns on a FLOSS project, the data do not suffice for a proper statistical
treatment of all previously described goals. The results are therefore merely pointers to the
importance of and relationships between FLOSS patterns and no irrevocable facts. Nevertheless,
this study provides a first empirical foundation for the FLOSS pattern language.

The analysis of some of the FLOSS projects and FLOSS patterns took data from the projects’
VCSs into account. I developed the tool GitHistoryAnalyzer [Han15a] to analyze the VCS history
of some of the FLOSS projects and measure data used for the evaluation of the FLOSS patterns’
verification criteria where applicable. GitHistoryAnalyzer is published as FLOSS itself and can
be downloaded to understand or reproduce the parts of the verification where it was applied.

3.4.1 Mozilla Firefox

The company Netscape published their commercial product Communicator as the FLOSS project
Mozilla in 1998 [P*Net98]. Mozilla runs a suite of different software products, one of which
is the browser Firefox [P*Moz15m]. Most products, including Firefox, support different de-
velopment and target platforms like Linux, Mac OS, Windows, and platforms for mobile de-
vices [P*Moz15d].

Firefox and Mozilla have played an important role in the development of browsers. Firefox
itself [Mas+09; Nur+09; AM11; Bay+12] as well as Mozilla [MFH02; RM02; Yin+04; CC06;
JS07; ZM12] have been the subject of research of different kinds. For example their development
processes and tools have been in the focus of research, and they served as data sources to answer
general software engineering questions.

Integrate FLOSS Assets

Firefox depends on the compression library zlib [P*RA15] as a module [P*Moz14b], among
other third-party modules. Firefox directly includes the source code, as it supports multiple
platforms. zlib as used in Firefox’s source code as of 2014-07-07 [P*Fir14] comprises 12 998
LOC, which proves that Firefox fulfills the criterion for Bootstrap.

Mozilla requires its developers to follow the Mozilla Foundation License Policy [P*Moz15p]
to ensure all of its projects Respect the License of third-party components. However, for the
reasons explained in the Verification section of Respect the License, this result will not be used
in further analysis.

Start a New Project from Scratch

On its initial publication under the name Phoenix 0.1, Firefox already included a browser’s core
and additional functionality like a Plug-in Manager. Firefox was split from the main Mozilla Suite
and therefore the developers could provide this functionality from the start. Thus, Firefox showed
a Credible Promise. The first version included the source code already, so Market Evaluation
was also fulfilled. [P*Moz02]

133

3 FLOSS Pattern Languages

Publish Closed Sources

Although the Mozilla Suite is based on the proprietary Netscape browser product and applies
Donate Code, Firefox itself or a similar product was not released using a closed source license
before its release under a FLOSS license. Thus, Donate Code does not directly apply to the
Firefox project.

Licensing

Firefox comprises code using different licenses. The Firefox binaries are distributed using the
Approved Open Source LicenseMozilla Public License (MPL) [P*Moz15s]. The MPL requires
any modifications to be distributed as source code instead of only binaries [P*Moz15s, §3.1f].
Therefore, the MPL is a Reciprocal License and not a Permissive License, as sometimes falsely
claimed [GA04]. The MPL enforces only a weak copyleft, though, as MPL code can be distributed
together with closed source code. Some components of Firefox use other licenses than the MPL.
There are two reasons why this does not suffice for the Dual License pattern: First, common
secondary licenses in the code base are the GPL, the X11 License [P*Fre12], and code snippets
in public domain. None of these is a commercial license and requires users to pay royalties as
demanded in the Dual License verification. Secondly, the product as a whole is only distributed
using the MPL.

Architecture

Firefox used to have submodules, but this submodule structure was discarded to foster self-
organized work over submodule boundaries [P*Sha11a; P*Sha11b]. Hence, Firefox has no
Bazaar Architecture.

Firefox does not have an Exposed Architecture: While there is documentation about program
internals in the Mozilla Developer Network (MDN) [P*Moz15h], it lacks a clear description of
the software architecture. The search terms “architecture”, “firefox architecture”, and “firefox
overview” in the MDN search reveal no architectural documents about Firefox in the first 30 hits.
Mozilla’s wiki contains a list of modules, but with only a few keywords describing each module
and no explanation of the relations between the modules [P*Moz15x]. The Firefox developer
introduction [P*Moz15e] also does not hint at the structure of the code. Grosskurth and Godfrey
attempted to extract at least the architecture of the closely related Mozilla Browser project [GG05].
A common suggestion is to accumulate information about interesting parts of the code from
diverse sources like the code commits, IRC channels, and the issue tracker [P*Mat10].

Firefox implements Manage Complements with a JavaScript API for add-ons [P*Moz15c].
Additionally, Firefox provides a C API for plugins, which have a different application scope than
add-ons [P*Moz15j].

Mozilla Foundation as the host of the Firefox project is a non-profit organization and as such
does not aim at maximizing its profit [P*Moz15v]. Although Firefox does Manage Complements
with its add-on API as shown earlier, the management mechanism does not facilitate paid add-ons.
Thus, Mozilla does not Sell Complements for Firefox. Consequently, Firefox also does not have
a Dual Product.

134

3.4 Evaluation

Cultivate a User Community

In order to find out whether the Firefox project treats their users as Crowd of Bug Detectors,
the response time to issue reports must be measured. Even core developers need to file issue
reports for changes [P*Moz15f], so the response time to issue reports from core developers must
be compared to the response time for other issue reports. The study sample includes all issue
reports opened in January and February 2014. In this period, the owner and peers of the Firefox
module had not changed [P*Moz14e]. Owner and peers were considered as core developers and
all others as users. The sample data stem from a database snapshot of the Bugzilla database from
2014-05-04 [P*Moz14c] to measure response times. The query in Listing 3.1 shows response
times to issues open by core developers, while the query in Listing 3.2 shows response times to
issues open by users. The table ff_coredevelopers was created before manually and contains
the database ids of the core developers previously identified.

Out of 250 issues that core developers had reported in the sample time frame, 52 issue reports
weren’t answered at all. That results in an answer rate of 79.2 %. Others had reported 2267 issues,
out of which 1825 were answered, so 442 were left unanswered. This is an answer rate of 80.5 %
and therefore slightly higher than the answer rate to core developers. The arithmetic mean of
time till the first answer for issues reported by core developer is 6.77 days in the sample. In the
same sample, the arithmetic mean of the time till the first answer for issues reported by others
is 6.74 days. Issues reported by users are therefore answered very slightly earlier, about half an
hour earlier. A Wilcoxon rank sum test reveals that this difference is only slightly statistically
significant (p = 0.096). Although based on weak evidence, this analysis considers Firefox to
fulfill the formal requirements of a Crowd of Bug Detectors.

Neither Mozilla [P*Moz15t] nor Firefox [P*Moz15m] visualize information measured by third
parties on their website. However, GitHub measures commit data on the gecko repository that
is mirrored to GitHub [P*Moz15u]. GitHub is independent from Mozilla and commit data is
non-obvious, but it is only indirectly related to quality and most importantly, Mozilla and Firefox
do not advertise these measurements. Thus, Firefox does not implement Public Inspection.

The “Nightly Builds” of Firefox contain all changes that have been merged into the main
branch mozilla-central until the time of build [P*Moz13, Section Release timeline]. Thus, Firefox
has Frequent Releases.

Listing 3.1: SQL query for response times to core developer issues

SELECT bugs . bug_id , MIN(bugs . c r e a t i o n _ t s) AS datBugOpened ,
MIN(l o n g d e s c s . bug_when) AS da tF i r s tCommen t

FROM f f _ c o r e d e v e l o p e r s / ∗ f o r core d e v e l o p e r s ∗ /

LEFT JOIN bugs ON f f _ c o r e d e v e l o p e r s . i d _ p r o f i l e = bugs . r e p o r t e r
LEFT JOIN bugs . l o n g d e s c s ON bugs . bug_ id= l o n g d e s c s . bug_ id

AND bugs . r e p o r t e r <> l o n g d e s c s . who / ∗ s k i p s e l f −answers ∗ /

WHERE p r o d u c t _ i d =21 / ∗ 21 i s F i r e f o x ∗ /

AND c r e a t i o n _ t s >= ’ 2014−01−01 ’ AND c r e a t i o n _ t s < ’ 2014−03−01 ’
GROUP BY bugs . bug_ id ;

135

3 FLOSS Pattern Languages

Listing 3.2: SQL query for response times to issues from users

SELECT bugs . bug_id , MIN(bugs . c r e a t i o n _ t s) AS datBugOpened ,
MIN(l o n g d e s c s . bug_when) AS da tF i r s tCommen t

FROM bugs
LEFT JOIN bugs . l o n g d e s c s ON bugs . bug_ id= l o n g d e s c s . bug_ id

AND bugs . r e p o r t e r <> l o n g d e s c s . who / ∗ s k i p s e l f −answers ∗ /

WHERE p r o d u c t _ i d =21 / ∗ 21 i s F i r e f o x ∗ /

AND c r e a t i o n _ t s >= ’ 2014−01−01 ’ AND c r e a t i o n _ t s < ’ 2014−03−01 ’
AND bugs . r e p o r t e r NOT IN / ∗ a l l e x c e p t core d e v e l o p e r s ∗ /

(SELECT i d _ p r o f i l e FROM f f _ c o r e d e v e l o p e r s)
GROUP BY bugs . bug_ id ;

Beside the main branch for Firefox development, mozilla-central [P*Fir15], there are mul-
tiple branches called integration repositories that merge into mozilla-central if they are sta-
ble [P*Moz14g]. There are rare exceptions for direct commits to mozilla-central [P*Moz15aa,
Section mozilla-central], but these are within the scope of a Parallel Development.

Mozilla uses a Central Information Platform: The main Mozilla web page [P*Moz15t] links
to the Firefox web pages for users, the MDN portal, and other subsites. Within each subsite, a
portal like the MDN [P*Moz15h] serves as Central Information Platform for the subsite. Each
page links back to the main Mozilla web page and its corresponding subsite portal.

Discussions on development topics are open to all interested parties and use public media like
Usenet groups [P*Moz06]. Their issue tracker Bugzilla contains lower level details regarding
the software implementation [P*Moz01]. Firefox therefore conducts an Open Dialog with its
community.

Support the Community has five requirements, four of which have already been checked:
Firefox is a FLOSS project and it implements the three patterns Approved Open Source License,
Central Information Platform, and Open Dialog. The data for Crowd of Bug Detectors
described above showed that about 80 % of issue reports were answered, which suffices the last
requirement, especially as Mozilla does not offer premium support at all and therefore is below
the allowed marketing threshold.

Tools for New Developers

Data from February 2013 serve as the sample to test the pattern Low Contribution Barriers.
In February 2013, 333 developers with distinct names authored commits to Firefox’s main hg
repository mozilla-central [P*Fir15]. This number is an upper limit, as some developers authored
multiple patches using different names. A manual check of the names revealed 6 cases of duplicate
names, but there may be more. 41 of these developers, excluding 3 duplicates, had never authored
a commit to mozilla-central before February 2013 and can be considered newcomers. 41 is more
than 5 % of 327, therefore Firefox implements Low Contribution Barriers. Notably, 14 of these
newcomers had mail addresses from Mozilla Foundation and have been hired instead of acquired
as volunteers, but 41 − 14 = 27 is still more than 5 % of 327.

136

3.4 Evaluation

Firefox can be build for different platforms and on different platforms. Supported platforms
include like Linux, Windows, and Max OS X. Furthermore, Firefox shares a build system
with other Mozilla products like Thunderbird and SeaMonkey. These factors complicate the
build of Firefox. Mozilla tries to counter these build problems through measures like extensive
documentation of the build process. [P*Moz15d]

Another measure is a set of Preconfigured Build Environments: For Linux and Max OS X, a
python script downloads all build tools and dependencies [P*Moz15g]. For Windows, Mozilla
provides the MozillaBuild package [P*Moz15l]. MozillaBuild contais the required tools of the
build chain in a VM. Builds on other, less common platforms like Solaris and OS/2 are more
difficult, and no Preconfigured Build Environment is available, but this is negligible for most
contributors. Despite the Preconfigured Build Environments, builds can still be complicated,
which is illustrated by the help requests on build errors in the newsgroup for builds [P*Moz08a].

There are multiple ways to test a patch for Firefox. Mozilla offers CI systems for building and
testing patches submitted to so-called Try Servers, but this requires commit access to Mozilla’s
VCS [P*Moz15z]. This method is therefore restricted to core developers. The publicly available
source code includes test code [P*Moz15i], though, and the Preconfigured Build Environments
help execute those tests. Due to the high number of different test suites, running all tests requires
effort and computing time [P*Moz15k]. However, this effort is justified, given the large size of
the Firefox project and its dependent projects in Mozilla. Thus, these tests can be considered
Unit Tests for Contributors.

All Mozilla projects like Firefox use the same Bugzilla instance [P*Moz01] as their issue
tracker. Some tasks that are suitable for beginners are tagged as “[good first bug]” [P*Moz15w].
This verifies the application of the Low-hanging Fruit pattern.

Empower the Most Suitable

The Mozilla Foundation maintains Firefox. This is a foundation, so Pool Resources was
implemented. However, search engines fund the Mozilla Foundation and, for example in 2012,
they account for almost 98 % of revenues of the Mozilla Foundation [P*Hoo13]. The Mozilla
Foundation is nevertheless independent from specific search engine providers.

The Mozilla project is divided into modules, one of which is Firefox. Modules usually have
exactly one owner. This is also the case for Firefox, whose owner was Gavin Sharp as of
2015-05-30 [P*Moz15y]. Module owners have the authority to decide about acceptance of
patches, but they do not have absolute authority: Their own patches must be reviewed by a
peer and in case of disagreements with parts of the community, a committee may enforce a
decision against the module owner or even install a new module owner. The Firefox module
owner therefore is no SingleMaintainer. [P*Moz15q]

As explained, the module owner of Firefox relies on approval from the Mozilla project. From
a Firefox perspective, Mozilla Runs a Tight Ship on Firefox. However, Mozilla itself is a
Meritocracy [P*Moz15n]. Since Firefox contributors bring merit also to Mozilla and therefore
gain power over Mozilla, Firefox itself can also be seen as a Meritocracy.

There have been multiple Maintainer Handovers in the history of the Firefox project, which
can be considered smooth transitions. This analysis only looks at the last two of these occur-
rences before 2015-05-30. Mike Shaver took over maintenance from Mike Connor in a smooth

137

3 FLOSS Pattern Languages

transition [P*Con10]. Later, when Gavin Sharp took over module ownership over Firefox from
Mike Shaver, this was a Maintainer Handover with a smooth transition again [P*Nig11].

3.4.2 Rack

Rack is a middleware between web servers and Ruby frameworks like Ruby on Rails [P*Neu13].
Ruby on Rails [P*Rub15a] indeed depends on Rack and so does its competitor Sinatra [P*Sin15].
Thus, Rack has served websites for hundreds of millions users.

Integrate FLOSS Assets

Rack has no runtime dependencies, but two build dependencies, Bacon and Rake [P*Rub15m].
However, both Bacon’s and Rack’s main author is Christian Neukirchen [P*Rub12; P*Rub15m].
Thus, Neukirchen could have used Bacon for Rack even if it was no FLOSS component.
Rake [P*Rak15b] is part of the common Ruby development toolchain and therefore not to
be considered as a separate FLOSS component to build on. Thus, Rack does not Bootstrap its
development.

Start a New Project from Scratch

Rack was published with an initial git commit [P*Neu07] on 2007-02-15, fulfilling the criterion
of Market Evaluation. This commit of 445 LOC included tests for a basic Hypertext Transfer
Protocol (HTTP) request. As this is a core feature, Rack showed a Credible Promise.

Publish Closed Sources

Since Rack was not used in a commercial setting before its initial publication, it does not use the
pattern Donate Code.

Licensing

The license of Rack [P*Rac15c] is the X11 License [P*Fre12]. This is an Approved Open Source
License and a Permissive License. Vice versa, Rack does not implement Dual License and
Reciprocal License.

Architecture

The main component of Rack [P*Rac15g] has no submodules. However, Rack Manages Comple-
ments with a repository on its own for add-ons [P*Rac15a]. The repository contains 30 add-ons
as of 2015-11-17, all of which together have 37 files of source code. Thus, Rack has a Bazaar
Architecture. Add-ons are available for free under the X11 License and no paid complements
are advertised, so Rack neither uses the pattern Sell Complements nor Dual Product.

The documentation describes the Rack interface [P*Rac15f] and Rack’s classes [P*Rac15d].
There is also a wiki [P*Rac15b]. However, there is no high-level description of Rack’s architecture.
Thus, Rack has no Exposed Architecture.

138

3.4 Evaluation

Cultivate a User Community

Rack’s issue tracker [P*Git15d] contains 974 issues including pull requests as of 2015-11-17,
but there are 2109 commits to the repository [P*Rac15g]. Thus, some developers may commit
without corresponding issue. This means that the criterion for Crowd of Bug Detectors is
whether answers to issues take less than 24 hours.

The sample for this criterion includes all issues excluding pull requests created between
2015-06 and 2015-10. Of these 26 issues, 6 were closed by their authors within 24 hours and
therefore it is unclear whether Rack’s developers would have responded quickly enough. Of the
remaining 20 issues, 14 received no answer within 24 hours and in the majority of cases, they
received no answer for weeks. The other 6 received a reply within 24 hours. This is not enough
for a Crowd of Bug Detectors.

GitHub publishes code metrics of Rack’s source code on Rack’s GitHub site [P*Rac15g].
Furthermore, Rack uses Travis CI to build and test the component and publishes the current build
status on its main page [P*Rac15g]. This fulfills the conditions for Public Inspection.

A RubyGem is a packaged Ruby component. Thus, published RubyGems count as release.
There have been 61 RubyGem releases of Rack between 2007-03 and 2015-10 [P*Rub15h]. Only
11 RubyGems were released before 2011 and 50 of the RubyGems were released after 2011-01.
However, often multiple RubyGems for Rack were released on the same day, because multiple
branches had received the same patch or because the release introduced a problem that had to
be fixed immediately. The intention of Frequent Releases is that users may always use a very
recent version of the component and quickly see their changes in the released software, which is
not the case if releases come in infrequent bulks. Thus, only releases on different days count for
this analysis, which reduces the number of releases even in the more frequent, second phase to 37
releases between 2011-01 and 2015-10. This corresponds to an arithmetic mean of 47.7 days
between two releases and this is too long for Frequent Releases.

Rack has multiple git branches [P*Git15a]. The main branch contains the latest development
version, while there is one other branch for each older release of Rack. Anybody can fork Rack’s
git repository for modifications and then create a pull request to merge these modifications back
to the official Rack repository. Thus, Rack uses Parallel Development.

Rack’s website [P*Neu13] links to the documentation, the communication channels, and the
GitHub repository. The GitHub repository’s main page [P*Rac15g] links to the same resources
and also back to the Rack Website, although links to the documentation are less visible and less
complete. Both are candidates for a Central Information Platform. However, depending on the
method to view the documentation, there are no links back to any of the two sites [P*Rac15f]
or only to the GitHub repository [P*Rac15e]. Thus, none of the candidates is a real Central
Information Platform.

There is explicit documentation on how to contribute add-ons [P*Pal15]. The website of
the Rack project [P*Neu13] and Rack’s GitHub page [P*Rac15g] both refer to the devel-
oper mailing list [P*Goo15b], which publicly discusses technical decisions. The public issue
tracker [P*Git15d] also contains discussions regarding decisions for Rack. Nevertheless, the
GitHub page explains that there is also a mailing list for the core developers and this mailing list
is not public. Also on the GitHub page, they request to send reports about security defects to
this mailing list, so attackers may not exploit the defect before there is a fix available. This is

139

3 FLOSS Pattern Languages

an acceptable exception and Rack can still be considered to conduct an Open Dialog with their
community.

There is no user mailing list and so support requests are posted to the developer mailing
list [P*Goo15b] or the issue tracker [P*Git15d]. The previous analysis showed that issues in the
issue tracker often receive no timely response. For the developer mailing list, this evaluation used
all nine mail threads created between 2015-01 and 2015-10. Four mail threads were responded
to within 24 hours, but one was a patch and not a support request. The remaining five received
answers only after more than 72 hours if at all. For some of these, the first answer took weeks
or months. Only 37.5 % of the support requests received an answer within 72 hours. The
responsiveness of neither the issue tracker nor the mailing list suffices for Support the Community.
Additionally, the required pattern Central Information Platform is not implemented for Rack.

Tools for New Developers

Table 3.1 contains for each month from 2014-01 to 2015-10 in the lower data row the number of
newcomers to Rack and in the upper data row the number of developers who have been active in
the respective month. The data came from Rack’s main git repository [P*Rac15g] and have been
processed with GitHistoryAnalyzer [Han15a]. More than 5 % of the active developers have been
newcomers in all months, thus Rack has Low Contribution Barriers.

Table 3.1: Number of active developers per month versus number of newcomers per month for
Rack

2014- 2015-

Number of 01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10

developers 11 6 3 4 3 9 13 9 3 5 11 4 7 13 15 8 11 17 4 9 7 5
newcomers 5 4 2 2 2 7 2 3 1 3 4 1 5 9 6 5 4 6 1 4 5 2

Rack’s source code [P*Rac15g] includes a gemspec file, so the Ruby tool gem installs Rack
and all of its dependencies. The code also includes a simple web server and web application to
run Rack without any configuration. This is described in the documentation on the main GitHub
page [P*Rac15g, Quick start] and counts as a Preconfigured Build Environment.

Rack also has Unit Tests for Contributors: First, the source code includes unit tests executed
with a Rake [P*Rak15a] task. Second, Rack uses Travis CI [P*Tra15] to build and test commits
to Rack.

The issue tracker [P*Git15d] uses neither tags nor titles to designate issues suitable for
newcomers. Documentation on the contribution procedures [P*Pal15] and other documenta-
tion [P*Rac15e; P*Rac15d; P*Rac15b; P*Rac15g; P*Rac15a] do not hint at easy issues for
newcomers. Thus, Rack does not offer Low-hanging Fruit for newcomers.

Empower the Most Suitable

Christian Neukirchen was the original author of Rack in 2007 [P*Neu07] and its first Single
Maintainer. At the end of 2011, there was a Maintainer Handover to James Tucker with

140

3.4 Evaluation

a troublesome start [P*Rac12] (complicated transition). On 2014-08-18, there was another
Maintainer Handover when Aaron Patterson took over as SingleMaintainer [P*Tuc14] (smooth
transition).

Conversely, Rack is no Meritocracy and there is no organization to Run a Tight Ship. There is
also no indication that organizations with commercial interest Pool Resources to develop Rack.

3.4.3 Ruby on Rails

Ruby on Rails is a framework for web applications for the programming language Ruby. Among
all FLOSS project on GitHub using Ruby, it has the highest number of watchers (27 628)
and forks (11 097) as of 2016-01-13 [P*Ols16]. Ruby on Rails is extensively used, famous
applications include Twitter, GitHub, and Shopify [P*Rub15a]. David Heinemeier Hansson wrote
the first version of Ruby on Rails for the company Basecamp and released it as a FLOSS project
in 2004 [P*Rub15b]. There are practical textbooks [RTH13; Har15] as well as research [BK07;
SJW08] on Ruby on Rails.

Integrate FLOSS Assets

The gemspec file for the main part of Ruby on Rails lists the gem bundler as a dependency
among other dependencies [P*Rub15e]. The gem bundler is developed by a FLOSS project on its
own [P*Rub15k], and therefore serves as an example that Ruby on Rails implements Bootstrap.

Start a New Project from Scratch

The first archived commit of Ruby on Rails in November 2004 comprises 28 880 LOC including
executable tests [P*Han04]. Although this was shortly after the initial publication as FLOSS
in July 2004 [P*Rub15b], it indicates that the first publication also showed a Credible Promise
already. It also proves the successful application of the Market Evaluation pattern.

Publish Closed Sources

Ruby on Rails was developed for the company Basecamp [P*Rub15b; P*Bas15] and the first
release consisted of more than 10 000 LOC [P*Han04]. Therefore Ruby on Rails implements the
pattern Donate Code.

Licensing

Ruby on Rails uses the X11 License [P*Fre12] as its only license [P*Rub15d]. This is an
Approved Open Source License considered as Permissive License by the FSF [P*Fre13]. This
implies that it uses neither a Reciprocal License nor a Dual License.

Architecture

The central repository for Ruby on Rails [P*Rub15f] contains the core module Railties and more
central modules. The organization Ruby on Rails at GitHub hosts additional modules in their

141

3 FLOSS Pattern Languages

own repositories [P*Git15f]. The community has created further modules, but these will not go
into analysis, as they are not part of the original FLOSS project Ruby on Rails. Of the modules
that Ruby on Rails hosts, the following 20 modules comprise less than 50 source code files:
Action Mailer, Strong Parameters, Active Record Session Store, Coffee-Rails, Commands, Active
Job, Active Model, Active Resource, GlobalID, Active Model: GlobalID, Jbuilder, Sprockets
Rails, Rails::Observers, sass-rails, jquery-rails, Protected Attributes, actionpack-action_caching,
actionpack-page_caching, etagger, and Web Console. The following 5 modules comprise more
than 50 source code files: Railties itself, Action Pack, Action View, Active Record, and Active
Support. Thus, 80 % of the modules have less than 50 source code files and the first criterion for
a Bazaar Architecture is fulfilled.

Commits to modules with their own repositories can affect only one module. The repository
rails [P*Rub15f] is the only repository hosting multiple modules. Table 3.2 lists the number of
commits in the week from 2015-11-02 to 2015-11-08 per day to the repository rails. Table 3.2
distinguishes between commits modifying only one module and commits modifying more than
one module. Commits modifying code as well as documentation in the documentation module
are regarded as commits modifying only one module. Merged pull requests are counted only
on the date of the original commit, not on the later merge. As shown, more than 75 % of the
commits modify only one module, so Ruby on Rails also fulfills the second criterion for a Bazaar
Architecture and therefore implements this pattern.

Table 3.2: Number of commits to the repository rails [P*Rub15f] from 2015-11-02 to 2015-11-08
that modify only one (upper row) or multiple modules (lower row)

2015-11- 02 03 04 05 06 07 08 Sum

Number of Commits to one module 6 5 14 7 15 14 4 65
Number of Commits to multiple modules 1 1 1 2 0 0 0 5

The documentation for Ruby on Rails [P*Rai15c] describes the architecture, which is also
necessary because Ruby on Rails targets software developers as its users, specifically web
developers. Furthermore, there is documentation specifically for contributors that goes into
more detail. Ruby on Rails uses a model view controller (MVC) architecture and the API
documentation [P*Rub15g] details the components for the model Active Record, the view Action
View, and the controller Action Pack. The API documentation also covers extensions of and
interactions between these components and with dependencies, for example with Rack in the
guide Rails on Rack [P*Rai15b]. Although I did not find diagrams of the architecture, a mind
map visualizes changes to the architecture [P*Rai13]. Therefore, Ruby on Rails implements
an Exposed Architecture. This documentation also proves the implementation of Manage
Complements.

Basecamp [P*Bas15] is the maintainer or at least main sponsor of Ruby on Rails, its logo
is shown at the bottom of each page on Ruby on Rails’s website [P*Rub15a]. Ruby on Rails
uses Dual Product, there is a product by the same name that complements Ruby on Rails.
Consequentially, the pattern Sell Complements is also implemented.

142

3.4 Evaluation

Cultivate a User Community

Ruby on Rails uses the issue tracker integrated in GitHub [P*Git15e]. Core developers do not
need to use the issue tracker before committing [P*Rai15a]. Within the sample period from
2015-11-02 to 2015-11-08, 19 issues were created for the main repository rails. 10 of these issues
were answered within 24 hours, 2 were closed within 24 hours, and 7 took more than 24 hours to
answer. The median answer time was less than 24 hours, so Ruby on Rails implements a Crowd
of Bug Detectors.

Ruby on Rails is hosted on GitHub and like all FLOSS projects hosted there, anyone can see
metrics like the number of commits. As discussed for Mozilla Firefox, this is not enough for
the pattern Public Inspection. However, the main GitHub page for Ruby on Rails [P*Rub15f]
features a report of the current “Code Status”, as measured by the CI system Travis CI [P*Tra15].
Hence, Ruby on Rails implements Public Inspection.

Analogously to Rack, Ruby on Rails is released as RubyGem. In 2014, Ruby on Rails published
43 RubyGems [P*Rub15i] and therefore implements Frequent Releases.

The git repository for Ruby on Rails [P*Rub15f] has branches for each major release and for
major changes. Additionally, some developers fork Ruby on Rails into their own repository and
then merge their changes back into the master branch. The commit history shows that bug fixes
sometimes go directly into the main branch. This is an example of Parallel Development.

The project website of Ruby on Rails [P*Rub15a] is a Central Information Platform: It links
to the releases, documentation, the project on GitHub, and a list of all communication channels.
The communication channels are mailing lists, blogs, and IRC. These platforms and the public
GitHub threads host the technical discussions on Ruby on Rails, thus the project conducts an
Open Dialog with the community.

As shown before, Ruby on Rails uses an Approved Open Source License, hosts a Central
Information Platform, and conducts an Open Dialog with the community. In order to validate
responsiveness to support inquiries, I analyzed help requests on the google group Ruby on
Rails: Talk [P*Goo15c]. The threads whose first message was posted between 2015-11-02 and
2015-11-08 comprised 5 announcements and 14 support inquiries, out of which 11 were answered
within 72 hours and 3 received no answer within 72 hours. None of the answers advertised paid
support of any kind. Although based on a small sample, this indicates that the last requirement
for Support the Community is fulfilled and Ruby on Rails implements the pattern.

Tools for New Developers

Table 3.3 shows statistics on the fraction of newcomers to Ruby on Rails as opposed to existing
developers. The first row of contents contains the number of active committers on the mas-
ter branch of the Ruby on Rails main repository [P*Rub15f] per each month as reported by
Open Hub [P*Ope15c]. The second row of contents contains the number of developers who
contributed their first commit to the Ruby on Rails main repository in the month designated by
the column. The data for the second row were extracted from the Ruby on Rails contributor
statistics [P*Nor15a]. The high number of commits from newcomers every month shows that
Ruby on Rails has Low Contribution Barriers.

Ruby on Rails provides a VM with the IDE to work on Ruby on Rails itself [P*Rub15c]. This

143

3 FLOSS Pattern Languages

Table 3.3: Number of active developers per month versus number of newcomers per month for
the main Ruby on Rails repository

2014- 2015-

Number of 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10

developers 116 81 88 77 79 80 96 103 103 93 101 101 91 70 71 86 81 72
newcomers 66 34 37 28 24 34 39 44 41 44 38 52 42 33 27 38 32 34

is a Preconfigured Build Environment. All modules of Ruby on Rails have a directory “test”
with unit tests [P*Git15f]. They run without further configuration and are therefore Unit Tests
for Contributors.

Ruby on Rails does not support Low-hanging fruit: The guide Contributing to Ruby on
Rails [P*Rai15a] does not refer to any issues suited especially well for newcomers. The issue
tracker [P*Git15e] neither contains tags nor do the issues’ titles indicate which issues are suited
well for newcomers.

Empower the Most Suitable

David Heinemeier Hansson holds the rights on the Ruby on Rails logo and name. His placement
and description on the Ruby on Rails website [P*Rub15b] indicates that he is a SingleMaintainer.
Accordingly, there are no formal committees and Ruby on Rails is no Meritocracy. As Hansson
was the initial creator of Ruby on Rails already [P*Rub15b; P*Han04], no Maintainer Handover
has taken place yet, although other contributors have overtaken Hansson in terms of commits to
Ruby on Rails [P*Nor15a]. Hansson does not clearly Run a Tight Ship, as he is part of the core
developer team and therefore power does not stem from outside of the FLOSS project. However,
as a co-owner of the core maintainer Basecamp [P*Rub15b], strongly reduced involvement in
development activities [P*Nor15b], ownership over Ruby on Rails name and logo [P*Rub15a],
as well as claiming the copyright over the source code [P*Rub14a], Hansson is on the path to
Run a Tight Ship over Ruby on Rails.

Nevertheless, different vendors Pool Resources to develop Ruby on Rails. All 13 core
developers have founded companies or work for companies with a commercial interest in Ruby
on Rails, with only 2 of them working for the primary maintainer Basecamp [P*Rub15b]. The
other 11 core contributors account for 23 763 commits out of the total 68 321 commits to Ruby
on Rails as of 2015-11-10 [P*Nor15a], which is more than the required 20 %.

3.4.4 Spree

Spree is an e-commerce platform based on Ruby on Rails, it is used to create web shops. It
was founded with the name RailsCart as a FLOSS project in 2007, and renamed to Spree
in 2008 [P*Cas14]. The code is hosted on GitHub [P*Spr15k], the maintainer is the com-
mercial company Spree Commerce [P*Spr15g], which was acquired by First Data Corp. on
2015-09-21 [P*Dal15]. Spree Commerce will reduce their support for Spree after the acquisi-
tion [P*Sch15] and so Spree is in a process of change at the time of this analysis. Thus, this

144

3.4 Evaluation

analysis will analyze Spree before the acquisition. Spree Commerce claims that 45 000 retailers
use Spree [P*Spr15g].

Integrate FLOSS Assets

Spree uses other FLOSS components and therefore the FLOSS pattern Bootstrap. An example
of such a FLOSS component is Ruby on Rails used by the Spree Frontend [P*Spr15l].

Start a New Project from Scratch

The first commits to Spree’s predecessor RailsCart show that RailsCart started as a FLOSS project
from the very beginning [P*Sch07]. RailsCart and therefore Spree used the pattern Market
Evaluation, but since the first 10 commits did not even contain source code, RailsCart did not
show a Credible Promise then.

Publish Closed Sources

Spree’s predecessor RailsCart was developed as a FLOSS project from the beginning. Hence, it
did not use the pattern Donate Code.

Licensing

Spree uses only the Modified BSD License [P*Spr15j]. This is an Approved Open Source License
and a Permissive License [P*Fre16]. Accordingly, Spree neither implements Reciprocal License
nor Dual License.

Architecture

Spree consists of the meta module Spree and six submodules. The six submodules are spree_api,
spree_frontend, spree_backend, spree_cmd, spree_core, and spree_sample. All of these are
RubyGems on their own. While they work together as a platform, they can also be used
independently. [P*Spr15k]

Spree_core has more than 50 files of source code, the other five submodules have less than
50 files of source code. Additionally, Spree supports extensions [P*Spr15b] to Manage Com-
plements. Spree hosts 60 extensions in the separate GitHub organization spree-contrib as of
2015-11-11 [P*Git15i]. In their main GitHub organization, Spree hosts about 10 extensions and
other types of add-on components [P*Git15h].

The analysis for Bazaar Architecture takes only the six core submodules into account. As
explained, 5

6 = 83.3̄ % of the submodules have less than 50 files of source code, so the first
condition that at least 75 % of the modules have less than 50 files of source code is fulfilled. The
analysis for the second condition took all commits to the master branch of Spree [P*Spr15k] in
2015-08 into account, excluding pure merge commits. Of these 29 commits, 27 commits modified
only one module, 1 modified multiple modules, and 1 commit modified one module and also the
documentation. This suffices the second condition that at least 75 % of commits must modify at
most one module, so Spree implements a Bazaar Architecture.

145

3 FLOSS Pattern Languages

Documentation of the Spree API features an interactive visualization of the data structures and
its Representational State Transfer (REST) architecture [P*Spr15h]. The developer documentation
includes a chapter specifically for the architecture of the core components [P*Spr15d]. Thus,
Spree has an Exposed Architecture.

Spree Commerce Inc. Sells Complements for Spree, specifically Wombat, a software to
integrate different parts of a web shop, like the web frontend with distributors and accounting
solutions [P*Spr15i]. Although Wombat does not depend on Spree and also works with competing
platforms for web shops [P*Spr15e], the Spree Commerce Inc.’s engagement with Spree suggests
that they sell Wombat mostly as a Dual Product.

Cultivate a User Community

Spree uses the issue tracker of GitHub [P*Git15j]. Although the documentation does not say it
explicitly, the phrasing implies that core developers may commit directly without corresponding
issue [P*Spr15a]. All issues in the issue tracker for the spree repository on GitHub in the week
from 2014-07-18 to 2014-07-24 were included in a sample. Of these 42 issues, 34 received an
answer within 24 hours, 6 did not receive an answer within 24 hours, 2 were closed by the creator.
The median delay between issue report and answer was lower than 24 hours, so Spree uses a
Crowd of Bug Detectors.

Besides the basic VCS data that GitHub measures, Spree presents its build status, an evalu-
ation of its code quality, and responsiveness to issue reports prominently on its main GitHub
page [P*Spr15k]. CircleCI measures the build status [P*Cir15b], Code Climate measures the
code quality [P*Cod15], and Issue Stats measures the responsiveness to issue reports [P*Sto15].
These providers are independent and measure multiple projects, the measurement results are
drawn directly from the provider and therefore update immediately whenever a provider has new
results. Thus, Spree implements Public Inspection.

From 2008-02-26 to 2015-08-31, there have been 182 releases of RubyGems for the Spree
meta module [P*Rub15j]. The arithmetic mean time between two releases was 15.08 days and
therefore less than a month. Thus, Spree provided Frequent Releases of its software.

Spree has multiple branches, one for each released version of the software and the master
branch including new features. Additionally, the documentation recommends to create a branch
for each isolated set of changes. Thus, Spree supports Parallel Development. [P*Spr15a]

The website of Spree Commerce [P*Spr15g] links to the different types of documentation,
complementary information, and most importantly to the development tools within the item
Open Source in the menu under Resources. The main GitHub repository [P*Spr15k] also
links to the development tools like the issue tracker, and it links back to the website of Spree
Commerce. All documentation subpages link back to the Spree Commerce website, while the
issue tracker links back only to the main GitHub repository. Access information for the Instant
Messaging (IM) services of Spree, a Gitter chat room and an IRC channel, is buried deeper in the
documentation [P*Spr15c]. Thus, information is distributed mainly between the website of Spree
Commerce and the main GitHub repository and links between them are not so obvious that both
could be treated as a single Central Information Platform. Thus, Spree does not implement the
pattern.

Spree encourages contributions and new feature ideas from the community, and discusses

146

3.4 Evaluation

them publicly on the mailing list or IRC [P*Spr15a]. Spree conducts an Open Dialog with the
community.

Spree does not Support the Community, as it does not run a Central Information Platform.
Additionally, user support requests are not answered often enough: 28 mail threads in the Spree
user mailing list [P*Goo15d] were started in 2015-08. These served as a sample to analyze
responsiveness to support requests. One of the mails was an announcement from Spree Commerce,
another mail was a technical problem with the mail list system. The remaining 26 mail threads
started with requests for support from users. 15 of these mail threads were answered within 72
hours after creation, 11 received no answer at all or it took longer than 72 hours. 15

26 ≈ 57.7 % is
below the required threshold of 75 %. None of these requests advertised premium support.

Tools for New Developers

Table 3.4 shows the number of active contributors in every month from 2014-01 to 2015-08 versus
the number of newcomers in each of these months. Data of the total number of contributors were
retrieved from Open Hub [P*Ope15d]. Data for the second row were retrieved via git from the
main Spree repository [P*Spr15k] and processed with GitHistoryAnalyzer [Han15a]. The data
show that there is a high number of commits from newcomers every month, so Spree has Low
Contribution Barriers.

Table 3.4: Number of active developers per month versus number of newcomers per month for
the main Spree repository

2014- 2015-

Number of 01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08

developers 25 26 30 31 24 28 49 36 32 28 30 26 20 19 29 21 18 14 18 11
newcomers 7 17 16 12 12 14 22 10 17 13 8 10 9 7 10 11 10 7 8 6

Spree is written in Ruby and therefore mostly platform independent. They provide the
files Gemfile and Rakefile in their main repository [P*Spr15k]. Gemfile allows the tool
Bundler [P*Bun15] to automatically install all dependencies for Spree. Rakefile includes a
task “sandbox” that orders the Ruby tool Rake [P*Rak15a] to create a test installation of Spree
to work with. Although this solution requires a preinstalled Ruby development environment, it
counts as a Preconfigured Build Environment.

All submodules of Spree have their own set of unit tests located in each submodule’s folder
“spec” [P*Spr15k]. This fulfills the requirements for Unit Tests for Contributors. Spree also
uses a CI server that tests all modifications [P*Cir15b].

Spree’s issue tracker uses the labels “easy”, “medium”, and “hard” to indicate the difficulty of
solving an issue [P*Git15j]. This allows newcomers to first pick the Low-hanging Fruit and then
continue with more and more difficult issues as their experience with Spree grows.

147

3 FLOSS Pattern Languages

Empower the Most Suitable

Spree Commerce Inc. hosts Spree’s website [P*Spr15g] and pays the maintainers Sean Schofield
and Brian Quinn for their work on Spree [P*Spr13]. It also holds the rights over the spreecom-
merce logo and name of Spree [P*Spr15g]. Thus, Spree Commerce Inc. Runs a Tight Ship over
Spree, and there is neither a SingleMaintainer nor a Meritocracy. As Sean Schofield created
the initial version of Spree’s predecessor RailsCart [P*Sch07] and he is now Chief Executive
Officer (CEO) of Spree Commerce Inc. [P*Spr15f], no clear Maintainer Handover took place.

An analysis of all commits to the main git repository of Spree [P*Spr15k] until 2015-10
with the tool GitHistoryAnalyzer [Han15a] shows that there are 15 703 commits in total. Spree
Commerce Inc. employs or employed the developers with the highest number of commits. Thus,
the pattern Pool Resources is not fulfilled, based on the assumption that less than 20 % of
the commits, i.e. less than 3140 commits, came from organizations with commercial interest
in Spree other than Spree Commerce Inc. itself. Specifically, I attributed 9088 commits to
Spree Commerce employees and 1110 to developers who probably work for other organizations
with commercial interest in Spree. Affiliations of authors were sometimes unclear only from
investigation of publicly available data or it was unclear whether their work for Spree had a
commercial interest. Accordingly, declining the implementation of Pool Resources might be
erroneous, but the margin of error is small when extrapolating the determined data.

3.4.5 Rake

Rake [P*Rak15a] is part of the standard Ruby development chain. Inspired by Make [P*Fre14],
it automates build tasks in a Ruby development project. Developers create Rakefiles written in
Ruby to define Rake Tasks executed when building, installing, or testing their component.

Rake’s maintainer and original creator Jim Weirich died unexpectedly in 2014-02 [P*The14].
Rake moved its main repository from Weirich’s personal GitHub account [P*Rak14] to the Ruby
organization [P*Rub14c] as a consequence.

Integrate FLOSS Assets

Rubygems.org shows that Rake has no runtime dependencies but three development dependen-
cies [P*Rub14c]: Hoe, Minitest, and Rdoc. These three components help to build Rake, but are
not necessarily required, as the build runs without these tools with some additional effort. In
fact, Hoe requires Rake to run [P*Rub15l]. Accordingly, Rake does not implement the pattern
Bootstrap.

Start a New Project from Scratch

The initial commit of Rake [P*Wei03] already shows a Credible Promise, as it has most function-
ality that Make has according to the description in the documentation in the commit. The first
commit also contains a file rake/doc/rational.rdoc that explains the motivation to create
Rake. Rake’s initial author Jim Weirich described that he is uncertain whether Rake is interesting
for others and indicates that this is the initial release of Rake. Thus, Rake also started as a Market
Evaluation.

148

3.4 Evaluation

Publish Closed Sources

Before the initial commit of Rake [P*Wei03], there have been no uses of the code in a closed
source context. Therefore, Rake does not qualify for Donate Code.

Licensing

Rake uses the X11 License [P*Fre12] for its software [P*Rak15a]. The X11 License is an
Approved Open Source License and a Permissive License. Rake does not implement the patterns
Reciprocal License and Dual License.

