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Abstract

Measuring and managing risk has become crucial in modern decision making under stochas-
tic uncertainty. In two-stage stochastic programming, mean-risk models are essentially de-
fined by a parametric recourse problem and a quantification of risk. This thesis addresses
sufficient conditions for weak continuity of the resulting objective functions with respect to
perturbations of the underlying probability measure. The approach is based on so called
1p—weak topologies that are finer than the topology of weak convergence and allows to
unify and extend known results for a comprehensive class of risk measures and recourse
problems. In particular, stability of mean-risk models with mixed-integer quadratic and
general mixed-integer convex recourse problems is derived for any law-invariant, convex

and nondecreasing quantification of risk.

From a conceptual point of view, two-stage stochastic programs and bilevel problems under
stochastic uncertainty are closely related. Assuming that only the follower can observe
the realization of the randomness, the optimistic and pessimistic setting give rise to two-
stage problems where only optimal solutions of the lower level are feasible for the recourse
problem. So far, stability in stochastic bilevel programming has only been examined for
a specific model based on a quantile criterion. The novel approach allows to identify
sufficient conditions for stability of stochastic bilevel problems with quadratic lower level

and is applicable for a comprehensive class of risk measures.

Keywords: Mean-risk models, two-stage stochastic programming, stochastic bilevel prob-

lems, stability, risk functionals
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1. Introduction

Uncertain data that evolves over time poses a major difficulty in many real-world decision
problems. Optimization under uncertainty provides various approaches for resolving this
issue. Robust models assume that a so called ambiguity set of possible realizations of
the unknown data can be constructed. The worst possible outcome with respect to the
ambiguity set is then optimized (see e.g. [32], [34], [35], [36], [37], [38], [39], [97], [98],
[114]). While this approach can guarantee a certain quality of the outcome, it is known
to produce highly conservative solutions. This has led to the investigation of various
modifications that allow to lower the so called price of robustness (see e.g. [33], [44], [67],
[112], [194]).

Stochastic programming can be applied if the underlying uncertainty is stochastic and a
probability distribution of the unknown data is known. Based on the interplay between de-
cision and observation, one can differ between one-stage, two-stage and multistage stochas-
tic programming models. In one-stage models, all decisions have to be made without any
information about the realization of the randomness (see e.g. [168]). Two-stage models
have first been considered in [29], [76] and allow for a recourse action after observing the
random parameters. More general, multistage models feature a alternating sequence of
decision and observation (see e.g. [17], [30], [51], [72], [94], [103], [122], [123], [124], [165],
[182], [211]).

In two-stage stochastic programming it is usually assumed that the stochasticity is purely
exogenous, i.e. that the distribution of the random data does not depend on any of
the decisions to be made (see [113] for a discussion of decision dependent uncertainty).
Under this assumption, the problem can be understood as choosing an optimal random
variable out of a given family (see e.g. [52], [02], [192]). The simplest risk-neutral model
bases this decision on the expected outcome. More sophisticated mean-risk models allow
to take various notions of risk aversion into account by punishing high-risk decisions in
the objective function. Among many others, applications of mean-risk models include
vehicle routing with uncertain demands ([43]), shape optimization ([73]), the management
of flood and seismic risks ([I00]), scheduling problems in production planning ([99]) and

yacht racing ([167]). For specific models and classes of recourse problems, tailored solution
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algorithms are available (see e.g. [156], [207] (linear recourse), [61] (integer linear recourse),
[145], [199] (mixed-integer recourse), [191]).

A different class of models is based on optimizing a utility function over a subset of
feasible random variables having an acceptable risk. A popular way of specifying the set
of variables with acceptable risk is the introduction of probabilistic constraints (see e.g.
[125], [126], [127], [128], [179], [210]). More general models utilize stochastic dominance
constraints with respect to a benchmark variable. The seminal paper in this field is [89].
Other works focus on applications (see e.g. [60], [73], [90], [I15]), more general models (see
e.g. [91]), solution methods (see e.g. [85], [87], [88], [93], [10T], [116], [130], [150], [157],
[187]) and stability (see e.g. [70], [84], [86], [117], [149]). The works [158], [159] and [160]

point out links between stochastic dominance and certain mean-risks models.

All of the mentioned stochastic programming models depend on the distribution of the
random data. In real-world applications, only an approximation of this distribution may
be available, which motivates to examine stochastic problems from a parametric optimiza-
tion point of view. Stability of the optimal value and the set of optimal solutions under
perturbations of the underlying random vector (or rather the probability measure induced
by it) are of particular interest (see e.g. [13], [14], [178], [183], [184], [196], [198], [202],
[203]). Since the parameter space is infinite-dimensional, the choice of a topology becomes
an issue. For qualitative stability analysis, equipping the space of Borel probability mea-
sures with the topology of weak convergence has proven to be instrumental (see e.g. [133],
[135], [1I74]). Quantitative stability has been investigated based on suitable probability
metrics (see e.g. [170], [180], [181], [185], [186], [197], [204]).

Stability of two-stage mean-risk models is closely related to the continuity of certain risk
functionals that depend on the quantification of risk and the underlying deterministic
problem. The present thesis provides a systematic approach for deriving weak continuity
of a general class of functionals defined on subspaces of Borel probability measures satis-
fying certain moment conditions. Such functionals are continuous with respect to a finer,
so called 1¥—weak topology (see e.g. [107], [141], [143]). Since it is possible to exactly
point out the subsets on which the relative »—weak topology and the relative topology of
weak convergence coincide (see [142], [218]), the latter allows to derive weak continuity of
suitable restrictions. The special case of restrictions to sets of measures with uniformly
bounded moments of higher order is well established in stability analysis of stochastic
programs (see e.g. [153], [196], [198], [200], [201]). In view of two-stage mean-risk models,
the approach is applicable whenever the growth of the optimal value function of the re-

course problem is polynomially bounded in the entering random parameter. Furthermore,
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it is assumed that the set of discontinuities is of measure zero with respect to the orig-
inal probability measure and that the quantification of risk is law-invariant, convex and

nondecreasing.

In qualitative robustness theory, convex (monetary) risk measures (see e.g. [106], [109])
provide a well established generalization of coherent measures of risk (see e.g. [1], [15]).
Every law-invariant, convex risk measure is nondecreasing and hence meets the criteria
described in the previous paragraph. Such functionals are of special interest due to their
analytical traits (see e.g. [141], [144]), which have an immediate impact on statistical
properties, e.g. in view of the sample average approximation method (see e.g. [31], [92],
[166], [190]).

Stability analysis in two-stage stochastic programming often focuses on the case where the
underlying deterministic problem is a mixed-integer linear program. For this special situa-
tion, stability results for various types of two-stage mean-risk models are available (see e.g.
[153], [I72], [200], [201]). However, the proofs differ greatly. For mixed-integer quadratic
recourse, stability of a risk-neutral model has been investigated in [64]. The present thesis
provides an umbrella for two-stage mean-risk models that allows to unify and extend the
known results in various directions: Stability is derived for a comprehensive class of both
risk measures and underlying deterministic problems (e.g. for mixed-integer quadratic
problems and a fairly general class of mixed-integer problems where the continuous re-
laxation is convex). Furthermore, stability of stochastic bilevel problems is examined.
Although not detailed in this thesis, the approach has also been applied to investigate

stability of mean-risk formulations of stochastic complementarity problems (see [57]).

Bilevel problems arise from the interplay between two decision makers on different levels
of a hierarchy. The leader decides first and passes the upper level decision on to the
follower. Incorporating the leader’s decision as a parameter, the follower then solves the
lower level problem that reflects his or her own goals and returns an optimal solution back
to the leader. The leader’s objective function depends on both his or her decision and the
solution that is fed back from the lower level. In bilevel optimization, it is assumed that
the leader has full information about the influence of his or her decision on the lower level
problem. As the latter may have more than one solution, one typically assumes that the
follower returns either the best (optimistic approach) or the worst (pessimistic approach)
solution with respect to the leader’s objective. The bilevel optimization problem is to find
an optimal upper level decision. Such problems have first been considered in economics
([208]). For a general discussion of bilevel programming, refer to [75] or [78]. Other works

focus on applications (see e.g. [24], [27], [81]), more general multilevel models (see e.g.
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[26], [58]), linear bilevel programming (see e.g. [25], [47], [59]), optimality conditions (see
e.g. [23], [62], [79], [80], [82], [83], [213], [214], [215], [216]) solution methods (see e.g. [3],
[6], [132]) or stability (see e.g. [129]).

In stochastic bilevel programming, the realization of some random vector whose distri-
bution does not depend on the upper level decision enters the problem as an additional
parameter. It is assumed that the leader has to make his or her decision without knowing
the random parameter, while the follower decides under full information. Stochastic bilevel
problems can be seen as an extension of classical two-stage stochastic programs, where
upper and lower level mirror first and second stage, respectively. As in those problems,
the upper level objective function gives rise to a random variable. However, this random
variable now depends on an optimal solution rather than just on the optimal value of the
lower level (or second stage) problem. This is a crucial difference that results in weaker

analytical properties and a less stable behavior.

Nevertheless, stochastic bilevel problems are of great relevance for practical applications
and have been discussed in the context of transportation ([9], [161]), the pricing of elec-
tricity swing options ([119], [140]), economics ([12]), supply chain planning ([16]), telecom-
munications ([212]), structural optimization ([66]) and general agency problems ([111]).
Other works focus on solution methods ([50]), stochastic bilevel problems with Knapsack
constraints ([139]), nonlinear bilevel programming under uncertainty ([162]) or stochastic
equilibrium problems ([I10]) and their stability ([148], [163]).

So far, the structure of risk-averse stochastic bilevel problems has only been addressed in
the recent work [I31], where problems based on a so called quantile criterion are considered.
Using the optimistic approach and assumptions on the linearity of the upper and lower
level problems, continuity of the objective function with respect to the leader’s decision is
shown. However, the underlying probability measure is assumed to be fixed and stability
of optimal values and optimal solution sets is not examined. The focus in this thesis is
on stability of more general mean-risk formulations of stochastic bilevel problems. The
present analysis also applies to quadratic lower level problems and allows for a more general

dependence on the random parameter.

Chapter [2lintroduces the theoretical framework while paying special attention to the simi-
larities and differences between the topology of weak convergence and ©)—weak topologies.
A proof of the main continuity result is given in the final section. In chapter [3] sufficient
conditions for qualitative stability of various two-stage models is examined based on the

previous findings. Finally, chapter 4] extends the results to stochastic bilevel problems.
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Parts of this chapter have also been submitted for publication (see [68] for a preprint).



