Der Fakultit fiir Wirtschaftswissenschaften der
Universitiat Duisburg-Essen, Campus Essen, vorgelegte Dissertation
zum Erwerb des Grades Dr. rer. nat.

Contribution Barriers to
Open Source Projects

Dipl.-Inform., Dipl.-Math. Christoph Hannebauer,
geboren in Offenbach am Main

Datum der miindlichen Priifung: 2016-10-19

Erstgutachter: Prof. Dr. Volker Gruhn
Zweitgutachter: Prof. Dr. Klaus Echtle

Abstract

Contribution barriers are properties of Free/Libre and Open Source Software (FLOSS) projects
that may prevent newcomers from contributing. Contribution barriers can be seen as forces that
oppose the motivations of newcomers. While there is extensive research on the motivation of
FLOSS developers, little is known about contribution barriers. However, a steady influx of new
developers is connected to the success of a FLOSS project.

The first part of this thesis adds two surveys to the existing research that target contribution
barriers and motivations of newcomers. The first exploratory survey provides the indications to
formulate research hypotheses for the second main survey with 117 responses from newcomers
in the two FLOSS projects Mozilla and GNOME. The results lead to an assessment of the
importance of the identified contribution barriers and to a new model of the joining process that
allows the identification of subgroups of newcomers affected by specific contribution barriers.

The second part of the thesis uses the pattern concept to externalize knowledge about tech-
niques lowering contribution barriers. This includes a complete categorization of the existing
work on FLOSS patterns and the first empirical evaluation of these FLOSS patterns and their
relationships. The thesis contains six FLOSS patterns that lower specific important contribution
barriers identified in the surveys.

Wikis are web-based systems that allow its users to modify the wiki’s contents. They found
on wiki principles with which they minimize contribution barriers. The last part of the thesis
explores whether a wiki, whose content is usually natural text, can also be used for software
development. Such a Wiki Development Environment (WikiDE) must fulfill the requirements of
both an Integrated Development Environment (IDE) and a wiki. The simultaneous compliance of
both sets of requirements imposes special challenges. The thesis describes an adapted contribution
process supported by an architecture concept that solves these challenges. Two components of a
WikiDE are discussed in detail. Each of them helps to lower a contribution barrier. A Proof of
Concept (PoC) realization demonstrates the feasibility of the concept.

II

Contents

Abstract

Contents

List of Definitions

1

Introduction

1.1 Models of FLOSS Communities
1.1.1 TheOnionModel
1.1.2 Joining Scripts e
1.1.3 Steinmacheretal’sModel
1.1.4 Technical Aspects of the Joining Process

1.2 Contributor Motivation e
1.2.1 Theoretical Works
1.2.2 Empirical Works
1.2.3 Attractiveness e e e e e e e e

1.3 Contribution Barriers
1.3.1 Rationale of the Definition
1.3.2 Specific Contribution Barriers
1.3.3 New Developers in General Software Development Projects
1.3.4 Joining FLOSS Projects
1.3.5 Exploring Contribution barriers
1.3.6 Summary of Contribution Barriers
1.3.7 The Effect of Lowered Contribution Barriers

1.4 ResearchGoals e
1.4.1 Identification of Contribution Barriers
1.4.2 Lowering Contribution Barriers
1.4.3 Wiki Development Environments

Contribution Barriers to FLOSS Projects

2.1

22

Exploratory Surveyo
2.1.1 Demography
2.1.2 Developers’ Motivation
2.1.3 Contribution Barriers L oo 0oL
2.1.4 DiscusSion e e e e
2.1.5 Conclusion
Main Survey e e e e e e
22.1 FLOSSProjects. e

Vi

0 00 L B~ W N = =

25
25
26
27
30
32
33
34
35

I

Contents

1AY

2.2.2 Research Hypotheses 36
2.2.3 Participant selection 38
224 Demography 42
2.3 Contributor Motivation Lo 46
2.3.1 UsageMotivation e 46
2.3.2 Open Question on Modification Motivation 47
2.3.3 Closed Question on Modification Motivation 49
2.3.4 Open Question on Submission Motivation 50
2.3.5 Closed Question on Submission Motivation 52
2.3.6 ComparisontoRelated Work 53
24 Contribution Barriers oL 54
2.4.1 Open Question on Modification Barriers 55
2.4.2 Closed Question on Modification Barriers 56
2.4.3 Open Question on Submission Barriers 58
2.4.4 Closed Question on Submission Barriers 60
245 Discussionl e e 61
2.5 Improvement SUZEESLIONS v v it 63
25.1 Results 64
252 Discussion e 66
2.6 Analysis 66
2.6.1 Language and Contribution Barriers 66
2.6.2 Experience and Contribution Barriers 67
2.6.3 Projects and Contribution Barriers 69
2.6.4 Own Need, Motivation, and Occupation 69
2.6.5 Motivation and Contribution Barriers 72
277 Threatsto Validity 76
2.7.1 Construct Validity 76
272 Content Validity 77
273 Internal Validity 77
2774 External Validity 79
2.8 A New Model for Joining FLOSS Projects 79
2.9 Conclusion e 80
FLOSS Pattern Languages 82
3.1 Introduction e e 83
3.1.1 Classification of FLOSS Patterns 83
3.1.2 Related Work on Pattern Languages and Pattern Maps 84
3.1.3 Pattern Maps for the FLOSS Pattern Language 85
3.2 Categories of FLOSS Patterns 86
3.2.1 Integrate FLOSS Assets, 89
3.2.2 Starta New Project from Scratch 91
323 PublishClosedSources 92
324 Licensing e e e e e 94
325 Architecture. L. 96

Contents

3.2.6 Cultivate a User Community oo oo v v v ... 98
3.2.7 Tools for New Developers 102
3.2.8 Empower the Most Suitable 105
3.3 Patterns Lowering Contribution Barriers 108
3.3.1 Low Contribution Barriers 109
3.3.2 Preconfigured Build Environment 113
3.3.3 Unit Tests for Contributors 117
334 Low-hanging Fruit 120
3.3.,5 Bazaar Architecture o 123
3.3.6 Exposed Architecture 128
34 Evaluation e e e e e e e 132
34.1 MozillaFirefox 133
342 Rack 138
343 RubyonRails. oo 141
344 Spreeo e 144
345 Rake 148
35 Discussion. e e e e e e 151
3.5.1 FLOSS Patterns and the Success of FLOSS Projects 151
3.5.2 Validation of Relationships 154
3.5.3 Newly Observed Relationships 157
3.6 Conclusion e e 158
Wiki Development Environments 160
4.1 WIikiDE Concept e 160
4.1.1 Requirements 160
4.1.2 Existing Wiki Systems for Programming 165
4.1.3 WikiDE Contribution Process 169
4.1.4 Architecture. e 170
42 CIServices v i i i i e e e e e e e 175
42.1 Current Limits of FLOSSCI 176
4.2.2 Security Analysisof CI Systems 178
423 Secure BuildServers o 182
424 Validation 186
425 Limitationso 187
426 RelatedWork L 188
427 Summary . ..o .. e e e e e e e e 188
4.3 Reviewer Recommendations 189
43.1 RelatedWork L 190
432 Expertise Explorer, 195
433 Empirical Evaluation, 199
434 Results e 201
435 Threatsto Validity 206
4.3.6 Conclusion and Future Work on Reviewer Recommendations 208

Contents

4.4 Proof of Concept Realization 209
44.1 Environment OVErview v it e e 209

442 Software Forge 209

4.4.3 Immediate Feedback 212

4.4.4 Reviewer Recommendations 214

445 Limitations e e e e 214

45 Summary e e e e e 216

5 Conclusion 217
5.1 Identification of Contribution Barriers 217
52 FLOSSPatterns 0 i e 218

5.3 Wiki Development Environments 219
54 Future Work e 219
Primary Sources 221
Secondary Sources 236

VI

List of Definitions

contribution barrier Definitions on pages 7, 10

contributor motivation Definition on page 7

FLOSS Definition on page 1
FLOSS Pattern Definition on page 82

FLOSS Project Definition on page 2

modification barrier Definitions on pages 7, 11
modification motivation Definition on page 7

multitenant Cl system Definition on page 176
newcomer Definition on page 5
Own Need Definitions on pages 27, 47

social barrier Definition on page 16
Stupid Tax Definitions on pages 52
submission barrier Definitions on pages 7, 11

submission motivation Definition on page 7

usage barrier Definitions on pages 7, 11

usage motivation Definition on page 7

WikiDE Definitions on pages 24, 160

VII

1 Introduction

Users of Free/Libre and Open Source Software (FLOSS) do not only receive an executable
program but also its source code and thereby the freedom to modify the program to their
demands. Thus, developers of FLOSS give away some of their power to the users without
direct compensation. It might be astonishing that the FLOSS phenomenon even exists, on first
sight against economic pressure. Nevertheless, some FLOSS projects like Linux [P*Lin15] and
Apache [P*Thel5a] have been very successful and lead their respective markets [Garl5; QSul6].

Accordingly, the FLOSS phenomenon has also attracted research attention. One area of
research focuses on the communities around FLOSS projects, as they drive development and
marketing of the FLOSS project. This chapter outlines the current state of research on the
FLOSS phenomenon in general and more specifically on how and why contributors join FLOSS
projects. Furthermore, it derives own assumptions and models about FLOSS as the foundation
for later chapters. Section 1.1 describes models that have been used in research to model FLOSS
communities in general and more specifically how new contributors join a FLOSS project. Next,
Section 1.2 summarizes the current state of research on motivations of FLOSS developers.
Section 1.3 presents and discusses the research on contribution barriers to software projects,
especially FLOSS projects. The chapter concludes with the research questions of this thesis in
Section 1.4.

1.1 Models of FLOSS Communities

There are four different terms that mostly describe the same phenomenon: Free Software, Open
Source Software, Free Open Source Software (FOSS), and Free/Libre and Open Source Software.
The Free Software Foundation (FSF) uses the term Free Software to underline that its users
have several freedoms [P*Frel5]. The Open Source Initiative (OSI) uses the term Open Source
Software [P*Ope04] and underlines the superiority of its development model over traditional
closed source software development. However, both definitions base solely on the license used
for the software. Debates about the correct term are sometimes emotional and consequently
the term FOSS tries not to take sides in the debate and instead tries to be a neutral term for the
phenomenon. “Free” has a double meaning in English: First, it can refer to something available
without cost. Second, it can refer to some kind of freedom. Although Free Software can often
be acquired for free, the FSF refers to freedom. The term FLOSS tries to capture this by adding
“libre” as an unambiguous reference to the freedoms of users of FLOSS. This thesis will use
FLOSS without committing to any special ideology or license.

Since FLOSS licenses grant freedoms to modify and redistribute FLOSS, there is no legal
entity that holds the exclusive development rights for any FLOSS. As an exception, there may be
a legal entity holding the rights on the name and logos of a FLOSS artifact. Although there is

1 Introduction

no legal reason to see any entity as the owner of a FLOSS artifact, there is usually a community
around it: A maintainer manages modifications to the FLOSS artifact and distributes its source
code and compiled versions to its users. This community and its organizational structure together
with its technical infrastructure and the source code belonging to the FLOSS artifact shall be
called a FLOSS Project. The source code of the FLOSS project belongs to a specific application
or library, both of which are referred to as components in this thesis.

1.1.1 The Onion Model

Ye and Kishida [YKO03] proposed that the community of a FLOSS project resembles an onion
with its layers. Figure 1.1 depicts this model. The core of the community are maintainers and
core developers who decide about the direction of the FLOSS project. This includes a vote on
which modifications to the application will be accepted and which will be rejected. The next
layer around the core developers are the co-developers who contribute source code to the FLOSS
project. In contrast, the next layer of active users contribute only other types of resources to
the FLOSS project, like documentation, translations, and technical support for other community
members. The outermost layer are passive users who do not contribute to the FLOSS project but
only use its application. Outside are all people who do not use the FLOSS project at all.

Core Developers
Co-Developers
Active Users

Passive Users

™~~~ Outsiders

Figure 1.1: The Onion Model of FLOSS communities

The onion model assumes that an outsider moves into the FLOSS project layer by layer. Thus,
the outsider first uses the application, then joins a mailing list as an active user, afterwards
contributes code, and eventually the community may welcome the former outsider as a core
developer.

Research on FLOSS commonly uses the onion model [Duc05; Cro+05; CHO6b; Rul06;
Mas+09; Gell0], often with small variations to the number of layers, but there is also criti-
cism [JSO7], especially that employed developers skip the active user layer and contribute code as
their first action in the FLOSS project [Her+06]. Jergensen et al. [JSW11] also found empirical
evidence holding against the onion model, but with another explanation: While the first FLOSS
projects hosted their infrastructure on their own, today most FLOSS projects rely on software
forge services [Rie+09] like SourceForge [P*Slal5] and GitHub [P*Gitl5c]. They speculated
that while the onion model does not apply to single FLOSS projects hosted by a software forge

1.1 Models of FLOSS Communities

service, it may still be applicable to each software forge service as a whole.

The role migration in a software forge service as a whole has previously been analyzed
using Markov Chains on the example of the SourceForge community. In the corresponding
study [DROS8a], the roles were defined differently to the onion model, though, distinguishing
between developers and founders. One of their results implies that the role distribution on
SourceForge was nearly stable in 2002: The fraction between gained and lost members is nearly
equal for each role.

Another example of research on migration within the community of FLOSS projects is Rob-
les and Gonzalez-Barahona’s study of core developers [RG06]. They analyzed how the group of
core developers of 19 FLOSS project changed over time and found three categories of behavior:
In 3 FLOSS projects, there was a stable group of core developers. In 9 FLOSS projects, there was
more fluctuation and the group of core developers changed. The 7 remaining FLOSS projects
were a mix, with some developers being core developers over the whole study period and some
others coming and going.

1.1.2 Joining Scripts

Von Krogh et al. [KSLO3] introduced the concept of a FLOSS project’s “joining script”. The
joining script is a process that new developers should follow in order to be granted commit access
to the project’s Version Control System (VCS). In terms of the onion model, this corresponds to
the transition from active user to co-developer. Using the concept of the joining script to analyze
the Freenet project, von Krogh et al. found that users’ early mails to the mailing list allowed a
significant prediction of whether the posters would eventually become co-developers or not: If
the first post contained a bug description with accompanying code, the poster was more likely
to become a co-developer; however, if the first post was just an introduction or suggestion for
improvements, the likelihood that the poster would become a co-developer was lower.

This observation supports Raymond’s first rule of Open Source development: “Every good
work of software starts by scratching a developer’s personal itch.” [Ray00] Thus, software
developers start to modify the source code of a FLOSS project if they experience a problem with
the application that they want to fix and only then describe the problem and submit a patch.

Typically, the joining script is not fully documented. Thus, new developers need to learn the
joining script via observation or trial-and-error. This learning can be cumbersome [JS07]. Von
Krogh et al. analyzed only the Freenet project and did not claim that their analysis of Freenet’s
joining script also applies to other FLOSS projects.

More recently, Zhou and Mockus [ZM12] found empirical data that seem to contradict the
hypothesis that the first posts of promising developers usually contain code fixing their personal
problems. While they also analyzed whether users’ first posts can predict future contributions,
they did not analyze mailing lists like von Krogh et al. did. Instead, they used data from the
issue trackers of the GNOME and Mozilla projects. Zhou and Mockus used the term Long Term
Contributor (LTC) for posters that stayed on the project for at least three years and caused more
than the 10" percentile of changes per year. They used the term One Time Contributor (OTC) for
posters with only a single post in their work for the project. Zhou and Mockus showed that users
have significantly higher odds of becoming LTCs instead of OTCs (65 % higher at GNOME, and
112 % higher at Mozilla), if their first post is a comment to an existing thread instead of the start

1 Introduction

of a new thread, and assumed that if a user’s first post was a comment instead of a patch, it shows
a pro-community attitude.

Zhou and Mockus did not comment on this contradiction with von Krogh et al.’s work, but
one cause may be differences in the joining scripts used by GNOME and Mozilla, as opposed to
Freenet and the FLOSS projects Raymond observed. Another explanation may be differences
between the definitions of LTCs and co-developers: LTCs are defined only by their activity in
the issue tracker, regardless of whether they contribute code or not. Co-developers in contrast
are defined only by their code contributions. The onion model also assumes that a co-developer
has previously been an active user and therefore must have participated in discussions without
contributing code, and the first post is the transition between passive and active user in the onion
model.

In a case study of three FLOSS projects, Jensen and Scacchi [JS07] found different paths that
developers may take from outsiders towards the developer roles for each FLOSS project. They
further distinguish different subtracks for each path. This implies the existence of multiple joining
scripts for each FLOSS projects, upon which new developers may choose or for externals reasons
be dragged to.

1.1.3 Steinmacher et al.s Model

Steinmacher et al. [SGR14] proposed a new model to better chart how new developers join a
FLOSS project. Figure 1.2 depicts the elements of this model. The model purposefully omits
non-code contributions and defines the stages outsider, newcomer, contributor, and member in
order of increasing importance for the FLOSS project. Four different forces either help or hinder
a developer’s migration towards the more productive states:

’ Motivation >
’ Attractiveness >’ Retention >

Forces <Hindering Factors

Stages Outsider Newcomer Contributor Member
Onboarding Contributing

Phases K H< A

Figure 1.2: Steinmacher et al.’s FLOSS joining model [SGR14]

e A FLOSS project’s Attractiveness determines whether the FLOSS project attracts both
users as well as developers. As a force, it helps Outsiders to become Newcomers.

1.1 Models of FLOSS Communities

e Motivation comprises the reasons why developers contribute to the FLOSS project. There-
fore, motivation helps developers in all states to reach the next stages.

e According to Steinmacher et al.’s textual description, Hindering Factors hinder newcomers
to become contributors and contributors to become members, although their diagram
suggests that Hindering Factors do not have influence on outsiders becoming newcomers.
Figure 1.2 reflects this discrepancy.

o A FLOSS project uses its Retention to let newcomers and contributors overcome Hindering
Factors and increase their motivation.

The origin of these forces is important for their differentiation. Attractiveness and Retention
are attributes of the FLOSS project, while Motivation depends on the specific developer. Both
developers and the FLOSS project may cause Hindering Factors.

Additionally, the model defines two different phases that the developers can be in. In the
Onboarding phase, a newcomer tries to place a first source code contribution. The Contributing
phase starts with the first source code contribution. Hence, all changes to the source code stem
from developers in the Contributing phase. Thus, only these developers forward the FLOSS
project with their work on the source code.

The model’s limitation to source code contributions has advantages and disadvantages. As a
disadvantage, the model cannot differentiate between different ways to join a project if these ways
differ only in terms of non-code contributions. Previous contributions as active user according to
the onion model might influence how the four defined forces effect a newcomer. An advantage
is the model’s universal applicability: Every developer joining the project must go through the
stages defined in the model.

This thesis adopts Steinmacher et al.’s definition of newcomer: A person interested to contribute
source code to the FLOSS project, but who has not yet been successful with the contribution: No
source code modification from the newcomer has yet been merged into the main code base.

1.1.4 Technical Aspects of the Joining Process'

The specific activities required for the first code contribution to a FLOSS project have received
less research attention than the general processes. Thus, this subsection derives a model for the
technical aspects of the first code contribution. In terms of the models presented above, the first
code contribution corresponds to the role migration from active user to co-developer in the onion
model, the execution of the joining script, and to the onboarding phase in Steinmacher et al.’s
model.

Figure 1.3 presents this process as a Unified Modeling Language (UML) activity diagram.
UML swim lanes separate the tasks of the newcomer from those of the core developers. The
process shall apply to most FLOSS projects and therefore abstracts from tasks that may be specific
to individual FLOSS projects. Furthermore, the process focuses on the newcomer and simplifies
the core developers’ tasks. For example, the diagram does not specify how the core developers
select the reviewers of a patch among them and which methods they use for the review.

' A preliminary version of this section was published previously [GH12b; GH12a].

1 Introduction

Download the Configure build
o source code environment

£ 8

= 3

= =

2 & Build

application
Test application Modify
5 0 = behavior source code
= E=IC)
S > =
= 5 2 [Application
] o = .
Z S & misbehaves]
[Application
works as expected]
O m—
[Newcomer keeps [Newc.:omer
modification private] publishes
modification]
[Submit a patch]

Patch file with

modifications [Further
modifications

" necessary]
% { Revievy
= modifications
g [Modifications
o accepted]
8 (Merge

to code trunk

@ L modifications

Figure 1.3: Activity diagram of a new software developer changing code in a FLOSS project

1.1 Models of FLOSS Communities

The joining process involves the three major activities Build the application, Modify the
application, and Submit a patch. Each of these activities involves sub-activities.

For the first major activity, Build the application, there are three sub-activities: Download
the source code, afterwards Configure build environment, which may also involve setting up
other parts of the Integrated Development Environment (IDE), and then Build application. Even
applications written in interpreted programming languages need an interpreter that may require
configuration. Of course, some newcomers may first only want to execute the application and
only afterwards think about modifying it. Nevertheless, the mentioned activities are still required,
but possibly with a different intention.

Afterwards, when newcomers Modify the application, they Test application behavior and
may notice differences to the specification. This specification will often exist only as their
personal expectation, for example when the application fails or when they need a feature that the
application is missing. However, they might also have read specification documents in the form
of tickets in the FLOSS project’s issue tracker. In any case, as long as the application misbehaves,
the newcomer will Modify source code of the application and then repeat Build application and
Test application behavior until the application works as expected.

As the last activity, the newcomer Submit a patch with the modifications back to the FLOSS
project. Depending on the FLOSS project, this might literally mean the creation of a patch file in
diff format [HM76], but can also be something like a pull request in GitHub [P*Git15c]. The
FLOSS project’s Core developers Review modifications in this patch and decide whether to accept
or reject the patch. The details of this process, like the number of reviews necessary and who
exactly is eligible to review which patch depends on the FLOSS project. A core developer with
appropriate rights will incorporate the modifications of an accepted patch into the main VCS
of the FLOSS project in the activity Merge modifications to code trunk. The newcomer has the
opportunity to rework rejected patches in further iterations of Modify the application and Build
the application until they are accepted.

Each of the three major activities may have its own motivations and difficulties. As each
activity necessarily requires the previous, one possible motivation for the earlier activities Build
the application and Modify the application may be to reach the latter. For example, some
newcomers may want to Build the application only because later they want to Modify the
application. This is not always the case, though.

Build the application is necessary for using the application. Many FLOSS projects offer
precompiled binaries, so most users will not have to perform this activity themselves. Modify
the application can be a goal in its own right, when newcomers need a modified behavior for
their own. Consequently, newcomers have motivations to use the application, to modify the
application, and to submit their modifications back to the FLOSS project. These different
types of contributor motivations will be called usage motivations, modification motivations,
and submission motivations. Analogously, the difficulties related to the corresponding activities
shall be usage barriers, modification barriers, and submission barriers. Modification barriers
and submission barriers are the two kinds of contribution barriers, which will be defined more
precisely in Section 1.3.

1 Introduction

1.2 Contributor Motivation

This section outlines the state of research on FLOSS contributor motivation. A detailed description
of all research work is outside the scope of this thesis, as FLOSS contributor motivation has been a
domain of extensive research over the course of the last about 15 years. Von Krogh et al. [Kro+12]
summarized the state of research on FLOSS contributor motivation as of 2011 with more details
in a literature review. This section describes the main concepts and studies, especially in regard
to new contributors.

Most, though not all research on FLOSS contributor motivation relies on self-determination
theory (SDT) [GDO5]. Like some of its predecessor theories, SDT distinguishes intrinsic and
extrinsic motivations for an activity. Intrinsic motivations justify the activity itself, while extrinsic
motivations justify the activity by its output. The joy of performing an activity is an example
of an intrinsic motivation, while payment or praise for an activity are extrinsic motivations.
While intrinsic motivations are always autonomous, extrinsic motivations differ in their degree of
autonomy. A higher degree of autonomy results in a stronger motivation. Extrinsic motivations
may be internalized and then have a higher degree of autonomy. Consequentially, some studies on
contributor motivation have internalized extrinsic motivations as an additional class of motivations
next to intrinsic and purely extrinsic motivations.

Theoretical works about FLOSS contributor motivation include the application of economical
theories on FLOSS [LTO02] and literature reviews [Kri06; Kro+12]. All other works known to
me rely on empirical work which are on the one hand surveys of FLOSS developers and on
the other hand analysis of public data from FLOSS projects like mailing lists. Theoretical and
empirical works are difficult to compare, as the type of result of a study strongly depends on
its methodology. Therefore this section presents theoretical and empirical works in separate
subsections. The section concludes with how FLOSS projects can stimulate their contributors’
motivations through their attractiveness.

1.2.1 Theoretical Works

Early work on developer motivation includes Lerner and Tirole’s theoretical application of
economic theories to the FLOSS phenomenon [LT02]. They explored reasons to explain the
FLOSS phenomenon without stressing altruistic motivations and found egoistic reasons to work
in FLOSS projects. They argued that there is a signaling incentive for FLOSS developers, as they
increase their market value if they demonstrate their programming skills in a FLOSS project.

Ye and Kishida [YKO3] agreed that altruism is not the main motivation for FLOSS developers,
but they advanced the view that learning and social recognition are the most important intrinsic
and extrinsic motivations for FLOSS developers. They derived this position from the onion model
described in Section 1.1.1 and substantiate their claims with documented examples.

1.2.2 Empirical Works

Empirical surveys can be distinguished into open surveys, in which any interested FLOSS
developer may participate, and closed surveys, which target a specific audience like the developers
of a specific FLOSS project. While open surveys may suffer from a strong self-selection bias,

1.2 Contributor Motivation

closed surveys only represent the situation in a specific and possibly atypical FLOSS project.
Another type of empirical work is the analysis of public data about FLOSS projects such as VCS
and issue tracker logs or mailing lists. Analysis of public data allows only indirect conclusions
about the developers’ motivations. As a consequence of these different data sources, the empirical
results often contradict or seem to contradict each other and there is no unified theory of FLOSS
contributor motivation.

According to survey results of Hertel et al. [HNHO3] and Hars and Ou [HOO1], the enjoyment
of programming is a major motivator for most developers. Besides this, pragmatic reasons such as
needing the modification for their own project were most often mentioned not just in Hertel et al.’s,
but also Lakhani and Wolf’s survey [LWO03]. Improvement of one’s own programming skills
was also frequently cited in these studies, and seems to be an important factor in starting FLOSS
project involvement according to Gosh [Gho05]. David et al. found particularly high numbers of
developers driven by the belief that source code should be open, and they should return something
to the community for using it [DWAO3].

As Krishnamurthy pointed out [Kri06], these surveys do not differentiate between different
types of tasks within FLOSS projects. Types of tasks include but are not limited to usage
of the component, modification of the source code, and submission of resulting patches as
described in Section 1.1.4. Exceptions include a survey of the motivation of active users instead
of the developers within a FLOSS project [LHO3], an analysis of the social structure in FLOSS
projects [CHO5b], and Benbya and Belbaly [BB10] also addressed this in a more recent survey
of Sourceforge developers. Mair et al. [Mai+15] differentiated two types of tasks, source code
contributions and mailing list participation in the community of the statistical FLOSS project R.
However, they considered only three motivations: intrinsic, extrinsic, and hybrid. They showed
that hybrid motivations have stronger effects on participation, and particularly extrinsic motivation
is even negatively associated with mailing list participation.

Surveys that distinguish between modification motivations and submission motivations are
rare, with Shah [Sha06] being the only exception I am aware of. In a qualitative empirical
study using mailing lists and 88 interviews as data sources, she found that the primary usage
and modification motivations are the developers’ own need, as they need the modification for
themselves. Another identified reason is enjoyment of the coding task. However, the modification
motivation of newcomers was “need” in 42 out of 45 cases in her data set, i.e. they modified the
application because they wanted to use the modification for themselves. Submission motivations
were different and comparable to existing studies. Shah acknowledged that there are developers
who modify the application but do not submit their modifications back to the FLOSS project,
which is a consequence of the separation between modification and submission motivations.

Finally, most motivation surveys, again with Shah [Sha06] as the only exception, only looked
at developers that are already developers in FLOSS projects, i.e. people who have mastered the
onboarding phase. Their results are therefore likely biased towards the views of a small, but very
visible minority of expert contributors, while the group of newcomers is much less visible and
thus harder to reach.

1 Introduction

1.2.3 Attractiveness

According to Steinmacher et al.’s model of a FLOSS community as described in Section 1.1.3,
attractiveness is a property of a FLOSS project and a force that influences outsiders to become
users and newcomers of the FLOSS project. When focusing on contributors of source code,
attractiveness describes the properties of a FLOSS project that nourish contributor motivations of
newcomers.

Ye and Keshida [YKO03] postulated that Learning is an important contributor motivation. Hence,
they suggested to design FLOSS projects in a way that enables learning, as that would increase
the attractiveness of these FLOSS projects. Specifically, they suggested to favor programming
languages that many developers want to learn over programming languages that many developers
have mastered already.

Smaller FLOSS projects typically do not host their own technical infrastructure and instead
rely on software forge services like Sourceforge [P*Slal5] and GitHub [P*Gitl5c] for their
infrastructure [Rie+09]. Simmons and Dillon [SD06] proposed that software forge services
should publish more metadata about their hosted FLOSS projects. With these metadata, interested
developers will find it easier to acquire an overview over a FLOSS project and therefore have a
higher chance to identify FLOSS projects that are interesting for them.

Steinmacher et al. gave the choice of license as one example for a factor influencing the
attractiveness of a FLOSS project [SGR14]. However, current research contradicts each other
on whether the choice of license has an effect on attractiveness and which type of licenses are
more attractive [SAMO06; CMP07; CF09; SSNO09]. Other examples of attractiveness are project
visibility, project age, and the number of developers [SGR14].

1.3 Contribution Barriers

Von Krogh et al. first introduced the term contribution barrier for hurdles that prevent newcomers
to join a FLOSS project [KSLO03]. This thesis uses the following definition:

A contribution barrier is a property of a FLOSS project that has the ability to prevent motivated
people from contributing source code modifications to the FLOSS project.

There are four types of research related to contribution barriers. First, a study may research a
specific problem of FLOSS that is a contribution barrier. These studies usually do not refer to
the contribution barrier concept, as the specific problem is an obvious research problem by itself.
Second, there are studies that focus on the addition of new team members to existing software
development projects and the problems with these additions. Since FLOSS projects are special
cases of software development projects, these studies describe contribution barriers. Third, some
studies describe how new developers join FLOSS projects. Fourth are studies that explicitly try
to uncover or collect contribution barriers.

Subsection 1.3.1 discusses the rationale and implications of the above definition of the term
contribution barrier and related definitions. The remaining part of this section describes related
work of the four named types of research in detail.

10

1.3 Contribution Barriers

1.3.1 Rationale of the Definition

The definition of contribution barrier as stated at the beginning of this section is purposefully
limited to source code contributions and excludes other types of contributions such as support to
other users, documentation, or administration of a web site. These types of contributions also
have their barriers, but they can be very different to the contribution barriers as defined here and
therefore require a separate analysis that is outside the scope of this thesis.

The definition presupposes motivated people. This separates the broad field of contributor
motivation as discussed in Section 1.2 from contribution barriers.

A contribution barrier only needs the ability to prevent contributions and does not need to
have prevented actual contributions to be seen as a contribution barrier. This is necessary as
otherwise the context would influence which properties of FLOSS projects are contribution
barriers and which are not. If the definition would omit this generalization, changes to the
management of a FLOSS project would constitute new contribution barriers only after the
changes had prevented contributions. Thus, the change of management itself would not impact
contribution barriers directly, which would complicate discussions of those changes. Additionally,
it would be impossible to discuss contribution barriers independently from specific FLOSS project
contexts. Nevertheless, although a FLOSS project’s context is independent from the existence of
contribution barriers, the context has a strong influence on their importance. Thus, the context
has to be taken into account when evaluating contribution barriers.

Some research, for example that of Davidson et al. [Dav+14a], takes personal barriers into
account. Personal barriers fulfill the definition of contribution barriers except that they are
properties of the potential contributor and not of the FLOSS project. These personal barriers have
been excluded from the definition because they either originate in a FLOSS project’s contribution
barrier, in which case their separate consideration as personal barriers would be redundant, or
they are not caused by the project, in which case there is nothing a FLOSS project could do about
them.

Finally, while the definition is limited to FLOSS projects, a closed-source software development
project may have properties that are equivalent to contribution barriers of FLOSS projects.
Consequently, these properties may hinder development in the closed-source software develop-
ment project. Thus, research results on contribution barriers can be applicable beyond the scope
of FLOSS, but FLOSS is the medium of research. For example, a complex source code structure
is difficult to understand for newcomers in both FLOSS and closed source projects. By definition,
it is a contribution barrier only for FLOSS projects, but it is likely that closed source developers
experience the same kind of difficulties as FLOSS developers when dealing with a complex
source code structure.

As annunciated in Section 1.1.4, analogously to the structure of motivations, there are usage,
modification, and submission barriers. Only modification and submission barriers constitute
contribution barriers, as these directly hinder the contribution. Usage barriers will only be
considered if they are characteristically more important for the modification than for the usage.
For example, problems with the download of the application binaries is a usage barrier and
will not be considered as contribution barrier, as the download is not even necessary for the
modification — a newcomer may want to compile the application from source code anyway.
On the other hand, if the FLOSS project develops a library, the libraries’ compilation can be

11

1 Introduction

considered a contribution barrier, even if some users compile the library only for usage in their
own applications. Borderline cases are rare, though, and the differentiation between pure usage
barriers and contribution barriers is usually not difficult in practice.

The other end of the community spectrum also has its barriers: Occasional source code
contributors, the co-developers, may have to overcome hurdles before they gain commit and
review rights and become core developers. Section 1.1.2 already described related research from
Zhou and Mockus on predictors for LTCs [ZM12]. These types of hurdles can be assumed to be
very different to contribution barriers and are therefore also out of the scope of this thesis.

1.3.2 Specific Contribution Barriers

Section 1.1.2 describes the joining script as the activity an outsider has to perform to become a
developer of the FLOSS project. The joining script is an informal, social process and therefore at
most only partially documented. Adherence to the joining script can involve effort and therefore
constitutes a contribution barrier by itself. [KSLO3]

Furthermore, Jensen and Scacchi [JSO7] observed that the joining script can be so sophisticated
that mere understanding the joining script can be difficult for newcomers. Thus, understanding
the joining script can be a contribution barrier. They further claim that this contribution barrier
can be on a par with the technical contribution barriers.

