
Advancing stability analysis of

mean-risk stochastic programs:

Bilevel and two-stage models

Von der Fakultät für Mathematik der

Universität Duisburg-Essen

zur Erlangung des akademischen Grades eines

Dr. rer. nat.

angenommene Dissertation

von

Matthias Claus
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Abstract

Measuring and managing risk has become crucial in modern decision making under stochas-

tic uncertainty. In two-stage stochastic programming, mean-risk models are essentially de-

fined by a parametric recourse problem and a quantification of risk. This thesis addresses

sufficient conditions for weak continuity of the resulting objective functions with respect to

perturbations of the underlying probability measure. The approach is based on so called

ψ−weak topologies that are finer than the topology of weak convergence and allows to

unify and extend known results for a comprehensive class of risk measures and recourse

problems. In particular, stability of mean-risk models with mixed-integer quadratic and

general mixed-integer convex recourse problems is derived for any law-invariant, convex

and nondecreasing quantification of risk.

From a conceptual point of view, two-stage stochastic programs and bilevel problems under

stochastic uncertainty are closely related. Assuming that only the follower can observe

the realization of the randomness, the optimistic and pessimistic setting give rise to two-

stage problems where only optimal solutions of the lower level are feasible for the recourse

problem. So far, stability in stochastic bilevel programming has only been examined for

a specific model based on a quantile criterion. The novel approach allows to identify

sufficient conditions for stability of stochastic bilevel problems with quadratic lower level

and is applicable for a comprehensive class of risk measures.

Keywords: Mean-risk models, two-stage stochastic programming, stochastic bilevel prob-

lems, stability, risk functionals
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1. Introduction

Uncertain data that evolves over time poses a major difficulty in many real-world decision

problems. Optimization under uncertainty provides various approaches for resolving this

issue. Robust models assume that a so called ambiguity set of possible realizations of

the unknown data can be constructed. The worst possible outcome with respect to the

ambiguity set is then optimized (see e.g. [32], [34], [35], [36], [37], [38], [39], [97], [98],

[114]). While this approach can guarantee a certain quality of the outcome, it is known

to produce highly conservative solutions. This has led to the investigation of various

modifications that allow to lower the so called price of robustness (see e.g. [33], [44], [67],

[112], [194]).

Stochastic programming can be applied if the underlying uncertainty is stochastic and a

probability distribution of the unknown data is known. Based on the interplay between de-

cision and observation, one can differ between one-stage, two-stage and multistage stochas-

tic programming models. In one-stage models, all decisions have to be made without any

information about the realization of the randomness (see e.g. [168]). Two-stage models

have first been considered in [29], [76] and allow for a recourse action after observing the

random parameters. More general, multistage models feature a alternating sequence of

decision and observation (see e.g. [17], [30], [51], [72], [94], [103], [122], [123], [124], [165],

[182], [211]).

In two-stage stochastic programming it is usually assumed that the stochasticity is purely

exogenous, i.e. that the distribution of the random data does not depend on any of

the decisions to be made (see [113] for a discussion of decision dependent uncertainty).

Under this assumption, the problem can be understood as choosing an optimal random

variable out of a given family (see e.g. [52], [92], [192]). The simplest risk-neutral model

bases this decision on the expected outcome. More sophisticated mean-risk models allow

to take various notions of risk aversion into account by punishing high-risk decisions in

the objective function. Among many others, applications of mean-risk models include

vehicle routing with uncertain demands ([43]), shape optimization ([73]), the management

of flood and seismic risks ([100]), scheduling problems in production planning ([99]) and

yacht racing ([167]). For specific models and classes of recourse problems, tailored solution
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1. Introduction

algorithms are available (see e.g. [156], [207] (linear recourse), [61] (integer linear recourse),

[145], [199] (mixed-integer recourse), [191]).

A different class of models is based on optimizing a utility function over a subset of

feasible random variables having an acceptable risk. A popular way of specifying the set

of variables with acceptable risk is the introduction of probabilistic constraints (see e.g.

[125], [126], [127], [128], [179], [210]). More general models utilize stochastic dominance

constraints with respect to a benchmark variable. The seminal paper in this field is [89].

Other works focus on applications (see e.g. [60], [73], [90], [115]), more general models (see

e.g. [91]), solution methods (see e.g. [85], [87], [88], [93], [101], [116], [130], [150], [157],

[187]) and stability (see e.g. [70], [84], [86], [117], [149]). The works [158], [159] and [160]

point out links between stochastic dominance and certain mean-risks models.

All of the mentioned stochastic programming models depend on the distribution of the

random data. In real-world applications, only an approximation of this distribution may

be available, which motivates to examine stochastic problems from a parametric optimiza-

tion point of view. Stability of the optimal value and the set of optimal solutions under

perturbations of the underlying random vector (or rather the probability measure induced

by it) are of particular interest (see e.g. [13], [14], [178], [183], [184], [196], [198], [202],

[203]). Since the parameter space is infinite-dimensional, the choice of a topology becomes

an issue. For qualitative stability analysis, equipping the space of Borel probability mea-

sures with the topology of weak convergence has proven to be instrumental (see e.g. [133],

[135], [174]). Quantitative stability has been investigated based on suitable probability

metrics (see e.g. [170], [180], [181], [185], [186], [197], [204]).

Stability of two-stage mean-risk models is closely related to the continuity of certain risk

functionals that depend on the quantification of risk and the underlying deterministic

problem. The present thesis provides a systematic approach for deriving weak continuity

of a general class of functionals defined on subspaces of Borel probability measures satis-

fying certain moment conditions. Such functionals are continuous with respect to a finer,

so called ψ−weak topology (see e.g. [107], [141], [143]). Since it is possible to exactly

point out the subsets on which the relative ψ−weak topology and the relative topology of

weak convergence coincide (see [142], [218]), the latter allows to derive weak continuity of

suitable restrictions. The special case of restrictions to sets of measures with uniformly

bounded moments of higher order is well established in stability analysis of stochastic

programs (see e.g. [153], [196], [198], [200], [201]). In view of two-stage mean-risk models,

the approach is applicable whenever the growth of the optimal value function of the re-

course problem is polynomially bounded in the entering random parameter. Furthermore,
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1. Introduction

it is assumed that the set of discontinuities is of measure zero with respect to the orig-

inal probability measure and that the quantification of risk is law-invariant, convex and

nondecreasing.

In qualitative robustness theory, convex (monetary) risk measures (see e.g. [106], [109])

provide a well established generalization of coherent measures of risk (see e.g. [1], [15]).

Every law-invariant, convex risk measure is nondecreasing and hence meets the criteria

described in the previous paragraph. Such functionals are of special interest due to their

analytical traits (see e.g. [141], [144]), which have an immediate impact on statistical

properties, e.g. in view of the sample average approximation method (see e.g. [31], [92],

[166], [190]).

Stability analysis in two-stage stochastic programming often focuses on the case where the

underlying deterministic problem is a mixed-integer linear program. For this special situa-

tion, stability results for various types of two-stage mean-risk models are available (see e.g.

[153], [172], [200], [201]). However, the proofs differ greatly. For mixed-integer quadratic

recourse, stability of a risk-neutral model has been investigated in [64]. The present thesis

provides an umbrella for two-stage mean-risk models that allows to unify and extend the

known results in various directions: Stability is derived for a comprehensive class of both

risk measures and underlying deterministic problems (e.g. for mixed-integer quadratic

problems and a fairly general class of mixed-integer problems where the continuous re-

laxation is convex). Furthermore, stability of stochastic bilevel problems is examined.

Although not detailed in this thesis, the approach has also been applied to investigate

stability of mean-risk formulations of stochastic complementarity problems (see [57]).

Bilevel problems arise from the interplay between two decision makers on different levels

of a hierarchy. The leader decides first and passes the upper level decision on to the

follower. Incorporating the leader’s decision as a parameter, the follower then solves the

lower level problem that reflects his or her own goals and returns an optimal solution back

to the leader. The leader’s objective function depends on both his or her decision and the

solution that is fed back from the lower level. In bilevel optimization, it is assumed that

the leader has full information about the influence of his or her decision on the lower level

problem. As the latter may have more than one solution, one typically assumes that the

follower returns either the best (optimistic approach) or the worst (pessimistic approach)

solution with respect to the leader’s objective. The bilevel optimization problem is to find

an optimal upper level decision. Such problems have first been considered in economics

([208]). For a general discussion of bilevel programming, refer to [75] or [78]. Other works

focus on applications (see e.g. [24], [27], [81]), more general multilevel models (see e.g.
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1. Introduction

[26], [58]), linear bilevel programming (see e.g. [25], [47], [59]), optimality conditions (see

e.g. [23], [62], [79], [80], [82], [83], [213], [214], [215], [216]) solution methods (see e.g. [5],

[6], [132]) or stability (see e.g. [129]).

In stochastic bilevel programming, the realization of some random vector whose distri-

bution does not depend on the upper level decision enters the problem as an additional

parameter. It is assumed that the leader has to make his or her decision without knowing

the random parameter, while the follower decides under full information. Stochastic bilevel

problems can be seen as an extension of classical two-stage stochastic programs, where

upper and lower level mirror first and second stage, respectively. As in those problems,

the upper level objective function gives rise to a random variable. However, this random

variable now depends on an optimal solution rather than just on the optimal value of the

lower level (or second stage) problem. This is a crucial difference that results in weaker

analytical properties and a less stable behavior.

Nevertheless, stochastic bilevel problems are of great relevance for practical applications

and have been discussed in the context of transportation ([9], [161]), the pricing of elec-

tricity swing options ([119], [140]), economics ([12]), supply chain planning ([16]), telecom-

munications ([212]), structural optimization ([66]) and general agency problems ([111]).

Other works focus on solution methods ([50]), stochastic bilevel problems with Knapsack

constraints ([139]), nonlinear bilevel programming under uncertainty ([162]) or stochastic

equilibrium problems ([110]) and their stability ([148], [163]).

So far, the structure of risk-averse stochastic bilevel problems has only been addressed in

the recent work [131], where problems based on a so called quantile criterion are considered.

Using the optimistic approach and assumptions on the linearity of the upper and lower

level problems, continuity of the objective function with respect to the leader’s decision is

shown. However, the underlying probability measure is assumed to be fixed and stability

of optimal values and optimal solution sets is not examined. The focus in this thesis is

on stability of more general mean-risk formulations of stochastic bilevel problems. The

present analysis also applies to quadratic lower level problems and allows for a more general

dependence on the random parameter.

Chapter 2 introduces the theoretical framework while paying special attention to the simi-

larities and differences between the topology of weak convergence and ψ−weak topologies.

A proof of the main continuity result is given in the final section. In chapter 3, sufficient

conditions for qualitative stability of various two-stage models is examined based on the

previous findings. Finally, chapter 4 extends the results to stochastic bilevel problems.
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1. Introduction

Parts of this chapter have also been submitted for publication (see [68] for a preprint).
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2. Weak continuity of risk functionals

Mean-risk models in both two-stage and bilevel programming under stochastic uncertainty

give rise to functionals defined on certain subspaces of Borel probability measures. This

chapter examines their continuity with respect to the topology of weak convergence as

well as a finer, so called ψ-weak topology and is organized in five sections: Imposing a

growth condition and assumptions on the underlying quantification of risk, the considered

functionals are characterized in section 2.1. Section 2.2 examines quantifications of risk

that are suitable for the proposed setting, while sections 2.3 and 2.4 address selected

properties of the relevant topologies as well as their relation. Finally, section 2.5 is devoted

to proving the desired continuity.

Parts of this chapter have also been submitted for publication (see [69] for a preprint).

2.1. Setting and basic assumptions

Throughout this thesis, the focus will be on functionals defined on spaces of Borel prob-

ability measures. Hence, it seems appropriate to begin with recalling the following basic

definitions:

Definition 2.1. The Borel σ−algebra B(Rs) of Rs is the σ−algebra generated by the

family of open sets.

Properties of Borel σ−algebras are discussed in section 4.4 in [7]. Note that most of the

concepts introduced in this chapter can be translated to the case where Rs is replaced with

a general metric space S. However, it seems reasonable to confine the present discussion

to the case relevant for the applications in chapters 3 and 4. For generalizations, refer to

the corresponding chapters in [7] or section A.6 in [107].

Definition 2.2. A Borel probability measure on Rs is a countably additive set function

µ : B(Rs) → [0,∞) satisfying µ[Rs] = 1. The space of all such measures is denoted by

P(Rs).

An important class of subsets of P(Rs) can be defined via (generalized) moment conditions:
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2. Weak continuity of risk functionals

Definition 2.3. For any continuous function ψ : Rs → [0,∞), define

Mψ
s := {µ ∈ P(Rs) |

∫
Rs
ψ(t) µ(dt) <∞}.

Furthermore, set Mp
s := M‖·‖

p

s , where p ∈ R is a positive constant and ‖ · ‖ denotes the

Euclidean norm.

Remark 2.4. Due to the fact that every finite dimensional vector space admits a unique

Hausdorff linear topology [7, Theorem 5.21], all norms on Rs are equivalent and the set

Mp
s does not change if a norm other than the Euclidean one is considered.

Remark 2.5. The case where ψ is a so called gauge function (see Definition 2.51) will be

of special interest in section 2.3).

The functionals to be analyzed are induced by mappings f and ρ defined on Rn × Rs

and some Lp-space, respectively (see chapter 13 in [7] for a discussion of Lp−spaces). All

assumptions needed to derive the desired continuity will be imposed on these mappings. In

view of the mean-risk models considered in chapters 3 and 4, assumptions on f correspond

to assumptions on the underlying parametric problem, while ρ is directly related to the

choice of the quantification of risk in the objective function.

The assumptions imposed on f can be formulated using the notion of locally bounded

mappings:

Definition 2.6. A mapping η : Rn → R is said to be locally bounded iff the convergence

of {xl}l∈N ⊂ Rn implies the boundedness of {η(xl)}l∈N ⊂ R.

Remark 2.7. In particular, all continuous and all bounded functions are locally bounded.

Assumption 2.8 ([Af ] : Assumptions on f).

f : Rn × Rs → R is Borel measurable and fulfills the following growth condition: There

is an exponent γ ≥ 0 and some locally bounded mapping η : Rn → R such that

|f(x, z)| ≤ η(x)(‖z‖γ + 1) (2.1)

holds for any (x, z) ∈ Rn × Rs.

Remark 2.9. [Af ] is especially fulfilled if there exist positive constants α and β such that

|f(x, z)− f(x′, z′)| ≤ α‖(x, z)− (x′, z′)‖β

7



2. Weak continuity of risk functionals

holds for any (x, z), (x′, z′) ∈ Rn × Rs. In particular, [Af ] holds if f is jointly Hölder

continuous with respect to x and z.

The following lemma will prove useful:

Lemma 2.10. Assume [Af ], then
∫
Rs |f(x, z)|p ν(dz) < ∞ holds for every p ≥ 0 and

(x, ν) ∈ Rn ×Mγp
s .

Proof. By (2.1),

|f(x, z)|p ≤ η(x)p(‖z‖γ + 1)p ≤ η(x)p2p max{‖z‖γp, 1} ≤ η(x)p2p(‖z‖γp + 1)

holds for any (x, z) ∈ Rn×Rs and the statement of Lemma 2.10 follows immediately from

the fact that
∫
Rs 1 ν(dz) = 1.

Lemma 2.10 can be restated in terms of finiteness of moments of a certain image measure

under f :

Corollary 2.11. Fix p ≥ 0 as well as (x, ν) ∈ Rn×Mγp
s and let δx⊗ν denote the product

probability measure of the Dirac measure at x and ν. Then, under assumption [Af ], the

image measure of δx⊗ ν under f has finite moments of order p, i.e. (δx⊗ ν) ◦ f−1 ∈Mp
1.

Proof. By the change-of-variable formula (see Theorem A.1), it holds that∫
R
|t|p ((δx ⊗ ν) ◦ f−1)(dt) =

∫
Rn×Rs

|f(x′, z)|p (δx ⊗ ν)(d(x′, z)) =

∫
Rs
|f(x, z)|p ν(dz)

and Lemma 2.1 completes the proof.

The concept of atomless probability spaces plays an important role in the assumptions on

ρ:

Definition 2.12. A probability space (Ω,F ,P) is said to be atomless or nonatomic

iff for every A ∈ F with P[A] > 0 there exists a set B ∈ F satisfying B ( A and

P[A] > P[B] > 0.

In the field of monetary risk measures, it is common to confine the analysis to atomless

probability spaces (see e.g. [11], [107] (chapter 4), [108] or [141] and refer to [77] for the

more general case). The following result illustrates some properties of such spaces:

Proposition 2.13 ([107, Proposition A.27]).

For any probability space (Ω,F ,P), the following conditions are equivalent:

8



2. Weak continuity of risk functionals

(a) (Ω,F ,P) is atomless.

(b) There exists an independent and identically distributed sequence of random variables

Y1, Y2, . . . with Bernoulli distribution P[Yi = 0] = P[Yi = 1] = 1
2 (i = 1, 2, . . .).

(c) For every σ ∈ P(R), there exist independent and identically distributed random

variables Z1, Z2, . . . with common distribution Fσ defined by Fσ(t) := σ[(−∞, t]].

(d) (Ω,F ,P) supports a random variable with continuous distribution.

Example 2.14. Let λ1
[0,1] denote the restriction of the one-dimensional Lebesgue measure

to the closed unit interval. By the equivalence of (a) and (d) in Proposition 2.13, the

probability space ([0, 1],B(R) ∩ [0, 1], λ1
[0,1]) is atomless.

By Proposition 2.13, every atomless probability space supports a random variable U that

is uniformly distributed on the open unit interval (0, 1). This allows to explicitly associate

Borel probability measures on R with random variables on the space via a so called quantile

transformation. The approach is also used in the proof of the above proposition in [107]

and justified by the following lemma:

Lemma 2.15 (Quantile transformation).

Fix a random variable U on a probability space (Ω,F ,P) that is uniformly distributed on

(0, 1) and let σ ∈ P(R) be a Borel probability measure. Then

ω 7→ F−1
σ (U(ω)) := inf{t ∈ R | Fσ(t) ≥ U(ω)} (2.2)

is a random variable on (Ω,F ,P) with distribution Fσ.

Proof. Fσ is a normalized, nondecreasing, right-continuous function and the mapping F−1
σ

yields an inverse function in the sense of [107, Definition A.14]. Hence, [107, Lemma A.19]

is applicable.

Remark 2.16. The function F−1
σ is referred to as the (left-continuous) quantile func-

tion associated with σ, which motivates to call (2.2) the quantile transformation.