2. Weak continuity of risk functionals

Mean-risk models in both two-stage and bilevel programming under stochastic uncertainty
give rise to functionals defined on certain subspaces of Borel probability measures. This
chapter examines their continuity with respect to the topology of weak convergence as
well as a finer, so called i-weak topology and is organized in five sections: Imposing a
growth condition and assumptions on the underlying quantification of risk, the considered
functionals are characterized in section Section examines quantifications of risk
that are suitable for the proposed setting, while sections and address selected
properties of the relevant topologies as well as their relation. Finally, section [2.5]is devoted

to proving the desired continuity.

Parts of this chapter have also been submitted for publication (see [69] for a preprint).

2.1. Setting and basic assumptions

Throughout this thesis, the focus will be on functionals defined on spaces of Borel prob-
ability measures. Hence, it seems appropriate to begin with recalling the following basic

definitions:

Definition 2.1. The Borel c—algebra B(R?®) of R® is the o—algebra generated by the

family of open sets.

Properties of Borel o—algebras are discussed in section 4.4 in [7]. Note that most of the
concepts introduced in this chapter can be translated to the case where R? is replaced with
a general metric space S. However, it seems reasonable to confine the present discussion
to the case relevant for the applications in chapters [3| and [4 For generalizations, refer to

the corresponding chapters in [7] or section A.6 in [107].

Definition 2.2. A Borel probability measure on R® is a countably additive set function
w: B(R®) — [0,00) satisfying u[R°] = 1. The space of all such measures is denoted by
P(R®).

An important class of subsets of P(R?) can be defined via (generalized) moment conditions:
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Definition 2.3. For any continuous function v : R® — [0,00), define

M = {p e P(R) | /R () pldt) < oo}

Furthermore, set M% = !Hp, where p € R is a positive constant and || - || denotes the

Fuclidean norm.

Remark 2.4. Due to the fact that every finite dimensional vector space admits a unique
Hausdorff linear topology [7, Theorem 5.21], all norms on R® are equivalent and the set

M?E does not change if a norm other than the Euclidean one is considered.

Remark 2.5. The case where ¢ is a so called gauge function (see Definition will be
of special interest in section .

The functionals to be analyzed are induced by mappings f and p defined on R" x R?
and some LP-space, respectively (see chapter 13 in [7] for a discussion of LP—spaces). All
assumptions needed to derive the desired continuity will be imposed on these mappings. In
view of the mean-risk models considered in chapters [3|and [ assumptions on f correspond
to assumptions on the underlying parametric problem, while p is directly related to the

choice of the quantification of risk in the objective function.

The assumptions imposed on f can be formulated using the notion of locally bounded

mappings:

Definition 2.6. A mapping n : R™ — R is said to be locally bounded iff the convergence
of {z1}1en C R™ implies the boundedness of {n(z;)}i1en C R.

Remark 2.7. In particular, all continuous and all bounded functions are locally bounded.

Assumption 2.8 ([Af] : Assumptions on f).
f:R" x R® — R is Borel measurable and fulfills the following growth condition: There
is an exponent v > 0 and some locally bounded mapping n : R™ — R such that

[f (@, 2)| < n(@)([=]]" + 1) (2.1)
holds for any (z,z) € R™ x R®.
Remark 2.9. [Ay] is especially fulfilled if there exist positive constants o and (8 such that

|f(a:,z) - f({L'/,Z/N < OdH(l',Z) - (w/7zl)H/8
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holds for any (x,z),(2',2") € R™ x R®. In particular, [Af] holds if f is jointly Holder

continuous with respect to x and z.
The following lemma will prove useful:

Lemma 2.10. Assume [Ag], then [ |f(x,2)[P v(dz) < oo holds for every p > 0 and
(z,v) € R" x MP.

Proof. By ,
[f (@, 2)[" < m(x)P(|z]]” +1)" < n(x)P2P max{]|z[|"", 1} < n(z)"2°(|[2]"" + 1)

holds for any (z, z) € R"™ x R® and the statement of Lemma follows immediately from
the fact that [, 1 v(dz) = 1. O

Lemma [2.10] can be restated in terms of finiteness of moments of a certain image measure

under f:

Corollary 2.11. Fiz p > 0 as well as (z,v) € R" x MJ? and let 6, @ v denote the product
probability measure of the Dirac measure at x and v. Then, under assumption [Af], the

image measure of 6, @ v under f has finite moments of order p, i.e. (6;@v)o f~1 e M.

Proof. By the change-of-variable formula (see Theorem , it holds that
/ |tP ((8: @ v) o f7)(dt) = / [f@, )P 0z @v)(d(a',2) = [ |f(z,2)[F v(dz)
R R™ xRS Rs

and Lemma [2.1| completes the proof. ]

The concept of atomless probability spaces plays an important role in the assumptions on
p:
Definition 2.12. A probability space (0, F,P) is said to be atomless or nonatomic

iff for every A € F with P[A] > 0 there exists a set B € F satisfying B C A and
P[A] > P[B] > 0.

In the field of monetary risk measures, it is common to confine the analysis to atomless
probability spaces (see e.g. [11], [I07] (chapter 4), [108] or [141] and refer to [77] for the

more general case). The following result illustrates some properties of such spaces:

Proposition 2.13 ([107, Proposition A.27]).
For any probability space (Q, F,P), the following conditions are equivalent:
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(a) (Q,F,P) is atomless.

(b) There exists an independent and identically distributed sequence of random variables
Y1, Yo, ... with Bernoulli distribution P[Y; = 0] =P[Y; =1] = 5 (i =1,2,...).

(c) For every o € P(R), there exist independent and identically distributed random
variables Zy, Za, ... with common distribution F, defined by Fy(t) := o[(—o0,t]].

(d) (Q,F,P) supports a random variable with continuous distribution.

Example 2.14. Let )\[107”

to the closed unit interval. By the equivalence of (a) and (d) in Proposition the

probability space ([0, 1], B(R) N[0, 1], )\[10 1]) is atomless.

denote the restriction of the one-dimensional Lebesgue measure

By Proposition |2.13] every atomless probability space supports a random variable U that
is uniformly distributed on the open unit interval (0, 1). This allows to explicitly associate
Borel probability measures on R with random variables on the space via a so called quantile
transformation. The approach is also used in the proof of the above proposition in [107]

and justified by the following lemma:

Lemma 2.15 (Quantile transformation).
Fiz a random variable U on a probability space (2, F,P) that is uniformly distributed on
(0,1) and let 0 € P(R) be a Borel probability measure. Then

wi= FY(U(W)) :=inf{t e R| F,(t) > U(w)} (2.2)

is a random variable on (Q, F,P) with distribution Fy.

Proof. F, is a normalized, nondecreasing, right-continuous function and the mapping F, !
yields an inverse function in the sense of [I07, Definition A.14]. Hence, [107, Lemma A.19]
is applicable. ]

Remark 2.16. The function F; ! is referred to as the (left-continuous) quantile func-

tion associated with o, which motivates to call (2.2)) the quantile transformation.

By the previous results, a mapping defined on the space of random variables on some
atomless probability space induces a function on P(R) if it only depends on the distribution

of the entering random variables. Such mappings are called law-invariant:

Definition 2.17. Let LY(), F,P) denote the space of finite-valued random variables on
some probability space (Q, F,P). A mapping p: L°(Q, F,P) — R is called law-invariant
iff plY] = p[Z] holds whenever Y and Z have the same distribution under P.
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Assumption 2.18 ([A,] : Assumptions on p).
p: LP(Q, F,P) = R is a real-valued mapping defined on the LP—space of some atomless

probability space, where p > 1. In addition, p is law-invariant, convezx, i.e.
plmY + (1 —=m)Z] < mplY]|+ (1 —m)p[Z] Ym € [0,1] VY,Z € LP(Q,F,P),
and nondecreasing with respect to the P—almost sure partial order, i.e.
PY <Z]|=1=plY]| <p|Z] VY, Z € LP(Q,F,P).

The following simple observation will prove useful in the context of mean-risk models in
chapter [3}

Remark 2.19. For any atomless probability space (2, F,P) and any constant p > 1, the
space of mappings p : LP(Q, F,P) — R satisfying assumption [A,] is closed under conic

combinations.

Let assumptions [A¢] and [A ] be fulfilled and consider a random variable U on the atomless
probability space from [A,] that is uniformly distributed on (0,1). By Lemma the
mapping R, : M} — R given by

Rp(0) = plF; ' (U)] (2.3)

is well defined. The subsequent analysis shall focus on functionals @ : R” x M7’ — R
defined by

Q(x, 1) = Ry((6: @ p) o f71). (2.4)

Remark 2.20. Q is well defined by Corollary[2.11].

2.2. Suitable risk measures

This section points out links to the theory of monetary risk measures and provides relevant
examples of mappings that satisfy assumptions [A,]. The notion of convex risk measures

in the sense of mathematical finance will be of special interest:

Definition 2.21. Let (Q, F,P) be a probability space and X a linear subspace of L°(2, F,P)
containing the constants. A mapping w : X — R is called a convexr (monetary) risk

measure if w is convex, nondecreasing with respect to the P-almost sure partial order and

10
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translation-equivariant, i.e.

wlY +m]=w[Y]+m VmeR VY € X. (2.5)
A convex risk measure w is called coherent if it is positively homogeneous, i.e.

wmY] =mwl[Y] VYm e [0,00) VY € X.

Remark 2.22. X is often chosen as some LP-space, where p € [0,00] (see e.g. [96]). In
view of [A,], only the case where X = LP(Q, F,PP) with 1 < p < oo will be relevant for the
analysis in section [2.5

Remark 2.23. Monetary risk measures have also been considered in settings different
from the one of the above definition (see e.g. [105], where no probability measure is fized).
Note that some definitions include a normalization, i.e. w([0] =0 (see e.g. section 4.1 in
[107]) or work with possible gains rather than losses. In such a setting, w is required to
be nonincreasing and 1s replaced with

wlY +m]=w[Y]-m VmeR VY eX

(see e.g. [63)], [96] or [141]). However, Definition covers the framework needed in
view of [Ap].