Architecture

Rake’s source code has no modular structure [P*Rak15b], so Rake does not implement the pattern
Bazaar Architecture. Without subcomponents, Rake implements neither Dual Product nor
Manage Complements. There are no indications that maintainers Sell Complements for Rake.

Documentation exists on the main GitHub page [P*Rak15b] and on the Rake website [P*Rak15a],
but this is only a subset of the documentation in the git repository [P*Rak15b, directory doc].
None of these documentations explain Rake’s architecture, so Rake has no Exposed Architecture.

Cultivate a User Community

Rake’s commit history [P*Rak15b] shows commits with no corresponding pull request. Further-
more, it contains more commits than there are issues in Rake’s issue tracker [P*Git15g]. Thus,
developers may commit to the repository without opening an issue in the issue tracker. Therefore,
the criterion for Crowd of Bug Detectors is that answer delays for issues should average below
24 hours. All 30 issues created between 2015-01 and 2015-10 were used as a sample. 3 of these
issues were closed by the creator within 24 hours, but of the remaining 27 issues, only 6 received
an answer within 24 hours. The other 21 issues received no answer for weeks or months, with
only one exception where it took less than a week. Thus, Rake has no Crowd of Bug Detectors.

Rake uses the same metrics as Ruby on Rails: Default GitHub metrics [P*Rak15b] and status
of the build as measured by Travis CI [P*Tra15]. Rake publishes these metrics on their GitHub
page [P*Rak15b]. Therefore, Rake implements Public Inspection.

RubyGems.org lists 25 releases of Rake as RubyGem between its first release as a RubyGem
in 2004-09-15 and 2010-09-15 [P*Rub14b], corresponding to one release in about every three
month. After this, the release frequency increased, as also beta versions of Rake were released as
RubyGem. There were 38 releases between 2011-01 and 2015-10, so the arithmetic mean is 46.4
days between two releases. This is still not considered Frequent Releases.

Although the Rake repository has multiple branches, only “master” was used between 2013-02
and 2015-10 [P*Git15b]. Developers may fork the main repository and merge their modifications
back to it. However, since this is not common policy, Rake has no Parallel Development.

There is an orphaned Rake website [P*Rak13] that can neither be administered nor deleted
after the death of Rake’s original maintainer Jim Weirich. The new website [P*Rak15a] contains
no information that is not already present on the start page of the GitHub repository [P*Rak15b].
Rake uses only services from GitHub, like the issue tracker [P*Git15g], which all link back to the

149

3 FLOSS Pattern Languages

Rake GitHub repository. Thus, the Rake GitHub repository is a Central Information Platform
for Rake.

Rake has no mailing list or similar communication channels. The documentation still contains
the email address of the late maintainer Jim Weirich as contact address [P*Rak15a]. By design,
issues are discussed publicly in the issue tracker [P*Git15g], but core developers commit directly
to the repository without explaining their reasons. As a consequence, Rake has no Open Dialog
with its community. Without Open Dialog and with the high number of unanswered issues in the
issue tracker as discussed above, Rake also does not Support the Community.

Tools for New Developers

Table 3.5 shows the number of newcomers per month for Rake in the time frame from 2014-01 to
2015-08. These numbers are opposed to the number of active developers in the same months. The
data were extracted from Rake’s git repository [P*Rak15b] with GitHistoryAnalyzer [Han15a].
The fraction of newcomers is above 5 % on average, median as well as arithmetic mean, so Rake
has Low Contribution Barriers.

Table 3.5: Number of active developers per month versus number of newcomers per month for
Rake

2014- 2015-

Number of 01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08

developers 6 3 4 4 4 4 4 3 2 1 3 7 1 4 4 1 4 2 4 2
newcomers 5 2 2 1 2 2 2 1 1 0 0 5 1 3 3 0 2 1 3 0

Rake includes a Rakefile for its own build [P*Rak15b]. It can be difficult to build Rake from
source code [P*MB15], as the repository is missing a rake.gemspec. Rake therefore has no
Preconfigured Build Environment.

The Rake repository includes unit tests [P*Rak15b, directory test] and the project uses Travis
CI [P*Rak15b]. Thus, Rake implements Unit Tests for Contributors.

Issues in Rake’s issue tracker [P*Git15g] neither have tags nor titles that indicate whether they
are well-suited for newcomers. Rake does not implement Low-hanging Fruit.

Empower the Most Suitable

No external organization is involved with Rake, so the pattern Run a Tight Ship is not implemented.
Instead, Jim Weirich had been a SingleMaintainer for Rake until his death on 2014-02-19. The
subsequent Maintainer Handover classifies as branched, as the original repositories [P*Rak14]
were not continued. Accordingly, Rake is no Meritocracy. It also does not fulfill the requirements
for Pool Resources.

150

3.5 Discussion

3.5 Discussion

Table 3.6 summarizes the results of the previous evaluation. Each column shows the result for
one FLOSS project. The first rows show results for the individual FLOSS patterns, and the last
rows show other metrics of the FLOSS projects. For each combination of FLOSS pattern and
FLOSS project, a! indicates that the FLOSS project implemented the FLOSS pattern, while a
% indicates that it did not implement the FLOSS pattern. If the pattern Maintainer Handover
was applied, the table does not contain a ! but the specific outcome using the first letter of
the outcome’s title as described in the Maintainer Handover’s verification section: S stands
for a smooth transition, C for a complicated transition, and B for a branched FLOSS project.
A plus indicates additional Maintainer Handovers that have not been analyzed. Number of
patterns counts all implemented FLOSS patterns. Maintainer Handover counts at most once.
The number of commits refers only to the main branch of the main repository of each FLOSS
project [P*Rac15g; P*Rub15f; P*Spr15k; P*Rak15b] until 2015-10-31 as reported by GitHub.
For Mozilla Firefox, the number of commits comes from Open Hub [P*Ope15a] and represents
all commits until about 2015-09-19. The number of commits is included as a metric for the size
of a FLOSS project.

3.5.1 FLOSS Patterns and the Success of FLOSS Projects

Results of the analysis suggest that there is a positive relationship between the number of
implemented FLOSS patterns and the size of a FLOSS project. The two smaller FLOSS projects
Rack and Rake have implemented considerably less FLOSS patterns than the three larger FLOSS
projects. This relationship seems to be saturated already in a FLOSS project of the size of
Spree: Firefox implements about the same number of patterns as Spree, although it is an order of
magnitude larger in terms of number of commits. The data itself also does not show causality
in one or the other direction: Do FLOSS projects receive many commits if they implement
many FLOSS patterns? Or do some FLOSS patterns emerge when a FLOSS project reaches
some critical size? The FLOSS patterns itself suggest that both effects exist: Low Contribution
Barriers and related FLOSS patterns specifically try to increase the number of contributions,
while laborious FLOSS patterns like Preconfigured Build Environment are easier to implement
for large FLOSS projects with more contributors. For a FLOSS pattern like Open Dialog, it may
become more and more difficult to resist its implementation and seal the developers off from the
public when the FLOSS project grows.

The three larger FLOSS projects implemented Bootstrap, and not implementing it is only
feasible for small FLOSS projects like Rack and Rake. All analyzed FLOSS projects started with
a Market Evaluation and all except Spree with a Credible Promise. These may be important
patterns for successful FLOSS projects. The results show that successful FLOSS projects may
start from scratch and do not need Donate Code to be successful.

The analyzed FLOSS projects with commercial intentions, Rails and Spree, favored Dual
Product over Dual License to Sell Complements. However, these are just two data points and
conclusions must be drawn with caution. Another licensing aspect is the choice between a
Reciprocal License and a Permissive License. Whether one or the other helps with a FLOSS
project to succeed has been the subject of research based on much larger data sets than only five

151

3 FLOSS Pattern Languages

Table 3.6: Results of the evaluation for all FLOSS patterns and projects

FLOSS Pattern Firefox Rack Rails Spree Rake
Integrate FLOSS Assets
Bootstrap ! % ! ! %

Start a New Project from Scratch
Market Evaluation ! ! ! ! !

Credible Promise ! ! ! % !

Publish Closed Sources
Donate Code % % ! % %

Licensing
Dual License % % % % %

Reciprocal License ! % % % %

Permissive License % ! ! ! !

Approved Open Source License ! ! ! ! !

Architecture
Bazaar Architecture % ! ! ! %

Exposed Architecture % % ! ! %

Sell Complements % % ! ! %

Dual Product % % ! ! %

Manage Complements ! ! ! ! %

Cultivate a User Community
Crowd of Bug Detectors ! % ! ! %

Support the Community ! % ! % %

Public Inspection % ! ! ! !

Frequent Releases ! % ! ! %

Parallel Development ! ! ! ! %

Central Information Platform ! % ! % !

Open Dialog ! ! ! ! %

Tools for New Developers
Low Contribution Barriers ! ! ! ! !

Preconfigured Build Environment ! ! ! ! %

Unit Tests for Contributors ! ! ! ! !

Low-hanging Fruit ! % % ! %

Empower the Most Suitable
Run a Tight Ship ! % % ! %

Maintainer Handover SS+ CS % % B
Pool Resources ! % ! % %

SingleMaintainer % ! ! % !

Meritocracy ! % % % %

Number of implemented patterns 20 14 23 19 10
Number of commits 271 370 2108 54 125 15 691 1911

152

3.5 Discussion

FLOSS projects [SAM06; CMP07; CF09; SSN09], and their results still contradict each other.
No matter which of the two licenses a FLOSS project chooses, an Approved Open Source License
seems to be an important success factor.

The results for the FLOSS patterns in the category Architecture do not give a clear picture.
Bazaar Architecture and Sell Complements do not seem necessary for the success of the FLOSS
projects, but are still common enough to be observed in the selected sample of FLOSS projects.
An Exposed Architecture is presumably not necessary for smaller FLOSS projects like Rack
and Rake, but helpful for larger FLOSS projects. For very large FLOSS projects like Firefox,
implementing an Exposed Architecture is possibly difficult. Manage Complements encourages
the contribution of add-ons. Add-ons may serve as an intermediate step for core contributions,
lessening the difficulties to contribute to the core product. Add-on developers need to consider
less dependencies to other components than developers of the core component. They still learn
the core component’s API and therefore gain knowledge about its internal structure. Therefore,
FLOSS projects gain a double benefit from Manage Complements.

Remarkably, implementation of the FLOSS patterns in the category Cultivate a User Commu-
nity seems to depend on the size of the FLOSS project: For each FLOSS pattern except Public
Inspection and Central Information Platform, it is possible to define a threshold for the number
of commits such that all analyzed FLOSS projects beyond this threshold implement the pattern.
Table 3.7 is a rearranged extract of Table 3.6 to illustrate this relationship: Is is observable that
the! symbols have the arrangement of a stair.

Table 3.7: Results for the FLOSS patterns of Cultivate a User Community ordered by number of
commits and supposed pattern threshold

FLOSS Pattern Rake Rack Spree Rails Firefox

Support the Community % % % ! !

Crowd of Bug Detectors % % ! ! !

Frequent Releases % % ! ! !

Parallel Development % ! ! ! !

Open Dialog % ! ! ! !

Number of commits 1911 2108 15 691 54 125 271 370

The FLOSS patterns shown in Table 3.7 seem to be key ingredients to grow the community of
a FLOSS project and benefit from this community. The threshold for Support the Community
seems to be higher than for Crowd of Bug Detectors and Frequent Releases, while it seems
lower for Parallel Development and Open Dialog. However, while these data give reliable
support for the existence of a relationship between the FLOSS patterns in the class Cultivate
a user Community and project size, the specific order suggested by Table 3.7 may be only a
peculiarity of the sampled FLOSS projects and is not reliable.

All analyzed FLOSS projects except Firefox implement Public Inspection. Firefox has end
users as target audience, while the other analyzed FLOSS projects target software developers,
specifically Ruby developers. There are two reasons why FLOSS projects for end user applications

153

3 FLOSS Pattern Languages

do not use Public Inspection while FLOSS projects for software developers do. First, only
software developers have the expertise to understand the metrics of a Public Inspection, so most
users of Firefox would not benefit from it. Second, the Ruby FLOSS projects except Rake are
frameworks and libraries, so their users interface with the code of the components they use. Rake
users also have to write Ruby code. Thus, the code must have a high quality. Public Inspection
lets the users evaluate the code quality and so software developers know whether they are using a
component with high code quality. Users of applications like Firefox interface only with the GUI
or command line and therefore need usable applications instead of applications with high code
quality. Of course, usability and code quality may be connected, but high code quality does not
ensure usability. Thus, Public Inspection seems to be important for FLOSS projects developing
libraries and frameworks, but not for those developing end user applications.

Central Information Platform seems not to have a strong influence on the success of a
FLOSS project. However, the two FLOSS projects without Central Information Platform still
implemented parts of it, so maybe the current form of Central Information Platform or its
verification criteria do not yet capture the invariant of the FLOSS pattern.

The FLOSS patterns in Tools for New Developers and especially Low Contribution Barriers
seem to be crucial for the success of FLOSS projects, as they are universally implemented by the
analyzed FLOSS projects. Rake may not need a Preconfigured Build Environment, as it is small
and the build is not so difficult even without the Preconfigured Build Environment. Low-hanging
Fruit is an exception in this category, as only two FLOSS projects in the sample implemented it.

The analyzed FLOSS projects employ a diverse mixture of power models and all of them
have been shown to work. Rails and Spree Sell Complements and use it to finance development.
Running a FLOSS project with volunteers or with the support of a foundation seems to work as
well. Remarkably, only the three FLOSS projects without commercial support, Firefox, Rack,
and Rake, had multiple Maintainer Handovers, some of which were complicated. Firefox as the
only FLOSS project backed by a Foundation also had an especially high number of Maintainer
Handovers, but they all went smoothly. However, the evaluation comprises too few FLOSS
projects to decide whether these observations are general rules or only coincidences in the selected
sample of FLOSS projects.

3.5.2 Validation of Relationships

This chapter uses two types of relationships to model the dependencies between FLOSS patterns.
The first type of relationship are alternatives that exclude each other. If these relationships
were identified correctly, at most one FLOSS pattern standing in such a relationship should be
implemented by any FLOSS project. The other type of relationship shows that one FLOSS pattern
uses or requires a second FLOSS pattern. If these relationships were identified correctly, the
chance that a FLOSS project implements a specific FLOSS pattern is greater if other related
FLOSS patterns are also implemented. Thus, results should contain clusters of related and
implemented FLOSS patterns.

All analyzed FLOSS projects either implemented Permissive License or Reciprocal License.
This is not surprising, as they exclude each other by definition. Two analyzed FLOSS projects
implemented Dual Product and none Dual License. Thus, the results do not conflict with the
excluding relationship between the two FLOSS patterns. All FLOSS projects except Firefox

154

3.5 Discussion

implement exactly one of the three alternative FLOSS patterns Run a Tight Ship, SingleMain-
tainer, and Meritocracy. Firefox implements both Run a Tight Ship as well as Meritocracy, but
as a subproject of the MeritocracyMozilla, it can be considered a special case. The alternative
between the three FLOSS patterns seems to be mostly correct.

The next hypothesis to test is that use relations between patterns increase the chance of
concurrent implementation of the two related patterns. The corresponding null hypothesis states
that use relations have no influence on which FLOSS patterns a FLOSS project implements. Thus,
the null hypothesis can be rejected if it turns out that actual FLOSS projects satisfy relations, i.e.
implement both FLOSS patterns of a relation, more often than expected if the null hypothesis
were true. Each FLOSS project is tested individually whether it provides evidence for or against
rejection of the null hypothesis.

More specifically, first, for each FLOSS pattern the fraction of its implementations within the
set of analyzed FLOSS projects is used as approximation for the probability that any FLOSS
project implements this FLOSS pattern. For example, Bootstrap is assumed to have a probability
for implementation of 3

5 , because three of the five analyzed FLOSS projects have implemented it.
This step is independent from the specific FLOSS project.

Described formally, let F be the set of all analyzed FLOSS patterns, and let P B P (F) be the
set of all possible FLOSS pattern combinations, which we interpret as the set of possible different
FLOSS projects. Every selection of FLOSS patterns, i.e. every FLOSS project, has a probability
to occur in practice, modeled by the probability function P : P (P) → [0; 1]. P maps a set of
FLOSS projects to the probability that a randomly chosen FLOSS project lies within this set. The
probability P ({A ∈ P|X ∈ A}) that a FLOSS project implements the FLOSS pattern X ∈ F shall be
pX ∈]0; 1]. pX is known for all FLOSS patterns in F, as we use the fraction of implementations
within the analyzed FLOSS projects as approximation, as described in the last paragraph.

Second, the tool PatternStatistics [Han15b] written for this analysis calculates the probability
distribution for the number of satisfied relations under the precondition that a FLOSS project
implements n FLOSS patterns. n equals the number of implemented FLOSS patterns of the tested
FLOSS project. Figure 3.14 shows the distribution for n = 20, which is used for the test of
Firefox.

0
0.05
0.1

0.15
0.2

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 3.14: Probability distribution of satisfied relations under the precondition of n = 20
implemented FLOSS patterns

The set of all relations between FLOSS patterns shall be R ⊂ F × F. A FLOSS project A ∈ P
satisfies a relation X × Y ∈ R if X,Y ∈ A. Let RA B (A × A) ∩ R denote the set of relations that
the FLOSS project A ∈ P satisfies. Using these definitions, the probabilities shown in Figure 3.14
are the conditional probabilities pi

n B P ({A ∈ P||RA| = i}|{A ∈ P||A| = n}) for i = 5 . . . 21 and

155

3 FLOSS Pattern Languages

n = 20. PatternStatistics calculates the values pi
n for all relevant n and all i = 0 . . . |R| by summing

the probabilities of all FLOSS projects with the requested number of satisfied relations i and
implemented FLOSS patterns n, using the following equation. The first equality is based on the
definition of conditional probabilities, the last uses the pairwise independence of FLOSS pattern
occurrences implied by the null hypothesis:

pi
n =

P ({A ∈ P||RA| = i ∧ |A| = n})
P({A ∈ P||A| = n})

= P ({A ∈ P||A| = n})−1
∑
A∈P
|A|=n
|RA |=i

P ({A})

= P ({A ∈ P||A| = n})−1
∑
A∈P
|A|=n
|RA |=i

∏
X∈A

pX

∏
Y∈F\A

(1 − pY)


Figure 3.15 shows a simplified pattern map showing only the FLOSS patterns used in the

evaluation and additionally omitting Dual License, which has not been implemented in any of the
analyzed FLOSS projects. The map also does not show the alternate relationships. All FLOSS
patterns that Firefox has implemented have a green!. FLOSS patterns not implemented by
Firefox have a red%. Satisfied relations are thick and blue, other relations are thinner and black.

!
Crowd of Bug

Detectors [HWG11]

!
Support the Com-
munity [Wei15]

%
Public Inspec-
tion [ZHG16]

!
Frequent Re-
leases [Wei09]

!
Central Information
Platform [HWG11]

!
Open Dialog [Wei09]

!
Parallel Devel-
opment [Wei09]

Cultivate a User Community

! ?
Market Eval-
uation [Lin12]

!
Credible

Promise [Wei09]

Start a New Project
from Scratch

!
Bootstrap [Wei09;

Wei10; Lin12]

Integrate
FLOSS Assets

!
Pool Re-

sources [Wei09;
Wei10; Wei11]

!
Maintainer Han-
dover [HWG10]

%
Single Main-
tainer [HLG14]

!
Run a Tight

Ship [Wei11; Lin10]

!
Meritocracy [HLG14]

Empower the
Most Suitable

!
Manage Comple-
ments [WN13]

%
Exposed Architec-
ture [HWG10]

%
Bazaar Architec-
ture [HWG10;

WN13]

%
€

€

Dual Product [Wei15]

%
€

€

Sell Comple-
ments [Wei10]

Architecture

!
Preconfigured
Build Environ-
ment [WHG13]

!
Unit Tests for Con-
tributors [WHG13]

!
Low-hanging

Fruit [HWG10]

!
Low Contribution
Barriers [HWG10]

Tools for New
Developers

!
Approved Open Source

License [Lin11]

!
Reciprocal Li-
cense [Lin11]

%
Permissive Li-
cense [Lin11]

Licensing

%
Donate Code [Wei11]

Publish Closed
Sources

Figure 3.15: Implemented FLOSS patterns (green check mark) for Firefox and their 14 satisfied
relations (thick and blue)

156

3.5 Discussion

As shown in Figure 3.15, Firefox satisfies 14 relations. The distribution depicted in Figure 3.14
implies that 41.0 % of all randomly selected FLOSS projects that implement 20 FLOSS patterns,
the same number as Firefox, satisfy at least 14 relations:

∑24
i=14 pi

20 ≈ 0.410. This means that
if the null hypothesis were true, a result at least as extreme as that of Firefox could be seen in
p = 0.410 of all cases. This is clearly not enough to reject the null hypothesis.

The results for the five analyzed FLOSS projects are shown in Table 3.8. Although all analyzed
FLOSS projects satisfy at least as many relations as an equivalent median FLOSS project, the
differences to the random selection are quite small and therefore the p-values are high. Only
the result for Ruby on Rails is significant at a significance level of α = 0.05, but this may be by
chance.

Table 3.8: Results for the statistical analysis of the relations between patterns

Number of . . . Firefox Rack Rails Spree Rake

. . . implemented patterns (i) 20 14 23 19 10

. . . satisfied relations 14 7 20 13 4

. . . median satisfied relations for the same i 13 7 17 12 4
p-value 0.410 0.513 0.048∗ 0.367 0.575

∗ significant at α = 0.05

The overall results for all analyzed FLOSS projects are not enough to reject the null hypothesis,
so the statistical analysis cannot rule out that FLOSS projects do not use the relations described in
Section 3.2. However, this may be due to a too small sample size. Some relations may be so weak
that they can only be demonstrated statistically in a large sample. As another explanation, the
statistical model may not reflect reality well enough. The set P contains combinations of FLOSS
patterns that have a positive probability to occur but cannot happen in practical FLOSS projects:
For example, combinations of FLOSS patterns excluded by alternate relationships cannot happen,
but are considered in the distribution. As another example, Support the Community requires the
implementation of other FLOSS patterns by definition and therefore FLOSS projects missing
these required FLOSS patterns should not implement Support the Community in the statistical
model. Another interpretation of the mostly negative outcome is that the relations describe
combinations of FLOSS patterns that support each other and are sensible to combine – but real
FLOSS projects use combinations that are suboptimal.

3.5.3 Newly Observed Relationships

What relations can be observed in the empirical data that had not been previously postulated?
Some FLOSS pattern implementations seem to cluster more in families than along relations:
Firefox, Rack, and Rake implement one, two, and zero Architecture patterns, respectively, while
Rails and Spree implement all five. The data also show some FLOSS patterns that always come
in pairs, which may or may not be a coincidence.

Specifically, Firefox uses a Reciprocal License and has a Meritocracy, while the other analyzed
FLOSS projects implement neither. Both FLOSS patterns may be more likely in nonprofit FLOSS
projects.

157

3 FLOSS Pattern Languages

Firefox, Rails, and Spree implement both Crowd of Bug Detectors as well as Frequent
Releases, while Rack and Rails implement neither. There is already an indirect relationship via
Support the Community, but maybe Frequent Releases influences Crowd of Bug Detectors
more directly. On the one hand, according to Raymond [Ray00], Frequent Releases stimulate
users to search for defects, as they can always access new source code, and also reward finding
defects as their fixes quickly appear in official releases. On the other hand, Firefox, Rails, and
Spree are the three largest analyzed FLOSS projects and maybe the implementation of Frequent
Releases and Crowd of Bug Detectors only depends on project size as a common cause, but
there is no direct relation.

While the analyzed data support these observations of previously unpredicted relationships,
these are only post hoc observations. New data are needed to verify or reject these hypothesized
relationships for a proper a priori analysis.

3.6 Conclusion

This chapter presented a pattern language for FLOSS development. In particular, six FLOSS
patterns have been described in full that help to lower contribution barriers identified in Chapter 2.
The relationships identified in the FLOSS pattern language provide the setting to implement and
understand those six FLOSS patterns lowering contribution barriers. The chapter contributed to
four goals.

First, a classification of all published FLOSS patterns into eight categories helps readers to get
a high-level overview of FLOSS patterns. Duplicate FLOSS patterns have been merged and 35
unique FLOSS patterns have been identified.

Second, besides the association of FLOSS patterns in the same category, two additional types
of relationships between FLOSS patterns have been introduced and identified between some of
the FLOSS patterns. These relationships constitutes a pattern language among FLOSS patterns.
These relationships as well as the classification help to identify the FLOSS patterns that directly
or indirectly support specific goals of a FLOSS project, in the context of this thesis especially
lowering contribution barriers.

Third, out of the whole FLOSS pattern language, eight FLOSS patterns explicitly try to lower
contribution barriers, especially modification barriers. Section 3.3 contains six of these FLOSS
patterns. The FLOSS pattern Low Contribution Barriers serves as a meta-pattern and an
entry point to lower contribution barriers. The FLOSS patterns Low-hanging Fruit, Bazaar
Architecture, and Exposed Architecture tackle the modification barrier that understanding
the structure of a FLOSS project can be hard for newcomers, which was identified as the most
important contribution barrier in Chapter 2. Preconfigured Build Environment and Unit Tests
for Contributors help to reduce problems setting up the development environment. This
modification barrier was also identified as one of the most important contribution barriers in
Chapter 2.

Fourth, an evaluation on five real FLOSS projects assessed which FLOSS patterns occur
more often and which are less common in practice. Some FLOSS patterns are very common in
successful FLOSS projects. This suggests that these FLOSS patterns may be crucial for a FLOSS
project’s success. Specifically, Low Contribution Barriers, Approved Open Source License,

158

3.6 Conclusion

Credible Promise, and Market Evaluation are candidates for very important FLOSS patterns.
The factors influencing the implementation of other FLOSS patterns have been hypothesized
based on the results.

The evaluation also put the proposed relationships to the test. The results mostly confirm the
alternative relationships, but could not provide sufficient evidence for a statistical confirmation of
the suggested use relations. However, the data showed a weak trend in favor of the proposed use
relations, so possibly the data sample had been too small. Other possibilities for this negative
result have also been discussed. The data also suggested two additional relations in the FLOSS
pattern language and that FLOSS patterns in the category Architecture may often be implemented
together.

Future research should try to identify FLOSS patterns that fill gaps in the proposed FLOSS
pattern language. Newly identified FLOSS patterns can be classified into the proposed eight
categories. Verification sections in FLOSS patterns can help readers to understand the FLOSS
pattern and help implementers to verify whether their implementation had been successful.
Researchers can use the verification sections for scientific evaluations of FLOSS patterns.

Evaluation on additional FLOSS projects can provide more evidence on the prevalence of
FLOSS patterns. This article purposefully used different types of FLOSS projects to identify
associations between the implementation probability of FLOSS patterns and characteristics of
the FLOSS project. Still, more samples can cover additional characteristics of FLOSS projects.
For example, further analysis could reveal which FLOSS patterns depend on the programming
language or application domain of the FLOSS project.

Moreover, the data sampled from the five analyzed FLOSS projects was insufficient to show
statistically whether the proposed use relations occur in practice. A larger sample size might help
to accept or reject the proposed or other use relations.

Future research should observe FLOSS projects for new FLOSS patterns, especially those that
ease the submission process and getting reviews for acceptance of submitted patches. Chapter 2
identified these as important submission barriers, but no published FLOSS patterns target them
yet.

159

4 Wiki Development Environments

The last chapter showed established techniques for lowering contribution barriers in the pattern
format. However, some contribution barriers still lack corresponding FLOSS patterns. For some
contribution barriers, FLOSS patterns exist, but it is open whether there are other techniques to
lower these contribution barriers even further.

This chapter presents the concept for a new type of system, a WikiDE. A WikiDE adapts
the wiki concept to software development in order to lower contribution barriers. The chapter
starts with a section of theoretical considerations about the WikiDE concept. The following two
sections focus on two components of a WikiDE whose realization are especially challenging, but
provide the opportunity to lower two important contribution barriers identified in Chapter 2. The
chapter concludes with a documented PoC realization of a WikiDE.

4.1 WikiDE Concept

This section discusses the WikiDE concept and derives requirements that a WikiDE must fulfill.
It also analyzes the current state of technology in regard to WikiDEs and how this technology
fulfills the derived requirements. An adapted contribution process shows how a WikiDE may
fulfill two seemingly contradicting requirements. The section closes with an architectural outline
for the integration of the individual components.

4.1.1 Requirements1

A WikiDE is a combination of two systems: A wiki system and a web-based IDE. A realization
of a WikiDE must therefore fulfill the requirements for both types of systems.

Section 1.1.4 describes from a technical perspective how a newcomer joins a FLOSS project.
This process starts with a process of programming, which consists of the three actions Modify
source code, Build the application, and Test application behavior. The software developers
repeat these three actions until the application works as expected. An IDE supports software
developers in this process of programming. Each of the three actions involved in the process
of programming results in a requirement for an IDE. An IDE therefore comprises at least three
different subsystems to realize these requirements: A code editor enables software developers
to edit the code, a build system builds the application executables, and a debugger allows the
software developers to debug the application. [RC04; Har09, p. 5]

Wikis disperse constructive work over a high number of contributors. In this manner, each
contributor needs to contribute only a little to still yield a considerable accumulated contribution.
This works only if people can easily become users of the wiki project and users can easily become

1A preliminary version of this section was published previously [GH12b].

160

4.1 WikiDE Concept

contributors. Section 1.3.7 discusses the effects of lowering contribution barriers in FLOSS
projects to wiki-like levels.

The authors of the Portland Pattern Repository’s Wiki have also discussed requirements of
a WikiDE [Aut12]. These requirements contain among other aspects extensions to a WikiDE
that may lower contribution barriers but are not strictly necessary to realize a WikiDE. They also
imply that the primary concern of a WikiDE would be to modify its own source code. This thesis
does not impose general restrictions on the type of development project the WikiDE is used for.
Consequently, their findings differ from the findings in this section.

Self-administration

If a central administration decides who can join a project as a contributor, the number of contrib-
utors can grow only with the speed the central administration can handle. For the exponential
growth of the number of contributors seen in many wikis, the administration must grow with
the contributor size. This is only possible if the contributors also handle the administration
themselves.

Some wikis realize this with a policy that allows anonymous users to edit content. In this case,
all users administer themselves. Users then decide on their own where to contribute. Other wikis
require users to register before they can contribute. In this case, registration may be an automatic
process that requires no administrative intervention. The system may check that new contributors
have a valid email address. Corporate wikis may also integrate with a corporate user directory.
In this case, the corporate wikis reuse the administration of the corporate user directory. These
corporate wikis also require no extra administration.

A WikiDE may use any of these techniques to realize self-administration. The growth of an on-
line programming site without self-administration is limited by the capacity of the administration.

No Installation

As pointed out in Section 2.9, setting up a development environment is currently one of the most
important contribution barriers. Wiki contributors are not required to install any software on their
computers. Instead, they modify the wiki content using their web browsers.

This requirement must hold true also for a WikiDE. The WikiDE must relieve newcomers
from the various tasks required to prepare their computers for the software development project.
Thus, a WikiDE must automate the first two actions in the contribution process described in
Section 1.1.4: Download the source code and Configure build environment.

Code Editor

Writing the source code for software and writing text in a natural language are special cases of
editing text. Editors for writing source code for software are referred to as code editors, while
editors used to write natural language text are referred to as word processors. Word processors
provide only basic meta information about the text like orthographic checks at the time of writing.
Code editors on the other hand provide extensive syntax highlighting: Language keywords, types,
numbers, identifier, and other types of terms are each displayed in different colors to improve

161

4 Wiki Development Environments

the software developers’ understanding of the source code. Additionally, code editors highlight
contextual information, from basic information like which opening and closing brackets match
together, highlighting other occurrences of a currently edited variable, and API documentation of
the method currently edited. [MP09]

Software and hence their source codes are written and maintained by humans. Additionally, a
compiler or an interpreter must be able to automatically process the source code. Thus, source
code needs to be human-readable and also machine-readable. Natural language only needs to
be human-readable. It is therefore sensible for a code editor to show the human working on
the source code how a machine understands this source code, i.e. provide features like syntax
highlighting and suggestions for word completion. These features are necessary beyond the
features of a word processor. Consequently, a WikiDE needs a code editor that fulfills these
additional requirements beyond the requirements of the text editors in other wikis.

Immediate Feedback

All wiki users are treated as contributors. Therefore, all users can contribute to any part of the
wiki’s artifact. This also implies that they can see the results of their edits immediately [Ebe+08,
p. 11], without manual interaction with a group of wiki maintainers.

Most wikis offer a preview feature that allows the contributors to see the results of their edits
before they are published to the other users of the wiki. With the help of the preview feature,
contributors detect and correct errors that they have made while editing.

The process of programming with its three actions resembles this wiki editing process on a high
level of abstraction. After the software developers have modified source code, the IDE creates
the executables of the component. There are two purposes for the creation of the executables:
First, the software developer tests whether the modifications in the source code actually cause the
desired change in the component. Second, end users of the component need the executables to
use the component. These two features of an IDE map to the preview feature of a wiki and the
eventual publishing of the edited content.

For the first purpose, software developers run the component itself if it is an application or run
a test application that uses the component if it is a library. Then they interact with the running
application. While interacting with the running application, software developers may detect only
those failures that crop up in the user interface. Software developers attach a debugger to the
running application to detect failures that do not crop up immediately in the user interface. The
position in the source code of the user interface at which a software developer first detects a
failure is not necessarily the position of the causing defect. Instead, an underlying module may
be defective. The underlying module brings the execution in an invalid state, but this becomes
visible in the user interface only at a later point. Software developers also use a debugger to find
the defective source code in the underlying module.

These two purposes to create executables also manifest in WikiDEs: First, developers see
whether their modifications do what they intended them to do only when they run an executable
application that incorporates their modifications. Second, for other users to give feedback to
modifications, the other users must be able to test these modifications. For these tests, they need
to run an executable application that incorporates the modifications.

With only the executables but without a debugger, users can only test modifications with

162

4.1 WikiDE Concept

sufficient impact on the user interface. Users need a debugger to find and fix defects deep within
the component. If a WikiDE does not include a debugger, defects in the user interface may still
be fixed. A build system is therefore a requirement, while an integrated debugger only increases
a WikiDEs application range. A debugger is therefore an optional component of a WikiDE.

Version Control

Wikis usually store a list of historic versions for each web page. Each historic version stores
the content, author, and date of its modifications. Users can access this information and revert
changes back to a historic version. If contributors know that there are backups, they are more
encouraged to change the content. They can rest assured that even if they make a fatal mistake, it
will be easy to correct afterwards [LC01, p. 324].

In software development, an atomic modification to the source code may take hours of work
and the modification may span days or weeks. This can happen when software developers
restructure the architecture of the component or when a modification to one code file requires
modifications to dependent code files. While the modification has started but is not yet finished,
the behavior of the whole component may be different than intended or the component cannot
even be built.

Historic versions of source codes are usually stored in a VCS. Because of the long time span
an atomic modification may take and because a single syntactic error can prevent the whole
component from building, there are two major differences between the way VCSs store historic
versions of the source code and the way wikis store the historic versions of its pages.

First, wikis store historic versions per web page. A web page of a wiki corresponds to a code
file, as both of these store exactly one uninterrupted text. However, VCSs aggregate code files
into so called repositories. Every repository has a list of historic versions. Depending on the
VCS in use, a repository may not only aggregate modifications to code file contents but also
additions, deletions, or movements of whole code files. If a modification of the component
requires modifications in multiple code files, this can be realized as one atomic modification to
the repository. This avoids unstable intermediate versions, where one side of an interface has
been changed but a resulting change to the other part is not yet stored in the VCS.

Second, VCSs store the historic versions of a repository in multiple dimensions: There can
be multiple lists of historic versions of each repository. Each such list is called a branch. Each
branch has a common ancestor with every other branch. Software developers can also merge
multiple branches back to a single branch. Software developers may create a new branch if they
start a major modification of the application, for example. The new branch enables the software
developers to split up this major modification into several smaller modifications that are stored as
historic versions of the new branch. The other software developers can still continue with their
work since they are working with the original branch and ignore the new branch. Hence, the
software developers working on the major modification do not need to care whether their smaller
modifications render some of the interfaces temporarily unusable or even break the build. Thus,
multiple dimensions of historic versions enable the software developers to use the advantages of
historic versions on a more fine-grained level.

A WikiDE must provide historic versions of the source code in the way a VCS does. Without
the two major features explained above that distinguish a VCS from a standard wiki version

163

4 Wiki Development Environments

history, a WikiDE does not scale to high numbers of contributors, as they will disrupt each other
with their contributions.

However, this imposes an additional problem a WikiDE has to solve: As there is no single
latest version for a wiki page, which version of the wiki page shall the WikiDE display to the
user? A WikiDE must therefore also come up with a strategy to choose the version of a wiki page
for displaying on every access to wiki content. Similarly, new versions cannot be just appended
to the list of versions in all cases. Instead, the WikiDE must have a versioning strategy: Which
modifications create a new branch and which branches shall merge back together?

Code Reviews

In software development projects and especially in FLOSS projects, code modifications may
be subject to a code review before they are added to the primary development branch [CH06a].
Code modifications must (i) not be malevolent, (ii) meet the quality standards of the project, and
(iii) solve the problems they have proposed to solve or add the feature they have proposed to add.
Code reviews ensure that only those code modifications are added to the primary development
branch that meet all of the three criteria.

Wiki contributions resemble code modifications in that they may also meet or not meet any
of the three preceding criteria. Wikipedia calls contributions that validate the first criterion
“vandalism” [P*Wik16c]. The second criterion is less important in wikis, as the quality standard
can be improved by others later [P*Wik16a]. Contributions to wikis may also be checked for
relevance, which is equivalent to the third criterion [P*Wik15c].

If a wiki contribution fails at one of the criteria, it is usually sufficient to revert the wiki page
after the contribution that failed the criteria. Software modules however depend stronger on each
other. For example, if a malevolent modification was temporarily accepted for inclusion in a
component, builds of the whole component may fail until reversion. Even worse, the component
may contain a virus that infects the computers of users of the component. A low quality code
modification may decrease the whole application’s stability. Additions of the wrong features may
decrease performance or usability.

It is therefore critical to review software modifications before they are included in the primary
branch of the application’s VCS. This is also a requirement for WikiDEs, although it seemingly
contradicts other requirements like Immediate Feedback.

IDE Compatibility

Desktop IDEs are sophisticated applications that support developers in a broad range of devel-
opment activities. The Eclipse IDE without any programming language support, for example,
has a code base of 2 521 174 lines of source code at 2016-03-09 and Open Hub estimates about
USD 40 million of development cost for the Eclipse IDE [P*Ope16a]. A WikiDE must fulfill the
requirements of a wiki in addition to the requirements of an IDE and may therefore be less sophis-
ticated than a desktop IDE. There is no general restriction that keeps a WikiDE from becoming as
sophisticated as a desktop IDE, but this may take years of development. In the meantime, desktop
IDEs are generally more powerful tools for software development than WikiDEs.

164

4.1 WikiDE Concept

However, a WikiDE has advantages over desktop IDEs: It allows software developers to
join a software development project more easily. For senior project contributors, this is not an
advantage for their personal development experience, as they have already joined the project.
They will therefore likely prefer a desktop IDE over a WikiDE for the reasons mentioned in the
previous paragraph. These senior project contributors are essential for ongoing growth of the
project [KK10].

Therefore and at least until WikiDEs have matured to the level of desktop IDEs, software
projects should not rely on WikiDEs exclusively. A WikiDE system must therefore be compatible
to other IDEs. If desktop IDEs can access the source code through the VCS of the WikiDE, the
requirement is fulfilled. Compatibility is further increased if the WikiDE shares a project file
format with common desktop IDEs.

4.1.2 Existing Wiki Systems for Programming2

This section gives an overview of existing systems that fulfill some of the requirements described
in Section 4.1.1 but lack support of others. Table 4.1 lists the systems analyzed in this section and
shows which of the requirements they fulfill. Entries in the column Code Editor show Partial if
the wiki system allows editing the source code but does not provide any extended features like
syntax highlighting. Entries in the column Immediate Feedback show Partial if the wiki system
builds application executables but provides no debugger. If the system provides a debugger, the
column contains Yes.

Wikimatrix.org listed 140 different wiki applications as of 2016-03-09 [Cos16]. These wiki
applications differ from each other among other things in their user interfaces, their distribution
and editing licenses, the databases supported for storing their content, and in the programming
languages used to develop the wiki application. Some of these wikis use a VCS as their backend
and therefore fulfill the requirement IDE Compatibility. Even those using a VCS as their backend
do not satisfy the requirement Version Control, though: Olelo [P*Men14] is an example for a
wiki with a git [P*git16] backend. However, Olelo does not use the two additional features of a
VCS required to fulfill the requirement Version Control. Olelo provides only a simplified view on
the VCS version history, probably in order to maintain compatibility to standard wiki GUIs.

Some of the wiki applications allow their users to create not only human-readable content but
also executable scripts within the wiki. Wiki applications with this feature are called Structured
Wikis. Structured Wikis execute user-created scripts to process wiki content, for example in
order to generate statistics. Because users create these scripts as they need them, these scripts
are situational applications [Shi04]. Examples for Structured Wikis are XWiki [P*XWi16],
TWiki [P*Tc16], and MediaWiki [P*Wik15a]. Situational applications do not require Code
Reviews, as their primary users are also their creators. Also, the source code editing feature is
restricted to the programming languages of the scripts. The scripts are executed only within the
wiki, so common-purpose application development is not possible.

Wiki Business Query [AR08], Programming Wiki [HW09], and adessowiki [Lot+09] are
wiki systems that allow source code as content within wiki pages. This source code executes on
the server side and displays its results within the wiki page. Intended content comprises figures

2A preliminary version of this section was published previously [GH12b].

165

4 Wiki Development Environments

Table 4.1: Wiki systems that fulfill part of the WikiDE requirements

WikiDE candidate Se
lf-

ad
m

in
is

tra
tio

n

N
o

In
st

al
la

tio
n

C
od

e
Ed

ito
r

Im
m

ed
ia

te
Fe

ed
ba

ck
Ve

rs
io

n
C

on
tro

l

C
od

e
R

ev
ie

w
s

ID
E

C
om

pa
tib

ili
ty

Wiki applications Yes Yes No No No No Yes
Structured Wikis Yes Yes Yes Yes No No No

Wiki Business Query Yes Yes Partial Partial No No No
Programming Wiki Yes Yes Partial Partial No No No

Adessowiki Yes Yes Partial Partial No No No
mHub No Yes Partial No No No No

Cloud IDEs No Yes Yes Yes Yes No No
XSDoc Yes Yes No No No No Yes

Galaxy Wiki Yes Yes Yes Yes No No Yes
XYLUS No Yes Partial Yes No No Yes

CrowdCode Yes Yes Yes No No No No
Software Forges Yes Yes Yes No Yes Yes Yes
Desktop toolset No No Yes Yes Yes Yes Yes

166

4.1 WikiDE Concept

and tables. The code can access data from databases or from other wiki pages. The wikis are
intended to teach programming concepts to its users or for EUP. The wiki systems therefore do
not support generic programming languages and are no WikiDEs in that they do not fulfill the
requirements of Version Control, Code Reviews, and IDE Compatibility.

Sauer [Sau11] described the system mHub whose concept extends the concept of a Struc-
tured Wiki. In contrast to Structured Wikis, the applications developed with mHub are not
situational applications. Instead, these applications work as a middleware between an Enterprise
Resource Planning (ERP) and the production machines of a factory. The concept does not
explain how to authorize users for modification, therefore mHub does not fulfill the requirements
Self-administration and Code Reviews. Sauer does not describe how code editing works in
detail. Thus, the requirement Code Editor is considered partially fulfilled. The concept of mHub
does not provide solutions for the requirements Immediate Feedback, Version Control, and IDE
Compatibility.