FLOSS projects employ policies enforcing that submitted patches fulfill given requirements
before the patches are merged into the main code repository. Successful code reviews from core
developers of the patch are an omnipresent requirement. Rigby et al. [RGS08] described that
these requirements may impose submission barriers. Slow code reviews frustrate the submitter.
Furthermore, first contributions often do not adhere structural requirements. For example, a single
patch file may include changes solving multiple issues, which may be against the policy.

The first and most difficult task when working on a new project is its first build, according
to Fitzpatrick [SF09, p. 70f]. The first build requires setting up the IDE, solving issues with
platform compatibility and library dependencies. Phillips et al. [PZB14] showed that builds often
require substantial effort. The analyzed commercial companies maintained dedicated teams for
the build. This shows that the effort required for the build may surpass the effort a possibly
voluntary FLOSS developer may be willing to invest.

Midha et al. [Mid+10] proved statistically on 450 FLOSS projects that a low cyclomatic
complexity [McC76] correlates with a high number of contributions from new developers.
Therefore, a high cyclomatic complexity is a contribution barrier.

In an analysis of 1.4 million developers on GitHub, Terrell et al. [Ter+16] found evidence that
gender-related factors influence the probability that a patch submission is accepted. The first
result shows that women’s patches are more likely to be accepted than men’s. However, they
argue that this is not related to the FLOSS project but to the developer and therefore does not
qualify as a contribution barrier as per the definition of this thesis. They also show that acceptance
rate drops if the author’s gender is recognizable and that this effect is stronger for women than
for men. Thus, sensitivity to the gender of newcomers and possibly to their self-portrayals is a
contribution barrier.

12

1.3 Contribution Barriers

1.3.3 New Developers in General Software Development Projects

Brooks [Bro95, Chap. 2] analyzed the effect of new developers on the schedule of a software
development project. The new developers require training, so existing trained developers are busy
mentoring the new developers and are less productive during that time. Brooks’s Law simplifies
this dilemma as “Adding manpower to a late software project makes it later”.

Sim and Holt [SH98] observed seven patterns occurring when new developers join a software
development project. They derived these patterns in an exploratory case study, in which they
interviewed four new developers in software development project. They also described a course
that they introduced for new developers. They believed that the course remedies some of the
obstacles identified in the patterns. The exploratory study tried to carve out possible problems of
new developers joining a software development project but did not quantify them. Consequently,
it is unclear which of the patterns are specific to the software development project of their case
study and which apply generally. Nevertheless, they found as a common theme among the seven
patterns that some tasks are more frustrating than others and this does not depend very much on
their difficulty or the time required to solve them, but in their perceived usefulness. For example,
pattern three states that administrative tasks not directly related to the programming job are
frustrating, while even difficult programming tasks do not decrease the motivation to work.

This finding may be even more important in the context of FLOSS, where there are often no
external incentives for the work like the salary in closed-source software development projects.
If a volunteer developer must perform a frustrating task in order to join a FLOSS project, the
developer possibly refrains from joining the FLOSS project. Thus, frustrating, required tasks are
by definition contribution barriers.

Begel and Simon [BS08] also stated that a problem that hinders new software developers from
being productive, i.e. programming, “frustrates them” [BSO8]. They observed eight new software
developers at Microsoft over a period of about two months. These new software developers joined
Microsoft immediately after leaving University and therefore had no or almost no experience
in professional software development. Hence, the focus of their study lay on novices joining a
software development project and not on experts joining a software development project, which
would presumably better represent the situation of an onboarding newcomer in a FLOSS project.
However, they identified some difficulties that may also apply to expert newcomers. Concretely,
they collated the difficulties into the five categories Communication, Collaboration, Technical,
Cognition, and Orientation. A central, cross-domain difficulty is asking others for help. The
decision when to ask others for help is a Communication and Cognition difficulty, and whom
to ask for help is an Orientation difficulty. The new developers feared that asking too many
questions could be interpreted as a sign of incompetence, and therefore had a tendency to spend
hours on problems that could have been solved quickly with the help of a more senior teammate.
Collaboration difficulties comprised reluctance to urge other teams to finish prerequired legwork,
and reluctance to decline tasks if they exceeded the new developer’s time capacities. The later
difficulty resulted in bad prioritizations. In the Technical category, the study concluded that
“tools [...] were often a source of difficulty”. Participants had trouble to use the VCS, they
had no access to test systems, and the development environment was unfamiliar. They also had
difficulties to locate the position in the source code to be modified to implement a given change
request.

13

1 Introduction

In a qualitative study based on Grounded Theory, Dagenais et al. [Dag+10] interviewed 18
experienced software developers at International Business Machines Corporation (IBM) who
recently joined an ongoing software development project. They determined “Orientation Aids”
that helped the developers naturalize in a software development project, and “Obstacles” that
made the naturalization harder for them. They classified items in the four categories “Early
experimentation”, “Internalizing structures and cultures”, “Progress validation”, and “Cross-
Factor”. There are three obstacles in the early experimentation phase: First, setting up a working
IDE took between one week and two months. One of the interviewed developers dubbed this
setup time as “lost”, so this developer perceived the IDE setup as less desirable than the main
job, which is programming. The second obstacle are tools unique to the project, which is closely
related to the first obstacle. Third, and contrary to Sim and Holt, upfront courses were seen as a
cumbersome duty and slowing down the naturalization with the technical and social environment.
A lack of documentation was the only obstacle for internalizing structures and cultures. The
category progress validation comprises the three obstacles “Inadequate/No Feedback”, “Sensitive
Tasks”, and “unprofessional/no feedback”, but the paper referred to them only superficially and
never defined them, so it remains unclear what these obstacles are exactly and how they differ
from each other.

Yates [Yat14] also used Grounded Theory to analyze mentoring. She approached mentoring
from the program comprehension perspective and described current problems and improvements
of onboarding sessions, in which experts transfer knowledge to new developers. Improvement
suggestions were mostly micro-optimizations of onboarding sessions, but they also hint at general
contribution barriers: Setting up the development environment is difficult for new developers,
and each project uses its own terminology that new developers have to learn before they can
communicate effectively.

1.3.4 Joining FLOSS Projects

Herraiz et al. [Her+06] analyzed the joining scripts of the GNOME project [P*Thel5e]. They
recognized that there are multiple different ways to join GNOME as a developer. In particular, 7
of 8 analyzed volunteers joined GNOME adhering the onion model described in Section 1.1.1:
They first post a message on the mailing list and only afterwards they report a bug, submit a
source code modification, and eventually gain commit rights to the VCS. All members of a second
group of 12 employees and university staff members used a different sequence, starting almost
simultaneously with a message in the mailing list, bug reports, source code submissions, and
VCS commits. However, the results may be seen as debatable, since the raw data presented in the
paper seem to contain exceptions to those sequences described in the test.

Weiss et al. [WMZ06] showed that developers sometimes join FLOSS projects in groups: there
are cases where multiple developers that collaborate in one FLOSS project join another FLOSS
project together. In these cases, social contribution barriers are presumably lower than in cases
where an outsider wants to join a FLOSS project, because only in the latter cases all developers
are unknown to the outsider.

Bird et al. [Bir+07] found that joining a FLOSS project requires the acquisition of project-
specific skills. This acquisition takes time. Table 1.1 shows the median times newcomers need for
their first patch submission and acceptance for the three FLOSS projects Bird et al. had analyzed.

14

1.3 Contribution Barriers

They also showed that motivation to join a project declines over time after initial contact with
the project. Although the study did not explicitly state this, consequentially FLOSS projects that
require long naturalization will gain less new developers.

Table 1.1: Time needed to acquire project-specific skills [Bir+07]

Median time after the first email to the mailing list until ...

FLOSS project ... first patch submission ... first patch acceptance
Postgres 2. month 3. month

Apache 2. month 10. month

Python 6. month 13. month

Jergensen et al. [JSW11] found evidence that the majority of FLOSS developers dedicatedly
use the VCS system, and no social mediums like mailing lists. One explanation they proposed is
that these developers may have socialized in related FLOSS projects and therefore were already
well-known in the community of the FLOSS project. This indicates that prior exposure to FLOSS
projects reduces the effect of social contribution barriers.

Practitioners have also reflected on joining scripts. Turnbull [Tur14] exposed the key parts
of typical joining scripts from a practitioner’s view. He emphasized the importance of polite
communication both of newcomers as well as of existing developers of a FLOSS project, and
explained that lack of kindness can be a contribution barrier. The technical part may sometimes be
the easier part of a contribution to a FLOSS project than engaging in its culture and community. He
pointed out that the setup of the development environment is the first step of a code modification.
This must therefore be “incredibly easy”, as newcomers may not have acquired a high enough
modification motivation yet to overcome considerable modification barriers. He argued that
contribution barriers can be lower when the first modifications are on documentation and tests:
Both are often neglected in FLOSS projects and thus the community welcomes this type of
contributions. Another modification barrier is the lack of readability of the code, and code
comments can lower this modification barrier.

1.3.5 Exploring Contribution barriers

Von Krogh et al. [KSLO3] first described the concept of a “contribution barrier” in their analysis
of the Freenet project. They explained that for each module of a FLOSS project, the contribution
barrier is a set of the following four hurdles that prevent newcomers from modifying that module:

1. The module itself can be difficult to modify.

2. The programming language of the module may be unfamiliar to newcomers or just unsuited
for the task.

3. The architecture of the FLOSS project may lack Application Programming Interfaces
(APIs) to add new modules.

15

1 Introduction

4. Tight coupling between modules may require newcomers to modify more modules than
they are willing to.

These contribution barriers were derived from interviews of developers of the Freenet FLOSS
project. These contribution barriers are therefore specific to Freenet and to the time of the
interviews.

Practitioners also reflected about contribution barriers. Naramore [Nar10] asked the developers
among her Twitter followers who had not yet contributed to a FLOSS project via a Twitter poll for
their reasons to abstain from contributing. She received 264 responses. The three most frequent
replies had the following order: First, they did not have enough time. Second, they were “not sure
where or how to contribute”. Third, they lacked confidence in their skills. She also suggested
some techniques to lower these contribution barriers.

Sethanandha et al. [SMJ10a] analyzed contribution processes in FLOSS projects. First, they
reviewed current literature and then examined 10 FLOSS projects. The literature review yielded
four specific submission barriers, specifically

o differences in tool sets between projects,
e long delays for reviews,
o lost patches that never receive a review, and

e rejected patches.

Steinmacher et al. collected contribution barriers [Ste+14a; Ste+15a] from different sources:
They mined the mailing list as well as the issue tracker of the FLOSS project Hadoop and
interviewed 11 people who failed joining Hadoop [Ste+13], monitored nine students joining
FLOSS projects in a controlled experiment [Ste+14b], analyzed existing research in a systematic
literature review for contribution barriers [SSG14; Ste+15b], and interviewed 36 developers of
nine different FLOSS projects [Ste+14a].

With the results of the individual studies, Steinmacher et al. created a hierarchical classification
for 58 individual contribution barriers. Contrary to the definition in this thesis, the classification
contains a category Newcomers’ Characteristics that includes 17 barriers not depending on
the FLOSS project but only on the newcomers. Aside from Newcomers’ Characteristics, five
categories remain. Reception Issues and Cultural Differences comprise social barriers related to
the communication with the FLOSS project’s community. Contribution barriers in the category
Documentation problems cover different kinds of missing, incorrect, incomprehensible, and
inaccessible documentation. Notably, problems with code comments also fall into this category.
Steinmacher et al. also proposed the category Newcomers need orientation that describes how
newcomers may have difficulties to understand the technical and organizational structure of the
FLOSS project. The largest category of contribution barriers is Technical Hurdles depicted in
Figure 1.4.

As shown in Figure 1.4, Technical Hurdles comprise a hierarchy consisting of five sub-
categories. Local Environment Setup Hurdles contains the only technical hurdle for which
Steinmacher et al. found evidence in all four data sources, “Building workspace locally”. The

16

L1

Technical Hurdles

[

Code/Architecture
Hurdles

|

Change Request
Hurdles

Local Environment
Setup Hurdles

[

\

Code Characteristics

Cognitive Problems

Instability

—{ Bad Code Quality | Understanding
the Code

Code Complexity/ Under_standlng

| Architecture/

Code Structure

— Codebase Size

Understanding Flow
of Information

Lack of Information
—{ on How to Send
a Contribution

Delay to Get
— Contribution
Accepted/Reviewed

Building
Workspace Locally

—— Platform Dependency

Getting Contri-
bution Accepted

— Library Dependency

— Bad Design Quality

Lack of Code
Standards

— Outdated Code

Issue to Cre-
ate a Patch

Finding the Cor-
rect Source

Figure 1.4: Steinmacher et al.’s contribution barrier category Technical Hurdles [Ste+14a]

SIOLLIBG UONNqQLIuo)) €]

1 Introduction

category Change Request Hurdles encompasses technical submission barriers occuring after
the source code modification is already complete. Another technical hurdle with substantiated
evidence is “Understanding the code”. However, its category name Cognitive Problems suggests
that Steinmacher et al. saw this more as a problem of the newcomers instead of a contribution
barrier that the FLOSS project induces. Possible sources inside the FLOSS project for these
problems of contributors are barriers in the category Code Characteristics. This category com-
prises modification barriers such as “Bad Code Quality” and “Codebase Size”, for both of which
Steinmacher et al. presented sound evidence.

Davidson et al. specialized on older developers in FLOSS projects, which includes those older
than 50 years by their definition. As part of this research, they also collected contribution barriers
that these older FLOSS developers experience. They interviewed 11 older FLOSS developers
and 6 FLOSS maintainers [Dav+14b], and they performed a diary study with 4 older FLOSS
developers in the process of joining their first FLOSS project [Dav+14a].

In the interviews, 5 of the 11 older FLOSS developers stated that they experienced technical
challenges on their first contribution, and 2 mentioned social challenges on their first contribution.
The technical challenges included difficulties understanding the source code, and adopting to the
development environment. [Dav+14b]

The diary studies identified lack of communication as the most important contribution barrier,
followed by problems setting up the development environment, and insufficient documentation.
Other contribution barriers were mentioned, but much less frequently. [Dav+14a]

Gousios et al. [GPD14] mined GitHub for data about patch submissions, or “pull requests” in
GitHub terminology. This included reasons for rejections. After a rejected patch, a developer may
improve the patch or submit a patch for another issue, and therefore still join the FLOSS project
as a developer. A patch rejection nevertheless constitutes a contribution barrier [SMJ10a], as
co-developers are likely not to submit a patch again after rejection [Bay+12]. Thus, the reasons
for rejection also indicate contribution barriers.

Of all patches identified as rejections (excluding the merged, deferred, and unknown reasons
described in the paper), the reasons for rejection were

e in 43 % of the cases, another developer was currently developing or already had developed
the same feature,

e in 24 % of the cases, the submitted patch was erroneous or otherwise incorrect,
e in 17 % of the cases, the patch did not fit the FLOSS project’s strategy, and

e in 16 % of the cases, the submission deviated from the FLOSS project’s submission
procedures.

Tsay et al. [TDH14] also mined GitHub to study patch submission, but focused on predictors
for acceptance of a patch. The predictors split into three groups: First are predictors directly
related to the patch, like the number of files that have been modified. Second are predictors related
to the contributor. Third are predictors related to the FLOSS project. In all categories, the study
found multiple statistically highly significant predictors. The three project-related predictors are
the age of the FLOSS project, its number of developers, and a measure for the popularity of
the FLOSS project among the developer community. All three predictors decrease the chances

18

1.3 Contribution Barriers

of acceptance statistically highly significantly. The FLOSS project’s popularity has the highest
impact of the three predictors. Among the most influential predictors in general is the social
distance between contributor and the FLOSS project’s community. As one interpretation, new
developers who have not yet arrived in the FLOSS project’s community may have difficulties to
get their contribution accepted.

Gousios et al.’s [GPD14] finding that the cause for 43 % of the rejections is redundant
development of a patch by multiple developers yields another interpretation: Developers watching
a FLOSS project closely notice more quickly if there is a parallel development and may resolve
the redundancy before anybody submits a patch. Thus, those developers do not submit redundant
patches to be rejected.

1.3.6 Summary of Contribution Barriers

There are multiple possible classifications of contribution barriers. This thesis mostly differentiates
between modification and submission barriers. Another remarkable classification distinguishes
between social and technical contribution barriers. Other classes in this classification are political
and juridical contribution barriers, for example requiring the contributor to sign a contract that
the contributor’s employer does not allow or a country’s export restrictions to source code
implementing strong cryptography. However, political and juridical contribution barriers seem to
have almost no relevance in research.

There are systematic studies of contribution barriers, but they rely on a thin empirical foun-
dation. Anyhow, Steinmacher et al. [Ste+15a] aggregated multiple of those studies to come to
more reliable conclusions. Assured or even quantitative propositions about contribution barrier
incidence are not possible from existing research, but some contribution barriers stand out:

o Installation, configuration, and familiarization with the tools in the development environ-
ment. This applies particularly to tools unique to the software development project. This
barrier exists not only for FLOSS projects, but is also well documented for closed source
software development projects. [SFO9; Dag+10; SMJ10a; Turl4; Ste+14a; Dav+14b;
Dav+14a; Yat14]

e Redundant work is a frequent reason for rejected patches. Surprisingly, only one study
indicates this problem, although the study founds on a large data set. [GPD14]

e Low quality source code impedes contributions [KSLO3; Turl4; Ste+14a]. Specifically a
high cyclomatic complexity is a contribution barrier [Mid+10]. Although this barrier is
not limited by design to FLOSS projects, I found no research connecting this problem to
closed source projects. However, the barrier is difficult to detect in small data sets as they
are typically available to studies of closed source systems.

e Understanding the joining script and adhering it is a contribution barrier by itself [KSLO3;
JSO7; Ste+14al.

o The patch review process involves different steps that can be contribution barriers [RGS08;
SMJ10a; Ste+14a].

19

1 Introduction

e Several studies observed lack of documentation and difficulties with communication or
general understanding [Ste+14a; Dav+14b; Dav+14a]. It remains unclear whether other,
more specific contribution barriers are the underlying cause for these observations. This
may be a modification or a submission barrier, and existing research offers little pointers to
one direction or the other, because they most commonly do not distinguish between the
two types of contribution barriers.

Generally, tasks become contribution barriers if they are frustrating. Some tasks are not frus-
trating and therefore do not act as contribution barriers, even if they are time-consuming. [SH98;
BS08]

The onboarding phase takes between 3 and 13 months in median from the first involvement
with the FLOSS project till the first acceptance of a patch [Bir+07]. The specific duration depends
on the FLOSS project and on the newcomer. During the onboarding phase, existing developers
need to spend resources to support the newcomers with onboarding. This costs resources that
cannot be used for actual development. This is also a consequence of Brooks’s Law [Bro95,
Chapter 2], which will be discussed in the next section in more detail.

1.3.7 The Effect of Lowered Contribution Barriers

Steinmacher et al. [Ste+15a] discussed two potential problems of lowered contribution barriers.
First, a higher number of co-workers in a cooperative work increases the coordination overhead
and may therefore ultimately decrease productivity. Second, contribution barriers may act as
gatekeepers that filter out those newcomers who lack technical or social skills or otherwise just
do not fit into the FLOSS project’s community. This section incorporates Steinmacher et al.’s
discussion of these problems including counterarguments and further reflects on the effects of
lowered contribution barriers.

Brooks’s Law

Brooks [Bro95, Chapter 2] discussed the problem of increased coordination overhead by adding
manpower to software projects. He argued that there are generally partitionable and unparti-
tionable tasks. While the former will speed up when assigning additional workers to them, the
latter will not benefit. Furthermore, adding workers has two disadvantages: New workers need
training before they perform well, and a task may need intercommunication between its workers.
Both negatively affect existing workers, because they must train the new workers and coordinate
with them instead of their actual work. This lost performance may be greater than the added
performance of the new workers, at least in the short term, so overall performance may actually
decline after adding new workers to a task.

Raymond argued that Brooks’s Law applies only to the core developers of a FLOSS project
and that co-developers need only very little coordination, as they work on easily separable
subtasks [Ray00]. Capiluppi and Adams [CA09] and later Adams et al. [ACB09] found empirical
support for Raymond’s argument against the intercommunication problem of Brooks’s Law in
FLOSS projects. This is a result of the community structure of FLOSS projects: Some are scale-
free networks, in which communication follows a power distribution over the community [Xu+05;

20

1.3 Contribution Barriers

WMZO06]. Nevertheless, the loss of productivity through the training phase does exists [ACB09].
However, the training phase is the lesser of the two problems [Bro95, p. 18].

Other online communities also have barriers for participation. Especially wikis are also similar
to FLOSS development, as they enable their users to contribute to the project. Assuming that
communities of FLOSS and wiki projects have similar mechanics, it is interesting to look at the
equivalent question for wikis: Do wikis suffer from a communication overhead when the number
of contributors grows? Kittur et al. showed that the coordination overhead in Wikipedia increased
over time while Wikipedia has been growing [Kit+07b]. Kittur and Kraut showed that this also
applies to other wikis: More contributors result in more inefficiency [KK10].

Contrary to Brooks’s Law, research has shown that a high influx of new developers is related to
the success of FLOSS projects [Sch+08; CSD10; CLMO03; CAHO03]. Additionally, Brooks argued
that complex applications need large development teams to be successful, even if they are less
efficient [Bro95, Chapter 3].

Contribution Barriers as Gatekeepers

Overcoming technical contribution barriers requires technical skill, and only those newcomers
with social skills overcome the social contribution barriers. Thus, contribution barriers keep out
newcomers with a lack of technical or social skills. Having a smaller group of skilled developers
may be better than a larger group of mostly less skilled developers. Thus, the contribution barriers
may positively act as gatekeepers for the FLOSS project. [Duc05]

Indeed, Sackman et al. found high performance differences of 25 to 1 between skilled and
unskilled programmers [GS67; SEG68]. Unskilled programmers would therefore aggravate
the problem of communication overhead described above, as their minor contributions cannot
compensate the communication overhead necessary for their integration into the development
team. However, Prechelt showed that the original figures of 25 to 1 were based on methodological
problems and the interpersonal variation is in fact only between 2 to 1 and 4 to 1 [Pre99].
Consequently, technical contribution barriers have at most a low value as gatekeepers for technical
skills.

Social contribution barriers presumably also do more harm than good: On the one hand,
Ducheneaut [Duc05] argued that contribution barriers help filter out those individuals who do
not fit into the FLOSS project. On the other hand, he admitted that contribution barriers are
also problematic for the useful newcomers. Furthermore, advertising social requirements more
explicitly, for example rules of netiquette [Ham95], would reduce the social contribution barriers
that these social requirements cause: newcomers could socialize more quickly and with less
problems.

Again, a comparison to wikis may yield additional insights. Do wiki contribution barriers have
a positive value as gatekeeper or do they lower the performance of a wiki project? Kittur et al.
found that a group of very involved core contributors in Wikipedia provided an initial thrust to
the project, but later on, casual contributors became more and more important for the overall per-
formance of Wikipedia [Kit+07a]. Kittur and Kraut also proved that article quality in Wikipedia
improved with higher numbers of contributors, and that this is only possible with increased
communication [KKO08]. This is an analog to Linus’s Law of FLOSS development [Ray00,
Rule 8]. Thus, more contributors in Wikipedia increase the quality but also the communication

21

1 Introduction

overhead, but the output of the additional contributors is still greater than the communication
overhead they induce.

The Long Tail of Contributors

A number of contribution barriers identified in this section affect only newcomers. Regular
developers may contribute without the need to overcome the contribution barriers. Newcomers
presumably differ in their tolerance to contribution barriers. This tolerance depends partially
on the work time a newcomer is willing to invest into the FLOSS project. Newcomers who are
willing to contribute only little to the FLOSS project have a low tolerance, but their contribution
is small anyway. Thus, one might conclude that lowering the contribution barrier will bring
only little benefit to the FLOSS project. However, all newcomers with small contributions taken
together may provide a large accumulated contribution. This subsection presents an argument for
this point of view.

Figure 1.5 shows a simplified diagram of the different developers’ contributed work time to
a given FLOSS project in a given time frame. Figure 1.5 is not based on empirical data and
is only intended to visualize the rationale of the argument. The y-axis shows the work time
each individual developer is willing to spend on the FLOSS project in a given time frame, and
assumingly at the same time the tolerance to contribution barriers. The developers on the x-axis
are ordered by the time they are willing to spend on the FLOSS project in the given time frame,
i.e. by the value on the y-axis. There are c full-time developers and d — ¢ new part-time developers.
Of course, this is one of the simplifications, as there may be part-time developers who are not
new to the FLOSS project. For new part-time developers, the effective work time used to actually
improve the FLOSS project is reduced by the time needed to overcome the contribution barriers.
If the time needed for the contribution barriers is higher than the time a part-time developer is
willing to spend on a FLOSS project, this part-time developer will not spend any work time to
actually improve the FLOSS project. When the contribution barriers are reduced, new part-time
developers can spend more time on actual improvements, because they need less time for the
contribution barriers. Reducing the contribution barriers also increases the number of new part-
time developers, as there are some part-time developers who are willing to spend more time on
the FLOSS project than the time needed for the reduced contribution barriers, but not for the
original contribution barriers. In Figure 1.5, this increased number of developers after lowering
the contribution barrier is .

Thus, even small reductions to the contribution barriers may increase the number of contributors
more than proportional. Lowered contribution barriers may therefore change the community
structure of FLOSS projects towards much higher fractions of occasional contributors. According
to Linus’s Law, this improves the quality of the application of the FLOSS project [Ray00, Rule 8].

1.4 Research Goals

The preceding part of the chapter gave an overview of the current state of research on FLOSS
communities and their joining processes. It focused on contributor motivations and contribution
barriers. This section describes three open research questions that this thesis is going to answer.

22

1.4 Research Goals

netto work time for the proj‘ect —
work time won by lowering the contribution barrier mmm
work time still needed for the contribution barrier s

¢ = Number of core developers
d = Number of developers with high contribution barrier

n = Number of developers with lowered contribution barrier

‘Work time invested per developer
into the project in a given timespan

C d n

Developers ordered by contributed work time

Figure 1.5: Model of the distribution of work time contributors are willing to spend on the FLOSS
project

1.4.1 Identification of Contribution Barriers

While the existing research identified individual contribution barriers, there is no complete and
empirically founded theory of contribution barriers and their importance. This is the goal of the
first research question of this thesis:

Research Question 1. Which contribution barriers exist and which are important for newcomers
to FLOSS projects?

Chapter 2 approaches this first research question with surveys of newcomers to FLOSS projects.

These allow a quantitative analysis of contribution barriers.

1.4.2 Lowering Contribution Barriers

As described previously, lowering contribution barriers is desirable. The results of the first
research question show which contribution barrier are relevant, but not how they might be
lowered or circumvented. This leads to the second research question:

Research Question 2. Which practices or techniques lower contribution barriers?

Patterns are a format to present problems and their solutions in a comprehensible way. This
makes them well suitable to structure available management techniques for FLOSS projects,
especially those that lower contribution barriers.

23

1 Introduction

In fact, different groups of authors have authored patterns dealing with the management of
FLOSS projects, e.g. [Wei09; Lin10]. However, these FLOSS patterns are scattered among various
publications that have drawn only few connections between them. Yet, patterns cannot stand
on their own but are part of a pattern language [Ale79] and are not completely understandable
without the context of a pattern language [CHO5a].

Thus, this thesis compiles a pattern language for FLOSS in Chapter 3. It details FLOSS
patterns that lower contribution barriers and links them to the contribution barriers identified in
Chapter 2. These FLOSS patterns and the FLOSS pattern language are an answer to the second
research question.

1.4.3 Wiki Development Environments?

Wikis are web applications that store and show content to its users and provide the means to
let users edit the content. They treat all users as contributors [LCO1; Ebe+08]. This is the wiki
principle.

The content of wikis is usually text. Wikipedia [P*Wik16d] is an example for a wiki with
textual content. Textual content is not a requirement for the wiki concept to work, though:
OpenStreetMap [P*Opel6c] is a wiki with maps as content. OpenStreetMap enables its users to
edit the maps using only their web browsers. Thus, OpenStreetMap proves that the wiki concept
is not restricted to textual content. Another example for a wiki with more than only textual
content is FlowWiki [Jun+11]. FlowWiki allows its users to modify workflows. These workflows
can interact with each other. This leads to the questions whether such an integrated system based
on wiki principles could also be used for software projects:

Research Question 3. Can wiki principles be used to minimize contribution barriers?

Approaching the third research question, this thesis explores how to adopt the wiki principle
to software development. This results in a Wiki Development Environment (WikiDE), which is
both an IDE and a wiki system. Such a WikiDE must fulfill the requirements of both an IDE and
a wiki system, which imposes special conceptual challenges.

Individual components necessary for the realization of a WikiDE already exist. These com-
ponents are not easily integrated, though. A WikiDE needs an architecture that integrates these
components, possibly with adaptations, into a single platform.

WikiDEs reduce or lower contribution barriers identified in the first chapters of this thesis.
WikiDEs realize some of the FLOSS patterns lowering contribution barriers and even advance
some of them. They also tackle contribution barriers for which isolated countermeasures described
by FLOSS patterns do not suffice. However, some FLOSS patterns complement WikiDEs, and
can be implemented in addition to them.

Chapter 4 derives which requirements a WikiDE must fulfill and discusses how to realize
a WikiDE. This involves the general architecture of a WikiDE and how to adapt individual
components to the requirements of a WikiDE. A Proof of Concept (PoC) realization documents
the feasibility of the approach.

2A preliminary version of this section was published previously [GH12b].

24

2 Contribution Barriers to FLOSS Projects

This chapter addresses the research question described in Section 1.4.1: Which contribution
barriers decrease a newcomer’s willingness to contribute source code to a FLOSS project?

This main research question implies more specific research goals. Which contribution barriers
exist? Which contribution barriers are easier to overcome and which are more difficult? What
factors influence whether a specific contribution barrier affects a specific newcomer?

To approach these open questions, this chapter presents two surveys and their analyses. A first,
exploratory survey in Section 2.1 provides qualitative insights about the nature of contribution
barriers. These insights allow a more precise formulation of the above-stated research questions,
the formulation of testable hypotheses about contribution barriers, and thereby clear the path
for the second, quantitative survey. The structure of this main survey is outlined in Section 2.2.
Sections 2.3 to 2.5 detail the results of the main survey. These results allow statistical tests of
the previously formulated hypotheses. Section 2.6 presents and discusses the results of these
statistical tests. Threats that endanger the validity of the survey and applied countermeasures
are the subject of Section 2.7. A new model for joining FLOSS projects based on the surveys’
findings is the subject of Section 2.8. Section 2.9 summarizes and concludes the chapter.

2.1 Exploratory Survey'

The goal of the exploratory survey was to get a realistic impression of the challenges developers
face as they take the first steps toward contributing to a FLOSS project. Mailing lists, issue
trackers, and other public archives of project communication are biased by the large amount of
experienced FLOSS developers active on these channels.

Instead, an online questionnaire was sent to 664 professional software developers from six
organizations (five software companies and one university). These developers work on commer-
cial software development projects across a variety of technologies and domains. Most of these
people are very experienced developers who use FLOSS in their projects, but their employers
have no particular policy or focus on making active contributions to FLOSS projects, so there
is no institutionalized support for making contributions, and any such endeavors stem from the
employees’ own motivation. Such an environment is a rather common starting point for most
potential FLOSS contributors.

22 participants out of this audience responded to the invitation. The invitation explained that
anyone who has modified the source code of a FLOSS application may fill out the questionnaire.
A possibly large fraction of the invited software developers had never modified the source code
of a FLOSS application and therefore refrained from participating in the survey. This explains
the relatively low return ratio of about 3 %. It means that findings need to be interpreted with a

' A preliminary version of this section was published previously [HBG14].

25

2 Contribution Barriers to FLOSS Projects

grain of salt. While the low return ratio does not suffice for a representative picture, the target
population was reasonably broad and the answers provide indications of common contribution
barriers for further analysis.

Two kinds of contribution barriers will be relevant for this survey: First, modification barriers
hinder or prevent work on the source code of the FLOSS project. Second, submission barriers
hinder or prevent developers from submitting this work back to the FLOSS project. While some
FLOSS developers may work on the source code of a FLOSS project only because they want to
submit their work back to the FLOSS project, this is not generally true. Some software developers
may as well solve the problems they currently experience with a FLOSS application and not
submit those changes back to the FLOSS project.

Analogously to the contribution barriers, motivations also exist as modification motivations
and submission motivations. Additionally, usage motivation determines why a developer gets
involved with the FLOSS project in the first place. While usage barriers do also exist, they are
not part of this survey.

In this exploratory survey, the distinction between modification and submission barriers is only
implicit. The three kinds of motivations, however, are explicitly treated differently.

The questionnaire has undergone a pretest. As a result of the first pretests, the wording
improved and some of the questions got simpler. Further pretests ensured comprehensibility and
eventually the pretesters did not indicate any ambiguities in the questions anymore. The survey
questions use the term Open Source Software (OSS) instead of FLOSS, because OSS is more
familiar to the participants.

2.1.1 Demography

The questionnaire first asked respondents to categorize their FLOSS contribution experience.
4 participants that had never modified the source code of a FLOSS project were excluded from the
rest of the questionnaire. The remaining participants had modified the source code of a FLOSS
project. However, 5 developers did not answer any further questions, so 13 respondents who
completed the whole questionnaire remained. Out of these, 4 developers indicated that they had
only modified FLOSS source code, while 9 developers responded that they had also successfully
submitted patches to projects.

Next, the questionnaire asked which FLOSS project they had modified, and in which year the
modification was made. The participants were prompted to consider only the first modification
to each FLOSS project, not succeeding modifications to the same FLOSS projects, because
only the first modification involves the typical contribution barriers. Following questions in the
questionnaire often referred to this FLOSS project. In this report, the question text will read
“project PROJ” where the actual participants were shown the name of the project they entered in
this question.

While many existing surveys focus on a small number of specific FLOSS projects and thus
may be biased by that project’s particular barriers and group dynamics [@J07], all of this survey’s
respondents indicated that they worked on different FLOSS projects, so their experiences have
higher external validity. The majority of modifications was made within the last 1.5 years before
the survey, while some changes also reached back as far as 2004.