Convex risk measures have been introduced independently in [106] and [109] and generalize
the concept of coherent risk measures that originates from [I5]. Their relevance for the

present work is pointed out in the following remark:

Remark 2.24. Assumption [A,] is fulfilled for every law-invariant, convex risk measure
(in the sense of Definition that is defined on LP(Q, F,P), where (Q, F,P) is atomless
and 1 < p < 0.

Law-invariant, convex risk measure are well established in the field of mathematical fi-
nance (see e.g. [1], [31], [65], [104], [108] and [141]) and highly relevant for stochastic
programming. By [96, Corollary 2.5], polyhedral risk measures are coherent (and hence
convex) under mild standard assumptions. The following examples discuss various risk

measures of importance in stochastic programming:

Example 2.25. The expectation or mean E : L'([0, 1], B(R) N [0, 1], )\[10 1]) — R defined
by

1
BY] = | ¥(0) Ayt

11
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is a law-invariant, coherent risk measure in the sense of Definition[2.21].

Example 2.26. Consider the variance Var : L*([0,1], B(R) N [0, 1],)\[1071]) — R defined
by

Var[Y] := E[(Y — E[Y])?] = E[Y?] - E[Y]*.
Var is law-invariant and convex (see e.g. [26]): Let Cov]Y, Z] := E[(Y —E[Y])(Z — E[Z])]
denote the covariance of Y and Z. By Cov[Y,Z]? < Var[Y|Var[Z] and the convexity of

the mapping « — 2,

Var[mY + (1 —m)Z] = m*Var[Y] + (1 — m)*Var[Z] + 2m(1 — m)Cov[Y, Z]
< (my/Var[Y] + (1 — m)y/Var[Z])?
< mVar[Y] + (1 — m)Var[Z]

holds for any Y, Z € L*([0,1], B(R) N [0, 1], AL

0,1)) and m € [0,1].

Since Var[Y +m] = Var[Y] holds for anym € R and Y € L*([0,1], B(R)N[0, 1], )\[1071]), Var

s not translation-equivariant. In addition, the variance is not nondecreasing: Consider
the random wvariables Y,Z : [0,1] — R defined by Y(w) =1 and Z(w) = X[t (w), where
X[L 1] denotes the indicator function of the interval [%, 1]. Although'Y > Z almost surely,
it holds that Var[Y] = 0 < 3 = Var[Z]. Finally, the variance is not positively homogenous:
Var[2Z] =1 # 1 = 2Var[Z].

In stochastic programming, mean-variance models are seldom considered as they are known

to be computationally intractable even for simple stochastic problems (see e.g. [4)]).

Example 2.27. The expected excess pE¥ : L'([0,1],B(R) N [0, 1],)\[10 1]) — R of a
predefined target level o € R given by

pPE[Y] .= E[max{Y — a,0}]

18 law-invariant and nondecreasing. Furthermore, it is jointly convex with respect to'Y

and «, i.e.
Prnees 4 (1—m)as Y1+ (1= m)Ya] <mplPIVi] + (1 = m)pfF[Ya] (2.6)

holds for any Y1,Ys € LY([0,1], B(R) N [0, 1],)\[10 1]), aj,az € R and m € [0,1]. Conse-
quently, assumption [A,] is fulfilled for the expected excess. However, the expected excess

1 not translation-equivariant and hence no monetary risk measure: The random variable

12
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Y :[0,1] = R, Y =1 yields the counterexample pEF[Y] = 0 = pFE[Y +1]. Finally, the
expected excess is not positively homogenous: pFE[3Y] =1 0 = 3pFF[Y].

The expected excess has been examined in the context of two-stage stochastic programming
problems with mized-integer linear recourse in [153]. For any q > 1, the present analysis
extends to the q-th order expected excess ph™ : L1([0,1], B(R) N[0, 1],)\[1071]) — R of
the target level o € R defined by

pEEAY] .= Elmax{Y — a, O}q]%.

Assumption [A,)] is fulfilled for pr’q, since it is law-invariant, convex and nondecreasing.

Example 2.28. The semideviation p°P : L'([0,1], B(R) N [0, 1], )\[10 1]) — R given by

pPPIY] = pEiy[Y]

18 law-invariant, positively homogenous and conver. The latter is a direct conclusion
from the linearity of the expectation and the joint convezity of the expected excess .
However, the semideviation is not translation-equivariant, as p°P[Y +m] = pSP[Y] for
any Y € L1([0,1], B(R) N[0, 1], )\[1071]) and m € R. In addition, p° is not nondecreasing:
Consider the random variables Y,Z : [0,1] — R given by Y (t) = X[O,%)(t) —X[L 1 (t) and
Z =1. Although'Y < Z almost surely, it holds that p°P[Y] = 3 > 0= p°P[Z].

One can easily compensate for the lacking monotonicity by considering a weighted sum
with the expectation: For any m € [0,1], E +mp>? : L1(]0,1], B(R) N [0, 1],)\[1071]) — R
18 a law-invariant, coherent risk measure in the sense of Definition (see e.g. section

6.3.2 in [92]).
For a discussion of the semideviation in the context of two-stage stochastic programming

with mized-integer linear recourse, refer to [153)].

Example 2.29. The excess probability pf : L°([0,1], B(R) N [0, 1],)\[10 1]) — R of a

predefined target level o € R given by
pelY] = )‘[10,1] [{t €[0,1] | Y (?) > a}]

18 nondecreasing and law-invariant. However, it lacks convexity, translation-equivariance
and positive homogeneity: Consider the random variables Y, Z : [0,1] — R given by Y =1
and Z =0. Since

pV2Y] =pl[Y +1] =1#2=pr[Y]+1=2p"[Y],
2 2 2
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the excess probability is neither positively homogenous nor translation-equivariant. Fur-

thermore, the calculation

1.1 11
P P

Y 42l =1> = =Py
PlGY + 521 =1>5 =Y+

shows that pl is nonconver in general.

In the context of two-stage stochastic programming, the excess probability has been inves-
tigated for example in [0], [172] and [201)].

Example 2.30. The value-at-risk VaR, : L*°([0, 1], B(R) N [0, 1],)\[1071]) — R for a

predefined level o € (0,1) given by
VaR,[Y] = inf{m € R | \jp ;[{t € [0,1] | Y (1) <m}] > a}

1s law-invariant, nondecreasing, translation-equivariant and positively homogenous. How-
ever, it is not conver: Consider the random variables Y,Z : [0,1] — R defined by
Y(t)= X[O,%)(t) + SX[%,H (t) and Z(t) = 3)([07%)(75) + XL (t). It holds that

1 1 1 1
VaR%[QY + 52] =2>1= iVaR%[Y] + §V3Ri [Y].
A detailed discussion of the value-at-risk is provided in [167)].

The lack of convexity of the value-at-risk has inspired the investigation of coherent alter-
natives like the conditional value-at-risk (see e.g. [2], [3], [10], [164], [175] and [176]). [200]
provides a discussion in the context of two-stage stochastic programming problems with

mixed-integer recourse.

Example 2.31. The conditional value-at-risk, also known as average value-at-risk

or expected shortfall, CVaR, : L'([0,1], B(R) N [0, 1], )\[10 1]) — R for a predefined level

a € (0,1) is given by
1
CVaR,[Y] := inf{m + 17;),7%’5[1/} | m € R}.
-
CVaRy, is a law-invariant, coherent risk measure (see e.g. [164), Proposition 2]).

2.3. The topology of weak convergence

The present chapter aims at verifying continuity of the mapping ¢ with respect to the
topology of weak convergence. Dating back to a least 1978 (see [135]), the use of this

14
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topology has proven to be instrumental in stability analysis for stochastic programming
models. While coarse enough to be relevant for a large spectrum of applications (see e.g.
Remarks and , the topology possesses very desirable mathematical properties
(see e.g. Proposition [2.37, Theorems [2.41] [2.48 and [2.49). Discussing selected results and

characterizations, this section aims to make the case for utilizing the topology of weak

convergence.

Definition 2.32. Let CQ(RS) denote the linear space of all bounded and continuous func-
tions h : R® — R. The topology of weak convergence, denoted by T, is the coarsest

topology on P(R?®) for which all mappings gy, : P(R®) — R defined by

() = [ b@) (), he CHR) 2.7
are continuous. A sequence {p}ien C P(R®) is said to converge weakly to p € P(R?),

written p; — p, iff it converges with respect to T

By the following result, a Borel probability measure p is completely determined by the

integrals in ([2.7)):

Proposition 2.33 ([49, Theorem 1.2]).
For p,v € P(R®), it holds that = v iff gn() = gn(v) for all h € CP(R?).

Remark 2.34. In particular, Proposition yields that weak limits are unique.

By Definition [2.32

lim [ h(t) w(dt) = / h(t) p(dt) Vh € C)(R?)

l—o0 Rs s

holds whenever p; — p, as continuity implies sequential continuity. Moreover, since T is
metrizable by the Prokhorov metric (see Proposition [2.37]), the notions of continuity and

sequential continuity coincide and the converse statement is also true.

Definition 2.35. The Prokhorov metric 7 : P(R®) x P(R®) — [0,00) is defined by
m(w,v) :=inf{e > 0 | u[A] < V[A+ B(0)] + €, v[A] < u[A+ B.(0)] + ¢ VA € B(R%)},

where A + B¢(0) C R% denotes the Minkowski sum of A and the open ball of radius €

centered at O (with respect to the Euclidean norm).

Remark 2.36. 7 is indeed a metric (see fact (i) on page 72 in [{9]).

15



2. WEAK CONTINUITY OF RISK FUNCTIONALS

Proposition 2.37. 7, coincides with the topology induced by the Prokhorov metric ™ on
P(R®).

Proof. Combine facts (iii) and (iv) on page 72 in [49] and invoke the separability of R*. [

It is also possible to characterize the topology of weak convergence in terms of functional

analysis: Endow CP(R®) with the supremum norm

[[h]loo = sup |A(?)] (2.8)
teRs

and let (CP(R®))* denote its dual space equipped with the norm given by
I¢II5 = sup{|¢(R)] | h € CR(R), [|h]loo < 1}. (2.9)

[7, Theorem 14.10] allows to identify (CP(R®))* with the AL-space (abstract Lebesgue
space) of normal signed Borel charges of bounded variation on B(R®) (see section 10.10 as
well as Definitions 10.2, 12.2 and 12.11 in [7]).