By the previous results, a mapping defined on the space of random variables on some

atomless probability space induces a function on P(R) if it only depends on the distribution

of the entering random variables. Such mappings are called law-invariant:

Definition 2.17. Let L0(Ω,F ,P) denote the space of finite-valued random variables on

some probability space (Ω,F ,P). A mapping ρ : L0(Ω,F ,P)→ R is called law-invariant

iff ρ[Y ] = ρ[Z] holds whenever Y and Z have the same distribution under P.

9



2. Weak continuity of risk functionals

Assumption 2.18 ([Aρ] : Assumptions on ρ).

ρ : Lp(Ω,F ,P) → R is a real-valued mapping defined on the Lp−space of some atomless

probability space, where p ≥ 1. In addition, ρ is law-invariant, convex, i.e.

ρ[mY + (1−m)Z] ≤ mρ[Y ] + (1−m)ρ[Z] ∀m ∈ [0, 1] ∀Y, Z ∈ Lp(Ω,F ,P),

and nondecreasing with respect to the P−almost sure partial order, i.e.

P[Y ≤ Z] = 1⇒ ρ[Y ] ≤ ρ[Z] ∀Y,Z ∈ Lp(Ω,F ,P).

The following simple observation will prove useful in the context of mean-risk models in

chapter 3:

Remark 2.19. For any atomless probability space (Ω,F ,P) and any constant p ≥ 1, the

space of mappings ρ : Lp(Ω,F ,P) → R satisfying assumption [Aρ] is closed under conic

combinations.

Let assumptions [Af ] and [Aρ] be fulfilled and consider a random variable U on the atomless

probability space from [Aρ] that is uniformly distributed on (0, 1). By Lemma 2.15, the

mapping Rρ :Mp
1 → R given by

Rρ(σ) := ρ[F−1
σ (U)] (2.3)

is well defined. The subsequent analysis shall focus on functionals Q : Rn ×Mγp
s → R

defined by

Q(x, µ) := Rρ((δx ⊗ µ) ◦ f−1). (2.4)

Remark 2.20. Q is well defined by Corollary 2.11.

2.2. Suitable risk measures

This section points out links to the theory of monetary risk measures and provides relevant

examples of mappings that satisfy assumptions [Aρ]. The notion of convex risk measures

in the sense of mathematical finance will be of special interest:

Definition 2.21. Let (Ω,F ,P) be a probability space and X a linear subspace of L0(Ω,F ,P)

containing the constants. A mapping $ : X → R is called a convex (monetary) risk

measure if $ is convex, nondecreasing with respect to the P-almost sure partial order and

10



2. Weak continuity of risk functionals

translation-equivariant, i.e.

$[Y +m] = $[Y ] +m ∀m ∈ R ∀Y ∈ X . (2.5)

A convex risk measure $ is called coherent if it is positively homogeneous, i.e.

$[mY ] = m$[Y ] ∀m ∈ [0,∞) ∀Y ∈ X .

Remark 2.22. X is often chosen as some Lp-space, where p ∈ [0,∞] (see e.g. [96]). In

view of [Aρ], only the case where X = Lp(Ω,F ,P) with 1 ≤ p <∞ will be relevant for the

analysis in section 2.5.

Remark 2.23. Monetary risk measures have also been considered in settings different

from the one of the above definition (see e.g. [105], where no probability measure is fixed).

Note that some definitions include a normalization, i.e. $[0] = 0 (see e.g. section 4.1 in

[107]) or work with possible gains rather than losses. In such a setting, $ is required to

be nonincreasing and (2.5) is replaced with

$[Y +m] = $[Y ]−m ∀m ∈ R ∀Y ∈ X

(see e.g. [65], [96] or [141]). However, Definition 2.21 covers the framework needed in

view of [Aρ].

Convex risk measures have been introduced independently in [106] and [109] and generalize

the concept of coherent risk measures that originates from [15]. Their relevance for the

present work is pointed out in the following remark:

Remark 2.24. Assumption [Aρ] is fulfilled for every law-invariant, convex risk measure

(in the sense of Definition 2.21) that is defined on Lp(Ω,F ,P), where (Ω,F ,P) is atomless

and 1 ≤ p ≤ ∞.

Law-invariant, convex risk measure are well established in the field of mathematical fi-

nance (see e.g. [1], [31], [65], [104], [108] and [141]) and highly relevant for stochastic

programming. By [96, Corollary 2.5], polyhedral risk measures are coherent (and hence

convex) under mild standard assumptions. The following examples discuss various risk

measures of importance in stochastic programming:

Example 2.25. The expectation or mean E : L1([0, 1],B(R)∩ [0, 1], λ1
[0,1])→ R defined

by

E[Y ] :=

∫ 1

0
Y (t) λ1

[0,1](dt)

11



2. Weak continuity of risk functionals

is a law-invariant, coherent risk measure in the sense of Definition 2.21.

Example 2.26. Consider the variance Var : L2([0, 1],B(R) ∩ [0, 1], λ1
[0,1]) → R defined

by

Var[Y ] := E[(Y − E[Y ])2] = E[Y 2]− E[Y ]2.

Var is law-invariant and convex (see e.g. [56]): Let Cov[Y,Z] := E[(Y −E[Y ])(Z −E[Z])]

denote the covariance of Y and Z. By Cov[Y, Z]2 ≤ Var[Y ]Var[Z] and the convexity of

the mapping x 7→ x2,

Var[mY + (1−m)Z] = m2Var[Y ] + (1−m)2Var[Z] + 2m(1−m)Cov[Y,Z]

≤ (m
√

Var[Y ] + (1−m)
√

Var[Z])2

≤ mVar[Y ] + (1−m)Var[Z]

holds for any Y,Z ∈ L2([0, 1],B(R) ∩ [0, 1], λ1
[0,1]) and m ∈ [0, 1].

Since Var[Y +m] = Var[Y ] holds for any m ∈ R and Y ∈ L2([0, 1],B(R)∩ [0, 1], λ1
[0,1]), Var

is not translation-equivariant. In addition, the variance is not nondecreasing: Consider

the random variables Y,Z : [0, 1] → R defined by Y (ω) ≡ 1 and Z(ω) = χ[ 1
2
,1](ω), where

χ[ 1
2
,1] denotes the indicator function of the interval [1

2 , 1]. Although Y ≥ Z almost surely,

it holds that Var[Y ] = 0 < 1
4 = Var[Z]. Finally, the variance is not positively homogenous:

Var[2Z] = 1 6= 1
2 = 2Var[Z].

In stochastic programming, mean-variance models are seldom considered as they are known

to be computationally intractable even for simple stochastic problems (see e.g. [4]).

Example 2.27. The expected excess ρEEα : L1([0, 1],B(R) ∩ [0, 1], λ1
[0,1]) → R of a

predefined target level α ∈ R given by

ρEEα [Y ] := E[max{Y − α, 0}]

is law-invariant and nondecreasing. Furthermore, it is jointly convex with respect to Y

and α, i.e.

ρEEmα1+(1−m)α2
[mY1 + (1−m)Y2] ≤ mρEEα1

[Y1] + (1−m)ρEEα2
[Y2] (2.6)

holds for any Y1, Y2 ∈ L1([0, 1],B(R) ∩ [0, 1], λ1
[0,1]), α1, α2 ∈ R and m ∈ [0, 1]. Conse-

quently, assumption [Aρ] is fulfilled for the expected excess. However, the expected excess

is not translation-equivariant and hence no monetary risk measure: The random variable

12
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Y : [0, 1] → R, Y ≡ 1 yields the counterexample ρEE2 [Y ] = 0 = ρEE2 [Y + 1]. Finally, the

expected excess is not positively homogenous: ρEE2 [3Y ] = 1 6= 0 = 3ρEE2 [Y ].

The expected excess has been examined in the context of two-stage stochastic programming

problems with mixed-integer linear recourse in [153]. For any q ≥ 1, the present analysis

extends to the q-th order expected excess ρEE,qα : Lq([0, 1],B(R) ∩ [0, 1], λ1
[0,1]) → R of

the target level α ∈ R defined by

ρEE,qα [Y ] := E[max{Y − α, 0}q]
1
q .

Assumption [Aρ] is fulfilled for ρEE,qα , since it is law-invariant, convex and nondecreasing.

Example 2.28. The semideviation ρSD : L1([0, 1],B(R) ∩ [0, 1], λ1
[0,1])→ R given by

ρSD[Y ] := ρEEE[Y ][Y ]

is law-invariant, positively homogenous and convex. The latter is a direct conclusion

from the linearity of the expectation and the joint convexity of the expected excess (2.6).

However, the semideviation is not translation-equivariant, as ρSD[Y + m] = ρSD[Y ] for

any Y ∈ L1([0, 1],B(R) ∩ [0, 1], λ1
[0,1]) and m ∈ R. In addition, ρSD is not nondecreasing:

Consider the random variables Y, Z : [0, 1] → R given by Y (t) = χ[0, 1
2

)(t) − χ[ 1
2
,1](t) and

Z ≡ 1. Although Y ≤ Z almost surely, it holds that ρSD[Y ] = 1
2 > 0 = ρSD[Z].

One can easily compensate for the lacking monotonicity by considering a weighted sum

with the expectation: For any m ∈ [0, 1], E + mρSD : L1([0, 1],B(R) ∩ [0, 1], λ1
[0,1]) → R

is a law-invariant, coherent risk measure in the sense of Definition 2.21 (see e.g. section

6.3.2 in [92]).

For a discussion of the semideviation in the context of two-stage stochastic programming

with mixed-integer linear recourse, refer to [153].

Example 2.29. The excess probability ρPα : L0([0, 1],B(R) ∩ [0, 1], λ1
[0,1]) → R of a

predefined target level α ∈ R given by

ρPα [Y ] := λ1
[0,1][{t ∈ [0, 1] | Y (t) > α}]

is nondecreasing and law-invariant. However, it lacks convexity, translation-equivariance

and positive homogeneity: Consider the random variables Y,Z : [0, 1]→ R given by Y ≡ 1

and Z ≡ 0. Since

ρP1
2

[2Y ] = ρP1
2

[Y + 1] = 1 6= 2 = ρP1
2

[Y ] + 1 = 2ρP1
2

[Y ],

13



2. Weak continuity of risk functionals

the excess probability is neither positively homogenous nor translation-equivariant. Fur-

thermore, the calculation

ρP1
4

[
1

2
Y +

1

2
Z] = 1 >

1

2
=

1

2
ρP1

4

[Y ] +
1

2
ρP1

4

[Z]

shows that ρPα is nonconvex in general.

In the context of two-stage stochastic programming, the excess probability has been inves-

tigated for example in [40], [172] and [201].

Example 2.30. The value-at-risk VaRα : L∞([0, 1],B(R) ∩ [0, 1], λ1
[0,1]) → R for a

predefined level α ∈ (0, 1) given by

VaRα[Y ] := inf{m ∈ R | λ1
[0,1][{t ∈ [0, 1] | Y (t) ≤ m}] ≥ α}

is law-invariant, nondecreasing, translation-equivariant and positively homogenous. How-

ever, it is not convex: Consider the random variables Y,Z : [0, 1] → R defined by

Y (t) = χ[0, 1
2

)(t) + 3χ[ 1
2
,1](t) and Z(t) = 3χ[0, 1

2
)(t) + χ[ 1

2
,1](t). It holds that

VaR 1
4
[
1

2
Y +

1

2
Z] = 2 > 1 =

1

2
VaR 1

4
[Y ] +

1

2
VaR 1

4
[Y ].

A detailed discussion of the value-at-risk is provided in [164].

The lack of convexity of the value-at-risk has inspired the investigation of coherent alter-

natives like the conditional value-at-risk (see e.g. [2], [3], [10], [164], [175] and [176]). [200]

provides a discussion in the context of two-stage stochastic programming problems with

mixed-integer recourse.

Example 2.31. The conditional value-at-risk, also known as average value-at-risk

or expected shortfall, CVaRα : L1([0, 1],B(R) ∩ [0, 1], λ1
[0,1]) → R for a predefined level

α ∈ (0, 1) is given by

CVaRα[Y ] := inf{m+
1

1− α
ρEEm [Y ] | m ∈ R}.

CVaRα is a law-invariant, coherent risk measure (see e.g. [164, Proposition 2]).

2.3. The topology of weak convergence

The present chapter aims at verifying continuity of the mapping Q with respect to the

topology of weak convergence. Dating back to a least 1978 (see [135]), the use of this

14



2. Weak continuity of risk functionals

topology has proven to be instrumental in stability analysis for stochastic programming

models. While coarse enough to be relevant for a large spectrum of applications (see e.g.

Remarks 2.44 and 2.50), the topology possesses very desirable mathematical properties

(see e.g. Proposition 2.37, Theorems 2.41, 2.48 and 2.49). Discussing selected results and

characterizations, this section aims to make the case for utilizing the topology of weak

convergence.

Definition 2.32. Let C0
b (Rs) denote the linear space of all bounded and continuous func-

tions h : Rs → R. The topology of weak convergence, denoted by τ sw, is the coarsest

topology on P(Rs) for which all mappings gh : P(Rs)→ R defined by

gh(µ) =

∫
Rs
h(t) µ(dt), h ∈ C0

b (Rs) (2.7)

are continuous. A sequence {µl}l∈N ⊆ P(Rs) is said to converge weakly to µ ∈ P(Rs),
written µl

w→ µ, iff it converges with respect to τ sw.

By the following result, a Borel probability measure µ is completely determined by the

integrals in (2.7):

Proposition 2.33 ([49, Theorem 1.2]).

For µ, ν ∈ P(Rs), it holds that µ = ν iff gh(µ) = gh(ν) for all h ∈ C0
b (Rs).

Remark 2.34. In particular, Proposition 2.33 yields that weak limits are unique.

By Definition 2.32,

lim
l→∞

∫
Rs
h(t) µl(dt) =

∫
Rs
h(t) µ(dt) ∀h ∈ C0

b (Rs)

holds whenever µl
w→ µ, as continuity implies sequential continuity. Moreover, since τ sw is

metrizable by the Prokhorov metric (see Proposition 2.37), the notions of continuity and

sequential continuity coincide and the converse statement is also true.

Definition 2.35. The Prokhorov metric π : P(Rs)× P(Rs)→ [0,∞) is defined by

π(µ, ν) := inf{ε > 0 | µ[A] ≤ ν[A+Bε(0)] + ε, ν[A] ≤ µ[A+Bε(0)] + ε ∀A ∈ B(Rs)},

where A + Bε(0) ⊆ Rs denotes the Minkowski sum of A and the open ball of radius ε

centered at 0 (with respect to the Euclidean norm).

Remark 2.36. π is indeed a metric (see fact (i) on page 72 in [49]).

15



2. Weak continuity of risk functionals

Proposition 2.37. τ sw coincides with the topology induced by the Prokhorov metric π on

P(Rs).

Proof. Combine facts (iii) and (iv) on page 72 in [49] and invoke the separability of Rs.

It is also possible to characterize the topology of weak convergence in terms of functional

analysis: Endow C0
b (Rs) with the supremum norm

‖h‖∞ = sup
t∈Rs
|h(t)| (2.8)

and let (C0
b (Rs))∗ denote its dual space equipped with the norm given by

‖ζ‖∗∞ = sup{|ζ(h)| | h ∈ C0
b (Rs), ‖h‖∞ ≤ 1}. (2.9)

[7, Theorem 14.10] allows to identify (C0
b (Rs))∗ with the AL-space (abstract Lebesgue

space) of normal signed Borel charges of bounded variation on B(Rs) (see section 10.10 as

well as Definitions 10.2, 12.2 and 12.11 in [7]).

Theorem 2.38 (Riesz representation theorem, see e.g. Theorem 2.14 in [189]).

Let Z denote the set of all ζ ∈ (C0
b (Rs))∗ satisfying ‖ζ‖∗∞ = 1 and ζ(h) ≥ 0 for any

nonnegative h ∈ C0
b (Rs). Then for any ζ ∈ Z, there exists a unique µζ ∈ P(Rs) satisfying

ζ(h) =

∫
Rs
h(t) µζ(dt) ∀h ∈ C0

b (Rs).

Moreover, the mapping Λ : Z → P(Rs) defined by Λ(ζ) := µζ is bijective.

The following result is an immediate conclusion from the Riesz representation theorem

and the definition of weak* convergence:

Corollary 2.39. For any sequence {µl}l∈N ⊆ P(Rs) the following statements are equiva-

lent:

(a) µl
w→ µ1.

(b) Λ−1(µl)
w∗→ Λ−1(µ1), where

w∗→ denotes the weak* convergence on Z, i.e. ζl
w∗→ ζ iff

liml→∞ ζl(h) = ζ(h) for any h ∈ C0
b (Rs).

Another way to characterize a topology is to point out a base:
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2. Weak continuity of risk functionals

Proposition 2.40. The sets

Nε(α, µ, h1, . . . , hl) :=

l⋂
i=1

{
ν ∈ P(Rs) |

∣∣∣∣∫
Rs
hi(t) (αµ)(dt)−

∫
Rs
hi(t) ν(dt)

∣∣∣∣ < ε

}

for ε, α > 0, µ ∈ P(Rs), l ∈ N and h1, . . . , hl ∈ C0
b (Rs) form a base of the topology of weak

convergence on P(Rs).

Proof. Endow the space {αµ | α ≥ 0, µ ∈ P(Rs)} of nonnegative, finite Borel measures

on Rs with the coarsest topology for which all mappings µ 7→
∫
Rs h(t) µ(dt), h ∈ C0

b (Rs)
are continuous (as done in [107, Definition A.36]). A base of this topology is given by

formula (A.20) in [107] and yields a base of the topology of weak convergence on P(Rs),
since τ sw arises as a subspace topology.

Apart from the representations via weak* convergence on the dual space of C0
b (Rs), a base

or the Prokhorov metric, the topology of weak convergences admits various equivalent

characterizations that are typically summarized in the so called Portmanteau theorem:

Theorem 2.41 (Portmanteau theorem, see e.g. Theorem 2.1 in [49]).

For any sequence {µl}l∈N ⊆ P(Rs) and any measure µ ∈ P(Rs), the following statements

are equivalent:

(a) µl
w→ µ.

(b) lim supl→∞
∫
Rs h(t) µl(dt) ≤

∫
Rs h(t) µ(dt) holds for any upper semicontinuous map-

ping h : Rs → R that is bounded from above.

(c) lim inf l→∞
∫
Rs h(t) µl(dt) ≥

∫
Rs h(t) µ(dt) holds for any lower semicontinuous map-

ping h : Rs → R that is bounded from below.

(d) liml→∞
∫
Rs h(t) µl(dt) =

∫
Rs h(t) µ(dt) holds for any bounded, uniformly continuous

mapping h : Rs → R.

(e) lim supl→∞ µl[B] ≤ µ[B] holds for any closed set B ⊆ Rs.

(f) lim inf l→∞ µl[B] ≥ µ[B] holds for any open set B ⊆ Rs.

(g) liml→∞ µl[B] = µ[B] holds whenever B ∈ B(Rs) is a µ−continuity set, i.e.