26

2.1 Exploratory Survey

2.1.2 Developers’ Motivation

In order to distinguish the different forces motivating the modification of and submission to a
FLOSS project, as well as those hindering contributions, the questionnaire asked all participants
about their general relationship to the project, and their reasons for their first modification of its
source code. Those who had also submitted their modifications back to a FLOSS project were
also asked about their reasons for the submission. With the previously introduced terminology,
the survey sampled usage, modification, and submission motivations of the participants using the
following three questions. Participants could select as many answer items as they liked. They saw
the answer items to Questions 3 and 4 in randomized order and could rank the selected answer
items in order of priority. The bold labels in parentheses were not shown to the participants and
will be used as references throughout the subsequent discussion.

2. What is the relation of you/your organization to project PROJ? You/your organization ...
a) ... use project PROJ yourself.
b) ... provide consulting for organizations using project PROJ.
¢) ... include libraries of project PROJ within your own software.
d) ... want to make project PROJ interoperable with your/other software.
e) ... have some other relation to the project. (with text box)
3. What are the reasons for you or your organization to modify the source code of project
PROJ?

a) The malfunction or missing functionality bothered me/my organization as a user of
the OSS project. (Own Need)

b) The joy of programming and/or the intellectual challenge. (Joy)
c) I wanted to submit the patch. (Submit)
d) Acquiring experience in technologies used by project PROJ. (Learning)
e) Ilike the developers of project PROJ and like to work with them. (Community)
f) Something else (with text box) (Other)
4. Why did you/your organization decide to submit the patch to project PROJ? You/your
organization wanted to ...
a) ... have your changes reviewed by others. (External Review)
b) ... return something, because you feel obliged to do so. (Feeling Obliged)

c¢) ... avoid the work of reintegrating your changes into new releases of the OSS project.
(Stupid Tax)

d) ... gain experience in the procedures of (OSS) projects. (Learning)

e) ... publish the source code, because you believe source code should be open. (Belief
in FLOSS)

f) ... gain respect from the community. (Gain Respect)

27

2 Contribution Barriers to FLOSS Projects

g) ... do something good (altruism). (Altruism)

h) ... gain publicity (for example, you might have wanted to get job offers). (Publicity)
i) ... fight closed source software. (Fight CS)

j) ... achieve something else (with text box). (Other)

The primary usage motivation (Question 2) was the use of the project itself — either as a tool
they used as end users, or as a library they integrated into their own system. Other reasons such
as providing consulting for the FLOSS project, making it interoperable with one’s own products,
or evaluating the project played only a minor role for the respondents.

Figure 2.1 depicts how respondents ranked the answer items to Question 3. Only the highest
ranks 1-3 are shown and answer items are ordered by the number of selections as first rank.
The answers showed a clear picture: The majority of developers made modifications because
a malfunction or missing feature bothered them (Own Need), because they wanted to acquire
experience with the project’s technologies (Learning), and because they enjoyed the intellectual
challenge (Joy). Satisfaction derived from working with the project’s community (Community)
and submitting patches (Submit) were only minor motivators. In an interesting case, one partici-
pant wanted to “preserve part of [the participant’s own] project work spent on the usage of [the
FLOSS component],” i.e. the participant refactored work originally performed outside the FLOSS
component into it, so it could be reused in future endeavors. These results agree with Raymond’s
observation that most work starts from “scratching a personal itch” [Ray00] and especially with
Shah [Sha06] who found that Own Need is the primary modification motivation for newcomers.

Rank 3 ===
Rank 2 mommm
Rank 1 oo |

=)

)

B NN
= =]

D W
S O

Fraction of answers in %

—
=

|

Own Need Joy Submit Learning Community Other

=)

Figure 2.1: Number of ranked responses for reasons to modify the source code of a FLOSS
project (Question 3)

In contrast, submission motivations (Question 4) show more variation, as Figure 2.2 indi-
cates: Having one’s changes reviewed by others (External Review) and avoiding the work of
reintegrating one’s changes into new releases of the OSS project (Stupid Tax) were the most
frequently mentioned and highest-ranked reasons, with a feeling of obligation to return something
(Feeling Obliged) being a close third. These three motivations are an interesting mix spanning

28

2.1 Exploratory Survey

aspects of learning (External Review), pragmatics (Stupid Tax), and ethics (Feeling Obliged).
The complementarity of these factors, between which no compromise is necessary, together
supposedly creates a quite strong motivation that offsets the time and effort involved in submitting
a patch.

Other motivating factors were gaining experience with FLOSS procedures (Learning), belief
in the open source idea (Belief in FLOSS) and altruism (Altruism), as well as to a lesser degree
community respect (Gain Respect) and personal publicity (Publicity). An aversion against
closed-source software (Fight CS) did not play a role among the respondents.

70

Rank 3 ===
Rank 2 oo |
Rank 1 s

Fraction of answers in %

£ & Fe, Sty Le Be[' Gy, Al pllb . O[b Fy
Crngy elu;g 'Dig 7, "Ungy,, et 0 R s licjy, Aer Sht Cg
Vie WOb llé’ed ax & 2F OSSSpeCl m 4%

Figure 2.2: Number of ranked responses for submitting patches to a FLOSS project (Question 4)

The participants who had succeeded in submitting their patch were also asked whether the
expected benefit ultimately merited the invested effort. To each of the following questions, they
could respond on a five-point scale ranging from “far too much effort” to “benefit far exceeds
effort”.

5. Was the benefit of submitting your patch worth its effort?
a) Was your personal benefit worth the effort?

b) Was the benefit for your organization worth the effort?

The respondents uniformly agreed that the benefits of submitting the patch were worth the
effort, some even indicated that the benefits exceeded the effort — another reason for developers’
perseverance in the face of the contribution barriers discussed in the following section, once they
have made the decision to contribute.

In contrast, those participants who had not tried to submit their private modification back to the
FLOSS project were asked about the reason for their renunciation, and could choose any number
of the following options:

6. Why didn’t you submit your modification back to project PROJ?

29

2 Contribution Barriers to FLOSS Projects

a) Others would have no use for this modification.

b) The possibility of publishing the modification just wasn’t considered.
c) Expected time effort was too high.

d) My organization would have lost an advantage over its competitors.

e) Something else (with text box)

The four participants who had decided against submitting justified this in Question 6 with a too
high expected time effort, or the impression that others would have no use for their modification.
In one case, a submission back to the FLOSS project was not provided as a patch, but exchange
of ideas that the maintainer agreed to implement directly later. All developers however at least
considered the possibility of submitting their patch, and losing a competitive advantage was not a
concern for them, so the decision was mostly based on reasons of practicality.

2.1.3 Contribution Barriers

The next questions addressed the contribution barriers experienced by the developers. The first
two question quantitatively assessed the time needed for the modification and the submission.
The last set of questions were open questions and thus asked for free-text answers in order to
receive unbiased impressions of the contribution barriers.

Closed Questions

Based on the tasks required for a FLOSS contribution described in Section 1.1.4 (with some
tasks combined for simplification), the questionnaire first asked all respondents about the time
they spent on each task. Items 7f and 7g that refer to the actual submission of the patch were
hidden from those participants who had indicated that they had only privately modified but never
submitted anything to a FLOSS project. Respondents could select one of the time intervals “up to

LR INNT3 CEINT3 LEINNT3

10 minutes”, “up to 1 hour”, “up to 8 hours”, “up to 40 hours”, and “over 40 hours”.

7. In the whole procedure of submitting the patch, you probably had to finish a couple of
distinct tasks. Possible tasks are listed below. How much time did you spend for each of
these tasks?

a) Download the source code (or re-download current version of the source code)
(Download)

b) Build executable binaries from the source code (Build)
¢) Reproduce the problem you wanted to fix (Bug Repro.)

d) Find the location to change in the source code / find the cause of the problem (Find
the Code)

e) Solve the problem (write code) (Solution)
f) Create a Diff/Patch file (Patch)

g) Submit a bug report including your patch (Submission Procedure)

30

2.1 Exploratory Survey

h) Accomplish tasks not listed above (with text box) (Other)

To reveal hidden effort that the participants had to invest in order to familiarize themselves
with the internals of the FLOSS project, but that had not been related directly to the patch in
question, the questionnaire also inquired about the time spent on any general bootstrapping effort.
Possible answers again were the same time frames as above.

8. How much time did you spend on the following tasks without relation to your patch, before
you started your work on tasks directly related to your patch?

a) Download the source code (or re-download current version of the source code)
b) Build executable binaries from the source code

h) Accomplish tasks not listed above (with text box)

The bandwidth of answers in the survey is shown in Figure 2.3. Finding the cause of a problem
and the right location in the source code (Find the Code) consistently required one of the highest
efforts, with writing the code to solve the problem (Solution) a close second. Obtaining the
current version of the source code (Download), reproducing the problem (Bug Repro.), creating
the patch (Patch), and submitting it (Submission Procedure) took more manageable time. The
highest maximum and arithmetic mean time effort was spent on building the system (Build).

The primary effort drivers Find the Code and Solution, i.e. finding and fixing the problem, are
independent of FLOSS projects — they mirror the general intellectual challenge of programming,
and are addressed by research on program comprehension, debugging, and related fields. Among
the steps that are more specific to the context of joining a FLOSS project, the effort for building
the system (Build) stands out in particular.

However, the time needed for this step also varied widely between participants. This is due
to the variety of programming environments developers need to deal with. For example, one
participant directly modified the source code of a productive system written in the programming
language PHP: Hypertext Preprocessor (PHP). Since PHP is directly interpreted by a web server,
the participant neither needed any work time to download the source code nor to build the
application from source code. Still, the setup of the interpreter environment may be a major
effort in other project environments as well. Another participant who pointed to the setup of the
development environment as the biggest barrier was modifying a component written in Python,
which is also an interpreted language. Thus, for interpreted languages, the work time needed until
the first execution of the application may be as long as the work time needed until the first build
for other projects. This means that some interpreted languages just shift this contribution barrier
from a modification barrier to a usage barrier.

Open Questions

Following these quantitative effort estimates, the questionnaire next asked those participants
who had tried to submit a patch to the FLOSS project about their qualitative experiences with
the contribution barriers. This was deliberately an open question in order to receive unbiased
responses of the contribution barriers that were most prominent in developers’ memories:

31

2 Contribution Barriers to FLOSS Projects

>40h - —_ R
8-40h |- S
1 _ 8 h L | | |
10min-1h |- e R I | |
0 - 10 min \—'—I | | | | | -
O L L ! L L L L \| L]

Down- Bug Find the Submission

load Build Solution Patch Procedure Other

Repro. Code

Figure 2.3: Time spent on tasks required for modifying and submitting code of a FLOSS project
(Questions 7 and 8)

9. What bothered you when submitting the patch to project PROJ?

a) What was the biggest barrier that you encountered while submitting a patch to project
PROJ?

b) Before you submitted the patch to the project PROJ, had the submission procedure of
project PROJ ever discouraged/prevented you from submitting a patch? If so, what
was the specific reason for you not to submit that patch?

Of the respondents who successfully submitted a patch to a FLOSS project, two answered that
they did not experience any barriers. Among the remaining answers, the by far most frequently
mentioned barrier in Question 9 was the setup of the development environment in one form or
another.

In total, the online survey took the participants 10-15 minutes to complete. Respondents also
had the opportunity to pose questions for clarification or indicate difficulties with the questionnaire,
which none did.

2.1.4 Discussion

The survey results indicate that a major part of the contribution barrier is the effort invested until
the first build. This is in agreement with other research as presented in Section 1.3.

At first sight, the difficulty in setting up the build system may be surprising, since the partici-
pants of this survey are professional software developers who are familiar with build systems
and should already have a development environment installed and configured on their machine.
There are two explanations why the familiar development environments do not suffice for the
modifications of the source code of some FLOSS projects. The survey gives merely hints on
which explanation best describes the situation of the participants.

First, developers may not have used the programming language of the FLOSS project before
and need a new development environment for the new programming language. Often, the need for
the FLOSS component may stem from project requirements, but all of this survey’s participants
who found the setup of the development environment to be the biggest contribution barrier also
indicated that they had started to work on the FLOSS component because they wanted to acquire
experience in the technologies it uses. This indicates that developers are willing to tackle the

32

2.1 Exploratory Survey

contribution barrier even if the main reason for working on the FLOSS component is not a
pressing project need, but a learning endeavor.

Second, even if the FLOSS project uses a programming language that the existing development
environment supports, the core developers’ platform may be different from that of the new
software developers, making a platform-specific setup necessary. An example for a FLOSS
project with such limitations is Mozilla: Depending on the subproject and the branch of the
subproject modified, one version of the same development environment may be compatible while
another is not [P*Moz12].

The respondents cited difficulties to access the source code as another contribution barrier.
One participant had been discouraged from submitting patches earlier because there was “no
browse access to the ‘trunk’ version of the source code”. Making it easier for developers to get
all code, tools, and information they need should therefore be part of a FLOSS project’s strategy
for encouraging new contributors, especially given that the technological and intellectual barriers
further down the process are still hard enough, as discussed below.

As a solution to the challenges associated with building binaries from the source code, closed
source projects often use Continuous Integration (CI) systems. These CI systems automatically
check whether modifications are compatible with each other, and test them on a broad range of
platforms. A missing CI system can be a contribution barrier, as one developer in the survey
indicated:

“My productive system had a very special configuration (including dated versions
of some of the components) and I was unable to test my fix against alternative
configurations.”

A prominent example for the use of CI systems is Microsoft executing thousands of tests for
each of their security patches [P*Mic15b]. However, such a number of tests requires dedicated
test servers. Large FLOSS projects may have the financial resources to afford such a CI system.
Mozilla, for example, tests their modifications on different platforms [P*Moz15i]. In contrast,
many smaller FLOSS projects do not maintain their own server infrastructure. Instead, they rely
on software forge services such as Sourceforge [P*Slal5] and GitHub [P*Gitl5c] for their key
infrastructure like VCSs and issue trackers [Rie+09]. However, these software forge services
do not provide CI to FLOSS projects — in fact, the advent of CI systems since 1997 has not had
a significant impact on development practices of FLOSS projects [DR0O8b] even though they
may help to lower the projects’ contribution barrier. Recently, platforms emerged that offer free
CI services to FLOSS projects. Examples include Travis-CI [P*Tral5] (since early 2011) and
BuildHive [P*Clo15] (since May 2012).

2.1.5 Conclusion

This section presented the results of an exploratory survey of professional software developers
to identify contribution barriers that newcomers to FLOSS projects encounter. In contrast to
previous surveys, this survey deliberately did not target typical FLOSS communication channels
(mailing lists, issue trackers, etc.) which might have biased the results to a more expert-dominated
view, but surveyed developers outside the established communities who were asked about their

33

2 Contribution Barriers to FLOSS Projects

experiences in making their first modifications and contributions in FLOSS projects. This way,
the exploratory survey identified two prominent components of the contribution barrier that work
as opposing forces to developers’ motivation to contribute:

e Depending on the specific FLOSS project and platforms of the joining software developers,
the effort necessary until the first build of an executable application from the source code
is the largest contribution barrier. To achieve the first build, joining software developers
have to set up a development environment and configure the build scripts for their platform,
which is not trivial even for experienced developers.

e Small FLOSS projects usually cannot afford costly infrastructure such as CI systems.
This also increases the contribution barrier, as joining software developers cannot be sure
whether their modifications are compatible with all platforms that the FLOSS project
supports.

So what is the theoretical minimal contribution barrier when the available tools improve
further? Brooks [Bro87] argues that there are two types of effort in software development —
essence and accidents. While essence is the core problem to be solved, accidents are all man-
made problems around the core problem. Examples of accidents are copious programming
languages and improper development environments. Brooks pointed out that improvements of
software development tools can only reduce the effort for accidents, but never for the essence.
The survey confirms that the “essence” — the actual code understanding and fixing — incurs the
largest effort in FLOSS projects as well. The most prominent “accident”, however, was the effort
induced by setting up build environments.

Open Research Questions

While the survey measured the time effort necessary for the individual steps of a contribution,
it is not clear to what degree contributors feel reluctant to perform the necessary tasks of each
step. Some tasks may require more time to perform but are joyful and therefore do not act as
a contribution barrier. Thus, only tasks that newcomers feel averse to perform are contribution
barriers, and only for these tasks does the time needed for their execution increase the contribution
barrier. Future research should measure the contributors’ averseness to each task.

The differentiation between modification and submission motivations proved useful. The
survey identified a single primary modification motivation, that is using the modification for
oneself. The differentiation between modification and submission should also be more strongly
extended to contribution barriers.

The identified contribution barriers and motivations should be confirmed on a larger data set.
A larger data set would allow statistical analyses and stronger empirical support for the results.

2.2 Main Survey?

The main survey improves on the exploratory survey described in the last section, as it strives
for answers to the questions that the exploratory survey opened or could not answer. The main

2A preliminary version of this section was published previously [HG16b].

34

2.2 Main Survey

survey implements improvements in survey design based on the experiences from the exploratory
survey.

Consequently, this section advances the endeavor to expose contribution barriers to FLOSS
projects with a survey of 118 developers who had recently joined a FLOSS project as new
software developers. These developers described the contribution barriers they had experienced
when creating and submitting their first patch to either the Mozilla project or the GNOME project.
Insights on contribution barriers from their answers are complemented by explicitly distinguishing
modification and submission motivations.

2.2.1 FLOSS Projects

This section provides an overview over the FLOSS projects Mozilla and GNOME, as the survey’s
participants are newcomers in one of these two projects. Both projects have been the subject
of previous research. @sterlie and Jaccheri critizised that FLOSS research focuses on too few
FLOSS projects, as this disallows drawing conclusions about the FLOSS phenomenon as a whole,
and some characteristics of FLOSS projects might stay unnoticed [@J07]. This implies that
research results should be confirmed on less commonly researched FLOSS projects. However,
this research targets an aspect of FLOSS development that existing research has not focussed on
yet. Studying popular FLOSS projects can therefore build on existing research of these FLOSS
projects and minimizes the risk that observed characteristics are specific only for exotic FLOSS
projects.

Mozilla

Netscape made their Communicator product a FLOSS project in 1998 [P*Net98]. They found
the Mozilla Foundation to host the Mozilla project. While the Mozilla project is well known
for its browser Firefox, the Mozilla project is more diverse. Its 311 modules and submod-
ules [P*Moz15x] comprise the mail client Thunderbird, the issue tracker Bugzilla, and the
cryptographic library Network Security Services, to name three examples.

These applications usually target multiple platforms like Linux, MacOS, and Windows and
also mobile platforms like Android. Developers may also choose among multiple development
platforms including Unix operating systems and Windows. [P*Moz15d]

Research on Mozilla is diverse. It includes analysis of its early development process [MFHO02]
and tools [RMO02], it serves as a case study to construct general models about FLOSS proce-
dures [JSO07; ZM12], and it is also a common data source to evaluate general Software Engineering
(SE) techniques [Yin+04; CC06].

Mozilla follows a process dubbed ‘“bug-driven” development [RMO02]. Mozilla uses the
pejorative term bug for every type of change request to their application, not only including
fixing defects, but also implementations of new features. This thesis uses the more neutral term
issue instead of bug. Mozilla uses the issue tracker Bugzilla, a Mozilla product itself, to keep
track of all issues [P*Moz01]. Indeed, Mozilla policy enforces an issue in Mozilla’s Bugzilla for
every modification committed to Mozilla’s main VCS trunk. This policy also enforces that every
proposed code modification must receive a positive review from either the owner of the changed

35

2 Contribution Barriers to FLOSS Projects

module or one of the module owner’s trusted delegates. This is true even for the module owners
themselves, and developers are not allowed to review their own patches. [P*Moz15f]

Mozilla’s Bugzilla instance [P*Moz01] keeps track of all issues, proposed code modifications,
and reviews. The following describes the mandatory steps for every modification to the code: A
reporter first creates an issue in Mozilla’s Bugzilla instance that describes the defect or feature
request. Then a developer, who may or may not be the reporter, is assigned to the issue. Developers
can assign themselves to issues if they have the appropriate rights. After developers have modified
code, they aggregate all modifications into a single file and attach it to the issue. This file is often
in diff format [HM76], but may for some modules be the Uniform Resource Locator (URL) to a
pull request on GitHub [P*Gitl5c]. Attached files may receive flags of multiple types in Bugzilla.
Of special importance are the “r” flags that indicate whether a patch has been reviewed or not.
The developer who created the attachment flags this attachment with an “r?” flag together with
the name of a core developer. This core developer is then expected to review the attachment and
report the review result by changing the attachment’s flag either to “r-” or “r+” for a declined or
accepted code modification, respectively. In case of an accepted code modification, a committer
merges the modification into the main VCS branch for the module. [Bay+12]

Any of these mandatory steps may require additional work like discussions on the code or
questions to the reporter on how to reproduce a failure. A participant may also inadvertently
hamper this process, for example when developers do not add the “r?” flag to their attachments
because they do not know that this is necessary.

GNOME

GNOME is a window manager and application collection for Unix operating systems. In 1997,
developers in the GNU’s Not Unix (GNU) community started the GNOME project [P*Ica97].
Today, the GNOME Foundation hosts the GNOME project as a non-profit organization. An
elected board governs the community [P*GNO14]. [P*Thel5e]

GNOME has also been the subject of research. This includes use cases for FLOSS [Fin03],
FLOSS communities [Her+06; JSW11], the project’s development process [Ger03], and its ability
to attract LTCs [ZM12].

An instance of Bugzilla serves as the issue tracker for the GNOME project [P*Thel5d].
Similarly to Mozilla, GNOME’s Bugzilla instance tracks all modifications to the code, so with
a few exceptions, for every code modification there must be an issue in GNOME’s Bugzilla.
Using the same flag feature that Mozilla uses, attachments to an issue in GNOME’S Bugzilla
may receive flags when reviews happen. The flags are different to Mozilla’s, though, and handled
less strictly. [P*GNO14]

Besides Bugzilla, GNOME uses the VCS git, a wiki, Internet Relay Chat (IRC), and mailing
lists as tools to support developers with their contribution [P*GNO15b]. A part of the wiki is
dedicated to help newcomers onboard the project as developers [P*GNO15a].

2.2.2 Research Hypotheses

One important specialization of this chapter’s research question is: What factors influence the
contribution barriers that a newcomer experiences? This section derives research hypotheses

36

2.2 Main Survey

from literature and results from the exploratory survey. These research hypotheses will be tested
with statistical methods in Section 2.6.

The programming language has influence on different aspects of a modification: First, each
programming language comes with its own tool chain. Some programming languages have better
tool support, others are relatively new and therefore the community had less time to develop good
tools, or the community may simply be smaller. Second, the choice of programming language
depends on the purpose of the modification. Changes to an application’s interface may require
a different programming language than changes to an application’s core. For example with
Mozilla, Graphical User Interface (GUI) changes may often require modifications of Extensible
Markup Language (XML) codes like Hypertext Markup Language (HTML) and XML User
Interface Language (XUL) or JavaScript code, while changes to Mozilla’s core libraries may
require modifications to C or C++ code. Changes to these core libraries may be more difficult, for
example because there are more dependencies of other modules that need to be considered. Third,
some programming languages are simply easier to learn and use than others [SS13; End+14].
This leads to

Hypothesis 1. The contribution barrier for modification depends on the programming language
used for the first modification.

Despite claims that programming experience and programming performance may be uncor-
related [GS67; Bro95, p. 30], research on larger data sets confirms the intuition of a correla-
tion [WSKO8]. Thus, experienced developers should have less problems handling technical
problems when they try to modify a FLOSS application, and therefore perceive lower technical
contribution barriers. This leads to the following hypothesis:

Hypothesis 2. More experience of newcomers helps to lower their contribution barriers.

Each FLOSS project uses its own development tool chain, depending on the programming
languages of its source code, the platform the FLOSS application runs on, and the platforms the
developers use. Additionally, FLOSS projects differ in the attitudes and procedures they have
employed. New contributors may appreciate some of these more than others; partly, because
some procedures may actually speed up the joining of new contributors. To another part, the
attitudes and procedures simply may or may not create a welcoming atmosphere. As a third factor,
FLOSS projects have different user bases due to their supported platforms and intended use cases.
For example, users of the Eclipse IDE [P*Thel5c] are developers themselves, while users of
the Mozilla Firefox browser may not necessarily be technically savvy. When FLOSS projects
recruit newcomers out of their user base, as for example according to the onion model [Cro+05]
and Raymond’s “first lesson” [Ray00], the skills of these newcomers differ between FLOSS
projects. Consequently, the newcomers in one FLOSS project may easily overcome a contribution
barrier that fits their skill set, while the newcomers in another FLOSS project perceive the same
contribution barrier as an important hurdle when they lack the required skills. These factors
suggest the following hypothesis:

Hypothesis 3. Contribution barriers vary between FLOSS projects.

The exploratory survey presented in Section 2.1 shows in Section 2.1.2 that the most important
modification motivation for the respondents was their Own Need: They needed the modification

37

2 Contribution Barriers to FLOSS Projects

for their own use of the application. This is in agreement with Shah’s qualitative results [Sha06].
This may be a general rule for modification motivations:

Hypothesis 4. Most newcomers modify the FLOSS project’s source code primarily because they
need the modification for themselves.

According to the Theory of Cognitive Dissonance [Fes57], a person feels discomfort if two of
the person’s opinions contradict each other. This is particularly the case when new information
contradicts the expectation derived from existing information. This type of discomfort is called
dissonance and its reduction is a natural stimulus just like hunger. In order to reduce dissonance,
people may take a new point of view, but they may also just discard newly gained information if
it does not fit their existing views.

Before newcomers decide that they want to contribute to a FLOSS project, they have a mental
model of how a FLOSS project works and especially about the procedures and reception of their
contribution. Like any model, this mental model is incomplete, although some newcomers may be
aware of this incompleteness. Even if they are, they have unconscious or conscious assumptions
about the procedures of their contribution, as they must have founded their decision to contribute
on something. Thus, their motivation to contribute derives from this model. For example, if they
assume that a contribution to a FLOSS project gains respect for the contributor, then they may
derive the motivation to gain respect from the FLOSS community through their contribution.
Accordingly, this can be used in the other direction: Contributors’ motivations are indicators for
their assumptions about the contribution before their contribution experience.

If the contribution experience contradicts the previous assumptions, dissonance arises. The
mental model also includes assumptions about what parts of the contribution procedure are
difficult and which are not. Hence, unexpected problems create more discomfort than expected
problems. One way to reduce this dissonance is to refrain from the contribution: Either after
accepting the new information about unexpected problems or through discarding existing infor-
mation that served as foundation for the motivation, even if that information was in fact true. A
newcomer may also ignore or accept the unexpected problems and continue with the contribution,
if that is the lesser mental effort [Fes57]. Since dissonance can be a reason to refrain from
contribution, dissonance influences the perception of contribution barriers.

If this application of the Theory of Cognitive Dissonance to FLOSS contributions is correct,
the following hypothesis must hold:

Hypothesis 5. Contribution barriers are less important for contributors whose motivations
suggest that they expect these contribution barriers.

2.2.3 Participant selection

The exploratory survey in Section 2.1 targeted professional developers to report about contribution
barriers experienced when working on FLOSS projects. In contrast, the main survey presented
in this and the following sections targeted developers who had recently joined a FLOSS project.
The survey design founds on the Tailored Design Method (TDM) [Dil99] with some adaptions to
accommodate to the survey’s circumstances, especially invitations via email.

As a consequence of the changed target audience in contrast to the exploratory survey, some
questions had to be added or changed. For example, the questionnaire’s demographic section

38

2.2 Main Survey

included questions about the occupation that were unnecessary for the exploratory survey targeting
only professional developers in a known environment. Although most parts of the questionnaire
had been pretested and tested in the exploratory survey, an additional pretest for the main survey
ensured the questionnaire’s comprehensibility.

The survey targeted developers whose first patch was recently accepted by one of the FLOSS
project Mozilla or GNOME. A data collection and filtering process depicted in Figure 2.4 and
Figure 2.5 selected the participants: From April 2013 to October 2013 and from November 2013 to
January 2014, scripts based on Zhou’s and Mockus’s download and transformation scripts [ZM12]
regularly downloaded the issue tracker data from Mozilla and GNOME, respectively. The
scripts assigned all accepted patches to developers. For each developer, the chronologically first
acceptance of a patch indicated the date when this person, by this survey’s definition, became a
developer of the project. Participant candidates are those who became developers between April
2013 and October 2013 for Mozilla and between November 2013 and January 2014 for GNOME.
Afterwards, two thirds of the participant candidates had to be filtered out for the following reasons:
First, employees of Mozilla do not go through the regular contribution process of an outsider
and therefore were filtered out. The second largest group of filtered out participant candidates
had submitted patches, but the scripts had incorrectly identified them as accepted due to unusual
flag combinations in the Bugzilla flag system described in Section 2.2.1. Another reason were
developers with multiple accounts or renamed accounts, whom the scripts falsely identified as
new developers.

After filtering, 190 developers remained as invitees to answer an online questionnaire. These
subdivide in four waves for Mozilla plus two waves for GNOME. Invitations for each wave were
sent at different dates, only inviting the developers whose first patch had recently been accepted,
so their memories about the first patch were still fresh. The patch was accepted at most three
months before the first invitation, with the exception of the invitations of GNOME developers.
Figure 2.4 and Figure 2.5 also show the dates when the invitations were send out and the specific
number of developers invited. The first invitation wave for Mozilla newcomers did not include all
suitable newcomers of April 2013, but only 10 randomly selected newcomers. This helped to test
the invitation process and fix possible technical problems.

The invitees were contacted up to three times via email. The number of contacts depended on
whether they answered the survey or one of the emails, in which case they received no further
emails. The emails included one $2 gift code for amazon.com for each invitee. This accords to the
TDM, which suggests to put a $2 bank note in the invitation envelope. The TDM prescribes five
different types of contacts, like postcards, letters, and priority mail. The lower possible variance in
format of emails in contrast to written mail did not allow five different formats for email contacts.
In the spirit of TDM, the invitation emails varied in appearance: The first email had a plain text
format, the second email had a more fancy HTML format, and the third email was plain text
again, but signed with a digital certificate from the University of Duisburg-Essen’s Certification
Authority (CA). Each email included a personalized link to the web-based questionnaire. The
personalization was necessary to restrict each invitee to fill out only one questionnaire and to keep
track of the invitees who had not yet filled out the questionnaire. The personalization information
is not included in the responses to keep the questionnaire completely anonymous. The link
contained an identifier to differentiate between Mozilla and GNOME contributors, though.

Each first email further included a manually written short summary of the invitee’s first

39

2 Contribution Barriers to FLOSS Projects

Bugzilla at

bash and perl About 920,000 Bash and Java applications
download scripts downloaded issues for transformation
List of 25,890 developers

Sorted by date of first acceptance of a patch (DA)

25,446 developers 68 developers with 193 developers with 68 developers with 115 developers with
with DA < April 2013 DA in April 2013 May < DA < July 2013 DA in August 2013 2013-09 < DA < 2013-10

Manually filtered unsuitable developers (mostly Mozilla employees or erroneous DA calculation)

Legend 10 invited 53 invited 22 invited 57 invited
developers developers developers developers

Data Trans-
formation

Up to three contacts in ...

6 responses 34 responses responses 41 responses
(60.0 %) (64.2 %) 2.8%) (71.9 %)

Figure 2.4: Data flow for the selection and invitation of survey participants from Mozilla

40

2.2 Main Survey

bash and perl
download scripts

Bash and Java applications
for transformation

Bugzilla at About 690,000
bugzilla.gnome.org downloaded issues
List of 3,311 developers

Sorted by date of first acceptance of a patch (DA)

3,254 developers 20 developers with DA 37 developers with DA in 2013-11 or
with DA < November 2013 in 2013-12 2014-01

Manually filtered unsuitable developers

Legend 18 invited developers 30 invited developers
Up to three contactsiin ...

Data Trans-
formation

9 responses 22 responses

(50.0 %) (73.3 %)

Figure 2.5: Data flow for the selection and invitation of survey participants from GNOME

41

2 Contribution Barriers to FLOSS Projects

accepted patch to the project. The summary proved that the invitation is no mass mailing but
a personal invitation. A link to the issue for which the patch was submitted accompanied the
summary. The survey referred to this specific patch in some of the questions and the link served
as a reminder and clarification which patch the survey was referring to — this ensured that the
selection procedure had correctly identified the first patch and also clarified cases where it is not
immediately clear to the invitee which patch was the first. For example, another patch may have
been written and submitted earlier, but it still had been reviewed later than the patch referred to in
the email.

As shown in Figure 2.4 and Figure 2.5, a total of 97 Mozilla contributors and 31 GNOME
contributors responded to the survey. 5 Mozilla respondents and also 5 GNOME respondents had
answered only very few questions and especially no questions regarding contribution barriers,
therefore their responses did not flow into the analysis. Additionally, 1 Mozilla contributor’s
answers revealed that this Mozilla contributor is in fact a Mozilla employee. As the analysis
specifically targeted contributors from outside, this contributor’s response also did not flow into
the analysis. The 91 and 26 useful responses out of 132 and 48 invitations for Mozilla and
GNOME, respectively, results in a response rate of 68.8 % and 54.2 %, in total exactly 65 %.
This response rate is within the typical range of well-designed surveys [Dil99, p. 3f]. More
importantly, the response rate is higher than all other surveys targeting FLOSS developers to the
best of my knowledge, where response rates have been at most 38.1 % [HOO1; LWO03; WGYO07;
XJS09; XJ10; BB10; Mai+15].

This paper cites respondents to the questionnaire directly and indirectly. In these citations, a
symbol “[Mn]” for Mozilla or “[Gn]” for GNOME identifies the quoted respondent, where n is a
number assigned arbitrarily to each respondent within the groups of Mozilla and GNOME.

2.2.4 Demography

The first questions for the participants of the questionnaire asked which programming language
they wrote the patch in and the number of files they had to modify. The first questions in a
questionnaire are of special importance and the following aspects that Dillman [Dil99, p. 92]
describes were taken into account: First, the first question should apply to everyone. This is
clearly the case, as the submission of a patch was a precondition for the invitation to the survey.
Second, it should be easy to understand and answer. As the participants have written the patches
themselves, they will have a firm knowledge of what programming language they used. As the
invitation email included a link to the ticket in the issue tracker, they could also easily look again
at their patch to verify the programming language and number of involved files. Third, the first
question should be interesting and relate to the general topic of the survey. Since the participants
have taken the time to write and submit their patch, they can be expected to be interested in it.
Since it is a creative work of their own, they are probably also rightfully proud of it, and therefore
feel positive talking about it. Additionally, they must have at least a basic understanding of the
programming language used for the patch, and their answer is proof of this expertise.