Theorem 2.38 (Riesz representation theorem, see e.g. Theorem 2.14 in [I89]).
Let Z denote the set of all ¢ € (CP(R%))* satisfying ||C||Z = 1 and ((h) > 0 for any
nonnegative h € CP(R®). Then for any ¢ € Z, there exists a unique pc € P(R®) satisfying

) = [ (o) uclat) vhe CHR).
Moreover, the mapping A : Z — P(R?) defined by A(C) := ¢ is bijective.

The following result is an immediate conclusion from the Riesz representation theorem

and the definition of weak™® convergence:

Corollary 2.39. For any sequence {u;}1en € P(R?®) the following statements are equiva-

lent:

(a) = pa-

(b) A= () N A=Y (u1), where “S denotes the weak* convergence on Z, i.e. N ¢ iff
limyy00 () = C(R) for any h € CP(R?).

Another way to characterize a topology is to point out a base:

16
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Proposition 2.40. The sets

l
Ne(a,pyhiy ..o hy) = ﬂ {V € P(R?) |
i=1

/S hi(t) (ap)(dt) — / hi(t) y(dt)’ < 6}

fore,a >0, p€ P(R®), 1 €N andhy,...,h € CP(R®) form a base of the topology of weak

convergence on P(R?).

Proof. Endow the space {au | o > 0, p € P(R®)} of nonnegative, finite Borel measures
on R* with the coarsest topology for which all mappings p +— [p. h(t) p(dt), h € CY(R®)
are continuous (as done in [107, Definition A.36]). A base of this topology is given by
formula (A.20) in [107] and yields a base of the topology of weak convergence on P(R?),

: o
since T;;, arises as a subspace topology. O

Apart from the representations via weak* convergence on the dual space of C’g (R?), a base
or the Prokhorov metric, the topology of weak convergences admits various equivalent

characterizations that are typically summarized in the so called Portmanteau theorem:

Theorem 2.41 (Portmanteau theorem, see e.g. Theorem 2.1 in [49]).
For any sequence {p;}1en C P(R®) and any measure p € P(R®), the following statements

are equivalent:
(a) = p.

(b) limsup;_, . [ps A(t) p(dt) < [ps h(t) p(dt) holds for any upper semicontinuous map-
ping h : R® — R that is bounded fmm above.

(c) liminfy_,o [ps R(t) p(dt) > [ps h(t) p(dt) holds for any lower semicontinuous map-
ping h : R® — R that is bounded fmm below.

(d) lim;_ fRS ) p(dt) fRS wu(dt) holds for any bounded, uniformly continuous
mapping h : R® — R.

(e) limsup;_, o p[B] < u[B] holds for any closed set B C R?.
(f) liminf;_, [B] > p[B] holds for any open set B C R®.

(9) im0 py[B] = pu[B] holds whenever B € B(R®) is a p—continuity set, i.e.
wu[0@B] =0, where OB denotes the topological boundary of B.

In many practical applications of stochastic programming, it may seem more natural to

work with random vectors instead of Borel probability measures. However, any sequence

17
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{Y;}1en of random vectors Y; : €; — R?® on probability spaces (£2;, F;, P;) induces a sequence
of Borel probability measures {¥};ey € P(R?) via

M =Poy, (2.10)

For every | € N, p? is the law of Y] (in the sense of section 3 in [49]), which provides a

link between weak convergence and the so called convergence in distribution.

Definition 2.42. The sequence {Y;}ien is said to converge in distribution to a random
vector Y : 0 — R® on some probability space (2, F,P), written Y; LA Y, iff

Jim P,[Y; € B] = P[Y € B]
—00

holds whenever B € B(R?®) is such that P[Y € 0B] = 0.
Lemma 2.43. Y] 4y iff pt 5 Y

Proof. Combine the equivalence of (a) and (g) in Theorem with the fact that
P,[Y; € B] = pY1[B] by formula (2.10)). O

Remark 2.44. Convergence in distribution is highly relevant in practice, since it arises
from the central limit theorem and its generalizations (see chapter 27 in [48] for a discus-
sion). Nevertheless, the assumption of convergence in distribution is rather weak, as the
random vectors in a converging sequence are not even required to be defined on a com-
mon probability space. Furthermore, convergence in distribution is implied by convergence
in probability (see [48, Theorem 25.2]) and hence in particular implied by almost sure

convergence. The converse statements do not hold true in general.

For any sequence of random vectors {Y;};cn that converges in distribution to Y7, there
exists a sequence of Borel probability measures {u;};en such that y; is the law of ¥; and
i = p1. An even stronger version of the converse statement is given by the following

result:

Theorem 2.45 (Skorohod representation theorem).
For any sequence {i}ieny € P(R®), = w1 holds iff there exists a sequence of random
vectors {Y; }ien on some probability space (2, F,P) such that for any |l € N, p; is the law
of Y, and

lim Vj(w) = Y1(w) Yw € Q. (2.11)

l—00

18
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Proof. Every closed subset of R? is separable with respect to the relative topology induced
by the Euclidean norm by [7, Lemma 2.9]. Hence, the support of every p € P(R®) is
separable and [49, Theorem 6.7] is applicable. Lemma completes the proof. O

The probability space in [2.45 may depend on the specific sequence of Borel probability
measures that is considered. However, weakening the sure convergence in (2.11)) to almost
sure convergence, the following result allows represent all weakly converging sequences in

P(R®) with random variables on a fixed atomless space:

Theorem 2.46 (Skorohod representation on a fixed probability space).

Fiz any atomless probability space (2, F,P). Then for any sequence {u;}en € P(R?),
i — p1 holds iff there exists a sequence of random vectors {Yi}ien on (2, F,P) such that
for any l € N, y; is the law of Y7 and

lim Vj(w) = Y1(w) for P — almost all w € Q. (2.12)

=00

Proof. Combine [42], Theorem 3.2 (i)] with the fact that the support of every u € P(R?)
is separable and employ Lemma [2.43 O

Remark 2.47. In particular, (2.12) implies Y] A Y1 by [48, Theorem 25.2].

Weak convergence of a sequence in P(IR?) translates to weak convergence of the sequence of
image measures under a fixed mapping that is continuous almost everywhere with respect

to the weak limit of the original sequence:

Theorem 2.48 (Continuous mapping theorem, see e.g. Theorem 2.7 in [49]).

Fiz any Borel measurable mapping T : R® — RF and let Dy C R® denote the set of its
discontinuities. Then for any sequence {u}ien € P(R®) satisfying 1y — p € P(R®) and
p[Dr] = 0, it holds that pyo T™' 5 o T~

The following theorem states that P(R®) endowed with 7 is separable and explicitly

points out a countable dense subset:

Theorem 2.49. (P(R®),77) is a Polish space, i.e. a separable, completely metrizable

topological space. In particular, the countable set

l l
D ={> iy, [1€EN, 0<on,...,.0 €Q, Y i =1, 7,...,2 € Q°} (2.13)
=1 =1

is dense in P(R®) with respect to the topology of weak convergence.
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Proof. Combine Theorems 15.10 and 15.15 in [7]. O

Remark 2.50. By the above theorem, every element of P(R®) is the weak limit of a
sequence of convex combinations of Dirac measures. Stochastic programming problems are
usually more traceable if the support of the underlying measure is finite. In some cases,
such problems even admit equivalent reformulations as mized-integer linear programs (see
e.g. [153], [200], [201)]). Consider a problem where the dependence of the optimal value
and the optimal solution set on the underlying measure is continuous with respect to the
topology of weak convergence. By the above result, it is possible to obtain approrimate
solutions of arbitrary precision by approximating the underlying measure with an element

of D* and solving the resulting (easier) problem.

2.4. y)—weak topologies

While continuity of () with respect to the topology of weak convergence is the ultimate
goal of this chapter, the proof in section also employs finer topologies that shall be
introduced in the present section. Enclosing the topology of weak convergence (see Remark
, 1—weak topologies are topologies on subsets of P(R?) that are defined by generalized
moment conditions. In the following, basic properties of {y—weak topologies and their
relation to the topology of weak convergence shall be examined. In view of the desired
continuity, subsets where the relative topology of weak convergence coincides with a certain
relative 1y—weak topology are of special interest. A characterization of such sets is given
by Lemma [2.66

1—weak topologies are induced by so called gauge functions:

Definition 2.51. A continuous function v : R® — [0,00) is called a gauge function, if

¥ > 1 holds outside a compact set.

Remark 2.52. In section[2.5, the case where 1 is chosen to be the Euclidean norm to a

positive power will be of special interest.

Definition 2.53. Let ¢ : R® — [0,00) be a gauge function and denote by CY the linear
space of all continuous functions h : R® — R for which there exists a real constant ¢ > 0
such that

(h(@)] < c(¥(t) +1)

holds for any t € R®. The ¥—weak topology, denoted by Ty, is the coarsest topology on
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MY for which all mappings gy, : MY SR defined by
()= [ h) wian). hecy

are continuous. A sequence {u}tieny C Mg’ is said to converge —weakly to € M?,

written py i) w, iff it converges with respect to Ty,.

Remark 2.54. Consider the constant gauge function 11 =1 on R®. Then C¥* = CY(R?)
and MU' = P(R?), since u[R*] = 1 holds for any Borel probability measure p. Conse-

quently, the topology of weak convergence coincides with the 11 —weak topology.

Lemma 2.55. For any gauge function ¢ : RS — [0,00) and any real constants d,e > 0,
(1+e)y +d is a gauge function and the topologies Ty and T(14ye)pta coincide.

Proof. By definition, it holds that MY = MgHe)lHd and C’;/} = C§1+6)¢+d. O

Remark 2.56. Note that [107] and [1]3] use a more restrictive definition of gauge func-
tions by demanding v > 1 to hold on the whole space. However, for every gauge function
Y in the sense of Definition [2.51], the function v + 1 is a gauge in function in the sense
of [107)] that yields the same topology by Lemma .