µ[∂B] = 0, where ∂B denotes the topological boundary of B.

In many practical applications of stochastic programming, it may seem more natural to

work with random vectors instead of Borel probability measures. However, any sequence

17



2. Weak continuity of risk functionals

{Yl}l∈N of random vectors Yl : Ωl → Rs on probability spaces (Ωl,Fl,Pl) induces a sequence

of Borel probability measures {µYl}l∈N ⊆ P(Rs) via

µYl := Pl ◦ Y −1
l . (2.10)

For every l ∈ N, µYl is the law of Yl (in the sense of section 3 in [49]), which provides a

link between weak convergence and the so called convergence in distribution.

Definition 2.42. The sequence {Yl}l∈N is said to converge in distribution to a random

vector Y : Ω→ Rs on some probability space (Ω,F ,P), written Yl
d→ Y , iff

lim
l→∞

Pl[Yl ∈ B] = P[Y ∈ B]

holds whenever B ∈ B(Rs) is such that P[Y ∈ ∂B] = 0.

Lemma 2.43. Yl
d→ Y iff µYl

w→ µY .

Proof. Combine the equivalence of (a) and (g) in Theorem 2.41 with the fact that

Pl[Yl ∈ B] = µYl [B] by formula (2.10).

Remark 2.44. Convergence in distribution is highly relevant in practice, since it arises

from the central limit theorem and its generalizations (see chapter 27 in [48] for a discus-

sion). Nevertheless, the assumption of convergence in distribution is rather weak, as the

random vectors in a converging sequence are not even required to be defined on a com-

mon probability space. Furthermore, convergence in distribution is implied by convergence

in probability (see [48, Theorem 25.2]) and hence in particular implied by almost sure

convergence. The converse statements do not hold true in general.

For any sequence of random vectors {Yl}l∈N that converges in distribution to Y1, there

exists a sequence of Borel probability measures {µl}l∈N such that µl is the law of Yl and

µl
w→ µ1. An even stronger version of the converse statement is given by the following

result:

Theorem 2.45 (Skorohod representation theorem).

For any sequence {µl}l∈N ⊆ P(Rs), µl
w→ µ1 holds iff there exists a sequence of random

vectors {Yl}l∈N on some probability space (Ω,F ,P) such that for any l ∈ N, µl is the law

of Yl and

lim
l→∞

Yl(ω) = Y1(ω) ∀ω ∈ Ω. (2.11)
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Proof. Every closed subset of Rs is separable with respect to the relative topology induced

by the Euclidean norm by [7, Lemma 2.9]. Hence, the support of every µ ∈ P(Rs) is

separable and [49, Theorem 6.7] is applicable. Lemma 2.43 completes the proof.

The probability space in 2.45 may depend on the specific sequence of Borel probability

measures that is considered. However, weakening the sure convergence in (2.11) to almost

sure convergence, the following result allows represent all weakly converging sequences in

P(Rs) with random variables on a fixed atomless space:

Theorem 2.46 (Skorohod representation on a fixed probability space).

Fix any atomless probability space (Ω,F ,P). Then for any sequence {µl}l∈N ⊆ P(Rs),
µl

w→ µ1 holds iff there exists a sequence of random vectors {Yl}l∈N on (Ω,F ,P) such that

for any l ∈ N, µl is the law of Yl and

lim
l→∞

Yl(ω) = Y1(ω) for P− almost all ω ∈ Ω. (2.12)

Proof. Combine [42, Theorem 3.2 (i)] with the fact that the support of every µ ∈ P(Rs)
is separable and employ Lemma 2.43.

Remark 2.47. In particular, (2.12) implies Yl
d→ Y1 by [48, Theorem 25.2].

Weak convergence of a sequence in P(Rs) translates to weak convergence of the sequence of

image measures under a fixed mapping that is continuous almost everywhere with respect

to the weak limit of the original sequence:

Theorem 2.48 (Continuous mapping theorem, see e.g. Theorem 2.7 in [49]).

Fix any Borel measurable mapping T : Rs → Rk and let DT ⊆ Rs denote the set of its

discontinuities. Then for any sequence {µl}l∈N ⊆ P(Rs) satisfying µl
w→ µ ∈ P(Rs) and

µ[DT ] = 0, it holds that µl ◦ T−1 w→ µ ◦ T−1.

The following theorem states that P(Rs) endowed with τ sw is separable and explicitly

points out a countable dense subset:

Theorem 2.49. (P(Rs), τ sw) is a Polish space, i.e. a separable, completely metrizable

topological space. In particular, the countable set

Ds = {
l∑

i=1

αiδxi | l ∈ N, 0 ≤ α1, . . . , αl ∈ Q,
l∑

i=1

αi = 1, x1, . . . , xl ∈ Qs} (2.13)

is dense in P(Rs) with respect to the topology of weak convergence.
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Proof. Combine Theorems 15.10 and 15.15 in [7].

Remark 2.50. By the above theorem, every element of P(Rs) is the weak limit of a

sequence of convex combinations of Dirac measures. Stochastic programming problems are

usually more traceable if the support of the underlying measure is finite. In some cases,

such problems even admit equivalent reformulations as mixed-integer linear programs (see

e.g. [153], [200], [201]). Consider a problem where the dependence of the optimal value

and the optimal solution set on the underlying measure is continuous with respect to the

topology of weak convergence. By the above result, it is possible to obtain approximate

solutions of arbitrary precision by approximating the underlying measure with an element

of Ds and solving the resulting (easier) problem.

2.4. ψ−weak topologies

While continuity of Q with respect to the topology of weak convergence is the ultimate

goal of this chapter, the proof in section 2.5 also employs finer topologies that shall be

introduced in the present section. Enclosing the topology of weak convergence (see Remark

2.54), ψ−weak topologies are topologies on subsets of P(Rs) that are defined by generalized

moment conditions. In the following, basic properties of ψ−weak topologies and their

relation to the topology of weak convergence shall be examined. In view of the desired

continuity, subsets where the relative topology of weak convergence coincides with a certain

relative ψ−weak topology are of special interest. A characterization of such sets is given

by Lemma 2.66.

ψ−weak topologies are induced by so called gauge functions:

Definition 2.51. A continuous function ψ : Rs → [0,∞) is called a gauge function, if

ψ ≥ 1 holds outside a compact set.

Remark 2.52. In section 2.5, the case where ψ is chosen to be the Euclidean norm to a

positive power will be of special interest.

Definition 2.53. Let ψ : Rs → [0,∞) be a gauge function and denote by Cψs the linear

space of all continuous functions h : Rs → R for which there exists a real constant c ≥ 0

such that

|h(t)| ≤ c(ψ(t) + 1)

holds for any t ∈ Rs. The ψ−weak topology, denoted by τψ, is the coarsest topology on
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Mψ
s for which all mappings gh :Mψ

s → R defined by

gh(µ) =

∫
Rs
h(t) µ(dt), h ∈ Cψs

are continuous. A sequence {µl}l∈N ⊆ Mψ
s is said to converge ψ−weakly to µ ∈ Mψ

s ,

written µl
ψ→ µ, iff it converges with respect to τψ.

Remark 2.54. Consider the constant gauge function ψ1 ≡ 1 on Rs. Then Cψ1
s = C0

b (Rs)
and Mψ1

s = P(Rs), since µ[Rs] = 1 holds for any Borel probability measure µ. Conse-

quently, the topology of weak convergence coincides with the ψ1−weak topology.

Lemma 2.55. For any gauge function ψ : Rs → [0,∞) and any real constants d, e ≥ 0,

(1 + e)ψ + d is a gauge function and the topologies τψ and τ(1+e)ψ+d coincide.

Proof. By definition, it holds that Mψ
s =M(1+e)ψ+d

s and Cψs = C
(1+e)ψ+d
s .

Remark 2.56. Note that [107] and [143] use a more restrictive definition of gauge func-

tions by demanding ψ ≥ 1 to hold on the whole space. However, for every gauge function

ψ in the sense of Definition 2.51, the function ψ + 1 is a gauge in function in the sense

of [107] that yields the same topology by Lemma 2.55.

The following characterization of τψ by a base is a generalization of Proposition 2.40:

Proposition 2.57. For any gauge function ψ : Rs → [0,∞), the sets

Nψ
ε (α, µ, h1, . . . , hl) :=

l⋂
i=1

{
ν ∈Mψ

s |
∣∣∣∣∫

Rs
hi(t) (αµ)(dt)−

∫
Rs
hi(t) ν(dt)

∣∣∣∣ < ε

}

for ε, α > 0, µ ∈ Mψ
s , l ∈ N and h1, . . . , hl ∈ Cψs form a base of the ψ−weak topology on

Mψ
s .

Proof. Endow the space {αµ | α ≥ 0, µ ∈ Mψ
s } with the coarsest topology for which all

mappings µ 7→
∫
Rs h(t) µ(dt), h ∈ Cψs are continuous (as done in [107, Definition A.44]).

τψ arises as a subspace topology, hence the base given on page 502 in [107] yields a base

of the ψ−topology on Mψ
s .

Remark 2.58. For any gauge function ψ : Rs → [0,∞), the mapping

Ψ : {αµ | α ≥ 0, µ ∈Mψ
s } → {αµ | α ≥ 0, µ ∈ P(Rs)}
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given by

(Ψ(µ))(dt) := ψ(t)µ(dt)

yields a homeomorphism between the topological spaces considered in the proofs of Propo-

sitions 2.40 and 2.57 (see page 502 in [107]).

The above remark allows to generalize Theorem 2.49:

Theorem 2.59. For any gauge function ψ : Rs → [0,∞), (Mψ
s , τψ) is a Polish space and

the countable set Ds defined in (2.13) is dense in Mψ
s with respect to τψ.

Proof. Combine [107, Theorem A.45] with the fact that closed subspaces of Polish spaces

are Polish spaces by [71, Proposition 8.1.2]).

Remark 2.60. In particular, ψ−weak topologies are metrizable and the notions of conti-

nuity and sequential continuity coincide.

The following characterization of the relation between weakly and ψ−weakly converging

sequences is a combination of [69, Lemma 4.1] and [143, Lemma 3.4]:

Lemma 2.61. For any gauge function ψ : Rs → [0,∞) and any sequence {µl}l∈N ⊆Mψ
s ,

the following statements are equivalent:

(a) µl
ψ→ µ1.

(b) µl
w→ µ1 and liml→∞

∫
Rs ψ(t) µl(dt) =

∫
Rs ψ(t) µ1(dt).

(c) liml→∞
∫
Rs h(t) µl(dt) =

∫
Rs h(t) µ1(dt) holds for any continuous function

h : Rs → R with compact support and for h = ψ.

(d) µl
w→ µ1 and

lim
a→∞

sup
l∈N

∫
Rs
ψ(t) · χ(a,∞)(ψ(t)) µl(dt) = 0.

Proof. ((a) ⇒ (b)) follows directly from Definition 2.53 and the fact that ψ ∈ Cψs .

((b)⇒ (c)): Let h : Rs → R be continuous and have a compact support. Then h ∈ C0
b (Rs)

and (c) follows from Definition 2.32.

((c)⇒ (a)): Let Ψ denote the homeomorphism defined in Remark 2.58. By the equivalence

of (i) and (iii) in [28, Theorem 30.8], (c) implies Ψ(µn)
w→ Ψ(µ1). Invoking Remark 2.58,

the latter yields µn
ψ→ µ1, i.e. (a).

((a) ⇔ (d)) is a direct conclusion from [206, Theorem 2.20].
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The equivalence of (a) and (b) in the above Lemma allows to explicitly point out a metric

that generates τψ:

Corollary 2.62. For any gauge function ψ : Rs → [0,∞), the ψ−weak topology on Mψ
s

is generated by the metric dψ :Mψ
s ×Mψ

s → R defined by

dψ(µ, ν) := π(µ, ν) +

∣∣∣∣∫
Rs
ψ(t) µ(dt)−

∫
Rs
ψ(t) ν(dt)

∣∣∣∣ .
While the above corollary applies to any gauge function, the case where ψ is a positive

power of the Euclidean norm is of special interest in view of section 2.5. The following

result characterizes τ‖·‖q for q ≥ 1:

Proposition 2.63. For any q ≥ 1, the ‖ · ‖q−weak topology on Mq
s is generated by the

Wasserstein metric dW,s,q :Mq
s ×Mq

s → R of order q:

dW,s,q(µ, ν) := inf

{(∫
Rs×Rs

‖x− y‖q σ(dx, dy)

) 1
q

| σ ∈M(µ, ν)

}
,

where M(µ, ν) denotes the set of all Borel probability measures on Rs × Rs with µ as the

first s−dimensional marginal and ν as the second one. For s = 1, τ|·|q is also generated

by the q−th order Fortet-Mourier metric dFM,q :Mq
1 ×M

q
1 → R. The latter is given by

dFM,q(µ, ν) := inf

{∫
R×R
|x− y|max{1, |x|q−1, |y|q−1} σ(dx, dy) | σ ∈ L(µ, ν)

}
,

where L(µ, ν) denotes the set of all finite Borel measures on R× R satisfying

σ[A× R]− σ[R×A] = µ[A]− ν[A] ∀A ∈ B(R).

Proof. Combine [169, Theorem 6.3.1] with Lemma 2.61.

For details on the metrics in the above proposition, refer to [169]. By the equivalence of

(a) and (b) in Lemma 2.61, ψ−weak convergence implies weak convergence. The converse

statement does not hold true in general:

Example 2.64. Consider the sequence {µl}l∈N ⊆ P(R) defined by µl := (1 − 1
l )δ0 + 1

l δl

(a similar sequence is used in [107, Example A.43]). By∫
R
|t| µl(dt) = (1− 1

l
)|0|+ 1

l
|l| = 1 <∞ ∀ l ∈ N
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2. Weak continuity of risk functionals

it holds that {µl}l∈N ∈M1
1. Fix an arbitrary bounded and continuous function h : R→ R.

Then

lim
l→∞

∫
R
h(t) µl(dt) = lim

l→∞
(1− 1

l
)h(0) +

1

l
h(l) = h(0) =

∫
R
h(t) δ0(dt)

and hence µn
w→ δ0. However, since

lim
l→∞

∫
R
|t| µl(dt) = 1 6= 0 =

∫
R
|t| δ0(dt),

the sequence {µl}l∈N does not converge with respect to the | · |−weak topology by Lemma

2.61.

Nevertheless, there are subspaces of Mψ
s on which the relative topology of weak conver-

gence coincides with the relative ψ−weak topology.

Definition 2.65. Let ψ : Rs → [0,∞) be a gauge function. A set M⊆Mψ
s is said to be

locally uniformly ψ−integrating iff for any µ ∈ M and any ε > 0 there exists some

open neighborhood N of µ with respect to the topology of weak convergence such that

lim
a→∞

sup
ν∈M∩N

∫
Rs
ψ(t) · χ(a,∞)(ψ(t)) ν(dt) ≤ ε.

The relevance of locally uniformly ψ−integrating subsets in the present context is given

by the following result:

Lemma 2.66 ([218, Lemma 3.4]).

For any gauge function ψ : Rs → [0,∞) and any M ⊆Mψ
s , the following statements are

equivalent:

(a) The relative ψ−weak topology on M coincides with the relative topology of weak

convergence on M.

(b) M is locally uniformly ψ−integrating.

A detailed discussion of locally uniformly ψ−integrating subsets and generalizations is

provided in [142], where various equivalent characterizations are established. The following

result arises from the application of [142, Lemma 3.1] to a constant sequence of gauge

functions and yields a whole class of locally uniformly ψ−integrating sets:

Proposition 2.67. For any gauge function ψ : Rs → [0,∞) and any M ⊆ Mψ
s , the

following statements are equivalent:
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2. Weak continuity of risk functionals

(a) M is locally uniformly ψ−integrating and relatively compact for the topology of weak

convergence.

(b) M is relatively compact for the ψ−weak topology.

Proof. ((a) ⇒ (b)): By Lemma 2.66, the locally uniformly ψ−integrating set M is rel-

atively compact for the topology of weak convergence iff it is relatively compact for the

ψ−weak topology.

((b) ⇒ (a)): Consider a sequence {µl}l∈N ⊆ M that converges weakly to µ ∈ P(Rs). By

the relative compactness for the ψ−weak topology, there exists a subsequence of {µl}l∈N
that converges ψ−weakly to some ν ∈Mψ

s . The equivalence of (a) and (b) in Lemma 2.61

implies ν = µ and hence µl
ψ→ µ. Consequently, M is locally uniformly ψ−integrating by

Theorem 2.59 and Lemma 2.66. As above, this implies that M is relatively compact for

the topology of weak convergence.

The classical Prokhorov theorem (see e.g. section 5 of chapter 1 in [49]) characterizes

subsets of P(Rs) that are weakly compact for the topology of weak convergence via tight-

ness. In view of Proposition 2.67 and Lemma 2.66 the following generalization for ψ−weak

topologies is of special interest:

Theorem 2.68 ([142, Lemma 5.1]).

For any gauge function ψ : Rs → [0,∞) and any set M ⊆Mψ
s , the following statements

are equivalent:

(a) M is relatively compact for the ψ−weak topology.

(b) For any ε > 0, there exists a compact set K ⊂ Rs such that

sup
µ∈M

∫
Rs\K

ψ(t) µ(dt) ≤ ε.

(c) There exists a measurable function κ : Rs → [0,∞) such that

sup
µ∈M

∫
Rs
κ(t) µ(dt) <∞.

and the set {t ∈ Rs | κ(t) ≤ lψ(t)} is compact for any l ∈ N.

The following result provides examples for sets that are relatively compact for the ψ−weak

topology:
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2. Weak continuity of risk functionals

Lemma 2.69. Let ψ : Rs → [0,∞) be a coercive gauge function, i.e. ψ(t)→∞ whenever

‖t‖ → ∞. Then for any constants K ≥ 0 and q > 1, the set

Uψs (K, q) := {µ ∈ P(Rs) |
∫
Rs
ψ(t)q µ(dt) ≤ K}

is relatively compact for the ψ−weak topology.

Proof. Fix an arbitrary constant ε > 0 and set r := (Kε )
1
q−1 . By the coercivity of ψ, there

exists a finite constant R ≥ 0 such that ψ(t) ≥ r whenever ‖t‖ ≥ R. Let BR(0) denote

the closed ‖ · ‖−ball of radius R centered at 0. For any µ ∈ Uψs (K, q), it holds that∫
Rs\BR(0)

ψ(t)q µ(dt) =

∫
Rs\BR(0)

ψ(t)q−1ψ(t) µ(dt) ≥ rq−1

∫
Rs\BR(0)

ψ(t) µ(dt)

and hence ∫
Rs\BR(0)

ψ(t) µ(dt) ≤ 1

rq−1

∫
Rs\BR(0)

ψ(t)q µ(dt) ≤ K

rq−1
= ε.