Besides these motivating aspects, the two questions also engaged the participants to refresh
their memories about their first patch. Thus, the comments about their negative and positive
experiences during modification of the source code and submission of the patch will reflect the
practice in FLOSS projects more accurately.

42

2.2 Main Survey

Programming Languages

Figure 2.6 shows the answers to the question of which programming language the participants used
for their modification. 3 of the 86 patches to Mozilla contained source code in two programming
languages, so the percentage total in Figure 2.6 actually comprises 103 % of the responses of
Mozilla contributors. The 24 surveyed GNOME contributors wrote their patches in only one
programming language. The category Other comprises programming languages that only one
or two respondents had used for their first patches. Thus, both projects use a wide range of
programming languages, but the composition of programming languages differs between the
two projects. For Mozilla, JavaScript was the most common programming language for first
contributions, with a ratio of 54.7 % of all first contributions, with C++ as the second-most
common with 22.1 % of first contributions. For GNOME, exactly 50 % of all first contributions
used C, while VALA was the second-most common programming language for first contributions
with a ratio of 20.8 %.

C++ C

Figure 2.6: Programming languages that the survey participants wrote their first patch in

(o)
=

Mozilla
GNOME o -

=
T

NN W R W
S O
T T

—_
S O
T T

Fraction of answers in %

VALA python Shell Other

=)

JavaScript

Occupation

The questionnaire also asked the respondents about their current occupation and their levels of
experience in different aspects of software development. In terms of occupation, newcomers
to Mozilla and GNOME are surprisingly similar, as Figure 2.7 shows. About 49.0 % of the
newcomers are employees. Another 36.5 % of the newcomers are students.

This partition of occupations is similar to results from other surveys of FLOSS developers not
restricted to newcomers. However, the ratio of students is higher in this survey: Only 14 % of
Hars and Ou’s respondents from various FLOSS projects were students [HOO1]. 23 % of the
Linux kernel developers in 2000 were students [HNHO03]. 19.5 % of 684 FLOSS developers
working on projects hosted on SourceForge.net [P*Slal5] in 2001 were students [LW03]. Of the
1488 FLOSS developers whom David et al. surveyed in 2003, 28.8 % were students [DWAO3].
A later sample of 148 FLOSS developers, mainly from SourceForge.net, included at most 13 %
students [WGYO7]. In a more recent survey, 13.1 % of 848 R package authors responded that
they were students [Mai+15].

43

2 Contribution Barriers to FLOSS Projects

S 50 .

S Mozilla s |
535 i
£ 30]
525 |
s 20 i
=15 |
210 .
g 5 .
= 0 [1 .

Employee Self-employed Student Unemployed Other

Figure 2.7: Occupation of newcomers

There are three important differences between the target population of existing research with
its lower number of students among the contributors compared to the participants of this survey:

First, the existing research is mostly about 10 years older. The structure of the FLOSS
contributor population may have changed in the meantime. Future researchers should try to
reproduce these earlier results to decide this hypothesis.

Second, the difference might be a peculiarity of Mozilla and GNOME. Mozilla employs student
programs like Google Summer of Code [P*Moz14f] and is the subject of some FLOSS university
courses as answers to other questions in this survey show. However, this cannot explain all of the
difference and it does not explain why GNOME also has a comparably high number of students.
The difference is therefore unlikely to be project-specific, especially because earlier research
confirmed their results in a wide range of different projects.

Third, this survey targets newcomers while the other research targets FLOSS developers in
general. There are two explanations of why this difference in group structure should create a
difference in the fraction of students. Firstly, those who are students on their first contribution
may have become employees after a while and may show up as employees in later surveys. This
would mean that a considerable fraction of developers choose their FLOSS projects as students
and then stick with the project. However, Hertel et al.’s participants stayed with the project
only for 17 months on average [HNHO3], which contradicts that contributors stick for a longer
time with a FLOSS project after they finish their university studies. Secondly, maybe students
contribute only for a short period and then drop out of the project, while employed contributors
stick with the project after their first contributions. Thus, later samples of FLOSS contributors
would cover the employed contributors who are still with the project, but not the students who
had left after their first contributions already. Which, if any, of these two explanations is correct,
should be the subject of future research.

Experience

Table 2.1 shows how the participants self-assessed their experience in different domains relevant
for their contribution. Besides the option to skip an answer, the participants had the following
four possible choices for each domain:

44

2.2 Main Survey

1. The patch was your first experience with this.
2. Some experience. Needed instructions to work with this.
3. Experienced. Frequently worked on your own with this.

4. Expert. Instructed others in this.

The answers were interpreted numerically as 1 (lowest experience level) to 4 (highest experi-
ence level). In the following questions shown to the participants, PROJ was either Mozilla or
GNOME, and the terms in parentheses will be used for reference in this thesis. The domains

asked for are

e software development in general (Software Development),

e the organizational structure and processes of open source projects in general (FLOSS

processes),

e using the software of project PROJ (Using PROJ),

o the organizational structure and processes of project PROJ (Processes of PROJ)

e programming language/development environment used in project PROJ (Software Devel-

opment Environment (SDE) of PROJ), and

e the source code of project PROJ (PROJ’s source code).

Table 2.1: Number of answers for each level of experience and experience domain

Experience Software FLOSS Using Processes SDE of PROJ’s
Develop- Processes PROIJ of PROJ PROJ Source
ment Code

4 30 6 10 0 8 0

3 31 20 40 3 43 8

2 28 36 17 31 27 27

1 6 35 28 60 17 61

Arithmetic Mean 2.895 1.969 2.337 1.394 2.442 1.448

The answers show that the participants usually considered themselves fairly good software
developers, although they were mostly less experienced with the technologies used in the FLOSS
project. Some are experienced users of the FLOSS project and also know about the procedures
in other FLOSS projects, but for others this is completely new. Almost none, however, had
more than rudimentary knowledge about the specific processes and code structure of Mozilla or

GNOME.

45

2 Contribution Barriers to FLOSS Projects

2.3 Contributor Motivation®

After the demographic questions, the questionnaire asked about contribution barriers and only
afterwards about contributor motivation. This order reduced item non-response on the contribution
barrier questions, which were in the focus of this survey. For reasons of presentation, the order in
this thesis is exchanged: This section presents contributor motivations, while contribution barriers
are deferred to Section 2.4.

The questionnaire structures for both contributor motivations and contribution barriers are
alike. Both split into the domains of code modification and submission. For all combinations,
modification motivations, submission motivations, modification barriers, and submission bar-
riers, there is an open question and a closed question. Each open question is asked before its
corresponding closed question to ensure unbiased answers in the open question.

The questionnaire first asked in open questions about the motivation why they used the
FLOSS application, why they modified the FLOSS application, and then why they submitted
their modification as a patch to the FLOSS project. Usage can be seen as a precondition to
contribution [Cro+05]. Therefore, usage motivation influences the motivation to contribute, and
the questionnaire includes usage motivation.

Then the participants were presented closed questions about their motivation to use the FLOSS
application, modify it, and submit their modification back to the FLOSS project. For modification
and submission, the participants could pick motivations that applied for them from a list, and
put them into an order that represented the importance of the selected motivations. For usage
motivation, the questionnaire presented a multiple-choice checklist. This gave less insight about
usage motivation than the method used for modification and submission motivation, but it was
also not as much in focus of the study and cost the participants less time.

Using an open coding methodology taken from Grounded Theory [SC94], the answers to
the open questions received tags identifying the contributor motivation that the participants
mentioned. The tags have a hierarchy, so for example, wanting to help the community is a form of
altruism, and altruism itself, together with the motivation to foster FLOSS in general, belongs to
the more general category “Ideal”. 71 participants explained their modification motivation as an
open answer, and 60 participants explained their submission motivation. 82 and 91 tags describe
the answers for modification and submission motivations, respectively, so each participant gave
1.15 modification motivations and 1.52 submission motivations.

The pre-defined items for the closed questions match the motivations identified in the existing
research [Kri06; LWO03]. As previous research did not distinguish between modification and sub-
mission motivations, each motivation item appears either in the closed question for modification
motivations or the closed question for submission motivations. Additionally, as a result of the
pretests and the experiences gained in the exploratory survey, the phrasing of some items are
different to those of the existing research.

2.3.1 Usage Motivation

74 participants responded to the open question of why they use project Mozilla or GNOME.
Their answers were assigned 91 codes, so each answer was assigned about 1.23 codes. Figure 2.8

3 A preliminary version of this section was published previously [HG16b].

46

2.3 Contributor Motivation

shows which codes have been frequently assigned to the answers. 54.1 % of the respondents
gave answers coded with Application and thereby expressed that they used an application that the
project develops, like Mozilla Firefox. 9.5 % of the respondents use a Library that the project
develops. 24.3 % of the participants engaged with the project with a source code Modification
and possibly had the submission of their modification in mind. For example, they wanted “to get
involved in open source” [M28]. 33.8 % of the respondents explicitly mentioned that the project
was “Open Source” [M3, M7, M8, ...], “FOSS” [M2], “FLOSS” [M38], or the like. 9 of these
“Open Source” respondents did not specify further why specifically they came in touch with the
project, admittedly because the question was not clear enough that this was asked for.

(o)
=

—_ N W A W
S o o o O

Fraction of answers in %

(e}

Application Library Modification Open Source

Figure 2.8: Codes of open answers for usage motivation

The pre-defined answers to the corresponding closed question are the x-axis labels in Figure 2.9.
Participants could select any number of use cases. If they did not select any, this analysis excluded
their answer as nonresponse. Figure 2.9 shows which fraction of the remaining 94 respondents
selected each item. The answers show more clearly than the open answers that most respondents,
87.2 % specifically, use an Application for themselves. Another use case for 21.3 % of the
respondents is using a project Library in their own applications. This seems to be more important
for GNOME contributors than Mozilla contributors, with 45.0 % and 14.9 % of the respective
respondents selecting the usage motivation Library. About 20.2 % of the respondents got in touch
with the FLOSS project in order to contribute a modification to increase Interoperability with
another software. Hence, these respondents possibly favor a competitor over the FLOSS project
for usage. 5.3 % of the respondents, and especially 10.0 % of those who contributed to GNOME,
provide Consulting for other organizations that use Mozilla or GNOME. 7.4 % of the respondents,
all of them Mozilla contributors, had Other reasons to get in touch with Mozilla. For example,
M11 participated in a college student program to contribute to Mozilla, and M60 as well as M65
merely wanted to write code without using the application.

2.3.2 Open Question on Modification Motivation

Figure 2.10 shows the four tag categories assigned to more than 7 % of the respondents’ answers
to the open question for their modification motivation. There were 71 respondents to this question,
so at least 6 respondents must have given answers that belong to a category to pass the threshold.

47

2 Contribution Barriers to FLOSS Projects

Mozilla
GNOME o -
Both

H =

Applicatﬁ Consulting Library Interoperability Other

Figure 2.9: Distribution of answers for the closed question of usage motivation

o
(@)

== DN W W
hn O L O L O W

Fraction of answers in %

=)

Own Need Contribute Learning Joy

Figure 2.10: Answers to the open question for modification motivation

48

2.3 Contributor Motivation

38.0 % of the respondents answered that they modified the FLOSS application due to their Own
Need: Either they themselves or their employer had experienced a bug that they fixed with their
modification, or they wanted a specific feature that they had implemented with their modification.

As a close second, 35.2 % of the respondents wrote that they wanted to Contribute to the
FLOSS project to support it. In these cases, the modification is a means to an end, as only the
submission of the modification to the FLOSS project eventually improves the FLOSS project.

About 22.5 % of all respondents mentioned that their motivation to modify the FLOSS project
was Learning. M90 wanted “to learn versioning practices”, M39 wanted to gain “experience
working with code written by others” and M7 simply wanted to improve “programming skills”.
Respondents in this group all contributed to Mozilla and not GNOME. Learning might be
especially important for Mozilla contributors, as some of them contribute to Mozilla as part of a
student program like Google Summer of Code [P*Moz14f].

6 respondents, 8.5 % of all respondents, claimed that they started the modification for the Joy
of programming.

2.3.3 Closed Question on Modification Motivation

Participants had to select modification motivations from a list and rank them in order of importance.
Figure 2.11 shows how many participants selected each motivation and ranked them as one of
the first three priorities. Different ranks have different colors. The motivations were presented in
random order for each participant to rule out any bias because of the order. Figure 2.11 presents
them ordered by the number of selections with first rank. A total of 93 participants responded to
this question.

Joy Own Need Learning ~ Community Other

Figure 2.11: Ranked modification motivations
Contrary to the open question, “the Joy of programming and/or the intellectual challenge”

was the most important modification motivation. For 37.6 % of the respondents, it was the
primary modification motivation, and for 86.0 % of the respondents, it was one of the top three

49

2 Contribution Barriers to FLOSS Projects

modification motivations. Even when considering only those with Joy as primary motivation, this
is more than four times as much as the 8.5 % respondents who mentioned the joy of programming
in their answer to the open question. There are two explanations for this discrepancy: First, the
participants may not be aware that the joy of programming is a possible modification motivation
and it was only brought to their attention through the closed question. They possibly saw the
joy of programming as a self-evident property of their modification that needed no mentioning.
Second, they may have seen joy of programming on another level of abstraction than other
motivations. They may have become software developers because they experienced joy when
programming generally, but they had more specific motivations for their specific modification
asked for in the questionnaire.

About 25.8 % of the respondents modified the FLOSS application primarily in order to
satisfy their Own Need, phrased in the questionnaire as “A malfunction or missing functionality
bothered me/my organization as a user of the project”. Its high importance is not surprising when
considering that this was the most often mentioned modification motivation in the answers to the
open question and that it was the by far most important modification motivation in the exploratory
survey (see Section 2.1.2). However, in deviation to the other modification motivations, only a
few respondents ranked this reason second- or third-most important, resulting in only 40.9 %
of the respondents ranking this reason as one of the top three modification motivations. Then
again, this is put into perspective by another 25.8 % of the respondents ranking this modification
motivation fourth.

Learning is the primary modification motivation for 19.4 % and one of the top three modifica-
tion motivations for 72.0 % of the respondents. More specifically, this modification motivation
was labeled “acquiring experience in technologies used by project [Mozilla or GNOME]” for the
participants. This is in line with the answers to the open question.

Getting in touch with the Community was the most important modification motivation for
14.0 % of the respondents, and one of the three most important modification motivations for
63.4 % of the respondents. The questionnaire phrased this modification motivation as “I like the
developers of project [Mozilla or GNOME] and like to work with them”.

Participants could describe Other modification motivations in free-text form. About 3.2 % of
the respondents ranked a free-text motivation as most important modification motivation, and
about 6.5 % ranked it among the three most important modification motivations. Among these,
four respondents repeated the frequent answer in the open question that they modified the FLOSS
application just to have something to submit. Three respondents explained that they modified the
FLOSS application as part of a student project like their thesis, although only one ranked this
among the three most important modification motivations.

2.3.4 Open Question on Submission Motivation

Figure 2.12 shows which answers the respondents gave to the open question about their submission
motivation. Analogously to the open question on modification motivation, each submission
motivation mentioned in the free text of an answer was assigned a code. These codes had a
hierarchy to group classes of codes. The analysis includes only codes assigned to at least 7 %
of the respondents’ answers. Among these, Figure 2.12 shows two hierarchy levels, with Ideal,
Personal, and Economic on the higher level of abstraction and the remaining motivations as more

50

2.3 Contributor Motivation

specific submission motivations. The trees below the graph indicate which motivation codes
belong to which more abstract category.

Unlike other open questions in this questionnaire, a considerable number of statements could
not be assigned codes that unambiguously represent submission motivations, and were not
included in the analysis. 13 respondents explained their submission motivation similar to M28:
“This is how my patch gets in the official source tree of Mozilla”. These answers suggest that the
submission is an end in itself and the respondents do not seem to consider that it would be an
option to keep the modification for themselves. While this indicates altruism as a matter of course,
these answers do not clearly and unambiguously imply the true motivation for submission.

R 70]
=
‘% 60 1
=
z 50 i
£ 40 .
5 30 i
£20 i
£ H =
= 0

Ideal \ Personal Economic™

| Fos‘ter Return Stupid
Altruism g1 6gg Some- Learning Fun T
thing ax

Figure 2.12: Answer frequency to open questions for submission motivation

Exactly half of the respondents justified their submission to the FLOSS project as an act of
Altruism. M38’s reason “to make it available to everyone” is an example of a direct answer, M50
explained a bit more indirectly “to help out”. However, 20.0 % of the respondents who were
in the altruist category just circumscribed that they wanted to “make it [Mozilla] better” [M8],
possibly inspired by the slogan “Made to make the Web a better place” of Firefox 4 [P*Moz11]
and “make the Internet an ever better place for everyone” in The Mozilla Manifesto [P*Moz08b].
Instead of accounting this as altruism, this explanation might mean that the contributor merely
wants to create something beautiful like good software, without the explicit intent to make a
positive impact on the software’s users. However, no respondent enunciated this non-altruistic
meaning of making Mozilla better, and, to the contrary, some of these respondents seem to take it
for granted that helping other users is a strong motive by itself.

15.0 % of the respondents wanted to Foster FLOSS in general or Mozilla in particular. About
11.7 % of the respondents felt a commitment to Return Something to the FLOSS project for the
benefits gained through the usage of the FLOSS application. Together, the three preceding Ideal
submission motivations accounted for about 69.5 % of the respondent’s answers.

16.7 % of the respondents submitted their modification to the FLOSS project in hope of
Learning something about the contribution process, for example as part of a student project or
in order to improve skills needed in their future careers. 10 % of the respondent submitted the
modification for Fun. This includes cases like M49’s, who found it “very satisfying” that the
“product now has my [M49’s] contribution”. Learning and Fun constitute the main components

51

2 Contribution Barriers to FLOSS Projects

of the major category of Personal submission motivations. About 26.7 % of all answers belong
to this major category. Answers in this category describe intrinsic submission motivations with
personal benefits the contributor expects.

The last major category describes extrinsic submission motivations for Economic benefits to
the contributor, which 20 % of the respondents mentioned. As the only relevant submission
motivation in this major category, about 13.3 % of the respondents wanted to avoid paying the
so-called Stupid Tax [P*Thel2; P*EIl10] of FLOSS: Reintegrating a self-written modification
into every new official release of the FLOSS application. When the modification is submitted
back to the main project, their maintainers take care of the modification and the modification’s
developer can use the off-the-shelf version of the FLOSS application.

2.3.5 Closed Question on Submission Motivation

Figure 2.13 shows which items the respondents selected as submission motivations in the closed
question. As in the closed question for the modification motivation, the participants had a
randomly ordered, but pre-defined list of submission motivations that they could select and had
to bring into an order of importance. Figure 2.13 regards only the three submission motivations
ranked as most important. It is ordered by the fraction of respondents selecting each motivation
as their primary submission motivation. In total, 90 participants responded to this question.

70
Rank 3 ==

o 60 L Rank 2 oo |
i Rank 1 s
- 50
)
£ 40
S
<
< 30
g
3 20
Q
s
= 10

0

Le, It 0 7 R Gy,
r St u e, by, lery,, » "8ht -, 2n p
Ny, Ui er gy JPld 1 S, ity g I/t Cloge o <espe f;r
1n Ure,

Figure 2.13: Ranked submission motivations

For 34.4 % of the respondents, the primary submission motivation was to “gain experience
in the procedures of (OSS) projects”, i.e. Learning something. For 65.6 % of the respondents,
Learning was among the three most important submission motivations, so both metrics indicate
that Learning is the most important submission motivation. Interestingly, Learning appears to
be more important when looking at the closed question as compared to the answers to the open
question. Possibly, the respondents became aware of their motivation only through the suggested
answers in the questionnaire.

52

2.3 Contributor Motivation

As explained in Section 2.2.4, about 36.5 % of the respondents were students. This compara-
tively high fraction of student participants at least partially explains why Learning is so important
for the respondents, as students can be expected to see Learning as an important motivation:
Learning about FLOSS could be part of the students’ curriculum or a desire to learn made them
both students and FLOSS contributors. And indeed, 51.4 % of the student respondents ranked
Learning as the most important submission motivation.

Altruism was the most important submission motivation or one of the three most important
submission motivations for 22.2 % or 57.8 % of the respondents, respectively. Similarly, 20.0 %
respectively 45.6 % Foster FLOSS, or, more specifically, “publish the source code, because [they]
believe source code should be open”. Together with those 6.7 % respectively 31.1 % who wanted
to Return Something, and the 1.1 % respectively 7.8 % who wanted to Fight Closed Source, these
four motivations constitute Ideal submission motivations which appear to be the most important
group of submission motivations. This is in line with the answers to the open question.

10.0 % of the respondents submitted their modification to the FLOSS project, primarily in order
to “avoid the work of reintegrating [their] changes into new releases of the OSS project”. 20.0 %
of the respondents had this Stupid Tax among the three most important submission motivations,
so this submission motivation seems to be polarizing. Contrarily, getting an External Review of
the modified code from experts was the primary, or one of the most important three submission
motivation, for 2.2 % or 24.2 % of the respondents. This is surprising as these motivations are
similar in that they are the two motivations with technical benefits to the submitter.

3.3 % respectively 12.2 % of the respondents wanted to gain Publicity “(for example, you
might have wanted to get job offers)”. 0.0 % respectively 18.9 % wanted to gain Respect. Gaining
respect seems to be a common additional submission motivation besides others, while publicity
is a strong enough submission motivation to work as the primary submission motivation — but
may have an egoistic and therefore negative sound that comes with it, and therefore participants
do not pick this submission motivation unless it was very important for them.

Participants who felt that the pre-defined items did not represent their submission motivation
could pick Other and describe this submission motivation in a text box. Only participant M84
used this to explain that the company whom M84 worked for was paid to develop the submitted
feature, though this was only the second-most important motivation for M84.

2.3.6 Comparison to Related Work

This section compares the motivations of newcomers as found in this survey to motivations
of FLOSS contributors in general as identified in previous research. A quantitative or even
statistically sound comparison is not possible, though, as the methodology and results vary
between studies. Additionally, as explained in Section 2.2.4, the demographic structure of this
survey’s participants is different to the demographic structure of previous surveys’ participants.
The reasons for these differences are not entirely clear. These differences, like the fraction of
students in the set of survey participants, influence the motivations to contribute to FLOSS
projects [LWO3].

In Hars and Ou’s survey, Learning was the primary and self-determination the secondary
motivation [HOO1]. Self-determination includes hedonism and therefore the Joy of Programming.
Lakhani and Wolf [LWO03] found learning as the third-most important reason for contribution. The

53

2 Contribution Barriers to FLOSS Projects

two more important were the Joy of Programming and what is dubbed Own Need in this paper.
This is also in accordance with this survey’s results. David et al.’s questionnaire items are too
different to be compared with this survey’s results [DWAO3]. Hertel et al. found that hedonistic
motivation had the strongest agreement from contributors, and found “pragmatic motives” and
“social/political motives”, to which Learning belongs, as next-most important [HNHO3]. Their
results are difficult to compare, though, as their factor analysis categorized motivations differently
than the survey in this thesis.

Previous research identified hedonism and Learning as primary motivations for participation
in FLOSS projects, although the scope of these categories varies from study to study. In terms
of this survey’s categories, Joy belongs to hedonism and is usually a modification motivation.
Learning can be either a modification or submission motivation and previous research did not
distinguish between these two different activities. This survey’s results indicate that Learning is
more important as a submission motivation and less important as a modification motivation. This
confirms Ducheneaut’s analysis that newcomers already have good programming skills and want
to learn how to contribute to large projects [Duc05, p. 352].

For the participants of this survey, Altruism and similar Ideal motivations are more important
than in preceding research. One reason may be that developers have Joy or Own Need as
modification motivations, and Altruism is only an important motivation for the submission —
submission motivations may go unnoticed in preceding research because they have only one
category of motivations. As another explanation, Rullani argued that monetary and signaling-
related motivations increase in importance over the time after a developer has joined a FLOSS
project [Rul06]. It is therefore unsurprising to see that these types of motivations are not important
in a survey of newcomers.

2.4 Contribution Barriers

As explained in Section 2.3, the questionnaire asked for contribution barriers immediately after
the demographic questions described in Section 2.2.4, and before the questions for contributor
motivation. The questionnaire asked in two open questions about the “biggest barriers” to modify
the source code of the project and to submit the patch to the project. These are the modification and
submission barriers, respectively. Subsequent to the open questions, the questionnaire presented
predefined contribution barriers for code modification and patch submission. Differently to the
closed questions for contributor motivation, participants were prompted to rate each predefined
contribution barrier on a scale of one to five, where one means “no obstacle at all” and five is
“almost a show stopper”. As an alternative to the one to five rating, participants could select
“not applicable”. This was treated like a one in the evaluation, though, as a contribution barrier
that is not applicable is also not an obstacle. The option “not applicable” was included because
pretests had shown that it increased participants’ understanding of the question and their answer
rate. In all cases, they could explain their choice in a text box for each contribution barrier.
The differences in format between the closed questions for contribution barriers and the closed
question for contributor motivation take into account that every participant was motivated to
modify the FLOSS application and submit the modification back, whereas contribution barriers
did not necessarily occur.

54

2.4 Contribution Barriers

Analogously to the open answers for the contributor motivation questions, the answers given
to the open questions for contribution barriers received codes. Since the contribution barrier
questions come earlier in the questionnaire, item non-response was lower than for the contributor
motivation questions. 91 and 90 participants responded to the open question asking for modifica-
tion barriers and submission barriers, respectively. These answers were assigned in total 161 and
127 codes, respectively, including 24 and 33 explicit respective mentions that the modification
or submission was easy. Thus, each respondent mentioned a mean number of 1.51 and 1.04
contribution barriers, respectively.

The contribution barriers asked for in the closed questions are similar to the items in the
exploratory survey. In contrast to the exploratory survey, the items are grouped in submission and
modification barriers, and there are a few additional contribution barriers. They still represent
typical steps that a newcomer has to go through, as presented in Section 1.1.4. The items therefore
systematically comprise all possible contribution barriers. However, relevant contribution barriers
might apply to multiple steps or one step might comprise multiple contribution barriers. Therefore,
the open questions are important, as they might, for example, mention a specific tool as a
contribution barrier that is used in multiple steps. Thus, they may also refer to cross-cutting
concerns. Using this two-way approach, the results contain contribution barriers seen from
multiple perspectives.

2.4.1 Open Question on Modification Barriers

Figure 2.14 shows codes for the answers to the open question for modification barriers. The
graph shows all codes that at least 7 % of the respondents mentioned and omits those mentioned
less often. This threshold corresponds to at least 7 mentions. This threshold applies to codes
anywhere in the hierarchy, be it major codes standing on its own or subcodes that belong to
another code. For each code, a vertical bar marks the fraction of respondents whose response
received the code directly or as a subcode. The x-axis labels the codes and tree lines designate
which codes are subcodes of others.

o
(@)

— = N W W
S L O L O W

Fraction of answers in %

S W

Under- Environ- Size of Code Find Documen-
standing ment Code Style the tation
Base Code

Easy

General

Structure Build Tests

Figure 2.14: Fraction of codes assigned for the open question on modification barriers

55

2 Contribution Barriers to FLOSS Projects

In their answer to the open question to the biggest modification barriers, 26.4 % participants
explicitly mentioned that the modification was Easy to do or that they did not encounter noteworthy
modification barriers.

Understanding comprises different types of missing prerequisite knowledge. As the most
important subcategory, understanding the General Structure of the project was the biggest hurdle
for about 14.3 % of the participants. Interestingly, General Structure was a modification barrier
only for Mozilla contributors, but not for GNOME contributors.

About 33 % of the respondents reported problems with the Environment, which made it the
second-most mentioned main category for modification barriers. As a subgroup of Environment,
14.3 % of all respondents had a problem with the Build of their project, for example because it
took too long. As an example for why the build can be such an obstacle, participant M64 “had
to set up a whole ecosystem of interdependent projects” for the build. 7.7 % of the participants
found Tests of their modification difficult. The group of participants with build problems and
those with test problems are not distinct, though, as tests require a build and sometimes the test is
the only reason for the build.

17.6 % of all respondents mentioned the Size of the Code Base as a hurdle, often without
further explanation why this is a hurdle. Some respondents’ further comments and their answers
to other questions suggest that two explanations exist: First, it is difficult to trace an observed
behavior of the application to a location in the source code. Thus, it is not clear which part of the
source code needs modification. 14.3 % of the participants answered even explicitly that it was
difficult to Find the Code to be modified instead of referring to the Size of the Code Base. Second,
the large code base inhibits understanding the project’s structure and therefore side effects of
modifications are difficult to predict.

Another 17.6 % responded with syntactical issues of Code Style as the biggest barrier to code
modifications. An example is the question whether to indent with four spaces or a tab. Consis-
tent code style is a valid requirement and increases the comprehensibility of the code [OC90].
However, given the high fraction of respondents who see this as their biggest issue, the negative
impact of its rigorous enforcement may outdo its benefits. This specific contribution barrier may
also be seen as a submission barrier, as compliance with the code style rules is enforced only on
submission.

Slightly above the threshold of noteworthiness, 7.7 % of respondents mention a lack of
Documentation as a contribution barrier.

2.4.2 Closed Question on Modification Barriers

Table 2.2 lists the answers to the closed question on modification barriers. Participants were
presented a list of modification barriers corresponding to the columns of the table and rated each
of them. The table lists how many respondents rated each modification barrier at each level of
importance, where 5 corresponds to the highest and 1 to the lowest importance. The bottom row
lists an arithmetic mean for each modification barrier, calculated by interpreting the five levels of
importance as the numbers 1 to 5.

The modification barriers were generally ranked low, with all except Find the Code ranking
lower than 2.0 as arithmetic mean. This further confirms the result from the open question
that a recognizable fraction of newcomers do not experience noteworthy difficulties with the

56

2.4 Contribution Barriers

Table 2.2: Number of answers for each level of difficulty and modification barrier in the closed
questions to modification barriers

Impor- Down- Setup Build Bug Redun- Find Solution Com- Other

tance load Repro. dant the munity
Work Code

5 1 1 1 2 2 2 0 1 1

4 2 3 3 8 3 1 0

3 7 11 18 7 6 24 13 9 0

2 17 24 23 22 16 29 35 13 1

1 71 54 48 57 65 36 47 69 70

Mean 1418 1.755 1.821 1582 1489 2.101 1.714 1409 1.069

modification in their first contribution. However, a contributor may refrain from contribution
already if only a few contribution barriers are too high while all others can be low. Therefore and
because the highest contribution barrier differs from contributor to contributor, low means for
each individual contribution barrier do not imply that contribution barriers had no impact.

The modification barrier Find the Code received the greatest arithmetic mean rank of 2.101.
The category with the same denomination for the open question on modification barriers seemed
much less important, but, as discussed above, those mentioning the Size of Code Base as a
contribution barrier in the open question may have also had trouble to Find the Code which they
wanted to modify. Interestingly, writing the actual code for the bug or feature, the Solution of the
problem, has a lower mean rank of 1.714. Contrary to the other modification barriers, nobody
found the Solution to be a “show stopper” (rank 5), and the number of answers ranking 4 on
Solution is lower than its mean suggests.

Solution and possibly Find the Code comprise the essence of the contribution, the shaping
of the abstract structures of the software [Bro87], while all other contribution barriers consist
entirely of accidents: difficulties imposed by man-made processes and rules. Considering this,
it is interesting to note that two other modification barriers have greater arithmetic means than
the actual Solution. The category Build matches the open answer of same denominator and has
an arithmetic mean of 1.821 for the closed answers. The column Sefup represents “difficulties
installing the development environment” and its rankings average on 1.747.

Contributors who had fixed a defect in the application instead of adding a new feature usually
first have to find inputs on which the application fails in order to understand the cause of the
failure. Issues with this Bug Reproduction rank on an arithmetic mean of 1.582. When interpreting
the difficulty of this modification barrier, it has to be taken into account that this step does not
apply to new features and also does not apply on some defects that the contributors themselves
experienced as users and therefore started to work on the defects in the first place. If a defect is
assigned to a newcomer, the chance that Bug Reproduction is a considerable modification barrier
may be higher than the numbers suggest.

Column Redundant Work lists answers for “concerns of wasted modification effort, as someone
else might work on the task in paralle]”. GNOME and Mozilla usually assign developers to

57

2 Contribution Barriers to FLOSS Projects

issues in their issue tracker Bugzilla to prevent this problem. However, newcomers usually lack
the rights to change issue assignments, and may therefore start working on the solution before
someone with the appropriate rights can assign the issue to them. With a mean rank of 1.489, this
contribution barrier is ranked less than the majority of modification barriers.

The column Download lists how participants ranked the “difficulties downloading the right
version of the source code”. Developers may have trouble downloading the source code because
they are unfamiliar with the VCS [SAA10]. Four developers explained that the download was
difficult because they were unfamiliar with Mozilla’s VCS Mercurial (hg). Especially large
FLOSS projects may have multiple VCS repositories, so developers have to find out which of
these holds the correct version of the source code. For example, Mozilla has 20 repositories in
the top level category of their VCS hg and 25 sub-categories each containing multiple further
repositories [P*Moz15a]. Some repositories are hosted on GitHub instead of hg, some are just
mirrored to GitHub [P*Moz15b]. This can confuse newcomers who are not yet familiar with the
repository structure. With an arithmetic mean rank of 1.418, this is still a minor modification
barrier.

Ranked least are problems with Community Support, having an arithmetic mean of 1.409.
This positive impression of the community also shows in several answers to open questions, for
example M18 explains that “once you’re through to IRC most of the job is done. You get pretty
handy tips to modify the source code.”

Most participants either omitted the item Other or explicitly noted that there were no other
obstacles, resulting in a mean of 1.069. This indicates that most modification barriers arise in
one of the given categories. Two answers to Other were reassigned to contribution barriers for
submission, because the participants’ comments for their answer described problems with the
submission. The other two answers other than 1 are M72’s answer of rank 2, explaining that
adapting to coding conventions was difficult, and G18’s rank 5, who was worried that component
libgxps would have no future releases and therefore G18’s contribution in libgxps will never
be released. This concern about wasted effort may be a more important modification barrier in
FLOSS projects that are less active than Mozilla and GNOME.