The following characterization of 7, by a base is a generalization of Proposition [2.40}

Proposition 2.57. For any gauge function ¢ : R — [0, 00), the sets

l
NEattnseeesti) = () v e Mt | \/ (o) (an)(at) — [ (o) u(dw( <e}
7,:1 Rs s
fore,a >0, ue Mff, leNand hy,...,h € oY form a base of the V—weak topology on
MY

Proof. Endow the space {ap | a >0, p € /\/lg)} with the coarsest topology for which all
mappings p — [ps h(t) p(dt), h € C¥ are continuous (as done in [I07, Definition A.44]).
T, arises as a subspace topology, hence the base given on page 502 in [107] yields a base
of the ¢)—topology on MY. O

Remark 2.58. For any gauge function ¢ : R® — [0,00), the mapping

U:{ap|a>0, pe MV} = {au|a>0, uc PR}
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given by
(W(p))(dt) := p(t)p(dt)

yields a homeomorphism between the topological spaces considered in the proofs of Propo-

sitions and[2.57 (see page 502 in [107)).
The above remark allows to generalize Theorem [2.49;

Theorem 2.59. For any gauge function ¢ : RS — [0, 00), (/\/llsp,ﬁb) s a Polish space and
the countable set D® defined in (2.13|) is dense in MY with respect to Ty.

Proof. Combine [107, Theorem A.45] with the fact that closed subspaces of Polish spaces
are Polish spaces by [71], Proposition 8.1.2]). O

Remark 2.60. In particular, Y—weak topologies are metrizable and the notions of conti-

nuity and sequential continuity coincide.

The following characterization of the relation between weakly and @ —weakly converging

sequences is a combination of [69, Lemma 4.1] and [143] Lemma 3.4]:

Lemma 2.61. For any gauge function ¢ : R® — [0,00) and any sequence {p;}ieny C MY,
the following statements are equivalent:
Y

(a) pu— 1.

(b) i = p1 and limy_, o fRs Ml dt fRs ,ul dt)

(¢) lim;_, oo fRs ) (dt) fRs ) pi(dt) holds for any continuous function

h:R® = R with compact support and for h = 1.
(d) w = p1 and
lim sup & ¢(t) * X(a,00) (ll)(t)) Ml(dt> =

a—00 1EN

Proof. ((a) = (b)) follows directly from Definition and the fact that ¢ € CY.

((b) = (c)): Let h : R®* — R be continuous and have a compact support. Then h € C(R®)
and (c) follows from Definition [2.32]

((c) = (a)): Let ¥ denote the homeomorphism defined in Remark By the equivalence

of (i) and (iii) in [28, Theorem 30.8], (c) implies ¥(u,) — ¥(u1). Invoking Remark
. P .

the latter yields p, — p1, i.e. (a).

((a) & (d)) is a direct conclusion from [206, Theorem 2.20]. O
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The equivalence of (a) and (b) in the above Lemma allows to explicitly point out a metric

that generates 7:

Corollary 2.62. For any gauge function 1 : R — [0,00), the p—weak topology on ./\/lsw
is generated by the metric dy MY x MY SR defined by

dy(p,v) = m(p,v) +

() plde) — | () u(dw'.
Rs Rs

While the above corollary applies to any gauge function, the case where v is a positive
power of the FEuclidean norm is of special interest in view of section [2.5] The following

result characterizes 7.4 for ¢ > 1:

Proposition 2.63. For any ¢ > 1, the || - ||9—weak topology on M? is generated by the
Wasserstein metric dy,s q : MIx ML= R of order q:

dw,s,q(1t, v) := inf { (/ |z —yl|? o(dz, dy)) "o e My, V)} :
RS xR$

where M(u,v) denotes the set of all Borel probability measures on R® x R with p as the
first s—dimensional marginal and v as the second one. For s =1, 7.jq is also generated

by the q—th order Fortet-Mourier metric dpprq : M x M{ — R. The latter is given by

dpntq(p,v) = inf{/R . | — y| max{1, [2["7, |y|*"'} o(dz, dy) | o € Lg, V)} ,
x
where L(p, v) denotes the set of all finite Borel measures on R x R satisfying
o[A x R] —o[R x A] = p[A] —v[A] VA € B(R).
Proof. Combine [169, Theorem 6.3.1] with Lemma [2.61} O

For details on the metrics in the above proposition, refer to [I69]. By the equivalence of
(a) and (b) in Lemma 1—weak convergence implies weak convergence. The converse

statement does not hold true in general:

Example 2.64. Consider the sequence {u;}ieny € P(R) defined by p; == (1 — %)50 + %51
(a similar sequence is used in [107, Example A.43]). By

1 1
/|t| p(de) = (1= )I0] + 7| =1 <00 VIEN
R
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it holds that {u; }1en € M. Fiz an arbitrary bounded and continuous function h : R — R.
Then

im [ h(t) w(dt) = lim (1— %)h(@) + 2ha) = (o) = / h(#) o(dt)
R

=00 JRr - l—00 l

w .
and hence p, — dg. However, since

tim [ e i) =170 [ 12 dufa)

=0

the sequence {u;}ien does not converge with respect to the | - |—weak topology by Lemma

(267

Nevertheless, there are subspaces of Mls/’ on which the relative topology of weak conver-

gence coincides with the relative y—weak topology.

Definition 2.65. Let ¢ : R® — [0,00) be a gauge function. A set M C MY s said to be
locally uniformly y—integrating iff for any p € M and any € > 0 there exists some
open neighborhood N of . with respect to the topology of weak convergence such that

lim  sup ¢(t) " X(a,00) (¢(t)) V(dt) <e
4= ye MNN JRS

The relevance of locally uniformly ) —integrating subsets in the present context is given

by the following result:

Lemma 2.66 ([218, Lemma 3.4]).
For any gauge function ¢ : R — [0,00) and any M C ./\/lff, the following statements are

equivalent:

(a) The relative p—weak topology on M coincides with the relative topology of weak

convergence on M.
(b) M is locally uniformly y»—integrating.

A detailed discussion of locally uniformly ¢)—integrating subsets and generalizations is
provided in [142], where various equivalent characterizations are established. The following
result arises from the application of [142] Lemma 3.1] to a constant sequence of gauge

functions and yields a whole class of locally uniformly @ —integrating sets:

Proposition 2.67. For any gauge function ¢ : R® — [0,00) and any M C /\/lzsp, the

following statements are equivalent:
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(a) M is locally uniformly 1—integrating and relatively compact for the topology of weak

convergence.
(b) M is relatively compact for the —weak topology.

Proof. ((a) = (b)): By Lemma the locally uniformly ¢ —integrating set M is rel-
atively compact for the topology of weak convergence iff it is relatively compact for the

1—weak topology.

((b) = (a)): Consider a sequence {j};en € M that converges weakly to u € P(R®). By
the relative compactness for the p—weak topology, there exists a subsequence of {1 }ien
that converges ¢)—weakly to some v € MY. The equivalence of (a) and (b) in Lemma
implies ¥ = pu and hence A . Consequently, M is locally uniformly ¢—integrating by
Theorem [2.59| and Lemma As above, this implies that M is relatively compact for

the topology of weak convergence. O

The classical Prokhorov theorem (see e.g. section 5 of chapter 1 in [49]) characterizes

subsets of P(R®) that are weakly compact for the topology of weak convergence via tight-
ness. In view of Proposition and Lemma the following generalization for 1)—weak

topologies is of special interest:

Theorem 2.68 ([142, Lemma 5.1]).
For any gauge function 1) : R® — [0,00) and any set M C Mf, the following statements

are equivalent:
(a) M is relatively compact for the 1h—weak topology.

(b) For any € > 0, there exists a compact set K C R® such that

sup P(t) p(dt) <e.
HEM JRS\K

(c) There exists a measurable function k : R® — [0,00) such that

sup /S k(t) p(dt) < oo.

pEM JR

and the set {t € R® | k(t) < l(t)} is compact for any | € N.

The following result provides examples for sets that are relatively compact for the ¢)—weak

topology:
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Lemma 2.69. Let ¢ : R® — [0,00) be a coercive gauge function, i.e. 1)(t) — oo whenever

It|| = oco. Then for any constants K >0 and q > 1, the set

UY(K.q) = e € PRY)| [ oo wlat) < K)

1s relatively compact for the y—weak topology.

1
Proof. Fix an arbitrary constant € > 0 and set r := (%)ftf1 By the coercivity of 1, there

exists a finite constant R > 0 such that ¢ (¢t) > r whenever ||¢|| > R. Let Br(0) denote
the closed | - |—ball of radius R centered at 0. For any u € U¥ (K, q), it holds that

Jog 0w = [ o) pan 2 e [ pan

Br(0) R*\Br/(0) R*\Br(0)

and hence

1 K

vlt) ) < e [ e < =
/JRS\BRw) R SV AG) ra~t

Since Bp(0) is compact, the equivalence of (a) and (b) in Theorem yields that

Uy (K, q) is relatively compact for the p—weak topology. O

Remark 2.70. Subsets of Borel probability measures having uniformly bounded moments
of order ¢ > 1 are known to be useful in the context of stability analysis in stochastic
programming (see e.g. [153], [196], [198], [200], [201]). Fiz any constant 0 < q < ¢'.
By Lemma those sets are relatively compact for the || - ||7—weak topology and hence
locally uniformly | - ||—integrating by Theorem [2.68,

Remark 2.71. In general, the statement of Lemma[2.69 does not hold if v is not coercive:
Consider the constant gauge function 1 : R — R given by 11 = 1 and fix any constants
K,q > 1. Then the y1—weak topology coincides with the topology of weak convergence
and U{m (K, q) is equal to P(R). Consequently, Uf” (K, q) is not relatively compact for the
1 —weak topology.

Remark 2.72. The statement of Lemma[2.69 does not hold if ¢ < 1. In general, sets of the
form Ug’(K, 1) are not locally uniformly y—integrating and hence not relatively compact
for the —weak topology, even if 1 is coercive: Consider the sequence { i} ieny € M3 given
by i == (1 —1)60 + +6. Then {puten C UlH(l, 1) holds by the calculation in Example
2.64 Furthermore, the sequence is weakly convergent but not | - |—weakly convergent.

Consequently, UlH(l, 1) is not locally uniformly | - |—integrating by Lemma .
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2. WEAK CONTINUITY OF RISK FUNCTIONALS

The fixed space version of the Skorohod representation theorem (T heorem states that
weak convergence of probability measures can be translated to almost sure convergence of
random vectors on a fixed atomless probability space. Using Lemma [2.61] a similar result
can be proven for ¢p—weak converging sequences. While it is possible to formulate such
a result whenever the gauge function is a finite Young function (see [141, Theorem 3.5]

for details on the general result in a setting involving Orlicz spaces), only the case where
Y = |- [P with p > 1 is needed in section

Theorem 2.73 (A Skorohod representation for |- |P—weak convergence).