Since BR(0) is compact, the equivalence of (a) and (b) in Theorem 2.68 yields that

Uψs (K, q) is relatively compact for the ψ−weak topology.

Remark 2.70. Subsets of Borel probability measures having uniformly bounded moments

of order q′ > 1 are known to be useful in the context of stability analysis in stochastic

programming (see e.g. [153], [196], [198], [200], [201]). Fix any constant 0 < q < q′.

By Lemma 2.69, those sets are relatively compact for the ‖ · ‖q−weak topology and hence

locally uniformly ‖ · ‖q−integrating by Theorem 2.68.

Remark 2.71. In general, the statement of Lemma 2.69 does not hold if ψ is not coercive:

Consider the constant gauge function ψ1 : R → R given by ψ1 ≡ 1 and fix any constants

K, q > 1. Then the ψ1−weak topology coincides with the topology of weak convergence

and Uψ1
1 (K, q) is equal to P(R). Consequently, Uψ1

1 (K, q) is not relatively compact for the

ψ1−weak topology.

Remark 2.72. The statement of Lemma 2.69 does not hold if q ≤ 1. In general, sets of the

form Uψs (K, 1) are not locally uniformly ψ−integrating and hence not relatively compact

for the ψ−weak topology, even if ψ is coercive: Consider the sequence {µl}l∈N ⊆M1
1 given

by µl := (1 − 1
l )δ0 + 1

l δl. Then {µl}l∈N ⊆ U
|·|
1 (1, 1) holds by the calculation in Example

2.64. Furthermore, the sequence is weakly convergent but not | · |−weakly convergent.

Consequently, U
|·|
1 (1, 1) is not locally uniformly | · |−integrating by Lemma 2.66.
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2. Weak continuity of risk functionals

The fixed space version of the Skorohod representation theorem (Theorem 2.46) states that

weak convergence of probability measures can be translated to almost sure convergence of

random vectors on a fixed atomless probability space. Using Lemma 2.61, a similar result

can be proven for ψ−weak converging sequences. While it is possible to formulate such

a result whenever the gauge function is a finite Young function (see [141, Theorem 3.5]

for details on the general result in a setting involving Orlicz spaces), only the case where

ψ = | · |p with p ≥ 1 is needed in section 2.5:

Theorem 2.73 (A Skorohod representation for | · |p−weak convergence).

Fix an atomless probability space (Ω,F ,P) and a constant p ≥ 1. For any sequence

{µl}l∈N ⊆ Mp
1, µl

|·|p→ µ1 holds iff there exists a sequence {Yl}l∈N ⊆ Lp(Ω,F ,P) such

that for any l ∈ N, µl is the law of Yl and

lim
l→∞
‖Yl − Y1‖p = 0, (2.14)

where ‖ · ‖p denotes the Lp−norm.

Proof. (⇒): By the equivalence of (a) and (b) in Lemma 2.61, µl
|·|p→ µ1 implies µl

w→ µ1.

Hence, the fixed space version of the classical Skorohod representation theorem (Theorem

2.46) yields the existence of a sequence of random variables {Yl}l∈N ⊆ L0(Ω,F ,P) such

that for any l ∈ N, µl is the law of Yl and Yl → Y1 P−almost surely. By the change-of-

variable formula (Theorem A.1),

‖Yl‖pp =

∫
Ω
|Yl(ω)|p P(dω) =

∫
R
|t|p (P ◦ Y −1

l )(dt) =

∫
R
|t|p µl(dt) (2.15)

holds for any l ∈ N. Since µl ∈ Mp
1, the last integral in (2.15) is finite. Consequently,

{Yl}l∈N ⊆ Lp(Ω,F ,P). Again by Lemma 2.61,

lim
l→∞
‖Yl‖pp = lim

l→∞

∫
R
|t|p µl(dt) =

∫
R
|t|p µ1(dt) = ‖Y1‖pp

and hence liml→∞ ‖Yl‖p = ‖Y1‖p. Thus, (2.14) holds by the equivalence of (a) and (b) in

Vitali’s theorem (Theorem A.2), since P−almost sure convergence implies convergence in

probability.

(⇐): By Vitali’s theorem, (2.14) implies that the sequence {Yl}l∈N converges to Y1 in

probability. In particular, it convergences in distribution by [48, Theorem 25.2] and since

µl is the law of Yl for any l ∈ N, the latter yields µl
w→ µ1 by Lemma 2.43. Furthermore,
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2. Weak continuity of risk functionals

from the equivalence of (a) and (b) in Vitali’s theorem it follows that

lim
l→∞

∫
R
|t|p µl(dt) = lim

l→∞
‖Yl‖pp = ‖Y1‖pp =

∫
R
|t|p µ1(dt).

Hence, µl
|·|p→ µ1 holds by the equivalence (a) and (b) in Lemma 2.61.

2.5. Proving weak continuity

Let τRn ⊗ τ‖·‖γp denote the product topology of the standard topology on Rn and the

‖ · ‖γp-weak topology on Mγp
s . The main result in this section is the continuity of Q with

respect to τRn ⊗ τ‖·‖γp under assumptions [Af ], [Aρ] and a condition originating from the

continuous mapping theorem. The proof proceeds in two steps:

1. Prove that the mapping θ : Rn ×Mγp
s →Mp

1 given by

θ(x, µ) := (δx ⊗ µ) ◦ f−1 (2.16)

is continuous with respect to τRn ⊗ τ‖·‖γp and τ|·|p (Lemma 2.74).

2. Prove that the mapping Rρ :Mp
1 → R defined in (2.3) is continuous with respect to

τ|·|p (Lemma 2.81).

The continuity of Q with respect to τRn⊗τ‖·‖γp is then implied by the fact that Q = Rρ◦θ.
Consequently, any restriction of Q to an appropriate subset is continuous with respect to

τRn ⊗ τ sw by Lemma 2.66. The special case where the entering measure is absolutely

continuous with respect to the Lebesgue measure is addressed in Corollary 2.86.

Lemma 2.74. Assume [Af ] and fix a constant p ≥ 1. Let (x, µ) ∈ Rn ×Mγp
s be such

that (δx ⊗ µ)[Df ] = 0, where Df ⊆ Rn × Rs denotes the set of discontinuities of f . Then

θ : Rn ×Mγp
s →Mp

1 is continuous at (x, µ) with respect to τRn ⊗ τ‖·‖γp and τ|·|p.

Proof. Consider any sequence {(xl, µl)}l∈N ⊆ Rn × Mγp
s that converges to (x, µ) with

respect to τRn ⊗ τ‖·‖γp .

Then xl → x and hence δxl
w→ δx. Furthermore, µl

‖·‖γp→ µ implies µl
w→ µ by the

equivalence of (a) and (b) in Lemma 2.61. Since all involved spaces are separable,

δxl ⊗ µl
w→ δx ⊗ µ
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holds by [49, Theorem 2.8]. f is Borel measurable by [Af ] and (δx ⊗ µ)[Df ] = 0 allows to

apply the continuous mapping theorem (Theorem 2.48):

(δxl ⊗ µl) ◦ f
−1 w→ (δx ⊗ µ) ◦ f−1. (2.17)

Furthermore, the proof of Lemma 2.10 yields

|f(xl, z)|p ≤ η(xl)
p2p(‖z‖pγ + 1)

for any l ∈ N and z ∈ Rs. The constant C := supl∈N η(xl) is finite by the local boundedness

of η. Without loss of generality, assume C > 1 and note that the indicator function

χ(a,∞)(·) is nondecreasing for any a ∈ R. Thus,

sup
l∈N

∫
Rn×Rs

|f(x, z)|p · χ(a,∞)(|f(x, z)|p) (δxl ⊗ µl)(d(x, z))

≤ sup
l∈N

∫
Rn×Rs

η(x)p2p(‖z‖pγ + 1) · χ(a,∞)(η(x)p2p(‖z‖pγ + 1)) (δxl ⊗ µl)(d(x, z))

= sup
l∈N

∫
Rs
η(xl)

p2p(‖z‖pγ + 1) · χ(a,∞)(η(xl)
p2p(‖z‖pγ + 1)) µl(dz)

≤ sup
l∈N

∫
Rs
Cp2p(‖z‖pγ + 1) · χ(a,∞)(C

p2p(‖z‖pγ + 1)) µl(dz)

holds for any a ∈ R by the Fubini-Tonelli theorem (see e.g. [7, Theorem 11.27]). By

Lemma 2.55, µl
‖·‖γp→ µ implies µl

Cp2p(‖·‖γp+1)→ µ and the equivalence of (a) and (d) in

Lemma 2.61 yields

lim
a→∞

sup
l∈N

∫
Rs
Cp2p(‖z‖pγ + 1) · χ(a,∞)(C

p2p(‖z‖pγ + 1)) µl(dz) = 0.

By the change-of-variable formula (Theorem A.1), it holds that

lim
a→∞

sup
l∈N

∫
R
|t|p · χ(a,∞)(|t|p) ((δxl ⊗ µl) ◦ f

−1)(dt)

= lim
a→∞

sup
l∈N

∫
Rn×Rs

|f(x, z)|p · χ(a,∞)(|f(x, z)|p) (δxl ⊗ µl)(d(x, z)) = 0.

Combined with (2.17) the latter implies

θ(xl, µl) = (δxl ⊗ µl) ◦ f
−1 |·|

p

→ (δx ⊗ µ) ◦ f−1 = θ(x, µ),
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i.e. the sequential continuity of θ with respect to τRn ⊗ τ‖·‖γp and τ|·|p . Since the involved

topologies are metrizable by Theorem 2.59, that yields the desired continuity of θ with

respect to τRn ⊗ τ‖·‖γp and τ|·|p .

The continuity of Rρ is proven using a result from the theory of Banach lattices (see

chapter 9 in [7] for an introduction and [155] or [188] for more details). As Banach lattices

are special Riesz spaces, it is convenient to introduce those spaces first:

Definition 2.75. A Riesz space (E,≤E) is a real vector space E endowed with a partial

order ≤E such that the following statements hold true for any x, y, z ∈ E:

(a) x ≤E y implies x+ z ≤E y + z (translation invariance).

(b) x ≤E y implies αx ≤E αy for any nonnegative α ∈ R (positive homogeneity).

(c) The set {x, y} has a greatest lower bound inf≤E{x, y} ∈ E and a least upper bound

sup≤E{x, y} ∈ E with respect to ≤E.

Riesz spaces are named after Frigyes Riesz who first defined them in 1928 (see [171]). The

theory of Riesz spaces (see chapter 8 in [7] for a basic introduction and refer to [152] and

[217] for a detailed discussion) has many applications in economics (see [8]) and measure

theory: For example, the Hahn decomposition theorem (see [48, Theorem 32.1]) and the

Radon-Nikodym theorem (see [48, Theorem 32.2]) arise as special cases of general results

on Riesz spaces.

A Banach lattice is a Riesz space endowed with a complete lattice norm:

Definition 2.76. A Banach lattice (E, ‖ · ‖E ,≤E) is a real Banach space (E, ‖ · ‖E)

endowed with a partial order ≤E such that (E,≤E) is a Riesz space and the following holds

for any x, y ∈ E:

|x|≤E ≤E |y|≤E ⇒ ‖x‖E ≤ ‖y‖E ,

where |z|≤E := sup≤E{sup≤E{0, z}, sup≤E{0,−z}} denotes the absolute value of z ∈ E

with respect to ≤E.

Remark 2.77. The most familiar example of a Banach lattice is obtained by equipping

Rs with the Euclidean norm and the order where (x1, . . . , xs) ≥ (y1, . . . , ys) whenever

xi ≥ yi holds for all i = 1, . . . s. Another example is given by the infinite dimensional

space C0
b (Rs) endowed with the supremum norm as defined in (2.8) and the order where

g ≥ h iff g(t) ≥ h(t) holds for all t ∈ Rs (see section 9.1 in [7]).
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The proof of continuity of Rρ relies heavily on the fact that the underlying Lp−space is a

Banach lattice:

Theorem 2.78 (Riesz-Fischer Theorem, see e.g. Theorem 13.5 in [7]).

For any 1 ≤ p ≤ ∞, Lp(Ω,F ,P) endowed with the Lp−norm and the P−almost sure partial

order is a Banach lattice.

Every convex function g : Rk → R is Lipschitz continuous on all bounded subsets of Rk

(Lemma 3.23) and hence in particular continuous on Rk. This does no longer hold if

Rk is replaced with an infinite dimensional Banach space E, since it is always possible

to construct a linear, discontinuous functional using a Hamel basis of E (see e.g. [121,

Example 4.2]). However, for Banach lattices, continuity results are available and will play

an important role in the proof of Lemma 2.81. The following Theorem is a generalization

of [193, Proposition 3.1]:

Theorem 2.79 ([65, Theorem 4.1]).

Let E be a Banach lattice and % : E → (−∞,∞] a nondecreasing, convex function. Let

dom % := {e ∈ E | %(e) <∞}

denote the domain of %. Then the following statements hold for any e ∈ int(dom %):

(a) There exists a neighborhood of e on which % is Lipschitz continuous with respect to

the norm on E.

(b) % is subdifferentiable at e.

(c) %(e) = %∗∗(e), where %∗∗ denotes the biconjugate of % (see section 11 A in [177]).

The corollary below is an immediate conclusion from Theorem 2.79.

Corollary 2.80. Every finite, nondecreasing, convex functional on a Banach lattice is

continuous.

The above results can be applied to ρ and the Skorohod representation theorem for

| · |p−weak convergence (Theorem 2.73) allows to conclude that Rρ is continuous with

respect to τ|·|p .

Lemma 2.81. Under assumption [Aρ], the mapping Rρ defined in (2.3) is continuous

with respect to the | · |p−weak topology.
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Proof. The space Lp(Ω,F ,P) from assumption [Aρ] endowed with the Lp−norm and the

P−almost sure partial order is a Banach lattice by the Riesz-Fischer Theorem (Theorem

2.78). By [Aρ], ρ is real-valued, convex and nondecreasing with respect to the P−almost

sure partial order. Consequently, Corollary 2.80 yields the continuity of ρ with respect to

the Lp−norm.

Consider any sequence {µl}l∈N ⊆ Mp
1 satisfying µl

|·|p→ µ1. By assumption [Aρ], (Ω,F ,P)

is atomless and p ≥ 1 holds. Hence, the Skorohod representation theorem for | · |p−weak

convergence (Theorem 2.73) yields the existence of a sequence {Yl}l∈N ⊆ Lp(Ω,F ,P) such

that for any l ∈ N, µl is the law of Yl and liml→∞ ‖Yl − Y1‖p = 0.

Since ρ is law-invariant by assumption [Aρ], it holds that {R(µl)}l∈N = {ρ(Yl)}l∈N and

the continuity of ρ with respect to the Lp−norm implies

Rρ(µl) = ρ(Yl)→ ρ(Y1) = Rρ(µ1).

Hence, Rρ is sequentially continuous with respect to τ|·|p . Since τ|·|p is metrizable by

Theorem 2.59, that entails the desired continuity of Rρ with respect to the | · |p−weak

topology.

As stated at the beginning of the present section, the continuity of Q with respect to

τRn ⊗ τ‖·‖γp is an immediate conclusion from Lemma 2.74 and Lemma 2.81.

Theorem 2.82. Assume [Af ] and [Aρ]. Then Q is continuous with respect to τRn ⊗ τ‖·‖γp
at any (x, µ) ∈ Rn ×Mγp

s satisfying (δx ⊗ µ)[Df ] = 0.

Proof. Combine Lemma 2.74 and Lemma 2.81 with the fact that Q = Rρ ◦ θ.

The inalienability of the assumption (δx ⊗ µ)[Df ] = 0 is demonstrated by the following

example:

Example 2.83. Let f : R× R→ R be given by f(x, z) := χ{0}(z) · (x2 + λ), where λ > 0

is a fixed constant. Chose ρ to be the expectation, then Assumptions [Af ] and [Aρ] are

fulfilled for any exponent γ > 0 and p = 1. However, the mapping Q : R ×M1
1 → R,

Q(x, µ) =
∫
R×R f(x′, z) (δx ⊗ µ)(d(x′, z)) is not continuous with respect to τRn ⊗ τ|·|:

Consider the sequence {δ 1
l
}l∈N ⊆ M1

1. For any continuous function h : R → R, it holds

that

lim
l→∞

∫
R
h(t) δ 1

l
(dt) = lim

n→∞
h(

1

l
) = h(0) =

∫
R
h(t) δ0(dt)
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and hence δ 1
l

|·|→ δ0. However, for any x ∈ R, one obtains

lim
l→∞

Q(x, δ 1
l
) = lim

l→∞

∫
R×R

f(x′, z) (δx ⊗ δ 1
l
)(d(x′, z)) = lim

l→∞
χ{0}(

1

l
) · (x2 + λ) = 0,

while Q(x, δ0) = x2 + λ > 0. This is due to the fact that (δx ⊗ δ0)[Df ] = 1 6= 0.

The continuity of Q with respect to τRn ⊗ τ‖·‖γp directly translates to continuity with

respect to τRn ⊗ τ sw whenever Q is restricted to an appropriate subset of Rn ×Mγp
s :

Theorem 2.84. Assume [Af ], [Aρ] and let Q|Rn×M denote the restriction of Q to the

Cartesian product of Rn and some locally uniformly ‖ · ‖γp−integrating set M ⊆ Mγp
s .

Then Q|Rn×M is continuous with respect to the product topology of the standard topology on

Rn and the relative topology of weak convergence on M at any (x, µ) ∈ Rn×M satisfying

(δx ⊗ µ)[Df ] = 0.

Proof. Since M is locally uniformly ‖ · ‖γp−integrating, the relative topologies induced

by τRn ⊗ τ‖·‖γp and τRn ⊗ τ sw on Rn ×M coincide by Lemma 2.66. Hence, Theorem 2.84

follows directly from Theorem 2.82.

The following example shows that the restriction to a locally uniformly ‖ ·‖γp−integrating

set is essential:

Example 2.85. Consider the mapping f : R × R → R given by f(x, z) = x + z and

choose ρ to be the expectation. Then [Af ] holds with exponent γ = 1 and [Aρ] is fulfilled

with p = 1. Consequently, Q : R ×M1
1 → R, Q(x, µ) =

∫
R×R x

′ + z (δx ⊗ µ)(d(x′, z)) is

continuous with respect to τR ⊗ τ|·| by Theorem 2.84 and the fact that Df = ∅.

However, Q is not continuous with respect to τR ⊗ τ1
w: Consider sequence {µl}l∈N ⊆ M1

1

given by µl := (1− 1
l )δ0 + 1

l δl. The calculation in Example 2.64 shows that µl
w→ δ0, while

lim
l→∞

Q(x, µl) = x+ 1 6= x = Q(x, δ0)

holds for any x ∈ R. This is due to the fact that {µl | l ∈ N} ⊂ M1
1 is not locally uniformly

| · |−integrating by Example 2.64 and Lemma 2.66.