2.4.3 Open Question on Submission Barriers

Figure 2.15 summarizes the results of the open question on submission barriers. Its x-axis shows
codes that were assigned to answers during open coding. Again, the list contains only codes
that at least 7 % of respondents mentioned, which are at least 7 respondents. For each code, the
position on the y-axis marks the fraction of respondents who mentioned this submission barrier.
The x-axis’ labels have a tree structure that shows whether a code stands on its own or whether it
belongs to another code in the code hierarchy.

As mentioned above, respondents mentioned a mean of 1.51 modification barriers per answer,
but only 1.04 submission barriers per answer. Additionally, 36.7 % of the responses explicitly
stated that the submission was Easy, as opposed to the 26.4 % who found modification easy.
This suggests that newcomers face more problems while writing their modification than while
submitting it to the FLOSS project.

Still, some reoccurring submission barriers exist. As the most frequent submission barrier,
32.2 % of the respondents reported problems with the tools and the Environment used in the

58

2.4 Contribution Barriers

Fraction of

Easy Environment Submission Review Documen-

. Procedure tation
VCS Patch Bugzilla

Figure 2.15: Fractions of submission barriers mentioned in the open question

submission process. More specifically, 17.8 % of all respondents experienced difficulties with
the VCS, for example when creating a pull request on GitHub or when “dealing with an ever
changing git [tree]” [M8]. Proper preparation of the contributor’s modification causes these
difficulties: Depending on the project or Mozilla subproject, the modification has to be submitted
as GitHub pull request or as a patch file created with the tool diff. In any case, the modification
must refer to a specific version of the source code. After clearing this difficulty, the Patch file
creation was another difficulty for 10.0 % of all respondents. For example, M64 wondered
whether to “submit the patch as multiple commits for readability, or squash them as a single
commit for conciseness”. 7.8 % of all responses criticize GNOME’s and Mozilla’s issue tracker
Bugzilla explicitly. Although G17 went as far as claiming that “Bugzilla is modeled after a 1970s
soviet department of motor vehicles”, other respondents explicitly praise Bugzilla and therefore
counterbalance the criticism. Hence, the answers to this questionnaire show no distinct public
opinion about Bugzilla, instead Bugzilla is polarizing.

20.0 % of the respondents had problems with the Submission Procedure. Some of the respon-
dents explained that they just did not know where to start or what they were expected to do next.
In other cases, form fields intended only for specific types of modifications confused contributors
when these form fields did not apply to their kind of modification.

For about 12.2 % of the respondents, the core developers’ Review of their patch was among
the highest submission barriers. For example, “apparently nobody noticed the patch” of M§82
and those of two other respondents. Those who searched for reviewers actively had to “[f]ind
the proper engineer to review the patch” [M31]. After a reviewer was assigned, willingness to
contribute decreases steadily if “the review process takes too long” [M19].

7.8 % of the respondents either did not find enough Documentation about the submission
process required for the module they contributed to, struggled to find applicable and up-to-
date documentation in the bulk of other documentation, or needed too much time to read all
documentation that applied to their submission.

Five responses describe purely psychic rather than technical submission barriers. For example,
M16 “ended up feeling dumb” because the reviewer rejected early versions of the patch due to
code style problems. M45 and M60 indicated that they were afraid to lack the skills to solve the
problem, but eventually found the modification not very difficult. Admitting psychic contribution

59

2 Contribution Barriers to FLOSS Projects

barriers can be embarrassing, even in an anonymous questionnaire [TB10]. Therefore, some
survey participants may have kept quiet about psychic contribution barriers and the number of
cases with those problems may be higher than the five participants who actually wrote about
these problems.

2.4.4 Closed Question on Submission Barriers

Analogously to Table 2.2 for modification barriers, Table 2.3 lists the answers to the closed
question on submission barriers. Again, each column represents a submission barrier that the
participants could rate on a scale from 1 to 5, where 1 is the lowest and 5 the highest importance.
The rows contain the number of participants that ranked a contribution barrier with the particular
importance of the row. The last row shows the arithmetic mean rank for each submission barrier.

Table 2.3: Number of answers for each submission barrier per level of difficulty in the closed
questions for submission barriers

Importance Submission Docu- Issue Bureau- Member Other
Procedure mentation Tracker cracy Attitude

5 4 0 0 1 2 0

4 6 6 1 2 0 0

3 21 12 11 6 1 0

2 22 24 24 13 12 1

1 47 51 62 65 84 63
Mean 1.980 1.710 1.500 1.402 1.222 1.016

Although the answers to the open question on submission barriers suggested that less partic-
ipants had difficulties with the submission than with the modification, the submission barrier
Submission Procedure has a relatively high mean of 1.980, making it the highest overall contribu-
tion barrier after Find the Code. When only considering the levels 4 and 5, Submission Procedure
is ranked even higher than Find the Code and all other contribution barriers. This indicates that
although the submission procedure works for a considerable fraction of contributors, it is a high
contribution barrier for some. Respondents explained high rankings with difficulties using the
VCS in the way the FLOSS project expected them to. Although partly, this seems to be a matter
of personal preference: On the one hand, M47 explained that “patch-based submissions is [sic]
a lot of effort compared to pull requests” as they are common on GitHub. On the other hand,
M11 explained the selected importance of 4 with “little experience with git” used for the Mozilla
Webmaker component to which M11 contributed.

With an arithmetic mean rank of 1.710, issues with the Documentation, called “Instructions on
homepage” in the question, were more important than the answers to the open question suggest:
While problems with the documentation were barely worth mentioning when asked in an open
question, respondents rated lacking documentation regarding the submission on par with the
modification barrier Solution. Respondents might have described their problems more directly
in the open question, while they came aware that they could have avoided the problems if the

60

2.4 Contribution Barriers

documentation would have been better after seeing the option Documentation in the closed
question.

The Issue Tracker, which is Bugzilla for both projects, was ranked with a mean of 1.500 when
asked how important as a contribution barrier it is. M72 ranked the Issue Tracker as a submission
barrier highest among all respondents, with rank 4. M72 explained that Bugzilla dictates parts of
the submission process that was especially difficult. This could also be seen as an issue of the
Submission Procedure. Thus, there are only minor submissions problems distinctively caused by
the Issue Tracker.

With an arithmetic mean rank of 1.402, “Bureaucracy/Paperwork™ are usually not an issue for
the participants. Those who ranked Bureaucracy high explained that it was difficult to create an
account for Bugzilla. However, all contributors had to create accounts for Bugzilla, but 65 of
them did not see Bureaucracy as a submission barrier. As an explanation for why this is a problem
only for a few participants, Mozilla offers two types of accounts for Bugzilla: first, a login with
email address and password as it is common among many websites, and second, authentication
via Mozilla Persona [P*Moz15r]. Some contributors might be unaware of the choice and then
select Persona even if it is badly suited for these contributors’ context like browser environment
or email provider.

The participants could also rate whether the “attitude of project members” constitutes a
problem for them. This Member Attitude received the lowest mean of 1.222 among the predefined
submission barriers. The attitude of project members is therefore generally not an issue, and
10 respondents even praised the kindness of the Mozilla developers in their explanation of this
ranking. Contributors to GNOME wrote no such praise, but this peculiarity may have occurred
by chance.

Three answers in the category Other were reassigned to Submission Procedure, as these
participants explained their choice with problems of patch file creation and the VCS, which other
respondents regarded as a problem of the Submission Procedure. The one remaining answer not
ranked 1 saw follow up work as a submission barrier, although only a minor submission barrier.

2.4.5 Discussion

When a FLOSS project grows to a large size, this manifests in different symptoms that can be
interpreted as modification barriers. Consequently, participants of this study and also existing
research observe multiple of these different modification barriers and their relationship is not
directly visible. Manifestations in the open question for modification barriers include the visibly
large Size of the Code Base and more indirectly the difficulties to acquire an overview over the
organizational or technical structure of the FLOSS project. A manifestation in the closed question
for modification barriers is the difficulty to Find the Code. For both questions, these manifestions
are the biggest modification barriers. Steinmacher et al. categorizes difficulties of understanding
as “cognitive problem” [Ste+14a], suggesting that this depends on the contributor and not on the
FLOSS project and disqualifying it from this thesis’s definition of a contribution barrier as per
Section 1.3. Although people are differently susceptible to difficulties of understanding, as they are
to any contribution barrier, the existence and the impact of difficulties of understanding depends
on the FLOSS project. The size of the FLOSS project is one example, but this also includes
countermeasures and particularly a lack of countermeasures, which is also a manifestation as

61

2 Contribution Barriers to FLOSS Projects

a modification barrier. Possible countermeasures are better documentation of different types
including code comments or a simpler architecture that is easier to understand. Steinmacher et al.
found relatively high numbers of evidence for these individual manifestations that spread around
different categories [Ste+14a]. This further confirms that this is an important modification barrier.

Sim and Holt [SH98] suggest that there is another individual factor besides cognitive capacity
influencing whether an individual is affected by difficulties to understand the general structure of
a software development project or not. They noticed that some newcomers approach a project
top-down and first try to get an overview before they dive into the individual parts. Others try to
understand a software system bottom-up and look at specific parts of the source code that add up
more and more to an overall understanding of the software system. Those with the bottom-up
approach seemed to have less trouble understanding the general structure of the project, because
they could extend their comprehension in small increments.

Another important contribution barrier documented by this survey are difficulties with the
technical Environment of the FLOSS project. This is both the second-most important modification
barrier and was most frequently cited in the open question for submission barriers. It is also
frequently mentioned in research: Sim and Holt recognized that setting up the development
machines is frustrating [SH98] and Dagenais et al. identified “Long IDE installation” as hurdle for
newcomers [Dag+10]. Installation issues are the second-most frequently mentioned contribution
barrier in the diary studies of Davidson et al. [Dav+14a]. In their interviews, Steinmacher et al.
count the contribution barrier “Building workspace locally” most often, and find evidence in their
three other data sources, too [Ste+14a].

According to the closed question for submission barriers, the Submission Procedure is the
greatest submission barrier. Every fifth answer to the open question for submission barriers also
mentions this submission barrier. Furthermore, Jensen and Scacchi argued that understanding
the submission process is a contribution barrier by itself already, which may be equivalent in
importance to the technical barriers [JSO7].

Steinmacher et al. [Ste+14a] also defined contribution barriers that map to problems with the
Submission Procedure. These are “poor ‘how to contribute’ available” and “newcomers don’t
know what is the contribution flow” in the category “newcomers need orientation”, and “lack
of information on how to send a contribution” in the subcategory “change request hurdles” of
“technical hurdles”. They report of only spare evidence for these barriers given that it turned out
to be important in this survey. The cause for this difference may be Steinmacher et al.’s smaller
data set.

Obviously, finding a solution for the issue and implementing it in source code can be difficult.
This task is the core of the modification and it can also be a modification barrier if it is too difficult.
The survey answers show this, although only in the closed question on modification barriers and
not in the open question. As explained above, other modification barriers are more important.
Sim and Holt observed already that programming has little potential for frustration, even if it is
time-consuming [SH98]. More generally, essential tasks may be less frustrating then accidental
tasks, because the latter seem like unnecessary and therefore wasted effort. Steinmacher et al.
identified “bad code quality” and “bad design quality” as contribution barriers and especially for
the former, they found evidence in three of their four data sources [Ste+14a]. These contribution
barriers may affect the Solution. This survey found no evidence for the two particular barriers
“bad code quality” and “bad design quality”. Mozilla and GNOME possibly have a good Quality

62

2.5 Improvement Suggestions

Assurance (QA) and therefore do not suffer much from bad code and design quality.

The results from the survey show that the review process can be problematic, as this is the
third most important submission barrier in the open question. Begel and Simon also present
anecdotal evidence about problems to receive approval for a patch [BS08, Section 4.2.2]. For
FLOSS projects, Sethanandha et al. agree that reviews may need intolerably much time [SMJ10a].
Baysal et al. confirm this specifically for Mozilla [Bay+12]. Steinmacher et al. distinguish
between an “issue to create a patch” and a “delay to get contribution accepted/reviewed” [Ste+14a].
Thongtanunam et al. [Tho+15] present empirical evidence that confirms delays of 12 days in
arithmetic mean for reviews with assignment problems. They show that, depending on the specific
FLOSS project, 4 % to 30 % of all reviews have assignment problems. In summary, slow and
obscure reviews are a well evidenced submission barrier.

Some practitioners [Tur14] as well as researchers [Dav+14a] see social contribution barriers as
more important than technical contribution barriers. However, they present only weak empirical
evidence for their claims. Jensen found empirical evidence that slow answers to newcomers’ ques-
tions constitute a contribution barrier [JKK11]. Steinmacher et al. reserve two of five categories
exclusively for social contribution barriers and therefore underpin their importance [Ste+15a]. In
contrast, respondents of this survey evaluated social issues as the least important contribution
barrier in the closed question for both modification and submission barriers. In the open question,
there has not even been a noteworthy number of mentions of social issues.

The survey asked in the closed question for modification barriers whether participants feared
that others might be working on the same issue in parallel. This involves the danger that their
solution would be redundant and hence superfluous. Respondents evaluated this as only a minor
modification barrier. Steinmacher et al. did not even mention this in their classification of
contribution barriers [Ste+14a], which further supports that contributors do not see this as a
problem. However, as explained in Section 1.3.5, Gousios et al. proved that the reason for 43 % of
all patch rejections on GitHub were redundant work on the same problem [GPD14]. Newcomers
seem to underestimate this problem.

2.5 Improvement Suggestions

In a set of three open questions, the questionnaire asked the participants to suggest improvements
for the contribution experience of Mozilla or GNOME. The three questions specifically asked
how Mozilla or GNOME could better support

1. source code modifications,
2. patch submissions, and
3. issue reports.

The first two questions split the onboarding phase of newcomers into source code modification
and submission, as does the rest of the survey. Question 1 asks for methods to lower modification
barriers, Question 2 asks for methods to lower submission barriers, and Question 3 asks for
methods lowering barriers for non-source-code contributions that are otherwise not in the focus
of this survey.

63

2 Contribution Barriers to FLOSS Projects

The answers may obviously yield ideas to lower contribution barriers, but they are also
another method to measure contribution barriers: The questions let the participants think about
contribution barriers from another perspective and let them identify new or confirm known
contribution barriers.

2.5.1 Results

Analogously to the open questions for contribution barriers and motivations, each statement in the
answers received a code in an open coding phase. The code categorizes the type of improvement.
It turned out that some, but not all, suggestions impact the contribution process or tool set as
a whole. Hence, a separation of the answers into the three categories that the three questions
impose was not always possible. For example, some contributors suggested changes to the VCS
when asked for source code modifications, others suggested the same change when asked for
patch submissions. Nevertheless, having multiple questions seems still useful in retrospective, as
this encouraged the respondents to think about improvements from different angles. Additionally,
some answers are indeed specific for one of the three types of barriers.

For the reason described above, Figure 2.16 shows the results for all three questions in one
figure. Analogously to the open questions in the other sections, the list of codes on the x-axis
shows only those codes that at least 7 % of the 65 respondents mentioned, which are at least 5
respondents. A participant counted as respondent if the participant answered at least one of the
three questions. The individual codes will be discussed in the following. This discussion includes
a remark if a code has been specific to one of the three questions.

N
(a]

== N W W
N O LK O L © W

Fraction of answers in %

0

Documen- Issue Gui-

tation Tools Process Reports dance

on on
Pro- Archi- Bugzilla VCS Fatch

cesses tecture Publication

Figure 2.16: Fraction of codes assigned for the open questions for suggestions for improvements

The most common suggestion for improvement was Documentation with 35.4 %. This is much
more frequently than in the open questions for contribution barriers. This might indicate that the
existing documentation is of good quality, for example it is easy to understand, but it may not have
covered the specific problem of the contributors. However, this code should be interpreted with
caution: The most frequent response to the open question for modification barriers was trouble
Understanding some aspect of the contribution, i.e. they were missing some information. Even if

64

2.5 Improvement Suggestions

the response was more specific, the problem usually would have been solved easier, and thus with
a lower contribution barrier, if they had have some specific information prior to their contribution,
like what code style rules are mandatory. A seemingly obvious improvement to solve these issues
is therefore to have the specific necessary information documented. However, there may be cases
with a better but less obvious solution, like simplifying the process or increasing the intuitiveness
of the tools such that additional information and thus documentation becomes unnecessary.

12.3 % of all respondents specified that they missed Documentation on Processes. All of these
answers referred to the submission processes: How should you create a patch? Where should
you submit it? This seemed to be a problem mostly for GNOME contributors, while Mozilla
contributors had problems with the flag system described in Section 2.2.1. As Understanding
the General Structure of the project was an important modification barrier according to the
open question, consequently Documentation on Architecture was a common suggestion for
improvement, specifically for 10.8 % of all respondents. Interestingly, all these suggestions for
Documentation on Architecture were responses to Question 1 and all respondents were Mozilla
contributors.

As the next major code, 32.3 % of the respondents suggested improvements in the 7ools
used for the contribution. The suggestions spread on a broad range of tools, such that most
individual tools fall below the 7 % threshold selected for this analysis. Two of the most mentioned
were improvements to Bugzilla with 13.8 %, and improvements to the VCS with 12.3 %. The
code Bugzilla comprises mostly suggestions to simplify different aspects of the issue and patch
submission forms. All responses with the code VCS suggest to use git or GitHub, depending
on whether the question was Question 1 or Question 2, respectively. Other suggestions include
automatic code style checks, which would help with the frequently mentioned Code Style
modification barrier, and easy ways to use unit tests.

Of all respondents, 24.6 % suggested improvements to the Process of incorporating new
contributors. This process is what von Krogh et al. referred to as Joining Script [KSL03]. As the
most frequently mentioned code in this category, with 10.8 % of all respondents mentioning it, is
Patch Publication. However, all responses that mentioned Patch Publication came from Mozilla
contributors, so this may be specific to the Mozilla Project. As another hint that this may be a
contribution barrier specific to Mozilla, two of those respondents explicitly mention hg patch
queues, an hg feature that even the hg project discourages from using [P*Mer14], but is still in
use at Mozilla [P*Moz14a]. Other responses suggest faster reviews or marking issues as easy if
they are suitable for newcomers.

10.8 % of all respondents suggested that Issue Reports should incorporate additional informa-
tion that will help developers to work on the issue. Three respondents suggested to have hints
at the solution in the issue report, especially which source code files a developer has to change
in order to work on the issue. In some cases, a core developer with a good understanding of the
code structure might very quickly assemble such a list of probable changes. This would decrease
the modification barrier Find the Code, which is the greatest contribution barrier identified in this
survey according to the means in the closed questions.

Another 7.7 % of all respondents wanted more Guidance in their contribution. [M31] suggested
to have a “‘test’ project to let the participants try-run the submit process”, as potential contributors
may be afraid to make mistakes publicly in an operational project. The others suggested that
mentors should help newcomers onboarding. According to these suggestions, mentors should

65

2 Contribution Barriers to FLOSS Projects

initiate conversation with the newcomers even if they themselves do not actively ask for help.
This is in line with Cox, who points out that some newcomers need help but then will become
very productive members of the community [Cox98]. The suggestions with the code Guidance
resemble those contribution barriers that Steinmacher et al. categorize as “Newcomers need
orientation” [Ste+14a].

2.5.2 Discussion

Sim and Holt suggest courses to help newcomers onboard software development projects [SH98].
For FLOSS projects however, this will not be possible in most cases. Furthermore, Dagenais et al.
found evidence that upfront courses are in fact counterproductive, as they prevent newcomers
from gaining first-hand experience with the environment [Dag+10].

The suggestion to check submitted patches for coding styles is not a novel suggestion of this
survey. Sethanandha et al. suggested a review system with advanced features including a check
for coding styles [SMJ10b].

Some respondents suggested mentors who actively guide newcomers. Mozilla already employs
a mentoring program [P*Moz14d], but they suggest that mentors should have a very active role.
Sim and Holt also observed that Mentoring is useful to help newcomers onboard a software
development project, but they also argue that mentoring costs much time [SH98]. Canfora et al.
specifically analyzed how mentoring in FLOSS projects works [Can+12].

2.6 Analysis

This section revisits the hypotheses defined in Section 2.2.2. Using the survey answers described
in the previous Sections 2.2.4, 2.3, and 2.4, the hypotheses are tested and discussed.

In this section, a result is considered statistically significant at a significance level of 0.05.
Results that are statistically significant at a significance level of only 0.1 are considered statistically
slightly significant.

As explained in Section 2.2.4, experience was measured on a scale from one to four, where
one represents the least and four represents the most experience. As detailed in Section 2.4,
contribution barriers were measured on a scale from one to five. One means that the contribution
barrier had no negative effect, while a contribution barrier rated five was almost a show stopper.

2.6.1 Language and Contribution Barriers

As apparent from Section 2.2.4, the most common programming languages that the survey’s
participants used for their first patch were JavaScript, C++, and C. Hypothesis 1 states that
contribution barriers depend on the programming language. Thus, I first looked which program-
ming languages occurred often and then took two groups out of the participants: The first group
consisted of the 48 participants who wrote their modification in JavaScript. The other group
consisted of 19 participants who wrote their modification with C++ as well as 16 participants who
wrote their modification in C. Treating C and C++ as the same language may conceal insights
about their differences, but has two advantages. First, a greater group increases the sample size
and therefore the probability to find statistically significant differences if they exist. Second, C

66

2.6 Analysis

is a subset of C++ and therefore a clear distinction between the two is sometimes difficult or
impossible. They also use a mostly identical development tool chain.

Obviously, programming languages may influence only those parts of the contribution barrier
that have some relation to the programming language. The items Setup and Build of the closed
question on contribution barriers for code modification served as a measure of the complexity of
the tool chain. The sum of the answers for these two items measured each respondent’s difficulty
with the tool chain. A t-test tested whether there was a difference in arithmetic mean between
the group of C/C++ programmers and the group of JavaScript programmers. As an interpreted
language, JavaScript needs no compilation and therefore has a simpler tool chain and especially
no difficulties with a build. Seo et al. found that source code in C++ leads to more compiler errors
than Java [Seo+14], which further supports that C++ builds can be difficult. Hence, the t-test
was one-sided and a lower contribution barrier for JavaScript was hypothesized. Surprisingly, the
p-value of 0.4318 indicated no significant differences.

One factor could be that only 1 JavaScript contributor submitted to GNOME and 46 submitted
to Mozilla. Differences between the two projects may have canceled out the differences between
JavaScript and C. Respondents’ comments suggest that a majority of the JavaScript contributors
submitted to Mozilla’s new Firefox OS, which has many JavaScript components. As opposed
to the common JavaScript web applications, developing for Firefox OS may require building
Firefox OS and setting up a development tool chain to work with mobile devices. Therefore, the
results are probably not representative for the programming language JavaScript in general.

Another factor that influences results of tests depending on the programming language may
be correlations of other factors with the programming language. As C and C++ are older
programming languages than JavaScript, maybe contributors of C and C++ modifications are also
more experienced with software development and therefore have less problems with technical
contribution barriers? This is not the case for the respondents of this survey. The JavaScript
developers assessed their expertise with their programming language (Development Environment
of PROJ) equally high as C/C++ developers do: The arithmetic mean is 2.57 as opposed to 2.55,
respectively. However, a one-sided t-test reveals that C/C++ may have a higher expertise with
Software Development in general than JavaScript developers: The means are 3.15 and 2.85 and
this difference is slightly significant with p=0.077. Maybe, therefore, the C/C++ developers’
higher expertise reduced the difficulties that the C/C++ development environment imposed.
Nevertheless, the results provide no convincing evidence that the programming language has an
impact on the contribution barrier and hence no support for Hypothesis 1.

2.6.2 Experience and Contribution Barriers

Hypothesis 2 predicts that experience lowers contribution barriers. This has multiple facets
that need to be analyzed independently: Experience with a specific aspect of the contribution
obviously cannot ease contribution barriers for other aspects. Specifically, experience with the
technology and the organizational procedures of the FLOSS project are independent and therefore
are treated separately.

For technological experience, this analysis tests whether experience with the technologies
used in the FLOSS project reduces the contribution barriers of the Setup of the development
environment and the Build of the application. For this analysis, the participants were divided into

67

2 Contribution Barriers to FLOSS Projects

two groups: A group of 45 unexperienced developers who had answered experience levels 1 or
2 with the Development Environment of PROJ, and a group of 51 experienced developers who
had answered experience levels 3 or 4 with the Development Environment of PROJ. A one-sided
t-test on their contribution barriers for the Setup of the development environment revealed no
significant differences (p=0.4811), and a test for the differences of their contribution barriers
for the Build of the FLOSS application was unnecessary, as the unexperienced developers had a
lower arithmetic mean for this contribution barrier of 1.79 than the experienced developers with
1.90.

For organizational experience, this analysis tests whether either experience with other FLOSS
projects or experience with the organization of Mozilla or GNOME helps to reduce barriers of
submission in Mozilla or GNOME, respectively. Experience with other FLOSS projects may
include experience of submitting a modification to these other FLOSS projects, but their processes
may be different to the processes of Mozilla or GNOME. Thus, the experience may actually not
apply fully. Experience with Mozilla or GNOME is specific to the processes for these projects,
but generally does not include the experience of submitting a modification, because the survey
asks about the first submission. The onion model assumes that an “active user” phase precedes
a code contribution, and in this phase the subsequent contributor files issues or participates
with comments [Cro+05]. Hence, the experience about the submission of a modification stems
only from observation, but not own effort. Thus, there may be hidden aspects of Mozilla’s
or GNOME’s submission procedures that become visible only when attempting to submit a
modification oneself.

Both organizational tests used the arithmetic mean of all contribution barriers for submitting a
modification rated in the closed question as a measurement for the general difficulty of submitting
a modification.

For the first of the two organizational tests, the participants were divided into two groups based
on their answer to their experience with FLOSS Processes of other projects: The unexperienced
group comprises those 26 participants answering 1 and 2, and the experienced group comprised
those 71 participants answering 3 and 4. A formal statistical test was unnecessary, because the
unexperienced group had the lower arithmetic mean of 1.488 compared to the experienced group’s
1.544, showing no indication that experience with other FLOSS projects could help submitting
a modification to Mozilla or GNOME. This substantiates Sethanandha et al.’s observation that
differences in processes and tools between FLOSS projects can be a contribution barrier [SMJ10a].

For the other organizational test, the participants were divided into an unexperienced group
of those 60 participants who had answered 1 to Processes of PROJ and those 34 participants
who had answered 2 or 3 to Processes of PROIJ. This threshold is different to the others, because
no participant claimed experience of level 4 with Mozilla or GNOME and only 3 assessed their
experience with Mozilla or GNOME on level 3. For such a small group, a t-test on data that
slightly violate the condition of a normal distribution would lead to invalid results. With the
shifted threshold, the arithmetic means of the two groups’ contribution barriers for submission
are 1.504 and 1.507 for the unexperienced and the experienced group, respectively. With so close
arithmetic means and even a slightly lower contribution barrier for the unexperienced group, a
statistical test is again unnecessary: The data show no evidence that experience as active user
makes it easier to contribute code to the FLOSS project.

The analysis found no support for Hypothesis 2, neither in the case of technical experience and

68

2.6 Analysis

technical contribution barriers nor for organizational experience and organizational contribution
barriers — neither showed any association. This indicates that at least Mozilla and GNOME, maybe
FLOSS projects in general, employ procedures for submission of modifications and technical
environments that differ from other FLOSS project’s procedures and environments. Therefore,
experience with other projects do not help when joining Mozilla and GNOME. Furthermore,
an “active user” cannot see the intricacies of the submission of modifications and therefore has
no advantage in doing this over others whose first involvement with the FLOSS project is the
submission of a modification.

2.6.3 Projects and Contribution Barriers

According to Hypothesis 3, the contribution barriers of one FLOSS project are different to those
of another FLOSS project. To test this hypothesis, a metric for the overall contribution barrier
of a respondent was calculated as the sum of all answers to the closed question on contribution
barriers of this respondent. A t-test tested whether this overall contribution barrier had a different
arithmetic mean for Mozilla contributors than for GNOME contributors. With p=0.5441, there
were no statistically significant differences between Mozilla and GNOME. However, the addition
might have cancelled out differences in the individual contribution barriers.

Therefore, further t-tests compared all contribution barriers individually. Table 2.4 displays
the results: The columns Mozilla and GNOME shows the arithmetic means of all answers that
only contributors to Mozilla and GNOME, respectively, gave. The column p-value contains
the p-values for each t-test to test whether there are differences in the arithmetic means of the
Mozilla contributors compared to the GNOME contributors. Only one difference is statistically
significant at the @ = 0.05 level, but this may easily be a coincidence given that there are 13
t-tests. Another difference was slightly statistically significant (p < 0.1). These results will not
be analyzed further due to the high chance of statistical error.

However, Wallis’s method to combine multiple experiments [Wal42] results in the more
meaningful compound p-values of 0.333, 0.040, and 0.891 for all contribution barriers, the
submission barriers, and the modification barriers, respectively. This suggests that Mozilla and
GNOME may indeed create different sets of submission barriers with their respective submission
procedures. The modification barriers, on the other hand, are surprisingly similar for both projects.

While this difference between submission barriers suggests a partial confirmation of Hypoth-
esis 3, the modification barriers are very similar for Mozilla and GNOME with no statistically
significant differences. This suggests that the values found for the modification barriers may be
constant for a larger set of FLOSS projects, of which Mozilla and GNOME are just two examples.
Without further studies of other projects, it is unclear to how many projects this set of FLOSS
projects with similar modification barriers extends.

2.6.4 Own Need, Motivation, and Occupation*

Hypothesis 4 says that most newcomers modify the FLOSS project’s source code primarily
because they need the modification for themselves. This means that more than half of the
respondents should have ranked Own Need as their most important modification motivation. As

A preliminary version of this section was published previously [HG16b].

69

2 Contribution Barriers to FLOSS Projects

Table 2.4: Arithmetic means of contribution barriers by project and p-values of t-tests for inter-
project differences and compound p-values

Contribution Barrier Mozilla GNOME p-value
Submission Procedure 2.038 1.762 0.267
Documentation 1.720 1.667 0.522
Issue Tracker 1.551 1.300 0.201
Bureaucracy 1.485 1.143 0.066"
Member Attitude 1.190 1.350 0.040*
Combined Submission Barriers 0.040*
Download 1.390 1.524 0.453
Setup 1.701 1.952 0.471
Build 1.813 1.850 0.918
Bug Reproduction 1.639 1.367 0.147
Redundant Work 1.458 1.600 0.810
Find the Code 2.114 2.050 0.950
Solution 1.731 1.650 0.958
Community Support 1.387 1.500 0.406
Combined Modification Barriers 0.891
Combined Contribution Barriers 0.333

T significant at @ = 0.1
* significant at @ = 0.05

only 25.8 % of the respondents ranked Own Need first as a modification motivation, Hypothesis 4
must be rejected — a binomial test as post hoc analysis using Hypothesis 4 as null hypothesis
gives a p-value < 0.0001.

Without Hypothesis 4, there must be another explanation for the high number of respondents
ranking Own Need as their primary modification motivation in the exploratory survey and in
Shah’s survey [Sha06]. As the phrasing and user interface in the main and exploratory surveys
were identical, the questionnaire implementation cannot cause bias. The differences between
the participants of the exploratory survey and those of the main survey must be this explanation.
All participants in the exploratory survey are professional software developers, as explained in
Section 2.1. Thus, the high importance of the modification motivation Own Need may be due to
the participants’ occupation. This first possibility will be discussed next.

Modification Motivation and Occupation

Previous research did indeed identify associations between occupation and contributor motivation
for FLOSS developers. The results are ambiguous whether Own Need depends on occupation.
The next two paragraphs discuss the state of research and the paragraphs afterwards presents
statistical clues from this survey.

70

2.6 Analysis

In their survey, Hars and Ou [HOO1] differentiate between contributors paid for their contribu-
tion, employed developers whose primary assignment is not their contribution, and contributors
who are non-professional programmers. Although the three groups vary in some contributor
motivations, they do not vary measurably in others. Interestingly, Own Need has of all included
contributor motivations the least variance between the three groups: 38.5 % of the contributors
who were paid for their contribution, again 38.5 % of the employed developers, and 36.4 % of the
non-professional programmers rate Own Need “high”. This indicates that while occupation does
influence the contributor motivation, it does not influence Own Need in particular. This seemingly
indicates that the difference between the exploratory survey and the main survey supposedly has
another reason.

Lakhani and Wolf [LWO03] also collected contributor motivation and occupation data. They
found statistically significant differences in contributor motivations between contributors who
were paid for their contribution and those who were not paid. These results are difficult to
compare to the results of the main survey in this chapter: First, the main survey explicitly excludes
employees of the Mozilla Foundation, the main employer of developers working on Mozilla,
but does not distinguish explicitly between paid and unpaid contributions for the remaining
participants. Second, Lakhani and Wolf partition Own Need in “Work need only” and “Non-work
need” and so the overall number for Own Need cannot be derived from the published data for paid
and unpaid contributors, as the data do not contain the overlap between those two types of needs.
They tested both subtypes “Work need only” and “Non-work need”” of Own Need successfully for
statistically significant differences between paid and non-paid contributors, but they did not test
Own Need as an aggregated motivation. The individual differences might cancel each other out
and therefore still be in concordance with Hars and Ou’s results. Therefore, a direct comparison
with Lakhani and Wolf’s results is not possible, but casts doubt on the independence between
contributor motivation and Own Need.

Next, Hypothesis 4 is restricted to employees and tested again. With this restriction the
respondent group better resembles the respondents of the exploratory survey. Of the 29 employed
respondents who answered to the closed question of modification motivation, 14 ranked Own
Need first, so this is still slightly less than 50 %. Contrary to the original unrestricted form of
Hypothesis 4, the restricted hypothesis may still be true and the too low number of employed
respondents in the main survey may have introduced a random error: Neither the restricted
hypothesis nor its opposite can be rejected with statistical significance.

In continuation of the literature discussion above, the next research question is: Do employees
rank Own Need as a more important modification motivation than non-employed contributors?
As the motivations scales are rankings and not continuous numerical data, a t-test is not possible.
Instead, a Mann-Whitney U test fits this research question, especially as it allows to consider
those respondents who did not consider Own Need as a modification motivation at all — these
respondents implicitly ranked Own Need less important than any explicit rank. In contrast to
a t-test, the Mann-Whitney U test does not need a concrete numeric value for these implicit
rankings, as it suffices to know that they are ranked with least importance. Low ranks designate a
high importance, so the null hypothesis is: The rank of Own Need for employed respondents is
at least as high as the rank for non-employed respondents. The Mann-Whitney U test yields a
p-value of 0.0781, so the difference is not significant at a significance level of @ = 0.05, but only
at @ = 0.1. Occupation may have an influence on Own Need, but the results are not conclusive.