Fiz an atomless probability space (2, F,P) and a constant p > 1. For any sequence
{whien € MY, w; w1 holds iff there exists a sequence {Y;}1en C LP(Q2, F,P) such
that for any l € N, p; is the law of Y; and

lim ||Y; — V3|, =0, (2.14)
l—o00

where || - ||, denotes the LP—norm.

.|P

Proof. (=): By the equivalence of (a) and (b) in Lemma [2.61} 1 K p1 implies py = py.

Hence, the fixed space version of the classical Skorohod representation theorem (Theorem
yields the existence of a sequence of random variables {Y;};eny € L°(Q, F,P) such
that for any [ € N, y; is the law of ¥; and Y; — Y; P—almost surely. By the change-of-
variable formula (Theorem [A 1)),

il = /Q Yi(w)[P P(dw) = /R [t (P oY, ) (dt) = /R P (de)  (2.15)

holds for any I € N. Since y; € MY, the last integral in (2.15) is finite. Consequently,
{Yi}iew C LP(Q, F,P). Again by Lemma [2.61]

lim [[¥;[2 = lim / P u(de) = / P s (dt) = Y22
=0 =00 R R

and hence lim;_, [|Yi|l, = ||Y1]lp. Thus, (2.14) holds by the equivalence of (a) and (b) in
Vitali’s theorem (Theorem [A.2]), since P—almost sure convergence implies convergence in

probability.

(«<): By Vitali’s theorem, (2.14) implies that the sequence {Y;};cn converges to Y; in
probability. In particular, it convergences in distribution by [48, Theorem 25.2] and since
w; is the law of ¥ for any I € N, the latter yields j; — 1 by Lemma Furthermore,
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from the equivalence of (a) and (b) in Vitali’s theorem it follows that

i [ ) = Jim Y0l = Yl = [ 167 pa(at).
=0 JRr l—o0 R

Hence, 1 i p1 holds by the equivalence (a) and (b) in Lemma [2.61 O

2.5. Proving weak continuity

Let Tgn ® 7). 7» denote the product topology of the standard topology on R" and the
|| - ["P-weak topology on MP. The main result in this section is the continuity of @ with
respect to Tgn ® 7). |» under assumptions [Ay], [A,] and a condition originating from the

continuous mapping theorem. The proof proceeds in two steps:

1. Prove that the mapping 6 : R" x MJ" — MY given by

Oz, 1) = 0y @ p)o f~ (2.16)
is continuous with respect to g & 7). v and 7). (Lemma [2.74]).

2. Prove that the mapping R, : M} — R defined in (2.3)) is continuous with respect to

7.jp (Lemma .

The continuity of @ with respect to Tgr @ 7. |» is then implied by the fact that @ = R,06.
Consequently, any restriction of () to an appropriate subset is continuous with respect to
TRe @ T,; by Lemma [2.66| The special case where the entering measure is absolutely

continuous with respect to the Lebesgue measure is addressed in Corollary [2.86]

Lemma 2.74. Assume [Ay] and fizx a constant p > 1. Let (z,p) € R™ x M’ be such
that (0, ® p)[Df] =0, where Dy C R™ x R® denotes the set of discontinuities of f. Then
0 : R™ x M — MY is continuous at (x, ) with respect to Trn @ 7). and 7.jp.

Proof. Consider any sequence {(x;, ) }ien € R™ x MJP that converges to (z,u) with

respect to Tpn ® 7o

Nietd
Then z; — x and hence g, 2 6,. Furthermore, 1y ||—> p implies p; — p by the

equivalence of (a) and (b) in Lemma Since all involved spaces are separable,

5$Z®Mlﬂ>5x®luf
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2. WEAK CONTINUITY OF RISK FUNCTIONALS

holds by [49, Theorem 2.8]. f is Borel measurable by [Af] and (6, ® p)[Ds] = 0 allows to
apply the continuous mapping theorem (Theorem [2.48]):

(0, @) o f1 = (br@p)o f (2.17)
Furthermore, the proof of Lemma [2.10] yields
|f (1, 2) [P < (P28 ([ 2] + 1)

for any [ € Nand z € R®. The constant C' := sup;cy 17(2;) is finite by the local boundedness
of n. Without loss of generality, assume C' > 1 and note that the indicator function

X(a,00) () 18 nondecreasing for any a € R. Thus,

sup [ @2 oo (£ D) (50 )l 2)

IN

sup/ (@) 27 (1217 4+ 1) - X(a,00) (0(@)P2°([|2][77 4+ 1)) (02, © i) (d(, 2))
leN JR™ xRs

= sup /R (@) 2 (|17 +1) - Xame) @2 (|27 + 1)) pu(d)
6 S

< sup [ CP2P(([2]"7 + 1) - X(a,00) (CP2°([[ 2] + 1)) pu(dz)
leN JRs

holds for any @ € R by the Fubini-Tonelli theorem (see e.g. [7, Theorem 11.27]). By

Lemma [2.55, 1y Iz w implies R+ u and the equivalence of (a) and (d) in
Lemma yields

lim sup [ CP2(|1277 4 1) - X(ano) (CP2 (277 + 1) pu(dz) = 0.
a—0 cN JRs

By the change-of-variable formula (Theorem [A.1)), it holds that

lim sup /R 47 Yoo (1E17) (82 @ ) 0 F7)(dt)

a— 00 leN

= lim sup/ [f (@, 2)[" - X(ay00) (1f (5 2)[P) (02 @ pi)(d(, 2)) = 0.
R™ xRS

a—r 00 l1eEN

Combined with (2.17)) the latter implies

|-[P

9(7%#1) = (611 by :ul) © f_l - (6:13 ®/'L) © f_l = 9(:1"7#))
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2. WEAK CONTINUITY OF RISK FUNCTIONALS

L.e. the sequential continuity of 6 with respect to 7Tgn ® 7). »» and 7. p. Since the involved
topologies are metrizable by Theorem that yields the desired continuity of 6 with

respect to Trn & T and 7. ]

The continuity of R, is proven using a result from the theory of Banach lattices (see
chapter 9 in [7] for an introduction and [I55] or [I88] for more details). As Banach lattices

are special Riesz spaces, it is convenient to introduce those spaces first:

Definition 2.75. A Riesz space (E,<p) is a real vector space E endowed with a partial
order <g such that the following statements hold true for any x,y,z € E:

(a) x <gy implies v+ z <g y + z (translation invariance).
(b) x <py implies ax <p ay for any nonnegative o € R (positive homogeneity).

(c) The set {z,y} has a greatest lower bound inf< _{z,y} € E and a least upper bound
sup<  {z,y} € E with respect to <g.

Riesz spaces are named after Frigyes Riesz who first defined them in 1928 (see [I71]). The
theory of Riesz spaces (see chapter 8 in [7] for a basic introduction and refer to [152] and
[217] for a detailed discussion) has many applications in economics (see [8]) and measure
theory: For example, the Hahn decomposition theorem (see [48, Theorem 32.1]) and the
Radon-Nikodym theorem (see [48, Theorem 32.2]) arise as special cases of general results

on Riesz spaces.

A Banach lattice is a Riesz space endowed with a complete lattice norm:

Definition 2.76. A Banach lattice (E,| - ||g,<g) is a real Banach space (E,| - ||g)
endowed with a partial order <p such that (E,<g) is a Riesz space and the following holds
for any x,y € E:

#l<p <5 lyl<z = llzlle < llylle,

where |z|<, = sup< {sup< {0, z},sup<p{0, —2}} denotes the absolute value of z € E

with respect to <pg.

Remark 2.77. The most familiar example of a Banach lattice is obtained by equipping
R® with the Euclidean norm and the order where (x1,...,zs) > (y1,...,ys) whenever
x; > y; holds for all i = 1,...s. Another example is given by the infinite dimensional
space CP(R®) endowed with the supremum norm as defined in and the order where
g > h iff g(t) > h(t) holds for allt € R® (see section 9.1 in [7]).
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The proof of continuity of R, relies heavily on the fact that the underlying LP—space is a

Banach lattice:

Theorem 2.78 (Riesz-Fischer Theorem, see e.g. Theorem 13.5 in [7]).
Forany1 <p < oo, LP(Q, F,P) endowed with the LP—norm and the P—almost sure partial

order is a Banach lattice.

Every convex function ¢ : R¥ — R is Lipschitz continuous on all bounded subsets of RF
(Lemma and hence in particular continuous on R¥. This does no longer hold if
R is replaced with an infinite dimensional Banach space E, since it is always possible
to construct a linear, discontinuous functional using a Hamel basis of E (see e.g. [121]
Example 4.2]). However, for Banach lattices, continuity results are available and will play
an important role in the proof of Lemma The following Theorem is a generalization
of [193| Proposition 3.1]:

Theorem 2.79 (|65, Theorem 4.1]).

Let E be a Banach lattice and o : E — (—00,00] a nondecreasing, convex function. Let
dom p:={e € E| o(e) < oo}
denote the domain of o. Then the following statements hold for any e € int(dom p):

(a) There exists a neighborhood of e on which o is Lipschitz continuous with respect to

the norm on E.
(b) o is subdifferentiable at e.
(c) o(e) = o**(e), where o** denotes the biconjugate of o (see section 11 A in [177]).
The corollary below is an immediate conclusion from Theorem [2.79

Corollary 2.80. Every finite, nondecreasing, convex functional on a Banach lattice is

continuous.

The above results can be applied to p and the Skorohod representation theorem for
| - |P—weak convergence (Theorem [2.73) allows to conclude that R, is continuous with

respect to 7).

Lemma 2.81. Under assumption [A,], the mapping R, defined in (2.3)) is continuous
with respect to the | - [P—weak topology.
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Proof. The space LP(§2, F,PP) from assumption [A,] endowed with the LP—norm and the
P—almost sure partial order is a Banach lattice by the Riesz-Fischer Theorem (Theorem
2.78). By [A,], p is real-valued, convex and nondecreasing with respect to the P—almost
sure partial order. Consequently, Corollary yields the continuity of p with respect to
the LP—norm.

.‘P

Consider any sequence {p;}eny C MY satisfying |—> p1. By assumption [A,], (2, F,P)
is atomless and p > 1 holds. Hence, the Skorohod representation theorem for | - |P—weak
convergence (Theorem yields the existence of a sequence {Y;};en C LP(Q2, F,P) such
that for any [ € N, y; is the law of ¥; and lim;_, ||¥; — Y1 ||, = 0.