If µ is absolutely continuous with respect to the Lebesgue measure, (δx⊗µ)[Df ] = 0 holds

whenever a certain projection of Df has Lebesgue measure zero:
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2. Weak continuity of risk functionals

Corollary 2.86. Assume [Af ], [Aρ] and letM⊆Mγp
s be locally uniformly ‖·‖γp−integrating.

Let (x, µ) ∈ Rn ×M be such that µ is absolutely continuous with respect to the Lebesgue

measure λs and

λs[{z ∈ Rs | (x, z) ∈ Df}] = 0. (2.18)

Then Q|Rn×M is continuous with respect to the product topology of the standard topology

on Rn and the relative topology of weak convergence on M at (x, µ).

Proof. Since µ is absolutely continuous with respect to the Lebesgue measure, (2.18)

implies

(δx ⊗ µ)[Df ] = µ[{z ∈ Rs | (x, z) ∈ Df}] = 0

and Theorem 2.84 is applicable.
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3. Stability of two-stage mean-risk models

In this chapter, the results of section 2.5 are applied to derive weak continuity of functionals

arising from two-stage mean-risk models. Here, the function f is given by the optimal value

function of the recourse problem and the verification of assumption [Af ] becomes a major

issue. Furthermore, situations in which an explicit description of a suitable superset of the

set of discontinuities of f is available are of special interest in view of Theorem 2.84. By a

classical result from parametric optimization, continuity of the objective function allows for

immediate conclusions about the stability of the mean-risk problem under perturbations

of the underlying probability measure.

After introducing a general framework for two-stage mean-risk models in section 3.1,

some preliminaries including the mentioned classical stability result by Claude Berge are

provided in section 3.2. Sections 3.3 to 3.6 then examine classes of recourse problems

for which the assumptions of Theorem 2.84 are fulfilled: Section 3.3 is devoted to linear

recourse problems, while the mixed-integer linear case is considered in section 3.4. A class

of mixed-integer quadratic recourse problems with linear constraints is examined in section

3.5. Finally, the results of section 3.6 apply to the comprehensive class of mixed-integer

recourse models where the continuous relaxation admits a convex description.

Parts of this chapter have also been submitted for publication (see [69] for a preprint).

3.1. Two-stage mean-risk models

Two-stage stochastic programming problems arise from parametric optimization problems

under stochastic data uncertainty and an information constraint. The latter dictates which

decisions have to be taken without knowledge of the realization of the randomness. In the

following analysis, parametric problems of the form

P (z) min
x,y
{c(x, z) + q(x, y, z) | x ∈ X, y ∈ C(x, z)}

shall be considered. Here, X ⊆ Rn is a fixed nonempty set, the objective is the sum of

the functions c : Rn × Rs → R and q : Rn × Rm × Rs → R and both the objective and
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3. Stability of two-stage mean-risk models

the feasible set described by the set-valued mapping C : Rn × Rs → 2R
m

depend on the

parameter z ∈ Rs.

Let Z : Ω′ → Rs be a known random vector on some probability space (Ω′,F ′,P′) and

consider the problem P (Z(ω)). Depending on the which interplay between decision and

observation is assumed, three settings are possible:

(a) Z(ω) can be observed before deciding on x and y. In this case, P (Z(ω)) boils down

to a deterministic problem.

(b) If both x and y have to be chosen without knowledge of Z(ω), the resulting problem

is a one-stage stochastic optimization problem.

(c) Z(ω) can only be observed after making the decision on x. The variable y can

then be chosen under complete information and the resulting problem is a two-stage

stochastic optimization problem.

In (b) and (c), the stochasticity is usually assumed to be purely exogenous. The latter

means that the distribution of Z does not depend on the choice of x and y. Note that

(b) arises as a special case of (c), where the decision on y does not influence the outcome.

Furthermore, the case where Z(ω) can only be observed after making the decision on y

and x is chosen under complete information can be neglected due to the symmetry of P (Z)

in x and y.

In the following, setting (c) and purely exogenous stochasticity will be assumed. After

deciding on x and observing Z(ω), the optimal decision y can be obtained by solving the

so called recourse problem

min
y
{q(x, y, Z(ω)) | y ∈ C(x, Z(ω))}. (3.1)

Since both x and Z(ω) are assumed to be known, (3.1) is a deterministic problem. This

consideration allows to formulate the two-stage stochastic programming problem as

min
x
{c(x, Z(ω)) + min

y
{q(x, y, Z(ω)) | y ∈ C(x, Z(ω))} | x ∈ X}. (3.2)

Note that problem (3.2) is not well defined in view of setting (c). Possibilities of resolving

this issue include robust approaches and models based on probabilistic constraints or

stochastic dominance relations. However, the focus of the present analysis is on mean-risk
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3. Stability of two-stage mean-risk models

models: Consider the mapping f : Rn × Rs → R̄ := [−∞,∞] defined by

f(x, z) := c(x, z) + inf
y
{q(x, y, z) | y ∈ C(x, z)}. (3.3)

Under assumptions which guarantee finiteness and measurability, f induces a mapping

f(·) : Rn → L0(Ω′,F ′,P′) via fx(ω) := f(x, Z(ω)). The decision on x can now be taken

based on some ranking of the random variables in the family fX := {fx | x ∈ X}.
Assuming that fX ⊆ L1(Ω′,F ′,P′), applying the expectation yields the well defined, risk

neutral model

min
x
{
∫

Ω′
f(x, Z(ω)) P′(dω) | x ∈ X}. (3.4)

Mean-risk models allow to take into account risk aversion by adding some quantification

of risk to the objective. Note that these models depend on the underlying random vector

Z. In practice, only an approximation of Z may be available, which has motivated the

investigation of the behavior of mean-risk models under perturbations of Z. If the quan-

tification of risk is law-invariant, one might equivalently work with the Borel probability

measure P′ ◦ Z−1 induced by Z. For qualitative stability analysis, one typically considers

perturbations of this measure with respect to the topology of weak convergence. The

following example demonstrates that in such a setting, even problem (3.4) may be highly

unstable:

Example 3.1. Fix any parameter λ > 0 and consider the one-stage setting where X = R,

c : R × R → R is given by c(x, z) = χ{0}(z) · (x2 + λ), q ≡ 0 and C ≡ R. Let the true

random vector Z induce the measure P′ ◦ Z−1 = δ0, so that problem (3.4) takes the form

min
x∈R

∫
R
f(x, z) δ0(dz) = min

x∈R
χ{0}(0) · (x2 + λ) = min

x∈R
x2 + λ.

The unique optimal solution is given by x = 0 and yields the value λ. By Example 2.83, it

holds that δ 1
l

|·|→ δ0 and hence δ 1
l

w→ δ0 as l →∞. However, for any l ∈ N, approximating

δ0 by δ 1
l

results in the problem

min
x∈R

∫
R
f(x, z) δ 1

l
(dz) = min

x∈R
χ{0}(

1

l
) · (x2 + λ) = min

x∈R
0. (3.5)

Every x ∈ R is an optimal solution of (3.5) and yields the value 0 < λ. This instability

results from the fact that (δx ⊗ δ0)[Df ] = 1 6= 0 for any x ∈ R.

Such instabilities may even occur if f is smooth:

Example 3.2. Consider the one-stage setting where X = [0, 1], c : R × R → R is given
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3. Stability of two-stage mean-risk models

by c(x, z) = x+ z, q ≡ 0, C ≡ R and P′ ◦ Z−1 = δ0. Problem (3.4) takes the form

min
x∈[0,1]

∫
R
f(x, z) δ0(dz) = min

x∈[0,1]
x

and yields the optimal value 0. By Example 2.64, (1 − 1
l )δ0 + 1

l δl
w→ δ0 as l → ∞.

However, the calculation in Example 2.85 shows that for any l ∈ N, approximating δ0 by

(1− 1
l )δ0 + 1

l δl results in the problem

min
x∈[0,1]

∫
R
f(x, z) ((1− 1

l
)δ0 +

1

l
δl)(dz) = min

x∈[0,1]
x+ 1,

which has the optimal value 1. Hence, the optimal value function of (3.4) can be discontin-

uous with respect to the topology of weak convergence even if f has continuous derivatives

of all orders.

In the following, the focus will be on situations where assumption [Af ] holds for the

function f defined in (3.3) and the risk is quantified by a mapping ρ satisfying assumption

[Aρ]. Note that the expectation fits into this framework by Example 2.25. Furthermore,

Remark 2.19 allows to confine the analysis to a single mapping instead of a weighted sum.

The models to be analyzed may be represented as

min
x
{Q(x, µ) | x ∈ X}, (3.6)

where µ = P′ ◦ Z−1 ∈ P(Rs) and the objective function

Q(x, µ) = Rρ((δx ⊗ µ) ◦ f−1)

is exactly as in (2.4). Hence, Theorem 2.84 can be applied to derive continuity of a

restriction of Q with respect to the product topology of the standard topology on Rn and

the relative topology of weak convergence on a suitable subset M of P(Rs). The latter

allows to draw conclusions about the optimal value function ϕ :M→ R̄,

ϕ(µ) := inf
x
{Q(x, µ) | x ∈ X} (3.7)

and the optimal solution set mapping Φ :M→ 2X ,

Φ(µ) := {x ∈ X | Q(x, µ) = ϕ(µ)} (3.8)

of problem (3.6). The subsequent sections identify classes of parametric problems P (z)
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3. Stability of two-stage mean-risk models

for which the mapping f induced via (3.3) automatically fulfills assumption [Af ]. This is

done by imposing verifiable assumptions on the data, i.e. the mappings c, q and C.

3.2. Preliminaries

The following assumption allows to confine the analysis to the optimal value function of

the recourse problem, which may be represented as f − c:

Assumption 3.3 ([Ac] : Assumptions on c).

c is continuous and such that there exist a constant γc ≥ 0 and a locally bounded mapping

ηc : Rn → R satisfying

|c(x, z)| ≤ ηc(x)(‖z‖γc + 1)

for any (x, z) ∈ Rn × Rs.

Remark 3.4. If c is continuous and does not depend on z, assumption [Ac] is fulfilled

with exponent 0.

Lemma 3.5. Assume [Ac] and let [Af ] be fulfilled for f − c with exponent γf−c ≥ 0. Then

[Af ] is fulfilled for f with exponent γ = max{γc, γf−c}. Furthermore, Df = Df−c.

Proof. Under the given assumptions, f is the sum of two Borel measurable functions and

hence Borel measurable. Let ηf−c denote the locally bounded mapping from assumption

[Af ] for f − c. Then

|f(x, z)| ≤ |c(x, z)|+ |(f − c)(x, z)|

≤ ηc(x)(‖z‖γc + 1) + ηf−c(x)(‖z‖γf−c + 1)

≤ (ηc(x) + ηf−c(x))(‖z‖max{γc,γf−c} + 1)

holds for any (x, z) ∈ Rn×Rs. Since the mapping η(x) = ηc(x)+ηf−c(x) is locally bounded,

the latter means that assumption [Af ] is fulfilled for f with exponent γ = max{γc, γf−c}.
Finally, Df = Df−c is a direct conclusion from the continuity of c.

Properties of set-valued mappings can be expressed using the notion of hemicontinuity:

Definition 3.6. Let S and T be topological spaces. A mapping Υ : T → 2S is called

upper hemicontinuous at some t0 ∈ T iff for any open set O ⊆ S satisfying Υ(t0) ⊆ O,

there exists a neighborhood N of t0 such that Υ(t) ⊆ O for any t ∈ N . Υ is called lower

hemicontinuous at t0 iff for any open set O ⊆ S satisfying Υ(t0) ∩ O 6= ∅, there exists

a neighborhood N of t0 such that Υ(t) ∩ O 6= ∅ for any t ∈ N .

39



3. Stability of two-stage mean-risk models

The following classical result by Claude Berge will in particular be applied to derive

qualitative stability of problem (3.6) from the continuity of Q:

Theorem 3.7 ([41, Theorem 2]).

Let S, T be metric spaces, Υ : T → 2S compact-valued and υ : S × T → R continuous

with respect to the first argument. Assume that for any s ∈ S, υ(s, ·) is continuous and

that Υ is upper hemicontinuous at some t0 ∈ T . Then the mapping υ∗ : T → R̄ given

by υ∗(t) = infs{υ(s, t) | s ∈ Υ(t)} is lower semicontinuous at t0. If, in addition, Υ is

lower hemicontinuous at t0, υ∗ is continuous and the mapping Υ∗ : T → 2S defined by

Υ∗(t) = {s ∈ Υ(t) | υ(s, t) = υ∗(t)} is upper hemicontinuous at t0. Furthermore, Υ∗(t0)

is nonempty and compact.

Refer to section 4.2 in [20] or the recent work [154] for various generalizations of the above

result. It is well known that the statement of the Theorem 3.7 does not hold in general if

Υ is not compact valued (see e.g. [151] for a counterexample and [102] for an extension

of Theorem 3.7 based on a so-called inf-compactness condition). However, the following

lemma is still applicable if the feasible set is fixed (see e.g. section 4.1 in [55] for a proof):

Lemma 3.8. Let S, T be metric spaces, υ : S×T → R a function and Υ0 ⊆ S a fixed set.

Assume that for any s ∈ S, υ(s, ·) is upper semicontinuous at t0 ∈ T . Then the mapping

υ∗ : T → R̄, υ∗(t) = infs{υ(s, t) | s ∈ Υ0} is upper semicontinuous at t0.

3.3. Linear recourse

This section examines the case where the recourse is given by a linear problem in y. Let

(3.1) take the form

min
y
{q̄(x, Z(ω))>y | Ay = h(x, Z(ω)), y ≥ 0}, (3.9)

where A ∈ Rk×m is a matrix and q̄ : Rn ×Rs → Rm and h : Rn ×Rs → Rk are mappings.

The following classical result from parametric optimization is a conclusion from the basis

decomposition theorem in [209] and will be instrumental in the analysis of (3.9):

Theorem 3.9. Let A ∈ Rk×m have full rank. Then the mapping ϕlin : Rm × Rk → R̄
defined by

ϕlin(t1, t2) = inf
y
{t>1 y | Ay = t2, y ≥ 0}

is finite and continuous on the polyhedral cone D(A)× pos(A), where

D(A) := {t1 ∈ Rm | {u ∈ Rk | A>u ≤ t1} 6= ∅}
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3. Stability of two-stage mean-risk models

and pos(A) := {Ay | y ∈ Rm, y ≥ 0}. Moreover, there exist matrices B1, . . . , BN ∈ Rk×m

and polyhedral cones K1, . . . ,KN ⊆ Rm × Rk such that

N⋃
j=1

Kj = D(A)× pos(A), int Ki ∩ int Kj = ∅ whenever i 6= j

and

ϕlin(t1, t2) = t>2 Bjt1 ∀(t1, t2) ∈ Kj .

Furthermore, for any (t1, t2) ∈ D(A)×pos(A), ϕlin(t1, ·) is convex on pos(A) and ϕlin(·, t2)

is concave on D(A).

Theorem 3.9 motivates the following assumption:

Assumption 3.10 ([ALP ] : Assumptions for linear recourse).

A has full rank, q̄ and h are continuous and for any (x, z) ∈ Rn × Rs, it holds that

q̄(x, z) ∈ D(A) and h(x, z) ∈ pos(A). Furthermore, there exist constants γh, γq̄ ≥ 0 and

locally bounded mappings ηh, ηq̄ : Rn → R such that

‖h(x, z)‖ ≤ ηh(x)(‖z‖γh + 1) and ‖q̄(x, z)‖ ≤ ηq̄(x)(‖z‖γq̄ + 1)

hold for any (x, z) ∈ Rn × Rs.

Remark 3.11. q̄(x, z) ∈ D(A) holds in particular if q̄(x, z) ≥ 0.

The first part of [ALP ] is a standard assumption in linear two-stage stochastic programming

(see e.g. [181], [184]). The next theorem examines the stability of problem (3.6) with linear

recourse:

Theorem 3.12. Assume that [Ac], [Aρ] and [ALP ] are fulfilled and let f : Rn × Rs → R̄
be given by

f(x, z) = c(x, z) + inf
y
{q̄(x, z)>y | Ay = h(x, z), y ≥ 0}.

Set γ := max{γc, γq̄+γh} and letM⊆Mγp
s be locally uniformly ‖ ·‖γp−integrating. Then

the optimal value function ϕ defined in (3.7) is upper semicontinuous with respect to the

relative topology of weak convergence on M. If X is compact, ϕ is continuous and the

optimal solution set mapping Φ : M → 2X \ {∅} defined in (3.8) is compact-valued and

upper hemicontinuous with respect to the relative topology of weak convergence on M.

Proof. By assumptions [Ac], [ALP ] and Theorem 3.9,

f(x, z) = c(x, z) + ϕlin(q̄(x, z), h(x, z))
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is a composition of real-valued, continuous functions. Consequently, f is real-valued and

continuous on Rn × Rs, i.e. Df = ∅. In particular, f is Borel measurable.

Set κB := maxj=1,...,N ‖Bj‖L(Rm,Rk) <∞, where B1, . . . , BN are the matrices from Theo-

rem 3.9 and ‖ · ‖L(Rm,Rk) denotes the operator norm. Fix any (x, z) ∈ Rn ×Rk. By [ALP ]

there exists an index j ∈ {1, . . . , N} such that (q̄(x, z), h(x, z)) ∈ Kj ⊆ D(A) × pos(A).

Consequently,

|(f − c)(x, z)| = |h(x, z)>Bj q̄(x, z)| ≤ κB‖h(x, z)‖‖q̄(x, z)‖

≤ κBηh(x)ηq̄(x)(‖z‖γh + 1)(‖z‖γq̄ + 1)

≤ 3κBηh(x)ηq̄(x)(‖z‖γh+γq̄ + 1).

Since ηf−c(x) := 3κBηh(x)ηq̄(x) is locally bounded, assumption [Af ] is fulfilled for f with

exponent γ by Lemma 3.5. Hence, Theorem 2.84 is applicable and yields the continuity

of Q|Rn×M with respect to the relative topology induced by τRn ⊗ τ sw.

Since the feasible set X is fixed, the continuity of the objective immediately entails the

upper semicontinuity of ϕ by Lemma 3.8. The stronger statements for compact X follow

directly from Theorem 3.7.