71

2 Contribution Barriers to FLOSS Projects

Groups of Contributors Distinguished Through Own Need

As noted in Section 2.3.3 and visible in Figure 2.11, Own Need is more polarizing than the other
modification motivations: A comparatively low number of respondents ranked Own Need second
or third, although Own Need is the second-most popular option for the first rank. Specifically,
25.8 % of the respondents ranked Own Need as their primary modification motivation. 41.9 % of
the respondents saw Own Need as a modification motivation but not as their primary motivation:
most of them, 25.8 % of all respondents, ranked Own Need fourth. 32.3 % did not see Own Need
as modification motivation at all.

Thus, using this motivation, three main groups of contributors can be distinguished: First,
those who missed a feature or suffered from a defect in the FLOSS application, and modified
the FLOSS application to solve their problem. They ranked Own Need first. Second, those who
also missed a feature or suffered from a defect, but there was a workaround or the problem did
not impact them very much — fun of programming, the project community, and learning about
technology were more important motivations for them to modify the FLOSS application, but at
least Own Need was a modification motivation at all for them. Third, those who actively searched
for a task in the FLOSS project and who did not find a problem through their own usage of the
FLOSS application. For them, Own Need was no modification motivation at all.

2.6.5 Motivation and Contribution Barriers

Hypothesis 5 predicts a specific relation between motivations and contribution barriers: Motiva-
tions are indicators for the contributors’ mental model and those contribution barriers expected in
the mental model have less impact than those contribution barriers which are not expected. This
is a consequence of the Theory of Cognitive Dissonance [Fes57].

For tests of Hypothesis 5, participants are assigned roles derived from their motivation. Tech-
nology Learners is an example of such a motivation role, which comprises those participants for
whom learning about the technologies used in the FLOSS project was an important motivation
to contribute. Motivation roles are independent, so a participant either is or is not in a specific
motivation role, independently of the other motivation roles the participant is assigned to. As
discussed in the presentation of Hypothesis 5 in Section 2.2.2, motivation roles presuppose that
the participants had a specific model about the contribution and that they should have expected or
not expected a particular hurdle in the contribution procedure.

The Technology Learners, for example, should have expected that the FLOSS project’s tech-
nical environment has some intricacies that a newcomer has to overcome — by learning about
the FLOSS project’s technology. These hurdles manifest in a contribution barrier that the survey
measured in its closed questions for contribution barriers. Statistical tests therefore reveal whether
or not there is a difference in perception of these contribution barriers between members and
non-members of a motivation role. Differences support Hypothesis 5, while a lack of differences
opposes Hypothesis 5.

All motivation roles are listed in Table 2.5. For each motivation role, the table also lists the
number of members and non-members of the role and which contribution barriers should be lower
or greater for members of the motivation role according to Hypothesis 5. The last column p-value
lists p-values that result from one-sided t-tests that test whether the expected difference between

72

2.6 Analysis

members and non-members of the motivation role exist. For most motivation roles, multiple
different contribution barriers are tested for differences resulting in multiple p-values. Using
Wallis’ method of combining p-values from multiple experiments [Wal42], these p-values are
combined into a single p-value for each motivation role and eventually for the whole comparison.
The following paragraphs discuss the construction and rationale for the individual motivation
roles in detail.

The analysis will first take up the introductory example of Technology Learners. Defined
precisely, Technology Learners are those participants who ranked Learning as the most or
second-most important motivation to modify the FLOSS application. Their complementary role
comprises the respondents who rejected Learning as a motivation to modify the application or
ranked it only third-most important or less. There are 44 Technology Learners and 50 respondents
in the complementary role. The null hypotheses are: Technology Learners rank the contribution
barriers Setup and Build at least as high as their complementary role. As the result of t-tests, there
are statistically significant differences between Technology Learners and their complementary
role for Setup (p=0.04907) and no statistical significance for Build (p=0.2319).

The next motivation role is Joy Programmers, which includes those respondents who ranked
Joy as their primary reason to modify the application. Those who ranked Joy as the second-most
reason were assigned to the complementary role, as otherwise the Joy Programmers would be
more than 70 % of all respondents and therefore the complementary role would be too small
for a meaningful statistical comparison. There are 35 Joy Programmers, their complementary
role counts 59 respondents. Those who want to experience the joy of programming know
that programming is a challenge and specifically want to face it. Hence, the null hypotheses
are: Joy Programmers rank the contribution barriers Find the Code and Solution at least as
high as their complementary role. The corresponding t-tests show no statistically significant
differences for Find the Code (p=0.1728) and slightly statistically significant differences for
Solution (p=0.05176).

Pragmatic Patchers are those respondents who ranked Own Need as their primary or secondary
motivation to modify the application. There are 29 Pragmatic Patchers and 65 respondents in their
complementary role. Pragmatic Patchers supposedly consider patching the application as less
effort than a workaround like using another application, as that would also satisfy their motivation.
Thus, their effort estimate of the modification has an upper limit that those respondents in the
complementary role do not have. If the modification effort is nevertheless high, Pragmatic
Patchers with their lower effort estimation will therefore less likely expect this effort than their
complementary role. Hypothesis 5 suggests that this unexpected effort can be measured as
higher contribution barriers. Core contribution barriers like Solution are obviously necessary for
the modification and therefore less likely to be underestimated; thus, the unexpected effort is
operationalized via the secondary contribution barriers Download, Setup, and Build. The null
hypotheses say that Pragmatic Patchers experience the contribution barriers Download, Setup, and
Build at most as high as their complementary role. However, none of the three null hypotheses
can be rejected with t-tests: There are no statistically significant differences for these contribution
barriers. The results are p=0.2478, p=0.7426, and p=0.4598 for Download, Setup, and Build,
respectively.

I tried to shed light on the lack of differences between Pragmatic Patchers and their comple-
mentary role with a post hoc analysis. Instead of the original criterion for Pragmatic Patchers,

73

2 Contribution Barriers to FLOSS Projects

Table 2.5: Respondent motivation roles and whether they perceive contribution barriers differently
than their complementary roles, as p-value of a one-sided t-test

Motivation role Role sizes Contribution Expected p-value
(respondent/ barrier Difference
complementary)

Setup < 0.0490*

Technology Learners 44/50 Build < 0.2319

Combined 0.0623"
Find the Code < 0.1728
Joy Programmers 35/59 Solution < 0.0518"
Combined 0.05117
Download > 0.2478
. Setup > 0.7426
Pragmatic Patchers 29/65 Build S 0.4598
Combined 0.5517
Download > 0.08887
Setup > 0.2412
Strictly Pragmatic 23/30 Build > 0.2215
Patchers (post hoc) Find the Code > 0.1586
Solution > 0.1035
Combined 0.0412"
i il
Community Joiners 36/58 Community < 0.0526
Support
Combined 0.0526"
Submission Pro- < 0.2052
cedure
FLOSS Learners 42/49 Issue Tracker < 0.9671
Bureaucracy < 0.3687
Combined 0.5146
Submission Pro- > N/A
. . cedure

Economic Submitters 14/77 Issue Tracker S N/A
Bureaucracy > N/A
Combined N/A

Groups combined 0.0301*

T significant at & = 0.1
* significant at @ = 0.05

74

2.6 Analysis

the Strictly Pragmatic Patchers were limited to only those respondents who ranked Own Need
as a primary motivation. The contribution barriers for these Strictly Pragmatic Patchers were
compared with those of the respondents who saw Own Need as no motivation at all. This cor-
responds to two of the three groups identified in the discussion in Section 2.6.4. Additionally,
the post hoc analysis includes the contribution barriers Find The Code and Solution, as these
are among the highest modification barriers according to the closed question for modification
barriers, and thus are more likely to be the source of an unexpectedly high modification effort.
Just like the three contribution barriers already tested, Find the Code and Solution were not
significantly different between Pragmatic Patchers and their complementary role (p=0.7197 and
p=0.2015). The differences between the Strictly Pragmatic Patchers and those who had no
Own Need at all were only slightly significant for Download (p=0.08887) and not significant
for Setup (p=0.2412), Build (p=0.2215), Find the Code (p=0.1586), and Solution (p=0.1035).
However, combining these p-values using Wallis’ method [Wal42] yields a significant difference
(p=0.04129) between Strictly Pragmatic Patchers and the respondents without Own Need. This
result is even more outstanding when considering that the roles of Strictly Pragmatic Patchers and
respondents without Own Need were smaller than Pragmatic Patchers and their complementary
role: Although statistical tests generally yield lower p-values for larger groups if an effect exists,
Strictly Pragmatic Patchers still show statistically detectable differences to respondents without
Own Need. This indicates that the a priori differentiation between Pragmatic Patchers and their
complementary role did not very well match real differentiations between motivation roles of
contributors. Strictly Pragmatic Patchers and respondents without Own Need better characterize
motivation roles than Pragmatic Patchers and their complementary role.

Those respondents who ranked Community as a modification motivation on first or second
place are called Community Joiners. There are 36 Community Joiners and 58 respondents in the
complementary role. As a consequence of their motivation, Community Joiners expect social
interaction with the community of the FLOSS project. They want to get in contact not purely
because of an immediate need, instead social contacts have value for them in their own right.
Their complementary role on the other hand may find it unexpected if it is necessary to get
in touch with multiple members of the community in order to solve the issue. Thus, the null
hypothesis is that Community Joiners rank the modification barrier Community numerically at
least as high as their complementary role. The resulting t-test shows that the null hypothesis can
almost be rejected with statistical significance (p=0.05256).

The motivation for modification determined who belonged to the previously defined motivation
roles and who does not. In contrast, FLOSS Learners are the respondents whose first or second
motivation for their submission to the FLOSS project was Learning. Analogously to Technology
Learners, FLOSS Learners know that each FLOSS project has its own processes and its own
culture, because their motivation is to learn about these specifics. Their complementary role
may focus on technical aspects of the contribution and forget about the submission procedure. If
the submission requires effort, the complementary role may not expect it and experience a high
submission barrier. Hence the null hypotheses: FLOSS Learners rank the submission barriers
Submission Procedure, Issue Tracker, and Bureaucracy at most as high as their complementary
role. Contrary to Technology Learners, t-tests could not statistically significantly reject the
three null hypotheses for FLOSS Learners, neither for Submission Procedure (p=0.2052), Issue
Tracker (p=0.9671), nor Bureaucracy (p=0.3687). Possibly, both FLOSS Learners and their

75

2 Contribution Barriers to FLOSS Projects

complementary role knew about and expect the efforts of the submission, but only the former saw
it as a motivation for submission, while the latter just found it to be a necessary task.

The motivation role Economic Submitters consists of those respondents whose first-ranked or
second-ranked motivation for submission is avoiding the Stupid Tax. Analogously to Pragmatic
Patchers, Economic Submitters assume that less effort is necessary for the submission of their
modification than for the possibly repeated reintegration of their modification into newer ver-
sions of the FLOSS application. Thus, they should rank submission barriers higher than their
complementary role. However, only 14 respondents are Economic Submitters. This is a small
size for a statistical test, and therefore statistical significance is unlikely even if an effect exists.
Consequently, no differences were tested and the analysis does not take Economic Submitters
into account.

In summary, this subsection analyzed five motivation roles. Statistical tests revealed slightly
significant differences for three motivation roles. The remaining two motivation roles Pragmatic
Patchers and FLOSS Learners showed no statistical significant differences. However, a post hoc
analysis revealed that adapting the motivation role of Pragmatic Patchers to Strictly Pragmatic
Patchers yields a significant difference. One motivation role, Economic Submitters, has not been
analysed as the sample was too small. The results for the five valid motivation roles, excluding
the post hoc analysis of Strictly Pragmatic Patchers and omitting the missing test for Economic
Submitters, combine into a p-value of 0.0301 using Wallis’ method [Wal42]. Thus, the result
supports Hypothesis 5: Contribution barriers depend on the contributors’ motivation.

2.7 Threats to Validity

This section discusses different types of threats to the survey and how the survey set-up ensured
validity in spite of these threats. First, construct validity describes how the survey measured
the data that it was supposed to measure. Next, the survey questions shall adequately cover
contribution barriers to ensure content validity. Third, the conclusions drawn in the discussions
and Section 2.6 must have internal validity. Lastly, threats to external validity endanger the
application of this survey’s conclusions to FLOSS projects other than Mozilla and GNOME.

2.7.1 Construct Validity

Incomprehensible or ambiguous questions endanger construct validity, as the participants’ an-
swers would not fit to the questions. However, both the exploratory and the main survey received
thorough pretests and the first participants were invited only after the pretesters had not misunder-
stood any question. The participants’ answer also showed few signs of misunderstanding and
those were discussed in the description of results.

One metric for the importance of contribution barriers in the survey were arithmetic means of
scale scores, which are similar to Likert scores. Likert scores are ordinal and there is criticism that
arithmetic means and parametric tests like the t-test may not be used on ordinal scales [Gai80].
On the other hand, other researchers point out that this criticism founds on a confusion between
measurement theory and statistical theory and that the type of scale does not influence the statisti-
cal method used [Lor53; Gai80]. Therefore the arithmetic means of ordinal scaled contribution

76

2.7 Threats to Validity

barriers must not be interpreted as means of actual importance of contribution barriers, but as
means of measured and ordinal scaled importance.

As described in Section 2.2.4, the survey measured experience through self-assessment. Par-
ticipants might over- or undererstimate their abilities, or simply lie about their own ability.
This would induce high measurement errors for this question. However, empirical evaluation
showed that self-assessment is superior to other types of measurements of programming skills
like university marks [KH11].

2.7.2 Content Validity

Answers to closed questions in surveys strongly depend on which answers the participants can
choose from. For example, survey participants tend to choose an average option, even if the
average is very high or very low in absolute numbers [Dil99, Chapter 2]. The survey’s central
questions, those about contribution barriers and motivation, therefore had an open and a closed
form. For each question, the survey presented the open question first and afterwards the closed
question. This ensured that the participants had no preconceptions when answering to the open
question. The closed question let participants think about answers that they did not consider in the
open question. For example, an item might have influenced their decisions only subconsciously,
so they did not answer it in the open question but agreed with it in the closed question as they had
to think about it. This was supposedly the case for the Joy of programming in the question for
modification motivation. Furthermore, answers to the closed question were less ambiguous and
are better suited for statistical evaluation.

The closed questions for motivation explicitly asked for the motivation at the time of the
participants’ first modification and submission. This is different to the participants’ motivation at
the time of the survey, as they had learned more about the FLOSS project in between and found
out which motivations were reasonable and which were not. Nevertheless, participants might have
chosen motivations that sounded plausible for them, although they may not had initially thought
of them and therefore they did not influence their decision to contribute. This is an alternative
explanation for answers occurring only in the closed but not in the open questions. This threat
cannot be ruled out completely and its possibility has to be evaluated for every case where the
number of closed answers exceeds the number of equivalent open answers. As described in
Section 2.2.3, the participants were invited shortly after their first contribution, so their memories
about the contribution were still fresh, which further limits this threat.

2.7.3 Internal Validity

The analysis in Section 2.6 frequently used t-tests on scores from ordinal scales similar to Likert
scales to prove or disprove statistical hypotheses. t-tests require normally distributed variables,
which is never the case for Likert scores. Nevertheless, the t-test is robust to minor violations to
its requirements [Nor10] and works well especially with Likert scores [WD10]. Nevertheless,
the data analyzed in Section 2.6.4 deviated too much from the requirements of a t-test and a
Whitney-Mann U test was used as alternative. Consequently, the statistical methods were in all
cases appropriate for the data.

77

2 Contribution Barriers to FLOSS Projects

There may be a self-selection bias, as the set of survey invitees and survey participants are
not identical. However, as explained in Section 2.2.3, the response rate of 65 % is high for a
survey [Dil99, p. 3f]. Therefore the identified contribution barriers and motivations really exist
for a major number of FLOSS contributors.

During the Second World War, the Allies collected which zones of their returning bombers
were hit by the enemy. They wanted to know where they should reinforce their bombers’ armor.
Because planes must be lightweight, there is only limited capacity for armor. Wald [Wal80,
Part V] showed with statistical arguments the surprising result that the armor should be reinforced
in those zones that received low number of hits — because bombers hit in these zones had not
returned from combat and were therefore vulnerable in these zones. This type of selection bias
is called survivorship bias. The bomber situation can be seen as an analogy to contributors
in FLOSS projects who try to drop their contribution on the FLOSS project, but contribution
barriers of different kinds may hit them and therefore prevent the contribution. The survey only
invited contributors with successful patches, those who had overcome the contribution barriers.
Continuing the analogy would lead to the conclusion that the contribution barriers identified in
the survey are not important, because obviously the contributors were able to overcome them, and
that the really important contribution barriers are those that none of the participants experienced.
However, Wald formulated two assumptions which do not hold for contribution barriers.

First, Wald assumes that the probability that a hit downs a bomber is independent from
previous hits on the same bomber. For FLOSS projects, it is more plausible that contribution
barriers accumulate in some way and that potential contributors cancel their contribution if
all experienced contribution barriers together exceed their level of tolerance induced by their
motivation to contribute. In this case, the distribution of contribution barriers among successful
contributors approximates the distribution of contribution barriers among all potential contributors.
Nevertheless, to a lesser degree Wald’s survivorship bias still applies to contribution barriers,
and it is stronger for contribution barriers that have a greater individual impact, as contributors
experiencing these contribution barriers are underrepresented in the set of successful contributors.

Second, Wald assumes that the probability for a bullet to hit a specific zone of the bomber is
known. He approximates this in an example with the size of each zone. In the case of FLOSS
projects, it is not only relevant whether a specific contribution barrier has a high or low probability
to cancel a contribution, but also for how many contributions the contribution barrier arises. A
frequent contribution barrier with low individual impact on the contribution may have the same
overall effect as an infrequent contribution barrier with high individual impact on the contribution.
The distribution of contribution barriers among successful contributors not only shows each
contribution barrier’s individual impact, but also its occurrence frequency in the base set, which
is interesting in the case of contribution barriers. For bombers, armor in small zones is less costly
than armor in large zones, because more armor is required and it will be heavier for large zones.
Therefore, the vulnerability of a zone is more interesting than its probability to get hit. In contrast,
lowering a contribution barrier does not necessarily depend on its occurrence frequency and
therefore a mixed measure of impact and occurrence frequency is more useful than one of them
alone. This further lessens the survivorship bias.

78

2.8 A New Model for Joining FLOSS Projects

2.7.4 External Validity

As shown in Section 2.6.3, Mozilla’s and GNOME’s modification barriers are surprisingly similar.
This indicates that the modification barriers identified in this survey apply to a larger class of
FLOSS projects, of which Mozilla and GNOME are two examples. Nevertheless, there may be
FLOSS projects of different classes that have a different composition of modification barriers.
For example, small FLOSS projects are potentially different to Mozilla and GNOME. Mozilla’s
and GNOME’s submission barriers were different and therefore it is unclear to which degree they
apply to other FLOSS projects.

Furthermore, both Mozilla and GNOME are very successful FLOSS projects. As the success
of a FLOSS project depends on the project’s ability to gain new developers [Xu+05; CM07], both
GNOME and Motzilla supposedly have a relatively low level of contribution barriers. The results
in Section 2.4 support this assumption. Thus, other FLOSS projects may have a generally higher
level of contribution barriers.

Some further results, like the lack of relationship between programming language and contri-
bution barriers as predicted by Hypothesis 1, may be specific to Mozilla and GNOME. Possible
reasons were discussed in the appropriate sections. Other further results like the confirmation of
Hypothesis 5 found on general theories which do not depend on the choice of the FLOSS project.
These results can be assumed to hold also for other FLOSS projects.

2.8 A New Model for Joining FLOSS Projects

This section describes a model for new contributors joining a FLOSS project. It is based on
the previous findings, especially the relationship between contribution barriers and contributor
motivations, and on previous research. The overall impact of all contribution barriers on a
newcomer is determined by which contribution barriers occur and the strength of their individual
impact. Both factors can be assessed individually, as will be shown in the following.

Von Krogh et al. argued that new contributors have to adhere a specific process called the joining
script to become co-developers of a FLOSS project [KSLO3]. Jensen and Scacchi noted that
there are different paths towards the core roles of FLOSS project [JSO7]. Herraiz et al. [Her+06]
specifically showed that GNOME employs at least two joining scripts. Moreover, Herraiz et al.
showed that quite discriminably volunteer developers use one joining script while employed
developers use another. Since every joining script comes with its own steps and tasks, the joining
script defines which contribution barriers are in effect.

All newcomers have their own mental model of the FLOSS project. The mental model
determines the impact of each individual contribution barrier. If a task needs more time to
be carried out, this increases related contribution barriers; however, it is more important how
“frustrating” the contribution barriers are. More specifically, Hypothesis 5 implies that unexpected
tasks have higher contribution barriers than expected tasks. Additionally, tasks that are perceived
to create value induce lower contribution barriers than tasks that are considered unnecessary.

The mental model of the FLOSS project also determines the newcomers’ motivations. The
proof of Hypothesis 5 shows that this relationship can be reversed: Specific motivations imply
specific ideas of the FLOSS project and therefore whether each specific task is expected or not.
In particular, the survey identified in Section 2.6.5 four roles of newcomers that experience

79

2 Contribution Barriers to FLOSS Projects

especially low or especially high contribution barriers of some kinds. Future research should try
to identify more of these particular groups.

Demographic properties influence which joining script newcomers use and they also determine
their motivations, their mental model of the FLOSS project, and consequently which contribution
barriers have high impact and which have only low impact. For example, learning is an important
motivation for students. For members of the role Technology Learners, the modification barriers
for setting up a development environment have less impact. Students are volunteer developers and
therefore advance slowly through supporting roles in the FLOSS project before they contribute
code [Her+06]. Barriers that hinder non-code contributions would therefore indirectly hinder
code contributions from students. The consequences of this insight on the management of each
FLOSS project depends on the project’s goals.

Each FLOSS project attracts contributors with different demographies. Thus, it could be
reasonable to lower particularly those contribution barriers that strongly affect the contributors
who are the most attracted by the FLOSS project. This would maximize developer influx.
Inversely, a FLOSS project might increase attractiveness for contributors of demographies that
the FLOSS project has low contribution barriers already. However, the latter option is not in the
scope of this thesis, as the mechanisms of attractiveness are a field of research on their own.

Section 2.2.4 discusses evidence that contributors of some demographies stay longer with a
FLOSS project than others. Additionally, the first activities of a person in a FLOSS project can
be used as an indicator whether the person will contribute over a long term [ZM12]. Hence,
lowering contribution barriers for contributors of these demographies may be desirable.

Another approach would be lowering contribution barriers for contributors of underrepresented
demographies. This would diversify the FLOSS project’s group of developers and thereby help to
implement requirements of users belonging to the previously underrepresented demographies.

2.9 Conclusion

This chapter addressed the first of three core research question of this thesis: Which contribution
barriers exist and what is their individual effect? An exploratory survey gave qualitative insights
about contribution barriers and helped to create a succeeding, more comprehensive survey. 117
useful responses to this main survey delivered enough data for a statistical analysis of five
hypotheses that were formulated as a result of the exploratory survey. The following summarizes
the insights gained from the survey and its analysis.

Existing research does not differentiate between modification and submission in regard to
contributor motivations and contribution barriers. Existing research focuses more on submission
motivations than modification motivations, although this survey’s results in Section 2.4 show that
modification barriers are more important than submission barriers. Future research on motivation
should pay additional attention to modification motivations.

Section 2.4 identified that five contribution barriers are of high importance. These contribution
barriers, roughly in order of importance, are

o difficulties to understand the structure of the FLOSS project and its architecture, and
consequently difficulties to find the part of the source code that needs to be changed. This
can be a consequence of a large project size.

80

2.9 Conclusion

e Setting up and configuring the development environment can be frustrating for newcomers.

e Newcomers have trouble to grasp the submission process and consequently sometimes get
lost in the submission of their patch.

e Programming the actual solution can be challenging, but it is usually not frustrating.
o Getting the reviews required for acceptance of the patch can be troublesome.

Generally, accidental tasks, which newcomers feel unnecessary, are more frustrating than
essential tasks, which are considered at the core of the contribution. Accordingly, issues with the
code style were an important contribution barrier for 17.6 % of the respondents. FLOSS projects
should take care not to introduce these types of contribution barriers.

The five hypotheses formulated in Section 2.2.2 were tested in Section 2.6. The results
delivered no statistical evidence for a dependency between contribution barriers and programming
languages, neither was there evidence that contribution barriers could be lowered by experience
of different kinds.

FLOSS projects can be classified such that all FLOSS projects in one class have similar
contribution barriers. Mozilla and GNOME belong to one class regarding their modification
barriers, but they differ in terms of submission barriers.

Contributors can be split into three groups of very roughly equal size: The first modifies
the application because they need the modification for themselves. The second also uses the
modification, but this is only a subordinate modification motivation for them. The third group
does not even use the modification, but have completely different reasons for their modification.
Contributor occupation may be a factor determining to which group a contributor belongs. These
groups differ in what they perceive as contribution barriers.

The contributors’ motivations are indicators for their mental model about the FLOSS project.
As a consequence, more groups than those discussed above can be identified using their motivation.
These groups are different in their perception of contribution barriers. Expected contribution
barrier have less impact than unexpected contribution barriers.

These findings lead to a new model for joining FLOSS projects. The demography of new-
comers determine on the one hand which joining path these newcomers take and thereby which
contribution barriers they encounter. The demography also determines which contribution barriers
the newcomers expect and thereby the impact of each individual contribution barrier. FLOSS
projects may adapt their joining scripts to the demographies they want as contributors.

81

3 FLOSS Pattern Languages

As pointed out in Section 1.1, the definitions of Open Source Software [P*Ope04] and Free
Software [P*Frel5] depend only on the license used for the FLOSS project and not on the
development style. Researchers have observed and described different characteristics of software
development in FLOSS projects [Ray00; GA0O4] and their communities [Kri02; YKO03]. Devel-
opment methods differ strongly between FLOSS projects. However, there are not only two or
three types of FLOSS development methods, instead there are several interrelated aspects of the
development method that occur in different variants.

The pattern approach introduced by Alexander allows the description of individual parts of
a method, independently from other parts and still showing their interrelations [Ale79]. Kelly
suggested that this pattern approach may be applicable to FLOSS development, and that the best
practices of running FLOSS projects may constitute its own FLOSS Pattern language [Kel06]. In
fact, several authors picked up the idea and authored FLOSS patterns that they had observed in
practice and drawn from literature, e.g. [Wei09; Lin10; HWG10].

Each pattern describes at its core a solution to a problem occurring in a context [Ale+77,
p. x]. Accordingly, each FLOSS pattern describes the context of a FLOSS project, a problem that
this FLOSS project faces, and a solution to the problem based on experience. Patterns describe
existing and not new solutions. Thus, pattern authors usually are not the original creators of
solutions but only their observers. This is similar to natural sciences, which do not create new
laws of nature, but observe patterns in natural behavior and describe the invariants of the observed
behavior. This is the same for patterns, which describe invariants of problems and solutions in
other disciplines [Ale79].

Contribution barriers are one type of problem for FLOSS projects, and consequently, it is
possible to write FLOSS patterns describing how to lower these contribution barriers. The
contribution barriers itself were identified and described in Chapter 2. Section 3.2 categorizes all
FLOSS patterns published until 2015-12 and describe their relationships as a pattern language.
Sections 3.1 reviews the pattern literature and introduces some conventions for this categorization.
Section 3.3 contains seven complete FLOSS patterns that lower contribution barriers identified in
Chapter 2.

Patterns include examples of their application. Therefore, FLOSS patterns are empirically jus-
tified and they are known to have been applied in practice. As such, they are reliable observations
of FLOSS development methods. However, Open HUB listed 670 563 FLOSS projects already as
of 2015-10-27 [P*Opel5b], and so a few examples in each pattern do not prove that the FLOSS
pattern is common. In fact, it could still be the very rare exception and in the theoretical extreme,
the given examples could be the only applications of the FLOSS pattern at all. Therefore, the
chapter contains an evaluation of application frequency of the FLOSS patterns.

Section 3.4 presents the execution of this evaluation and Section 3.5 discusses its findings.
The evaluation takes the reversed approach compared to examples given in patterns: first, five

82

3.1 Introduction

FLOSS projects were selected and then it was evaluated which FLOSS patterns they use. Very
common FLOSS patterns will occur in this selection with high probability, while uncommon
patterns do not occur or do not occur often in the selection. This evaluation also puts the proposed
relationships to the test.

3.1 Introduction

This section presents a review of literature on patterns and some definitions required for the
survey of all FLOSS patterns in Section 3.2.

Currently, there are 40 FLOSS patterns described in 13 monographs [HWG10; HWGI11;
HLG14; Linl0; Linl1; Linl12; Wei09; WeilO; Weill; Weil5; WN13; WHG13; ZHG16].
Although patterns are supposed to facilitate the reader’s understanding of a domain, it is difficult
to gain an overview of this large number of patterns distributed in several publications, with no
apparent order in these FLOSS patterns. The first goal of the survey is to give a concise overview
of all FLOSS patterns and thereby serve as a guideline that helps readers to find the FLOSS
patterns relevant for their situation.

As part of this endeavor, the FLOSS patterns have been categorized into eight categories.
Additionally, some FLOSS patterns are similar and it turned out that they describe different
aspects of the same problem and solution. These FLOSS patterns have been combined. Resulting
FLOSS patterns, whether unchanged or combined, are described as thumbnails according to
the PROBLEM/SoLUTION SUMMARY PATTERN of the pattern language for pattern writing [MD98] in
Section 3.2.

FLOSS patterns currently stand mostly on their own, as current research did not put much
emphasis on the relationship between patterns, especially between patterns of different authors.
Partly, this is due to the publication order of patterns, as obviously a work can only reference
previously published patterns. Sometimes earlier FLOSS patterns rest upon later FLOSS patterns,
possibly without the authors’ knowledge, and these relations have yet to be revealed. Thus, the
second goal of the survey is the identification of relationships between FLOSS patterns.

3.1.1 Classification of FLOSS Patterns

Each of the eight FLOSS pattern categories has its own subsection in Section 3.2. A category
subsection starts with a summary of the patterns in the category as described in the PATTERN
LANGUAGE SuMMARY PATTERN [MD98]. This summary introduces the patterns as a whole and
describes their relations. A diagram known as pattern map visualizes the patterns in the category.
Section 3.1.3 describes the pattern maps used in this thesis in more detail. The remainder of the
category subsection contains thumbnails of all patterns in the category.

According to the PRoBLEM/SoLUTION SuMMARY PaTTERN [MD98], thumbnails of patterns present
patterns in a strongly abbreviated form, limited to the name of the pattern, the problem that the
pattern tackles, and the main idea of the solution. The thumbnail of a pattern gives a basic idea
of the pattern, but it is insufficient for its implementation. In this study, thumbnails of patterns
additionally include an icon symbolizing each pattern for easier recognition. Furthermore, a
verification section follows each thumbnail of a pattern in preparation of the evaluation. This

83

3 FLOSS Pattern Languages

verification section was not part of the original pattern and is instead derived from it. The
verification section describes objective criteria that allow to check whether a given FLOSS project
applies the FLOSS pattern or not.

Some FLOSS patterns described in this study have been published in multiple papers by
different names, sometimes by different authors. The original publications do not explicitly state
that these patterns are refinements of previously published patterns. In fact, at least in some cases
the authors of refined patterns have not been aware that the refined patterns resemble previously
published patterns. Indeed, these different versions of the same pattern differ in emphasis and
highlight slightly different aspects of the pattern. A hard proof that these patterns are the same is
impossible and therefore up to discussion. Consequentially, thumbnails of these deduplicated
patterns additionally contain a deduplication section with arguments showing why the different
variants represent the same pattern.

3.1.2 Related Work on Pattern Languages and Pattern Maps

Alexander explained that patterns cannot stand on their own, but have relations constituting a
pattern language [Ale79]. Alexander et al. [Ale+77] presented their architectural pattern language
in order of application size, starting with the structure of countries and regions and ending with
specific arrangements of interiors in a house. In Alexander et al.’s pattern language, each pattern
usually relies on more specific patterns that come later in the pattern language.

A diagram that visualizes a pattern language, especially the classification of patterns and their
relationships, is called a pattern map. Alexander et al. [Ale+77] did not use a pattern map. Other
authors have no common let alone standardized notation for pattern maps. Hence, authors of
pattern languages focusing on software development teams and organizations varied in their use
of pattern maps and similar visualizations of pattern languages.

The following paragraphs present a survey of related work about pattern languages and the
different kinds of pattern maps. This lays the groundwork for structuring and visualizing the
FLOSS pattern language.

Pattern languages can be seen as graphs, with patterns being nodes that have edges to the
patterns required or useful for their implementation. This graph structure is a common technique
used for pattern maps.

For example, Fowler [Fow96] showed pattern names in a figure with arrows between two
patterns when the first influences the second. Furthermore, the patterns’ x-axis positions des-
ignate their complexity. Their positions on the y-axis show to which of two major categories
they belong. In contrast, Cunningham [Cun96] used the position of the pattern name in the
diagram to indicate who (first dimension) implements the pattern on which type of work (second
dimension). Again, related patterns are connected, although only with a line instead of an arrow.
Cunningham explained that a relationship means that after application of a pattern, the related
pattern may be applicable. These connections seem similar to Alexander’s interpretation of
pattern relationships [Ale79]. Coplien and Harrison [CHO5a] described this notion in more detail:
Every project applies pattern after pattern in any order that the pattern relations allow. Each such
series of pattern applications is called a sequence. They used example sequences to illustrate the
use of their pattern languages.

Notably, Weir [Wei98] and Roberts and Johnson [RJ98] used a different approach to visualize

84

3.1 Introduction

patterns: Each pattern spans a time frame on the chronological x-axis, indicating in which phases
of the design process it is applicable. Hannebauer et al. also applied this to a set of FLOSS
patterns [HWGI1].

Another type of pattern map can be seen in different works from Kelly [Kel06; Kel07]. These
pattern maps categorize the patterns into families and lead the readers with questions to applicable
patterns.