Cloud IDEs are code editors that run in the browser. Examples for cloud IDEs are Cloud9
IDE [P*Clo16], Koding [P*Kod16], and CloudPebble [P*Peb15]. The existing cloud IDEs
are restricted to certain programming languages in order to provide the three core features of
an IDE explained in Section 4.1.1, namely a code editor, a build system, and a debugger. For
example, Cloud9 uses the browser’s ability to execute JavaScript in order to provide a debugging
environment for JavaScript. Other programming languages can be edited, but they cannot be
executed or debugged. CloudPebble specializes on apps for the smartwatch Pebble. The debugger
emulates a Pebble. A Pebble is simpler than a smart phone or a desktop computer, considering
for example that Pebble apps are only allowed 256 kB of data [P*Peb16]. Thus, emulating other
target platforms than a smartwatch may bring additional challenges that CloudPebble did not
have to face. Hence, the concept of cloud IDEs does not solve the problem of how to integrate
the build of application executables into a web-based IDE. The concept cannot be generalized to
most other types of application development. Some existing cloud IDEs satisfy the requirement
for a Code Editor in a WikiDE for all kinds of application development, though.

Leaving the restrictions discussed above aside, the existing cloud IDEs are not wikis. They use
multi tenancy, so the software developers using the system see only their own files. The project
owners must actively invite other software developers before they can contribute to the project.
Once a software developer joined the project, the software developer can change everything
without preceding review. Thus, cloud IDEs do not fulfill the requirement of Code Reviews. They
also do not fulfill Self-administration for the same reasons.

Aguiar and David [AD05] developed XSDoc, a wiki system that weaves source code and
documentation together. Using a web service interface, desktop IDEs can access this content
and thereby edit the source code in the wiki. XSDoc focuses on the integration of source code
and documentation and not on lowering contribution barriers. For source code edits, the whole
technical environment like an IDE and a build system still have to be installed.

Xiao et al. [XCY07] developed Galaxy Wiki, a wiki that integrates source code and docu-
mentation with an IDE. With Galaxy Wiki, software developers can edit Java source code in the
wiki with a web browser, they can also compile the application and execute it. Galaxy Wiki also
integrates a debugger, which executes as a Java applet within the browser. Thus, Galaxy Wiki
shows that a WikiDE can realize the requirements of a Code Editor and Immediate Feedback. The
debugger concept of Galaxy Wiki cannot be used for most other languages, though, since most

167

4 Wiki Development Environments

languages do not execute within a standard web browser. Additionally, only Java applications
for which the restricted Java environment within the browser context suffices can be debugged
reasonably. Galaxy Wiki is based on the wiki system MoinMoin [P*Moi15], so the history of
each source code file is only a single list, which does not fulfill the requirement of Version Control.
Also, pre-commit code reviews are not possible, so Galaxy Wiki does not solve the problem how
to fulfill the Code Reviews requirement and at the same time fulfill the apparently contradictory
requirements of Self-administration and Immediate Feedback. By providing the source code via a
web service interface, Galaxy Wiki maintains desktop IDE Compatibility.

Abbasi et al. [ASP10] designed the web application XYLUS as a cloud IDE for C# desktop
applications. XYLUS is realized with Asynchronous JavaScript and XML (AJAX). Therefore,
XYLUS can be used with standard web browsers and is platform independent. After a developer
using XYLUS has modified the source code of an application, XYLUS builds the application
on the server and starts a VM. The modified application is then loaded within the VM. The web
application opens a Remote Desktop Protocol (RDP) session and displays the VM’s screen in
the web browser. Keyboard and mouse input is redirected from the web browser to the VM
through RDP, so the developer can debug the modified application running in the VM. In contrast
to the debugger of Galaxy Wiki, this debugger concept applies also for languages that do not
run within the browser itself. In their paper, Abbasi et al. do not explain where XYLUS stores
the source code of the component and how changes to the source code are integrated into the
store of the source code. Therefore, their concept provides no solution for the requirements of
Version Control and Code Reviews. There is also no explanation on how the system’s users are
administered. The concept also does not explain if and how XYLUS supports syntax highlighting.

LaToza et al. [LaT+14] also approached the goal of having many contributors to a software de-
velopment project with CrowdCode. The method is quite different to those previously discussed,
though, and its row in Table 4.1 reflects the features of CrowdCode only superficially. The system
automatically generates tasks from the existing set of tasks and dispatches them to the developers
participating in the system. For example, new code automatically spawns a task to specify and
eventually write a test case. Developers may call functions that do not exist yet, in which case
the system spawns a task to create the function. The system works with Self-administration and
includes a Code Editor. It is no wiki in the sense that a user consumes content and may edit the
same content with Immediate Feedback.

Software forges provide a set of typical software development tools, so new projects do
not have to set up all of these tools individually. Furthermore, software forge services like
GitHub [P*Git15c], GitLab [P*Git16c], and SourceForge [P*Sla15] also host these software
development tools, so a new FLOSS project may use all of these tools without configuration
effort. This standard set of software development tools reduce the effort to work on the FLOSS
project. Riehle et al. [Rie+09] go even further and state that “software forges are geared toward
making it as easy as possible to find a project, understand it, and contribute to it.” – this also
summarizes the goal of wikis.

The development tools of a software forge include a VCS repository, typically with access
via the web site. GitHub and GitLab include a web-based editor for source code. Per default,
users cannot modify code in software repositories other than their own. This does not create a
contribution barrier, though: If users try to modify source code in a software repository other than
their own, the whole repository is branched and re-created as their own software repository. The

168

4.1 WikiDE Concept

maintainers of the original project can merge modifications in branches back into the original
project. This enables Code Reviews before merging the modifications back. They do not fulfill
the requirement Immediate Feedback, though.

Table 4.1 also lists a desktop toolset for comparison, referring to a traditional development
toolset consisting of a desktop IDE, a VCS, and an issue tracker. The desktop IDE fulfills the
requirements of a Code Editor and with their integrated debuggers, also the requirement of
Immediate Feedback. The VCS satisfies the requirement of Version Control per definition. The
issue tracker fulfills the requirement of Code Reviews. Depending on the language and the IDE,
compatibility to other IDEs is also possible, although this may require an additional overhead to
store the application metadata in multiple formats for multiple IDEs. A desktop IDE is not a wiki,
though, and requires installation of tools and downloading the application’s source code.

As shown in Table 4.1, no system currently provides a solution on how to integrate Code
Reviews into a wiki system. Using the method for Code Reviews from the desktop toolset or via
GitHub prevents Immediate Feedback in a wiki and is therefore no solution.

4.1.3 WikiDE Contribution Process3

This section shows how a WikiDE can realize the requirements Self-administration, Immediate
Feedback, and Code Reviews at the same time. A modification of the joining process described in
Section 1.1.4 is used to fulfill the seemingly contradictory requirements.

Wikis most often rely on post-commit reviews. Examples are the English, French, and
Italian Wikipedias [P*Wik16d]: Even anonymous visitors to these wikis can change the texts
and everybody else sees the changes immediately. All users can undo this change. This way,
everybody can review any change after it was commited. Sometimes two parties alternately revert
each other’s changes. This is called an edit war [P*Wik16b]. Edit wars need to be resolved by
administrators, who are wiki users with additional rights. Most often, administrators are not
necessary in the review process: There are around three to five percent double reverts per revert
in the English Wikipedia [Bur+06].

Wikipedias in some other languages, for example the German and the Russian Wikipedia,
use a concept called flagged versions [P*Wik15b]. In the flagged versions concept, every
change may or may not be flagged. Users with a special reviewer right can flag or un-flag any
change. Anonymous visitors of the wikipedia web site see only flagged changes of articles, while
authenticated users can configure whether they want to see unflagged changes. Users of these
Wikipedias are automatically given the special reviewer right if they fulfill certain criteria like
being authenticated and having made at least 300 edits in the past. Changes made by these users
are automatically flagged and visible to all others. If users without the special review right, for
example anonymous users, change an article, their changes are not immediately visible to most
other users, as their changes are unflagged. Only after a user with the special reviewer right flags
the change, it will become visible to everybody else. The concept of flagged versions is intended
to reduce vandalism [P*Wik16c]. Flagged versions remove the incentive of vandalism, as the
change will not be visible to the general public. Flagged versions therefore provide a method to
realize Immediate Feedback while at the same time establishing a process for Code Reviews.

3A preliminary version of this section was published previously [GH12b].

169

4 Wiki Development Environments

Using the concept of flagged versions for a WikiDE allows Immediate Feedback for newcomers
while the core developers can still perform Code Reviews before integrating newcomers’ modifi-
cations. On the other hand, the flagged versions concept must be adapted to VCSs before it can
be used in software development.

GitHub [P*Git15c] and GitLab [P*Git16c] already use a branching mechanism that realizes
some aspects of the flagged versions concept. As described in Section 4.1.2, newcomers can
branch a public project into their own repository with a single click. They can thereby modify
the source code without prior review by the core developers of the original component. This
is isomorphic to the flagged versions concept, if modifications in the original repository are
considered flagged and modifications in other repositories are considered unflagged. Most users
see only the modifications in the original repository. All users can create unflagged modifications
in their own repositories. It requires a special review right to flag a modification or create a
flagged change from scratch: The user needs modification rights on the original repository.

However, in order to test modifications, software developers still have to set up a local git client,
download the source code to their machines, install and configure a build environment, and build
the executable. Therefore, the FLOSS contribution process depicted in Figure 1.3 is still valid
when using software forges with a code editor and review system like GitHub. The web-based
editor can only be used if the modification is not to be tested, for example if the modification only
affects the documentation.

Thus, further adaption of the flagged versions concept is required. The UML activity diagram in
Figure 4.1 shows how to adapt the original FLOSS contribution process described in Section 1.1.4
with the flagged versions concept of wikis. The diagram shows how a newcomer modifies source
code and how the source code is merged into the primary branch of the VCS. Newcomers modify
the source code and test the modified application in their own context within the WikiDE, so
they can prepare an atomic modification package. When they are finished, the modifications
are stored as private modification package, yet invisible to other software developers using the
WikiDE. When newcomers decide to publish their private modification packages, they become
public modification packages. Other software developers can review these public modification
packages and the core developers can decide to include the modification into the main branch of
the application, which is equivalent to flagging the change in the Wikipedia concept of flagged
versions.

This contribution process solves the problem of how to fulfill the requirements of Self-
administration, Immediate Feedback and Code Reviews at the same time. With this new process,
WikiDEs relieve newcomers from the major activities Build the application and Submit a patch
of the process in Section 1.1.4. As concluded in Section 2.9, these activities have been shown
to be especially frustrating and important contribution barriers, so WikiDEs using the adapted
process lower these contribution barriers.

4.1.4 Architecture4

This section describes the components necessary to realize a WikiDE that fulfills the requirements
listed in Section 4.1.1. Each of the following subsections describes one component along with

4A preliminary version of this section was published previously [GH12a].

170

4.1 WikiDE Concept

Newcomer WikiDE

C
or

e
D

ev
el

op
er

s

Modify
source code

Test application
behavior

Build
application

Publish
modification

Public
modification

package

Merge
modifications
to code trunk

Review
modifications

[Application
misbehaves]

[Application
works as expected]

[Publish][Keep
private]

[Further modifications necessary]
[Modifications

accepted]

Figure 4.1: Activity diagram of a code modification by a newcomer with the help of a WikiDE

171

4 Wiki Development Environments

references to existing software for its realization.
There are different Wiki systems with textual content that differ in purpose and features.

Accordingly, different WikiDEs may differ in purpose and features. Thus, for most of the WikiDE
components, there is not just one possible realization. Therefore, each component can be realized
with the help of multiple different software solutions, but this analysis does not evaluate which
software is the best to realize a particular WikiDE component.

Figure 4.2 shows a UML component diagram of a possible WikiDE architecture. The WikiDE
system is a wiki and therefore a web application. The WikiDE system interacts with the software
developers via a standard web browser. This standard web browser runs a web-based code editor.
The web-based code editor communicates with the web server via a web service to load and
save source code as well as load application executables for the software developers to test. On
the server side, the web server uses a VCS as the backend to load and save the source code.
An additional database stores information about the software developers who have created an
account in the WikiDE. This information consists of login data, personal preferences for the
user interface, and a configuration of the target environment the software developers want to
develop their applications for. The final component is a build system that builds the application
executables from the given source code. The software developers can download these application
executables to test their changes.

<<subsystem>>

WikiDE Server

<<component>>

Web server

<<component>>

Version Control

System

abstraction

<<component>>

Database abstraction

<<component>>

Build System

control

cmp WikiDE system

<<subsystem>>

Client Browser

<<component>>

Code Editor

<<component>>

Wiki logic

<<subsystem>>

Build Systems

<<subsystem>>

Database

<<subsystem>>

Version Control

System

Figure 4.2: Proposed Architecture of a WikiDE

Wiki Systems

Section 4.1.2 discussed the features of wiki applications. As shown, both wiki applications
and Structured Wikis lack essential WikiDE requirements. Wiki systems may serve as the

172

4.1 WikiDE Concept

foundation for a WikiDE. Other components have to be integrated in the wiki system to satisfy
the requirements for a WikiDE.

Web-based Code Editors

Section 4.1.2 described that cloud IDEs let users write code in a web browser and store or execute
it on a server. As shown in Figure 4.2, a web-based code editor and therefore a cloud IDE is an
essential part of the WikiDE architecture.

Build Systems

A desktop IDE can create debug builds as well as release builds. When debugging the application,
the IDE creates a debug build and attaches its debugger to the application executables. Even in a
traditional development setting, often dedicated build servers create the release builds. Typically,
these dedicated build servers are part of a CI system.

A CI system creates a build for every change in the source code. This uncovers incompatibilities
between different software modules quickly, as the CI system shows an error message immediately
after the first change that causes the build to fail. Examples for CI systems are Jenkins [P*Jen15]
and CruiseControl [P*Cru15].

From the perspective of a cloud IDE, build systems and especially CI systems provide an
abstraction for the build process as opposed to executing the build steps manually, e.g. calling the
compiler and linker directly from the cloud IDE. Building the application executables with the
help of a CI system has two advantages over executing the build steps directly: First, existing CI
systems support various build configurations like programming languages and target platforms
already. If a cloud IDE executed the build steps manually, the software developers of the cloud
IDE would have to invest time for each supported build configuration. Second, CI systems like
Jenkins and CruiseControl already provide a web interface to control the build process. Software
developers using the cloud IDE use the browser to access both the cloud IDE as well as the CI
system.

The proposed WikiDE therefore uses a CI to build the application executables, but the CI is
controlled by the WikiDE logic instead of the users directly. When WikiDE users modify the
source code, the CI provides executable versions of the modified component immediately. This
satisfies the Immediate Feedback requirement.

Debuggers

There are two machines involved in the debugging process. The first is the development machine,
which hosts the source code and displays the current state of the application. The other is the test
machine that actually executes the application. A developer using a desktop IDE usually runs
the application on the same machine that runs the IDE, so the two machines are identical. The
WikiDE web interface displays the source code, allows editing, and consequently should display
the application’s state when debugging the application. Thus, the web server running the WikiDE
web application is the development machine. This web server might run on a platform different
to the intended target platform of the application. At least in this case, the development machine
must be different to the test machine.

173

4 Wiki Development Environments

The architecture of the WikiDE and the debugging scenario differs depending on where the
test machine is placed. There are two possibilities for the placement of the test machine: First,
the developers provide test machines themselves, possibly the same machines they are running
their web browsers on. In this case, the developers must execute a remote debugger on the test
machines in addition to the application itself. The remote debugger transfers the application’s
state to the development machine, where it is displayed via the WikiDE web interface. The
developers interact with the application directly. Thus, the test machine is placed on the client
side, the developer is responsible for its operation. Second, the WikiDE provides a test machine
on the server side. The test machine’s input and output are redirected to the WikiDE web interface.
The developer interacts with the test machine via the WikiDE web interface. If the application
has a GUI, the test machine’s display output can be shown using a web-based remote desktop
application like TightVNC Java Viewer [P*Tig09] or even an AJAX-based RDP client like AJAX
Remote Desktop Viewer [P*Dam06]. This realizes a debugger for the Immediate Feedback
requirement. Abbasi et al. [ASP10] have shown the feasibility of this approach with their tool
XYLUS.

Version Control Systems

Distributed VCSs like git [P*git16] and hg [P*Mer16] create a new branch of versions every time
a new development machine downloads the source code. They merge two branches of versions
every time a change set is uploaded to a server hosting a distributed VCS [OSu09]. Therefore,
multi-dimensional version lists become more common with the advent of distributed VCSs.

Using the one dimensional list of historic versions provided by most wiki systems for a WikiDE
contradicts the requirement Version Control System. Using the version history of a wiki system is
also not compatible with most existing VCSs, so it is more difficult to use a WikiDE and a desktop
IDE in parallel. As described in Section 4.1.2, some wiki applications use a VCS as backend
and therefore fulfill the IDE Compatibility requirement. They still have a one-dimensional
version history, so additional changes to such a wiki application are required before it fulfills the
requirement Version Control.

The software forge services GitHub [P*Git15c] and GitLab [P*Git16c] provide web-based
access to its hosted git VCSs. They automatically fork repositories into a user’s space on
modifications. This can be seen as a step towards the realization of the contribution process
described in Section 4.1.3.

Issue Trackers

Code reviews can be realized with an issue tracker or with a specialized review system. One
possibility to realize a review process with an issue tracker is the following: Users and software
developers of an application can create tickets in the issue tracker. These tickets describe
defects or feature requests. Software developers can then submit patches containing source
code modifications and attach these patch files to the corresponding tickets. If core developers
positively review the patch files, they will be committed to the main VCS branch. Examples for
issue trackers are Mozilla Bugzilla [P*Moz01] and Atlassian JIRA [P*Atl16].

Examples of systems specialized for reviews are Gerrit Code Review [P*Goo16] and Review

174

4.2 CI Services

Board [P*Bea16]. These systems automatically create tickets and attach patch files and are
therefore more comfortable to use than a standard issue tracker, but the server side review process
is the same.

4.2 CI Services5

Over the course of the last 15 years, CI has become an important practice in software development.
Developers applying this practice commit their code modifications to the main code repository at
least every day. Every modification that compiles and passes the tests should be committed. A
dedicated integration machine continuously compiles and tests the current versions of the source
code. This way, integration problems are detected early. Thus, integration problems are easier
resolved as they do not have time to grow. [Fow06; DMG07]

Continuous Delivery is an extension to CI. In the Continuous Delivery approach, the CI system
builds the release versions of the software products that will be shipped to the customers [HF10].
Current trends push this practice even further and propose to integrate even uncommitted code
modifications [GS12].

However, in the case of FLOSS, the advent of CI did not have a measurable impact on
development practices [DR08b]. Antoniades et al. did not list CI systems as common tools used
in FLOSS development [Ant+08]. This is one of the indications that CI was not a common
practice in FLOSS development. This seems surprising at first, since both CI and FLOSS
development are commonly associated with agile software development [MWA12].

Hundreds of thousands of FLOSS projects do not maintain their own infrastructure and rely
on software forge services like SourceForge [P*Sla15] and GitHub [P*Git15c]. These software
forge services provide a broad range of software development tools like VCSs, issue trackers,
and web site and download hosting. They do not usually provide CI systems, though. Therefore,
maintainers of FLOSS projects have to maintain CI systems on their own servers if they want to
use CI. Small FLOSS projects may rely completely on software forge services for their server-
based tools. Thus, setting up and maintaining a CI system on their own servers is a major effort.
This is presumably a major fact restraining the spread of CI among FLOSS projects.

Consequentially, large FLOSS projects that maintain their own infrastructure anyway hesi-
tate less to use CI: For example, Mozilla [P*Moz15t] uses CI techniques like automated test-
ing [P*Moz15i]. These CI systems integrate and test modifications committed to the FLOSS
project’s VCS repositories automatically. However, even for those large FLOSS projects, CI is
restricted to core developers with access to the project’s VCS repositories.

After Deshpande’s and Riehle’s study about lacking impact of CI on FLOSS [DR08b], a
couple of organizations started offering CI as a service in the cloud. Examples include Travis
CI [P*Tra15] and Circle CI [P*Cir15a]. Bugayenko [Bug15] sampled a more comprehensive list
of current CI services. Some of these services offer free usage plans to FLOSS projects and even
integrate into software forge services like GitHub. Similarly to the CI systems of large FLOSS
projects like Mozilla, only the core developers of each FLOSS project may use its CI systems.
Tools like Homu [P*Lee15] allow builds of newcomer’s modifications, but only after they have
been submitted, so the target audience are still core developers.

5A preliminary version of this section was published previously [GHJ13].

175

4 Wiki Development Environments

A multitenant CI system is a CI system that (i) hosts multiple projects and (ii) has multiple
users each of whom shall access only some of the projects. These users are called tenants
of the multitenant CI system. Such a multitenant CI system is the core of every public CI
service. As argued in Section 4.1.4, a multitenant CI system is also an integral part of a WikiDE
architecture and is required to realize the WikiDE contribution process described in Section 4.1.3.
Furthermore, a lack of public CI services makes it harder to realize the FLOSS pattern Unit
Tests for Contributors described in Section 3.3.3. Its widespread adoption would lower one
of the most important contribution barriers identfied in Chapter 2, setting up the development
environment.

This section starts with a discussion of what currently limits the widespread adoption of CI
practices in FLOSS projects. Two major reasons are identified: Resource cost and security
vulnerabilities specific to multitenant CI systems. The remaining section focuses on the second
problem of public CI services, the security vulnerabilities in multitenant CI system and how to
counter them.

4.2.1 Current Limits of FLOSS CI

This subsection discusses two reasons that limit the widespread usage of CI systems among
FLOSS projects, resource cost and security.

Resource Cost

First, CI systems need more computational resources than other software development tools. This
is because CI systems do not only download every modification, but also have to compile all
new versions of the source code and have to run a possibly large array of tests. These operations
constitute a build job. Each committed source code modification of a project leads to a new build
job in the CI system.

According to Moore’s Law [Moo75], transistor count doubles every two years and therefore
computing performance doubles every 18 months [Und04]. Assuming that computing perfor-
mance is the dominating factor of cost for resource requirements of a build job, Moore’s Law
reduces the cost of each build exponentially over time.

However, the total number of FLOSS source code lines had doubled every 15 months in the
past [DR08c]. The number of added FLOSS source code lines and similar measures double at the
same rate, as they are derivations of the number of lines and derivations of exponential functions
are exponential functions with the same base again. Therefore, no matter what specific measure
accounts most for the cost of CI maintenance, the described measure may be used to estimate the
growth of computing performance required to provide CI services to all FLOSS projects. Hence,
this required computing performance also doubles every 15 months.

C(t) shall be the cost to provide CI services to all FLOSS projects at a specific date, where t is
the number of months lapsed since some fixed start date until that specific date. C(t) is relative
to the cost at the fixed start date and therefore has no unit. ρ(t) is the computing performance
required to provide CI services to all FLOSS projects at the specific date, and α(t) is the computing
performance available for a constant amount of money. Taking the facts about the growth of
computing performance and FLOSS growth together, C(t) adheres to the following equation:

176

4.2 CI Services

C(t) =
ρ(t)
α(t)

=
2

t
15

2
t

18
= 2

t
15−

t
18 = 2

t
90

This corresponds to a yearly cost increase of 9.7 percent. It is therefore possible that free usage
plans of CI services for FLOSS projects will decline for economical reasons. The same argument
still applies if CI services shall be provided only to a constant fraction of FLOSS projects, as this
would not change the rate of cost changes.

One might question the assumption that computing power is the dominating factor of cost for
resource requirements of a build job. In this case, the general argument still applies, as variations
of Moore’s Law also apply to related resources. For example, hard disk space grows at a similar
rate as computational power, with data density doubling about every two years [KK09]. This is
still exponentially, but slower than computing power, so the yearly cost increase would be even
higher.

Accordingly, the same reasoning also applies to other software development tools like VCS.
Assuming that the cost of VCSs is largely determined by hard disk prices, the cost of VCSs for
all FLOSS projects increases at a yearly rate of about 23 percent. Thus, free usage plans for these
services on software forges may become economically unfeasible in the future.

However, it is unknown for how long the exponential growth of FLOSS sustains. The growth
may become subexponential before the economical wall for software development described
above is reached. Additionally, with the growth of FLOSS in terms of source code, public interest
in FLOSS also grows. This eventually results in increased funding for FLOSS projects and their
maintenance. This may even out the increased cost of maintenance.

Security of Public CI Systems

Second, CI systems are more vulnerable to attacks and misconfiguration than the software devel-
opment tools currently offered by software forges: In contrast to the other software development
tools, build jobs require the CI systems to execute code that developers of the FLOSS project
provide. This custom code may cause errors starting from unnecessary resource consumption
over CI system outages to espionage, denial-of-service-attacks, virus bridgeheads, and similar
malicious purposes.

The situation of multitenant systems is even worse, as one malicious tenant may attack other
tenants via the CI system. If future CI services want to provide CI also for newcomers instead of
only the core developers of each FLOSS project, it would be even easier for a malicious attacker
to gain access to the CI systems.

There is a particularly dangerous example of an attack on CI systems, a variation of the trusting
trust attack on compilers [Tho84]: An attacker could modify the CI system in a way such that
software artifacts produced on those system would be infected with a virus. For Continuous
Delivery systems, infected versions of the software product would spread to end users. These
infections are insidious, as even a paranoid end user who carefully reviews the software product’s
source code would miss the malicious code parts that the virus infection induces. Eventually, the
infected CI system would build a new infected version of its own software that hides all traces
that an infection has ever happened, while still continuing to infect its own and other software.

177

4 Wiki Development Environments

4.2.2 Security Analysis of CI Systems

This subsection systematically analyzes attack vectors that malicious tenants of a multitenant CI
system may use to attack the CI system. Of course, all tenants may easily compromise their own
build on the CI system and potentially build malicious software with the help of the CI system.
However, this is not a security risk, as these malicious tenants can also build malicious software
without a public CI system. Thus, behavior is considered an attack only if the behavior either
damages the CI system as a whole or compromises builds of other tenants.

The security analysis describes general attack vectors of CI systems, in contrast to actual flaws
of specific implementations of CI systems. Thus, the attacks described cannot directly be used to
attack a concrete CI system without modification. An attack on a concrete CI system must use
one of the attack vectors determined in this subsection, though, but the attack still has to exploit a
flaw in the implementation or configuration of the CI system.

As explained, the analysis applies to CI systems in general. For reasons of clarity, the CI system
Jenkins [P*Jen15] serves as an example and guides the line of argumentation. The tool jenkins-
stats counts 113 185 Jenkins installations as of 2016-02 [Bar16]. Hence, Jenkins is a common
representative of a CI system. The concepts explained are common among implementations of
CI systems, although the wording may be different for other specific implementations.

Langweg and Snekkenes [LS04] provide a taxonomy of attacks on software applications.
Earlier taxonomies of attacks [Lan+94] focus on whole OSs. They argue that every attack on a
software application has a location, a cause, and an impact: The attack needs an attack vector
through which the data are transmitted to the target software application, which they call location.
Further, the attack must exploit a fault in the software or configuration, which they call the
cause of the attack. Finally, the attack allows unauthorized operations that defy one or more
of the security attributes confidentiality, integrity, and availability [Avi+04]. They call these
unauthorized operations the impact of the attack.

The analysis in this subsection systematically examines the data inputs to CI systems. The
analysis checks which data inputs can serve as attack vectors. In Langweg’s and Snekkenes’s
taxonomy, these attack vectors are locations of attacks. For each attack vector, the possible
impact of the attack is discussed. As described above, Langweg and Snekkenes assign attacks a
third property, the cause. However, causes are specific to the implementation of a CI system and
therefore, the analysis in this subsection looks at causes only as far as they are relevant for CI
systems in general.

Attacks Using the Web Interface

Even in a CI system with only a single tenant, there may be several projects configured. These
projects define among other things which source code should be loaded and built, which events
trigger a new build job, and what artifacts shall be archived after each build job. Different projects
may depend on each other and form a hierarchy.

Users of multitenant CI systems can access their own projects but not the projects of others.
CI systems may allow a much more fine-grained configuration of access rights on a sub-project
level, for example Hudson [P*Pra10b] and Jenkins [Sma11].

Security flaws in CI web interfaces have proven to be usable attack vectors [Sec12b; Sec12a].

178

4.2 CI Services

Web services may also open additional attack vectors. However, these are problems of web
applications in general and are not specific for CI systems. Therefore, this class of problems will
not be analyzed more deeply in this thesis.

Attacks Using the Build Process

Executing a build job in a CI system comprises the four steps

1. VCS Checkout, the build server downloads the source code from the VCS,

2. Build Preparations, the build server sets up the build environment,

3. Builder Runs, the build server compiles the source code to produce build artifacts, and

4. Notification, the build server notifies the master server about the results of the build.

The concept of these steps borrows from Prakash’s presentation of build steps in the CI system
Hudson [P*Pra10a]. There are differences in Prakash’s build steps and the build steps shown
here, as Prakash’s build steps describe a build job from a software architect’s perspective instead
of a software security analyst’s.

The build server does not execute these steps in strict order. Instead, some steps overlap. For
example, Notification starts with the VCS Checkout already. Each step introduces possible attack
vector on the CI system. The following paragraphs discuss the attack vectors for each of these
steps.

VCS Checkout In this step, the build server downloads the latest version of the source code
from the configured VCS. The downloaded source code usually also contains build scripts like
Makefiles [P*Fre14], shell scripts, or Visual Studio project files [P*Mic16a]. These files are
not actually compiled into the produced build artifact to be delivered to the end users. Instead,
they support the build process with tasks like pre-processing the source code to target a specific
execution platform or distinguishing between wanted and unwanted optional modules for a
specific build. This step involves two possible attacks already.

First, a VCS may link to external resources. The VCS Apache Subversion (SVN) [P*The15b]
is an example: A directory under source control may contain the property svn:externals to
specify additional repositories to include in the checkout [CFP11, Chapter 3]. As another example,
the VCS git [P*git16] contains a similar feature called submodules [Cha09, Chapter 6.6].

These VCS features may instruct the build server to execute HTTP requests to other servers.
Therefore, these requests may

• access data on other web servers with host-based access restrictions and disclose them to
the attacker,

• execute web service commands with host-based access restrictions on other web servers, or

• consume network bandwidth on the build server and target other servers in a denial-of-
service attack.

179

4 Wiki Development Environments

Second, the downloaded source code may contain symbolic links. Attackers may forge
symbolic links to files on the build server outside of the directory intended for the project.
Subroutines of the CI system with high privileges may thereby be tricked to access files on the
build server with elevated access rights. In other applications, there have already been attacks
that exploit symbolic links [KFL94].

Build Preparations In the Build Preparations step, the build server configures the build
environment for the build job. For example, a configure script may prepare files for a specific
target platform or a batch process may copy dependencies to locations required for the builder
runs. The Build Preparation step may require execution of arbitrary code, as requirements varies
among projects and it is therefore not possible to offer only a closed set of preparation options.

After the Builder Runs, packaging the artifacts may also require the execution of arbitrary code
within some post-build steps. From a security perspective, these post-build steps are similar to
the Build Preparation step. Therefore, they are also discussed here.

Build Preparation steps can be configured directly in the CI system. For example, Jenkins
allows shell commands to be configured directly via the web interface. An example of a malicious
command is shown in Figure 4.3.

Figure 4.3: Screenshot of Jenkins’s web interface with a build step that deletes all system files

There are obvious countermeasures against this attack: The process executing the build may
have only restricted user rights which suppresses malicious parts of the code. Alternatively, the
CI system may completely forbid its tenants to configure Build Preparation steps. Automated
analysis of build steps may also prevent malicious build steps to be executed.

It is not sufficient, however, to restrict build steps configured directly in the CI system only.
The build scripts loaded from the VCS with the source code can also contain arbitrary code that is
executed during the build. FLOSS projects often use Makefiles [P*Fre14] which allow execution
of arbitrary commands. Other types of build environments also provide this possibility. Figure 4.4
shows how to configure a malicious deletion command in a Visual Studio project file. The CI
system Jenkins can be configured to call the application MSBuild to execute these Visual Studio
project files and then the build server also executes the commands configured there.

Builder Runs The build server compiles the source code and links all libraries in this step.
The output are the software artifacts of the project. The output also comprises executable tests

180

4.2 CI Services

Figure 4.4: Screenshot of Microsoft Visual Studio 2012 with a build step that deletes files from
other projects

that the developers have programmed. The build server executes these tests and adds the test
results to the output. Plugins may allow the tests to be distributed to special test servers. This
allows tests to be run on multiple platforms.

An attacker may include malicious behavior in the source code. Of course, the build server
does not execute this malicious code directly, as it is only compiled and linked first. However, the
build server executes tests and therefore indirectly also the source code. This way, the attacker
can use the build server to start denial-of-service attacks or access restricted web resources. An
attack has additional impact if the user account running the builder run was given too much rights
or if the attackers use a security flaw to elevate their rights. In these cases, the attackers could
shut down the build server. As a more sophisticated attack, they could modify the build server to
compile or link virus code into all software artifacts build on the server. On a multitenant system,
the software artifacts of other tenants would then get infected with malicious code.

As explained in the security discussion in Section 4.2.1, this may lead to a variation of
Thompson’s trusting trust attack [Tho84]: When the CI system builds a new version of its own
software, the compromised build server may inject malicious code in the CI system software. If
this is thoroughly executed, this attack is very difficult to detect, as the CI system may remove
almost all traces that the attack is happening.

In a standard installation of Jenkins with default settings on a Linux Debian server, a Builder
Run may execute commands on the build server with administrator rights. Thus, the attacks
mentioned above would apply to such a system.

There are multiple countermeasures against the attacks listed above. Obviously, the account
running the Builder Runs should be granted only minimal rights. Additionally, the build server
might scan the source code for known malicious code fragments. However, it is a common
practice to store library dependencies in binary form next to the dependent source code. An
attacker may compile the malicious code into one of these libraries, so that the source code
compiled on the build server is free of malicious parts, although the tests indirectly execute the
malicious code in the library. Thus, the build server would need to take the extra step and also
scan the binary libraries. A wide range of commercial programs exists for the task of detecting
malicious binary files. However, malware detectors are unreliable especially when detecting new
malware or new variations of existing malware [CJ04].

Section 4.2.3 presents another approach to counter the attacks emanating from this step of

181

4 Wiki Development Environments

the build. This approach works even if all of the countermeasures above are useless or not even
applied. Of course, it is still better to have multiple lines of defense and also implement the
measures mentioned above where possible.

Notification The build server reports the current status and eventually the results of the build
back to the master server. In Jenkins, this includes every line of output to the console. After the
build, the build server may transmit test results and build artifacts to the master server.

If attackers take control over the build server in one of the preceding steps, they may modify
the data transmitted back to the master server. There is a weaker and a stronger form of an attack
resulting from these modifications.

Some CI systems display test results or other result data in a web browser. Jenkins can also
do this if it is extended with appropriate plugins. In the weaker form of the attack, the attackers
add executable code like JavaScript code to the results. In this case, the attackers have to find a
flaw in the master server’s web interface to circumvent the security mechanisms that suppress
execution of such code. If other tenants open the result data with their browser, the malicious
executable code may act within the security context of these other tenants from within the web
browser. Thus, the malicious executable code may change the configuration of other tenants’
projects in the CI system. This may enable the malicious code to reproduce itself to other projects
on the CI system.

The stronger form of the attack uses the communication channel from a compromised build
server back to the master server. The build server uses a flaw in the communication protocol to
take over the whole master server on behalf of the attackers. Obviously, this would compromise
the whole CI system with all projects from all tenants.

4.2.3 Secure Build Servers

As shown in Section 4.2.2, users of multitenant CI systems may attack each other through the
resources they share in the CI system. More specifically, attackers may modify the behavior of
build servers to affect succeeding build jobs of other projects on the same build server. Attackers
have to use security flaws in the source code or configuration of the CI system to accomplish
their attack. While the maintainers may fix each of these security flaws when they become
aware of them, the CI system is always susceptible to zero-day exploits and the maintainers’
inattentiveness. This subsection describes an approach that inhibits attacks from one project to
other projects built on the same build server. At the same time, the approach does not require a
secure configuration of the build servers itself, for example it also works if the step Builder Runs
uses an account with administrative privileges.

Through the attacks described in the steps Build Preparations or Builder Runs in Section 4.2.2,
attackers can prepare a malicious build job that compromises a build server of the CI system.
The attackers may then use the compromised build server for their purposes. On a multitenant
CI system, build jobs of projects from other tenants will be scheduled to the same build server.
Attackers may compile malicious code into the artifacts produced in the build jobs of those
projects. These infected software artifacts may act as Trojan horses and compromise the computers
of end users of the other projects. The build processes and infections are depicted as a UML state
machine diagram in Figure 4.5. Note that the CI system maintainers and tenants of the CI usually

182

4.2 CI Services

cannot distinguish between the states Clean system and Compromised system. In this thesis, a
Default Build Server is a build server as described here.

Shut-

down

VM

Started

state machine Default Build Server

Clean system

Compromised

system

Execute

malicious

Build Job

Executing

benign Build

Job

Executing

malicious Build

Job

Building and

infecting benign

Build Job

Build

finished

Execute

benign

Build Job

Build finished

Execute

benign

Build Job

Build finished

Deliver software

artifact

Deliver infected

software artifact

Figure 4.5: UML state machine diagram accounting for attacks that infect a Default Build Server

As explained, there is no generic method to prevent attackers from compromising the build
server that executes build jobs of a malicious project. However, a build server can be considered
in the state Clean system if it has not previously executed any build jobs. Since build servers
executing build jobs for projects owned by attackers do not need to be in the Clean system state,
this criterion is met if every project has its own dedicated build server. As the master server
controls all build servers and therefore must not be compromised, the master server must not be
a build server. Dedicated build servers are infeasible for CI systems responsible for too many
projects to have one build server for each of these projects. Public CI systems that offer CI
services for FLOSS projects therefore cannot use this approach.

However, the source code of most FLOSS projects changes seldomly and only in a few FLOSS
projects, the source code changes often: The FLOSS project meta-repository Open Hub measures
activity on FLOSS projects. As of 2016-03-15, Open Hub has 672 123 FLOSS projects in its
database. With the FLOSS projects sorted by Open Hub’s activity measure [P*Ope16b], the
projects at the 0.1, 1, and 10 percentile are mist.io, MediaArea website, and Wikitty, respectively.
These projects had 1891, 197, and 33 commits within the last 12 months, respectively.

Thus, most of the dedicated build servers would be idle most of the time, even for projects
with very high activity. For example, mist.io would cause only 5.17 builds per day. Accordingly,
the following approach uses virtualization to prevent builds from different projects on the same
machine. At the same time, it does not require dedicated servers for every project.

The concept of a Secure Build Server extends the Default Build Server as described above. A
Secure Build Server is a VM. After every build, a plugin on the master server restores the VM of

183

4 Wiki Development Environments

the build server to an original clean state. To improve performance, the VM uses a virtualization
environment that supports snapshots, for example VirtualBox [P*Ora16b, Section 1.10.]. Restor-
ing a snapshot allows the virtualization environment to quickly discard all changes made since
the start of the VM. Similarly, Amazon’s cloud services allow using a so called local instance
store to start machines from a specific snapshot [P*Ama13]. If an attacker schedules a malicious
build job, the build server will build it and will be compromised, but the build server will be reset
before it executes any other build jobs. Build jobs of other projects therefore cannot be infected
anymore. Figure 4.6 shows a UML state machine diagram of such a Secure Build Server.

Started

state machine Secure Build Server

Clean system

Compromised
system

Execute

malicious

Build Job

Executing

benign Build

Job

Executing

malicious Build

Job

Compromise

system

Execute

benign

Build Job

Build

finished

Deliver software

artifact

Restoring
VM snapshot

VM

restored

Figure 4.6: UML state machine diagram of an attack on a CI system using the proposed solution

Proof of Concept of a Secure Build Server

This subsection describes a PoC realization of a Secure Build Server. The realization uses the CI
system Jenkins. The virtualization environment VirtualBox [P*Ora16a] hosts the VMs of the
build servers. A modified version of the Jenkins plugin VirtualBox Plugin [P*MGG15] controls
these VMs.

The VirtualBox Plugin has a beta version branch “snap” [P*Gre12] that supports VirtualBox
snapshots. This branch serves as the basis for the realization of the Secure Build Server: An
additional modification ensures that each build server VM restarts after every build job and
thereby restores a specific snapshot. The modified version developed for this study can be
downloaded from GitHub as FLOSS [P*Joh13].

184

4.2 CI Services

Resource Considerations

As explained in Section 4.2.1, computational resources and security are two major problems
limiting widespread CI use for FLOSS projects. The approach presented in this section increases
security, as it prevents all attacks that use the build server to attack other tenants’ builds. However,
this is a trade-off, because the CI system has to restore a VM for every build. This subsection
measures the impact on performance and therefore computational resources to take this trade-off

into consideration.
The time needed to execute a build job depends on properties of the project: The build tools,

the number of LOC, and the programming language, for example. Another important factor is
the performance of the hardware the build server runs on. The project and the hardware are both
implementation specific and therefore will not be regarded here. Hence, this analysis disregards
the time of the actual build job’s execution. Instead, the analysis compares the start up times of a
Default Build Server and a Secure Build Server as described above.

There are two physical servers, one is a Windows system and the other runs a Debian
Linux [P*Sof16]. The windows system runs the Jenkins master server on a Debian Linux
VM. The other physical server hosts two VMs with Jenkins slaves. One represents a Default
Build Server and the other represents a Secure Build Server. Both physical systems have a
four core Intel Atom 330 Central Processing Unit (CPU) with 1.6 GHz per core, 2 GB physical
memory, and a 250 GB SATA hard drive with 7200 RPM.

In the performance test, two build jobs are issued simultaneously on the Jenkins master server.
There is a delay of about 3 seconds between the starts of the two build jobs, as they were issued
manually via the web interface. Figure 4.7 shows a UML timing diagram where this issuance on
the Jenkins master server is at time 0 seconds. After between 20 to 28 seconds, the VirtualBox
host starts resuming or restoring the VMs. The Default Build Server needs about 58 seconds after
the build job was issued to resume and start executing the build job. The Secure Build Server
needs about 140 seconds to restore the original snapshot and then start executing the build job.

sd VM restore performance

150120600seconds

Started

Restoring

SuspendedS
e

cu
re

B
u

il
d

S
e

rv
e

r

Started

Resuming

SuspendedD
e

fa
u

lt

B
u

il
d

S
e

rv
e

r Build Job

scheduled

20 to 28 s

~58 seconds

~140 seconds

Figure 4.7: UML timing diagram of the VM start up latency in the test environment

The concept of a Secure Build Server described in this section has no influence on the time
needed to execute a build job for the first time. However, a Secure Build Server needs more time
for subsequent build jobs, as the Build Server cannot store intermediate data of the build job.
For example, while a Default Build Server only loads the modifications of the source code since

185

4 Wiki Development Environments

the last build job from the VCS, a Secure Build Server has to download the whole source code
for every build job. Additionally, a Default Build Server may reuse intermediate files from the
last build job. Examples are object files for unmodified source code files in the programming
language C. The performance decrease of a Secure Build Server in practice may therefore be
greater than the pure start up times of the Build Server as analyzed in this subsection.