3.4. Mixed-integer linear recourse

In this section, mean-risk models with mixed-integer linear recourse are considered, i.e. C

and f take the form

C(x, z) = {(y1, y2) ∈ Rm1 × Zm2 | A1y1 +A2y2 = h(x, z), y1, y2 ≥ 0} (3.10)

and

f(x, z) = c(x, z) + inf
y1,y2

{q>1 y1 + q>2 y2 | (y1, y2) ∈ C(x, z)}, (3.11)

where q1 ∈ Rm1 , q2 ∈ Rm2 , A1 ∈ Rk×m1 , A2 ∈ Rk×m2 and the mappings c : Rn × Rs → R
and h : Rn × Rs → Rk are fixed. Note that only the right-hand side of the constraint

system depends on (x, z), while the objective function of the recourse problem is fixed.

In the context of two-stage stochastic programming, similar recourse problems have been

studied e.g. in [153], [195], [200] and [201]. As in the linear case, a classical result from

parametric optimization (see [22], [53]) can be applied to analyze f :
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Theorem 3.13. Let A1, A2 have rational entries and assume that

pos(A1) + {A2y2 | y2 ∈ Zm2 , y2 ≥ 0} = Rk (3.12)

and

{u ∈ Rk | A>1 u ≤ q1, A
>
2 u ≤ q2} 6= ∅. (3.13)

Then the mapping ϕMILP : Rk → R̄ defined by

ϕMILP (t) := inf
y1,y2

{q>1 y1 + q>2 y2 | A1y1 +A2y2 = t, y1, y2 ≥ 0, y2 ∈ Zm2}

has the following properties:

(a) ϕMILP is real-valued and lower semicontinuous on Rk.

(b) There exists a countable partition Rk =
⋃∞
j=1 Tj such that for any j ∈ N, the re-

striction of ϕMILP to Tj is piecewise linear and Lipschitz continuous with a uniform

constant not depending on j. The restriction ϕMILP |Tj admits a representation as

ϕMILP |Tj (t) = min
y2

{q>2 y2 + max
i=1,...,M

u>i (t−A2y2) | y2 ∈ Y2(t)},

where Y2(t) = {y2 ∈ Zm2 | t ∈ pos(A1) + A2y2, y2 ≥ 0} and u1, . . . , uM are the

vertices of the polyhedron {u ∈ Rk | A>1 u ≤ q1}. Moreover, for any j ∈ N, there

exist tj,1, . . . , tj,N ∈ Rk satisfying

Tj = ({tj,1}+ pos(A1)) \
N⋃
i=2

({tj,i}+ pos(A1))

and N does not depend on j.

(c) There exist constants α, β > 0 such that

|ϕMILP (t1)− ϕMILP (t2)| ≤ α‖t1 − t2‖+ β

holds for any t1, t2 ∈ Rk.

Remark 3.14. (3.12) is referred to as complete mixed-integer recourse, while (3.13) is

called sufficiently expensive recourse.

Because of the above theorem, (3.12) and (3.13) are often assumed when dealing with

mixed-integer linear recourse problems in two-stage stochastic programming (see e.g. [153],
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[200], [201]). In view of (3.10) an additional assumption concerning h is needed:

Assumption 3.15 ([AMILP ] : Assumptions for mixed-integer linear recourse).

A1, A2 have rational entries and are such that (3.12) and (3.13) are fulfilled. Furthermore,

h is continuous and there exist a locally bounded mapping ηh : Rn → R and a constant

γh > 0 such that

‖h(x, z)‖ ≤ ηh(x)(‖z‖γh + 1)

holds for any (x, z) ∈ Rn × Rs.

Theorem 3.16. Let f be given by (3.11) and assume that [Ac], [Aρ] and [AMILP ] are

fulfilled. Set γ := max{γc, γh}, let M⊆Mγp
s be locally uniformly ‖ · ‖γp−integrating and

µ0 ∈ M such that (δx ⊗ µ0)[Df−c] = 0 holds for any x ∈ X. Then ϕ :M→ R̄ defined in

(3.7) is upper semicontinuous at µ0 with respect to the relative topology of weak convergence

on M. If X is compact, ϕ is continuous at µ0 and Φ :M→ 2X defined in (3.8) is upper

hemicontinuous at µ0 with respect to the relative topology of weak convergence on M. In

this case, Φ(µ0) is nonempty and compact.

Proof. By assumption [AMILP ] and part (a) of Theorem 3.13,

(f − c)(x, z) = ϕMILP (h(x, z))

is real-valued and the composition of a continuous and an upper semicontinuous function.

Consequently, f is real-valued and upper semicontinuous on Rn × Rs by assumption [Ac]
and hence Borel measurable. Let α and β denote the constants from part (c) of Theorem

3.13 and set β̄ := α‖h(0, 0)‖+ β + |ϕMILP (h(0, 0))|. Then

|(f − c)(x, z)| ≤ |ϕMILP (h(x, z))− ϕMILP (h(0, 0))|+ |ϕMILP (h(0, 0))|

≤ α‖h(x, z)− h(0, 0)‖+ β + |ϕMILP (h(0, 0))|

≤ α‖h(x, z)‖+ β̄ ≤ (αηh(x) + β̄)(‖z‖γh + 1)

holds for any (x, z) ∈ Rn×Rs. Since ηf−c(x) := αηh(x)+ β̄ is locally bounded, assumption

[Af ] is fulfilled for f with exponent γ by Lemma 3.5. Hence, Theorem 2.84 is applicable

and yields the continuity of Q|X×M at any (x, µ) ∈ X ×M satisfying (δx ⊗ µ)[Df−c] = 0

with respect to the relative topology induced by τRn ⊗ τ sw on X ×M. Since the feasible

set X is fixed, the stated stability is a direct conclusion from Lemma 3.8 and Theorem

3.7.

The following result points out a special case in which (δx ⊗ µ)[Df−c] = 0 holds for all
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x ∈ X:

Proposition 3.17. Let f be given by (3.11) and assume [AMILP ]. In addition, assume

that µ is absolutely continuous with respect to the Lebesgue measure, k = s and that for

any x ∈ X, the mapping hx : Rs → Rs defined by hx(z) = h(x, z) is a C1−diffeomorphism.

Then (δx ⊗ µ)[Df−c] = 0 holds for any x ∈ X.

Proof. Part (b) of Theorem 3.13 implies that ϕMILP is continuous outside of⋃
y2∈Zm2 , y2≥0

[{A2y2}+ ∂(pos(A1))]. (3.14)

Since the set in (3.14) is contained in a countable union of hyperplanes, the Lebesgue

measure of DϕMILP is equal to zero. [AMILP ] implies Df−c ⊆ h−1(DϕMILP ). Fix any

x ∈ X, then

(δx ⊗ µ0)[Df−c] = µ[{z ∈ Rs | (x, z) ∈ Df−c}]

≤ µ[{z ∈ Rs | (x, z) ∈ h−1(DϕMILP )}]

=µ[h−1
x (DϕMILP )].

hx is a C1−diffeomorphism and hence the Lebesgue measure of h−1
x (DϕMILP ) is equal

to zero by [189, Lemma 7.25]. Consequently, (δx ⊗ µ0)[Df−c] = 0, since µ is absolutely

continuous with respect to the Lebesgue measure.

3.5. Mixed-integer quadratic recourse

In this section, recourse problems with quadratic objective, linear constrains and mixed-

integer variables are considered. Consequently, C and f take the form

C(x, z) = {y ∈ Rm1 × Zm2 | Ay ≤ h(x, z)}

and

f(x, z) = c(x, z) + inf
y
{y>Dy + d(x, z)>y | y ∈ C(x, z)}, (3.15)

where m1 +m2 = m, D ∈ Qm×m is a symmetric, positive definite matrix and A ∈ Qk×m.

The linear part of the objective and the right-hand side of the constraint system are given

by mappings d : Rn × Rs → Rm and h : Rn × Rs → Rk, respectively.

Remark 3.18. Stability of two-stage stochastic programs with mixed-integer quadratic
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recourse has been analyzed in [64]. While the authors of the mentioned paper also con-

sider the situation where D is positive semidefinite, they confine their stability analysis to

measures in

PΞ := {µ ∈ P(Rs) | µ[Ξ] = 1}, (3.16)

where Ξ ⊂ Rs is a fixed compact set. Note that for any gauge function ψ : Rs → [0,∞)

and any compact set Ξ ⊂ Rs, PΞ ⊆Mψ
s is relatively compact for the ψ−weak topology by

Theorem 2.68 and hence locally uniformly ψ−integrating by Proposition 2.67.

Furthermore, [64] only examines an objective function that is based on the expectation

(although their model may reflect some kind of risk-aversion, see page 465 in [64] for

details) and assumes d and h to be of a special form (for any fixed z, d is linear in x,

while h does not depend on x). Consequently, the present analysis allows to extend some

results of [64] in various directions.

Several stability results are available for parametric programs with linear constraints (see

e.g. [18], [45], [46], [95], [120], [136], [137], [146], [147], [205] for continuous and [118] for

integer variables and refer to [20] (chapter 5), [21], [63] or [64] for the mixed-integer case).

The following theorem is a combination of [63, Theorem 2.2] and [64, Lemma 2.7, Remark

2.8] and will be used to analyze f :

Theorem 3.19. Assume that C ′(t) := {y ∈ Rm1 × Zm2 | Ay ≤ t} 6= ∅ holds for any

t ∈ Rk. Then the mapping ϕMIQP : Rm × Rk → R̄ defined by

ϕMIQP (u, t) = inf
y
{y>Dy + u>y | y ∈ C ′(t)}

is real-valued and lower semicontinuous on Rm×Rk. Furthermore, there exists a constant

κMIPQ > 0 such that

|ϕMIQP (u, t)−ϕMIQP (u′, t′)| ≤ κMIQP (max{‖(u, t)‖, ‖(u′, t′)‖}(‖u−u′‖+‖t−t′‖+1)+1)

holds for any (u, t), (u′, t′) ∈ Rm × Rk.

The following assumption is motivated by Theorem 3.19:

Assumption 3.20 ([AMIQP ] : Assumptions for mixed-integer quadratic recourse).

C ′(t) 6= ∅ for any t ∈ Rk, the mappings d and h are continuous and there exist constants

γd, γh ≥ 0 and locally bounded mappings ηd, ηh : Rn → R such that

‖d(x, z)‖ ≤ ηd(x)(‖z‖γd + 1) and ‖h(x, z)‖ ≤ ηh(x)(‖z‖γh + 1)
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hold for any (x, z) ∈ Rn × Rs.

Assumption [AMIQP ] admits the following result:

Theorem 3.21. Let f be given by (3.15) and assume that [Ac], [Aρ] and [AMIQP ] are

fulfilled. Set γ := max{γc, 2γh, 2γd}, let M⊆Mγp
s be locally uniformly ‖ · ‖γp−integrating

and µ0 ∈ M such that (δx ⊗ µ0)[Df−c] = 0 holds for any x ∈ X. Then ϕ : M → R̄
defined by (3.7) is upper semicontinuous at µ0 with respect to the relative topology of weak

convergence on M. If X is compact, ϕ is continuous at µ0 and Φ : M → 2X defined in

(3.8) is upper hemicontinuous at µ0 with respect to the relative topology of weak convergence

on M. In this case, Φ(µ0) is nonempty and compact.

Proof. By assumption [AMIQP ] and Theorem 3.19,

(f − c)(x, z) = ϕMIQP (d(x, z), h(x, z))

is real-valued and the composition of two continuous and one lower semicontinuous func-

tion. Consequently, f is real-valued and lower semicontinuous on Rn × Rs by [Ac]. In

particular, f is Borel measurable. Set ϕ0 := |ϕMIQP (d(0, 0), h(0, 0))| + κMIQP and

n0 := ‖(d(0, 0), h(0, 0))‖. For any (x, z) ∈ Rn × Rs, Theorem 3.19 yields

|(f − c)(x, z)| ≤ |ϕMIQP (d(x, z), h(x, z))− ϕMIQP (d(0, 0), h(0, 0))|+ ϕ0 − κMIQP

≤ κMIQP max{‖(d(x, z), h(x, z))‖, n0}(‖d(x, z)‖+ ‖h(x, z)‖+ 2n0 + 1) + ϕ0

≤ κMIQP (‖d(x, z)‖+ ‖h(x, z)‖+ 2n0 + 1)2 + ϕ0

≤ κ′(‖d(x, z)‖2 + ‖h(x, z)‖2 + 1),

where κ′ := 9κMIQP (2n0 + 1)2 + ϕ0. By assumption [AMIQP ], the latter implies

|(f − c)(x, z)| ≤ κ′ηd(x)2(‖z‖γd + 1)2 + κ′ηh(x)2(‖z‖γh + 1)2 + κ′

≤ ηf−c(x)(‖z‖max{2γd,2γh} + 1),

where ηf−c(x) := 8κ′(ηd(x)2 + ηh(x)2 + 1) is locally bounded. Hence, [Af ] is fulfilled for

f with exponent γ by Lemma 3.5 and assumption [Ac]. Consequently, Theorem 2.84,

Lemma 3.8 and Theorem 3.7 are applicable and yield the stated stability.

The following remark points out a case in which the assumption (δx ⊗ µ0)[Df−c] = 0 for

all x ∈ X of Theorem 3.21 is automatically fulfilled:
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Remark 3.22. Assume that [Ac], [Aρ] and [AMIQP ] are fulfilled and that the projection

of C(x, z) to the integer components, i.e. the set

{y2 ∈ Zm2 | ∃y1 ∈ Rm1 : (y1, y2) ∈ C(x, z)},

does not depend on x and z. Then f is continuous on Rn×Rs by [64, Lemma 2.9]. Hence,

Df−c = ∅.

3.6. Mixed-integer recourse problems with convex continuous

relaxation

In this section, a fairly general class of recourse problems is considered: Let C and f be

given by

C(x, z) = {y ∈ Rm1 × Zm2 | g(y) ≤ h(x, z)}

and

f(x, z) = c(x, z) + inf
y
{v(y) | y ∈ C(x, z)}, (3.17)

where m1 +m2 = m, the right-hand side of the constraint system is given by the mapping

h : Rn × Rs → Rk, v : Rm → R is convex and g = (g1, . . . , gk)
> : Rm → Rk is such that

for any i ∈ {1, . . . , k}, gi is convex and has a closed epigraph. The following well known

result about convex functions will be useful in the analysis of f :

Lemma 3.23. Let v̄ : Rm → R be convex. Then for every r > 0, v̄ is Lipschitz continuous

on Br(0) with constant

Lv̄(r) :=
2

r

(
max

y∈{2r,−2r}m
|v̄(y)|+ 2|v̄(0)|

)
. (3.18)

In particular, v̄ is continuous on Rm.

Proof. Combine Lemma A and Theorem A in [173].

Denote by Crel : Rk → 2R
m

the set-valued mapping

Crel(t) := {y ∈ Rm | g(y) ≤ t}.

The following is known about Crel :
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Theorem 3.24 ([19, Corollary 5]).

Assume that Crel(t) 6= ∅ holds for any t ∈ Rk and that Crel(0) is compact. Let t1, . . . , tk

denote the components of t ∈ Rk, then for any r > 0,

K(r) := sup
t∈Br(0), y /∈Crel(t)

inf{‖y − y′‖ | y′ ∈ Crel(t)}
max{gj(y)− tj | j = 1, . . . , k}

is finite and such that

d∞(Crel(t), Crel(t
′)) ≤ K(r)‖t− t′‖ ∀t, t′ ∈ Br(0),

where d∞ denotes the Hausdorff distance.

In view of [Af ], an additional assumption allowing to bound the growth of K(r) is needed:

Assumption 3.25 ([AConv] : Assumptions for mixed-integer convex recourse).

Crel(0) is compact, Crel(t) ∩ (Rm1 × Zm2) 6= ∅ for any t ∈ Rk, h is continuous and there

exist a locally bounded mapping ηh : Rn → R and constants γh, κv, γv, κK , γK > 0 such

that

‖h(x, z)‖ ≤ ηh(x)(‖z‖γh + 1), |v(y)| ≤ κv(‖y‖γv + 1) and K(r) ≤ κK(rγK + 1)

hold for any (x, y, z) ∈ Rn × Rm × Rs and r > 0.

The above assumption admits the following result:

Theorem 3.26. Let f be given by (3.17) and assume that [Ac], [Aρ] and [AConv] are

fulfilled. Set

γ := max{γc, γh(γK + 1)(γv + 1)},

let M ⊆ Mγp
s be locally uniformly ‖ · ‖γp−integrating and assume that µ0 ∈ M is such

that (δx ⊗ µ0)[Df−c] = 0 holds for any x ∈ X. Then ϕ : M → R̄ defined by (3.7) is

upper semicontinuous at µ0 with respect to the relative topology of weak convergence on

M. If X is compact, ϕ is continuous at µ0 and Φ : M → 2X defined in (3.8) is upper

hemicontinuous at µ0 with respect to the relative topology of weak convergence on M. In

this case, Φ(µ0) is nonempty and compact.

Proof. Fix any (x, z) ∈ Rn × Rs. Since g is continuous by Lemma 3.23, Crel(h(x, z))

is closed and the boundedness of Crel(0) and Theorem 3.24 yield that Crel(h(x, z)) is

bounded. Consequently,

C(x, z) = Crel(h(x, z)) ∩ (Rm1 × Zm2)
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is the intersection of a compact and closed set and thus compact. Furthermore, v contin-

uous by Lemma 3.23, which implies that

inf
y
{v(y) | y ∈ C(x, z)}

is finite and the infimum is attained. Hence, f is real-valued and admits the representation

f(x, z) = c(x, z) + miny{v(y) | y ∈ C(x, z)}.

C is upper hemicontinuous: Otherwise, there would exist a point (x0, z0) ∈ Rn × Rs, an

open set O ⊂ Rm and sequences {(xl, zl)}l∈N ⊆ Rn × Rs and {yl}l∈N ⊆ Rm such that

C(x0, z0) ⊂ O, (xl, zl) ∈ B 1
l
(x0, z0), h(xl, zl) ∈ B 1

l
(h(x0, z0)), yl ∈ C(xl, zl) and yl /∈ O

hold for any l ∈ N. By Theorem 3.24,

sup
l∈N

d∞(Crel(h(x0, z0)), Crel(h(xl, zl))) ≤ K(‖h(x0, z0)‖+ 1),

which implies that

∞⋃
l=1

{yl} ⊆
∞⋃
l=1

C(xl, zl) ⊆
∞⋃
l=1

Crel(h(xl, zl)) ⊆ {Crel(h(x0, z0))}+BK(‖h(x0,z0)‖+1)(0)

is bounded. Consequently, yl → ȳ for some ȳ ∈ Rm can be assumed without loss of

generality. yl ∈ C(xl, zl) ⊆ Rm1 × Zm2 holds for any l ∈ N and implies ȳ ∈ Rm1 × Zm2 .

Furthermore, by h(xl, zl)→ h(x0, z0), Theorem 3.24 yields that ȳ ∈ Crel(h(x0, z0)). Thus,

ȳ ∈ Crel(h(x0, z0)) ∩ (Rm1 × Zm2) = C(x0, z0) ⊂ O.