Previous work on FLOSS patterns also frequently visualized FLOSS patterns as nodes in
directed graphs, e.g. [Wei09; Lin10]. This often implies a chronological order or order of
dependency, but also includes more complex relationships. In some cases, edges include labels to
denote their meanings. However, as explained before, previous work have referenced FLOSS
patterns from other works only rarely. Consequently, it is unclear how patterns of different works
relate to each other. This work addresses this gap and givse an overview over the FLOSS pattern
language as a whole.

There is a pattern language about writing patterns which includes a section specifically about
pattern languages [MD98]. The pattern Common ProBLEMS HIGHLIGHTED PATTERN [MD98] of this
pattern language describes the case where multiple different patterns solve the same problem.
Thus, these patterns are alternatives and at most one of them should be used at once. Ratzka
connected alternative patterns in his pattern map with an arrow with two heads [Rat13, p. 123].

Where applicable, the pattern language on writing patterns has been used as a guide for
the FLOSS pattern language developed in this chapter. As discussed above, two types of
relationships stand out in the related work: First, a pattern may depend on another pattern.
Second, implementation of a pattern may exclude implementation of another pattern.

3.1.3 Pattern Maps for the FLOSS Pattern Language

Figure 3.1 shows an example of a pattern map as used in this thesis. A pattern is represented as a
rectangle containing a pattern symbol and a pattern name in small caps. In the example, PATTERN
A is a pattern with a symbol shaped like an A.

The pattern maps in this thesis were limited to the two types of relationship identified in
the related work to keep them simple and understandable. The first type of relationship are
alternatives that exclude each other. PATTERN A and PatrTERN B are alternatives, indicated by a line
with a circled A. At most one of the two or more alternatives can be implemented.

The second type of relationship is indicated by arrows, like the ones from SUPER PATTERN to
ParTERN A and from Super PATTERN to PaTTERN B. Arrows indicate that the starting pattern uses
or requires the ending pattern. In this example, when choosing to implement SUPER PATTERN, it
is also advisable or required to implement PATTERN A and/or ParTern B. Whether it is strictly
required or only sensible depends on the specific pattern combination and is not visible in this
type of pattern map.

In some cases, one of multiple alternatives must be implemented, for example because another
pattern requires this. The example in Figure 3.1 might mean that SUPER PATTERN requires either
ParTERN A or PATTERN B, but this is not clear from the pattern map alone and readers would have
to look at the patterns in detail.

All FLOSS patterns were unambiguously categorized to one of eight categories. In the pattern
maps, a box for each category surrounds all patterns of that category and the box contains the

85

3 FLOSS Pattern Languages

Category Name

S

SUPER PATTERN

/o \ dnather
A Q) B X

EXTERNAL
PaTTERN A PartErN B
PATTERN

\ J \.

Figure 3.1: Example Pattern Map

category name in boldface. Each category has its own color that fills the category box (not shown
in Figure 3.1). Besides the categorization, pattern positions have no further meaning, although
more specialized patterns tend to be placed lower or more on the right in the figures.

The pattern map for each category section shows all FLOSS patterns that belong to this category
and also all other FLOSS patterns that they depend on. EXTERNAL PATTERN is an example of such a
pattern belonging to Another Category. However, for the sake of conciseness, dependencies are
included only in one direction: The pattern maps do not show patterns that depend on patterns
of the current category, but only patterns with arrows from the current category. In the example,
there might be ANOTHER EXTERNAL PATTERN depending on PATTERN A, but it is not shown because
no pattern of the current category depends on this ANOTHER EXTERNAL PATTERN. Patterns in other
categories also have their respective category boxes. These category boxes are open on one side
to indicate that there are other patterns not shown in the pattern map belonging to the category.

3.2 Categories of FLOSS Patterns

Figure 3.2 and Figure 3.3 are the two parts of a pattern map including all FLOSS patterns collected
in this study.

Figure 3.2 contains organizational FLOSS patterns. Organizational FLOSS patterns are espe-
cially interesting for commercial companies, as the category Publish Closed Sources comprises
FLOSS patterns to transform a closed-source project into a FLOSS project, and the depicted
FLOSS patterns in the category Architecture hint at methods to earn money with a FLOSS project.
FLOSS patterns in the category Licensing help to choose a licensing model for a FLOSS project
that fits the purposes of its maintainer. While this covers the power over the source code from
a copyright perspective, FLOSS patterns in the category Empower the Most Suitable focus on
social aspects and help to channel the power over the FLOSS project’s community.

Figure 3.3 contains performance FLOSS patterns: how can a project improve its software

86

3.2 Categories of FLOSS Patterns

ﬁg Architecture
SeLL COMPLEMENTS
[Weil0]
Publish Closed Sources l
li) G B
from Low . .
GO R Donare Cobe [Weill] DuaL Probuct [Weil5] from BAZAAR

BARRIERS / \ / \ ARCHITECTURE
% 4 A N
= LI L5 Fia)

CLEANUP BEFORE Dut Divigence [Lin10] IP MobuLARITY MANAGE
PusLisHING [Lin10] [Weil5] CompLEMENTS [WN13]

s \ 2!

@/@ L iﬂ’ L Empower the

RuN A TiGHT Most Suitable
Surp [Weill; Linl10]

Licensing

DuaL Licensk [Linl1]

—O—""1] o
@ o || = |

PooL RESOURCES
PERMISSIVE REciPrOCAL MAINTAINER

License [Lin11] License [Lin11] Hanbover [HWG10] Wei[l\gel\%iil .

N/] l
%l ff o

APPROVED OPEN SOURCE SINGLE
License [Linl1] MainTaINer [HLG14]

MEerrtocracy [HLG14]

-

Figure 3.2: Pattern map for organizational FLOSS patterns

87

3 FLOSS Pattern Languages

88

anea
o@
ees

BAZAAR ARCHITECTURE
[HWG10; WN13]

EXPOSED ARCHITECTURE
[HWGI10]

Architecture

Tools for New
Developers

\@/
g

PRECONFIGURED
BuiLp ENVIRONMENT
[WHG13]

|9

Low CONTRIBUTION
Barriers [HWG10]

to CLEANUP

Tl

Unit TESTS FOR
CONTRIBUTORS
[WHG13]

N

BEFORE PUBLISHING

Low-HANGING
Frurr [HWG10]

Start a New Project from Scratch

CRrEATE PuLL [Weill]

1T
Crowp or Bug
Detectors [HWG11]

N

Y7

MARKET

&t

CREDIBLE

N
9,

PusLic INsPECTION

o

SUPPORT THE

EvavLuarion [Lin12] ProMise [Wei09] [ZHG16] ComMmuNITY [Weil5]
7) /
s aeo T
* "‘r Q T\I/T
BoorstrAP [Wei(9; FREQUENT CENTRAL INFORMATION

WeilO; Linl2]

RELEASES [Wei(09]

Prarrorm [HWG11]

1
:*Iu
RESPECT THE
License [Lin10]

7N

p
]

CONTRIBUTE
Back [WeilO]

N
te
i}
PARALLEL
DEevELOPMENT [Wei(09]

£
Q

OpPeN DiaLoc [Wei09]

Integrate FLOSS Assets

J

\

Cultivate a User Community

Figure 3.3: Pattern map for performance FLOSS patterns

3.2 Categories of FLOSS Patterns

development using FLOSS? The category Integrate FLOSS Assets contains the only FLOSS
patterns that can also be used in closed-source software development projects. All other FLOSS
patterns target maintainers of FLOSS projects. Start a New Project from Scratch describes the
situation where a FLOSS project starts without a closed-source predecessor. The patterns in
Cultivate a User Community describe how to attract new users and how to activate them for
contributions. The special case of source code contributions is covered by the FLOSS patterns in
the category Tools for New Developers and partly by the two depicted FLOSS patterns in the
category Architecture.

The order of categories in this section corresponds to the order in which readers likely apply
them. The first category, Integrate FLOSS Assets, targets the broadest audience, as both FLOSS
maintainers and developers of closed software can apply its FLOSS patterns. The following
two categories deal with the beginnings of FLOSS projects. This goes on to the last category,
Empower the Most Suitable, which provides FLOSS patterns for large-scale FLOSS projects that
require formal organization to keep their structure.

3.2.1 Integrate FLOSS Assets

While the other patterns in the FLOSS pattern language target maintainers of FLOSS projects,
the patterns in this section are not specific to maintainers. Instead, they target general software
development projects that want to use FLOSS components maintained by other parties. Figure 3.4
shows the three patterns and their dependencies: BooTsTrap describes how to quickly build
an application based on FLOSS components. When using FLOSS components, RESPECT THE
Licensk helps to avoid legal problems, and CoNTRIBUTE Back shows the advantages of returning
modifications on the FLOSS components back to their projects.

Integrate FLOSS Assets

eln
e XT

BootstraP [Wei09;
WeilO; Linl2]

RN

L LY
- ‘EL_ ~N
e -7
RESPECT THE CONTRIBUTE
License [Lin10] Back [Weil0]

Figure 3.4: Pattern Map for Integrate FLOSS Assets

89

3 FLOSS Pattern Languages

Bootstrap [Wei10]

(also known as BuiLb ON THE SHOULDERS OF OTHERS [Wei09], BuiLDING oN OPEN Sourck [Lin12])
Problem: How do you keep the costs for developing your product low?

Solution: Integrate assets from FLOSS projects.
Verification: BootsTtrAP is considered fulfilled for a FLOSS project A if it depends on at least
one separately maintained FLOSS project B. This is the case if one of the following criteria is
fulfilled: First, A builds only if a static library of B is present. Second, A runs only if a dynamic
library of B is present. Third, the source code of A incorporates a considerable amount of source
code from B, where considerable shall be defined as 300 Lines of Code (LOC) in this case.
De-duplication: The patterns Bui.p ON THE SHOULDERS OF OTHERS [Wei09], BootsTraP [Weil0],
and BuiLpiNG oN OpeN Sourck [Linl2] describe how FLOSS components can be used to quickly
develop an initial version of a software product. Only BootsTrAP explicitly mentions the lower
costs of this approach, although Bui.p On THE SHOULDERS OF OTHERS also talks about cost savings
in its opening text. Related to this, BuiLbiNG oN OPEN Sourck argues for the reduced cost of
a failure when using the pattern, and adds the additional aspect that FLOSS components may
be replaced by commercial components once the product turns out to be a success. BooTsTrRAP
refers to BurLp ON THE SHOULDERS OF OTHERS, so a difference seems to be intended, but it does not
become clear from the pattern texts.

Respect the License [Lin10]

Problem: How to prevent problems with licensing after your product is released?
Solution: Check Licenses of FLOSS components you use starting early in the development
process.
Verification: This pattern targets users of FLOSS libraries. Therefore, there are two possibilities
to verify the usage of this pattern: First, it may be verified whether users of the FLOSS project
under research ResPeEcT THE LIcENSE. Second, it may be verified whether the FLOSS project under
research RespEcTs THE LICENSE when using libraries of other FLOSS projects.
The first option theoretically includes checking every software project that exists, as any project
might use libraries of the FLOSS project under research. Thus, this is not possible to validate.
For the second option, a verification needs to check whether the FLOSS project under research
publishes its component under a license that is compatible with one of the licenses of each
FLOSS library used. If this is not the case, this pattern was probably not applied. However,
this conclusion does not work the other way around: If all licenses are compatible, there is no
objective way to judge from the outside whether they are compatible by chance or because of
careful checks. Thus, this pattern will not be used in the verification.

Contribute Back [Wei10]

Problem: How do you keep aligned with the FLOSS project?
Solution: Contribute non-core modifications back to the FLOSS project.

90

ﬁ}ﬁ%

3.2 Categories of FLOSS Patterns

Verification: As with RespEcT THE LICENSE, there are two possibilities to verify the usage of this
pattern: First, other projects may CoNTRIBUTE Back to the FLOSS project under research. Second,
the FLOSS project under research may ConTRIBUTE Back to the FLOSS project it depends on. The
first case is more a statement about other projects than about the FLOSS project under research,
although the FLOSS project under research may influence its contributions via other patterns,
for example those in Section 3.2.7. The second case involves a definition problem: As FLOSS
projects do not necessarily formally employ their developers, a developer might contribute to two
(or more) FLOSS projects A and B, where A depends on B. If the developer is seen as a member
of FLOSS project A, then A CoNTRIBUTES Back to B. If the developer is seen both as a member of
A and of B, then the contributions to B are merely normal work and A does not apply the pattern.
Thus, this pattern will not be used in the verification.

3.2.2 Start a New Project from Scratch

The FLOSS patterns in this section apply only to new greenfield FLOSS projects. Figure 3.5
shows the two FLOSS patterns and their relation. MARKET EvaLuation explains how FLOSS
facilitates the production of what Ries calls a Minimum Viable Product (MVP) [Riell], a
prototype for testing whether there is demand for a real product. This first software version should
show a CrepiBLE PROMISE to attract early adopters.

BootsTtrAP helps to build the core features for CREDIBLE PROMISE. SupPPORT THE COMMUNITY
attracts a user base from which to recruit developers with the CREDIBLE PROMISE.

Start a New Project from Scratch

ﬁ? i’::::s

MARKET CREDIBLE
EvarLuatioN [Linl2] Promise [Wei09]

(\Z A (\,.{ A

m ety

SUPPORT THE Boorstrar [Wei(09;
CommuntTy [Weil5] Weil0O; Linl2]

Cultivate a User Integrate
Community FLOSS Assets

Figure 3.5: Patterns in the category Start a New Project from Scratch

91

3 FLOSS Pattern Languages

Market Evaluation [Lin12]

Problem: How to facilitate interest in your software, determine if it is the right product and
attract the early adopters, and cross the chasm and get the market majority to adopt your product?
Solution: Establish a beachhead by releasing your component from the start as FLOSS.
Verification: With the first public announcement of the project, the source code must be available
under a FLOSS license.

Credible Promise [Wei09]

Problem: How do you mobilize developers to contribute to your project?

Solution: Build a critical mass of functionality early in your project that demonstrates that the
project is doable and has merit.

Verification: With the first public announcement of the FLOSS project, a compilable or pre-
compiled version of the component must be available. For applications, this version must run on
at least one platform and support at least one core feature. For libraries, a test or demo application
must also be available that fulfills the criterion for applications.

3.2.3 Publish Closed Sources

This section incorporates FLOSS patterns targeted at organizations developing closed source
software. The pattern map in Figure 3.6 depicts these FLOSS patterns and their dependencies.
These FLOSS patterns help to open up the closed development process. As visible in Figure 3.6,
the FLOSS patterns circle around the core FLOSS pattern Donate Copk that describes the main
step of publishing the closed source code. CLEaNUP BEFORE PuBLISHING and DUE DILIGENCE describe
preparation steps before publishing that help being successful and prevent legal problems in the
project, respectively.

A PerMissIVE LIcENSE allows everyone to use components published with Donate Cobe. 1P
MobuLariTy helps to deal with those parts of the code that shall not be published after DUt
DILIGENCE.

Donate Code [Wei11]

Problem: How do you extend the lifespan of your proprietary code?

Solution: Relinquish control over the code by releasing it under a flexible FLOSS license that
allows others to build on it easily.

Verification: An organization must have developed the component for internal use or to sell it
without releasing its source code. Its first release under a FLOSS license must be a working
component already. This study considers this requirement fulfilled if there have been binary
releases before the source code release or if the source code consists of at least 10 000 LOC. The
last condition takes into account components developed internally or sold on marketing channels
hidden from analysis of public data. The specific value of 10000 LOC is an approximation of the

92

3.2 Categories of FLOSS Patterns

Publish Closed Sources Licensing

i @

Donate Cope [Weill] PERMISSIVE

License [Linl1]
/ A8
Ml

CLEANUP BEFORE . IP MobDULARITY
PusLisHING [Lin10] || DUF PicENcE [Linl0] [Weil5]

Architecture

\

Figure 3.6: Pattern Map for Publish Closed Sources

average code size of a component on its first release. This threshold is based on expert opinion
only and therefore subjective, but the number of LOC in actual FLOSS projects on their first
release will presumably be much lower or greater than 10000 LOC and therefore the specific
value is not important for most verifications.

Cleanup Before Publishing [Lin10]

Problem: How to prepare the publication of a component as FLOSS in a way that attracts and
not discourages acceptance and contributions and prevents problems with intellectual property?
Solution: Cleanup the structure, source, documentation, and supporting material of your project
material before you publish it.

Verification: As the state of the component before its publication is usually hidden, analyses
from outside cannot decide whether the quality of the component has been increased in a cleanup
process before publishing or whether it has already been this way. Although counterexamples of
projects not using this pattern might be identified in some cases, this pattern is not verified in the
analysis.

Due Diligence [Lin10]

Problem: How to reduce the risk of being attacked because of claimed intellectual property
violations like copyright, patent, trade secrets, or license violations?

Solution: Check for copied or otherwise integrated code, intellectual property, or patented
technology. Ensure that the reuse complies with licenses and regulations.

93

3 FLOSS Pattern Languages

Verification: Similarly to CLEANUP BEFORE PUBLISHING, there are cases where the existence of
checks through the application of Due DiLIGENCE can neither be confirmed nor rejected. Thus,
this pattern is also not verified in the analysis.

3.2.4 Licensing

The FSF as well as the OSI define Free Software and Open Source by their licenses [P*Frel5;
P*Ope04]. Figure 3.7 shows FLOSS patterns that help to choose the right license for a FLOSS
project. While an ApprRovED OPEN SOURCE LICENSE is generally recommended, maintainers can still
choose between a PErMissIvVE LIceEnsE and a ReciprocAL License. The latter allows the combination
with a commercial license in the DuaL License model. Notably, the FLOSS pattern DuaL LicENsE
does not cover any combination of two licenses, but of two specific kinds. In fact, PERMISSIVE
License and ReciprocaL LICENSE are exclusive alternatives and therefore cannot be combined.

(A

Licensing E

DuaL License [Linl1]

AN -
@ © Lo

PERMISSIVE REcIPROCAL RuN A TiGHT SHIP
License [Linl1] License [Linl1] [Weill; Lin10]

/ Empower the
z Most Suitable

APPROVED OPEN SOURCE
License [Linl1]

\. J

Figure 3.7: Pattern Map for Licensing

External contributors must assign copyright to the maintainer for the DuaL License model.
Therefore, the maintainer must Run A TigHT SHip in the FLOSS project or not accept external
contributions at all.

Not depicted in Figure 3.7 is the relationship to REsPEcT THE LICENSE, as it most commonly has
no influence on the choice of the license for one’s own software development project. However,
if one of the incorporated FLOSS components uses a REctProcaL LICENSE, then the own software
development project must also distribute its product under a REcCIPROCAL LICENSE.

94

3.2 Categories of FLOSS Patterns

Dual License [Lin11]

Problem: How to encourage people to pay for your FLOSS component? g
Solution: Release your software component with two (or more) licenses.

Verification: Users of a FLOSS project applying this pattern can choose between at least two

licenses. At least one of the licenses requires users of the component to pay royalties. At least

one other license is considered a RectPROCAL LICENSE.

Reciprocal License [Lin11]

(also known as CopyLEFT LICENSE [Lin11])

Problem: How do you choose the type of FLOSS license so that it supports your business model?
Solution: Choose a license which requires derived or combined works to be released under the
identical license.

Verification: The project must distribute its component and source code under at least one
license that either the FSF lists as copyleft license [P*Fre16] or that is not on the FSF’s list but its
conditions use the copyleft method [P*Frel3].

Permissive License [Lin11]

Problem: How do you choose the type of FLOSS license so that it supports your business model?
Solution: Publish your component under a license which permits distribution with modifications
without enforcing the publication of the source.

Verification: The project must distribute its component and source code under at least one license
that either

o the FSF lists as permissive free software license [P*Frel6] or

o thatis not on the FSF’s list but it meets the requirements for an Open Source license [P*Ope04]
and does not use the copyleft method [P*Frel3].

Approved Open Source License [Lin11]

Problem: How to choose the FLOSS license for your component?

Solution: Use an existing FLOSS license which best fits your needs.

Verification: The project must distribute its component and source code under at least one license
that

o the FSF lists as compatible to the GNU General Public License (GPL) [P*Fre16] or

o the OSI lists in the categories “Licenses that are popular and widely used or with strong
communities” or “Special purpose licenses” [P*Opel4].

95

3 FLOSS Pattern Languages

3.2.5 Architecture

The FLOSS patterns in this section describe how to divide the software into modules and how to
manage the resulting architecture. Figure 3.8 shows the FLOSS patterns and their relationships.

AR

SeLL COMPLEMENTS

Architecture [Weil0]
5089 N
Of pg)
O
BAZAAR ARCHITECTURE 2

DuaL Probuct [Weil5]

N / \
& e
5 Film
EXPOSED ARCHITECTURE MANAGE COMPLEMENTS IP MoODULARITY
[HWG10] [WN13] [Weil5]

[HWG10; WN13]

E }L" Empower

the Most
Run A TiGHT SHIP Suitable

[Weill; Linl0]

Licensing
DuaL License [Linl1]

Figure 3.8: Pattern Map for Architecture

A BazaArR ARcHITECTURE allows easy integration of contributions from the community, but it
requires to carefully MaNage CompLEMENTS submitted to the FLOSS project. Contributors see in
the ExPoSED ARCHITECTURE wWhere to integrate their contributions.

For commercial maintainers of FLOSS projects, the business model has strong influence on
the architecture. There are multiple ways to SELL ComPLEMENTs for the FLOSS application, one of
which is a DuaL Propuct: One basic version is free and another extended version must be paid
for. In this case, maintainers must have I[P MobpuLArITY in their architecture to separate free from
paid modules. Another possibility is a DuaL Licensk. In both cases, maintainers Run A TIGHT SHip
to use external contributions for their commercial products.

96

3.2 Categories of FLOSS Patterns

Bazaar Architecture [HWG11]

(also known as MobpuLAR ARCHITECTURE [WN13])

Problem: It is difficult for newcomers to add innovative features that have not been anticipated
and require modifications of the architecture.

Solution: Plan the architecture of your software as a flat hierarchy of optional modules.

Verification: One requirement for this pattern is the existence of multiple modules in the project.

At least 75 % of its modules must have less than 50 source code files, excluding build scripts and
tests. At least 75 % of commits must modify the files of only one module.

De-duplication: Both Bazaar ArcHITECTURE [HWG11] and MobULAR ARCHITECTURE [WN13]
explain that changes to the software may require knowledge not only about the changed part of the
source code, but also about related parts of the source code. With more dependencies, contributors
have to acquire more knowledge about the code before they can change something. For both
FLOSS patterns, the solution is an improved modularization. BAZaAR ARCHITECTURE argues for a
flat dependency tree while MobpuLAR ARCHITECTURE describes techniques to refactor modules with
many dependencies. Thus, the two FLOSS patterns differ in their specific implementation, but the
problem and the general method of creating an “architecture for participation” [MRB06; WN13]
is the same. Notably, both FLOSS patterns include UNIX and Mozilla as examples, but this is no
evidence for their equivalence: The specific subsystems and events in Mozilla and UNIX used as
examples are disjoint.

Exposed Architecture [HWG10]

Problem: Developers will not add features to the FLOSS project when they do not know where
to add their code.

Solution: Publish the component’s architecture.

Verification: The project’s documentation must describe the application’s architecture to realize
this pattern. Multiple architecture diagrams or extensive textual descriptions both satisfy this
condition.

Sell Complements [Wei10]

Problem: How do you monetize a FLOSS product?

Solution: Sell products or services (such as hardware or support) that complement the FLOSS
product.

Verification: The FLOSS project’s maintainer is a commercial company and sells complimentary
services for the FLOSS component.

Dual Product [Wei15]

Problem: You want to entice commercial users to pay for a FLOSS product.
Solution: Keep parts of the FLOSS project closed, and sell a commercial version of the product

97

BOD
BB

B

3 FLOSS Pattern Languages

with exclusive features.

Verification: The FLOSS project’s maintainer is a commercial company and sells another version
of the same product that includes the FLOSS application and offers additional features or offers the
FLOSS application as a service. If the FLOSS project’s maintainer is unclear, every organization
counts as maintainer that is responsible for at least one fifth of the commits to the FLOSS project’s
VCS within the study period.

Manage Complements [WN13]

Problem: How to extend the code while maintaining the architectural integrity of the overall
system?

Solution: Establish a contribution process, set guidelines and provide a development toolkit to
manage complement development.

Verification: The project must provide an API for its main application that allows others to
develop complements. A complement is either an add-on or a complementary application. An
add-on is an executable package that the main application loads at runtime. A complementary
application is a stand-alone application that accesses data or functions of the main application
through its API while it is running.

IP Modularity [Wei15]

Problem: You need to manage open and closed components of a dual product.

Solution: Align intellectual property (IP) with product architecture.

Verification: This pattern guides companies on how to partition the architecture into closed
and open parts. Since the closed parts and especially their usage of IP are invisible from the
outside, this pattern cannot be verified without internal knowledge. The analysis in this study will
therefore skip verification of this pattern.

3.2.6 Cultivate a User Community

The success of a FLOSS project depends on its users [Xu+05], but FLOSS projects must also be

able to draw on their capital of users [CMO7]. Figure 3.9 shows patterns that help with this goal.

Attracting users via both PusLic INnspEcTION and SupPoRT THE CoMMUNITY helps to CREATE PuiL
for the FLOSS project and thereby grow a large and active community. New FLOSS project may
also use CrREDIBLE ProMmiSE to CREATE PurL. Because of Linus’s Law [Ray00], a large community
can work as a CRowp ofF BuG DETECTORS.

Possible ways to SupporT THE CoMMUNITY are an OPEN D1ALOG, a CENTRAL INFORMATION PLATFORM,
and FREQUENT RELEASES. An EXPOSED ARCHITECTURE can be one element of an OpeN DiaLog. For
FREQUENT RELEASES, it is advisable to use PARALLEL DEVELOPMENT to separate stable from unstable
releases.

Another way to attract users is to demonstrate the FLOSS project’s quality via PusLic INSPECTION.

These PusLic INspEcTIONS must always refer to recent releases to be useful, so a requirement is
FREQUENT RELEASES.

98

=
O
[

Start a New Project
from Scratch

[l
CREDIBLE
Promise [Wei09]

e

Tl/ﬁé

N1k
Y- <

CRreATE PuLL [Weill]

8
Crowb ofF Buc
Detectors [HWG11]

N
9,

PuBLIc INSPECTION

L

SUPPORT THE

[ZHG16] CommuniTy [Weil5]
5@‘1 T iiTT 8
FREQUENT CENTRAL INFORMATION

REeLEASES [Wei(09]

PrLarrorm [HWG11]

OpeN DiaLoc [Wei09]

B Cultivate a User
t & Community
PARALLEL
DEeveELoPMENT [Wei09]
Architecture

EXPOSED ARCHITECTURE
[HWG10]

Figure 3.9: Pattern Map for Cultivate a User Community

3.2 Categories of FLOSS Patterns

99

3 FLOSS Pattern Languages

FLOSS patterns that distinctively support source code contributions are excluded from this
category because of their distinguished importance for the FLOSS project. This category of
FLOSS patterns is treated separately in Section 3.2.7.

Create Pull [Wei11]

Problem: How do you market your FLOSS product?

Solution: Make it easy to access your product and leverage distributors, partners, as well as
community members to market your product.

Verification: Commercial software companies use this FLOSS pattern to market their products.
It describes an intention to use FLOSS and the effects that help market services around a FLOSS
product. It is therefore only used in FLOSS projects with a commercial software company as
maintainer. For FLOSS projects with commercial maintainers, the positive effects described in
the FLOSS pattern are natural consequences of being FLOSS and no result of deliberate actions
of the project’s maintainers. CREATE PULL mentions no distinctive features of projects using this
FLOSS pattern, except a forum for the community. The analysis will therefore not verify this
FLOSS pattern.

Crowd of Bug Detectors [HWG11]

Problem: Developers do not fix some of the bugs because they occur only seldom or never in
their environments.

Solution: Take bug reports seriously and encourage your users to file bug reports.
Verification: For projects where the developers may commit changes without corresponding
issue report in the issue tracker, CRowp or Buc DEeTEcTORS is considered applied if reactions to
reported issues take less than 24 hours in average.

This is different for projects with the policy that every commit must have a matching issue
report in the issue tracker. In this case, issue reports filed by users will be compared to issue
reports filed by developers. The average duration till the first answer to users’ issue reports must
be lower than the average duration till the first answer in developers’ issue reports.

Issue reports may be bug reports and feature requests. The former describe faults, i.e. dif-
ferences between program behavior and specification, while the latter describe changes to the
specification. The FLOSS pattern focuses on bug reports, but these are often hard to distinguish
from feature requests, because FLOSS projects seldom use formal specification documents.
Therefore, the verification does not distinguish between bug reports and feature requests.

Support the Community [Wei15]

Problem: You need to build a healthy community around your project.
Solution: Support the community without expecting an immediate return. It’s all about respect
and building legitimacy, one step at a time.

100

f

3.2 Categories of FLOSS Patterns

Verification: The pattern describes five aspects in its solution part to implement the pattern. One
aspect is automatically fulfilled for an active FLOSS project (i). Three of the aspects correspond
to other FLOSS patterns, specifically ApPRoOVED OPEN SOURCE License [Linl1] (ii), CENTRAL
InForMATION PLaTFORM [HWG11] (iii), and OpeN Diaroc [Wei09] (iv). The fifth aspect directs the
maintainer to support community members without charge instead of only offering paid support.
This fifth aspect is considered fulfilled if at least 75 % of the support inquiries receive answers
within 72 hours, and at most 10 % of support inquiries receive answers with offers for premium
support.

Public Inspection [ZHG16]

Problem: Demanding users abstain from the FLOSS project, because they are afraid that the
project’s quality is too low.

Solution: Let an independent third party measure your software quality and visualize current
results publicly in real-time.

Verification: An independent third party must measure a non-obvious quality property of the

FLOSS project’s software and the FLOSS project must visualize the result on its web-site.

Visualizations include badges, diagrams, and textual markup. The visualization must update
automatically when the measurement changes. The third party must measure multiple FLOSS
projects, as this allows comparisons of the results.

Frequent Releases [Wei09]

Problem: How do you move a FLOSS project along quickly?
Solution: Release code in small, quick increments.

Verification: A release is a downloadable package with an executable version of the component.

In this context, executable usually means binary data. There are two exceptions where source
code also counts as executable: First, if the component is interpreted instead of compiled. Second,
if the project never releases compiled versions, for example because it is a library that needs to
be compiled along with the application that uses it. This FLOSS pattern is applied if a FLOSS
project publishes new releases of its component at least once a month.

Parallel Development [Wei09]

Problem: How do you balance the need of users for stability with the need to explore new
directions for your project?
Solution: Maintain separate release streams, those with the official stable releases and others for
experimental development.

Verification: The project’s VCS must contain a main branch and multiple additional branches.

Only merges from other branches add new features to the main branch. Fixes of defects may go
directly into the main branch.

101

‘;*T;"I

3 FLOSS Pattern Languages

Central Information Platform [HWG11]

Problem: The project provides different kinds of development and support resources to its users,
but a user has to find the right system for every task.

Solution: Provide a central information platform that describes and links to all tools and resources
that the project uses.

Verification: The existence of a web site that holds or links to all important resources of the
project needs to be tested. Furthermore, it has to be verified that the web site is up to date and no
additional alternative web sites with apparently similar purposes exist. If for some reason the
location of the web site changed, the old web site is often kept for several reasons. Reasons for
keeping the old website includes preventing broken links and conserving information which is
not transferred to the new web site. However, such an old site needs to be marked as outdated
and point to the new site. Finally, all of the FLOSS project’s resources are expected to link back
to the main web site.

Open Dialog [Wei09]

Problem: How do you engage others in your project?

Solution: Conduct the project in the open, maintaining a two-way dialog with project participants
(users and external developers).

Verification: The FLOSS project must discuss its plans and technical decisions on a publicly
visible platform like a wiki, a forum, or a mailing list. There must be a documented way how
outsiders may gain write access to this platform, e.g. send emails to the mailing list.

3.2.7 Tools for New Developers

Figure 3.10 shows the patterns of this section. The success of a FLOSS project depends on
its ability to attract new developers [BGD07; CMO07; ACB09], which is only possible with
Low ContriBuTION BARRIERS. There are three other, more specific FLOSS patterns in this
category, which help to achieve Low ConTRIBUTION BARRIERS. Each tackles a specific modification
barrier and presents a technique to lower it. Specifically, PRECONFIGURED BUILD ENVIRONMENT lets
newcomers skip the sometimes cumbersome setup of the development environment. Unit TESTS
FOR CONTRIBUTORS allow newcomers to test their modifications before they publish them. Low-
HanaGing Frurr particularly reduce the essential difficulty of a contribution, allowing newcomers
to choose a problem suiting their abilities.

Both a BAzaar ArRcHITECTURE and an ExposeD ARCHITECTURE help developers to integrate new
features into the software and therefore foster Low CoNTRIBUTION BARRIERS. Similarly, CLEANUP
BerorE PuBLIsHING reduces the work required for a modification. Some developers go through
a phase of being active users before they become developers [YK03; Her+06]. SupPORT THE
CommunITy helps to grow an active user base and provides a joining script with Low CONTRIBUTION
Barriers for these active users.

102

==
A

.
i

PO

3.2 Categories of FLOSS Patterns

Tools for New \i/=li/

Developers Low CONTRIBUTION

Barriers [HWG10]

NN

2%2 W .

PRECONFIGURED Unit TEsTs For LOW-HANGING
BuiLb ENVIRONMENT CONTRIBUTORS Frurr [HWG10]
[WHG13] [WHG13]
ane
O
| Cultivate a User 1R 288

Community BAZAAR ARCHITECTURE
[HWG10; WN13]

SUPPORT THE
ComMmunIiTY [Weil5]

% Publish Closed s
K

CLEANUP BEFORE Sources EXPOSED ARCHITECTURE
PusLIsHING [Lin10] [HWGI0]
/ Architecture

\

Figure 3.10: Pattern Map for Tools for New Developers

103

3 FLOSS Pattern Languages

Low Contribution Barriers [HWG10]

(also known as User ContriBUTIONS [HWG10])

Problem: The existing developers cannot fulfill the expectations of the grown user base.
Solution: Lower the contribution barriers to your FLOSS project, so your users can satisfy their
demand themselves.
Verification: A FLOSS project implementing this FLOSS pattern regularly receives source code

contributions from developers that had not contributed source code to the FLOSS project before.