4.2.4 Validation

This subsection validates the security of the Secure Build Server concept. First, an attack is
devised that modifies a build server such that all later builds on this server produce modified
versions of software artifacts. The attack is sufficient to inject malicious code into these modified
versions. However, an actual infection is not necessary for a PoC and will not be part of the attack.
Second, the devised attack executes on a Default Build Server in the test environment described
in Section 4.2.3. This shows that the Default Build Server is vulnerable to the attack. Third, the
devised attack fails on a Secure Build Server. This shows that the approach successfully prevents
these kinds of attacks.

Attack Scheme

As an example scenario, the CI system consists of a standard Jenkins installation with one master
server and two managed slave servers as described for the performance test in Section 4.2.3. All
systems run on a minimal Debian Linux [P*Sof16] environment. The master server connects to
the slave servers via Secure Shell (SSH) tunnels. One slave server is a Default Build Server, the
other slave server is a Secure Build Server. The master server only dispatches build jobs but is
not a build server itself.

This section demonstrates the attack on a fictive FLOSS project ABC set up for this validation
in the environment described above. Any real FLOSS project also works, as the weakness relies
on the configuration of the CI system alone. ABC’s SVN repository resides on servers with
the domain name svn.example.com. The CI system also hosts a second project named Mallet.
Unknowingly to the CI system and the ABC maintainers, Mallet tries to inject malicious code
into the build artifacts of project ABC.

Mallet’s strategy exploits the fact that the build server performs all build jobs. Mallet redirects
access to ABC’s SVN repository to its own SVN repository that contains modified code. Mallet
achieves this with a modification of the hosts file on the build server. A post-build step of
Mallet’s build adds an entry for svn.example.com to the hosts file with an Internet Protocol
(IP) address that Mallet controls, in this example 192.168.21.59. This post-build step consists
of the following line of shell script:

echo ’ 1 9 2 . 1 6 8 . 2 1 . 5 9 svn . example . com ’ >> / e t c / h o s t s

Attack on a Default Build Server

After Mallet’s build, the hosts file contains an entry claiming that the name svn.example.com
resolves to the IP address 192.168.21.59, a server that Mallet controls. When the build server
builds ABC the next time, the build server tries to fetch the freshest source code for project ABC.

186

4.2 CI Services

ABC has an SVN repository configured on the server svn.example.com, so the build server
resolves this host name. As the hosts file has a higher priority than Domain Name System
(DNS), the build server does not resolve the correct IP address. Instead, the Default Build Server
resolves the IP address 192.168.21.59 that Mallet configured in the hosts file.

With this modified hosts file present, the Default Build Server does not download the source
code of ABC from svn.example.com, but instead some modified version from Mallet’s server.
In the actual implementation of this PoC, Mallet’s server just delivers different source codes
instead of actual malicious source code, but it is obvious that delivering malicious source code is
easily possible.

In order to disguise the attack, Mallet might have configured the server on 192.168.21.59 to
forward SVN requests to the actual SVN repository on svn.example.com. In this case, changes
on svn.example.com still propagate to the software artifacts build on the CI system. Mallet’s
server might add malicious source code while forwarding the original source code. Thus, the
attack would be difficult to detect for the ABC developers, as it does not show in the logs.

Attack on a Secure Build Server

Mallet now launches the same attack on a CI system that implements the approach described
in Section 4.2.3, a Secure Build Server. Contrary to the previous course of events, the Secure
Build Server resets the VM of the slave server after Mallet’s build job. This restores the original
hosts file and reverts Mallet’s changes. When building ABC afterwards, the build server resolves
svn.example.com to the correct IP address from DNS and loads the unmodified ABC source
code. Thus, Mallet’s attack was unsuccessful.

There are more obvious and direct countermeasures to prevent the devised attack. Running
the build jobs on the build server in a restricted user account that has no access to the hosts
file suffices already. However, the attack may be refined to outdo these countermeasures again,
like combining the devised attack with a rights elevation attack. Of course, there are also
countermeasures against these rights elevation attacks. Additionally, different but similar attacks
to the shown attack also have obvious and direct countermeasures, like fixing a security flaw that
allowed attackers to take over the build server. However, specific countermeasures only work
against specific attacks. The devised attack is therefore only a trivial representative of a larger
class of attacks, each of which has a specific countermeasure. The Secure Build Server approach
prevents all attacks in this larger class.

4.2.5 Limitations

The Secure Build Server concept described in Section 4.2.3 has limitations. This section will
discuss those limitations.

The build jobs are encapsulated and cannot influence each other, as the VM acting as Secure
Build Server is restored to a clean snapshot after every build job. There are two methods that
attackers may use to bypass the encapsulation.

First, attackers can use a flaw in the VM code to escape the VM [Reu07]. This way, they can
compromise the computers hosting the VMs. Subsequently, they can compromise other VMs or
other parts of the computer infrastructure.

187

4 Wiki Development Environments

Yet, VM escapes are not a problem specific to Secure Build Servers. In fact, if cloud services
like Amazon EC2 [P*Ama16] host the Secure Build Servers, attackers might escape any VM
that Amazon EC2 hosts to achieve the same goals as escaping a Secure Build Server. It would
even be easier for the attackers to escape a VM that they themselves own, as they would have full
control over these VMs without the need to find and exploit flaws in the CI system.

Second, the analysis of the attack vector Notification in Section 4.2.2 explained that a com-
promised build server could attack the master server of the CI system. Restoring a snapshot of
the Secure Build Server would remove malicious code from the Secure Build Server, but the
malicious code would survive on the master server. The compromised master server could easily
compromise the Secure Build Server again after it restored the snapshot. The master server could
compromise other build servers as well.

As explained in Section 4.2.1, the cost of computational resources is another problem of public
CI services. The Resource Considerations in Section 4.2.3 showed that Secure Build Servers
perform worse than Default Build Servers. In practical applications, the security benefit might
not be worth the added cost of computational resources.

4.2.6 Related Work

This subsection gives a summary of current research on security solutions based on virtualization.
Rosenblum and Garfinkel [RG05] describe advantages and challenges in virtualization research.

One section is also dedicated to security properties of VMs. Monitors running outside the VMs
can analyze attacked system even down to the hardware level. Attacks are therefore more difficult
to conceal. They also suggest to use VMs to separate environments or applications from each
other. The solution in Section 4.2.3 may be seen as a special case of this general idea.

Garfinkel and Rosenblum [GR05] further elaborate that VMs with a dedicated purpose should
only be allowed network access as far as necessary. This Guest OS Independence, as they call
it, allows more fine-grained access control than solutions without VMs. This concept allows to
prevent attackers from using Secure Build Servers for denial of service attacks.

Price [Pri08] compares security advantages and disadvantages of virtualization. The list
of advantages contains encapsulation as the possibility to run different applications without
influencing each other. Disadvantages that implementors of the Secure Build Server solution
should consider include rollback vulnerabilities: Administrators may install security patches on
VMs like the Secure Build Servers. If the VMs restore snapshots without the security patches
afterwards, the VMs are vulnerable again. This may happen unknown to the administrators, who
consider the VMs patched.

4.2.7 Summary

A multitenant CI system is an integral part of a WikiDE. Small FLOSS projects rely on software
forge services instead of maintaining their own infrastructure for development tools. Therefore,
these small FLOSS projects would also profit from CI techniques if software forge services offered
CI services. Large FLOSS projects with their own infrastructure may speed up development
if external developers could use their CI systems. The realization of these use cases requires
public CI systems with multiple independent tenants, but they suffer from two problems: First,

188

4.3 Reviewer Recommendations

CI systems come with a high cost because of the required computation, bandwidth, and memory
resources. Second, as all tenants execute their own code on the CI systems, tenants may cause
malicious or non-malicious failures that affect other tenants.

A security analysis showed which attack vectors enable failures to spread from one tenant’s
part of the CI system to the others’. One class of attack vectors starts on the build server that
executes the tenant’s own code. Section 4.2.3 detailed a concept that encapsulates build job via
virtualization and snapshots, creating a Secure Build Server. The CI system resets the Secure
Build Servers back to an original and uncompromised state after every build job. Thereby, Secure
Build Servers prevent attacks that rely on multiple build jobs on the same build server, even if the
attacks are not detected. A PoC implementation on the CI system Jenkins shows that the concept
of a Secure Build Server can be realized.

4.3 Reviewer Recommendations6

Delayed reviews for submitted patches was identified as an important contribution barrier in
Chapter 2. As highlighted in Section 3.6, none of the identified FLOSS patterns lower this
contribution barrier. One reason for delayed reviews are problems with reviewer assignment.
In FLOSS projects, problems with reviewer assignment defer the acceptance of patches by
an arithmetic mean time of 6 to 18 days [Tho+15]. This problem is also not specific for
FLOSS, finding reviewers is generally a problem in software development projects [LVD06;
Wie02, p. 182]. Thus, a tool that speeds up reviewer assignment would lower the corresponding
contribution barrier. As visible from the WikiDE contribution process described in Section 4.1.3,
a WikiDE could use such a tool to speed up the action Review modifications.

There is extensive research on bug triaging, i.e. assigning developers to a specified issue and
reducing the human effort involved, for example [CC06; Sho+13]. This is an important problem
in practice, and FLOSS projects use tools to support bug triaging [TM12]. There is also research
on the review practices of FLOSS projects in general, for example [Kop06; Bay+12]. More
recently, research emerged on tools to support reviewer assignments [Bal13; Tho+14; Tho+15].
They suggest that algorithms evaluate the project’s review history to recommend reviewers with
the greatest review expertise for submitted patches.

In contrast, Sethanandha et al. propose that the ideal reviewer would be the person with
the greatest modification expertise for the code that the submitted patch modifies [SMJ10b].
There is research based on practical observations and empirical data for algorithms to measure
the modification expertise of individual developers for a given part of the source code, for
example [AM07; Fri+14]. However, these algorithms have not yet been evaluated for their
suitability to recommend reviewers.

Reviewer recommendation tools are only useful if they recommend competent reviewers
for submitted patches. This depends on the employed algorithms. This section compares the
prediction performance of the algorithms File Path Similarity (FPS) [Tho+14] and Weighted
Review Count (WRC), both of which use review expertise for their decision, against six algorithms
based on modification expertise. The evaluation uses historical data from the same three FLOSS

6A preliminary version of this section was published previously [Han+16].

189

4 Wiki Development Environments

projects as in a previous study [Tho+14] to ensure internal validity and added Firefox as a fourth
FLOSS project for external validity.

4.3.1 Related Work

This section describes existing algorithms to measure expertise. A reviewer acquires review
expertise when reviewing code. A developer acquires modification expertise when modifying
code. Each algorithm may be used to recommend reviewers for submitted modifications. Usage
expertise is a third type of expertise and refers to expertise gained by using a module, for example
when using it as a library, but not modifying it. Research on usage expertise always came in
conjunction with modification expertise. Thus, usage expertise is not discussed separately.

Review Expertise

Jeong et al. [Jeo+09] first suggested how reviews of submitted patches could be predicted
automatically. They proposed Bayesian Networks to predict the outcome of the review and the
actual reviewer of patches.

Balachandran [Bal13] developed the two reviewer recommendation algorithms Review Bot and
RevHistRECO. If a patch for some files is about to be reviewed, Review Bot assigns scores to all
previous authors and reviewers of the same lines of code that the patch modifies. RevHistRECO is
similar but operates on file history instead of line history. The algorithms use a time prioritization
parameter δ ∈]0; 1] to decrease the impact of older modifications and patches. The developers
with the highest scores are recommended as reviewers. Balachandran compares the two algorithms
on two projects with 7035 and 1676 reviews. Review Bot had a better prediction performance
than RevHistRECO. Both Review Bot and RevHistRECO use both review expertise as well as
modification expertise.

Another approach was presented by Thongtanunam et al. [Tho+14]. They described the
recommendation algorithm FPS. The main idea of FPS is that files with similar file paths are
closely related by their function. It assumes that in most large projects the directory structure is
well organized. The algorithm assigns scores to reviewers of files that have similar file paths as the
files of a given review request. Reviewers with the highest accumulated score are recommended
as reviewers for the given request. Like Review Bot, the algorithm contains a time prioritization
factor δ ∈]0; 1] to prefer more current over past reviews.

The following is a mathematical definition of FPS equivalent to the original definition in
Thongtanunam et al.’s paper. Let F, R, and D denote the set of all files, all reviews, and all
developers, respectively. Let Files : R→ P (F) be the function that maps a review to the set of
its reviewed files. FPS uses a function CommonPath : F × F → N that counts the number of
common directory levels from left to right in the paths of two given files. The file name counts as
a directory level on its own. Thus, if two files are identical, the count is one higher than for two
files in the same directory because of the identical file name. Similarly, Length : F → N counts
the number of directory levels including the file name in a file’s path, or in a different formulation
Length (f) = CommonPath (f , f). The definition of the functions Similarity : F × F → N and
ReviewSimilarity : R × R→ R shall be the following:

190

4.3 Reviewer Recommendations

Similarity : f1, f2 7→
CommonPath (f1, f2)

max
{
Length (f1) ,Length (f2)

}
ReviewSimilarity : r, s 7→

∑
f1∈Files(r)

∑
f2∈Files(s) Similarity (f1, f2)

|Files (r)| · |Files (s)|

The function Reviewers : R → P (D) shall map each review to the set of developers that
participated in the review. Let r1, . . . , rn denote all reviews in R in chronological order. For
a developer d and a review rx, let Rx,d B {ri ∈ R|0 < i < x ∧ d ∈ Reviewers (ri)}, the set of all
reviews that happened before rx in which the developer d participated as a reviewer. Then
FPSScoreδ : R × D → R gives a prediction of each developer’s expertise for each review
according to the following definition:

FPSScoreδ : rx, d 7→
∑

ri∈Rx,d

ReviewSimilarity(rx, ri) · δx−i−1 (4.1)

The time prioritization factor δ ∈]0; 1] ensures that older reviews have less influence on the
resulting score than newer reviews. For δ = 1, there is no time prioritization and older reviews
have the same weight as newer reviews.

Thongtanunam et al. compared the prediction performance of FPS to Balachandran’s Review
Bot. Both algorithms calculated recommendations for historical reviews of the three FLOSS
projects Android Open Source Project (AOSP), OpenStack, and Qt. The algorithms used five
different time prioritizations δ = 1, δ = 0.8, δ = 0.6, δ = 0.4, and δ = 0.2. The number of
recommended reviewers was limited to k = 1, 3, and 5 for each review. Then they compared
each set of recommended reviewers with the actual historical reviewers in each review. A
recommendation was considered correct if at least one of the k recommended reviewers was one
of the actual reviewers.

The results answer two research questions: First, for all considered combinations of projects
and values of k and δ, FPS performed better for greater values of δ. Consequently, δ = 1
outperformed all other tested values of δ. For Review Bot, δ had little influence (less than 0.5
percentage points) with the exception of AOSP, where δ = 0.2 and k = 1 is an extreme outlier.
Since this outlier is not discussed in the text, and even contradicted with, even this outlier is likely
just a misprint in the table. Second, FPS significantly outperforms Review Bot, except for some
configurations in Qt especially for low values of δ and number of recommended reviewers. For
k = 5 and δ = 1, FPS predicts 77.1 %, 78.0 %, and 36.9 % correctly for AOSP, OpenStack, and
Qt, respectively. For k = 5, Review Bot predicts, with a project-specific optimal value for δ,
29.3 %, 38.9 %, and 27.2 % correctly for AOSP, OpenStack, and Qt, respectively.

In a more recent study, Thongtanunam et al. [Tho+15] further improved FPS and added the
FLOSS project LibreOffice to their evaluation. They used a more sophisticated version of the
CommonPath function. This more sophisticated version does not only compare the longest
common prefix of two paths, but also three other types of path similarity metrics and combines
them with Borda count [Bla76]. The improved algorithm correctly predicts 79 %, 77 %, 41 %,
and 59 % with k = 5 for AOSP, OpenStack, Qt, and LibreOffice, respectively. This is a change of
+2, -1, and +4 percentage points for AOSP, OpenStack, and Qt, respectively, in contrast to their
previous evaluation.

191

4 Wiki Development Environments

GitHub [P*Git15c] offers features to support “social coding” [Dab+12]. Jiang et al. [JHC15]
analyzed reviewer recommendation algorithms that use social relationships between developers
and reviewers among other properties for recommendations. The best algorithm in their evaluation
uses support vector machines (SVMs) as machine learning algorithm for recommendations. The
results cannot be directly compared to the other approaches, including the one in this section,
because of their specialization on GitHub features that are not available in other FLOSS projects.

Yu et al. [Yu+16] also used machine learning to recommend reviewers for patches in GitHub.
For their approach and data, Information Retrieval performed better than SVM.

Zanjani et al. [ZKB15] combine three metrics to calculate review expertise. For each combi-
nation of reviewer and file, each metric yields a value between 0 and 1. These three values are
added to a composed review expertise.

Modification Expertise

There is various research on algorithms calculating a software developer’s modification expertise.
The algorithms were not originally designed for reviewer recommendation, instead usual goals
are

• finding a mentor for new team members, and

• finding an expert for specific questions on a part of the component.

Each unique algorithm evaluated for reviewer recommendation in this section is highlighted in
boldface.

A simple algorithm to calculate modification expertise is Line 10 Rule: The last editor of a
module is assumed to have the most expertise with it. The name of this algorithm derives from
a VCS that stored the author of a commit in line 10 of the commit message. Because of its
simplicity, the Line 10 Rule is a metric or the basis of a metric in various research. [MA00; SZ08]

In early research on expertise in the software development domain, McDonald and Acker-
man [MA00] used three types of sources to identify experts, who may be software developers or
support representatives: First, they asked all users to create profiles about themselves. Second,
they counted the number of changes each developer made on a module using VCS logs. Third,
they indexed the descriptions of issues for which support representatives were responsible using
data from an issue tracker. This allowed their tool Expertise Recommender to recommend a
set of experts when given a problem description. The recommendation list is ordered by the
date of the last change to the module, and the last editor appears first in the list, hence this is a
straightforward extension to the Line 10 Rule.

The Number of Changes to a module is only a very rough metric of modification expertise.
For example, if the development team switches to the CI development method, the number of
logged changes to the modules will increase due to the regular commits to the VCS [Fow06].
This introduces a bias to the metric, as early, seldom committing developers are considered less
experienced than later developers with a high commit frequency.

Nevertheless, other research also uses the number of changes to an artifact as a metric to
quantify the developers’ expertises with the artifact. Balachandran’s Review Bot [Bal13] de-
scribed previously also falls into this category. As other early research of this type, Mockus and

192

4.3 Reviewer Recommendations

Herbsleb [MH02] defined Experience Atoms (EAs) to be “elementary units of experience”. They
distinguished between several categories of experience, where expertise with a specific module is
only one example category. They mined VCS logs to calculate the EA a developer has acquired.
Developers acquire one EA for each commit in each relevant category. Examples of categories
are the module that the commit changes and the technology that the commit makes use of. They
also developed a tool called Expertise Browser to visualize the EAs. Expertise Browser allows its
user to find experts, for example the developers with the highest number of EAs for a module.

As another example, Robles et al. [RGH09] devised a method to visualize changes to the core
group of developers in a FLOSS project at each point in time. Their calculation also counts the
number of commits for each developer to the VCS. For each time period, a fraction of developers
with the most commits are considered core developers. Qualitative analyses have shown 10 %
to 20 % to be reasonable fractions of commits to be considered core developers. Thus, the
calculation’s output is a project-wide decision whether a specific developer was a core developer
at a specific point in time. The visualization techniques itself are not relevant for this study and
will not be discussed here.

Minto’s and Murphy’s Emergent Expertise Locator [MM07] also calculates the number of
times each developer has edited each file and stores this information in a File Authorship Matrix.
This matrix is used as part of a calculation to find developers that share expertise and therefore
are assumed to be part of an emerging team. The Emergent Expertise Locator can then propose
prospective colleagues to a developer to help in the formation of such a team. However, the
calculation step used to find a developer’s expertise with a file still only counts the number of
changes.

Schuler and Zimmermann [SZ08] propose to count not only the Number of Changes directly
to a module as modification expertise, but also the number of commits with code that call the
module. This is no modification expertise, but usage expertise. However, they provide no
algorithm that aggregates the measured modification and usage expertises into a single metric.
As modification expertise appears more adequate than usage expertise to recommend reviewers
for modifications of a module, their approach does not contribute an additional algorithm for
reviewer recommendation.

Gîrba et al. [Gîr+05] approximated Code Ownership using VCS logs, which is specifically a
list of file revisions with an author name and the number of removed and added lines for each file.
They developed two algorithms that execute consecutively for the Code Ownership approximation.
The first algorithm approximates the size of each code file, as the file size is not directly available
in their type of VCS log. For each author, the second algorithm approximates the fraction of
lines in the file which this author “owns”, i.e. that this author has edited last. Ownership Maps
visualize this ownership data. They also showed how to identify patterns in Ownership Maps.

Alonso et al. [ADG08] assigned each source code file to a category based on its file path. Their
tool Expertise Cloud measures a developer’s expertise in a category as the number of changes
to files in the category. Thus, this algorithm is a variant of counting the number of changes
on a module instead of the file level. It stands out in that it also specifies how to find out the
changed modules from VCS logs. However, their example project, the Apache HTTP Server
Project [P*The15a], clearly documented its source code layout which implies a classification
scheme for the project’s files. It is not immediately clear how to classify files in other projects,
which may have less clear documentation on their source code layout, let alone an automatic

193

4 Wiki Development Environments

classification without manual configuration. This study uses a classification scheme similar to
FPS for Expertise Cloud. Their approach also includes a visualization of expertise in tag clouds,
hence the name Expertise Cloud.

The Degree-of-Knowledge (DOK) defined by Fritz et al. [Fri+10; Fri+14] aggregates two
metrics on different data sources, the Degree-of-Interest (DOI) and the Degree-of-Authorship
(DOA). First, the DOI measures how much a developer uses a module. The DOI extends Schuler’s
and Zimmermann’s idea of usage expertise [SZ08], as it accounts not only calls to the module,
but also other interactions such as opening a module’s source code in the IDE [KM06]. Second,
the DOA measures how much of the module’s source code a developer has created. Similarly to
Gîrba et al.’s Code Ownership approximation [Gîr+05], a developer’s DOA decreases when other
developers change the module. Fritz et al. determined concrete weightings for aggregating the
DOA components and the DOI into a single DOK value via linear regression on experiment data.
In multiple experiments, they found that the weightings depend on the project, but they also gave
general weightings that best fit the aggregated experiment data. Acquiring the data to calculate
the DOI requires a plugin on each developer’s computer. This impedes its usage in this study
in three ways. First, it disallows using data before the plugin was installed. Second, additional
effort is necessary to let the developers in the evaluated FLOSS projects use the plugin, as the
plugin needs support and FLOSS developers need to be convinced to cooperate. Third, ensuring
the plugin’s usage requires a closed experimental setting. Therefore, only the DOA is part of the
comparison.

Anvik and Murphy [AM07] compared three different algorithms to determine experts. They do
not distinguish between different degrees of expertise, and instead categorize developers either
as experts for an issue in the issue tracker or not. The algorithms require that the issue reports
have already been closed, and are therefore not suitable for reviewer prediction. However, two
of the algorithms evaluate VCS logs to find experts, and one uses data from the issue tracker.
In this regard, the comparison resembles the comparison in this paper, as it also compares
recommendation systems based on modification expertise with recommendation systems based
on expertise acquired when using an issue tracker. Both algorithms using VCS logs use a heuristic
like that of Expertise Recommender [MA00]: The developers who changed a module last are
experts for this module. These two algorithms differ in what they consider a module: The first
considers the change set of the issue, i.e. all files that the issue’s resolution changes, as one
module, the second other considers Java packages as modules. The algorithm that uses data from
the issue tracker assembles its list of experts in a more sophisticated way. It considers not only
the issue report under analysis itself, but also all issue reports that relate to the issue report under
analysis, for example because it has been marked as duplicate. From each related issue report,
including the issue report under analysis itself, three types of sources add to the list of experts.
The first source are the people in the issue report’s Carbon Copy (CC) list, although some of the
entries are filtered out. Second, those who commented on the issue report are added, again only
after filtering. The third source is a heuristic of who fixed the issue described in the issue report.

Anvik and Murphy found the two algorithms based on VCS logs to have an average precision
of 59 % and 39 %, and an average recall of 71 % and 91 % when considering change sets and
packages as modules, respectively. The algorithm based on issue reports shows results between
the two VCS based algorithms, with an average precision of 56 % and an average recall of
79 %. Thus, no algorithm is better for all use cases, instead there is a trade-off between precision

194

4.3 Reviewer Recommendations

and recall. Furthermore, the number of recommended experts differs between algorithms and
their published data show a strong association between the average number of recommended
experts and average recall. This suggests that the choice between the two sources of data and
the granularity of modularization in the analysis may have little or no influence at all on the
measurement of expertise.

4.3.2 Expertise Explorer

The algorithms presented in Section 4.3.1 use data from development tools like the issue tracker
and the VCS. Based on these data, they calculate the expertise for a given code artifact for a given
developer. Some algorithms calculate review expertise, others calculate modification expertise.
Algorithms like EA and DOI/DOA distinguish between different types of expertise, but they have
an explicit variant to calculate modification expertise.

This modification expertise may or may not be different from review expertise. If they are
different, these two types of expertise are not distinct: Review expertise implies an understanding
of the modifications to a component, which is helpful or even necessary to create code [Tao+12].
Thus, when gathering review expertise, a developer also gathers modification expertise. The
reverse is also true: An expert creator of a component’s code may anticipate side effects of
a modification and, more generally, knows the context of a piece of code, like its intended
purpose, its callers and callees, and its technical constraints. These skills obviously also help
when reviewing code.

This study uses the platform Expertise Explorer developed for expertise calculations and the
more specific purposes of this study. Expertise Explorer is publicly available [SHP15] under the
GPL and therefore anybody can reproduce the results of this study or use it for similar calculations
or comparisons. There is a lab package with the source and result data used in this study [HPG15].

This section provides definitions for ambiguous terms like review and reviewer. A description
of the technical aspects of Expertise Explorer relevant for the evaluation of the historical data
follows. The section eventually provides an alternative calculation method for FPS that fits to
Expertise Explorer’s data structure.

Data Model for the Review Process

The evaluation prerequires an exact definition of what a review is and when the algorithms
must calculate their recommendation of reviewers. If the calculation takes place later, then the
algorithms may obviously use more data and may come to different recommendations. The
review model includes the concepts of issues, patch submissions, reviews, and the main VCS.
Figure 4.8 depicts the former three and their relationships as an Entity Relationship Diagram
(ERD) [Che76]. An issue is a change request to the FLOSS project, either caused by a fault in the
software or in case of a feature request by a change to the specification. In either case, the change
request requires the modification of the source code. For this definition, documentation files and
build scripts also count as source code if they also reside in the VCS, because they can be difficult
to distinguish and the review process is the same. Thus, any issue in the FLOSS project’s issue
tracker counts as issue. Proposed modifications to the source code manifest as patch submissions.
Each patch submission has an author, occurs at a specific point of time, and modifies one or more

195

4 Wiki Development Environments

files in the VCS. A patch submission belongs to one specific issue and each issue may have any
number of patch submissions. Each patch submission may receive any number of reviews. Each
review is performed by a reviewer at a specific point of time and belongs to one specific patch
submission. The files that a patch submission modifies also belong to its corresponding reviews.
Obviously, a review can occur only after its corresponding patch submission. Note that although
a review is actually positive or negative, this is not relevant for the model. What exactly counts as
a review depends on the issue tracker and will be discussed separately for each FLOSS project in
the evaluation. Eventually, some patch submissions are merged into the main VCS at a specific
point in time.

Issue

Review
Group of

Recommended
Reviewers

Patch
Submission

Issue-Patch
1 N

Prediction

1

N

Patch-Review

1

N

Date

AuthorList of Files

Reviewer

DateAlgorithm

Up to five
recommended

reviewers

Figure 4.8: ERD of the core data structures used in the evaluation

Issues without patch submissions or reviews are discarded for the evaluation. For the remaining
issues, all algorithms calculate up to five recommended reviewers for the issue when the earliest
patch is submitted. If the algorithms were used in a recommendation tool in practice, this is when
the FLOSS project has to decide who should review the patch. For later patch submissions, the
algorithms will not calculate new recommendations: One reviewer often reviews all patch submis-
sions of an issue and therefore a reviewer recommendation tool does not need to recommend new
reviewers in these cases. Thus, there is exactly one group of up to five recommended reviewers
for each algorithm and for each of the remaining issues. All reviewers who review any patch
submission of an issue at any point in time are considered actual reviewers for the issue.

An algorithm may use data from all events that occurred before the time of calculation, i.e.
when the earliest patch to an issue is submitted. For WRC and FPS, this includes all reviews
on patch submissions in other issues. Reviews in the issue under analysis cannot have occurred
before the first patch submission and therefore are not included. There can be multiple reviews
for each issue, so the period between first and last review of two issues may overlap. When
calculating a group of reviewers, it may happen that WRC and FPS take some early reviews
of an issue into consideration while they do not take some later reviews of the same issue into
consideration, because these reviews happen only after the patch submission that triggered the

196

4.3 Reviewer Recommendations

calculation.
The six algorithms for modification expertise use data from the main VCS. That means that

they can use patch submissions only after they have been merged into the main VCS. In contrast
to WRC and FPS, they take the author of a patch submission into account.

Data Processing

Expertise Explorer needs two sets of data as input. These sets of data may or may not have the
same origin, depending on the project under analysis. First, Expertise Explorer needs authorship
data as stored in a VCS log. With these data, Expertise Explorer can execute algorithms for
modification expertise. Second, Expertise Explorer needs the review history. With these data,
Expertise Explorer can execute the algorithms for review expertise. The review history is also
needed to compare the computed reviewer recommendations with actual reviewer recommenda-
tions, which will be used for the evaluation. The VCS history data may be substituted by the issue
tracker history data if the latter contain enough authorship information, especially the number of
added and removed lines and whether files are modified or newly created.

Expertise Explorer stores in a database for each project

• authorship data,

• expertise values for each combination of file, contributor, and algorithm,

• a group of recommended reviewers for each issue and each algorithm, and

• the actual reviewers of each issue.

In the first step, all authorship data are imported into the database. Next, Expertise Explorer
iterates chronologically through a list of activities in the project’s issue tracker, specifically
reviews and patch submissions.

For each first patch submission, Expertise Explorer calculates all algorithms’ expertise values
for all combinations of contributors and submitted files using review and authorship data that
occurred before the data of this first patch submission. Thus, the expertise values correspond to
the values that a reviewer recommendation tool would have had access to at the date and time
of the first patch submission to the issue. Afterwards, Expertise Explorer calculates for each
algorithm the five contributors with the highest expertise for the patch. If the patch contains
multiple files, this involves an algorithm-specific aggregation of expertise values. For most
algorithms, expertise values are simply added. Note that adding and the arithmetic mean yield
the same reviewer recommendations, as the order of recommended reviewers is the same for both
types of aggregations. For Line 10 Rule and Expertise Recommender, the maximum expertise
value is used instead of the sum, as this yields the latest editor of any of the reviewed files. For
each review, the algorithms based on review expertise update their data to include the review.
Furthermore, the reviewer is stored as an actual reviewer for the issue.

Afterwards, another module of Expertise Explorer iterates over the list of issues in the database.
For each issue, it compares the up to five recommended reviewers for each algorithm with the set
of actual reviewers for the issue. The results indicate the agreement between each algorithm and
a manual reviewer selection.

197

4 Wiki Development Environments

Alternative Algorithm for FPS

Thongtanunam et al. [Tho+14] provided an algorithm in pseudo-code for FPS which directly
uses Equation 4.1 presented in Section 4.3.1. Because of Expertise Explorer’s database structure,
Expertise Explorer cannot directly use this algorithm. However, this section will show that there
is an equivalent definition for FPS S coreδ that Expertise Explorer can use.

Using the same definitions as in Section 4.3.1, let WRCδ : F × D × R→ R be the function that
calculates the value WRC, an intermediate value that specifies the review experience a developer
has with a specific file at the time of a specific review. Remembering that r1, . . . , rn are all reviews
in chronological order, let R̂x,d, f B

{
ri ∈ Rx,d

∣∣∣ f ∈ Files (ri)
}

be the set of reviews that occurred
before rx and involved developer d and file f . Then WRCδ has the following definition:

WRCδ : f , d, rx 7→
∑

ri∈R̂x,d, f

δx−i−1 |Files (ri)|−1 (4.2)

Expertise Explorer treats WRC like any other algorithm and calculates its value for all develop-
ers and all files. Using the pre-calculated values for WRC allows a different calculation of FPS
using the following equivalence:

FPSScoreδ (rx, d)

=
∑

ri∈Rx,d

ReviewSimilarity (rx, ri) · δx−i−1

=
∑

ri∈Rx,d

∑
f1∈Files(rx)

∑
f2∈Files(ri) Similarity (f1, f2)

|Files (rx)| · |Files (ri)|
· δx−i−1

=
∑

f1∈Files(rx)

|Files (rx)|−1
∑

ri∈Rx,d
f2∈Files(ri)

Similarity (f1, f2)
|Files (ri)|

· δx−i−1

=
∑

f1∈Files(rx)

|Files (rx)|−1
∑
f2∈F

ri∈R̂x,d, f2

Similarity (f1, f2)
|Files (ri)|

· δx−i−1

=
∑

f1∈Files(rx)
f2∈F

Similarity (f1, f2)
|Files (rx)|

∑
ri∈R̂x,d, f2

|Files (ri)|−1 δx−i−1

=
∑

f1∈Files(rx)
f2∈F

Similarity (f1, f2) WRCδ (f2, d, rx)
|Files (rx)|

This alternative algorithm to calculate FPS has the advantage over the original variant that
the values for WRC can be calculated before knowing which files belong to rx. Thus, Ex-
pertise Explorer pre-calculates all current values for WRC. When the FLOSS project needs a
reviewer recommendation for a set of files Files (rx), the alternative algorithm can provide the
recommendation more quickly.

198

4.3 Reviewer Recommendations

4.3.3 Empirical Evaluation

The subject of evaluation are on the one hand the six algorithms based on modification expertise,
in particular Line 10 Rule, Number of Changes, Expertise Recommender, Code Ownership,
Expertise Cloud, and DOA and on the other hand two algorithms based on review expertise.
The first is FPS developed by Thongtanunam et al. [Tho+14] as described in Section 4.3.1. The
evaluated version of FPS uses the original definition of CommonPath and not the more sophis-
ticated version developed in their more recent publication [Tho+15]. The more sophisticated
version’s results differ from the original version by only about +2, -1, and +4 percentage points
for the three FLOSS projects AOSP, OpenStack, and Qt, and the newer version was published
after the calculations in this study. The variants are restricted to δ = 1 as parameter, as this was
the optimum tested value for FPS as determined by Thongtanunam et al. [Tho+14]. In their
more recent study, Thongtanunam et al. [Tho+15] also abstained from using other parameter
values than δ = 1. The second evaluated algorithm based on review expertise is WRC as defined
in Equation 4.2 in Section 4.3.2. Expertise Explorer had to calculate the values of WRC for
technical reasons anyway, so it could be included in the comparison without addtional effort.
Review Bot [Bal13] was not part of the comparison, as it had already been shown to be inferior to
FPS [Tho+14; Tho+15]. Furthermore, Review Bot requires much more input data than all other
considered algorithms, specifically a line-based modification history.

The evaluation used data from four different projects: Firefox, AOSP, OpenStack, and Qt.
Thongtanunam et al. [Tho+14] also used AOSP, OpenStack, and Qt, which allows a comparison
of the results. Firefox was added to increase external validity, as it uses a different issue tracker
than the other three FLOSS projects.

Firefox uses Bugzilla to keep track of reported software bugs, AOSP, OpenStack, and Qt use
Gerrit Code Review. Table 4.2 summarizes the characteristics of the study data. The study period
includes a training phase of one year. Only prediction results after the training phase were part of
the further analysis. This ensured that the algorithms could access historical data of at least one
year for each recommendation. The numbers in parentheses refer to the properties excluding the
data from the training phase.

Firefox

Section 3.4.1 described Mozilla Firefox in terms of its implemented FLOSS patterns. Section 2.2.1
treats its parent project Mozilla and especially its joining procedures.

The VCS log of Mozilla’s hg repository for Firefox [P*Moz15o] is one of two data sources
used for the comparison. It contains all information the recommendation algorithms based on
modification expertise need to compute expertise values. In particular, hg saves not only the
committer of a patch in its log, but also its author. Expertise Explorer reads hg logs to find this
information. The VCS log used for the analysis contains all modifications committed between
2007-03-22 and 2013-03-07. On 2007-03-22, Firefox migrated from the VCS Concurrent
Versioning System (CVS) to hg, therefore no older VCS logs were used.

The second data source used for the comparison is Mozilla’s issue tracker Bugzilla [P*Moz01].
One component for the download and analysis of Bugzilla’s history data of the Firefox project
is Zhou’s and Mockus’s download and data transformation scripts [ZM12] for Mozilla. The

199

4 Wiki Development Environments

Table 4.2: Characteristics of study data, the values in parentheses exclude training data

Firefox AOSP OpenStack Qt

Study Period including
Training Year

2007-03 to
2013-03

2008-10 to
2014-12

2011-07 to
2014-12

2011-05 to
2014-06

Number of Contributors 1762 2489 3717 1143

Number of Reviewers 781 (712) 1001 (997) 2813 (2803) 268 (244)

Number of Issues 60 329
(52 892)

39 090
(37 875)

119 287
(117 145)

70 358
(48 709)

Number of Reviews 73 355
(64 416)

55 292
(53 886)

376 494
(371 570)

75 907
(52 570)

Number of Files in VCS 123 939 704 112 103 486 215 890

Arithmetic Mean of
Reviews per Issue

1.22 1.41 3.16 1.08

applicable output of the scripts is a Comma Separated Values (CSV) file with one “activity”
in Bugzilla per line. Reviews are one of those activities. The CSV file contains the following
information for each review:

• Who was the reviewer?

• When did the review take place?

• The CSV file does not say which files were reviewed, but only an identification number for
an issue’s attachment containing the patch as diff file.

To retrieve this missing information about the reviewed files, Expertise Explorer has a compo-
nent AttachmentCrawler that downloads the diff files of each reviewed patch to find out which
files the patch changes. Expertise Explorer parses the CSV file and filters for relevant reviews
such that each included activity fulfills the following constraints:

• Each relevant activity contains one of the flags “review+” or “review-”, as these indicate
completed reviews [Bay+12]. The analysis discards architecture reviews indicated by
“superreview”, as these are not in the focus of this work.

• The review took place between 2007-03-22 and 2013-03-07, as the VCS logs span this
time frame.

• Reviews must be for files of the Firefox project. All Mozilla projects use Bugzilla and are
therefore present in the CSV file. The reviewed file names must match a file in the VCS
log to fulfill this condition.

In some cases, it is still ambiguous to which Mozilla subproject an issue belongs and it is up
to subjective decisions. A clear distinction between Firefox issues and issues of other Mozilla
projects is therefore not always possible.

200

4.3 Reviewer Recommendations

AOSP, OpenStack, and Qt

Hamasaki et al. [Ham+13] provide review data for the Gerrit-based projects AOSP, OpenStack,
and Qt in JavaScript Object Notation (JSON) format. Thongtanunam et al. [Tho+14] also use
these data for their evaluation, but only the data collected until 2012, while this study uses newer
data collected until 2014. The newer data cover the period up to the end of 2014 instead of only
to the beginning and middle of 2012, which comprises about 14 times as many reviews in total.

In the latest data set, there are unfortunately no flags which indicate who performed the review
and when. However, Gerrit generates messages for reviews. These messages can be identified by
characteristic text patterns to find reviews. The date and author of each message are the date of
the review and the name of the reviewer.

Expertise Explorer needs two sets of data, one for authorship and one for review history data.
Both data sets can be generated from Hamasaki et al.’s JSON formatted files. One advantage of a
single data source is that both data sets use consistent names for authors and reviewers.

4.3.4 Results

Analogously to the previous research on reviewer recommendation [Jeo+09; Bal13; Tho+14;
Tho+15], accuracy is defined as the percentage of correct recommendations on the total number
of recommendations. A recommendation is considered correct if the intersection between the set
of recommended reviewers and the set of actual reviewers on the same issue is not empty. Again
analogously to previous research, this study does not use the concepts of recall and precision,
because all algorithms recommend five reviewers if possible and so there is no trade-off between
recall and precision.

Figure 4.9 shows the aggregated top-5 accuracy of the eight recommendation algorithms in the
four evaluated FLOSS projects over the course of the study period excluding the training phase.
Table 4.3 shows the top-1 and top-5 accuracy for all combinations of algorithms and evaluated
projects at the end of the study period.

Table 4.3: Top-1 and top-5 accuracy in % for all algorithms in the evaluated FLOSS projects,
excluding data from the one-year training period

Top-1 Top-5

Firefox AOSP Open-
Stack

Qt Firefox AOSP Open-
Stack

Qt

Line 10 Rule 4.84 33.82 22.04 21.33 4.84 33.82 22.04 21.33
Expertise Recommender 4.85 33.83 22.04 21.36 24.85 54.75 51.52 53.33
Number of Changes 12.41 12.03 20.61 3.48 25.57 17.58 36.69 4.97
Code Ownership 4.95 10.37 16.23 2.88 18.70 16.50 31.14 4.70
Expertise Cloud 12.94 32.99 27.91 21.98 37.91 65.23 60.48 57.27
DOA 11.38 11.84 19.91 3.26 24.46 17.63 36.38 4.90
WRC 35.22 46.93 43.44 37.70 69.73 69.66 74.86 68.97
FPS 23.90 44.11 43.13 17.23 58.24 77.32 76.00 42.12

201

4 Wiki Development Environments

Line 10 Rule
Expertise Recommender

Number of Changes

DOA
WRC

Code Ownership

FPS
Expertise Cloud

0

20

40

60

80

0 10000 20000 30000 40000 50000

A
cc

ur
ac

y
in

%

Number of Issues

(a) Firefox

0

20

40

60

80

10000 20000 30000

A
cc

ur
ac

y
in

%

Number of Issues

(b) AOSP

0

20

40

60

80

0 25000 50000 75000 100000

A
cc

ur
ac

y
in

%

Number of Issues

(c) OpenStack

0

20

40

60

80

10000 20000 30000 40000
Number of Issues

(d) Qt

Figure 4.9: Cumulated accuracy over the course of the study period (after training period); the
value differences between some curves are lower than the line width used for the
drawing. Therefore some lines are on top of each other.

202

4.3 Reviewer Recommendations

Discussion

The main research goal of this study was an empirical comparison of reviewer recommendation
algorithms. Two of the compared algorithms used review expertise for their recommendations
and six algorithms used modification expertise. For every evaluated FLOSS project, the algorithm
with the highest accuracy was an algorithm based on review expertise. WRC achieved the
highest accuracy for all top-1 recommendations and for two out of four top-5 recommendations.
Furthermore, WRC performs close to the optimum even for AOSP and OpenStack, where it is
not the best top-5 algorithm. Hence, WRC is a reliable algorithm. In contrast, the second-best
algorithm FPS seems to be more sensitive to the characteristics of the FLOSS project, as its top-5
accuracy is only 42 % for Qt. This result is surprising, as WRC was merely a byproduct for the
calculation of FPS.

In addition to its high accuracy, WRC is a simple algorithm, especially compared to other
algorithms with high accuracy like FPS and Expertise Cloud: It requires less input data per
recommendation, it is easier to implement, and its value can be computed more quickly. The
definition in Section 4.3.2 immediately shows that WRC is simpler than FPS, as the value of
WRC is used in the calculation of FPS. Like FPS, Expertise Cloud evaluates expertise not only
directly on the reviewed files, but also on files with similar paths. As a consequence, calculating
a value for Expertise Cloud or FPS relies on data for a large proportion of files in the FLOSS
project. In large FLOSS projects like the ones evaluated in this study, this can involve querying
hundreds of thousands of values. FPS and Expertise Cloud therefore have a worse computational
performance than the other algorithms including WRC. During the evaluation in this study, FPS
and Expertise Cloud needed at least one order of magnitude more time for the computation than
the other algorithms.