Since p is law-invariant by assumption [A,], it holds that {R(s)}ien = {p(¥1) }ien and

the continuity of p with respect to the LP —norm implies

Rp(m) = p(Y1) = p(Y1) = Rp(12).

Hence, R, is sequentially continuous with respect to 7).». Since 7.» is metrizable by
Theorem that entails the desired continuity of R, with respect to the | - [P—weak
topology. O

As stated at the beginning of the present section, the continuity of ) with respect to
TRn @ T|.||» is an immediate conclusion from Lemma and Lemma m

Theorem 2.82. Assume [Ay] and [A,]. Then Q is continuous with respect to Trn @ T)[.|j»
at any (z,p) € R™ x MP satisfying (6, ® p)[Dys] = 0.

Proof. Combine Lemma and Lemma with the fact that Q =R, 0 0. O

The inalienability of the assumption (6, ® p)[Df] = 0 is demonstrated by the following

example:

Example 2.83. Let f : R xR — R be given by f(z,z) := xq01(2) - (2% + ), where X > 0
is a fized constant. Chose p to be the expectation, then Assumptions [Af] and [A,] are
fulfilled for any exponent v > 0 and p = 1. However, the mapping Q : R x Mi — R,
Qz,p) = Jpur f(@,2) (6, ® p)(d(2',2)) is not continuous with respect to Trn ® 7|
Consider the sequence {5% Hen € M% For any continuous function h : R — R, it holds
that

lim [ A(t) d

l—oo JRp

(dl) = lim h(%) — h(0) = /R h(t) bo(dt)

n—oo

~l=
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and hence (5% |—L 0g. However, for any x € R, one obtains

tim Q(r,01) = Jim [ f(2) (5 ©0)(dla, 2)) = im xqo(7) - (27 +A) =0,

l—o0 l—o0 RxR
while Q(z,80) = 22 + X\ > 0. This is due to the fact that (6, ® 69)[Ds] =1 # 0.

The continuity of @ with respect to Tgn ® 7). directly translates to continuity with

respect to Tre @ 75 whenever @ is restricted to an appropriate subset of R™ x MJ?:

Theorem 2.84. Assume [Af|, [A,] and let Qrnxm denote the restriction of Q to the
Cartesian product of R™ and some locally uniformly || - ||"P—integrating set M C MJP.
Then Q|rnx M 1S continuous with respect to the product topology of the standard topology on
R™ and the relative topology of weak convergence on M at any (x,u) € R™ x M satisfying
(0 @ p)[Dy] = 0.

Proof. Since M is locally uniformly || - ||["P—integrating, the relative topologies induced
by Tre @ 7). and e ® 75 on R™ x M coincide by Lemma m Hence, Theorem m
follows directly from Theorem [2.82 O

The following example shows that the restriction to a locally uniformly || - ||"P—integrating

set is essential:

Example 2.85. Consider the mapping f : R x R — R given by f(x,2) = © + z and
choose p to be the expectation. Then [Af] holds with exponent v =1 and [A,)] is fulfilled
with p = 1. Consequently, Q : R x M} = R, Q(z, 1) = [p pg@ + 2 (6, @ p)(d(a’, 2)) is
continuous with respect to Tr @ 71| by Theorem and the fact that Dy = ().

However, Q is not continuous with respect to Tr @ 7L: Consider sequence {j} ey € M}
given by py == (1 — %)(50 + %5;. The calculation in Example shows that j — 8o, while

lli)I?oQ(xmul) =z+1 7& L= Q(xa 50)

holds for any = € R. This is due to the fact that {j; | | € N} C M1 is not locally uniformly
| - |—integrating by Example and Lemma [2.66]

If 11 is absolutely continuous with respect to the Lebesgue measure, (6, ® p)[Dy] = 0 holds

whenever a certain projection of Dy has Lebesgue measure zero:
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Corollary 2.86. Assume [Af], [A)] and let M C MP be locally uniformly ||-||"?— integrating.
Let (z, 1) € R™ x M be such that p is absolutely continuous with respect to the Lebesgue

measure \° and
N[{z e R’ | (z,2) € Ds}] = 0. (2.18)

Then Q|rnxm is continuous with respect to the product topology of the standard topology

on R™ and the relative topology of weak convergence on M at (z, ).

Proof. Since p is absolutely continuous with respect to the Lebesgue measure, (2.18))
implies

(6. © WDy] = pl{z € B | (2.2) € Dy} = 0

and Theorem [2.84] is applicable. O
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3. Stability of two-stage mean-risk models

In this chapter, the results of section[2.5|are applied to derive weak continuity of functionals
arising from two-stage mean-risk models. Here, the function f is given by the optimal value
function of the recourse problem and the verification of assumption [A ¢] becomes a major
issue. Furthermore, situations in which an explicit description of a suitable superset of the
set of discontinuities of f is available are of special interest in view of Theorem By a
classical result from parametric optimization, continuity of the objective function allows for
immediate conclusions about the stability of the mean-risk problem under perturbations

of the underlying probability measure.

After introducing a general framework for two-stage mean-risk models in section
some preliminaries including the mentioned classical stability result by Claude Berge are
provided in section Sections to then examine classes of recourse problems
for which the assumptions of Theorem [2.84] are fulfilled: Section is devoted to linear
recourse problems, while the mixed-integer linear case is considered in section [3.4] A class
of mixed-integer quadratic recourse problems with linear constraints is examined in section
Finally, the results of section apply to the comprehensive class of mixed-integer

recourse models where the continuous relaxation admits a convex description.

Parts of this chapter have also been submitted for publication (see [69] for a preprint).

3.1. Two-stage mean-risk models

Two-stage stochastic programming problems arise from parametric optimization problems
under stochastic data uncertainty and an information constraint. The latter dictates which
decisions have to be taken without knowledge of the realization of the randomness. In the

following analysis, parametric problems of the form

P(z) Iﬁiyn{c(x, 2)+q(z,y,2) |z € X,y € C(x,2)}

shall be considered. Here, X C R" is a fixed nonempty set, the objective is the sum of
the functions ¢ : R™ x R® — R and ¢ : R" x R”™ x R® — R and both the objective and
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the feasible set described by the set-valued mapping C : R x R® — 28" depend on the

parameter z € R,

Let Z : ' — R® be a known random vector on some probability space (€, F',P') and
consider the problem P(Z(w)). Depending on the which interplay between decision and

observation is assumed, three settings are possible:

(a) Z(w) can be observed before deciding on x and y. In this case, P(Z(w)) boils down

to a deterministic problem.

(b) If both x and y have to be chosen without knowledge of Z(w), the resulting problem

is a one-stage stochastic optimization problem.

(¢) Z(w) can only be observed after making the decision on x. The variable y can
then be chosen under complete information and the resulting problem is a two-stage

stochastic optimization problem.

In (b) and (c), the stochasticity is usually assumed to be purely exogenous. The latter
means that the distribution of Z does not depend on the choice of z and y. Note that
(b) arises as a special case of (c¢), where the decision on y does not influence the outcome.
Furthermore, the case where Z(w) can only be observed after making the decision on y
and z is chosen under complete information can be neglected due to the symmetry of P(Z)

in z and y.

In the following, setting (c) and purely exogenous stochasticity will be assumed. After
deciding on x and observing Z(w), the optimal decision y can be obtained by solving the

so called recourse problem
min{q(z,y, Z(w)) | y € C(z, Z(w))}- (3.1)

Since both = and Z(w) are assumed to be known, (3.1 is a deterministic problem. This

consideration allows to formulate the two-stage stochastic programming problem as
min{c(z, Z()) + min{g(,y. Z@)) | y € Cla, Z@))} | x € X}, (3.2)

Note that problem ([3.2)) is not well defined in view of setting (c). Possibilities of resolving
this issue include robust approaches and models based on probabilistic constraints or

stochastic dominance relations. However, the focus of the present analysis is on mean-risk

36



3. STABILITY OF TWO-STAGE MEAN-RISK MODELS

models: Consider the mapping f : R® x R® — R := [~00, o] defined by
£(2,2) 1= ele 2) + infa(a,,2) |y € Ol ). (33)

Under assumptions which guarantee finiteness and measurability, f induces a mapping
foy : R" — LY, F', ') via fi(w) := f(x,Z(w)). The decision on z can now be taken
based on some ranking of the random variables in the family fx = {f, | = € X}.
Assuming that fy C LY(QY, F',P'), applying the expectation yields the well defined, risk
neutral model

min{ | J(@, 7)) P'(do) | € X}, (3.4)

Mean-risk models allow to take into account risk aversion by adding some quantification
of risk to the objective. Note that these models depend on the underlying random vector
Z. In practice, only an approximation of Z may be available, which has motivated the
investigation of the behavior of mean-risk models under perturbations of Z. If the quan-
tification of risk is law-invariant, one might equivalently work with the Borel probability
measure P’ o Z~! induced by Z. For qualitative stability analysis, one typically considers
perturbations of this measure with respect to the topology of weak convergence. The
following example demonstrates that in such a setting, even problem may be highly

unstable:

Example 3.1. Fixz any parameter A > 0 and consider the one-stage setting where X = R,
c:RxR — R is given by c(x,z) = xq01(2) - (#* + X), ¢ = 0 and C = R. Let the true
random vector Z induce the measure P’ o Z=1 = &g, so that problem (3.4)) takes the form

min /R £, 2) Gold2) = min x(o}(0) - (2% + X) = min @ + A,

The unique optimal solution is given by x = 0 and yields the value \. By Ezample[2.83, it

holds that d1 LL 8o and hence 61 = 8y as | — oo. However, for any | € N, approzimating
1 1

do by (5% results in the problem

1

. . Iy (2 — i
min /R f(,2) 8y (d=) = min xqoy(7) - (22 + X) = min 0. (3.5)

Every xz € R is an optimal solution of (3.5) and yields the value 0 < A. This instability
results from the fact that (0, ® d9)[Dy¢) =1 # 0 for any x € R.

Such instabilities may even occur if f is smooth:

Example 3.2. Consider the one-stage setting where X = [0,1], ¢ : R x R — R is given
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by c(r,z)=2+2,¢q=0,C=R and P’ o Z=! = 6y. Problem (3.4) takes the form

min /f:cz do(dz) = min =z
z€0,1] z€[0,1]

and yields the optimal value 0. By Erample (1 - %)50 + %55 2 6 as | — oo.
However, the calculation in Example shows that for any | € N, approximating dg by
(1= $)d0 + +6; results in the problem

min [ f@2) (0= Do+ 36)(d=) = min 21,

which has the optimal value 1. Hence, the optimal value function of (3.4]) can be discontin-
uous with respect to the topology of weak convergence even if f has continuous derivatives

of all orders.