On the other hand, yl /∈ O for any l ∈ N and O is open, which yields the contradiction

ȳ /∈ O. Hence, C is upper hemicontinuous.

Since h and v are continuous, the upper hemicontinuity of C allows to apply Theorem 3.7

to conclude that f − c is lower semicontinuous. By [Ac], the latter implies that f is lower

semicontinuous and hence Borel measurable.

Let (x, z) ∈ Rn×Rs be fixed. Based on the considerations above, there exist y∗ ∈ C(x, z)

and y∗0 ∈ C(0, 0) satisfying f(x, z) = c(x, z) + v(y∗) and f(0, 0) = c(0, 0) + v(y∗0). Since

Crel(h(0, 0)) is compact,

d0 := max{‖y − y′‖ | y, y′ ∈ Crel(h(0, 0))}
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is finite. Theorem 3.24 and assumption [AConv] yield

‖y∗ − y∗0‖ ≤ d∞(Crel(h(x, z)), Crel(h(0, 0))) + d0

≤ K(‖h(x, z)‖+ ‖h(0, 0)‖+ 1)(‖h(x, z)‖+ ‖h(0, 0)‖) + d0

≤ 2κK(‖h(x, z)‖+ ‖h(0, 0)‖+ 1)γK+1 + d0

≤ κ∗(‖h(x, z)‖γK+1 + 1),

where κ∗ := 2γK+2κK(‖h(0, 0)‖+ 1)γK+1 + d0. Let Lv(‖y∗ − y∗0‖+ ‖y∗0‖+ 1) be given by

(3.18). [AConv] implies

Lv(‖y∗ − y∗0‖+ ‖y∗0‖+ 1) ≤ max
y∈{±2(‖y∗−y∗0‖+‖y∗0‖+1)}m

2|v(y)|+ 4|v(0)|

≤ 2κv(2
√
m)γv(‖y∗ − y∗0‖+ ‖y∗0‖+ 1)γv + 2κv + 4|v(0)|

≤ κL(‖y∗ − y∗0‖γv + 1),

where κL := 2κv(4
√
m)γv(‖y∗0‖+ 1)γv + 2κv + 4|v(0)|. Since

‖y∗‖ < ‖y∗ − y∗0‖+ ‖y∗0‖+ 1,

Lemma 3.23 and the above inequalities yield

|(f − c)(x, z)| ≤ |v(y∗)− v(y∗0)|+ |v(y∗0)|

≤ Lv(‖y∗ − y∗0‖+ ‖y∗0‖+ 1)‖y∗ − y∗0‖+ |v(y∗0)|

≤ 2κL‖y∗ − y∗0‖γv+1 + 2κL + |v(y∗0)|

≤ 2κL(κ∗)γv+1(‖h(x, z)‖γK+1 + 1)γv+1 + 2κL + |v(y∗0)|

≤ κ̄(‖h(x, z)‖(γK+1)(γv+1) + 1),

where κ̄ := 2γv+2κL(κ∗)γv+1 + 2κL + |v(y∗0)|. Finally, [AConv] implies

|(f − c)(x, z)| ≤ κ̄ηh(x)(γK+1)(γv+1)(‖z‖γh + 1)(γK+1)(γv+1) + κ̄

≤ ηf−c(x)(‖z‖γh(γK+1)(γv+1) + 1),

where ηf−c(x) := κ̄(2ηh(x))(γK+1)(γv+1) + κ̄ is locally bounded. Consequently, [Af ] is

fulfilled for f with exponent γ by Lemma 3.5 and Theorem 2.84 is applicable. The stated

stability is a direct conclusion from Lemma 3.8 and Theorem 3.7.

If all variables in the recourse problem are continuous, the assumption (δx⊗µ0)[Df−c] = 0
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of Theorem 3.26 holds automatically:

Remark 3.27. Assume that [Ac], [Aρ] and [AConv] are fulfilled and that there are no

integrality constraints in the description of C, i.e. that C(x, z) = Crel(h(x, z)) holds

for any (x, z) ∈ Rn × Rs. Then C is both upper and lower hemicontinuous by Theorem

3.24. Thus, the mapping f given by (3.17) is continuous by Theorem 3.7. Consequently,

Df−c = ∅.
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programming

This chapter applies the results of section 2.5 to derive weak continuity of functionals

arising from stochastic bilevel problems with mean-risk objective functions. In this setting,

the function f is essentially given by the optimal value function of a parametric problem,

where only optimal solutions to the lower level problem are feasible. This results in

weaker analytical properties and poses additional difficulties in view of the verification of

assumption [Af ].

The framework of mean-risk stochastic bilevel programming is introduced in section 4.1,

while section 4.2 is devoted to the case where the lower level problem is quadratic and

uniquely solvable. Finally, section 4.3 examines the situation where the lower level problem

is quadratic and allowed to have more than a single solution. However, in section 4.3 it

is assumed that the randomness does not affect the lower level objective function. In the

vein of chapter 3, sufficient conditions for stability with respect to perturbations of the

underlying measure are discussed.

Parts of this chapter have also been submitted for publication (see [68] for a preprint).

4.1. Mean-risk stochastic bilevel problems

Consider the parametric bilevel optimization problem

” min
x

”{c(x, z) + q(x, y, z) | x ∈ X, y ∈ C(x, z)}, (4.1)

where the leader variable x is to be chosen from a fixed nonempty set X ⊆ Rn and the

upper level objective function is given as the sum of the mappings c : Rn × Rs → R and

q : Rn × Rm × Rs → R. In (4.1), z ∈ Rs is a parameter, while y reflects the follower’s

decision and is an optimal solution to the lower level problem given by the multifunction
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C : Rn × Rs → 2R
m
,

C(x, z) = argminy{y>Dy + d(x, z)>y | Ay ≤ h(x, z)},

which involves matrices A ∈ Rk×m and D ∈ Rm×m and mappings d : Rn × Rs → Rm

and h : Rn × Rs → Rk. Without loss of generality, D is assumed to be symmetric. Note

that the minimum in (4.1) is only taken with respect to x, which reflects the assumption

that the decision on y is made by a different actor (the follower) who is able to observe

x beforehand. Since the quadratic program defining C may have more than one optimal

solution, problem (4.1) is not well defined in general. In bilevel optimization, this issue

is typically resolved by considering either the best (optimistic approach) or the worst

(pessimistic approach) y with respect to the upper level objective function. While the

optimistic approach yields

Popt(z) min
x
{c(x, z) + min

y
{q(x, y, z) | y ∈ C(x, z)}︸ ︷︷ ︸

=:fopt(x,z)

| x ∈ X},

the pessimistic one results in the problem

Ppes(z) min
x
{c(x, z) + max

y
{q(x, y, z) | y ∈ C(x, z)} | x ∈ X}

= min
x
{c(x, z)−min

y
{−q(x, y, z) | y ∈ C(x, z)}︸ ︷︷ ︸

=:fpes(x,z)

| x ∈ X}.

Both Popt(z) and Popt(z) are well defined and still depend on the parameter z. Under

stochastic data uncertainty and an information constraint, these programs give rise to

stochastic bilevel problems: For the following analysis, z is assumed to be the realization

of a known random vector Z(ω) : Ω′ → Rs defined on some probability space (Ω′,F ′,P′).
Depending on which interplay between decision and observation is assumed, three settings

are possible:

(a) Z(ω) can be observed before deciding on x. In this case, Popt(Z(ω)) and Ppes(Z(ω))

boil down to deterministic bilevel problems.

(b) If both the leader and the follower have to make their decisions without knowledge of

Z(ω), the lower level problem turns into a one-stage stochastic program. The follower

has various possibilities of handling the stochastic uncertainty, e.g. via mean-risk

models, chance constraints or models based on stochastic dominance. For any of the
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resulting well defined problems, the set C̄(x) of optimal solutions only depends on

the leader’s decision x. Assuming that the leader is aware of the follower’s model,

Popt(Z(ω)) and Ppes(Z(ω)) turn into one-stage stochastic bilevel problems of the

form

min
x
{c(x, Z(ω))±min

y
{±q(x, y, Z(ω)) | y ∈ C̄(x)} | x ∈ X},

where the objective function is subject to stochastic uncertainty.

(c) The leader has to decide on x without knowledge of Z(ω), while the follower solves

the lower level problem knowing both x and the realization of the parameter Z(ω).

The resulting problems Popt(Z(ω)) and Popt(Z(ω)) bear close structural similarities

to the problems considered in chapter 3 and take the form

min
x
{f(x, Z(ω)) | x ∈ X}, (4.2)

where f : Rn × Rs → R̄ is given by f = fopt or f = fpes, depending on which

approach is considered.

Throughout this chapter, setting (c) and purely exogenous stochasticity shall be assumed.

Note that this interplay between decision and observation is also considered in [9] and

[131].

Remark 4.1. Classical two-stage stochastic problems can be seen as special stochastic

bilevel programs, where the optimistic approach is taken and every feasible point of the

lower level is optimal. On the other hand, (4.2) can be understood as a two-stage problem,

where the recourse is given by an optimization problem over the set of optimal solutions

to the lower level problem.

Since the decision on x has to be made without knowledge of Z(ω), the problem in (4.2)

is not well defined. However, under assumptions [Af ] and [Aρ], it gives rise to the well

defined mean-risk problem

min
x
{Q(x, µ) | x ∈ X}, (4.3)

where µ = P′ ◦ Z−1 ∈ P(Rs) and the objective function

Q(x, µ) = Rρ((δx ⊗ µ) ◦ f−1)

is exactly as in (2.4) (see section 3.1 for details). The following analysis examines the

behavior of (4.3) under perturbations of µ with respect to the topology of weak conver-

gence. Let ϕ be given by (3.7) and denote the optimal value function of problem (4.3)
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with respect to the parameter µ. In the same vein, let the optimal solution set mapping

Φ be given by (3.8).

The subsequent sections focus on identifying sufficient conditions on the data of problem

(4.1), under which assumption [Af ] automatically holds for fopt or fpes. In such situations,

Theorem 2.84 yields continuity of a restriction of Q with respect to the product topology of

the standard topology on Rn and the relative topology of weak convergence on a suitable

subset M of P(Rs). Theorem 3.7 and Lemma 3.8 then allow for immediate conclusions

about ϕ and Φ.

As before, Lemma 3.5 allows to work with f − c instead of f whenever assumption [Ac] is

fulfilled. In addition, the following assumption will be imposed on q:

Assumption 4.2 ([Aq] : Assumptions on q).

q is continuous and there exist a locally bounded mapping ηq : Rn → R and constants

γq,y, γq,z ≥ 0 such that

|q(x, y, z)| ≤ ηq(x)(‖y‖γq,y + 1)(‖z‖γq,z + 1)

holds for any (x, y, z) ∈ Rn × Rm × Rs.

4.2. Quadratic lower level problems with unique solutions

This section examines the case where the lower level problem is always uniquely solvable.

The following result will be helpful:

Theorem 4.3 ([136, Corollary 5.1]).

Let

dom C∗ := {(t1, t2) ∈ Rm × Rk | C∗(t1, t2) 6= ∅}

denote the domain of the set-valued mapping C∗ : Rm × Rk → 2R
m

given by

C∗(t1, t2) := argminy{y>Dy + t>1 y | Ay ≤ t2}.

Assume that C is a convex subset of dom C∗ on which C∗ is single-valued. Then C∗ is

Lipschitzian on C, i.e. there exists a constant L∗ > 0 such that for any (t1, t2), (t′1, t
′
2) ∈ C,

it holds that

‖y − y′‖ ≤ L∗‖(t1, t2)− (t′1, t
′
2)‖,

where {y} = C∗(t1, t2) and {y′} = C∗(t′1, t
′
2).
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Theorem 4.3 motivates the following assumption:

Assumption 4.4 ([AULLS ] : Assumptions for unique lower level solution).

C∗ is single-valued on the convex hull of

{(d(x, z), h(x, z)) | (x, z) ∈ Rn × Rs}.

Furthermore, d and h are continuous and there exist a constant γd,h ≥ 0 and a locally

bounded mapping ηd,h : Rn → R such that

‖(d(x, z), h(x, z))‖ ≤ ηd,h(x)(‖z‖γd,h + 1)

holds for any (x, z) ∈ Rn × Rs.

Remark 4.5. Since assumption [AULLS ] implies fopt = fpes, it is not necessary to distin-

guish between the optimistic and the pessimistic approach.

Remark 4.6. If D is positive definite, the mapping y 7→ y>Dy+ t>1 y is strictly convex by

[177, Theorem 2.14] and infy∈Rm y
>Dy + t>1 y > −∞ for any t1 ∈ Rm. Consequently, C∗

is single-valued on the convex set

Rm × {t2 ∈ Rk | {y ∈ Rm | Ay ≤ t2} 6= ∅}

(see e.g. the theorem in [54]). In this case, the first part of assumption [AULLS ] can

weakened to

{y ∈ Rm | Ay ≤ h(x, z)} 6= ∅

for any (x, z) ∈ Rn × Rs.

Assumption [AULLS ] admits the following result concerning stability of the stochastic

bilevel problem (4.3):

Theorem 4.7. Assume that [Ac], [Aq], [Aρ] and [AULLS ] are fulfilled and let f be given

by f = fopt = fpes. Set γ := max{γc, γd,hγq,y + γq,z} and let M ⊆ Mγp
s be locally

uniformly ‖ · ‖γp−integrating. Then the optimal value function ϕ defined in (3.7) is upper

semicontinuous with respect to the relative topology of weak convergence on M. If X is

compact, ϕ is continuous and the optimal solution set mapping Φ :M→ 2X \ {∅} defined

in (3.8) is compact-valued and upper hemicontinuous with respect to the relative topology

of weak convergence on M.
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Proof. By assumption [AULLS ] and Theorem 4.3, there is a Lipschitz continuous mapping

y∗ : Rm × Rk → Rm satisfying C(x, z) = {y∗(d(x, z), h(x, z))} for any (x, z) ∈ Rn × Rs.
Consequently, by assumptions [Ac] and [Aq],

f(x, z) = c(x, z) + q(x, y∗(d(x, z), h(x, z)), z)

is continuous on Rn × Rs and hence Borel measurable. Fix any (x, z) ∈ Rn × Rs and let

L∗ denote the Lipschitz constant from Theorem 4.3. Assumption [AULLS ] implies

‖y∗(d(x, z), h(x, z))‖ ≤ L∗‖(d(x, z), h(x, z))‖+ L∗‖(d(0, 0), h(0, 0))‖+ ‖y∗(d(0, 0), h(0, 0))‖

≤ L∗ηd,h(x)(‖z‖γd,h + 1) + L∗‖(d(0, 0), h(0, 0))‖+ ‖y∗(d(0, 0), h(0, 0))‖

≤ η∗(x)(‖z‖γd,h + 1),

where η∗(x) := L∗ηd,h+L∗‖(d(0, 0), h(0, 0))‖+‖y∗(d(0, 0), h(0, 0))‖ is locally bounded. In

combination with assumption [Aq], the latter yields

|(f − c)(x, z)| ≤ ηq(x)(‖y∗(d(x, z), h(x, z))‖γq,y + 1)(‖z‖γq,z + 1)

≤ ηq(x)((2η∗(x))γq,y + 1)(‖z‖γd,hγq,y + 1)(‖z‖γq,z + 1)

≤ ηf−c(x)(‖z‖γd,hγq,y+γq,z + 1),

where ηf−c(x) := 3ηq(x)((2η∗(x))γq,y +1) is locally bounded. Consequently, [Af ] is fulfilled

for f with exponent γ by assumption [Ac] and Lemma 3.5. Since Df = ∅, Theorem 2.84

is applicable and the stated stability is a direct conclusion from Lemma 3.8 and Theorem

3.7.

4.3. Quadratic lower level problems with random right-hand side

In this section, the case where the lower level problem may have more than one solution

is considered. However, it is assumed that only the right-hand side of the inequalities

describing the feasible set of the lower level depends on x and z, while the mapping d in

the lower level objective function is constant. Consequently, f takes the form

f(x, z) = c(x, z)±min
y
{±q(x, y, z) | y ∈ argminy′{y′>Dy′ + d>0 y

′ | Ay′ ≤ h(x, z)}}, (4.4)

where d0 ∈ Rm is fixed. The following result will be used to analyze f :
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4. Stability in stochastic bilevel programming

Theorem 4.8 ([138, Theorem 4.2]).

If D positive semidefinite, the set-valued mapping Ĉ : Rk → 2R
m

given by

Ĉ(t) := argminy{y>Dy + d>0 y | Ay ≤ t}

is Lipschitzian on dom Ĉ := {t ∈ Rk | Ĉ(t) 6= ∅}, i.e. there exists a constant L̂ > 0 such

that

d∞(Ĉ(t), Ĉ(t′)) ≤ L̂‖t− t′‖

holds for any t, t′ ∈ dom Ĉ.

Theorem 4.8 motivates the following assumptions. Note that the assumption imposed on

q is more restrictive than [Aq]:

Assumption 4.9 ([ARRHS ] : Assumptions for random right-hand side).

There exist constants γ∗q,y, γ
∗
q,z > 0 and a continuous mapping η∗q : Rn → R such that

|q(x, y, z)− q(x′, y′, z′)| ≤ η∗q (x− x′)(‖y − y′‖γ
∗
q,y + ‖z − z′‖γ∗q,z)

holds for any (x, y, z), (x′, y′, z′) ∈ Rn×Rm×Rs. Furthermore, D is positive semidefinite,

{y ∈ Rm | Ay ≤ h(x, z)} 6= ∅ holds for any (x, z) ∈ Rn × Rs and there exists a vector

t0 ∈ Rk such that

| inf
y
{y>Dy + d>0 y | Ay ≤ t0}| <∞. (4.5)

In addition, h is continuous and there exist a constant γh ≥ 0 and a locally bounded

mapping ηh : Rn → R such that

‖h(x, z)‖ ≤ ηh(x)(‖z‖γh + 1) ∀(x, z) ∈ Rn × Rs.

For the optimistic approach f = fopt, further assume that miny{q(x, y, z) | y ∈ C(x, z)} is

solvable for any (x, z) ∈ Rn × Rs and supy{q(x0, y, z0) | y ∈ C(x0, z0)} is finite for some

(x0, z0) ∈ Rn × Rs.

For the pessimistic approach f = fpes, assume that miny{−q(x, y, z) | y ∈ C(x, z)} is

solvable for any (x, z) ∈ Rn×Rs and supy{−q(x0, y, z0) | y ∈ C(x0, z0)} is finite for some

(x0, z0) ∈ Rn × Rs.