Reviewer Base Set As described above, algorithms based on review expertise usually perform
better in terms of accuracy than those based on modification expertise. However, it has to be
taken into account that the former algorithms have an implicit advantage over the latter: they
automatically exclude developers without review rights. As shown in Table 4.2, the number of
contributors in a FLOSS project exceeds the number of reviewers by a factor of 1.3 to 4.3. By
design, the algorithms based on review expertise can only recommend reviewers who had already
performed a review in the past and therefore have a higher chance to currently have review rights.
Algorithms based on modification expertise may therefore recommend developers who never
perform reviews as they lack review rights. If the algorithms would filter out reviewers without
review rights before recommendation, this might increase accuracy especially for algorithms
based on modification expertise and thereby turn the tide.

The most Competent Reviewer Although it may seem paradoxical first, it may actually be
undesirable in a FLOSS project that each patch receives its review from the most competent
reviewer. This may be the case if some members of the FLOSS project are the most competent
reviewers for so many patches that they cannot review all of them. It might be better if less
competent but also less busy reviewers perform some of the reviews, as the disadvantages of
long delays may at some point be greater than the disadvantages of slightly worse feedback in
the reviews. As another reason, some very competent reviewers might be even more competent

203

4 Wiki Development Environments

developers. If this is the case in a FLOSS project, good developers might have higher value
than good reviewers. These two reasons appear more likely when considering that a small group
of about 3.1 % to 8.9 % of all contributors are the core developers of a FLOSS project who
contribute 80 % of the code [Gel10]. Whether those trade-offs between reviewer competency and
reviewer cost are necessary depends on the specific FLOSS project. Algorithms based on review
expertise may have an advantage in this case, as their recommendations do not directly depend
on competency but on who reviewed patches in the past – which already reflects current practice
in the FLOSS project and the trade-offs that their members decided about.

Vicious Circles If a FLOSS project extensively uses a reviewer recommendation tool, algo-
rithms based on review expertise base their decisions on data that they themselves influenced
– they recommend reviewers, these reviewers review patches, and then they assume that these
reviewers are well suited to review those types of patches because they did it in the past. This
induces the danger of a vicious circle, where some unsuitable reviewers are recommended more
and more often for some kind of patch because of prior unsuitable recommendations. When
algorithms based on review expertise evaluate their historic review data, they should therefore
take into account whether they themselves recommended the reviewer in the data or whether the
decision for this reviewer had other reasons. Recommendation algorithms based on modification
expertise do not suffer from this problem by design.

Variation Between Projects The accuracy varies stronger between projects for some algo-
rithms than for others. Especially the Line 10 Rule has a top-5 accuracy of only 4.8 % in
Firefox, but its accuracy for AOSP, OpenStack, and Qt is 22.0 % to 33.8 %. Similarly, its close
relative Expertise Recommender achieves a top-5 accuracy of 24.9 % in Firefox, but 51.5 %
to 54.8 % in the other FLOSS projects. AOSP, OpenStack, and Qt seem to follow a policy
similar to the Line 10 Rule without a reviewer recommendation system. Simple metrics like the
Line 10 Rule and Expertise Recommender do not need a specialized reviewer recommendation
system, as the usual development environment already contains a VCS client that can display
the VCS log, which immediately shows the experts according to Line 10 Rule and Expertise
Recommender. This indicates that tool support is used already for selecting reviewers instead of
just intuition, self-selection, or similar methods not using tools. Accordingly, acceptance of a
reviewer recommendation tool in these FLOSS projects seems likely. Since the Line 10 Rule and
Expertise Recommender are very simple metrics of modification expertise that have been shown
to be inferior to metrics like DOA [Fri+14], a reviewer recommendation tool may supply useful
additional information to select reviewers for a patch.

Variation Between Algorithms An algorithm either makes a correct or an incorrect prediction
for each issue, so the results have a Binomial Distribution. As the algorithms worked on
the same data, I used a paired test to check whether the differences in terms of correct top-
5 recommendations are statistically significant. A McNemar test [McN47] with the usual
continuity correction [Edw48] confirms highly significant (p < 0.001) differences for most pairs
of algorithms, with exception of Expertise Recommender and DOA in Firefox and DOA and
Number of Changes in AOSP, which are not significant at α = 0.05, and between Expertise

204

4.3 Reviewer Recommendations

Recommender and Number of Changes in Firefox (p = 0.0016). These results can be reproduced
with the lab package for this study [HPG15].

As visible in the graphs in Figure 4.9, the algorithms Number of Changes and DOA generally
have very similar accuracies. In Qt and AOSP, Code Ownership is also very similar, and in
Firefox, Expertise Recommender has a similar accuracy. Having large data sets, the differences
are still highly significant except for the mentioned cases. Even where the differences are
statistically highly significant, they are often very small. For example, there are only 87 out
of 48 709 recommendations for Qt for which DOA and Number of Changes have differences
in correctness, i.e. one of them recommends a correct reviewer while the other does not. This
implies that decreasing the expertise value when other authors change a file, which is the main
difference between DOA and Number of Changes in regard to reviewer recommendation, has
little influence on the overall results.

Time Sensitivity Figure 4.9 shows that some algorithms in some FLOSS projects gain accuracy
over the months, while others lose accuracy. Yet others have a more or less stable accuracy.
Possible causes are changes to the FLOSS projects’ review policies. For example, if each patch
requires more reviewers, it will be easier for the algorithms to recommend one of them correctly.
If a FLOSS project grows, it will be harder to recommend a reviewer correctly, because the
number of selectable reviewers grows. However, these changes can only affect all algorithms at
once and do not explain differences between algorithms.

It is possible to distinguish three different categories of algorithms: First, Line 10 Rule and
Expertise Recommender are time-local, they use only data for their recommendations that were
generated shortly before their execution. Second, Code Ownership and DOA are forgetful
algorithms. These algorithms consider all historical data for their recommendations, but older
data have less influence and an author’s expertise decreases during phases of inactivity. For DOA
and Code Ownership, an author’s expertise decreases when other authors modify files that the
author has expertise with. For δ < 1, WRC and FPS are also forgetful, but this is not the case in
this study. Third are time-global algorithms like Expertise Cloud, Number of Changes, as well as
WRC and FPS with δ = 1. They use all historic data for their recommendation and all data have
the same value, independently from when they were generated.

Forgetful and time-global algorithms may increase their accuracy over time, as they can base
their recommendations on a larger data set. However, time-global algorithms may have trouble
with changes in the project, because they always take old data into consideration that are based
on obsolete and now invalid processes. For example, two reviewers that were active for two
years will both be recommended with equal probability, even if one of them was active only
five years ago and then left the project and the other is still active. This effect decreases their
accuracy over time and may also affect forgetful algorithms that do not properly forget obsolete
data. Conversely, if the accuracy of time-local algorithms changes, this must be an effect of the
project as a whole.

For Firefox, both time-local algorithms stabilize on a slow loss of predictive performance. A
possible cause for the loss is Firefox’s growth. Consequently, other algorithms like Expertise
Cloud and FPS also slowly loose predictive performance. WRC is more or less stable, though, as
the benefits of its growing database cancels out the losses through Firefox’s growth. Expertise

205

4 Wiki Development Environments

Cloud and FPS both use path similarities, which lets them access much more data for each
prediction. These additional data possibly include obsolete data and therefore make them more
vulnerable to changes in the project structure.

In this study, FPS and therefore also WRC uses the time prioritization factor δ = 1, so
effectively data do not age. This time prioritization turned out to be the best value for FPS in a
previous study [Tho+14]. However, the next-lower tested value was δ = 0.8, so the optimum
may be between 0.8 and 1. In fact, δ = 0.8 seems like a very low value for large FLOSS projects:
Firefox, as an example, had 33.5 reviews per day during the study period. This means that
expertise gained through a review has only 0.833.5 ≈ 0.000567 times its original value after one
day. Reasonable values for δ should therefore be much closer to 1 or the time prioritization factor
should not have exponential impact. The exact optimum should be the subject of future research,
as a forgetful FPS could have a higher long-term accuracy than a time-global.

Training Period The algorithms’ accuracy becomes steady only after some time. In this study,
the algorithms are granted a training period of one year. Considering the fluctuations of the
graphs in Figure 4.9 during the first issues, a training period of about one and a half years may be
more appropriate. However, random effects have a stronger impact in this area due to the low
number of total issues, which partially also causes the fluctuations.

Additionally, the algorithms have different required training periods. Figure 4.10 shows
aggregated accuracies for Firefox including the training period. Although WRC has the highest
accuracy after the whole study period of six years, it takes about 25 000 issues of training to
overtake FPS. Apparently, algorithms like FPS and Expertise Cloud have a shorter required
training period than algorithms like WRC. WRC considers only expertise with the file itself,
while FPS and Expertise Cloud can induce from other related files if the information about a
requested file is insufficient.

4.3.5 Threats to Validity

This section discusses threats that endanger the validity of this study’s findings. This includes
threats to internal validity, including one threat to construct validity, and a threat to external
validity.

Internal Validity

Each algorithm’s accuracy is the fraction of issues in which the algorithm recommends reviewers
that turned out to be actual reviewers in reality. However, actual reviewers may in some cases not
be competent reviewers. This is a threat to construct validity. In an extreme case, an algorithm
may recommend reviewers more competent than the actual reviewers and have a low accuracy
because of the differences between recommended and actual reviewers. Nevertheless, the self-
selection of reviewers ensures that actual reviewers are at least a good approximation to competent
reviewers. Furthermore, even if a recommendation tool fails to recommend more competent
reviewers than a manual selection does, it is still faster, which is a benefit by itself [SMJ10b].
Besides, the discussion in Section 4.3.4 pointed out that recommending the most competent

206

4.3 Reviewer Recommendations

0

20

40

60

80

−5000 0 5000 10000 15000 20000

A
cc

ur
ac

y
in

%

Number of Issues

Line 10 Rule
Expertise Recommender

Number of Changes
Code Ownership

DOA
Expertise Cloud

WRC
FPS

Figure 4.10: Partial Firefox results with focus on the training period

reviewer can be a pitfall. The same type of comparison to actual reviewers has also been used in
all previous empirical research of this type, for example [Bal13; Tho+15].

As a considerable special case of the previous threat, the data indicate that AOSP uses the
Line 10 Rule to select reviewers (see Variation Between Projects in Section 4.3.4). This and
other selection strategies that resemble evaluated algorithms introduce a systematic bias to the
comparison. In these cases, a high accuracy only indicates that the algorithm is currently already
used, but not that it is necessarily better than other algorithms. However, some algorithms are
consistently better than others among all evaluated projects with their diverse possible reviewer
selection strategies, which mitigates this problem.

As discussed, if a FLOSS project grows over time, accuracy decreases. The observed results
therefore depend on the length of observation. As shown in Table 4.2, each of the four evaluated
FLOSS projects had a different study period. This threat impairs comparisons between the
four FLOSS projects. Since all algorithms are evaluated within the same time period for each
individual FLOSS project, this is no threat to comparisons of different algorithms within each
FLOSS project.

The data used for the evaluation contain measurement artifacts. For example, someone might
have accidentally flagged a patch in Firefox twice, in which case this reviewer would have been
awarded review expertise twice. Expertise Explorer includes consistency checks to filter out
corrupt data items. For example, it filters out reviews that a single reviewer performed within two
seconds, which not only prevents errors like the initial example but also duplicated review entries
due to failures of the FLOSS project’s databases.

The exact dates of commits to Firefox’s VCS are especially vulnerable to measurement errors.
These dates stem from the developers’ machines. The VCS respects time zones, but these may be
incorrectly configured on the developers’ machines. Indeed, the time and date on the developers’

207

4 Wiki Development Environments

machines may be completely wrong in some cases. Expertise Explorer filters out issues with
reviews that happened before their corresponding patch was submitted. I also filtered issues with
obviously wrong time stamps, like when some activities happened outside of the study period.
Despite these efforts to eliminate measurement artifacts, a complete check of the data was not
possible and therefore measurement artifacts may still remain.

When Firefox migrated their VCS from CVS to hg, they imported all existing source code
in a single commit with the author “hg@mozilla.com”. The algorithms assumed an enormous
modification expertise for hg@mozilla.com for some time after the migration. The training phase
however allowed to recover from these types of problems. To test whether hg@mozilla.com
biased the results, results were calculated again after filtering out all issues for which one of the
algorithms had recommended hg@mozilla.com as a reviewer. This had only minor impact on the
results and especially did not change the order of algorithms in terms of accuracy.

External Validity

The Paragraph Variation Between Projects in Section 4.3.4 discusses how the accuracy varies
between the four evaluated FLOSS projects. While there is variation between projects, most
results apply universally to all four evaluated FLOSS projects. This indicates that the results
also apply to many other FLOSS projects and are, in fact, to a large extent independent from the
specific FLOSS project. There may be exceptions though, especially for those algorithms that
vary stronger already between the four evaluated projects, like the Line 10 Rule.

4.3.6 Conclusion and Future Work on Reviewer Recommendations

Submitted patches to FLOSS projects must usually undergo a code review before they are
accepted. Problems with reviewer assignment cause delayed and forgotten patches. This has
been identified as an important contribution barrier in Chapter 2. Chapter 3 shows that there
are currently no FLOSS patterns lowering this contribution barrier. Reviewer recommendation
systems may help with reviewer assignment problems, but only if they recommend competent
reviewers with high accuracy. A reviewer recommendation system is a natural extension to a
WikiDE, as it fits directly into the WikiDE contribution process described in Section 4.1.3.

The study in this section compared the accuracy of eight reviewer recommendation algorithms
using historical data from four large FLOSS projects. Six algorithms are metrics of modification
expertise that have been described in literature, but had not been used for reviewer recommen-
dation before. The algorithm FPS was included as a reviewer recommendation algorithm based
on review expertise. The eighth algorithm WRC is a pre-stage to FPS, but had not yet been
considered as a recommendation algorithm. On the bottom line, WRC achieves the best results
with the additional advantage of its simplicity.

These findings raise questions open for future research: Can a hybrid of existing algorithms
combine the advantages of those algorithms? Can additional information like the current group
of core reviewers improve the algorithms’ performance? Can a better time prioritization improve
the accuracy of FPS? Do the tested algorithms really recommend competent reviewers or only
common reviewers? When should an algorithm make a trade-off between competency and

208

4.4 Proof of Concept Realization

workload to relieve competent but busy reviewers? Furthermore, when is a review necessary at
all and which patches should undergo a more rigorous review [P*Fro14]?

With a top-5 accuracy between 68.97 % and 74.86 %, WRC can already be used in its current
form in reviewer recommendation tools and thereby lower the contribution barrier of delayed
reviews for submitted modifications.

4.4 Proof of Concept Realization7

This section describes a PoC realization of a WikiDE using the concepts introduced previously
in this chapter. Its purpose is to show that these concepts can be realized together in a working
environment and to explore the properties and problems of a real-world implementation with the
technologies and components currently available.

4.4.1 Environment Overview

Figure 4.11 sketches the computers used in the implementation. GitLabMain and GitLabCIRunner
are VMs running with Oracle VM VirtualBox 5.0 [P*Ora16a]. A Debian 8.3.0 Linux for x64
processors [P*Sof16] is installed on both machines. WRCRecommender is a physical machine
running Microsoft Windows 8.1 x64 as OS.

4.4.2 Software Forge

GitLabMain hosts an installation of the software GitLab CE [P*Git16c], installed with the
Omnibus package for Debian 8 [P*Git16d]. GitLab CE is a FLOSS project for a software forge.
It integrates a git [P*git16] server as VCS and provides an issue tracker, a wiki, web-based access
to the git repositories, and a CI system. The web site also features a text editor for files stored in
git and can be used as code editor. GitLab’s user administration includes a rights management
system to control user’s access to individual repositories.

When users access a code repository that they have read but not write access to, they can still
use the integrated text editor to edit a text file. In this case, the whole repository is automatically
forked into the editing user’s space. Figure 4.12 shows how this looks like. First, a newcomer sees
the file and directory structure of a project. This is illustrated in Figure 4.12a with a clone of the
FLOSS project BusyBox [P*And15]. When a newcomer selects a file, the PoC realization presents
the content. Source code is displayed with syntax highlighting. The example in Figure 4.12b
shows the file coreutils/cat.c that prints file contents to stdout. An edit link leads to a
text-editor for the viewed file. The newcomer has modified coreutils/cat.c in Figure 4.12c
already. The modified version reads only the first file given as a command line parameter instead
of any number of files. Newcomers are not allowed to edit the original repository directly, so
the PoC realization automatically commits the modifications to a fork within the editing user’s
space. However, the wizard presents a form to allow the newcomer to submit the modification
back to the FLOSS project afterwards. This part corresponds to the actions Modify source code
and Publish modification of the WikiDE contribution process described in Section 4.1.3.

7A preliminary version of this section was published previously [HG16a].

209

4 Wiki Development Environments

«server»
GitLabMain

«website»
GitLab CE

website

«application»
git repository

«application»
GitLab CI

Coordinator

«server»
WRC-
Recommender

«web service»
Reviewer-

Recommender

«application»
Web browser

«client»
Newcomer
computer

«application»
IDE

«server»
GitLabCIRunner

«virtualization environment»
Docker Engine

«container»
GitLab CI

Runner

«container»
Temporary

builders

«cloud»
Docker Cloud

«image»
Docker images

Figure 4.11: UML deployment diagram of the computers and software components in the PoC
WikiDE realization

210

4.4 Proof of Concept Realization

(a) Repository view (b) File viewer

(c) Web-based text editor

Figure 4.12: A newcomers edit-forks a repository.

211

4 Wiki Development Environments

With these features, GitLab CE fulfills the requirements Self-administration, No Installation,
Code Editor, Version Control, and IDE Compatibility of a WikiDE already. Additional config-
uration of the integrated CI system and a supplement to the issue tracker are required for the
requirement Immediate Feedback and for the integration of a reviewer recommender as described
in Section 4.3.

4.4.3 Immediate Feedback

The machine GitLabCIRunner is necessary for GitLab CI, the CI system integrated into Git-
Lab CE. GitLabMain hosts only the GitLab CI Coordinator component that dispatches build
jobs to so-called Runners. GitLabCIRunner hosts one such Runner. However, if the runner
were installed directly on GitLabCIRunner, this would impose the security issues described in
Section 4.2.

GitLab CE differentiates between Project Runners and Shared Runners. Project Runners are
assigned to one project exclusively and execute builds only for this specific project. In particular,
they do not execute builds for forks of the project. Thus, a Project Runner could not provide
Immediate Feedback to newcomers who fork a repository using the integrated text editor. A
Shared Runner executes builds of all projects.

A configuration of Docker Engine [P*Doc16] realizes the isolation of builds described in
Section 4.2 as countermeasure against the security issues. After installation [P*Git16e], Docker
created a container using the image gitlab/gitlab-runner:alpine. This container uses a
token to register as a Shared Runner at GitLabMain.

Each time the Runner on GitLabCIRunner is requested to build a project, Docker spawns a
new container for the builds and deletes it after usage. This isolates builds from each other, as
requested in Section 4.2. The configuration file of the Runner achieving this behavior is shown in
Listing 4.1.

Projects that want to provide Immediate Feedback for its newcomers must configure the CI
system with a .gitlab-ci.yml file. If the file is present, GitLab CI will automatically dispatch
builds to available Runners after modifications. Since the GitLabCIRunner hosts a Shared Runner,
this also applies to the in-situ forks of newcomers editing a file with the integrated text editor.

However, access to the builds artifacts is only possible if they are configured for output.
This is achieved with an artifacts directive as shown in Listing 4.2. After each build, the
Runner uploads all files that match the configured paths to GitLabMain, which allows all users
to download a ZIP package containing the uploaded files. Figure 4.13 shows how a newcomer
accesses the modified binaries after forking, subsequent to the sequence in Figure 4.12. In
Figure 4.13a, the tab Builds shows running builds of this fork, with and without the newcomer’s
modification. Once the build is finished, there is a download link to each build’s artifacts, as
displayed in the screenshot in Figure 4.13b. In the example case, the download is the modified
busybox executable.

This part corresponds to the action Build application of the WikiDE contribution process
described in Section 4.1.3. The newcomer may then execute the built artifact to perform the
action Test application behavior.

212

4.4 Proof of Concept Realization

Listing 4.1: config.toml for GitLab CI Runner

c o n c u r r e n t = 2

[[r u n n e r s]]
name = " dock−h o s t "
u r l = " h t t p : / / 1 0 . 0 . 2 . 5 / c i "
t o k e n = " ec ab e 8 f 2 93 1e a e1 95 a a9 e 56 80 6 76 6 f "
t l s −ca− f i l e = " "
e x e c u t o r = " do ck e r "
[r u n n e r s . docke r]

image = " ubun tu : w i k i d e r u n n e r "
p r i v i l e g e d = f a l s e
e x t r a _ h o s t s = [" g i t l a b m a i n . w i k i de . l o c a l : 1 0 . 0 . 2 . 5 "]
volumes = [" / cache "]

Listing 4.2: Example of a .gitlab-ci.yml

b u i l d :
s c r i p t :
− make d e f c o n f i g
− make

a r t i f a c t s :
p a t h s :
− busybox

(a) Build tab with running builds

(b) Finished builds with download link on the right

Figure 4.13: Download of the build artifacts

213

4 Wiki Development Environments

4.4.4 Reviewer Recommendations

WRCRecommender runs Internet Information Services (IIS) Express [P*Mic15a] as a web
server, hosting the web service ReviewerRecommender. ReviewerRecommender was written
for this PoC to realize reviewer recommendations as analyzed in Section 4.3 and is available for
download under a FLOSS license [Han16].

A project must add ReviewerRecommender as a web hook for “Merge Request events” via the
GitLab CE website [P*Git16b]. Every time a developer submits, accepts, or rejects a modification
to the project, GitLab CE posts this via HTTP to ReviewerRecommender. The acceptances and
rejections deliver the information ReviewerRecommender needs to calculate review expertise
using the algorithm WRC described in Section 4.3. If a developer and especially a newcomer
submits a modification to the project, ReviewerRecommender calculates the most suitable review-
ers for this modification according to WRC. It then posts its recommendation to the submitted
modification using GitLab CE’s API [P*Git16a]. Figure 4.14 shows a submitted modification
with a recommendation from ReviewerRecommender. The names of the recommended reviewers
are prefixed with an @ sign, so they are notified of the recommendation in the status bar on
GitLab CE. With the precalculated WRC values, this takes less than five seconds in the PoC
environment, so reviews are sped up and newcomers experience less contribution barriers because
of long delays until they get feedback for their submission.

4.4.5 Limitations

The realization described in this section is a PoC, so maintainers of a real WikiDE have to take
additional considerations into account. The following is a description of the major issues of the
PoC that a practical implementation of a WikiDE has to address.

Builds run in their own Docker containers and are therefore isolated from each other. This is an
alternative realization of the solution described in Section 4.2. However, attackers may circumvent
Docker’s isolation using weaknesses in the Docker implementation. Security Enhanced Linux
(SELinux) [P*SEL13] introduces an additional layer of security control to Linux and thereby
mitigates these issues. SELinux requires some additional configuration and is not part of the PoC
realization.

Docker supports only Linux containers. Thus, the PoC realization can execute builds only on
Linux. The PoC realization therefore does not support projects that require other build platforms.
This is not a problem inherent to the WikiDE design, though, as other virtualization solutions
support all kinds of OSs. The approach presented in Section 4.2, for example, works with other
build platforms.

Newcomers that fork a project can access the build output via the menu item Builds in the
PoC realization. This possibility is not obvious and newcomers might miss the build. A more
user-friendly version of a WikiDE should present the build artifacts more clearly or even integrate
them into the commit wizard after a fork.

WRCRecommender calculates recommendations in their own threads within the process of the
web service ReviewerRecommender. This is not a good practice, as web servers may kill or restart
processes of their web applications if they consider it appropriate, for example if there are no
connections from clients for some time. Thus, long running tasks should have their own process

214

4.4 Proof of Concept Realization

Figure 4.14: The newcomer submitted the modification back, ReviewerRecommender suggests a
reviewer.

215

4 Wiki Development Environments

independent from the web server. For example, the web service could queue recommendation
jobs in files and a different application could read the files and calculate the recommendations.

ReviewerRecommender runs on its own server with a different OS than the other servers.
This complicates the architecture of the WikiDE realization and increases the effort necessary
to install and maintain the system. It would be more convenient if ReviewerRecommender ran
on GitLabMain and integrated directly into GitLab CE’s architecture instead of using its API.
However, such architectural changes require more effort than using the external API and are not
necessary for a one-time PoC realization. Besides, the component to calculate WRC had been
written in C# as a part of Expertise Explorer (see Section 4.3.2) already and would have had to be
rewritten in Ruby for a use directly in GitLab CE.

4.5 Summary

This chapter described a system called WikiDE. A WikiDE uses wiki principles to lower important
contribution barriers identified in Chapter 2 that the existing FLOSS patterns shown in Chapter 3
have not addressed sufficiently.

A WikiDE must fulfill the requirements of both an IDE and a wiki. Section 4.1 identified
seven requirements and described conceptually how to fulfill these requirements, especially
Self-administration, Code Reviews, and Immediate Feedback that seemingly contradict each other.

One important component of a WikiDE is a multitenant CI system. Section 4.2 analyzed what
hampers the adoption of CI in FLOSS development: The cost of providing CI and security threats.
The remainder of the section presented a technique based on virtualization to counter a large class
of security threats endangering multitenant CI system.

Delayed reviewer assignments are an important contribution barrier identified in Chapter 2 that
neither the FLOSS patterns nor a WikiDE as described so far remediate. Section 4.3 compares
eight algorithms in a reviewer recommendation system to speed up reviewer assignments. A new
algorithm called WRC achieves the highest accuracy in the comparison, between 68.97 % and
74.86 % for five recommended reviewers. With these results, WRC can be considered accurate
enough for practical usage.

The chapter closes with the documentation of a PoC realization of a WikiDE using the concepts
and techniques developed before. The PoC realization shows that a WikiDE can be realized in
practice for lowering important contribution barriers.

216

5 Conclusion

This thesis started with the observation that FLOSS projects have properties that may prevent
newcomers from contributing source code. These properties are called contribution barriers. The
research goals of this thesis, as defined in Section 1.4, were

1. to identify which contribution barriers affect newcomers,

2. to discover which techniques help to lower contribution barriers, and

3. to analyze how wiki principles can minimize contribution barriers.

Each of these research questions was treated in its own chapter. The research presented in these
chapters and thereby the main contributions of this thesis will be summarized in the following.

5.1 Identification of Contribution Barriers

Chapter 2 approached the first research question with a survey of 117 newcomers to the FLOSS
projects Mozilla and GNOME. An additional exploratory prepared the ground for this main survey.
The main survey is the first to analyze contribution barriers and also the first with newcomers as
participants. Adapting the TDM to this type of web-based questionnaire, the survey achieved
a response rate of 65.0 %, which is remarkably higher than the best response rate of FLOSS
developer surveys so far, which was 38.1 % [BB10]. The survey identified five contribution
barriers of high importance:

• Newcomers have difficulties to understand the architecture and find the location in the
source code to be changed.

• Setting up the development environment can be troublesome.

• The submission process can be hard to understand.

• Programming the actual solution is sometimes challenging, yet not frustrating.

• Reviews to submitted patches are sometimes delayed or forgotten.

Additionally, the survey responses provided the data to test five hypotheses about contributor
motivations, contribution barriers, and their relationship. These hypotheses were based on
literature and results from the exploratory survey. With insights from literature and results from
the hypothesis tests, a new model for joining FLOSS projects could be proposed.

This model describes that each newcomer takes an individual joining path that depends mostly
on the newcomer’s demographic properties. The joining path determines which contribution

217

5 Conclusion

barriers are in effect. The newcomer’s mental model about the FLOSS project also depends on the
newcomer’s demography. The analysis in Section 2.6.4 showed that this mental model determines
the newcomer’s motivations. The mental model in turn determines the impact of contribution
barriers. The model allows to estimate the overall effect of the contribution barriers for individual
demographic groups.

FLOSS projects can use this model and the other results of the survey to assess which of their
contribution barriers are the most important to be lowered. This requires that FLOSS projects
have a toolbox of techniques to lower individual contribution barriers.

5.2 FLOSS Patterns

FLOSS projects use different measures to counter contribution barriers already . The effectiveness
with which a FLOSS project may keep its contribution barriers low depends on whether its
maintainers know these countermeasures and on the individual skill with which they apply them.

Chapter 3 explores which countermeasures have been successfully applied as FLOSS patterns
and therewith tackles the second research question. The pattern format has its roots in architecture,
but has been used for other domains and especially software engineering for over two decades. It
allows the description of a problem in a context and its solution in a structured way. This allows
the analysis of complex interrelated systems such as FLOSS projects and their description in
an easily understandable way. Externalizing the knowledge about managing FLOSS projects
reduces the problem that the success of a FLOSS project depends on the individual skills and
experience of its maintainers.

Accordingly, different authors have written FLOSS patterns that help maintainers of FLOSS
projects to optimize various aspect of the FLOSS project. Patterns are related to each other and
their relations form a pattern language. Although patterns can be understood only as part of their
pattern language, the relations between the existing FLOSS patterns had been widely neglected
in research so far. Therefore, Section 3.2 classifies the 35 existing FLOSS patterns into eight
categories, discusses their relations, and de-duplicates FLOSS patterns that describe the same
problems and solutions from different perspectives.

Among other benefits, this overview of the FLOSS pattern language helps to identify which
FLOSS patterns lower contribution barriers. Section 3.3 contains six full FLOSS patterns that
lower important contribution barriers identified in Chapter 2. They especially help to understand
the FLOSS project’s architecture and help to set up the development environment.

Before the contributions of this thesis, research on FLOSS patterns was based mostly on
anecdotal evidence. An evaluation of FLOSS patterns on five successful FLOSS projects with
different characteristics starts to fill this research gap and shows which FLOSS patterns are
common for successful FLOSS projects and which are not required to be successful. The
statistical test developed for the evaluation shows how to analyze the representativeness of
proposed pattern relationships statistically. The evaluation confirmed the proposed relationships
between FLOSS patterns only partially, possibly due to a too small data set. Nevertheless, the
developed test and data from the evaluation of FLOSS projects lay the groundwork for future
empirical research on the FLOSS pattern language and other pattern languages.

The identified FLOSS patterns help to lower important contribution barriers. However, for

218

5.3 Wiki Development Environments

some contribution barriers, no appropriate FLOSS pattern could be found. In particular, there are
no FLOSS patterns to ease the submission process or help with delayed reviews. Furthermore,
some FLOSS patterns may require much effort for their implementation and FLOSS projects
would benefit from a system that allows them to implement these FLOSS patterns with less effort.

5.3 Wiki Development Environments

Wikis are systems that allow its users to modify their content. They provide a technical infras-
tructure to minimize the barriers to contribution. The wiki principles have proven to be very
effective in successful projects like Wikipedia. Chapter 4 explores the possibility to adapt these
wiki principles to software development in a system that combines the properties of an IDE and a
wiki. Such a system is called a WikiDE.

Section 4.1 develops the concept of a WikiDE. It derives the requirements of a WikiDE from
theoretical considerations and based on literature. It proposes an architecture based on existing
technology for the realization of a WikiDE and a WikiDE contribution process that resolves the
seeming contradiction between three of the requirements. A WikiDE lowers the contribution
barrier for setting up a development environment below the levels possible with FLOSS patterns
alone. Additionally, it eases the submission of modifications. Both are important contribution
barriers, as shown in Chapter 2.

A public CI service is an integral part of a WikiDE. Section 4.2 describes how such a public CI
service can be realized securely. This technique is usable when hosting a public CI service even
without a WikiDE.

The comparison in Section 4.3 shows which algorithms may be used to recommend reviewers
for submitted modifications to closed-source or FLOSS projects. A reviewer recommendation
system using such an algorithm is a natural extension to a WikiDE, as it fits into the WikiDE
architecture concept and contribution process and it lowers an important contribution barrier:
delayed and forgotten reviews.

The PoC realization of a WikiDE in Section 4.4 proves that the proposed concept is realizable.
This includes a reviewer recommendation system based on WRC, the best algorithm found in the
comparison.

5.4 Future Work

Although Chapter 2 presented the yet largest empirical study of contribution barriers, the partici-
pants were newcomers to only two FLOSS projects. Future research could validate the findings,
especially the found contribution barriers, on other FLOSS projects. This would provide empir-
ical support for those contribution barriers that apply universally to most FLOSS projects and
distinguish them from those contribution barriers that are important only for the two surveyed
FLOSS projects, but not to most other FLOSS projects.

The joining model described in Section 2.8 provides the theoretical foundation to assess the
importance of individual contribution barriers depending on newcomer demographies. A few
concrete examples of demographies with their joining paths and mental models are known, for
example students who transition through supporting roles into developer roles and expect to learn

219

5 Conclusion

something from FLOSS. Future research may identify additional subgroups of newcomers with
their individual joining paths and mental models. Additionally, it is not completely clear which
specific contribution barriers occur in which joining path. Knowing the concrete demographies,
their mapping to joining paths and mental models as well as the contribution barriers specific
for each joining path would help to guide FLOSS maintainers how to optimize the technical
infrastructure of their FLOSS project to support their contributor community.

The results of the evaluation of FLOSS pattern relationships were partly inconclusive, so a
statistically significant proof for the proposed relationships is still missing. Section 3.2 provides
objective verification criteria for the existing FLOSS patterns and Section 3.5 provides the statis-
tical method to evaluate FLOSS pattern relationships. Future research can use this methodology
to verify the proposed or different pattern relationships on additional FLOSS projects to find
conclusive results for or against specific sets of FLOSS pattern relationships.

The FLOSS patterns described in Section 3.3 lower two important contribution barriers.
However, the identified set of FLOSS patterns is not intended to be complete. Further analysis
of FLOSS projects may yield additional FLOSS patterns to lower these and other contribution
barriers. For example, none of the currently written FLOSS patterns help with the submission
process, which was identified as an important contribution barrier in Chapter 2. Additionally,
technological and social changes may form new techniques to lower contribution barriers in
the future that can be identified, described as FLOSS pattern, and classified into the categories
developed in Section 3.2.

LaToza et al. [LaT+14] presented the innovative software development system CrowdCode as
reviewed in Section 4.1.2. This system might be combined with a WikiDE, so contributors have
the choice whether they want to work on a problem that they need for themselves or whether they
want to work on a micro-task. Micro-tasks as realized in CrowdCode lift the burden of searching
for the right location for a modification in the code and understanding the context of a change,
among other side-effects. This might open up a new kind of joining path for newcomers.

Reviewer recommendation is starting to gain research attention. Section 4.3 defined a new
algorithm, WRC, that is already good enough to be used in practice. However, the evaluation
indicates that there is still space for adjustments to the algorithms’ parameters to increase their
accuracy. There are also several related questions still open for research, like optimal training
periods for the algorithms or how to make algorithms forgetful. Improving these recommendation
algorithms leads to better recommendations and therefore quicker reviews that potentially need
less time and find more errors in the submitted modifications, because the reviewers are better
suited for their assigned tasks.

Furthermore, some modifications are more critical than others and therefore require more
thorough reviews. For example, modifications to comments or documentation may not require
pre-commit reviews as common in software development. Post-commit reviews as common in
wikis with textual content might suffice in these cases. A WikiDE might automatically detect
the type of modification and the type of required review. This would increase safety for critical
modifications that should better receive multiple reviews, and lower contribution barriers for
uncritical modifications, as these could use a fast lane and receive only a less rigorous post-commit
review from community members with lower review rights.

220

Primary Sources

[P*Ama13] Amazon Web Services, Inc. Amazon EC2 FAQs. http://aws.amazon.com/
en/ec2/faqs [accessed 2016-04-26]. Mar. 2013.

[P*Ama16] Amazon Web Services, Inc. Amazon EC2 - Virtual Server Hosting. https:
//aws.amazon.com/ec2/ [accessed 2016-03-15]. 2016.

[P*And15] Erik Andersen. BusyBox Website. https://www.busybox.net/ [accessed
2016-02-23]. Oct. 2015.

[P*Arg09a] ArgoUML Developers. ArgoUML Website. http://argouml.tigris.org/
[accessed 2016-01-05]. 2009.

[P*Arg09b] ArgoUML Developers. ArgoUML Wiki: Design. http://argouml.tigris.
org/wiki/Design [accessed 2016-01-05]. Nov. 2009.

[P*Arg09c] ArgoUML Developers. ArgoUML Wiki: The big picture for Issues. http://
argouml.tigris.org/wiki/The_big_picture_for_Issues [accessed
2016-01-05]. Mar. 2009.

[P*Atl16] Atlassian. JIRA Software. https://www.atlassian.com/software/jira/
[accessed 2016-03-14]. 2016.

[P*Bas15] Basecamp. Basecamp Website. https://basecamp.com/ [accessed 2015-11-
09]. 2015.

[P*Bea16] Beanbag, Inc. Review Board. https://www.reviewboard.org/ [accessed
2016-03-14]. 2016.

[P*Bun15] Bundler developers. Bundler Website. http://bundler.io/ [accessed 2015-
11-12]. 2015.

[P*Cas14] Tim Case. A Brief Retrospective of Spree. Blog. http://blog.endpoint.
com/2014/02/a-brief-retrospective-of-spree.html [accessed 2015-
11-11]. Feb. 2014.

[P*Cir15a] CircleCI. CircleCI Website. https://circleci.com/ [accessed 2015-12-16].
2015.

[P*Cir15b] CircleCI. spree/spree. https://circleci.com/gh/spree/spree [accessed
2015-11-11]. Nov. 2015.

[P*Clo15] CloudBees. BuildHive. https://buildhive.cloudbees.com/ [accessed
2015-09-04]. Sept. 2015.

[P*Clo16] Cloud9 IDE, Inc. Cloud IDE Website. https://c9.io/ [accessed 2016-03-10].
2016.

221

http://aws.amazon.com/en/ec2/faqs
http://aws.amazon.com/en/ec2/faqs
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://www.busybox.net/
http://argouml.tigris.org/
http://argouml.tigris.org/wiki/Design
http://argouml.tigris.org/wiki/Design
http://argouml.tigris.org/wiki/The_big_picture_for_Issues
http://argouml.tigris.org/wiki/The_big_picture_for_Issues
https://www.atlassian.com/software/jira/
https://basecamp.com/
https://www.reviewboard.org/
http://bundler.io/
http://blog.endpoint.com/2014/02/a-brief-retrospective-of-spree.html
http://blog.endpoint.com/2014/02/a-brief-retrospective-of-spree.html
https://circleci.com/
https://circleci.com/gh/spree/spree
https://buildhive.cloudbees.com/
https://c9.io/

Primary Sources

[P*Cod15] Code Climate. spree/spree. https://codeclimate.com/github/spree/
spree [accessed 2015-11-11]. Nov. 2015.

[P*cod15] codeweavers. WineHQ. https://www.winehq.org/ [accessed 2015-12-15].
Dec. 2015.

[P*Con10] Mike Connor. Stepping down as Firefox module owner. news://news.moz
illa.org:119/mailman.4488.1265908064.4112.governance@lists.
mozilla.org [accessed 2014-07-21]. Feb. 2010.

[P*Cru15] CruiseControl developers. CruiseControl Website. http://cruisecontrol.
sourceforge.net/ [accessed 2015-12-16]. 2015.

[P*Dal15] Jim Daly. With Its Spree Commerce Buy, First Data Aims To Bolster Its Online
Tech Foundations. http://digitaltransactions.net/news/story/With-
Its- Spree- Commerce- Buy_- First- Data- Aims- To- Bolster- Its-
Online-Tech-Foundations [accessed 2015-11-11]. Sept. 2015.

[P*Dam06] Peter Damen. AJAX Remote Desktop Viewer. http://www.peterdamen.com/
ajaxrd/ [accessed 2016-03-14]. June 2006.

[P*Doc16] Docker. Docker Engine. https://www.docker.com/products/docker-
engine [accessed 2016-02-18]. 2016.

[P*Ell10] Guy Ellis. Open Source Software Stupid Tax. Guy Ellis’ Tech Blog. http:
//www.guyellisrocks.com/2010/10/open-source-software-stupid-
tax.html [accessed 2015-05-19]. Oct. 2010.

[P*EWS15] EWSoftware. Sandcastle Help File Builder. https://github.com/EWSoftwa
re/SHFB [accessed 2016-01-06]. Dec. 2015.

[P*Fac14] Facebook. facebook/facebookarchive/facebook-php-sdk/tests GitHub repository.
https://github.com/facebookarchive/facebook-php-sdk/tree/
master/tests [accessed 2015-12-16]. Apr. 2014.

[P*Fac15] Facebook. facebook/facebook-ios-sdk/FBSDKCoreKit/FBSDKCoreKitTests/ GitHub
repository. https://github.com/facebook/facebook-ios-sdk/tree/
master/FBSDKCoreKit/FBSDKCoreKitTests [accessed 2015-12-16]. Sept.
2015.

[P*Fir14] Firefox Developers. modules/zlib in Firefox main development tree as of 2014-
07-07T14:34Z. hg. https://hg.mozilla.org/mozilla-central/file/
085eea991bb9/modules/zlib/src [accessed 2015-12-10]. July 2014.

[P*Fir15] Firefox Developers. Firefox main development tree. hg. https://hg.mozilla.
org/mozilla-central/ [accessed 2015-12-10]. Dec. 2015.

[P*Fre12] Free Software Foundation. License:X11. https://directory.fsf.org/
wiki/License:X11 [accessed 2015-11-17]. Aug. 2012.

[P*Fre13] Free Software Foundation. What is Copyleft? Electronic. https://www.gnu.
org/copyleft/copyleft.html [accessed 2014-01-13]. Oct. 2013.

222

https://codeclimate.com/github/spree/spree
https://codeclimate.com/github/spree/spree
https://www.winehq.org/
news://news.mozilla.org:119/mailman.4488.1265908064.4112.governance@lists.mozilla.org
news://news.mozilla.org:119/mailman.4488.1265908064.4112.governance@lists.mozilla.org
news://news.mozilla.org:119/mailman.4488.1265908064.4112.governance@lists.mozilla.org
http://cruisecontrol.sourceforge.net/
http://cruisecontrol.sourceforge.net/
http://digitaltransactions.net/news/story/With-Its-Spree-Commerce-Buy_-First-Data-Aims-To-Bolster-Its-Online-Tech-Foundations
http://digitaltransactions.net/news/story/With-Its-Spree-Commerce-Buy_-First-Data-Aims-To-Bolster-Its-Online-Tech-Foundations
http://digitaltransactions.net/news/story/With-Its-Spree-Commerce-Buy_-First-Data-Aims-To-Bolster-Its-Online-Tech-Foundations
http://www.peterdamen.com/ajaxrd/
http://www.peterdamen.com/ajaxrd/
https://www.docker.com/products/docker-engine
https://www.docker.com/products/docker-engine
http://www.guyellisrocks.com/2010/10/open-source-software-stupid-tax.html
http://www.guyellisrocks.com/2010/10/open-source-software-stupid-tax.html
http://www.guyellisrocks.com/2010/10/open-source-software-stupid-tax.html
https://github.com/EWSoftware/SHFB
https://github.com/EWSoftware/SHFB
https://github.com/facebookarchive/facebook-php-sdk/tree/master/tests
https://github.com/facebookarchive/facebook-php-sdk/tree/master/tests
https://github.com/facebook/facebook-ios-sdk/tree/master/FBSDKCoreKit/FBSDKCoreKitTests
https://github.com/facebook/facebook-ios-sdk/tree/master/FBSDKCoreKit/FBSDKCoreKitTests
https://hg.mozilla.org/mozilla-central/file/085eea991bb9/modules/zlib/src
https://hg.mozilla.org/mozilla-central/file/085eea991bb9/modules/zlib/src
https://hg.mozilla.org/mozilla-central/
https://hg.mozilla.org/mozilla-central/
https://directory.fsf.org/wiki/License:X11
https://directory.fsf.org/wiki/License:X11
https://www.gnu.org/copyleft/copyleft.html
https://www.gnu.org/copyleft/copyleft.html

Primary Sources

[P*Fre14] Free Software Foundation, Inc. GNU Make. https://www.gnu.org/softwar
e/make/ [accessed 2015-11-16]. Oct. 2014.