Developers stayed with the Linux kernel projects for 17 months on average [HNHO3], so in order
to at least hold a steady number of developers, the Linux kernel projects have to recruit % of all
current developers every month. More generally, this FLOSS pattern is considered fulfilled if
at least 5 % of all active developers in any month were newcomers. Developers are considered
newcomers in a given month if they contributed source code to the FLOSS project for their first

time in this month.

Preconfigured Build Environment [WHG13]

Problem: Newcomers get stuck when setting up the build environment.

Solution: Provide a Virtual Machine with a preconfigured build environment.

Verification: A FLOSS project must provide a download package supporting the build to realize
this FLOSS pattern. The download package contains all build tools and dependencies or must at
least automatically download all missing dependencies. Except from starting a Virtual Machine
(VM) or installation script, the first build must not require more steps than later builds.

Unit Tests for Contributors [WHG13]

Problem: Newcomers avoid modifications as they are afraid to introduce new bugs.
Solution: Provide easy access to unit tests even for newcomers.

Verification: To successfully apply this FLOSS pattern, the source code must contain unit tests.

The unit tests do not need configuration except for the configuration of the application under test
itself. Alternatively, a CI system builds and tests all commits. In this case, it must build and test
even pending commits from newcomers.

Low-hanging Fruit [HWG10]

Problem: Newcomers cannot work on the FLOSS project’s issues because they have too much
to learn before they could be helpful.

Solution: Mark some issues as easy and leave them open for newcomers.

Verification: The FLOSS pattern is applied if some of the issues in the issue tracker are tagged
“good first bug” or with an equivalent phrase. A separate list of tasks for newcomers also fulfills
this FLOSS pattern.

104

g

37

3.2 Categories of FLOSS Patterns

3.2.8 Empower the Most Suitable

FLOSS licenses ensure that there is no legal owner of the software who has the exclusive rights
to decide how to develop the FLOSS component. Legal power over a component is the primary
subject of the FLOSS patterns in the category Licensing and also of DonaTte CODE.

Nevertheless, there is usually a community around any FLOSS application with a social
hierarchy that determines who has social power in the FLOSS project. The core developers and
maintainers rank highest in this hierarchy and decide about the direction of the project [YKO03].
The FLOSS project’s power model determines who these maintainers are. Figure 3.11 shows
FLOSS patterns describing these power models. SINGLE MAINTAINER and MERITOCRACY are very
common basic models that exclude each other, with only special exceptions. When organizations
Run A Ticat Suare on FLOSS projects, the locus of power is outside the FLOSS project’s volunteer
community.

A SINGLE MAINTAINER may transfer power over a FLOSS project to a successor with a MAINTAINER
Hanpover. When multiple companies want to PooL RESoURCEs, they typically use a MERITOCRACY
to direct the corresponding FLOSS project.

')

Tt
Empower the PooL RESOURCES
Most Suitable MAINTAINER [Wei09;

Hanxpover [HWG10] WeilO; Weill]

RuN A TiGHT SHIP SINGLE MAINTAINER

[Lin10; Weill] [HLG14] MEeritocracY [HLG14]

T

\NJ

Figure 3.11: Pattern Map for Empower the Most Suitable

Run a Tight Ship [Wei11]

(also known as CONTRIBUTOR AGREEMENT [Lin10])

Problem: How do you keep control of the project’s direction?

Solution: Maintain full ownership of the code.
Verification: Power over the FLOSS project does not stem from inside, i.e. the development team,
but from an organization not originating in the development team. This is the case if a commercial
organization holds the copyright over the code and requires non-employed contributors to transfer

105

3 FLOSS Pattern Languages

copyright non-exclusively to the commercial organization. It is also the case if the commercial
organization pays the FLOSS project’s maintainers for maintaining the FLOSS project and holds
copyright over name and logo.

De-duplication: The solution of Run A Tigat Suip [Weil 1] describes two alternatives for its
realization: Either write all source code yourself or let all external contributors transfer the
rights to you. The latter possibility specifically refers to CoNTRIBUTOR AGREEMENT [Lin10] by
its previous name AssiGN CopYRIGHT. Writing all source code yourself can be seen as a special
case of COoNTRIBUTOR AGREEMENT in which no external contributors exist. This special case is
not very interesting for a pattern on FLOSS, so it does not deserve a FLOSS pattern on its own.
Consequences, examples, as well as related patterns for the two FLOSS patterns intersect to a high
degree, further substantiating their equivalence. However, CONTRIBUTOR AGREEMENT generally
puts more emphasis on legal aspects of the pattern, while Run a TicHt SHiP emphasizes how to
keep the power over the FLOSS project. Ultimately, each FLOSS pattern cannot exist without the
other, making them two aspects of the same FLOSS pattern.

Maintainer Handover [HWG10]

Problem: How can the development pace be kept when the FLOSS project is about to lose its
maintainer?

Solution: Appoint a new maintainer if you do not want to continue maintaining the FLOSS
project.

Verification: For each FLOSS project, it will be analyzed whether there was a change of
ownership. Possible outcomes are

no change, when the current maintainer is still the original maintainer,
smooth transition, if no or only few problems with the new maintainer have occurred,
abandoned, when nobody maintains the FLOSS project anymore,

branched, if the maintainer left the FLOSS project, but instead of a handover, a new develop-
ment branch was initiated, and

complicated transition, when the FLOSS project has been taken over, but the transition was
not smooth and ended in or lead to conflicts. A significant share of users or developers
must have left the project because of the transition.

Pool Resources [Wei10]

(also known as ONE SorutioN [Wei09] and Goop EnoucH [Wei09], No SINGLE VENDOR IN
CHARGE [Weil0], and Founparion [Weil1])
Problem: How do you attract other companies to contribute to a FLOSS project that you have
created?
Solution: Pool resources with other companies to jointly develop a common stack of FLOSS
assets that the companies can all build on to develop their individual products.

106

3.2 Categories of FLOSS Patterns

Verification: This FLOSS pattern applies to all FLOSS projects maintained by a foundation.

For other FLOSS projects, the FLOSS pattern may still be fulfilled if the FLOSS project
has no legal form, for example, participating companies may cooperate via a GitHub organi-
zation [P*NealO]. In this case, the FLOSS pattern is also considered applied when external
organizations with commercial interest in the FLOSS project contribute at least 20 % of all
commits together. All organizations are considered external except for the company with the
most contributions, so this main company does not count to the 20 % of commits.
De-duplication: In its earliest description, the FLOSS pattern already has two names, ONE
Sorution and Goop EnoucH [Wei09]. This FLOSS pattern helps to decide which parts of
a product should be kept closed and which parts should be offered as FLOSS. This has the
advantage that externals contribute to the FLOSS parts. PooL Resources [Weil0] goes one step
further and specifies that likely candidates for these externals are competitors, as they most
likely have the same use cases and therefore need the same components for their software. The
same paper shortly mentions No SINGLE VENDOR IN CHARGE [Weil0], which was published later
as Founparion [Weill]. The pattern Founpartion is specific about the legal framework when
implementing PooL REsourcks and the two papers depict them as two separate patterns, with
PooL Resources being applicable after FounpaTion.

The strongest argument to treat them as a single FLOSS pattern is that neither can exist without
the other: It is useless to have a Founparion maintain a FLOSS project in the sense of the FLOSS
pattern Founparion if there are no external contributors who PooL REsources with the FounDaTION.
As described above, the papers themselves describe the dependency in the other direction already:
It is unlikely that competitors PooL REsourcis with you if you remain in control over the source
code and there is no Founparion. All three versions of the FLOSS pattern include Eclipse as an
implementation example, further supporting that the three versions describe different aspects of
the same FLOSS pattern instead of separate FLOSS patterns.

Single Maintainer [HLG14]

(also known as BENEVOLENT Dictator [HLG14])

Problem: How can a FLOSS project quickly create an organizational structure to enable commu-
nity contributions?

Solution: Concentrate all power in the FLOSS project in the hands of one capable individual.
Verification: The FLOSS project’s maintainer is a single natural person. If the community
discusses problems, for example on the mailing list, the maintainer still has the last word on every
discussion. There can be community decision processes, but they are only recommendations for
the maintainer and the maintainer sometimes decides differently.

Meritocracy [HLG14]

Problem: How should key decisions of the FLOSS project be made such that the maximum
number of developers identify with the decisions?

Solution: The more a person contributes to the project, the more influence is granted to that
person.

107

I

3 FLOSS Pattern Languages

Verification: The FLOSS project has formal statutes that specify one or more committees. The
committees elect each other or themselves and steer the project.

3.3 Patterns Lowering Contribution Barriers

This section contains six full FLOSS patterns that lower contribution barriers. The first four
of them belong to the category Tools for New Developers. They depend on four other FLOSS
patterns in other categories that help to lower contribution barriers. This section includes two
of them, BazaArR ARCHITECTURE and ExPoSED ARCHITECTURE, both of which belong to the section
Architecture. The two FLOSS patterns CLEANUP BEFORE PuBLISHING [Lin10] and SuPPORT THE
Communiry [Weil3] referred to in Section 3.2.7 also lower contribution barriers and thematically
fit into this section. However, I am not the author of these two FLOSS patterns, so they are not
part of this section.

There are multiple formats for patterns. This paper uses a format similar to Kelly’s pattern
format [Kel06]. Each FLOSS pattern comprises

o the name of the FLOSS pattern,

e an icon symbolizing the FLOSS pattern,

e the context in which the FLOSS pattern may be applied,

o a short description of the problem that the FLOSS pattern solves,

e forces that implementors of the FLOSS pattern have to consider, usually making the
problem more difficult to solve,

o the solution of the problem,

e good and bad consequences of the solution that are labeled with a v and X, respectively.
Each consequence describes the effect of applying the solution on a force,

o the known uses and sources serving as examples for the application of the FLOSS pattern,
o related patterns that are influenced by or influence the FLOSS pattern at hand, and

e objective verification criteria to check whether a FLOSS project applies the FLOSS pattern.
These are the same criteria as those in Section 3.2.

The target audience of the FLOSS patterns presented in this section are maintainers of FLOSS
projects. They may implement the solution described in the FLOSS pattern and therewith solve
the problem described in the FLOSS pattern. Thus, FLOSS patterns directly address this target
audience, especially in the solution part and use “you” to refer to FLOSS project maintainers.

108

3.3 Patterns Lowering Contribution Barriers

3.3.1 Low Contribution Barriers'

also known as User CONTRIBUTIONS

Context:

When a project gathers momentum, a constant flow of user requests, questions and comments

comes in.

Problem:

The existing developers cannot fulfill the expectations of the grown user base.

Forces:

90 % suitability. The FLOSS project can solve a problem for its potential users, but not
perfectly. Each user has additional requirements that the component not yet fulfills.

High demand of many users. The success of a FLOSS project depends on the number
of users it can attract [CAHO3; YKO03; SSNO09], but more users also have more different
feature requirements. The benefits of a larger user base like more and more detailed bug
reports and more code contributions from those users may be lower than the additional
effort required to meet their growing demand.

Dichotomy of domain and implementation expertise. Users have inherent knowledge
of what the project should deliver, but the developers cannot access this knowledge di-
rectly [Bro10, Chapter 15].

Project-specific development expertise. Some of the users are experienced software
developers and know the programming language and technologies used in the FLOSS
project from other projects already. They are willing and able to develop patches that would
satisfy the requirements of themselves and other users, but they have little or no knowledge
about the architecture and coding style of the FLOSS project.

Goal differences. The core developers may have their own ideas where the project should
be going, but these ideas might be different from the users’ requirements.

' A preliminary version of this section was published previously [HWG10].

109

3 FLOSS Pattern Languages

Solution:

Lower the contribution barriers to your FLOSS project, so your users can satisfy their
demand themselves.

As described in Section 2.8, each FLOSS project offers different joining scripts to recruit new
developers. The demographic background of a newcomer is an important factor to determine
which joining script the newcomer uses. The joining script determines which contribution barriers
apply. The demographic background also determines the newcomer’s perspective on the FLOSS
project and thereby the extent by which each contribution barrier hinders the newcomer.

It is effective to recruit developers from the same audience that also creates the demand,
because these developers know the requirements already. Thus, if for example private users are
not yet satisfied with the FLOSS project and have additional requirements, then the contribution
barriers relevant for private users should be lowered. As private users usually become active users
before they become developers [Her+06], you should take care of your issue tracker, so your
users can report errors and request new features. You should also create and maintain support
forums and answer to support requests of your users.

If, on the other hand, organizations use your component and adapt it to their needs, then
the newcomers are Strictly Pragmatic Patchers as defined in Section 2.6.5. As shown, these
newcomers are especially sensitive to modification barriers. These newcomers must be able to
access the source code of your component easily and they must be given the right to change it.
Describe how to build the software from the source code and provide tools that help with this task.
Explain your own requirements for code patches like coding style and design considerations.

If your FLOSS project is a library or framework, your users have expertise with the program-
ming language and IDE. You should focus on submission barriers in order to have them submit
their modifications back to your FLOSS project. In all cases, you should clearly point out how to
contribute.

When you receive contributions, take them seriously. If a patch has insufficient quality, help
the contributor to improve the patch. “Stroke” your users whenever they send in patches and
feedback [Ray00].

Consequences:

The consequences are discussed in more detail in Section 1.3.7.

v/ Users are developers. Users can adapt the component to their own need if the component
is easy to modify. They contribute these modifications back to the FLOSS project if patches
are easy to submit.

v’ The long tail. When the number of users is large enough, then only a small fraction
of users needs to contribute back in order to handle a significant share of the project’s
workload. Their contributions can easily equal or exceed the workload that the core
developers contribute.

v Implicit requirements engineering. Having users and developers in a double role allows
projects to exist without “precise specifications or requirements documents” [GA04]. The

110

3.3 Patterns Lowering Contribution Barriers

requirements specification phase of the release cycle can be skipped, which enables more
frequent releases and a higher fraction of the effort put into the FLOSS project can be used
for the actual development.

X Brooks’s Law. The core developers now need to split time between reacting to input from
newcomers and pursuing their own scheme. They need to help newcomers adapt code
contributions to the FLOSS project’s coding style and filter out the code that does not work
together with the FLOSS project’s architecture. This mentoring may cost more work time
than it provides [Bro95, Chapter 2].

X Lost gatekeeper. Newcomers acquire influence on the software development and therefore
the core developers lose some of their influence. The core developers need to open up for
other people’s ideas. If the newcomers are less perspicacious than the core developers due
to lowered contribution barriers, their influence may have a negative impact on the FLOSS
project.

Known Uses and Sources:

This pattern is one of the key elements of what Raymond [Ray00] described as the bazaar
development style. Accordingly, Raymond’s own project “fetchmail” employed the FLOSS
pattern and also the Linux kernel [P*Lin15], Raymond’s primary object of observation. Other
examples include Mozilla Firefox [P*Moz15m].

Gacek and Arief identified a characteristic “Developers are always users” and found it to be
common among all FLOSS projects [GA04]. Raymond also advises that “treating your users as co-
developers is your least-hassle route to rapid code improvement and effective debugging.” [Ray00,
advice six].

Other research suggests that in fact only part of the successful FLOSS projects employ this
pattern: On the one hand, Krishnamurthy [Kri02] has shown that the number of developers in
successful FLOSS projects increases over time: The age of a FLOSS project in months correlates
with the number of its developer with a coefficient of 0.228 in his data set. On the other hand,
Figure 4 in his article reveals that the major part of FLOSS projects that have been running
for longer than 20 months still do not have more than five developers. This suggests that these
projects have recruited none or only few developers and thus, they have not successfully used
the pattern Low CoNTRIBUTION BARRIERS, at least not to the extent that users became developers.
Capiluppi and Michlmayr [CMO7] showed that FLOSS projects may have two different statuses.
If they are in a “cathedral” status, a more or less constant group of developers creates the source
code. They reach a “bazaar” status if more developers join than leave the FLOSS project, and
then the number of developers as well as the amount of their output keeps growing. They also
present Wine [P*cod15] as a FLOSS project with “bazaar” status, so Wine also implements this
FLOSS pattern.

Related Patterns:

Section 2.9 summarizes important contribution barriers. The following FLOSS patterns lower
contribution barriers, especially the two most important ones listed in Section 2.9:

111

3 FLOSS Pattern Languages

While Exposep ARCHITECTURE helps newcomers to understand the overall structure of the
FLOSS project, a BaAzaArR ARcHITECTURE reduces the architectural complexity in the first place.
Both let newcomers more quickly find the right location in the source code that they shall modify
and therefore lower the most important contribution barrier listed in Section 2.9, difficulties to
understand the structure of the FLOSS project.

The FLOSS pattern PRECONFIGURED BuiLb EnvIRONMENT lowers modification barriers especially
for those newcomers who do not want to hassle around with the technical details of the FLOSS
project. It reduces the amount of work necessary for the often frustrating task of setting up and
configuring a developmnet environment.

Low-naNGING FrurT reduces the essential difficulty to modify the software, but only for those
newcomers who do not already have a specific modification in mind. This lowers a modification
barrier and lets newcomers more easily Find the Code (see Section 2.4) to be modified if it is
used appropriately.

Unit TesTs FOR CONTRIBUTORS lets newcomers more easily test their modifications before
submission. This can reduce submission barriers, as it reduces the probability that reviewers
request improvements on the patch from newcomers before the patch is accepted.

If a closed source project is about to be published as a FLOSS project, CLEANUP BEFORE
PusLisainG [Lin10] helps to lower the modification barrier induced by incomprehensible source
code.

The pattern SupporT THE CommUNITY [Weil5] lowers barriers to become an active user. These
are not contribution barriers as defined in Section 1.3, but as a consequence, eventually more
volunteer developers will join the FLOSS project.

Verification:

A FLOSS project implementing this FLOSS pattern regularly receives source code contributions
from developers that had not contributed source code to the FLOSS project before. Developers
stayed with the Linux kernel projects for 17 months on average [HNHO3], so in order to at least
hold a steady number of developers, the Linux kernel projects have to recruit % of all current
developers every month. More generally, this FLOSS pattern is considered fulfilled if at least 5 %
of all active developers in any month were newcomers. Developers are considered newcomers in
a given month if they contributed source code to the FLOSS project for their first time in this
month.

112

3.3 Patterns Lowering Contribution Barriers

3.3.2 Preconfigured Build Environment?

~=/

)

Context:

Your FLOSS project is growing already and wants to benefit from Low CONTRIBUTION BARRIERS.
Maybe, you BoorstraPPED [WeilO] your development by building on other FLOSS compo-
nents. The technical structure and the number of dependencies of the FLOSS project require a
sophisticated build process that needs substantial configuration effort.

Problem:

Newcomers get stuck when setting up the build environment.

Forces:

o Disproportionate configuration effort. As shown in Chapter 2, setting up the devel-
opment environment is an important modification barrier. The build environment is an
essential part of the development environment. Setting up the build environment is not
easier if the proposed modification is small. Therefore, the smaller a proposed modification
is, the worse is the ratio between required effort to build the modification and the benefit of
the modification. Thus, this encumbers especially small patches, but these are especially
welcome to FLOSS projects [WNDOS].

¢ Reuse creates dependencies. Reusing existing libraries is often more effective than re-
developing the required functionality. Reusing FLOSS libraries from other projects is
therefore common and desirable among FLOSS projects. FLOSS projects can Boot-
sTRAP [WeilO] using other FLOSS projects, but with every reused library, there is an
additional dependency. Additional dependencies complicate the build process and its setup
becomes more difficult. As the dependencies may have other dependencies, the transitive
closure of all dependencies can be much larger than the number of direct dependencies.

e Platform diversity. In company environments, a central Information Technology (IT)
department often manages the configuration of all computers. Consequentially, the number
of different configurations of the developers’ computers is small and build configurations

2A preliminary version of this section was published previously [WHG13].

113

3 FLOSS Pattern Languages

working on one machine are likely to also work on others. In FLOSS projects, however, the
developers have no common computer configuration. Hence, build processes often require
adaption to run on a specific computer.

e Changing build processes. As a FLOSS project evolves, it starts to depend on additional
libraries, support new platforms, and acquire new features. Each of these changes also
changes the build process. The FLOSS project flourishes, but developers that once have
mastered the build process and have gotten their computers to build the main component
constantly have to keep pace with configuration changes. This requires a constant effort on
the developers’ side. Developers that only have little spare time to put into the project are
left behind.

e Prior experience. Joining developers may have experience with similiar software devel-
opment projects. They profit from this experience and maybe they can even partly reuse
their existing build systems to build the component of the joined FLOSS project. This
decreases the effort to set up the build environment, but it does not change the effort for
joining developers without experience in the specific technology used by the joined FLOSS
project.

o Interpreted languages. Interpreters execute source code without building binaries. For
example, most standard web browsers contain interpreters to run JavaScript programs.
No build environment must be set up for FLOSS projects written in JavaScript, but many
FLOSS projects are written in other languages, as some types of components are difficult
or impossible to write in interpreted languages. Examples are Operating System (OS)s
that must be compiled to machine code and virtualization environments that themselves
interpret JavaScript or similar languages.

e Nobody in charge. Newcomers suffer from build configurations that are difficult to set up,
but they are not competent enough to simplify these build configurations. Core developers
have the abilities to simplify the build configurations but they suffer only little from those
build configurations, as they have configured their build environment already. Nobody has
both the personal motivation and ability to simplify the build configurations and, thus, the
build configurations stay difficult to set up.

Solution:

Provide a Virtual Machine with a preconfigured build environment.

Put all dependencies and required build tools into one package, so interested developers have to
download only a single file to build your component. You should strive to minimize configuration
time for the build environment. Still, there are multiple alternatives to realize this requirement,
depending on the type of component your FLOSS project develops.

As the first alternative, you may in fact set up a build environment on a VM and ensure that
this build environment builds your component without any additional configuration. You can then
offer the VM as a download on the FLOSS project website. If possible, use a widely accepted
format for the VM, so all interested developers may start the VM on their host machines.

114

3.3 Patterns Lowering Contribution Barriers

The second alternative is only a subsystem instead of a whole VM. Examples for such subsys-
tems are Cygwin [P*Red15] and MinGW/MSYS [P*Min08]. These subsystems provide Linux
functionality on Microsoft Windows. Because such a subsystem is still difficult to configure, you
can preconfigure a subsystem with the tools and dependencies required to build your FLOSS
project’s component and offer it as a download on the FLOSS project’s website.

Third, an even leaner solution is a portable IDE as the download package. This is of course only
possible if an appropriate portable IDE exists for the programming language and environment of
the FLOSS project. Additionally, all required libraries and other dependencies must be packaged
into one package with the IDE — again, this is not possible for all programming languages and
environments. Such a portable IDE depends only on data within the package. For this solution, it
may be necessary to package IDEs in multiple different configurations. For example if every IDE
package supports only a single OS, but the developers of the FLOSS project use different OSs,
you should provide one IDE package for every OS.

For some FLOSS projects, a well made Makefile [P*Fre14], a Microsoft Visual Studio project
file [P*Micl6a], or a similar type of build script suffices. This is arguably a fourth alternative
to implement this pattern. Instead, these cases may be considered FLOSS projects that do not
need to implement this pattern, as their native build processes are simple enough already. A build
script is usually the first step to carry out one of the other alternatives.

Consequences:

v/ Lowered contribution barrier for newcomers. Build VMs ease the build of the compo-
nent. Newcomers experience lower barriers for their first contribution and are therefore
more likely to also contribute smaller modifications that have not been worth the effort
before. The FLOSS project therefore attracts more newcomers.

v’ One package for everything. The build VM contains all dependencies of the FLOSS
project along with the other build tools. Newcomers can immediately build the component
without searching for and building dependencies first.

v Cross-platform support. Build VMs provide an additional layer between the build scripts
and the developers’ host OS. Therefore, the developers’ host OSs are less important now
and developers may run any OS and still join the FLOSS project.

X Outdated build VMs. Maintaining build VMs takes time. If the core developers neglect
this maintenance, the build VMs become outdated and cannot build the latest versions of
the component [P*Moz09].

% proliferation [Pri08]. Developers who are active in a high number of FLOSS projects
or subprojects may have to store a lot of build VMs from each of these projects or subpro-
jects. They may lose track of their build VMs and spend time searching for the right build
VM for their current project. As a consequence of this confusion, they may download the
same build VMs multiple times which even worsens the problem.

v Easy access to complex components. Build VMs compile even complex components

115

3 FLOSS Pattern Languages

without much configuration effort if they are preconfigured correctly. Newcomers have
little trouble to modify these complex components.

v/ Barrier to become a core developers. While build VMs suffice for smaller source code
modifications, they may lack the flexibility needed for larger source code modifications.
Newcomers still need to get in touch with the details of the build processes if they want
to become developers. Still, build VMs are an intermediate step on the way to a regular
developer and make the slope more gentle, although they do not lower the overall work
necessary.

Known Uses and Sources:

For Mozilla Firefox developers using Microsoft Windows as their operating system, Mozilla
provides a package called MozillaBuild. MozillaBuild contains development tools, the MSYS
environment to provide Unix functionality under Windows, and the programs necessary to
compile the Firefox source code, among other things [P*Moz151].

Another example are the preconfigured download packages for the Eclipse IDE. At least for
simple plugins, the package Eclipse for RCP and RAP Developers contains all prerequisites to
work on the source code of plugins [P*Thel6].

Related Patterns:

A successful build is only the first step to Low CoNTRIBUTION BARRIERS. Newcomers may fail
to fix complicated defects or add advanced features at the beginning. These newcomers need
Low-HancING Frurt to get started with the development on the FLOSS project. If the FLOSS
project has a BAZAAR ARCHITECTURE, joining developers will integrate their modifications into the
existing source code more easily — and if the FLOSS project also has an EXPOSED ARCHITECTURE,
they will even know where to integrate these modifications.

Verification:

A FLOSS project must provide a download package supporting the build to realize this FLOSS
pattern. The download package contains all build tools and dependencies or must at least
automatically download all missing dependencies. Except from starting a VM or installation
script, the first build must not require more steps than later builds.

116

3.3 Patterns Lowering Contribution Barriers

3.3.3 Unit Tests for Contributors?®

Context:

You maintain a FLOSS project with Low CoNTRIBUTION BARRIERS that has grown to a complexity
that makes it difficult to foresee all side effects of changes. This applies especially to newcomers,
who have not yet acquired insight in the interdependencies between the FLOSS project’s modules.

Problem:

Newcomers avoid modifications as they are afraid to introduce new bugs.

Forces:

¢ Fixes with hidden defects. After developers have modified the source code, they want to
check whether their modification behaves as intended. For the fix of an easily reproducible
defect, this check guarantees that the modification really fixes the defect as it was supposed
to. But even in this simple case, the modification may still cause unpredicted side effects
that induce new defects in the component.

¢ Embarrassing mistakes. Submitting patches back to the FLOSS project serves as a defect
check, because the core developers review submitted patches. Newcomers might be willing
to invest their resources for the submission of their patches, but they are afraid to publish
erroneous patches, as it is embarrassing for them when others can see their mistakes. This
was mentioned as a submission barrier in Section 2.4.3, although only infrequently.

o Agile architecture. The developers are also users. If the developers find a new use case
for the application, they might immediately start to develop an additional feature for the
component, changing the architecture and interfaces on the way. This allows the FLOSS
project to quickly react to emerging market demands, but the FLOSS project must be
managed and the software architecture designed in a way that allows developers to change
the component design quickly in any direction — even if the developers had only been users
before they started to work on the new feature.

3 A preliminary version of this section was published previously [WHG13].

117

3 FLOSS Pattern Languages

¢ Platform specific bugs. Developers may intensively test a patched component on their
platforms, but this does not ensure that the patches are free of defects. The patch can be
incompatible to platforms that the developers had no access to for their tests.

o Test effort. Developers may quickly run superficial, manual tests, but it requires much
more time to write automated unit tests.

e Understanding patches. If there are enough beta testers or co-developers, they will
quickly find bugs that recent modifications have induced, but then the users who experience
the malfunction need to put effort in reproducing the malfunction and finding its cause.
Even if they can track down the cause to a single patch, they still have to understand the
rationale of the patch before they can fix the defect [Tao+12].

Solution:

Provide easy access to unit tests even for newcomers.

For applications that run on a variety of platforms and configurations, automated unit tests are
the only way to have at least some basic checks that these platforms and configurations are still
working. A single developer cannot cope with more than a few different platforms. In these cases,
provide test servers for all supported platforms and configurations. Even if it is a high effort at
the beginning, this pays off quickly, as manual tests may be reduced.

Regular tests are best achieved with a CI systems like Jenkins [P*Jen15], Hudson [P*Oral5a],
or CruiseControl [P*Crul5]. These systems support different test frameworks, so later addition
of automated tests is easy. Cl is also available as a service which is often free for small FLOSS
projects, for example Travis CI [P*Tral5] and CircleCI [P*Cirl5a].

However, it is insufficient to restrict CI services to the core developers and the main develop-
ment branch. The earlier a bug is detected, the easier it is to fix [Fow06]. Therefore, newcomers
shall also be able to run unit tests. Include the code for unit tests into your PRECONFIGURED BuILD
ENVIRONMENT, s0 newcomers can run these unit tests locally on their machines. A PRECONFIGURED
BurLp EnviRONMENT is also a good starting point for the configuration of a CI system, since you
can reuse your build scripts.

Consequences:

V" Second line of defense. Patches may induce side effects not detected by any test. In this
case, the tests have been useless. However, there are cases where the tests detect problems
that without the tests would have gone into the release of the application. Overall stability
is therefore increased.

v’ Confident developers. As all patches are tested before they are published, their developers
are confident that the patches do not contain obvious defects. The patch developers know
that even if the patches introduce new defects, it’s a joint mistake, as also the test developer
has missed a test case. Joint mistakes are less embarrassing and submitting a patch is less
fearsome.

118

3.3 Patterns Lowering Contribution Barriers

X Test dependencies. Although the tests are not delivered as part of the component release
and they are not needed for the actual functionality, they are still part of the software
architecture. The tests therefore add complexity to the architecture and all main components
have tests that depend on these main components. Thus, interface or architectural changes
now also require modifications to the tests. This reduces flexibility as more work is required
for such types of changes. Also, the existing tests cannot detect flaws introduced with
architectural changes, because the new interfaces require new tests.

v/ Platform compatibility. Automated build systems create ports of the application for all
target platforms. Thus, the applications are tested on all of these target platforms and the
application is guaranteed to provide at least the tested functionality on all platforms.

v’ Tests as examples. Beside the increased stability, developers benefit from tests if they use
the test source code as example source code for other purposes. The effort required to write
the tests therefore pays off faster.

v’ Fixes for oneself’s defects. Some defects in the patches are now detected early, so the
original developers of the patches may fix these defects before any other developers come
into contact with the defect. As the original developers of the patches know the rationale
and the structure of the patch, they need much less effort to fix the defects than other
developers would have needed.

Known Uses and Sources:

Mozilla tests all changes in their code base automatically [P*Moz15i]. Travis-CI [P*Tral5] and
CircleClI [P*Cirl5a] provide CI with tests for FLOSS projects hosted on GitHub. FLOSS projects
like The Legion of the Bouncy Castle [P*Leg15] include unit tests in their source code packages.
Facebook provided unit tests for developers of facebook apps and plugins, like tests for iOS
apps [P*Fac15] and for PHP plugins [P*Fac14].

Related Patterns:

Unit tests allows fast and automated tests of the application. This is a precondition for FREQUENT
REeLEASES [Wei09], as every release requires tests. FREQUENT RELEASEs would require much manual
effort if no automated tests are in place. Consider more intensive tests for the less frequent,
official releases in a PARALLEL DEvELoPMENT [Wei(09] strand.

Verification:

To successfully apply this FLOSS pattern, the source code must contain unit tests. The unit
tests do not need configuration except for the configuration of the application under test itself.
Alternatively, a CI system builds and tests all commits. In this case, it must build and test even
pending commits from newcomers.

119

3 FLOSS Pattern Languages

3.3.4 Low-hanging Fruit*

Context:

The FLOSS project grows and gets more and more complex. The core developers grew up
with the project’s code and know how to handle it. Because of Low CONTRIBUTION BARRIERS,
newcomers approach the FLOSS project who are yet missing the overview over the FLOSS
project’s structure.

Problem:

Newcomers cannot work on the FLOSS project’s issues because they have too much to
learn before they could be helpful.

Forces:

e No Own Need. As shown in Section 2.3 and discussed in more detail in Section 2.6.4, about

one third of the newcomers approach a FLOSS project without a specific modification
for their own in mind. Instead they hope that the FLOSS project offers programming
opportunities. They search the FLOSS project for open issues, but they join only if they
find issues appropriate for them.

Opportunity for beginners. As evaluated in Section 2.2.4, about one third of all new-
comers are students, and Learning is the primary modification motivation for about one
fifth of all newcomers, as shown in Sections 2.3. Thus, there is a considerable fraction of
newcomers who are not yet professional software developers and use FLOSS projects to
improve their programming skills. They want to work on interesting, real issues, but will
become frustrated if the solution is too difficult for them.

Lack of project-specific knowledge. The FLOSS project’s user base may include experi-
enced developers who would be valuable for the FLOSS project if they joined, but even
these experienced developers lack project-specific knowledge. As shown in Section 2.6.2,
general SE knowledge or even experience with other FLOSS projects is of little help with
contribution barriers.

4 A preliminary version of this section was published previously [HWG10].

120

3.3 Patterns Lowering Contribution Barriers

e Survival of the hardest. When developers work on the open issues of a project, solving
easy issues gives a more immediate sense of achievement and leads to quicker improve-
ments. These tasks may therefore seem to be the ones to be worked on first. However, if
the experienced developers quickly solve all easy problems, only the difficult ones are left
for newcomers.

Solution:

Mark some issues as easy and leave them open for newcomers.

Experienced developers of the project shall focus on the hard tasks that only they can solve.
Leave some of the easy tasks open. Newcomers are more motivated to work on these problems
and therefore pass the Onboarding phase [SGR14] more smoothly. Choose the tasks to be left
open with care: They should not be so critical that the software quality suffers much until they
are fixed, and they should not be so urgent that the core developers are forced to fix them because
none of the newcomers have worked on them in time.

You should announce easy tasks left open for newcomers on the FLOSS project’s web site.
This could be a list of tasks for newcomers or there could be a tag for tasks in the issue tracker
that indicates which tasks are suit