Remark 4.10. By the existence theorem of quadratic programming (see e.g. [54]), (4.5)

yields Ĉ(t0) 6= ∅. The latter implies

dom Ĉ = {t ∈ Rk | {y ∈ Rm | Ay ≤ t} 6= ∅},
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4. Stability in stochastic bilevel programming

i.e. the solvability of the lower level problem whenever its feasible set is nonempty. Further-

more, there exists a finite set E ⊂ Rm such that for any t ∈ dom Ĉ, Ĉ(t) is a polyhedron

having exactly the elements of E as its extreme directions (see [95]).

Remark 4.11. Consider the case where q(x, y, z) = q>0 y for some fixed vector q0 ∈ Rm.

If there exists some t0 ∈ Rk such that maxy{|q>0 y| | y ∈ Ĉ(t0)} is solvable, Remark 4.10

implies q>0 e = 0 for any e ∈ E and hence the solvability of miny{±q>0 y | y ∈ Ĉ(t)} for any

t ∈ Rk.

Remark 4.12. Assumption [ARRHS ] does not exclude the linear case D = 0 ∈ Rm×m,

since only positive semidefiniteness is assumed.

Assumption [ARRHS ] admits the following stability result for the stochastic bilevel problem

(4.3):

Theorem 4.13. Let f be given by (4.4) and assume that [Ac], [Aρ] and [ARRHS ] are

fulfilled. Set γ := max{γc, γhγ∗q,y + γ∗q,z} and let M ⊆ Mγp
s be a locally uniformly

‖·‖γp−integrating set. Then the optimal value function ϕ defined in (3.7) is upper semicon-

tinuous with respect to the relative topology of weak convergence on M. If X is compact,

ϕ is continuous and the optimal solution set mapping Φ :M→ 2X \ {∅} defined in (3.8)

is compact-valued and upper hemicontinuous with respect to the relative topology of weak

convergence on M.

Proof. f − c is continuous: Consider any converging sequence {(xl, zl)}l∈N ⊂ Rn×Rs and

denote its limit by (x̄, z̄) := liml→∞(xl, zl). By assumption [ARRHS ] and Remark 4.10,

there exists a vector ȳ ∈ C(x̄, z̄) satisfying (f − c)(x̄, z̄) = q(x̄, ȳ, z̄). Furthermore, since

{h(x, z) | (x, z) ∈ Rn × Rs} ⊆ dom Ĉ,

Theorem 4.8 yields d∞(C(x̄, z̄), C(xl, zl)) ≤ L̂‖h(x̄, z̄)−h(xl, zl)‖, which, by the continuity

of h, implies the existence of a sequence {yl}l∈N satisfying liml→∞ yl = ȳ and yl ∈ C(xl, zl)

for any l ∈ N. In the optimistic setting, the latter yields (f − c)(xl, zl) ≤ q(xl, yl, zl) for

any l ∈ N and hence

lim sup
l→∞

(f − c)(xl, zl) ≤ lim sup
l→∞

q(xl, yl, zl) = q(x̄, ȳ, z̄) = (f − c)(x̄, z̄),

i.e. the upper semicontinuity of f−c. In the pessimistic setting, a similar argument shows

that f − c is lower semicontinuous.
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Again by assumption [ARRHS ] and Theorem 4.8, there exist sequences {y∗l }l∈N and {ȳl}l∈N
such that y∗l ∈ C(xl, zl), ȳl ∈ C(x̄, z̄), (f − c)(xl, zl) = q(xl, y

∗
l , zl) and

‖y∗l − ȳl‖ ≤ L̂‖h(x̄, z̄)− h(xl, zl)‖

hold for any l ∈ N. Consequently, in the optimistic setting,

(f−c)(x̄, z̄)−(f−c)(xl, zl) ≤ q(x̄, ȳl, z̄)−q(xl, y∗l , zl) ≤ η∗q (x̄−xl)(‖ȳl−y∗l ‖γ
∗
q,y+‖z̄−zl‖γ

∗
q,z)

holds for any l ∈ N, which implies (f − c)(x̄, z̄)− lim inf l→∞(f − c)(xl, zl) ≤ 0 and hence

the lower semicontinuity of f − c. In the pessimistic setting, a similar argument shows

that f − c is upper semicontinuous.

By [Ac] and the considerations above, f is continuous and hence Borel measurable. Fix an

arbitrary vector (x, z) ∈ Rn×Rs and let y ∈ C(x, z) be such that (f − c)(x, z) = q(x, y, z).

By Theorem 4.8, there exists a vector y0 ∈ C(x0, y0) such that

‖y − y0‖ ≤ L̂‖h(x, z)− h(x0, z0)‖

≤ η̂(x)(‖z‖γh + 1),

where η̂(x) := L̂(ηh(x) + ‖h(x0, z0)‖) is locally bounded. By assumption [ARRHS ], the

constant q̌ := maxy′{|q(x0, y
′, z0)| | y′ ∈ C(x0, z0)} is finite. Hence,

|(f − c)(x, z)| ≤ |q(x, y, z)− q(x0, y0, z0)|+ q̌

≤ η∗q (x− x0)(‖y − y0‖γ
∗
q,y + ‖z − z0‖γ

∗
q,z) + q̌

≤ ηf−c(x)(‖z‖γhγ∗q,y+γ∗q,z + 1),

where ηf−c(x) := 2η∗q (x − x0)((2η̂(x))γ
∗
q,y + 2γ

∗
q,z(‖z0‖γ

∗
q,y + 1)) + q̌ is locally bounded.

Consequently, [Af ] is fulfilled for f with exponent γ by assumption [Ac] and Lemma 3.5.

Since Df = ∅, Theorem 2.84 is applicable and the stated stability is a direct conclusion

from Lemma 3.8 and Theorem 3.7.

If the set of optimal solutions to the lower level problem is compact, a weaker assumption

on q is sufficient:

Assumption 4.14 ([AAlt] : Alternative assumptions for random right-hand side).

D is positive semidefinite, {y ∈ Rm | Ay ≤ h(x, z)} 6= ∅ holds for any (x, z) ∈ Rn × Rs
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and there exists a vector t0 ∈ Rk such that Ĉ(t0) is bounded and

| inf
y
{y>Dy + d>0 y | Ay ≤ t0}| <∞.

Furthermore, h is continuous and there exist a constant γh ≥ 0 and a locally bounded

mapping ηh : Rn → R such that

‖h(x, z)‖ ≤ ηh(x)(‖z‖γh + 1) ∀(x, z) ∈ Rn × Rs.

Under assumption [AAlt], the following holds for problem (4.3):

Theorem 4.15. Let f be given by (4.4) and assume that [Ac], [Aq], [Aρ] and [AAlt]
are fulfilled. Set γ := max{γc, γhγq,y + γq,z} and let M ⊆ Mγp

s be locally uniformly

‖ · ‖γp−integrating. Then the optimal value function ϕ defined in (3.7) is upper semicon-

tinuous with respect to the relative topology of weak convergence on M. If X is compact,

ϕ is continuous and the optimal solution set mapping Φ :M→ 2X \ {∅} defined in (3.8)

is compact-valued and upper hemicontinuous with respect to the relative topology of weak

convergence on M.

Proof. Under assumption [AAlt], the mapping C is compact-valued and both upper and

lower hemicontinuous on Rn × Rs by Theorem 4.8 and Remark 4.10. Furthermore, c and

q are continuous by assumptions [Ac] and [Aq]. Consequently,

f(x, z) = c(x, z)±min
y
{±q(x, y, z) | y ∈ C(x, z)}

is continuous by Theorem 3.7 and hence Borel measurable. Set

κ0 := max{‖y′0‖ | y′0 ∈ C(0, 0)} <∞

and fix any (x, z) ∈ Rn ×Rs and let y ∈ C(x, z) be such that f(x, z) = c(x, z) + q(x, y, z).

By Theorem 4.8, there exists a vector y0 ∈ C(0, 0) such that

‖y − y0‖ ≤ η̂(x)(‖z‖γh + 1),
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where η̂(x) := L̂(ηh(x) + ‖h(0, 0)‖) is locally bounded. Thus, by assumption [Aq],

|(f − c)(x, z)| = |q(x, y, z)| ≤ ηq(x)(‖y − y0‖γq,y + κ
γq,y
0 + 1)(‖z‖γq,z + 1)

≤ ηq(x)(κ
γq,y
0 + 1)(η̂(x)γq,y(‖z‖γh + 1)γq,y + 1)(‖z‖γq,z + 1)

≤ 2γq,yηq(x)(κ
γq,y
0 + 1)(2γq,y η̂(x)γq,y + 1)(‖z‖γhγq,y + 1)(‖z‖γq,z + 1)

≤ ηf−c(x)(‖z‖γhγq,y+γq,z + 1)

ηf−c(x) := 3ηq(x)2γq,y(κ
γq,y
0 +1)(2γq,y η̂(x)γq,y +1) is locally bounded. Consequently, [Af ] is

fulfilled for f with exponent γ by assumption [Ac] and Lemma 3.5. Since Df = ∅, Theorem

2.84, Lemma 3.8 and Theorem 3.7 are applicable and yield the stated stability.

63



A. Appendix

In the following, selected results of relevance for the proofs in the present thesis are recalled

for the convenience of the reader.

Theorem A.1 (Change of variable, see e.g. Theorem 16.13 in [48]).

Let (Ω1,F1), (Ω2,F2) be measurable spaces and fix a measure ν on (Ω1,F1). For any

(F1,F2)−measurable mapping T : Ω1 → Ω2, let ν ◦ T−1 denote the image measure of ν

under T , i.e.

(ν ◦ T−1)[B] = ν[T−1(B)] ∀B ∈ F2.

Then ∫
Ω2

g(r) (ν ◦ T−1)(dr) =

∫
Ω1

(g ◦ T )(t) ν(dt)

holds for any nonnegative, (F2,B(R))−measurable function g : Ω2 → R.

Theorem A.2 (Vitali’s theorem, see e.g. Proposition 3.12 in [134]).

Fix a probability space (Ω,F ,P) as well as a constant p ≥ 0 and consider a sequence

{Yn}n∈N ⊆ Lp(Ω,F ,P). If {Yn}n∈N converges in probability to Y1, the following statements

are equivalent:

(a) limn→∞ ‖Yn − Y1‖p = 0.

(b) limn→∞ ‖Yn‖p = ‖Y1‖p.

(c) The random variables |Yn|p, n ∈ N are uniformly integrable.

Conversely, {Yn}n∈N converges in probability to Y1 whenever (a) holds.

64



B. List of symbols

Functions and measures

δx the Dirac measure at x, see e.g. [7, Definition 12.17]

λk the Lebesgue measure on Rk

λkA the restriction of λk to A ⊆ Rk

µ⊗ ν the product probability measure of probability measures µ and ν

Fσ the distribution function induced by σ ∈ P(R) via Fσ(t) = σ[(−∞, t]]
F−1
σ the quantile function associated with σ ∈ P(R), see (2.2)

Rρ see (2.3)

Q see (2.4)

E the expectation, see Example 2.25

Var the variance, see Example 2.26

Cov the covariance, see Example 2.26

ρEEα the expected excess, see Example 2.27

ρEE,qα the expected excess of order q, see Example 2.27

ρSD the semideviation, see Example 2.28

ρPα the excess probability, see Example 2.29

VaRα the value-at-risk, see Example 2.30

CVaRα the conditional value-at-risk, see Example 2.31

‖ · ‖ the Euclidean norm

‖ · ‖∞ the supremum norm, see (2.8)

‖ · ‖∗∞ see (2.9)

‖ · ‖p the Lp−norm

‖ · ‖L(Rm,Rk) the operator norm

gh see (2.7)

π the Prokhorov metric, see Definition 2.35

Λ see 2.38

µYl see (2.10)

Ψ see Remark 2.58

θ see (2.16)

65



B. List of symbols

χA the indicator function of the set A

sup≤E the supremum with respect to ≤E , see Definition 2.75

inf≤E the infimum with respect to ≤E , see Definition 2.75

| · |≤E the absolute value with respect to ≤E , see Definition 2.76

%∗∗ the biconjugate of %, see section 11 A in [177]

dψ see Corollary 2.62

dW,s,q the Wasserstein metric of order q, see Proposition 2.63

dFM,q the Fortet-Mourier metric of order q, see Proposition 2.63

d∞ the Hausdorff distance

ϕ see (3.7)

Φ see (3.8)

Sets and spaces

R̄ = [−∞,∞]

C0
b (Rs) the space of all bounded and continuous functions h : Rs → R

E∗ the dual space of the normed space E

B(Rs) the Borel σ−algebra of Rs, see Definition 2.1

P(Rs) the space of Borel probability measures on Rs, see Definition 2.2

Mψ
s see Definition 2.3

Mp
s = M‖·‖

p

s , the space of Borel probability measures on Rs having

finite moments of order p

M(µ, ν) see Proposition 2.63

L(µ, ν) see Proposition 2.63

Lp(Ω,F ,P) the standard Lp− space on the probability space (Ω,F ,P), 0 < p ≤ ∞
L0(Ω,F ,P) the space of finite-valued random variables on (Ω,F ,P)

Bε(t) the open ‖ · ‖−ball of radius ε centered at t

Bε(t) the closed ‖ · ‖−ball of radius ε centered at t

int A the interior of the set A

∂A the topological boundary of the set A

2A the power set of the set A

Ds see (2.13)

Cψs see Definition 2.53

dom % the domain of the mapping %, see (2.79)

Df the set of discontinuities of the function f

D(A) see Theorem 3.9

pos(A) see Theorem 3.9
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B. List of symbols

Topologies and notions of convergence

τ sw the topology of weak convergence, see Definition 2.32
w→ weak convergence in the sense of Definition 2.32
w∗→ weak* convergence, see Corollary 2.39
d→ convergence in distribution, see Definition 2.42

τψ see Definition 2.53
ψ→ convergence with respect to τψ, see Definition 2.53

τRn the standard topology on Rn

τ1 ⊗ τ2 the product topology of τ1 and τ2
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[87] D. Dentcheva, A. Ruszczyński, Inverse cutting plane methods for optimization

problems with second-order stochastic dominance constraints, Optimization, 59, pp. 323-

338 (2010).
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[143] V. Krätschmer, A. Schied, H. Zähle, Qualitative and infinitesimal robustness

of tail-dependent statistical functionals, Journal of Multivariate Analysis, 103, pp. 35-47

(2012).

79

http://arxiv.org/pdf/1511.08677v1.pdf
http://arxiv.org/pdf/1511.08677v1.pdf


Bibliography
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Jünger, G. Reinelt, G. Rinaldi (eds.), “Combinatorial Optimization - Eureka, You

Shrink! Papers Dedicated to Jack Edmonds”, Springer, Lecture Notes in Computer

Science, 2570, pp. 171-184 (2003).

[196] R. Schultz, On structure and stability in stochastic programs with random technol-

ogy matrix and complete integer recourse, Mathematical Programming, 70, pp. 73-89

(1995).

[197] R. Schultz, Rates of convergence in stochastic programs with complete integer re-

course, SIAM Journal on Optimization, 6, pp. 1138-1152 (1996).

[198] R. Schultz, Some Aspects of Stability in Stochastic Programming, Annals of Op-

erations Research, Vol. 100, Issue 1, pp. 55-84 (2000).

[199] R. Schultz, Stochastic programming with integer variables, Mathematical Program-

ming, 97, pp. 285-309 (2003).

[200] R. Schultz, S. Tiedemann, Conditional value-at-risk in stochastic programs with

mixed-integer recourse, Mathematical Programming 105, pp. 365-386 (2006).

[201] R. Schultz, S. Tiedemann, Risk Aversion via Excess Probabilities in Stochastic

Programs with Mixed-Integer Recourse, SIAM Journal on Optimization, 14, pp. 115-138

(2003).

[202] A. Shapiro, Asymptotic analysis of stochastic programs, Annals of Operations Re-

search, 30, pp. 169-186 (1991).

[203] A. Shapiro, Asymptotic behavior of optimal solutions in stochastic programming,

Mathematics of Operations Research, 18, pp. 829-845 (1993).

[204] A. Shapiro, Quantitative stability in stochastic programming, Mathematical Pro-

gramming, 67, pp. 99-108 (1994).

[205] N. N. Tam, Continuity of the optimal value function in indefinite quadratic pro-

gramming, Journal of Global Optimization, 23, pp. 43-61 (2002).

[206] A. W. van der Vaart, Asymptotic statistics, Cambridge University Press, Cam-

bridge (1998).

84



Bibliography

[207] R. M. Van Slyke, R. Wets, L-shaped linear programs with applications to optimal

control and stochastic programming, SIAM Journal on Applied Mathematics, 17, pp.

638-663 (1969).

[208] H. von Stackelberg, Marktform und Gleichgewicht, Springer (1934).

[209] D. W. Walkup, R. J.-B. Wets, Lifting projections of convex polyhedra, Pacific

Journal of Mathematics, 28, pp. 465-475 (1969).

[210] J. Wang, Continuity of feasible solution sets of probabilistic constrained programs,

Journal of Optimization Theory and Applications 63, pp. 79-89 (1989).

[211] J. Wang, Stability of multistage stochastic programming, Annals of Operations Re-

search, 56, pp. 313-322 (1995).

[212] A. Werner, Bilevel stochastic programming problems: Analysis and application

to telecommunications, PhD thesis, Norwegian University of Science and Technology

(2005).

[213] J. J. Ye, D. L. Zhu A Note on Optimality Conditions for Bilevel Programming

Problems, Optimization, 39(4), pp. 361-366 (1997).

[214] J. J. Ye, D. L. Zhu, New necessary optimality conditions for bilevel programs by

combining the MPEC and value function approaches, SIAM Journal on Optimization,

20(4), pp. 1885-1905 (2010).

[215] J. J. Ye, D. L. Zhu, Optimality Conditions for Bilevel Programming Problems,

Optimization, 33(1), pp. 9-27 (1995).

[216] J. J. Ye, D. L. Zhu, Q. J. Zhu, Exact penalization and necessary optimality con-

ditions for generalized bilevel programming problems, SIAM Journal on Optimization,

7(2), pp. 481-507 (1997).

[217] A. C. Zaanen, Riesz Spaces II, North Holland, Amsterdam (1983).

[218] H. Zähle, A definition of qualitative robustness for general point estimators, and

examples, Journal of Multivariate Analysis, 143, pp. 12-31 (2016).

85


	Introduction
	Weak continuity of risk functionals
	Setting and basic assumptions
	Suitable risk measures
	The topology of weak convergence
	-weak topologies
	Proving weak continuity

	Stability of two-stage mean-risk models
	Two-stage mean-risk models
	Preliminaries
	Linear recourse
	Mixed-integer linear recourse
	Mixed-integer quadratic recourse
	Mixed-integer recourse problems with convex continuous relaxation

	Stability in stochastic bilevel programming
	Mean-risk stochastic bilevel problems
	Quadratic lower level problems with unique solutions
	Quadratic lower level problems with random right-hand side

	Appendix
	List of symbols
	Bibliography