[P*Fre15] Free Software Foundation. The Free Software Definition. http://www.gnu.
org/philosophy/free-sw.html [accessed 2015-09-14]. 2015.

[P*Fre16] Free Software Foundation. GPL-Compatible Free Software Licenses. Electronic.
https://www.gnu.org/licenses/license-list.html#GPLCompatible
Licenses [accessed 20146-04-26]. Apr. 2016.

[P*Fro14] Nathan Froyd. On code review and commit policies. Blog. https://blog.
mozilla.org/nfroyd/2014/06/23/on-code-review-and-commit-
policies/ [accessed 2015-08-27]. June 2014.

[P*Git15a] GitHub. All branches of rack/rack. https://github.com/rack/rack/
branches/all [accessed 2015-11-18]. Nov. 2015.

[P*Git15b] GitHub. All branches of ruby/rake. https://github.com/ruby/rake/
branches/all [accessed 2015-11-17]. Nov. 2015.

[P*Git15c] GitHub. GitHub Website. https://github.com/ [accessed 2015-07-22]. July
2015.

[P*Git15d] GitHub. rack/rack issues. https://github.com/rack/rack/issues [ac-
cessed 2015-11-17]. Nov. 2015.

[P*Git15e] GitHub. rails/rails Issues. https://github.com/rails/rails/issues
[accessed 2015-11-09]. Nov. 2015.

[P*Git15f] GitHub. Ruby on Rails. https://github.com/rails [accessed 2015-11-09].
Nov. 2015.

[P*Git15g] GitHub. ruby/rake Issues. https://github.com/ruby/rake/issues [ac-
cessed 2015-11-17]. Nov. 2015.

[P*Git15h] GitHub. Spree Commerce. https://github.com/spree [accessed 2015-11-
11]. Nov. 2015.

[P*Git15i] GitHub. spree-contrib. https://github.com/spree-contrib [accessed
2015-11-11]. Nov. 2015.

[P*Git15j] GitHub. spree/spree Issues. https://github.com/spree/spree/issues
[accessed 2015-11-11]. Nov. 2015.

[P*Git16a] GitLab. GitLab Documentation / GitLab API. http://doc.gitlab.com/ce/
api/README.html [accessed 2016-03-03]. Feb. 2016.

[P*Git16b] GitLab. GitLab Documentation / Web hooks / Merge request events. http://doc.
gitlab.com/ce/web_hooks/web_hooks.html#merge-request-events
[accessed 2016-03-03]. Feb. 2016.

[P*Git16c] GitLab. GitLab Website. https://about.gitlab.com/ [accessed 2016-02-
17]. Feb. 2016.

[P*Git16d] GitLab. Install a GitLab CE Omnibus package on Debian 8. https://about.
gitlab.com/downloads/#debian8 [accessed 2016-02-18]. Jan. 2016.

223

https://www.gnu.org/software/make/
https://www.gnu.org/software/make/
http://www.gnu.org/philosophy/free-sw.html
http://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/licenses/license-list.html#GPLCompatibleLicenses
https://www.gnu.org/licenses/license-list.html#GPLCompatibleLicenses
https://blog.mozilla.org/nfroyd/2014/06/23/on-code-review-and-commit-policies/
https://blog.mozilla.org/nfroyd/2014/06/23/on-code-review-and-commit-policies/
https://blog.mozilla.org/nfroyd/2014/06/23/on-code-review-and-commit-policies/
https://github.com/rack/rack/branches/all
https://github.com/rack/rack/branches/all
https://github.com/ruby/rake/branches/all
https://github.com/ruby/rake/branches/all
https://github.com/
https://github.com/rack/rack/issues
https://github.com/rails/rails/issues
https://github.com/rails
https://github.com/ruby/rake/issues
https://github.com/spree
https://github.com/spree-contrib
https://github.com/spree/spree/issues
http://doc.gitlab.com/ce/api/README.html
http://doc.gitlab.com/ce/api/README.html
http://doc.gitlab.com/ce/web_hooks/web_hooks.html#merge-request-events
http://doc.gitlab.com/ce/web_hooks/web_hooks.html#merge-request-events
https://about.gitlab.com/
https://about.gitlab.com/downloads/#debian8
https://about.gitlab.com/downloads/#debian8

Primary Sources

[P*Git16e] GitLab. Run gitlab-runner in a container. https://gitlab.com/gitlab-
org/gitlab-ci-multi-runner/blob/master/docs/install/docker.
md [accessed 2016-02-17]. Feb. 2016.

[P*git16] git. git Website. https://www.git-scm.com/ [accessed 2016-02-18]. Feb.
2016.

[P*GNO14] GNOME Wiki. Community. https://wiki.gnome.org/Community [ac-
cessed 2015-07-17]. Mar. 2014.

[P*GNO15a] GNOME Wiki. GNOME Love. https://wiki.gnome.org/GnomeLove
[accessed 2015-07-15]. Feb. 2015.

[P*GNO15b] GNOME Wiki. The GNOME Tour: finding your way around GNOME. https:
//wiki.gnome.org/GnomeLove/ProjectTour [accessed 2015-07-17]. June
2015.

[P*Goo15a] Google Developers. Google Summer of Code. https://developers.google.
com/open-source/gsoc/ [accessed 2016-01-05]. 2015.

[P*Goo15b] Google Groups. rack-devel mailing list. https://groups.google.com/
group/rack-devel [accessed 2015-11-18]. Oct. 2015.

[P*Goo15c] Google Groups. Ruby on Rails: Talk. http://groups.google.com/group/
rubyonrails-talk [accessed 2015-11-10]. Nov. 2015.

[P*Goo15d] Google Groups. spree-user mailing list. https://groups.google.com/
group/spree-user [accessed 2015-11-12]. Nov. 2015.

[P*Goo16] Google Developers. Gerrit Code Review. https://www.gerritcodereview.
com/ [accessed 2016-03-14]. Mar. 2016.

[P*Gre12] Lars Gregori. VirtualBox Plugin snapshot testing branch. https://github.
com/jenkinsci/virtualbox-plugin/tree/snap [accessed 2016-03-14].
Mar. 2012.

[P*Han04] David Heinemeier Hansson. Initial commit to Ruby on Rails. https://github.
com/rails/rails/commit/db045dbbf60b53dbe013ef25554fd013baf88
134 [accessed 2015-11-06]. Nov. 2004.

[P*Hoo13] Hood & Strong LLP. Mozilla Foundation and Subsidiaries – December 31, 2012
and 2011. Independent Auditors’ Report and Consolidated Financial Statements.
https://static.mozilla.com/moco/en-US/pdf/Mozilla_Audited_
Financials_2012.pdf [accessed 2015-12-10]. Nov. 2013.

[P*Ica97] Miguel de Icaza. The GNOME Desktop project. email to the GTK mailing
list. https://mail.gnome.org/archives/gtk-list/1997-August/
msg00123.html [accessed 2016-04-26]. Aug. 1997.

[P*Jen15] Jenkins developers. Jenkins Website. https://jenkins-ci.org/ [accessed
2015-12-16]. 2015.

[P*Jen16] Jenkins Developers. Extend Jenkins. https://wiki.jenkins- ci.org/
display/JENKINS/Extend+Jenkins [accessed 2016-01-05]. Jan. 2016.

224

https://gitlab.com/gitlab-org/gitlab-ci-multi-runner/blob/master/docs/install/docker.md
https://gitlab.com/gitlab-org/gitlab-ci-multi-runner/blob/master/docs/install/docker.md
https://gitlab.com/gitlab-org/gitlab-ci-multi-runner/blob/master/docs/install/docker.md
https://www.git-scm.com/
https://wiki.gnome.org/Community
https://wiki.gnome.org/GnomeLove
https://wiki.gnome.org/GnomeLove/ProjectTour
https://wiki.gnome.org/GnomeLove/ProjectTour
https://developers.google.com/open-source/gsoc/
https://developers.google.com/open-source/gsoc/
https://groups.google.com/group/rack-devel
https://groups.google.com/group/rack-devel
http://groups.google.com/group/rubyonrails-talk
http://groups.google.com/group/rubyonrails-talk
https://groups.google.com/group/spree-user
https://groups.google.com/group/spree-user
https://www.gerritcodereview.com/
https://www.gerritcodereview.com/
https://github.com/jenkinsci/virtualbox-plugin/tree/snap
https://github.com/jenkinsci/virtualbox-plugin/tree/snap
https://github.com/rails/rails/commit/db045dbbf60b53dbe013ef25554fd013baf88134
https://github.com/rails/rails/commit/db045dbbf60b53dbe013ef25554fd013baf88134
https://github.com/rails/rails/commit/db045dbbf60b53dbe013ef25554fd013baf88134
https://static.mozilla.com/moco/en-US/pdf/Mozilla_Audited_Financials_2012.pdf
https://static.mozilla.com/moco/en-US/pdf/Mozilla_Audited_Financials_2012.pdf
https://mail.gnome.org/archives/gtk-list/1997-August/msg00123.html
https://mail.gnome.org/archives/gtk-list/1997-August/msg00123.html
https://jenkins-ci.org/
https://wiki.jenkins-ci.org/display/JENKINS/Extend+Jenkins
https://wiki.jenkins-ci.org/display/JENKINS/Extend+Jenkins

Primary Sources

[P*Joh13] Christian John. Fork of the VirtualBox Plugin snapshot testing branch for Secure
Build Servers. https://github.com/paluno/virtualbox-plugin/tree/
snap [accessed 2016-03-14]. Mar. 2013.

[P*Kod16] Koding. Koding Website. https://koding.com/ [accessed 2016-03-10]. 2016.

[P*Lee15] Barosl Lee. Homu. http://homu.io/ [accessed 2016-03-14]. 2015.

[P*Leg15] Legion of the Bouncy Castle Inc. The Legion of the Bouncy Castle Website.
https://www.bouncycastle.org/ [accessed 2015-12-16]. 2015.

[P*Lin15] Linux Kernel Organization, Inc. The Linux Kernel Archives. https://www.
kernel.org/ [accessed 2015-12-15]. Dec. 2015.

[P*Mat10] Josh Matthews. Getting Involved with Mozilla. Blog entry. http://www.j
oshmatthews.net/blog/2010/03/getting-involve-with-mozilla/
[accessed 2015-12-10]. Mar. 2010.

[P*MB15] Tom Mornini and Mike Blumtritt. no rake.gemspec in repository. https://
github.com/ruby/rake/issues/60 [accessed 2015-11-17]. Sept. 2015.

[P*Med16] MediaWiki Contributors. Manual:Developing extensions. https://www.media
wiki.org/wiki/Manual:Developing_extensions [accessed 2016-01-05].
Jan. 2016.

[P*Men14] Daniel Mendler. Olelo wiki. http://gitwiki.org/ [accessed 2016-03-09].
Apr. 2014.

[P*Mer14] Mercurial Wiki authors. Mercurial Queues Extension. Wiki article. https:
//mercurial.selenic.com/wiki/MqExtension [accessed 2015-06-17].
Aug. 2014.

[P*Mer16] Mercurial. Mercurial Website. https://www.mercurial-scm.org/ [accessed
2016-03-14]. 2016.

[P*MGG15] Evgeny Mandrikov, Lars Gregori, and Henri Gomez. VirtualBox Plugin. htt
ps://wiki.jenkins-ci.org/display/JENKINS/VirtualBox+Plugin
[accessed 2016-03-14]. Mar. 2015.

[P*Mic15a] Microsoft. Internet Information Services (IIS) 10.0 Express. https://www.
microsoft.com/en-us/download/details.aspx?id=48264 [accessed
2016-03-03]. Dec. 2015.

[P*Mic15b] Microsoft TechNet. Security Update Lifecycle. https://technet.microsoft.
com/en-us/security/dn436305 [accessed 2015-09-04]. Microsoft, 2015.

[P*Mic16a] Microsoft Developer Network. MSBuild Project File Schema Reference. http:
//msdn.microsoft.com/en- us/library/5dy88c2e.aspx [accessed
2016-03-15]. Microsoft, 2016.

[P*Mic16b] Microsoft Developer Network. Office client development. https://msdn.
microsoft.com/en-us/library/dn833103 [accessed 2016-01-05]. Jan.
2016.

225

https://github.com/paluno/virtualbox-plugin/tree/snap
https://github.com/paluno/virtualbox-plugin/tree/snap
https://koding.com/
http://homu.io/
https://www.bouncycastle.org/
https://www.kernel.org/
https://www.kernel.org/
http://www.joshmatthews.net/blog/2010/03/getting-involve-with-mozilla/
http://www.joshmatthews.net/blog/2010/03/getting-involve-with-mozilla/
https://github.com/ruby/rake/issues/60
https://github.com/ruby/rake/issues/60
https://www.mediawiki.org/wiki/Manual:Developing_extensions
https://www.mediawiki.org/wiki/Manual:Developing_extensions
http://gitwiki.org/
https://mercurial.selenic.com/wiki/MqExtension
https://mercurial.selenic.com/wiki/MqExtension
https://www.mercurial-scm.org/
https://wiki.jenkins-ci.org/display/JENKINS/VirtualBox+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/VirtualBox+Plugin
https://www.microsoft.com/en-us/download/details.aspx?id=48264
https://www.microsoft.com/en-us/download/details.aspx?id=48264
https://technet.microsoft.com/en-us/security/dn436305
https://technet.microsoft.com/en-us/security/dn436305
http://msdn.microsoft.com/en-us/library/5dy88c2e.aspx
http://msdn.microsoft.com/en-us/library/5dy88c2e.aspx
https://msdn.microsoft.com/en-us/library/dn833103
https://msdn.microsoft.com/en-us/library/dn833103

Primary Sources

[P*Min08] MinGW.org. MSYS. http://www.mingw.org/wiki/MSYS [accessed 2016-04-
26]. Jan. 2008.

[P*Moi15] MoinMoin contributors. MoinMoin Website. https://moinmo.in/ [accessed
2016-03-10]. Feb. 2015.

[P*Moz01] Mozilla Foundation. Bugzilla@Mozilla. https://bugzilla.mozilla.org
[accessed 2015-12-10]. Aug. 2001.

[P*Moz02] Mozilla Foundation. Phoenix 0.1 (Pescadero) Release Notes and FAQ. http:
//website-archive.mozilla.org/www.mozilla.org/firefox_releas
enotes/en-US/firefox/releases/0.1.html [accessed 2015-12-10]. Aug.
2002.

[P*Moz06] Mozilla Corporation. mozilla.dev.planning. news://news.mozilla.org/
mozilla.dev.planning [accessed 2014-07-23]. Jan. 2006.

[P*Moz08a] Mozilla Corporation. mozilla.dev.builds. news://news.mozilla.org/mozil
la.dev.builds [accessed 2015-10-07]. Jan. 2008.

[P*Moz08b] Mozilla Foundation. The Mozilla Manifesto. https://www.mozilla.org/en-
US/about/manifesto/details/ [accessed 2016-03-23]. Nov. 2008.

[P*Moz09] Mozilla Foundation. Mozilla Bug 459257 - MozillaBuild fails on WinXP x64 due
to errors in guess-msvc/start-* scripts. https://bugzilla.mozilla.org/
show_bug.cgi?id=459257 [accessed 2016-04-26]. July 2009.

[P*Moz11] Mozilla Foundation. Release of Firefox 4. archive.org. https://web.archive.
org/web/20110323003139/http://www.mozilla.com/en-US/firefox/
new/ [accessed 2015-01-23]. Mar. 2011.

[P*Moz12] Mozilla Developer Network. Windows Build Prerequisites, Revision 320427.
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_
guide/Build_Instructions/Windows_Prerequisites$revision/3204
27 [accessed 2015-12-16]. Mozilla Developer Network, Oct. 2012.

[P*Moz13] Mozilla Wiki Contributors. Release Management/Release Process. https://
wiki.mozilla.org/Release_Management/Release_Process [accessed
2015-12-10]. May 2013.

[P*Moz14a] Mozilla Developer Network. Mercurial Queues. https://developer.mozill
a.org/en-US/docs/Mercurial_Queues [accessed 2015-06-17]. Dec. 2014.

[P*Moz14b] Mozilla Developer Network. Mozilla Source Code Directory Structure. https:
//developer.mozilla.org/en/docs/Mozilla_Source_Code_Director
y_Structure [accessed 2015-12-10]. May 2014.

[P*Moz14c] Mozilla Foundation. Bugzilla Database Snapshot. https://bugzilla.moz
illa.org/page.cgi?id=researchers.html [accessed 2014-07-23, not
available anymore]. May 2014.

[P*Moz14d] Mozilla Wiki Contributors. Contribute/Coding/Mentoring. https://wiki.
mozilla . org / Contribute / Coding / Mentoring [accessed 2015-09-02].
Sept. 2014.

226

http://www.mingw.org/wiki/MSYS
https://moinmo.in/
https://bugzilla.mozilla.org
http://website-archive.mozilla.org/www.mozilla.org/firefox_releasenotes/en-US/firefox/releases/0.1.html
http://website-archive.mozilla.org/www.mozilla.org/firefox_releasenotes/en-US/firefox/releases/0.1.html
http://website-archive.mozilla.org/www.mozilla.org/firefox_releasenotes/en-US/firefox/releases/0.1.html
news://news.mozilla.org/mozilla.dev.planning
news://news.mozilla.org/mozilla.dev.planning
news://news.mozilla.org/mozilla.dev.builds
news://news.mozilla.org/mozilla.dev.builds
https://www.mozilla.org/en-US/about/manifesto/details/
https://www.mozilla.org/en-US/about/manifesto/details/
https://bugzilla.mozilla.org/show_bug.cgi?id=459257
https://bugzilla.mozilla.org/show_bug.cgi?id=459257
https://web.archive.org/web/20110323003139/http://www.mozilla.com/en-US/firefox/new/
https://web.archive.org/web/20110323003139/http://www.mozilla.com/en-US/firefox/new/
https://web.archive.org/web/20110323003139/http://www.mozilla.com/en-US/firefox/new/
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Build_Instructions/Windows_Prerequisites$revision/320427
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Build_Instructions/Windows_Prerequisites$revision/320427
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Build_Instructions/Windows_Prerequisites$revision/320427
https://wiki.mozilla.org/Release_Management/Release_Process
https://wiki.mozilla.org/Release_Management/Release_Process
https://developer.mozilla.org/en-US/docs/Mercurial_Queues
https://developer.mozilla.org/en-US/docs/Mercurial_Queues
https://developer.mozilla.org/en/docs/Mozilla_Source_Code_Directory_Structure
https://developer.mozilla.org/en/docs/Mozilla_Source_Code_Directory_Structure
https://developer.mozilla.org/en/docs/Mozilla_Source_Code_Directory_Structure
https://bugzilla.mozilla.org/page.cgi?id=researchers.html
https://bugzilla.mozilla.org/page.cgi?id=researchers.html
https://wiki.mozilla.org/Contribute/Coding/Mentoring
https://wiki.mozilla.org/Contribute/Coding/Mentoring

Primary Sources

[P*Moz14e] Mozilla Wiki Contributors. Modules/Firefox (Differences between revisions).
https://wiki.mozilla.org/index.php?title=Modules%2FFirefox&
diff=957835&oldid=688200 [accessed 2015-12-10]. Mar. 2014.

[P*Moz14f] Mozilla Wiki Contributors. SummerOfCode. https://wiki.mozilla.org/
SummerOfCode [accessed 2015-01-21]. Dec. 2014.

[P*Moz14g] Mozilla Wiki Contributors. Tree Rules/Integration. https://wiki.mozilla.
org/Tree_Rules/Integration [accessed 2015-12-10]. Dec. 2014.

[P*Moz15a] Mozilla Corporation. Mercurial Repositories list. https://hg.mozilla.org/
[accessed 2015-01-15]. 2015.

[P*Moz15b] Mozilla Corporation. Mozilla GitHub main page. https://github.com/
mozilla/ [accessed 2015-01-05]. 2015.

[P*Moz15c] Mozilla Developer Network. Add-on SDK. https://developer.mozilla.
org/en-US/Add-ons/SDK [accessed 2015-12-10]. Dec. 2015.

[P*Moz15d] Mozilla Developer Network. Build Instructions. https://developer.mozil
la.org/en-US/docs/Mozilla/Developer_guide/Build_Instructions
[accessed 2015-07-16]. June 2015.

[P*Moz15e] Mozilla Developer Network. Contributing to the Mozilla codebase. https:
//developer.mozilla.org/en-US/docs/Introduction [accessed 2015-
12-10]. Dec. 2015.

[P*Moz15f] Mozilla Developer Network. How to Submit a Patch (Preparation). https:
//developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/
How_to_Submit_a_Patch#Preparation [accessed 2015-12-10]. Aug. 2015.

[P*Moz15g] Mozilla Developer Network. Linux prerequisites, Section Most Distros - One
Line Bootstrap Command. https://developer.mozilla.org/en- US/
docs/Mozilla/Developer_guide/Build_Instructions/Linux_Prer
equisites#Most_Distros_-_One_Line_Bootstrap_Command [accessed
2015-12-10]. Oct. 2015.

[P*Moz15h] Mozilla Developer Network. MDN Website. https://developer.mozilla.
org/ [accessed 2015-10-07]. 2015.

[P*Moz15i] Mozilla Developer Network. Mozilla automated testing. https://developer.
mozilla.org/en-US/docs/Mozilla/QA/Automated_testing [accessed
2015-12-10]. Oct. 2015.

[P*Moz15j] Mozilla Developer Network. Plugins. https://developer.mozilla.org/
en-US/Add-ons/Plugins [accessed 2015-12-10]. Oct. 2015.

[P*Moz15k] Mozilla Developer Network. Running automated tests. https://developer.
mozilla.org/en-US/docs/Running_automated_tests [accessed 2015-
12-10]. June 2015.

227

https://wiki.mozilla.org/index.php?title=Modules%2FFirefox&diff=957835&oldid=688200
https://wiki.mozilla.org/index.php?title=Modules%2FFirefox&diff=957835&oldid=688200
https://wiki.mozilla.org/SummerOfCode
https://wiki.mozilla.org/SummerOfCode
https://wiki.mozilla.org/Tree_Rules/Integration
https://wiki.mozilla.org/Tree_Rules/Integration
https://hg.mozilla.org/
https://github.com/mozilla/
https://github.com/mozilla/
https://developer.mozilla.org/en-US/Add-ons/SDK
https://developer.mozilla.org/en-US/Add-ons/SDK
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Build_Instructions
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Build_Instructions
https://developer.mozilla.org/en-US/docs/Introduction
https://developer.mozilla.org/en-US/docs/Introduction
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/How_to_Submit_a_Patch#Preparation
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/How_to_Submit_a_Patch#Preparation
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/How_to_Submit_a_Patch#Preparation
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Build_Instructions/Linux_Prerequisites#Most_Distros_-_One_Line_Bootstrap_Command
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Build_Instructions/Linux_Prerequisites#Most_Distros_-_One_Line_Bootstrap_Command
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Build_Instructions/Linux_Prerequisites#Most_Distros_-_One_Line_Bootstrap_Command
https://developer.mozilla.org/
https://developer.mozilla.org/
https://developer.mozilla.org/en-US/docs/Mozilla/QA/Automated_testing
https://developer.mozilla.org/en-US/docs/Mozilla/QA/Automated_testing
https://developer.mozilla.org/en-US/Add-ons/Plugins
https://developer.mozilla.org/en-US/Add-ons/Plugins
https://developer.mozilla.org/en-US/docs/Running_automated_tests
https://developer.mozilla.org/en-US/docs/Running_automated_tests

Primary Sources

[P*Moz15l] Mozilla Developer Network. Windows build prerequisites, Section MozillaBuild.
https://developer.mozilla.org/en-US/docs/Developer_Guide/B
uild_Instructions/Windows_Prerequisites#MozillaBuild [accessed
2015-12-10]. Nov. 2015.

[P*Moz15m] Mozilla Foundation. Firefox Website. https : / / www . mozilla . org / en -
US/firefox/products/ [accessed 2015-10-30]. 2015.

[P*Moz15n] Mozilla Foundation. Governance. https://www.mozilla.org/en- US/
about/governance/ [accessed 2015-12-10]. 2015.

[P*Moz15o] Mozilla Foundation. Main hg repository for Firefox. https://hg.mozilla.
org/mozilla-central/ [accessed 2015-05-05]. May 2015.

[P*Moz15p] Mozilla Foundation. Mozilla Foundation License Policy. https://www.mozil
la.org/MPL/license-policy.html [accessed 2015-12-10]. 2015.

[P*Moz15q] Mozilla Foundation. Mozilla Modules and Module Owners. https://www.
mozilla.org/hacking/module-ownership.html [accessed 2015-12-10].
2015.

[P*Moz15r] Mozilla Foundation. Mozilla Persona Website. https://login.persona.org/
[accessed 2015-01-15]. Jan. 2015.

[P*Moz15s] Mozilla Foundation. Mozilla Public License. https://www.mozilla.org/
MPL/2.0/ [accessed 2015-12-10]. 2015.

[P*Moz15t] Mozilla Foundation. Mozilla Website. https://www.mozilla.org/ [accessed
2015-12-10]. 2015.

[P*Moz15u] Mozilla Foundation. mozilla/gecko-dev GitHub repository. https://github.
com/mozilla/gecko-dev [accessed 2015-10-30]. Oct. 2015.

[P*Moz15v] Mozilla Foundation. The Mozilla Foundation. https://www.mozilla.org/
foundation/ [accessed 2015-12-10]. 2015.

[P*Moz15w] Mozilla Wiki Contributors. BMO/Whiteboard. Wiki Article. https://wiki.
mozilla.org/BMO/Whiteboard [accessed 2015-10-12]. Jan. 2015.

[P*Moz15x] Mozilla Wiki Contributors. Modules. https://wiki.mozilla.org/Modules
[accessed 2015-12-10]. May 2015.

[P*Moz15y] Mozilla Wiki Contributors. Modules/Firefox. https://wiki.mozilla.org/
index.php?title=Modules/Firefox&oldid=1076675 [accessed 2015-11-
06]. May 2015.

[P*Moz15z] Mozilla Wiki Contributors. ReleaseEngineering/TryServer. https://wiki.
mozilla.org/Try [accessed 2015-12-10]. Nov. 2015.

[P*Moz15aa] Mozilla Wiki Contributors. Tree Rules. https://wiki.mozilla.org/Tree_
Rules [accessed 2015-12-10]. Mar. 2015.

[P*Nea10] Kyle Neath. Introducing Organizations. Github Blog. https://github.com/
blog/674-introducing-organizations [accessed 2015-10-30]. June 2010.

228

https://developer.mozilla.org/en-US/docs/Developer_Guide/Build_Instructions/Windows_Prerequisites#MozillaBuild
https://developer.mozilla.org/en-US/docs/Developer_Guide/Build_Instructions/Windows_Prerequisites#MozillaBuild
https://www.mozilla.org/en-US/firefox/products/
https://www.mozilla.org/en-US/firefox/products/
https://www.mozilla.org/en-US/about/governance/
https://www.mozilla.org/en-US/about/governance/
https://hg.mozilla.org/mozilla-central/
https://hg.mozilla.org/mozilla-central/
https://www.mozilla.org/MPL/license-policy.html
https://www.mozilla.org/MPL/license-policy.html
https://www.mozilla.org/hacking/module-ownership.html
https://www.mozilla.org/hacking/module-ownership.html
https://login.persona.org/
https://www.mozilla.org/MPL/2.0/
https://www.mozilla.org/MPL/2.0/
https://www.mozilla.org/
https://github.com/mozilla/gecko-dev
https://github.com/mozilla/gecko-dev
https://www.mozilla.org/foundation/
https://www.mozilla.org/foundation/
https://wiki.mozilla.org/BMO/Whiteboard
https://wiki.mozilla.org/BMO/Whiteboard
https://wiki.mozilla.org/Modules
https://wiki.mozilla.org/index.php?title=Modules/Firefox&oldid=1076675
https://wiki.mozilla.org/index.php?title=Modules/Firefox&oldid=1076675
https://wiki.mozilla.org/Try
https://wiki.mozilla.org/Try
https://wiki.mozilla.org/Tree_Rules
https://wiki.mozilla.org/Tree_Rules
https://github.com/blog/674-introducing-organizations
https://github.com/blog/674-introducing-organizations

Primary Sources

[P*Net98] Netscape Communications Corporation. Netscape Announces mozilla.org, a
Dedicated Team and Web Site Supporting Development of Free Client Source
Code. http://wp.netscape.com/newsref/pr/newsrelease577.html
[original, broken], https://web.archive.org/web/20021004080737/
wp.netscape.com/newsref/pr/newsrelease577.html [Internet Archive,
accessed 2015-11-27]. Feb. 1998.

[P*Neu07] Christian Neukirchen. Initial Commit to Rake. https://github.com/rack/
rack/commit/22f015e82b6c707f8887c6c951a300f597e0d877 [accessed
2015-11-17]. Feb. 2007.

[P*Neu13] Christian Neukirchen. Rack: a Ruby Webserver Interface. https://rack.
github.io/ [accessed 2015-11-17]. Feb. 2013.

[P*Nig11] Johnathan Nightingale. Re: Firefox module owner change. Email. https://gr
oups.google.com/d/topic/mozilla.dev.apps.firefox/DBh4q25LlXw
[accessed 2015-12-10]. Sept. 2011.

[P*Nor15a] Xavier Noria. Rails Contributors - All time. http://contributors.rubyonr
ails.org [accessed 2015-11-10]. Nov. 2015.

[P*Nor15b] Xavier Noria. Rails Contributors - This year. http://contributors.rub
yonrails.org/contributors/in-time-window/this-year [accessed
2015-11-11]. Nov. 2015.

[P*Ols16] Christoph Olszowka. The popularity rating of Ruby on Rails explained. https:
//www.ruby-toolbox.com/projects/rails/popularity [accessed 2016-
01-13]. Jan. 2016.

[P*Ope04] Open Source Initiative. The Open Source Definition. http://www.opensource.
org/docs/osd [accessed 2016-04-06]. 2004.

[P*Ope14] Open Source Initiative. Licenses that are popular and widely used or with
strong communities. Electronically. http://opensource.org/licenses/
category [accessed 2014-01-13]. Jan. 2014.

[P*Ope15a] Open Hub. Firefox project analysis. https://www.openhub.net/projects/
9/analyses/26246450.xml [accessed 2015-11-19, free API key required]
https://www.openhub.net/p/firefox/commits/summary [accessed
2015-11-19, less accurate data]. Nov. 2015.

[P*Ope15b] Open Hub. Open HUB Projects. https://www.openhub.net/explore/
projects [accessed 2015-10-27]. Oct. 2015.

[P*Ope15c] Open Hub. Ruby on Rails activity facts. https://www.openhub.net/project
s/34/analyses/latest/activity_facts.xml [accessed 2015-11-10, free
API key required] https://www.openhub.net/p/rails/contributors/
summary [accessed 2015-11-10, publicly available]. Nov. 2015.

229

http://wp.netscape.com/newsref/pr/newsrelease577.html
https://web.archive.org/web/20021004080737/wp.netscape.com/newsref/pr/newsrelease577.html
https://web.archive.org/web/20021004080737/wp.netscape.com/newsref/pr/newsrelease577.html
https://github.com/rack/rack/commit/22f015e82b6c707f8887c6c951a300f597e0d877
https://github.com/rack/rack/commit/22f015e82b6c707f8887c6c951a300f597e0d877
https://rack.github.io/
https://rack.github.io/
https://groups.google.com/d/topic/mozilla.dev.apps.firefox/DBh4q25LlXw
https://groups.google.com/d/topic/mozilla.dev.apps.firefox/DBh4q25LlXw
http://contributors.rubyonrails.org
http://contributors.rubyonrails.org
http://contributors.rubyonrails.org/contributors/in-time-window/this-year
http://contributors.rubyonrails.org/contributors/in-time-window/this-year
https://www.ruby-toolbox.com/projects/rails/popularity
https://www.ruby-toolbox.com/projects/rails/popularity
http://www.opensource.org/docs/osd
http://www.opensource.org/docs/osd
http://opensource.org/licenses/category
http://opensource.org/licenses/category
https://www.openhub.net/projects/9/analyses/26246450.xml
https://www.openhub.net/projects/9/analyses/26246450.xml
https://www.openhub.net/p/firefox/commits/summary
https://www.openhub.net/explore/projects
https://www.openhub.net/explore/projects
https://www.openhub.net/projects/34/analyses/latest/activity_facts.xml
https://www.openhub.net/projects/34/analyses/latest/activity_facts.xml
https://www.openhub.net/p/rails/contributors/summary
https://www.openhub.net/p/rails/contributors/summary

Primary Sources

[P*Ope15d] Open Hub. Spree activity facts. https://www.openhub.net/projects/
13145/analyses/latest/activity_facts.xml [accessed 2015-11-12, free
API key required] https://www.openhub.net/p/spree/contributors/
summary [accessed 2015-11-12, publicly available]. Nov. 2015.

[P*Ope16a] Open Hub. Eclipse Platform Project – Estimated Cost. https://www.openhub.
net/p/eclipse/estimated_cost [accessed 2016-03-09]. Ohloh, Mar. 2016.

[P*Ope16b] Open Hub. Projects by Activity Level. https://www.openhub.net/p?sort=
activity_level [accessed 2016-03-15]. Mar. 2016.

[P*Ope16c] OpenStreetMap contributors. OpenStreetMap Website. https://www.openstr
eetmap.org/ [accessed 2016-02-08]. 2016.

[P*Ora15a] Oracle. Hudson Website. http://www.hudson-ci.org/ [accessed 2015-12-
16]. 2015.

[P*Ora15b] Oracle. Javadoc Tool. http://www.oracle.com/technetwork/java/
javase/documentation/index-jsp-135444.html [accessed 2016-01-05].
2015.

[P*Ora16a] Oracle. VirtualBox Website. https://www.virtualbox.org/ [accessed 2016-
02-17]. Feb. 2016.

[P*Ora16b] Oracle Corporation. Oracle VM VirtualBox User Manual. Version 5.0.16. http:
//www.virtualbox.org/manual/ [accessed 2016-03-14]. Mar. 2016.

[P*Pal15] Matt Palmer. Contributing. https://github.com/rack/rack-contrib/
blob/master/CONTRIBUTING.md [2015-11-18]. June 2015.

[P*Peb15] Pebble. CloudPebble Website. https://cloudpebble.net/ [accessed 2016-
03-10]. 2015.

[P*Peb16] Pebble. Pebble Guides – App Resources. https://developer.pebble.com/
guides/app-resources/ [accessed 2016-03-10]. 2016.

[P*Pra10a] Winston Prakash. Hudson Execution and Scheduling Architecture. http://www.
hudson-ci.org/docs/HudsonArch-Execution.pdf [accessed 2016-04-
26]. Oracle, Nov. 2010.

[P*Pra10b] Winston Prakash. Hudson Security Architecture. http://www.hudson-ci.
org/docs/HudsonArch-Security.pdf [accessed 2016-04-26]. Oracle, Dec.
2010.

[P*RA15] Greg Roelofs and Mark Adler. zlib Website. http://zlib.net/ [accessed
2015-12-10]. Aug. 2015.

[P*Rac12] Rack community. Release a new patch version of Rack 1.4 with good release
number. https://github.com/rack/rack/issues/322 [accessed 2015-11-
18]. Jan. 2012.

[P*Rac15a] Rack community. rack/rack github repository. https://github.com/rack/
rack-contrib [accessed 2015-11-17]. July 2015.

230

https://www.openhub.net/projects/13145/analyses/latest/activity_facts.xml
https://www.openhub.net/projects/13145/analyses/latest/activity_facts.xml
https://www.openhub.net/p/spree/contributors/summary
https://www.openhub.net/p/spree/contributors/summary
https://www.openhub.net/p/eclipse/estimated_cost
https://www.openhub.net/p/eclipse/estimated_cost
https://www.openhub.net/p?sort=activity_level
https://www.openhub.net/p?sort=activity_level
https://www.openstreetmap.org/
https://www.openstreetmap.org/
http://www.hudson-ci.org/
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
https://www.virtualbox.org/
http://www.virtualbox.org/manual/
http://www.virtualbox.org/manual/
https://github.com/rack/rack-contrib/blob/master/CONTRIBUTING.md
https://github.com/rack/rack-contrib/blob/master/CONTRIBUTING.md
https://cloudpebble.net/
https://developer.pebble.com/guides/app-resources/
https://developer.pebble.com/guides/app-resources/
http://www.hudson-ci.org/docs/HudsonArch-Execution.pdf
http://www.hudson-ci.org/docs/HudsonArch-Execution.pdf
http://www.hudson-ci.org/docs/HudsonArch-Security.pdf
http://www.hudson-ci.org/docs/HudsonArch-Security.pdf
http://zlib.net/
https://github.com/rack/rack/issues/322
https://github.com/rack/rack-contrib
https://github.com/rack/rack-contrib

Primary Sources

[P*Rac15b] Rack community. rack/rack wiki. https://github.com/rack/rack/wiki
[accessed 2015-11-17]. 2015.

[P*Rac15c] Rack developers. COPYING. https://github.com/rack/rack/blob/
master/COPYING [accessed 2015-11-17]. Feb. 2015.

[P*Rac15d] Rack developers. Module: Rack. http://www.rubydoc.info/github/rack/
rack/Rack [accessed 2015-11-17]. Nov. 2015.

[P*Rac15e] Rack developers. Rack applications on GitHub. https://github.com/rack/
rack/blob/master/SPEC [accessed 2015-11-17]. Aug. 2015.

[P*Rac15f] Rack developers. Rack applications on RubyDoc. http://www.rubydoc.
info/github/rack/rack/master/file/SPEC [accessed 2015-11-17]. Aug.
2015.

[P*Rac15g] Rack developers. rack/rack github repository. https://github.com/rack/
rack [accessed 2015-11-17]. Nov. 2015.

[P*Rai13] RailsGuides. Ruby on Rails 4.0 Release Notes. http://guides.rubyonrails.
org/4_0_release_notes.html [accessed 2015-11-09]. June 2013.

[P*Rai15a] RailsGuides. Contributing to Ruby on Rails. http://edgeguides.rubyonra
ils.org/contributing_to_ruby_on_rails.html [accessed 2015-11-09].
Nov. 2015.

[P*Rai15b] RailsGuides. Rails on Rack. http://guides.rubyonrails.org/rails_on_
rack.html [accessed 2015-11-09]. Nov. 2015.

[P*Rai15c] RailsGuides. Ruby on Rails Guides. http://guides.rubyonrails.org/
[accessed 2015-11-09]. Aug. 2015.

[P*Rak13] Rake developers. RAKE – Ruby Make. http://rake.rubyforge.org/ [ac-
cessed 2015-11-17]. 2013.

[P*Rak14] Rake developers. jimweirich/rake github repository. https://github.com/
jimweirich/rake [accessed 2015-11-17]. Nov. 2014.

[P*Rak15a] Rake developers. RAKE – Ruby Make. http://docs.seattlerb.org/rake/
[accessed 2015-11-12]. 2015.

[P*Rak15b] Rake developers. ruby/rake github repository. https://github.com/ruby/
rake [accessed 2015-11-17]. Nov. 2015.

[P*Red15] Red Hat, Inc. Cygwin Website. https://cygwin.com/ [accessed 2015-12-16].
2015.

[P*Rub12] RubyGems.org. bacon. https://rubygems.org/gems/bacon [accessed
2015-11-17]. Dec. 2012.

[P*Rub14a] Ruby on Rails developers. MIT License. https://github.com/rails/
rails/blob/master/railties/MIT-LICENSE [accessed 2015-11-11]. Dec.
2014.

[P*Rub14b] RubyGems.org. All versions of rake. https://rubygems.org/gems/rake/
versions [accessed 2015-11-17]. Dec. 2014.

231

https://github.com/rack/rack/wiki
https://github.com/rack/rack/blob/master/COPYING
https://github.com/rack/rack/blob/master/COPYING
http://www.rubydoc.info/github/rack/rack/Rack
http://www.rubydoc.info/github/rack/rack/Rack
https://github.com/rack/rack/blob/master/SPEC
https://github.com/rack/rack/blob/master/SPEC
http://www.rubydoc.info/github/rack/rack/master/file/SPEC
http://www.rubydoc.info/github/rack/rack/master/file/SPEC
https://github.com/rack/rack
https://github.com/rack/rack
http://guides.rubyonrails.org/4_0_release_notes.html
http://guides.rubyonrails.org/4_0_release_notes.html
http://edgeguides.rubyonrails.org/contributing_to_ruby_on_rails.html
http://edgeguides.rubyonrails.org/contributing_to_ruby_on_rails.html
http://guides.rubyonrails.org/rails_on_rack.html
http://guides.rubyonrails.org/rails_on_rack.html
http://guides.rubyonrails.org/
http://rake.rubyforge.org/
https://github.com/jimweirich/rake
https://github.com/jimweirich/rake
http://docs.seattlerb.org/rake/
https://github.com/ruby/rake
https://github.com/ruby/rake
https://cygwin.com/
https://rubygems.org/gems/bacon
https://github.com/rails/rails/blob/master/railties/MIT-LICENSE
https://github.com/rails/rails/blob/master/railties/MIT-LICENSE
https://rubygems.org/gems/rake/versions
https://rubygems.org/gems/rake/versions

Primary Sources

[P*Rub14c] RubyGems.org. rake. https://rubygems.org/gems/rake [accessed 2015-
11-16]. Dec. 2014.

[P*Rub15a] Ruby on Rails. Ruby on Rails Website. http://rubyonrails.org/ [accessed
2015-11-09]. Nov. 2015.

[P*Rub15b] Ruby on Rails. The core team. http://rubyonrails.org/core/ [accessed
2015-11-06]. 2015.

[P*Rub15c] Ruby on Rails developers. A Virtual Machine for Ruby on Rails Core Develop-
ment. https://github.com/rails/rails-dev-box [accessed 2015-11-10].
June 2015.

[P*Rub15d] Ruby on Rails developers. Rails License. https://github.com/rails/
rails#license [accessed 2015-11-06]. Sept. 2015.

[P*Rub15e] Ruby on Rails developers. rails.gemspec. https://github.com/rails/
rails/blob/master/rails.gemspec [accessed 2015-11-06]. Sept. 2015.

[P*Rub15f] Ruby on Rails developers. rails/rails github repository. https://github.com/
rails/rails [accessed 2015-11-09]. Nov. 2015.

[P*Rub15g] Ruby on Rails developers. Ruby on Rails API. http://api.rubyonrails.
org/ [accessed 2015-11-09]. Aug. 2015.

[P*Rub15h] RubyGems.org. All versions of rack. https://rubygems.org/gems/rack/
versions [accessed 2015-11-18]. June 2015.

[P*Rub15i] RubyGems.org. All versions of railties. https://rubygems.org/gems/
railties/versions [accessed 2015-11-10]. Nov. 2015.

[P*Rub15j] RubyGems.org. All versions of spree. https://rubygems.org/gems/spree/
versions [accessed 2015-11-11]. Nov. 2015.

[P*Rub15k] RubyGems.org. bundler. https://rubygems.org/gems/bundler [accessed
2015-11-06]. July 2015.

[P*Rub15l] RubyGems.org. hoe. https://rubygems.org/gems/hoe [accessed 2015-11-
16]. Sept. 2015.

[P*Rub15m] RubyGems.org. rack. https://rubygems.org/gems/rack [accessed 2015-
11-17]. June 2015.

[P*Sch07] Sean Schofield. Initial commits to railscart. https://code.google.com/
archive/p/railscart/source/default/commits?page=7 [accessed
2015-11-11]. July 2007.

[P*Sch15] Sean Schofield. The Future of Spree Open Source Software. https://spree
commerce.com/blog/future-of-spree-oss [accessed 2015-10-28]. Oct.
2015.

[P*SEL13] SELinux developers. SELinux Website. http://selinuxproject.org/ [ac-
cessed 2016-02-22]. May 2013.

232

https://rubygems.org/gems/rake
http://rubyonrails.org/
http://rubyonrails.org/core/
https://github.com/rails/rails-dev-box
https://github.com/rails/rails#license
https://github.com/rails/rails#license
https://github.com/rails/rails/blob/master/rails.gemspec
https://github.com/rails/rails/blob/master/rails.gemspec
https://github.com/rails/rails
https://github.com/rails/rails
http://api.rubyonrails.org/
http://api.rubyonrails.org/
https://rubygems.org/gems/rack/versions
https://rubygems.org/gems/rack/versions
https://rubygems.org/gems/railties/versions
https://rubygems.org/gems/railties/versions
https://rubygems.org/gems/spree/versions
https://rubygems.org/gems/spree/versions
https://rubygems.org/gems/bundler
https://rubygems.org/gems/hoe
https://rubygems.org/gems/rack
https://code.google.com/archive/p/railscart/source/default/commits?page=7
https://code.google.com/archive/p/railscart/source/default/commits?page=7
https://spreecommerce.com/blog/future-of-spree-oss
https://spreecommerce.com/blog/future-of-spree-oss
http://selinuxproject.org/

Primary Sources

[P*Sha11a] Mike Shaver. changes in Firefox review policy. email. https://groups.goo
gle.com/d/topic/mozilla.dev.apps.firefox/nGByxSzFFlw [accessed
2015-12-10]. Sept. 2011.

[P*Sha11b] Mike Shaver. Modules/Firefox (Differences between revisions). https://wiki.
mozilla.org/index.php?title=Modules%2FFirefox&diff=353093&
oldid=351420 [accessed 2015-12-10]. Sept. 2011.

[P*Sin15] Sinatra developers. Rack Middleware. https://github.com /sinatra/
sinatra#rack-middleware [accessed 2015-11-17]. Sept. 2015.

[P*Sla15] Slashdot Media. SourceForge Website. https://sourceforge.net [accessed
2015-09-04]. Sept. 2015.

[P*Sof16] Software in the Public Interest, Inc. Debian Website. https://www.debian.
org/ [accessed 2016-02-17]. Feb. 2016.

[P*Spr13] Spree developers. Core Team. https://github.com/spree/spree/wiki/
Core-Team [accessed 2015-11-12]. Apr. 2013.

[P*Spr15a] Spree Commerce Inc. Developer Guide: Contributing to Spree. https://
guides.spreecommerce.com/developer/contributing.html [accessed
2015-11-11]. Mar. 2015.

[P*Spr15b] Spree Commerce Inc. Developer Guide: Extensions. https://guides.sp
reecommerce.com/developer/extensions_tutorial.html [accessed
2015-11-11]. Apr. 2015.

[P*Spr15c] Spree Commerce Inc. Developer Guide: Getting Help. https://guides.
spreecommerce.com/developer/getting_help.html [accessed 2015-11-
12]. Jan. 2015.

[P*Spr15d] Spree Commerce Inc. Developer Guide: Navigating the Source. https://
guides.spreecommerce.com/developer/navigating.html [accessed
2015-11-11]. Jan. 2015.

[P*Spr15e] Spree Commerce Inc. Do I need a Spree storefront to use Wombat? https:
//support.wombat.co/hc/en-us/articles/202421430-Do-I-need-a-
Spree-storefront-to-use-Wombat- [accessed 2015-11-11]. 2015.

[P*Spr15f] Spree Commerce Inc. Our Leadership Team. https://spreecommerce.com/
about_us [accessed 2015-11-12]. 2015.

[P*Spr15g] Spree Commerce Inc. SpreeCommerce Website. https://spreecommerce.
com/ [accessed 2015-11-11]. 2015.

[P*Spr15h] Spree Commerce Inc. The Spree API: Documentation. https : / / guides .
spreecommerce.com/api/ [accessed 2015-11-11]. 2015.

[P*Spr15i] Spree Commerce Inc. Wombat Website. https://wombat.co/ [accessed 2015-
11-11]. 2015.

[P*Spr15j] Spree developers. Spree License. https://github.com/spree/spree/
blob/master/license.md [accessed 2015-11-11]. Jan. 2015.

233

https://groups.google.com/d/topic/mozilla.dev.apps.firefox/nGByxSzFFlw
https://groups.google.com/d/topic/mozilla.dev.apps.firefox/nGByxSzFFlw
https://wiki.mozilla.org/index.php?title=Modules%2FFirefox&diff=353093&oldid=351420
https://wiki.mozilla.org/index.php?title=Modules%2FFirefox&diff=353093&oldid=351420
https://wiki.mozilla.org/index.php?title=Modules%2FFirefox&diff=353093&oldid=351420
https://github.com/sinatra/sinatra#rack-middleware
https://github.com/sinatra/sinatra#rack-middleware
https://sourceforge.net
https://www.debian.org/
https://www.debian.org/
https://github.com/spree/spree/wiki/Core-Team
https://github.com/spree/spree/wiki/Core-Team
https://guides.spreecommerce.com/developer/contributing.html
https://guides.spreecommerce.com/developer/contributing.html
https://guides.spreecommerce.com/developer/extensions_tutorial.html
https://guides.spreecommerce.com/developer/extensions_tutorial.html
https://guides.spreecommerce.com/developer/getting_help.html
https://guides.spreecommerce.com/developer/getting_help.html
https://guides.spreecommerce.com/developer/navigating.html
https://guides.spreecommerce.com/developer/navigating.html
https://support.wombat.co/hc/en-us/articles/202421430-Do-I-need-a-Spree-storefront-to-use-Wombat-
https://support.wombat.co/hc/en-us/articles/202421430-Do-I-need-a-Spree-storefront-to-use-Wombat-
https://support.wombat.co/hc/en-us/articles/202421430-Do-I-need-a-Spree-storefront-to-use-Wombat-
https://spreecommerce.com/about_us
https://spreecommerce.com/about_us
https://spreecommerce.com/
https://spreecommerce.com/
https://guides.spreecommerce.com/api/
https://guides.spreecommerce.com/api/
https://wombat.co/
https://github.com/spree/spree/blob/master/license.md
https://github.com/spree/spree/blob/master/license.md

Primary Sources

[P*Spr15k] Spree developers. spree/spree GitHub repository. https://github.com/
spree/spree [accessed 2015-11-11]. Oct. 2015.

[P*Spr15l] Spree developers. spree/spree/frontend/spree_frontend.gemspec. https://gi
thub.com/spree/spree/blob/master/frontend/spree_frontend.
gemspec [accessed 2015-11-11]. Oct. 2015.

[P*Sto15] Hank Stoever. Issue Stats for spree/spree. http://issuestats.com/github/
spree/spree [accessed 2015-11-11]. 2015.

[P*Tc16] Peter Thoeny and contributing authors. TWiki Website. http://twiki.org/
[accessed 2016-03-09]. Mar. 2016.

[P*The12] The Apache Software Foundation. log4j FAQ, Why should I donate my extensions
to log4j back to the project? https://logging.apache.org/log4j/1.2/
faq.html#a4.1 [accessed 2015-05-19]. May 2012.

[P*The14] The Cincinnati Enquirer. James Nolan Weirich. http://www.legacy.com/
obituaries/cincinnati/obituary.aspx?n=james-nolan-weirich&
pid=169779270 [accessed 2015-11-17]. Feb. 2014.

[P*The15a] The Apache Software Foundation. Apache HTTP Server Project. https://
httpd.apache.org/ [accessed 2015-04-27]. Apr. 2015.

[P*The15b] The Apache Software Foundation. Apache Subversion. https://subversion.
apache.org/ [accessed 2016-03-14]. Dec. 2015.

[P*The15c] The Eclipse Foundation. Desktop IDEs. http://eclipse.org/ide/ [accessed
2015-03-02]. Mar. 2015.

[P*The15d] The GNOME Project. GNOME Bugzilla. https://bugzilla.gnome.org/
[accessed 2015-09-08]. Sept. 2015.

[P*The15e] The GNOME Project. GNOME Website. https://www.gnome.org/ [accessed
2015-07-16]. July 2015.

[P*The16] The Eclipse Foundation. Eclipse Downloads. http://www.eclipse.org/
downloads/ [accessed 2016-04-26]. Apr. 2016.

[P*Tig09] TightVNC Group. TightVNC Java Viewer version 1.3.10. http://www.tightv
nc.com/doc/java/README.txt [accessed 2016-03-14]. 2009.

[P*Tra15] Travis CI. Travis CI. https://travis-ci.org [accessed 2015-09-04]. Sept.
2015.

[P*tra15] trac developers. Trac Component Architecture. http://trac.edgewall.org/
wiki/TracDev/ComponentArchitecture [accessed 2016-01-05]. Dec. 2015.

[P*Tuc14] James Tucker. [ANN] Rack, Change of Maintainer & Status. https://groups.
google.com/forum/#!msg/rack-devel/P8oOycVBaH0/1bm4eERJWPQJ
[accessed 2015-11-18]. Aug. 2014.

[P*Wei03] Jim Weirich. Initial Commit to Rake. https://github.com/ruby/rake/
commit/de564de4e2f189e1b133e4adf05ab8fc820a044b#diff-a8514d6
a381bae5851617358adb0621d [accessed 2015-11-16]. Oct. 2003.

234

https://github.com/spree/spree
https://github.com/spree/spree
https://github.com/spree/spree/blob/master/frontend/spree_frontend.gemspec
https://github.com/spree/spree/blob/master/frontend/spree_frontend.gemspec
https://github.com/spree/spree/blob/master/frontend/spree_frontend.gemspec
http://issuestats.com/github/spree/spree
http://issuestats.com/github/spree/spree
http://twiki.org/
https://logging.apache.org/log4j/1.2/faq.html#a4.1
https://logging.apache.org/log4j/1.2/faq.html#a4.1
http://www.legacy.com/obituaries/cincinnati/obituary.aspx?n=james-nolan-weirich&pid=169779270
http://www.legacy.com/obituaries/cincinnati/obituary.aspx?n=james-nolan-weirich&pid=169779270
http://www.legacy.com/obituaries/cincinnati/obituary.aspx?n=james-nolan-weirich&pid=169779270
https://httpd.apache.org/
https://httpd.apache.org/
https://subversion.apache.org/
https://subversion.apache.org/
http://eclipse.org/ide/
https://bugzilla.gnome.org/
https://www.gnome.org/
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://www.tightvnc.com/doc/java/README.txt
http://www.tightvnc.com/doc/java/README.txt
https://travis-ci.org
http://trac.edgewall.org/wiki/TracDev/ComponentArchitecture
http://trac.edgewall.org/wiki/TracDev/ComponentArchitecture
https://groups.google.com/forum/#!msg/rack-devel/P8oOycVBaH0/1bm4eERJWPQJ
https://groups.google.com/forum/#!msg/rack-devel/P8oOycVBaH0/1bm4eERJWPQJ
https://github.com/ruby/rake/commit/de564de4e2f189e1b133e4adf05ab8fc820a044b#diff-a8514d6a381bae5851617358adb0621d
https://github.com/ruby/rake/commit/de564de4e2f189e1b133e4adf05ab8fc820a044b#diff-a8514d6a381bae5851617358adb0621d
https://github.com/ruby/rake/commit/de564de4e2f189e1b133e4adf05ab8fc820a044b#diff-a8514d6a381bae5851617358adb0621d

Primary Sources

[P*Wik15a] Wikimedia. MediaWiki Website. https://www.mediawiki.org/ [accessed
2016-03-09]. Dec. 2015.

[P*Wik15b] Wikipedia. Flagged revisions/Sighted versions. http://en.wikipedia.or
g/wiki/Wikipedia:Flagged_revisions/Sighted_versions [accessed
2016-04-26]. Wikipedia, Nov. 2015.

[P*Wik15c] Wikipedia. Relevance. http://en.wikipedia.org/wiki/Wikipedia:
Relevance [accessed 2016-03-09]. Wikipedia, Dec. 2015.

[P*Wik16a] Wikipedia. Be Bold. https : / / en . wikipedia . org / wiki / Wikipedia :
Be_bold [accessed 2016-03-09]. Wikipedia, Jan. 2016.

[P*Wik16b] Wikipedia. Edit warring. https://en.wikipedia.org/wiki/Wikipedia:
Edit_warring [accessed 2016-03-10]. Wikipedia, Mar. 2016.

[P*Wik16c] Wikipedia. Vandalism. http://en.wikipedia.org/wiki/Wikipedia:
Vandalism [accessed 2016-03-09]. Wikipedia, Feb. 2016.

[P*Wik16d] Wikipedia. Wikipedia Website. https://www.wikipedia.org/ [accessed
2016-02-08]. 2016.

[P*XWi16] XWiki community. XWiki Website. http://www.xwiki.org [accessed 2016-
03-09]. Mar. 2016.

235

https://www.mediawiki.org/
http://en.wikipedia.org/wiki/Wikipedia:Flagged_revisions/Sighted_versions
http://en.wikipedia.org/wiki/Wikipedia:Flagged_revisions/Sighted_versions
http://en.wikipedia.org/wiki/Wikipedia:Relevance
http://en.wikipedia.org/wiki/Wikipedia:Relevance
https://en.wikipedia.org/wiki/Wikipedia:Be_bold
https://en.wikipedia.org/wiki/Wikipedia:Be_bold
https://en.wikipedia.org/wiki/Wikipedia:Edit_warring
https://en.wikipedia.org/wiki/Wikipedia:Edit_warring
http://en.wikipedia.org/wiki/Wikipedia:Vandalism
http://en.wikipedia.org/wiki/Wikipedia:Vandalism
https://www.wikipedia.org/
http://www.xwiki.org

Secondary Sources

[ACB09] Paul J. Adams, Andrea Capiluppi, and Cornelia Boldyreff. “Coordination and
productivity issues in free software: The role of brooks’ law”. In: Software
Maintenance, 2009. ICSM 2009. IEEE International Conference on. Sept. 2009,
pp. 319–328.

[AD05] Ademar Aguiar and Gabriel David. “WikiWiki weaving heterogeneous software
artifacts”. In: WikiSym ’05: Proceedings of the 2005 international symposium on
Wikis. San Diego, California: ACM, 2005, pp. 67–74. isbn: 1-59593-111-2.

[ADG08] Omar Alonso, Premkumar T. Devanbu, and Michael Gertz. “Expertise Identifi-
cation and Visualization from CVS”. In: Proceedings of the 2008 International
Working Conference on Mining Software Repositories. MSR ’08. Leipzig, Ger-
many: ACM, 2008, pp. 125–128. isbn: 978-1-60558-024-1.

[Ale+77] Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max Jacobson, Ingrid
Fiksdahl-King, and Shlomo Angel. A Pattern Language. New York: Oxford
University Press, 1977.

[Ale79] Christopher Alexander. The Timeless Way of Building. Oxford University Press,
1979. isbn: 0195024028.

[AM07] John Anvik and Gail C. Murphy. “Determining Implementation Expertise from
Bug Reports”. In: Mining Software Repositories, 2007. ICSE Workshops MSR

’07. Fourth International Workshop on. May 2007, pp. 2–2.

[AM11] John Anvik and Gail C. Murphy. “Reducing the effort of bug report triage:
Recommenders for development-oriented decisions”. In: ACM Trans. Softw. Eng.
Methodol. 20.3 (Aug. 2011), 10:1–10:35. issn: 1049-331X.

[Ant+08] Ionannis Antoniades, Ioannis Samoladas, Sulayman K. Sowe, Gregorio Robles,
Stefan Koch, Ksenia Fraczek, and Anis Hadzisalihovic. Study of Available Tools.
EU Framework deliverable. FLOSSMetrics Consortium, Oct. 2008.

[AR08] Craig Anslow and Dirk Riehle. “Towards end-user programming with wikis”. In:
Proceedings of the 4th international workshop on End-user software engineering.
WEUSE ’08. Leipzig, Germany: ACM, 2008, pp. 61–65. isbn: 978-1-60558-034-
0.

[ASP10] Abu Zafar Abbasi, Zubair A. Shaikh, and Syed Arsalan Pervez. “XYLUS: A
Virtualized Programming Environment”. In: Proceedings of 2nd IEEE Interna-
tional Conference on Information and Emerging Technologies (ICIET-2010).
June 2010.

236

Secondary Sources

[Aut12] Authors of the Portland Pattern Repository’s Wiki. Wiki IDE. http://c2.com/
cgi/wiki?WikiIde [accessed 2016-03-09]. Portland Pattern Repository’s Wiki,
May 2012.

[Avi+04] Algirdas Avižienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr.
“Basic concepts and taxonomy of dependable and secure computing”. In: De-
pendable and Secure Computing, IEEE Transactions on 1.1 (2004), pp. 11–33.
issn: 1545-5971.

[Bal13] Vipin Balachandran. “Reducing Human Effort and Improving Quality in Peer
Code Reviews Using Automatic Static Analysis and Reviewer Recommendation”.
In: Proceedings of the 2013 International Conference on Software Engineering.
ICSE ’13. San Francisco, CA, USA: IEEE Press, 2013, pp. 931–940. isbn: 978-
1-4673-3076-3.

[Bar16] Dominik Bartholdi. Total Jenkins installations. http://stats.jenkins-
ci.org/jenkins-stats/svg/total-jenkins.svg [accessed 2016-03-14].
Mar. 2016.

[Bay+12] Olga Baysal, Oleksii Kononenko, Reid Holmes, and Michael W. Godfrey. “The
Secret Life of Patches: A Firefox Case Study”. In: Reverse Engineering (WCRE),
2012 19th Working Conference on. 2012, pp. 447–455.

[BB10] Hind Benbya and Nassim Belbaly. “Understanding Developers’ Motives in Open
Source Projects: A Multi-Theoretical Framework”. In: Communications of the
AIS 27 (Jan. 2010), pp. 589–610.

[BGD07] Christian Bird, Alex Gourley, and Premkumar Devanbu. “Detecting Patch Sub-
mission and Acceptance in OSS Projects”. In: Proceedings of the Fourth Interna-
tional Workshop on Mining Software Repositories. MSR ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 26–. isbn: 0-7695-2950-X.

[Bir+07] Christian Bird, Alex Gourley, Premkumar Devanbu, Anand Swaminathan, and
Greta Hsu. “Open Borders? Immigration in Open Source Projects”. In: Mining
Software Repositories, 2007. ICSE Workshops MSR ’07. Fourth International
Workshop on. May 2007, p. 6.

[BK07] Michael Bächle and Paul Kirchberg. “Ruby on Rails”. In: Software, IEEE 24.6
(Nov. 2007), pp. 105–108. issn: 0740-7459.

[Bla76] Duncan Black. “Partial justification of the Borda count”. English. In: Public
Choice 28.1 (1976), pp. 1–15. issn: 0048-5829.

[Bro10] Frederick P. Brooks, Jr. The Design of Design. Addison-Wesley, 2010.

[Bro87] Frederick P. Brooks, Jr. “No Silver Bullet—Essence and Accidents of Software
Engineering”. In: Computer 20 (4 Apr. 1987), pp. 10–19. issn: 0018-9162.

[Bro95] Frederick P. Brooks, Jr. The Mythical Man-Month. 20th Anniversary Edition.
Addison Wesley, 1995.

237

http://c2.com/cgi/wiki?WikiIde
http://c2.com/cgi/wiki?WikiIde
http://stats.jenkins-ci.org/jenkins-stats/svg/total-jenkins.svg
http://stats.jenkins-ci.org/jenkins-stats/svg/total-jenkins.svg

Secondary Sources

[BS08] Andrew Begel and Beth Simon. “Struggles of New College Graduates in Their
First Software Development Job”. In: SIGCSE Bull. 40.1 (Mar. 2008), pp. 226–
230. issn: 0097-8418.

[Bug15] Yegor Bugayenko. 10 Hosted Continuous Integration Services for a Private
Repository. http://www.yegor256.com/2014/10/05/ten- hosted-
continuous-integration-services.html [accessed 2016-03-14]. Nov.
2015.

[Bur+06] Luciana S. Buriol, Carlos Castillo, Debora Donato, Stefano Leonardi, and Ste-
fano Millozzi. “Temporal Analysis of the Wikigraph”. In: Proceedings of the
2006 IEEE/WIC/ACM International Conference on Web Intelligence. WI ’06.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 45–51. isbn: 0-7695-
2747-7.

[CA09] Andrea Capiluppi and Paul J. Adams. “Reassessing Brooks’ Law for the Free
Software Community”. English. In: Open Source Ecosystems: Diverse Commu-
nities Interacting. Ed. by Cornelia Boldyreff, Kevin Crowston, Björn Lundell,
and AnthonyI. Wasserman. Vol. 299. IFIP Advances in Information and Com-
munication Technology. Springer Berlin Heidelberg, 2009, pp. 274–283. isbn:
978-3-642-02031-5.

[CAH03] Kevin Crowston, Hala Annabi, and James Howison. “Defining open source
software project success”. In: in Proceedings of the 24th International Conference
on Information Systems (ICIS 2003). 2003, pp. 327–340.

[Can+12] Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebastiano Panichella.
“Who is Going to Mentor Newcomers in Open Source Projects?” In: Proceedings
of SIGSOFT’12/FSE-20. 2012.

[CC06] Gerardo Canfora and Luigi Cerulo. “Supporting change request assignment in
open source development”. In: Proceedings of the 2006 ACM symposium on
Applied computing. SAC ’06. Dijon, France: ACM, 2006, pp. 1767–1772. isbn:
1-59593-108-2.

[CF09] Jorge Colazo and Yulin Fang. “Impact of license choice on Open Source Software
development activity”. In: Journal of the American Society for Information
Science and Technology 60.5 (2009), pp. 997–1011. issn: 1532-2890.

[CFP11] Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato. Version
Control with Subversion. 1.7. http://svnbook.red-bean.com/ [accessed
2016-04-26]. O’Reilly Media, 2011. isbn: 0596510330.

[CH05a] James O. Coplien and Neil B. Harrison. Organizational patterns of agile software
development. Pearson Prentice Hall, 2005.

[CH05b] Kevin Crowston and James Howison. “The social structure of free and open
source software development”. In: First Monday 10.2 (Feb. 2005).

[CH06a] Kevin Crowston and James Howison. “Assessing the Health of Open Source
Communities”. In: Computer 39 (5 May 2006), pp. 89–91. issn: 0018-9162.

238

http://www.yegor256.com/2014/10/05/ten-hosted-continuous-integration-services.html
http://www.yegor256.com/2014/10/05/ten-hosted-continuous-integration-services.html
http://svnbook.red-bean.com/

Secondary Sources

[CH06b] Kevin Crowston and James Howison. “Hierarchy and centralization in Free
and Open Source Software team communications”. English. In: Knowledge,
Technology & Policy 18 (2006), pp. 65–85. issn: 0897-1986.

[Cha09] Scott Chacon. Pro Git. 1st Edition. https://git-scm.com/book/en/v1
[accessed 2016-04-26]. Apress, 2009. isbn: 1430218339.

[Che76] Peter Pin-Shan Chen. “The Entity-relationship Model—Toward a Unified View
of Data”. In: ACM Trans. Database Syst. 1.1 (Mar. 1976), pp. 9–36. issn: 0362-
5915.

[CJ04] Mihai Christodorescu and Somesh Jha. “Testing malware detectors”. In: SIG-
SOFT Softw. Eng. Notes 29.4 (July 2004), pp. 34–44. issn: 0163-5948.

[CLM03] Andrea Capiluppi, Patricia Lago, and Maurizio Morisio. “Evidences in the
evolution of OS projects through Changelog Analyses”. In: Taking Stock of the
Bazaar: Proceedings of the 3rd Workshop on Open Source Software Engineering.
May 2003, pp. 19–24.

[CM07] Andrea Capiluppi and Martin Michlmayr. “From the Cathedral to the Bazaar:
An Empirical Study of the Lifecycle of Volunteer Community Projects”. In:
OSS2007: Open Source Development, Adoption and Innovation (IFIP 2.13).
Vol. 234/2007. Springer, 2007, pp. 31–44.

[CMP07] Stefano Comino, Fabio M. Manenti, and Maria Laura Parisi. “From planning to
mature: On the success of open source projects”. In: Research Policy 36 (2007),
pp. 1575–1586.

[Con68] Melvin E. Conway. “How do Committees Invent?” In: Datamation 14.5 (Apr.
1968), pp. 28–31.

[Cos16] CosmoCode. WikiMatrix Website. http://www.wikimatrix.org/ [accessed
2016-03-09]. Mar. 2016.

[Cox98] Alan Cox. “Cathedrals, Bazaars and the Town Council”. In: Slashdot. 1998.

[Cro+05] Kevin Crowston, Hala Annabi, James Howison, and Chengetai Masango. “Effec-
tive Work Practices for FLOSS Development: A Model and Propositions”. In:
HICSS ’05: Proceedings of the 38th Annual Hawaii International Conference on
System Sciences. Washington, DC, USA: IEEE Computer Society, 2005. isbn:
978-0-7695-2268-5.

[CSD10] Indushobha Chengalur-Smith, Anna Sidorova, and Sherae L. Daniel. “Sustain-
ability of Free/Libre Open Source Projects: A Longitudinal Study”. In: Journal
of the Association for Information Systems 11.11 (Nov. 2010), pp. 657–683.

[Cun96] Ward Cunningham. “EPISODES: A Pattern Language of Competitive Devel-
opment”. In: Pattern Languages of Program Design 2. Ed. by John M. Vlis-
sides, James O. Coplien, and Norman L. Kerth. AddisonWesley, 1996. Chap. 23,
pp. 371–388.

239

https://git-scm.com/book/en/v1
http://www.wikimatrix.org/

Secondary Sources

[Dab+12] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. “Social Coding in
GitHub: Transparency and Collaboration in an Open Software Repository”. In:
Proceedings of the ACM 2012 Conference on Computer Supported Cooperative
Work. CSCW ’12. Seattle, Washington, USA: ACM, 2012, pp. 1277–1286. isbn:
978-1-4503-1086-4.

[Dag+10] Barthélémy Dagenais, Harold Ossher, Rachel K. E. Bellamy, Martin P. Robillard,
and Jacqueline P. de Vries. “Moving into a new software project landscape”.
In: Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - Volume 1. ICSE ’10. Cape Town, South Africa: ACM, 2010,
pp. 275–284. isbn: 978-1-60558-719-6.

[Dav+14a] Jennifer L. Davidson, Umme Ayda Mannan, Rithika Naik, Ishneet Dua, and
Carlos Jensen. “Older Adults and Free/Open Source Software: A Diary Study
of First-Time Contributors”. In: Proceedings of The International Symposium
on Open Collaboration. OpenSym ’14. Berlin, Germany: ACM, 2014, 5:1–5:10.
isbn: 978-1-4503-3016-9.

[Dav+14b] Jennifer L. Davidson, Rithika Naik, Umme Ayda Mannan, Amir Azarbakht,
and Carlos Jensen. “On older adults in free/open source software: reflections of
contributors and community leaders”. In: Visual Languages and Human-Centric
Computing (VL/HCC), 2014 IEEE Symposium on. July 2014, pp. 93–100.

[Dil99] Don A. Dillman. Mail and Internet Surveys: The Tailored Design Method. Wiley,
1999. isbn: 0471323543.

[DMG07] Paul M. Duvall, Steve Matyas, and Andrew Glover. Continuous Integration:
Improving Software Quality and Reducing Risk. Addison-Wesley Professional,
2007. isbn: 0321336380.

[DR08a] Paul A. David and Francesco Rullani. “Dynamics of innovation in an “open
source” collaboration environment: lurking, laboring, and launching FLOSS
projects on SourceForge”. In: Industrial and Corporate Change 17.4 (2008),
pp. 647–710.

[DR08b] Amit Deshpande and Dirk Riehle. “Continuous Integration in Open Source Soft-
ware Development”. In: Open Source Development, Communities and Quality.
Ed. by Barbara Russo, Ernesto Damiani, Scott Hissam, Björn Lundell, and Gian-
carlo Succi. Vol. 275. IFIP International Federation for Information Processing.
Springer Boston, 2008, pp. 273–280.

[DR08c] Amit Deshpande and Dirk Riehle. “The Total Growth of Open Source”. In:
Fourth International Conference on Open Source Software. Sept. 2008.

[Duc05] Nicolas Ducheneaut. “Socialization in an Open Source Software Community: A
Socio-Technical Analysis”. English. In: Computer Supported Cooperative Work
(CSCW) 14.4 (2005), pp. 323–368. issn: 0925-9724.

240

Secondary Sources

[DWA03] Paul A. David, Andrew H. Waterman, and Seema Arora. FLOSS-US – The
Free/Libre & Open Source Software Survey for 2003. http://www-siepr.
stanford.edu/programs/OpenSoftware_David/FLOSS-US-Report.pdf
[accessed 2016-03-23]. Sept. 2003.

[Ebe+08] Anja Ebersbach, Markus Glaser, Richard Heigl, and Alexander Warta. “The
Wiki Concept”. In: Wiki. Springer Berlin Heidelberg, 2008, pp. 11–34. isbn:
978-3-540-68173-1.

[Edw48] Allen L. Edwards. “Note on the “correction for continuity” in testing the signifi-
cance of the difference between correlated proportions”. English. In: Psychome-
trika 13.3 (1948), pp. 185–187. issn: 0033-3123.

[Eic+01] Stephen G. Eick, Todd L.. Graves, lan F. Karr, J.S. Marron, and Audris Mockus.
“Does code decay? Assessing the evidence from change management data”. In:
Software Engineering, IEEE Transactions on 27.1 (Jan. 2001), pp. 1–12. issn:
0098-5589.

[End+14] Stefan Endrikat, Stefan Hanenberg, Romain Robbes, and Andreas Stefik. “How
Do API Documentation and Static Typing Affect API Usability?” In: Proceedings
of the 36th International Conference on Software Engineering. ICSE 2014.
Hyderabad, India: ACM, 2014, pp. 632–642. isbn: 978-1-4503-2756-5.

[Fes57] Leon Festinger. A Theory of Cognitive Dissonance. Stanford University Press,
June 1957.

[Fin03] Martin Fink. The Business and Economics of Linux and Open Source. Prentice
Hall, 2003. isbn: 0-13-047677-3.

[Fow06] Martin Fowler. Continuous Integration. http://martinfowler.com/articl
es/continuousIntegration.html [accessed 2016-04-26]. May 2006.

[Fow96] Martin Fowler. “Accountability and Organizational Structures”. In: Pattern Lan-
guages of Program Design 2. Ed. by John M. Vlissides, James O. Coplien, and
Norman L. Kerth. AddisonWesley, 1996. Chap. 22, pp. 353–370.

[Fri+10] Thomas Fritz, Jingwen Ou, Gail C. Murphy, and Emerson Murphy-Hill. “A
degree-of-knowledge model to capture source code familiarity”. In: Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineering -
Volume 1. ICSE ’10. Cape Town, South Africa: ACM, 2010, pp. 385–394. isbn:
978-1-60558-719-6.

[Fri+14] Thomas Fritz, Gail C. Murphy, Emerson Murphy-Hill, Jingwen Ou, and Emily
Hill. “Degree-of-knowledge: Modeling a Developer’s Knowledge of Code”. In:
ACM Trans. Softw. Eng. Methodol. 23.2 (Apr. 2014), 14:1–14:42. issn: 1049-
331X.

[GA04] Cristina Gacek and Budi Arief. “The Many Meanings of Open Source”. In: IEEE
Software 21 (2004), pp. 34–40.

[Gai80] John Gaito. “Measurement scales and statistics: Resurgence of an old miscon-
ception”. In: Psychological Bulletin 87.3 (May 1980), pp. 564–567.

241

http://www-siepr.stanford.edu/programs/OpenSoftware_David/FLOSS-US-Report.pdf
http://www-siepr.stanford.edu/programs/OpenSoftware_David/FLOSS-US-Report.pdf
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html

Secondary Sources

[Gar15] Gartner. Gartner Says Tablet Sales Continue to Be Slow in 2015. Press Release.
https://www.gartner.com/newsroom/id/2954317 [accessed 2016-02-
25]. Jan. 2015.

[GD05] Marylène Gagné and Edward L. Deci. “Self-determination theory and work
motivation”. In: Journal of Organizational Behavior 26.4 (2005), pp. 331–362.
issn: 1099-1379.

[Gel10] Jaco Geldenhuys. “Finding the Core Developers”. In: 39th Euromicro Conference
on Software Engineering and Advanced Applications. Los Alamitos, CA, USA:
IEEE Computer Society, 2010, pp. 447–450. isbn: 978-0-7695-4170-9.

[Ger03] Daniel M. German. “The GNOME project: a case study of open source, global
software development”. In: Software Process: Improvement and Practice 8.4
(2003), pp. 201–215.

[GG05] Alan Grosskurth and Michael W. Godfrey. “A Reference Architecture for Web
Browsers”. In: Software Maintenance, 2005. ICSM’05. Proceedings of the 21st
IEEE International Conference on. Sept. 2005, pp. 661–664.

[GH12a] Volker Gruhn and Christoph Hannebauer. “Components of a Wiki-based software
development environment”. In: E-Learning, E-Management and E-Services
(IS3e), 2012 IEEE Symposium on. 2012.

[GH12b] Volker Gruhn and Christoph Hannebauer. “Using Wikis as Software Develop-
ment Environments”. In: Proceedings of the 11th International Conference on
Intelligent Software Methodologies, Tools and Techniques (SoMeT_12). Fron-
tiers in Artificial Intelligence and Applications. IOS International Publisher, Oct.
2012.

[GHJ13] Volker Gruhn, Christoph Hannebauer, and Christian John. “Security of Public
Continuous Integration Services”. In: Proceedings of the 2013 Joint International
Symposium on Wikis and Open Collaboration (WikiSym + OpenSym 2013). ACM,
2013. isbn: 978-1-4503-1852-5.

[Gho05] Rishab Aiyer Ghosh. Understanding Free Software Developers: Findings from
the FLOSS Study. http://www.flossproject.org/papers/ghosh-2005.
pdf [accessed 2016-03-23]. 2005.

[Gîr+05] Tudor Gîrba, Adrian Kuhn, Mauricio Seeberger, and Stéphane Ducasse. “How
developers drive software evolution”. In: Principles of Software Evolution, Eighth
International Workshop on. Sept. 2005, pp. 113–122.

[GPD14] Georgios Gousios, Martin Pinzger, and Arie van Deursen. “An Exploratory
Study of the Pull-based Software Development Model”. In: Proceedings of the
36th International Conference on Software Engineering. ICSE 2014. Hyderabad,
India: ACM, 2014, pp. 345–355. isbn: 978-1-4503-2756-5.

[GR05] Tal Garfinkel and Mendel Rosenblum. “When virtual is harder than real: security
challenges in virtual machine based computing environments”. In: Proceedings
of the 10th conference on Hot Topics in Operating Systems - Volume 10. Santa
Fe, NM, 2005.

242

https://www.gartner.com/newsroom/id/2954317
http://www.flossproject.org/papers/ghosh-2005.pdf
http://www.flossproject.org/papers/ghosh-2005.pdf

Secondary Sources

[GS12] Mário Luís Guimarães and António Rito Silva. “Improving Early Detection of
Software Merge Conflicts”. In: Proceedings of the 34th International Conference
on Software Engineering (ICSE 2012). 2012.

[GS67] E. Eugene Grant and Harold Sackman. “An Exploratory Investigation of Pro-
grammer Performance Under On-Line and Off-Line Conditions”. In: Human
Factors in Electronics, IEEE Transactions on HFE-8.1 (Mar. 1967), pp. 33–48.
issn: 0096-249X.

[Ham+13] Kazuki Hamasaki, Raula Gaikovina Kula, Norihiro Yoshida, A. E. Camargo Cruz,
Kenji Fujiwara, and Hajimu Iida. “Who Does What During a Code Review?
Datasets of OSS Peer Review Repositories”. In: Proceedings of the 10th Working
Conference on Mining Software Repositories. MSR ’13. San Francisco, CA,
USA: IEEE Press, 2013, pp. 49–52. isbn: 978-1-4673-2936-1.

[Ham95] Sally Hambridge. Netiquette Guidelines. RFC 1855. https://tools.ietf.
org/html/rfc1855 [accessed 2016-04-26]. Oct. 1995.

[Han+16] Christoph Hannebauer, Michael Patalas, Sebastian Stünkel, and Volker Gruhn.
“Automatically Recommending Code Reviewers Based on Their Expertise: An
Empirical Comparison”. In: Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering. ASE 2016. Singapore, Singa-
pore: ACM, 2016, pp. 99–110. isbn: 978-1-4503-3845-5.

[Han15a] Christoph Hannebauer. GitHistoryAnalyzer. https://github.com/paluno/
GitHistoryAnalyzer [accessed 2015-11-18]. Nov. 2015.

[Han15b] Christoph Hannebauer. PatternStatistics. https://github.com/paluno/
PatternStatistics [accessed 2015-11-24]. Nov. 2015.

[Han16] Christoph Hannebauer. ReviewerRecommender fork of Expertise Explorer. http
s://github.com/paluno/ExpertiseExplorer/tree/review-recommen
dation [accessed 2016-03-03]. Mar. 2016.

[Har09] Matthew Harward. “CoderChrome: Augmenting source code with software
metrics”. Honours Report. University of Canterbury, Christchurch, New Zealand,
Nov. 2009.

[Har15] Michael Hartl. Ruby on Rails Tutorial: Learn Web Development with Rails. Ed.
by Mark L. Taub. Third edition. Addison-Wesley Professional Ruby. Addison-
Wesley Professional, 2015.

[HBG14] Christoph Hannebauer, Matthias Book, and Volker Gruhn. “An Exploratory Study
of Contribution Barriers Experienced by Newcomers to Open Source Software
Projects”. In: Proceedings of the 1st International Workshop on CrowdSourcing
in Software Engineering. CSI-SE 2014. Hyderabad, India: ACM, 2014, pp. 11–
14. isbn: 978-1-4503-2857-9.

243

https://tools.ietf.org/html/rfc1855
https://tools.ietf.org/html/rfc1855
https://github.com/paluno/GitHistoryAnalyzer
https://github.com/paluno/GitHistoryAnalyzer
https://github.com/paluno/PatternStatistics
https://github.com/paluno/PatternStatistics
https://github.com/paluno/ExpertiseExplorer/tree/review-recommendation
https://github.com/paluno/ExpertiseExplorer/tree/review-recommendation
https://github.com/paluno/ExpertiseExplorer/tree/review-recommendation

Secondary Sources

[Her+06] Israel Herraiz, Gregorio Robles, Juan José Amor, Teófilo Romera, and Jesús M.
González Barahona. “The Processes of Joining in Global Distributed Software
Projects”. In: Proceedings of the 2006 International Workshop on Global Soft-
ware Development for the Practitioner. GSD ’06. Shanghai, China: ACM, 2006,
pp. 27–33. isbn: 1-59593-404-9.

[HF10] Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Addison-Wesley Professional,
2010. isbn: 0321601912.

[HG16a] Christoph Hannebauer and Volker Gruhn. “Implementation of a Wiki Develop-
ment Environment”. In: Proceedings of the 15th International Conference on
Intelligent Software Methodologies, Tools and Techniques (SoMeT_16). Frontiers
in Artificial Intelligence and Applications. IOS International Publisher, 2016.

[HG16b] Christoph Hannebauer and Volker Gruhn. “Motivation of Newcomers to FLOSS
Projects”. In: Proceedings of the 12th International Symposium on Open Collab-
oration (OpenSym 2016). ACM, 2016.

[HLG14] Christoph Hannebauer, Claudius Link, and Volker Gruhn. “Patterns for the
Distribution of Power in FLOSS Projects”. In: Proceedings of the 19th European
Conference on Pattern Languages of Programs. EuroPLoP ’14. Irsee, Germany:
ACM, 2014, 35:1–35:7. isbn: 978-1-4503-3416-7.

[HM76] James W. Hunt and Malcolm Douglas McIlroy. An Algorithm for Differential
File Comparison. Computing Science Technical Report 41. Bell Laboratories,
July 1976.

[HNH03] Guido Hertel, Sven Niedner, and Stefanie Herrmann. “Motivation of software
developers in Open Source projects: an Internet-based survey of contributors
to the Linux kernel”. In: Research Policy 32.7 (2003). Open Source Software
Development, pp. 1159–1177. issn: 0048-7333.

[HO01] Alexander Hars and Shaosong Ou. “Working for free? Motivations of participat-
ing in open source projects”. In: System Sciences, 2001. Proceedings of the 34th
Annual Hawaii International Conference on. Jan. 2001, 9 pp.

[HPG15] Christoph Hannebauer, Michael Patalas, and Volker Gruhn. Lab package for
the evaluation in the study on reviewer recommendations. https://www.uni-
due.de/~hw0433/. 2015.

[HW09] Michael Hielscher and Christian Wagenknecht. “Programming-Wiki: Online
programmieren und kommentieren”. In: Zukunft braucht Herkunft. Ed. by Bern-
hard Koerber. Vol. P-156. Lecture Notes in Informatics (LNI). Gesellschaft für
Informatik (GI), Sept. 2009, pp. 281–292.

[HWG10] Christoph Hannebauer, Vincent Wolff-Marting, and Volker Gruhn. “Towards
a Pattern Language for FLOSS Development”. In: Proceedings of the 2010
Conference on Pattern Languages of Programs. Hillside Group. Reno/Tahoe
Nevada, USA: ACM, 2010.

244

https://www.uni-due.de/~hw0433/
https://www.uni-due.de/~hw0433/

Secondary Sources

[HWG11] Christoph Hannebauer, Vincent Wolff-Marting, and Volker Gruhn. “Contributor-
Interaction Patterns in FLOSS Development”. In: EuroPLoP 2011. July 2011.

[Jeo+09] Gaeul Jeong, Sunghun Kim, Thomas Zimmermann, and Kwangkeun Yi. Improv-
ing Code Review by Predicting Reviewers and Acceptance of Patches. ROSAEC
MEMO ROSAEC-2009-006. Research On Software Analysis for Error-free
Computing Center, Seoul National University, Sept. 2009.

[JHC15] Jing Jiang, Jia-Huan He, and Xue-Yuan Chen. “CoreDevRec: Automatic Core
Member Recommendation for Contribution Evaluation”. In: Journal of Computer
Science and Technology 30.5 (2015), pp. 998–1016. issn: 1860-4749.

[JKK11] Carlos Jensen, Scott King, and Victor Kuechler. “Joining Free/Open Source
Software Communities: An Analysis of Newbies’ First Interactions on Project
Mailing Lists”. In: System Sciences (HICSS), 2011 44th Hawaii International
Conference on. Jan. 2011, pp. 1–10.

[JS07] Chris Jensen and Walt Scacchi. “Role Migration and Advancement Processes in
OSSD Projects: A Comparative Case Study”. In: 29th International Conference
on Software Engineering. Los Alamitos, CA, USA: IEEE Computer Society,
2007, pp. 364–374.

[JSW11] Corey Jergensen, Anita Sarma, and Patrick Wagstrom. “The Onion Patch: Migra-
tion in Open Source Ecosystems”. In: Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software
Engineering. ESEC/FSE ’11. Szeged, Hungary: ACM, 2011, pp. 70–80. isbn:
978-1-4503-0443-6.

[Jun+11] Jae-Yoon Jung, Kwanho Kim, Dongmin Shin, and Jonghun Park. “FlowWiki: A
wiki based platform for ad hoc collaborative workflows”. In: Knowledge-Based
Systems 24.1 (2011), pp. 154–165. issn: 0950-7051.

[Kel06] Allan Kelly. “Patterns for Technology Companies”. In: Proceedings of the 11th
European Conference on Pattern Languages of Programs. 2006.

[Kel07] Allan Kelly. “More patterns for Software Companies Product development”. In:
Proceedings of the 12th European Conference on Pattern Languages of Programs.
2007.

[KFL94] Calvin Ko, Geroge Fink, and Karl Levitt. “Automated detection of vulnerabil-
ities in privileged programs by execution monitoring”. In: Computer Security
Applications Conference, 1994. Proceedings., 10th Annual. Dec. 1994, pp. 134–
144.

[KH11] Sebastian Kleinschmager and Stefan Hanenberg. “How to Rate Programming
Skills in Programming Experiments?: A Preliminary, Exploratory, Study Based
on University Marks, Pretests, and Self-estimation”. In: Proceedings of the
3rd ACM SIGPLAN Workshop on Evaluation and Usability of Programming
Languages and Tools. PLATEAU ’11. Portland, Oregon, USA: ACM, 2011,
pp. 15–24. isbn: 978-1-4503-1024-6.

245

Secondary Sources

[Kit+07a] Aniket Kittur, Ed Chi, Bryan A. Pendleton, Bongwon Suh, and Todd Mytkowicz.
“Power of the Few vs. Wisdom of the Crowd: Wikipedia and the Rise of the
Bourgeoisie”. In: ALT.CHI at CHI 2007. 2007.

[Kit+07b] Aniket Kittur, Bongwon Suh, Bryan A. Pendleton, and Ed H. Chi. “He says, she
says: conflict and coordination in Wikipedia”. In: Proceedings of the SIGCHI con-
ference on Human factors in computing systems. CHI ’07. San Jose, California,
USA: ACM, 2007, pp. 453–462. isbn: 978-1-59593-593-9.

[KK08] Aniket Kittur and Robert E. Kraut. “Harnessing the Wisdom of Crowds in
Wikipedia: Quality Through Coordination”. In: Proceedings of the 2008 ACM
Conference on Computer Supported Cooperative Work. CSCW ’08. San Diego,
CA, USA: ACM, 2008, pp. 37–46. isbn: 978-1-60558-007-4.

[KK09] Mark H. Kryder and Chang Soo Kim. “After Hard Drives—What Comes Next?”
In: Magnetics, IEEE Transactions on 45.10 (Oct. 2009), pp. 3406–3413. issn:
0018-9464.

[KK10] Aniket Kittur and Robert E. Kraut. “Beyond Wikipedia: coordination and conflict
in online production groups”. In: Proceedings of the 2010 ACM conference on
Computer supported cooperative work. CSCW ’10. Savannah, Georgia, USA:
ACM, 2010, pp. 215–224. isbn: 978-1-60558-795-0.

[KM06] Mik Kersten and Gail C. Murphy. “Using Task Context to Improve Programmer
Productivity”. In: Proceedings of the 14th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering. SIGSOFT ’06/FSE-14. Portland,
Oregon, USA: ACM, 2006, pp. 1–11. isbn: 1-59593-468-5.

[Knu84] Donald E. Knuth. “Literate Programming”. In: The Computer Journal 27.2
(1984), pp. 97–111.

[Kop06] Timo Koponen. “Life cycle of Defects in Open Source Software Projects”. In:
OSS2006: Open Source Systems (IFIP 2.13). Springer, 2006, pp. 195–200.

[Kri02] Sandeep Krishnamurthy. “Cave or Community?: An Empirical Examination
of 100 Mature Open Source Projects”. In: Social Science Research Network
Working Paper Series 7.6 (June 2002).

[Kri06] Sandeep Krishnamurthy. “On the intrinsic and extrinsic motivation of free/li-
bre/open source (FLOSS) developers”. In: Knowledge, Technology & Policy
18 (4 2006). 10.1007/s12130-006-1002-x, pp. 17–39. issn: 0897-1986.

[Kro+12] Georg von Krogh, Stefan Haefliger, Sebastian Spaeth, and Martin W. Wallin.
“Carrots and Rainbows: Motivation and Social Practice in Open Source Software
Development”. In: MIS Quarterly 36.2 (2012).

[KSL03] Georg von Krogh, Sebastian Spaeth, and Karim R. Lakhani. “Community, Join-
ing, and Specialization in Open Source Software Innovation: A Case Study”. In:
Research Policy 32.7 (July 2003), 1217–1241(25).

246

Secondary Sources

[Lan+94] Carl E. Landwehr, Alan R. Bull, John P. McDermott, and William S. Choi. “A
taxonomy of computer program security flaws”. In: ACM Comput. Surv. 26.3
(Sept. 1994), pp. 211–254. issn: 0360-0300.

[LaT+14] Thomas D. LaToza, W. Ben Towne, Christian M. Adriano, and André van der
Hoek. “Microtask Programming: Building Software with a Crowd”. In: Pro-
ceedings of the 27th Annual ACM Symposium on User Interface Software and
Technology. UIST ’14. Honolulu, Hawaii, USA: ACM, 2014, pp. 43–54. isbn:
978-1-4503-3069-5.

[LC01] Bo Leuf and Ward Cunningham. The Wiki way: quick collaboration on the Web.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2001. isbn:
0-201-71499-X.

[LH03] Karim Lakhani and Eric von Hippel. “How open source software works: “free”
user-to-user assistance”. In: Research Policy 32.6 (2003), pp. 923–943. issn:
0048-7333.

[Lin10] Claudius Link. “Patterns for the commercial use of Open Source: Legal and
licensing aspects”. In: Proceedings of the 15th European Conference on Pattern
Languages of Programs. EuroPLoP ’10. Irsee, Germany: ACM, 2010, 7:1–7:10.
isbn: 978-1-4503-0259-3.

[Lin11] Claudius Link. “Patterns for the commercial use of Open Source: License pat-
terns”. In: EuroPLoP 2011. Version 331. 2011.

[Lin12] Claudius Link. “Patterns for the commercial use of Open Source: Economic
aspects and case studies”. In: EuroPLoP 2012. Version 398. 2012.

[Lor53] Frederic M. Lord. “On The Statistical Treatment of Football Numbers”. In: The
American Psychologist 8.12 (Dec. 1953), pp. 750–751.

[Lot+09] Roberto A. Lotufo, Rubens C. Machado, André Körbes, and Rafael G. Ramos.
“Adessowiki on-line collaborative scientific programming platform”. In: Pro-
ceedings of the 5th International Symposium on Wikis and Open Collaboration.
WikiSym ’09. Orlando, Florida: ACM, 2009, 10:1–10:6. isbn: 978-1-60558-730-
1.

[LS04] Hanno Langweg and Einar Snekkenes. “A classification of malicious software
attacks”. In: Performance, Computing, and Communications, 2004 IEEE Inter-
national Conference on. 2004, pp. 827–832.

[LT02] Josh Lerner and Jean Tirole. “Some Simple Economics of Open Source”. In: The
Journal of Industrial Economics 50.2 (2002), pp. 197–234. issn: 1467-6451.

[LVD06] Thomas D. LaToza, Gina Venolia, and Robert DeLine. “Maintaining Mental
Models: A Study of Developer Work Habits”. In: Proceedings of the 28th In-
ternational Conference on Software Engineering. ICSE ’06. Shanghai, China:
ACM, 2006, pp. 492–501. isbn: 1-59593-375-1.

247

Secondary Sources

[LW03] Karim Lakhani and Robert G Wolf. “Why Hackers Do What They Do: Un-
derstanding Motivation and Effort in Free/Open Source Software Projects”. In:
Social Science Research Network (2003). Ed. by J Feller, B Fitzgerald, S Hissam,
and K REditors Lakhani, pp. 1–27.

[MA00] David W. McDonald and Mark S. Ackerman. “Expertise Recommender: A
Flexible Recommendation System and Architecture”. In: Proceedings of the
2000 ACM Conference on Computer Supported Cooperative Work. CSCW ’00.
Philadelphia, Pennsylvania, USA: ACM, 2000, pp. 231–240. isbn: 1-58113-222-
0.

[Mai+15] Patrick Mair, Eva Hofmann, Kathrin Gruber, Reinhold Hatzinger, Achim Zeileis,
and Kurt Hornik. “Motivation, values, and work design as drivers of participation
in the R open source project for statistical computing”. In: Proceedings of the
National Academy of Sciences (2015).

[Mar08] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.
Prentice Hall, 2008.

[Mar99] Klaus Marquardt. “Patterns for Plug-Ins”. In: Proceedings of the Fourth European
Conference on Pattern Languages of Programs. 1999.

[Mas+09] Héla Masmoudi, Matthijs den Besten, Claude de Loupy, and Jean-Michel Dalle.
““Peeling the Onion” – The Words and Actions That Distinguish Core from
Periphery in Bug Reports and How Core and Periphery Interact Together”. In:
OSS2009: Open Source Ecosystems: Diverse Communities Interacting (IFIP
2.13). Vol. 299/2009. Springer, 2009, pp. 284–297.

[McC76] Thomas J. McCabe. “A Complexity Measure”. In: Software Engineering, IEEE
Transactions on SE-2.4 (Dec. 1976), pp. 308–320. issn: 0098-5589.

[McN47] Quinn McNemar. “Note on the sampling error of the difference between cor-
related proportions or percentages”. English. In: Psychometrika 12.2 (1947),
pp. 153–157. issn: 0033-3123.

[MD98] Gerard Meszaros and Jim Doble. “A Pattern Language for Pattern Writing”. In:
Pattern Languages of Program Design 3. Ed. by Robert Martin, Dirk Riehle, and
Frank Buschmann. Software Patterns Series. Addison-Wesley, 1998. Chap. 29,
pp. 529–574.

[MFH02] Audris Mockus, Roy T. Fielding, and James D. Herbsleb. “Two case studies of
open source software development: Apache and Mozilla”. In: ACM Trans. Softw.
Eng. Methodol. 11.3 (2002), pp. 309–346. issn: 1049-331X.

[MH02] Audris Mockus and James D. Herbsleb. “Expertise browser: a quantitative ap-
proach to identifying expertise”. In: Proceedings of the 24th International Confer-
ence on Software Engineering. ICSE ’02. Orlando, Florida: ACM, 2002, pp. 503–
512. isbn: 1-58113-472-X.

[Mid+10] Vishal Midha, Prashant Palvia, Rahul Singh, and Nir Kshetri. “Improving Open
Source Software Maintenance”. In: Journal of Computer Information Systems
50.3 (2010), pp. 81–90.

248

Secondary Sources

[MM07] Shawn Minto and Gail C. Murphy. “Recommending Emergent Teams”. In: Min-
ing Software Repositories, 2007. ICSE Workshops MSR ’07. Fourth International
Workshop on. 2007, pp. 5–5.

[Moo75] Gordon E. Moore. “Progress in digital integrated electronics”. In: Electron
Devices Meeting, 1975 International. Vol. 21. IEEE, 1975, pp. 11–13.

[MP09] Cerstin Mahlow and Michael Piotrowski. “Opportunities and Limits for Lan-
guage Awareness in Text Editors”. In: Proceedings of the Workshop on NLP
for Reading and Writing – Resources, Algorithms and Tools (SLTC 2008). Ed.
by Rickard Domeij, Sofie Johansson Kokkinakis, Ola Knutsson, and Sylvana
Sofkova Hashemi. Vol. 3. NEALT Proceedings Series. Northern European Asso-
ciation for Language Technology (NEALT), 2009, pp. 14–18.

[MPT78] Malcolm Douglas McIlroy, Elliot N. Pinson, and Berk A. Tague. “UNIX Time-
Sharing System: Foreword”. In: The Bell System Technical Journal 57.6 (1978),
pp. 1899–1904.

[MRB06] Alan MacCormack, John Rusnak, and Carliss Y. Baldwin. “Exploring the Struc-
ture of Complex Software Designs: An Empirical Study of Open Source and
Proprietary Code”. In: Management Science 52.7 (2006), pp. 1015–1030.

[MSH92] Brad A. Myers, David Canfield Smith, and Bruce Horn. “Languages for Develop-
ing User Interfaces”. In: ed. by Brad A. Myers. A K Peters, 1992. Chap. Report
of the ’End-User Programming’ Working Group, pp. 343–366.

[MWA12] Andréa Magalhães Magdaleno, Cláudia Maria Lima Werner, and Renata Mendes
de Araujo. “Reconciling software development models: A quasi-systematic
review”. In: Journal of Systems and Software 85.2 (2012), pp. 351–369. issn:
0164-1212.

[Nar10] Elizabeth Naramore. Why People Don’t Contribute to OS Projects, and What We
Can Do About It. http://naramore.net/blog/why-people-don-t-contribute-to-os-
projects-and-what-we-can-do-about-it, last checked: 2010-05-19. Mar. 2010.

[Nor10] Geoff Norman. “Likert scales, levels of measurement and the “laws” of statistics”.
English. In: Advances in Health Sciences Education 15.5 (2010), pp. 625–632.
issn: 1382-4996.

[Nur+09] Mehrdad Nurolahzade, Seyed Mehdi Nasehi, Shahedul Huq Khandkar, and
Shreya Rawal. “The role of patch review in software evolution: an analysis of the
mozilla firefox”. In: Proceedings of the joint international and annual ERCIM
workshops on Principles of software evolution (IWPSE) and software evolution
(Evol) workshops. IWPSE-Evol ’09. Amsterdam, The Netherlands: ACM, 2009,
pp. 9–18. isbn: 978-1-60558-678-6.

[OC90] Paul W. Oman and Curtis R. Cook. “A Taxonomy for Programming Style”. In:
Proceedings of the 1990 ACM Annual Conference on Cooperation. CSC ’90.
Washington, D.C., USA: ACM, 1990, pp. 244–250. isbn: 0-89791-348-5.

249

Secondary Sources

[ØJ07] Thomas Østerlie and Letizia Jaccheri. “A Critical Review of Software Engi-
neering Research on Open Source Software Development”. In: Proceedings of
the 2nd AIS SIGSAND European Symposium on Systems Analysis and Design
(2007).

[OSu09] Bryan O’Sullivan. Mercurial: The Definitive Guide. O’Reilly Media, Inc., 2009.
isbn: 978-0-596-80067-3.

[Par72] David Lorge Parnas. “On the criteria to be used in decomposing systems into
modules”. In: Commun. ACM 15 (12 Dec. 1972), pp. 1053–1058. issn: 0001-
0782.

[Pre99] Lutz Prechelt. The 28:1 Grant/Sackman legend is misleading, or: How large is
interpersonal variation really? Interner Bericht. Fakultät für Informatik, Univer-
sität Karlsruhe, 1999.

[Pri08] Michael Price. “The Paradox of Security in Virtual Environments”. In: Computer
41.11 (2008), pp. 22–28. issn: 0018-9162.

[PZB14] Shaun Phillips, Thomas Zimmermann, and Christian Bird. “Understanding and
Improving Software Build Teams”. In: Proceedings of the 36th International
Conference on Software Engineering. ICSE 2014. Hyderabad, India: ACM, 2014,
pp. 735–744. isbn: 978-1-4503-2756-5.

[QSu16] Q-Success. Usage statistics and market share of Apache for websites. http:
//w3techs.com/technologies/details/ws-apache/all/all [accessed
2016-02-25]. Feb. 2016.

[Rat13] Andreas Ratzka. “User Interface Patterns for Multimodal Interaction”. English.
In: Transactions on Pattern Languages of Programming III. Ed. by James Noble,
Ralph Johnson, Uwe Zdun, and Eugene Wallingford. Vol. 7840. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2013, pp. 111–167. isbn:
978-3-642-38675-6.

[Ray00] Eric S. Raymond. “The Cathedral and the Bazaar”. In: (2000). http://www.
catb.org/~esr/writings/cathedral- bazaar/cathedral- bazaar/
[accessed 2016-03-23].

[RC04] Charles Reis and Robert Cartwright. “Taming a professional IDE for the class-
room”. In: Proceedings of the 35th SIGCSE technical symposium on Computer
science education. SIGCSE ’04. Norfolk, Virginia, USA: ACM, 2004, pp. 156–
160. isbn: 1-58113-798-2.

[Reu07] Jenni Susan Reuben. “A Survey on Virtual Machine Security”. In: Fall 2007
Seminar of Network Security. http://www.tml.tkk.fi/Publications/C/
25/papers/Reuben_final.pdf [accessed 2016-04-26]. Helsinki University
of Technology. 2007.

[RG05] Mendel Rosenblum and Tal Garfinkel. “Virtual machine monitors: current tech-
nology and future trends”. In: Computer 38.5 (2005), pp. 39–47. issn: 0018-9162.

250

http://w3techs.com/technologies/details/ws-apache/all/all
http://w3techs.com/technologies/details/ws-apache/all/all
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
http://www.tml.tkk.fi/Publications/C/25/papers/Reuben_final.pdf
http://www.tml.tkk.fi/Publications/C/25/papers/Reuben_final.pdf

Secondary Sources

[RG06] Gregorio Robles and Jesus Gonzalez-Barahona. “Contributor Turnover in Libre
Software Projects”. In: OSS2006: Open Source Systems (IFIP 2.13). Springer,
2006, pp. 273–286.

[RGH09] Gregorio Robles, Jesus Gonzalez-Barahona, and Israel Herraiz. “Evolution of
the core team of developers in libre software projects”. In: Mining Software
Repositories, 2009. MSR ’09. 6th IEEE International Working Conference on.
May 2009, pp. 167–170.

[RGS08] Peter C. Rigby, Daniel M. German, and Margaret-Anne Storey. “Open source
software peer review practices: a case study of the apache server”. In: Proceedings
of the 30th international conference on Software engineering. ICSE ’08. Leipzig,
Germany: ACM, 2008, pp. 541–550. isbn: 978-1-60558-079-1.

[Rie+09] Dirk Riehle, John Ellenberger, Tamir Menahem, Boris Mikhailovski, Yuri Natch-
etoi, Barak Naveh, and Thomas Odenwald. “Open Collaboration within Corpora-
tions Using Software Forges”. In: IEEE Software 26 (2009), pp. 52–58.

[Rie11] Eric Ries. The Lean Startup. Crown Business, Sept. 2011.

[RJ98] Don Roberts and Ralph Johnson. “Patterns for Evolving Frameworks”. In: Pattern
Languages of Program Design 3. Ed. by Robert Martin, Dirk Riehle, and Frank
Buschmann. Software Patterns Series. Addison-Wesley, 1998. Chap. 26, pp. 471–
486.

[RM02] Christian Robotoom Reis and Renata Pontin de Mattos Fortes. “An Overview
of the Software Engineering Process and Tools in the Mozilla Project”. In:
Proceedings of the Open Source Software Development Workshop. 2002, pp. 155–
175.

[RTH13] Sam Ruby, Dave Thomas, and David Heinemeier Hansson. Agile Web Develop-
ment with Rails 4. Ed. by Susannah Davidson Pfalzer. 4th Revised edition. The
Facets of Ruby Series. O’Reilly UK Ltd., 2013.

[Rul06] Francesco Rullani. Dragging developers towards the core. How the Free/Li-
bre/Open Source Software community enhances developers’ contribution. LEM
Papers Series 2006/22. Laboratory of Economics and Management (LEM),
Sant’Anna School of Advanced Studies, Pisa, Italy, Sept. 2006.

[SAA10] Klaas-Jan Stol, Paris Avgeriou, and Muhammad Ali Babar. “Identifying Archi-
tectural Patterns Used in Open Source Software: Approaches and Challenges”.
In: Proceedings of the 14th International Conference on Evaluation and Assess-
ment in Software Engineering. EASE’10. UK: British Computer Society, 2010,
pp. 91–100.

[SAM06] Katherine J. Stewart, Anthony P. Ammeter, and Likoebe M. Maruping. “Impacts
of license choice and organizational sponsorship on user interest and development
activity in open source software projects”. In: Information Systems Research
17.2 (2006), pp. 126–144.

251

Secondary Sources

[Sau11] Christoph Sauer. “Wiki as business application platform: the MES showcase”.
In: Proceedings of the 7th International Symposium on Wikis and Open Collab-
oration. WikiSym ’11. Mountain View, California: ACM, 2011, pp. 221–222.
isbn: 978-1-4503-0909-7.

[SC94] Anselm Strauss and Juliet Corbin. “Grounded theory methodology: An overview.”
In: Handbook of qualitative research. Ed. by N. K. Denzin Y. S. Lincoln. Thou-
sand Oaks, CA, US: Sage Publications, Inc, 1994, pp. 273–285.

[Sch+08] Charles M. Schweik, Robert C. English, Meelis Kitsing, and Sandra Haire.
“Brooks’ versus Linus’ law: an empirical test of open source projects”. In: Pro-
ceedings of the 2008 international conference on Digital government research.
dg.o ’08. Montreal, Canada: Digital Government Society of North America,
2008, pp. 423–424. isbn: 978-1-60558-099-9.

[SD06] Gregory Simmons and Tharam Dillon. “Towards an Ontology for Open Source
Software Development”. In: OSS2006: Open Source Systems (IFIP 2.13). Springer,
2006, pp. 65–75.

[Sec12a] SecurityFocus. Jenkins Multiple Cross Site Scripting and Directory Traversal
Vulnerabilities. http://www.securityfocus.com/bid/52384/ [accessed
2016-04-26]. Feb. 2012.

[Sec12b] SecurityFocus. Jenkins Multiple HTML Injection Vulnerabilities. http://www.
securityfocus.com/bid/52055/ [accessed 2016-04-26]. Mar. 2012.

[SEG68] Harold Sackman, Warren J. Erikson, and E. Eugene Grant. “Exploratory Experi-
mental Studies Comparing Online and Offline Programming Performance”. In:
Commun. ACM 11.1 (Jan. 1968), pp. 3–11. issn: 0001-0782.

[Seo+14] Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Edward Aftandilian, and
Robert Bowdidge. “Programmers’ Build Errors: A Case Study (at Google)”. In:
Proceedings of the 36th International Conference on Software Engineering. ICSE
2014. Hyderabad, India: ACM, 2014, pp. 724–734. isbn: 978-1-4503-2756-5.

[SF09] Peter Seibel and Brad Fitzpatrick. “Brad Fitzpatrick”. In: Coders at Work. Ed.
by Peter Seibel. Berkely, CA, USA: Apress, 2009. Chap. 2, pp. 49–90. isbn:
978-1-4302-1948-4.

[SGR14] Igor Steinmacher, Marco Aurélio Gerosa, and David F. Redmiles. “Attracting,
Onboarding, and Retaining Newcomer Developers in Open Source Software
Projects”. In: Workshop: Global Software Development in a CSCW Perspective.
2014.

[SH98] Susan Elliott Sim and Richard C. Holt. “The ramp-up problem in software
projects: a case study of how software immigrants naturalize”. In: Proceedings of
the 1998 International Conference on Software Engineering. Apr. 1998, pp. 361–
370.

[Sha06] Sonali K. Shah. “Motivation, Governance, and the Viability of Hybrid Forms
in Open Source Software Development”. In: Management Science 52.7 (2006),
pp. 1000–1014.

252

http://www.securityfocus.com/bid/52384/
http://www.securityfocus.com/bid/52055/
http://www.securityfocus.com/bid/52055/

Secondary Sources

[Shi04] Clay Shirky. Situated Software. http : / / www . shirky . com / writings /
situated_software.html [accessed 2016-04-26]. Mar. 2004.

[Sho+13] Ramin Shokripour, John Anvik, Zarinah M. Kasirun, and Sima Zamani. “Why
So Complicated? Simple Term Filtering and Weighting for Location-based Bug
Report Assignment Recommendation”. In: Proceedings of the 10th Working
Conference on Mining Software Repositories. MSR ’13. San Francisco, CA,
USA: IEEE Press, 2013, pp. 2–11. isbn: 978-1-4673-2936-1.

[SHP15] Sebastian Stünkel, Christoph Hannebauer, and Michael Patalas. Expertise Ex-
plorer on GitHub. https://github.com/paluno/ExpertiseExplorer.
2015.

[SJW08] Lok Fang Fang Stella, Stan Jarzabek, and Bimlesh Wadhwa. “A comparative
study of maintainability of web applications on J2EE, .NET and Ruby on Rails”.
In: Web Site Evolution, 2008. WSE 2008. 10th International Symposium on. Oct.
2008, pp. 93–99.

[Sma11] John Ferguson Smart. Jenkins: The Definitive Guide. O’Reilly Media, 2011. isbn:
1449305350.

[SMJ10a] Bhuricha Deen Sethanandha, Bart Massey, and William Jones. “Managing open
source contributions for software project sustainability”. In: Technology Manage-
ment for Global Economic Growth (PICMET), 2010 Proceedings of PICMET

’10: 2010, pp. 1–9.

[SMJ10b] Bhuricha Deen Sethanandha, Bart Massey, and William Jones. “On the Need
for OSS Patch Contribution Tools”. In: Proceedings of the Second International
Workshop on Building Sustainable Open Source Communities. 2010.

[SS13] Andreas Stefik and Susanna Siebert. “An Empirical Investigation into Program-
ming Language Syntax”. In: Trans. Comput. Educ. 13.4 (Nov. 2013), 19:1–19:40.
issn: 1946-6226.

[SSG14] Igor Steinmacher, Marco A. Graciotto Silva, and Marco Aurélio Gerosa. “Barri-
ers faced by newcomers to open source projects: a systematic review”. In: OSS
2014? 2014.

[SSN09] Chandrasekar Subramaniam, Ravi Sen, and Matthew L. Nelson. “Determinants
of open source software project success: A longitudinal study”. In: Decision
Support Systems 46.2 (2009), pp. 576–585. issn: 0167-9236.

[Ste+13] Igor Steinmacher, Igor Scaliante Wiese, A.P. Chaves, and Marco Aurélio Gerosa.
“Why do newcomers abandon open source software projects?” In: Cooperative
and Human Aspects of Software Engineering (CHASE), 2013 6th International
Workshop on. May 2013, pp. 25–32.

[Ste+14a] Igor Steinmacher, Ana Paula Chaves, Tayana Uchoa Conte, and Marco Aurélio
Gerosa. “Preliminary Empirical Identification of Barriers Faced by Newcomers
to Open Source Software Projects”. In: 2014 Brazilian Symposium on Software
Engineering. Los Alamitos, CA, USA: IEEE Computer Society, 2014, pp. 51–60.

253

http://www.shirky.com/writings/situated_software.html
http://www.shirky.com/writings/situated_software.html
https://github.com/paluno/ExpertiseExplorer

Secondary Sources

[Ste+14b] Igor Steinmacher, Igor Scaliante Wiese, Tayana Conte, Marco Aurélio Gerosa,
and David Redmiles. “The Hard Life of Open Source Software Project New-
comers”. In: Proceedings of the 7th International Workshop on Cooperative and
Human Aspects of Software Engineering. CHASE 2014. Hyderabad, India: ACM,
2014, pp. 72–78. isbn: 978-1-4503-2860-9.

[Ste+15a] Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and David Redmiles.
“Social Barriers Faced by Newcomers Placing Their First Contribution in Open
Source Software Projects”. In: Proceedings of the 18th ACM Conference on
Computer Supported Cooperative Work & Social Computing. CSCW ’15.
Vancouver, BC, Canada: ACM, 2015, pp. 1379–1392. isbn: 978-1-4503-2922-4.

[Ste+15b] Igor Steinmacher, Marco Aurelio Graciotto Silva, Marco Aurélio Gerosa, and
David F. Redmiles. “A systematic literature review on the barriers faced by
newcomers to open source software projects”. In: Information and Software
Technology 59 (2015), pp. 67–85. issn: 0950-5849.

[SZ08] David Schuler and Thomas Zimmermann. “Mining usage expertise from ver-
sion archives”. In: Proceedings of the 2008 International Working Conference
on Mining Software Repositories. MSR ’08. Leipzig, Germany: ACM, 2008,
pp. 121–124. isbn: 978-1-60558-024-1.

[Tao+12] Yida Tao, Yingnong Dang, Tao Xie, Dongmei Zhang, and Sunghun Kim. “How
Do Software Engineers Understand Code Changes? An Exploratory Study in
Industry”. In: Proceedings of the 20th ACM SIGSOFT International Symposium
on the Foundations of Software Engineering (FSE 2012). Research Triangle Park,
North Carolina. Nov. 2012.

[TB10] Roger Tourangeau and Norman M. Bradburn. “Handbook of Survey Research”.
In: ed. by Peter V. Marsden and James D. Wright. Second. Emerald Group
Publishing Limited, 2010. Chap. The Psychology of Survey Response, pp. 315–
346.

[TDH14] Jason Tsay, Laura Dabbish, and James Herbsleb. “Influence of Social and Tech-
nical Factors for Evaluating Contribution in GitHub”. In: Proceedings of the
36th International Conference on Software Engineering. ICSE 2014. Hyderabad,
India: ACM, 2014, pp. 356–366. isbn: 978-1-4503-2756-5.

[Ter+16] Josh Terrell, Andrew Kofink, Justin Middleton, Clarissa Rainear, Emerson
Murphy-Hill, and Chris Parnin. “Gender bias in open source: Pull request accep-
tance of women versus men”. Feb. 2016.

[Tho+14] Patanamon Thongtanunam, Raula Gaikovina Kula, Ana Erika Camargo Cruz,
Norihiro Yoshida, and Hajimu Iida. “Improving Code Review Effectiveness
Through Reviewer Recommendations”. In: Proceedings of the 7th International
Workshop on Cooperative and Human Aspects of Software Engineering. CHASE
2014. Hyderabad, India: ACM, 2014, pp. 119–122. isbn: 978-1-4503-2860-9.

254

Secondary Sources

[Tho+15] Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Raula Gaikovina Kula,
Norihiro Yoshida, Hajimu Iida, and Ken-ichi Matsumoto. “Who should review
my code? – A file location-based code-reviewer recommendation approach for
Modern Code Review”. In: Software Analysis, Evolution and Reengineering
(SANER), 2015 IEEE 22nd International Conference on. Mar. 2015, pp. 141–
150.

[Tho84] Ken Thompson. “Reflections on trusting trust”. In: Commun. ACM 27.8 (Aug.
1984), pp. 761–763. issn: 0001-0782.

[TM12] Linus Torvalds and Glyn Moody. Interview: Linus Torvalds – I don’t read code
any more. [accessed 2015-04-24]. The H Open. Nov. 2012.

[Tur14] James Turnbull. Software Archaeology for Beginners – Code, Culture and Com-
munity. FOSDEM 2014 Keynote. https://archive.fosdem.org/2014/
schedule/event/software_archaeology_for_beginners/ [accessed
2015-07-31]. Feb. 2014.

[Und04] Keith Underwood. “FPGAs vs. CPUs: Trends in Peak Floating-point Perfor-
mance”. In: Proceedings of the 2004 ACM/SIGDA 12th International Symposium
on Field Programmable Gate Arrays. FPGA ’04. Monterey, California, USA:
ACM, 2004, pp. 171–180. isbn: 1-58113-829-6.

[Wal42] W. Allen Wallis. “Compounding probabilities from independent significance
tests”. In: Econometrica, Journal of the Econometric Society 10.3/4 (July 1942),
pp. 229–248.

[Wal80] Abraham Wald. A Reprint of ’A Method of Estimating Plane Vulnerability Based
on Damage of Survivors’. Collection of memoranda. CENTER FOR NAVAL
ANALYSES ALEXANDRIA VA OPERATIONS EVALUATION GROUP, July
1980.

[WD10] Joost C. F. de Winter and Dimitria Dodou. “Five-Point Likert Items: t test versus
Mann-Whitney-Wilcoxon”. In: Practical Assessment, Research & Evaluation
15.11 (Oct. 2010), pp. 1–16. issn: 1531-7714.

[Wei09] Michael Weiss. “Performance of Open Source Projects”. In: 14th Annual Euro-
pean Conference on Pattern Languages of Programming. 2009.

[Wei10] Michael Weiss. “Profiting from open source”. In: Proceedings of the 15th Eu-
ropean Conference on Pattern Languages of Programs. EuroPLoP ’10. Irsee,
Germany: ACM, 2010, 5:1–5:8. isbn: 978-1-4503-0259-3.

[Wei11] Michael Weiss. “Profiting even more from open source”. In: Proceedings of the
16th European Conference on Pattern Languages of Programs. EuroPLoP ’11.
Irsee, Germany: ACM, 2011, 1:1–1:7. isbn: 978-1-4503-1302-5.

[Wei15] Michael Weiss. “The Business of Open Source: Missing Patterns”. In: Proceed-
ings of the 20th European Conference on Pattern Languages of Programs. 2015.

255

https://archive.fosdem.org/2014/schedule/event/software_archaeology_for_beginners/
https://archive.fosdem.org/2014/schedule/event/software_archaeology_for_beginners/

Secondary Sources

[Wei98] Charles Weir. “Patterns for Designing in Teams”. In: Pattern Languages of
Program Design 3. Ed. by Robert Martin, Dirk Riehle, and Frank Buschmann.
Software Patterns Series. Addison-Wesley, 1998. Chap. 27, pp. 487–501.

[WGY07] Chorng-Guang Wu, James H. Gerlach, and Clifford E. Young. “An empirical anal-
ysis of open source software developers’ motivations and continuance intentions”.
In: Information & Management 44.3 (2007), pp. 253–262. issn: 0378-7206.

[WHG13] Vincent Wolff-Marting, Christoph Hannebauer, and Volker Gruhn. “Patterns for
Tearing Down Contribution Barriers to FLOSS Projects”. In: Intelligent Software
Methodologies, Tools and Techniques (SoMeT), 2013 IEEE 12th International
Conference on. Budapest, Sept. 2013, pp. 9–14.

[Wie02] Karl E. Wiegers. Peer Reviews in Software – A Practical Guide. Second printing.
Addison-Wesley Information Technology Series. Addison Wesley, 2002. isbn:
0-201-73485-0.

[WMZ06] Michael Weiss, Gabriella Moroiu, and Ping Zhao. “Evolution of Open Source
Communities”. In: OSS2006: Open Source Systems (IFIP 2.13). Springer, 2006,
pp. 21–32.

[WN13] Michael Weiss and Nadia Noori. “Enabling Contributions in Open Source
Projects”. In: EuroPLoP 2013. 2013.

[WND08] Peter Weißgerber, Daniel Neu, and Stephan Diehl. “Small Patches Get in!” In:
Proceedings of the 2008 International Working Conference on Mining Software
Repositories. MSR ’08. Leipzig, Germany: ACM, 2008, pp. 67–76. isbn: 978-1-
60558-024-1.

[WSK08] Dirk Wilking, David Schilli, and Stefan Kowalewski. “Measuring the Human
Factor with the Rasch Model”. English. In: Balancing Agility and Formalism
in Software Engineering. Ed. by Bertrand Meyer, Jerzy R. Nawrocki, and Bar-
tosz Walter. Vol. 5082. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2008, pp. 157–168. isbn: 978-3-540-85278-0.

[XCY07] WenPeng Xiao, ChangYan Chi, and Min Yang. “On-line collaborative software
development via wiki”. In: WikiSym ’07: Proceedings of the 2007 international
symposium on Wikis. Montreal, Quebec, Canada: ACM, 2007, pp. 177–183. isbn:
978-1-59593-861-9.

[XJ10] Bo Xu and Donald R. Jones. “Volunteers’ Participation in Open Source Software
Development: A Study from the Social-relational Perspective”. In: SIGMIS
Database 41.3 (Aug. 2010), pp. 69–84. issn: 0095-0033.

[XJS09] Bo Xu, Donald R. Jones, and Bingjia Shao. “Volunteers’ involvement in online
community based software development”. In: Information & Management 46.3
(2009), pp. 151–158. issn: 0378-7206.

[Xu+05] Jin Xu, Yongqin Gao, S. Christley, and G. Madey. “A Topological Analysis of
the Open Souce Software Development Community”. In: System Sciences, 2005.
HICSS ’05. Proceedings of the 38th Annual Hawaii International Conference on.
Jan. 2005, 198a–198a.

256

Secondary Sources

[Yat14] Rebecca Yolande Yates. “Onboarding in Software Engineering”. https://ulir.
ul.ie/handle/10344/4272 [accessed 2016-02-08]. Ph.D. thesis. University
of Limerick, Nov. 2014.

[Yin+04] Annie T.T. Ying, Gail C. Murphy, Raymond Ng, and Mark C. Chu-Carroll.
“Predicting Source Code Changes by Mining Change History”. In: Software
Engineering, IEEE Transactions on 30.9 (Sept. 2004), pp. 574–586. issn: 0098-
5589.

[YK03] Yunwen Ye and Kouichi Kishida. “Toward an understanding of the motivation
of open source software developers”. In: Proceedings of the 25th International
Conference on Software Engineering. May 2003, pp. 419–429.

[Yu+16] Yue Yu, Huaimin Wang, Gang Yin, and Tao Wang. “Reviewer recommendation
for pull-requests in GitHub: What can we learn from code review and bug
assignment?” In: Information and Software Technology 74 (2016), pp. 204–218.
issn: 0950-5849.

[ZHG16] Firas Zaidan, Christoph Hannebauer, and Volker Gruhn. “Quality Attestation:
An Open Source Pattern”. In: 21st European Conference on Pattern Languages
of Programs (EuroPLoP 2016). ACM, July 2016.

[ZKB15] Motahareh Bahrami Zanjani, Huzefa Kagdi, and Christian Bird. “Automatically
Recommending Peer Reviewers in Modern Code Review”. In: IEEE Transactions
on Software Engineering PP.99 (2015), pp. 1–1. issn: 0098-5589.

[ZM12] Minghui Zhou and Audris Mockus. “What Make Long Term Contributors: Will-
ingness and Opportunity in OSS Community”. In: Proceedings of the 34th Inter-
national Conference on Software Engineering. ICSE ’12. Zurich, Switzerland:
IEEE Press, 2012, pp. 518–528. isbn: 978-1-4673-1067-3.

257

https://ulir.ul.ie/handle/10344/4272
https://ulir.ul.ie/handle/10344/4272

	Abstract
	Contents
	List of Definitions
	1 Introduction
	1.1 Models of FLOSS Communities
	1.1.1 The Onion Model
	1.1.2 Joining Scripts
	1.1.3 Steinmacher et al.'s Model
	1.1.4 Technical Aspects of the Joining Process

	1.2 Contributor Motivation
	1.2.1 Theoretical Works
	1.2.2 Empirical Works
	1.2.3 Attractiveness

	1.3 Contribution Barriers
	1.3.1 Rationale of the Definition
	1.3.2 Specific Contribution Barriers
	1.3.3 New Developers in General Software Development Projects
	1.3.4 Joining FLOSS Projects
	1.3.5 Exploring Contribution barriers
	1.3.6 Summary of Contribution Barriers
	1.3.7 The Effect of Lowered Contribution Barriers

	1.4 Research Goals
	1.4.1 Identification of Contribution Barriers
	1.4.2 Lowering Contribution Barriers
	1.4.3 Wiki Development Environments

	2 Contribution Barriers to FLOSS Projects
	2.1 Exploratory Survey
	2.1.1 Demography
	2.1.2 Developers' Motivation
	2.1.3 Contribution Barriers
	2.1.4 Discussion
	2.1.5 Conclusion

	2.2 Main Survey
	2.2.1 FLOSS Projects
	2.2.2 Research Hypotheses
	2.2.3 Participant selection
	2.2.4 Demography

	2.3 Contributor Motivation
	2.3.1 Usage Motivation
	2.3.2 Open Question on Modification Motivation
	2.3.3 Closed Question on Modification Motivation
	2.3.4 Open Question on Submission Motivation
	2.3.5 Closed Question on Submission Motivation
	2.3.6 Comparison to Related Work

	2.4 Contribution Barriers
	2.4.1 Open Question on Modification Barriers
	2.4.2 Closed Question on Modification Barriers
	2.4.3 Open Question on Submission Barriers
	2.4.4 Closed Question on Submission Barriers
	2.4.5 Discussion

	2.5 Improvement Suggestions
	2.5.1 Results
	2.5.2 Discussion

	2.6 Analysis
	2.6.1 Language and Contribution Barriers
	2.6.2 Experience and Contribution Barriers
	2.6.3 Projects and Contribution Barriers
	2.6.4 Own Need, Motivation, and Occupation
	2.6.5 Motivation and Contribution Barriers

	2.7 Threats to Validity
	2.7.1 Construct Validity
	2.7.2 Content Validity
	2.7.3 Internal Validity
	2.7.4 External Validity

	2.8 A New Model for Joining FLOSS Projects
	2.9 Conclusion

	3 FLOSS Pattern Languages
	3.1 Introduction
	3.1.1 Classification of FLOSS Patterns
	3.1.2 Related Work on Pattern Languages and Pattern Maps
	3.1.3 Pattern Maps for the FLOSS Pattern Language

	3.2 Categories of FLOSS Patterns
	3.2.1 Integrate FLOSS Assets
	3.2.2 Start a New Project from Scratch
	3.2.3 Publish Closed Sources
	3.2.4 Licensing
	3.2.5 Architecture
	3.2.6 Cultivate a User Community
	3.2.7 Tools for New Developers
	3.2.8 Empower the Most Suitable

	3.3 Patterns Lowering Contribution Barriers
	3.3.1 Low Contribution Barriers
	3.3.2 Preconfigured Build Environment
	3.3.3 Unit Tests for Contributors
	3.3.4 Low-hanging Fruit
	3.3.5 Bazaar Architecture
	3.3.6 Exposed Architecture

	3.4 Evaluation
	3.4.1 Mozilla Firefox
	3.4.2 Rack
	3.4.3 Ruby on Rails
	3.4.4 Spree
	3.4.5 Rake

	3.5 Discussion
	3.5.1 FLOSS Patterns and the Success of FLOSS Projects
	3.5.2 Validation of Relationships
	3.5.3 Newly Observed Relationships

	3.6 Conclusion

	4 Wiki Development Environments
	4.1 WikiDE Concept
	4.1.1 Requirements
	4.1.2 Existing Wiki Systems for Programming
	4.1.3 WikiDE Contribution Process
	4.1.4 Architecture

	4.2 CI Services
	4.2.1 Current Limits of FLOSS CI
	4.2.2 Security Analysis of CI Systems
	4.2.3 Secure Build Servers
	4.2.4 Validation
	4.2.5 Limitations
	4.2.6 Related Work
	4.2.7 Summary

	4.3 Reviewer Recommendations
	4.3.1 Related Work
	4.3.2 Expertise Explorer
	4.3.3 Empirical Evaluation
	4.3.4 Results
	4.3.5 Threats to Validity
	4.3.6 Conclusion and Future Work on Reviewer Recommendations

	4.4 Proof of Concept Realization
	4.4.1 Environment Overview
	4.4.2 Software Forge
	4.4.3 Immediate Feedback
	4.4.4 Reviewer Recommendations
	4.4.5 Limitations

	4.5 Summary

	5 Conclusion
	5.1 Identification of Contribution Barriers
	5.2 FLOSS Patterns
	5.3 Wiki Development Environments
	5.4 Future Work

	Primary Sources
	Secondary Sources