In the following, the focus will be on situations where assumption [Af] holds for the
function f defined in and the risk is quantified by a mapping p satisfying assumption
[A,]. Note that the expectation fits into this framework by Example Furthermore,
Remark allows to confine the analysis to a single mapping instead of a weighted sum.

The models to be analyzed may be represented as
min{Q(e ) | @ € X}, (3.
where 1 =P o Z=! € P(R®) and the objective function
Qz, 1) = Ry((8: ® ) o f1)

is exactly as in (2.4). Hence, Theorem can be applied to derive continuity of a
restriction of @ with respect to the product topology of the standard topology on R™ and
the relative topology of weak convergence on a suitable subset M of P(R?®). The latter

allows to draw conclusions about the optimal value function ¢ : M — R,
o) = nf{Q(z. 1) | = € X} (3.7)
and the optimal solution set mapping ® : M — 2%,

O(p) :={r € X | Qx,p) = p(pn)} (3.8)

of problem (3.6). The subsequent sections identify classes of parametric problems P(z)
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for which the mapping f induced via (3.3) automatically fulfills assumption [A]. This is

done by imposing verifiable assumptions on the data, i.e. the mappings ¢, g and C'.

3.2. Preliminaries

The following assumption allows to confine the analysis to the optimal value function of

the recourse problem, which may be represented as f — c:

Assumption 3.3 ([A.] : Assumptions on c¢).
¢ is continuous and such that there exist a constant v. > 0 and a locally bounded mapping
Ne : R™ — R satisfying

le(z, 2)| < me(2) (2] + 1)

for any (x,z) € R" x R®.

Remark 3.4. If ¢ is continuous and does not depend on z, assumption [A.] is fulfilled

with exponent 0.

Lemma 3.5. Assume [A.] and let [A¢] be fulfilled for f —c with exponent y¢_. > 0. Then
[A¢] is fulfilled for f with exponent v = max{ve, Vf—c}. Furthermore, Dy = Ds_..

Proof. Under the given assumptions, f is the sum of two Borel measurable functions and

hence Borel measurable. Let 7¢_. denote the locally bounded mapping from assumption
[A¢] for f —c. Then

[f (@, 2)] <le(z, 2)[ +[(f — ) (=, 2)]
< me(x)((|2[17 + 1) + np—c(@) (127 + 1)
< (ne(®) + mp—e(@)) (|20} 4 1)

holds for any (z, z) € R"xR®. Since the mapping n(z) = n.(x)+n7_.(x) is locally bounded,
the latter means that assumption [A[] is fulfilled for f with exponent v = max{vyc,vf—c}.

Finally, Dy = Dy_ is a direct conclusion from the continuity of c. O
Properties of set-valued mappings can be expressed using the notion of hemicontinuity:

Definition 3.6. Let S and T be topological spaces. A mapping ¥ : T — 2% is called
upper hemicontinuous at some ty € T iff for any open set O C S satisfying Y(tg) C O,
there exists a neighborhood N of to such that Y(t) C O for any t € N'. T is called lower
hemicontinuous at ty iff for any open set O C S satisfying Y (to) N O # 0, there exists
a neighborhood N of to such that Y(t) N O # O for any t € N.
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The following classical result by Claude Berge will in particular be applied to derive
qualitative stability of problem (3.6) from the continuity of Q:

Theorem 3.7 ([41, Theorem 2]).

Let S, T be metric spaces, T : T — 25 compact-valued and v : S x T — R continuous
with respect to the first argument. Assume that for any s € S, v(s,-) is continuous and
that Y is upper hemicontinuous at some ty € T. Then the mapping v* : T — R given
by v*(t) = infs{v(s,t) | s € Y(t)} is lower semicontinuous at to. If, in addition, Y is
lower hemicontinuous at to, v* is continuous and the mapping Y* : T — 25 defined by
T*(t) = {s € T(t) | v(s,t) = v*(t)} is upper hemicontinuous at ty. Furthermore, Y*(to)
1§ nonempty and compact.

Refer to section 4.2 in [20] or the recent work [154] for various generalizations of the above
result. It is well known that the statement of the Theorem [3.7] does not hold in general if
T is not compact valued (see e.g. [I51] for a counterexample and [102] for an extension
of Theorem based on a so-called inf-compactness condition). However, the following

lemma is still applicable if the feasible set is fixed (see e.g. section 4.1 in [55] for a proof):

Lemma 3.8. Let S, T be metric spaces, v : S xT — R a function and Yo C S a fized set.
Assume that for any s € S, v(s,-) is upper semicontinuous at to € T. Then the mapping

v T — R, v*(t) = infs{v(s,t) | s € To} is upper semicontinuous at to.

3.3. Linear recourse

This section examines the case where the recourse is given by a linear problem in y. Let

(3.1) take the form

min{g(z, Z(w)'y | Ay = h(z, Z(w)), y = 0}, (3.9)

where A € RFX™ is a matrix and g : R” x R® — R™ and h : R” x R® — R* are mappings.
The following classical result from parametric optimization is a conclusion from the basis
decomposition theorem in [209] and will be instrumental in the analysis of (3.9)):

Theorem 3.9. Let A € RF*™ have full rank. Then the mapping @un : R™ x RF — R
defined by

rin(ti,t2) = if;f{tlTy | Ay = t2, y > 0}

is finite and continuous on the polyhedral cone D(A) x pos(A), where

D(A):={t; eR™ [{u e R* | ATu <t} # 0}
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and pos(A) := {Ay | y € R™, y > 0}. Moreover, there exist matrices By, ..., By € RF*™
and polyhedral cones K1,...,Kny C R™ x R* such that

N
U K; = D(A) x pos(A), int K;Nint K; =0 wheneveri # j
j=1

and
Quin(ti,t2) =ty Bit1 ¥(t1,t2) € K;.

Furthermore, for any (t1,t2) € D(A)xpos(A), @iin(t1,-) is convex on pos(A) and piin (-, t2)

is concave on D(A).
Theorem [3.9] motivates the following assumption:

Assumption 3.10 ([Arp] : Assumptions for linear recourse).

A has full rank, ¢ and h are continuous and for any (x,z) € R™ x R®, it holds that
4(z,z) € D(A) and h(x,z) € pos(A). Furthermore, there exist constants yn,vg > 0 and
locally bounded mappings np,ng : R™ — R such that

1Az, )| < nu(@)((|2[1"" + 1) and [lg(z, 2)|| < ng(x) (2] +1)

hold for any (x,z) € R™ x R®.
Remark 3.11. g(z,z) € D(A) holds in particular if §(x,z) > 0.
The first part of [Ar p] is a standard assumption in linear two-stage stochastic programming

(see e.g. [I81], [184]). The next theorem examines the stability of problem (3.6 with linear

recourse:

Theorem 3.12. Assume that [A ], [A,] and [App] are fulfilled and let f : R" x R® — R
be given by
flw,2) = ez, 2) + nf{q(z,2) 'y | Ay = h(z,2), y = 0}.
y

Set v := max{7e, vg+n} and let M C M be locally uniformly || - || 7P —integrating. Then
the optimal value function ¢ defined in 1s upper semicontinuous with respect to the
relative topology of weak convergence on M. If X is compact, ¢ is continuous and the
optimal solution set mapping ® : M — 2%\ {0} defined in is compact-valued and

upper hemicontinuous with respect to the relative topology of weak convergence on M.

Proof. By assumptions [A.], [Arp] and Theorem [3.9

f(@,2) = c(x, 2) + oin(q(, ), h(z, 2))
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is a composition of real-valued, continuous functions. Consequently, f is real-valued and

continuous on R” x R®, i.e. Dy = (). In particular, f is Borel measurable.

Set kp := max;—1,..N ||BjH£(Rm’Rk) < o0, where By,..., By are the matrices from Theo-
rem (3.9 and || - || ;(gm r#y denotes the operator norm. Fix any (z,z) € R" x R*. By [Arp]
there exists an index j € {1,..., N} such that (¢(z, 2), h(z,z)) € K; C D(A) x pos(A).

Consequently,

|(f =)@, 2)| = [h(w,2)" Bja(w,2)| < wpllh(z,2)|l|a(z, 2)|
< wpnn(e)ng(x) (|27 + V(=] + 1)
< i g (2)ng(x) (2] 77 +1).

Since n¢_.(z) := 3rpnp(x)ng(x) is locally bounded, assumption [A(] is fulfilled for f with
exponent v by Lemma (3.5 Hence, Theorem |2.84] is applicable and yields the continuity
of Q|rnxm With respect to the relative topology induced by Trn ® 7.

Since the feasible set X is fixed, the continuity of the objective immediately entails the

upper semicontinuity of ¢ by Lemma [3.8] The stronger statements for compact X follow
directly from Theorem [3.7] O

3.4. Mixed-integer linear recourse

In this section, mean-risk models with mixed-integer linear recourse are considered, i.e. C
and f take the form

C(x,z) ={(y1,y2) € R™ x 2% | Ajy1 + Asya = h(z,2), y1,y2 > 0} (3.10)

and
Fla,2) = e(w,2) + inf fal v +ad s | (n,92) € Clo,2), (3.11)

where ¢; € R™, go € R™2, Ay € RF*™1 Ay € R¥¥™2 and the mappings ¢ : R” x R® — R
and h : R® x R® — RF are fixed. Note that only the right-hand side of the constraint
system depends on (z,z), while the objective function of the recourse problem is fixed.
In the context of two-stage stochastic programming, similar recourse problems have been
studied e.g. in [153], [195], [200] and [201]. As in the linear case, a classical result from

parametric optimization (see [22], [53]) can be applied to analyze f:

42



3. STABILITY OF TWO-STAGE MEAN-RISK MODELS

Theorem 3.13. Let A1, Ay have rational entries and assume that

pos(A1) + {Aays | yo € 2, yp > 0} = R* (3.12)

{fueRF | Alu < g1, AJu < g} # 0. (3.13)

Then the mapping prprrp : RF 5 R defined by

omrLp(t) == yiflyfg{QIyl + o y2 | A1y + Agya = t, y1,y2 > 0, y2 € Z™2}

has the following properties:

(a) orprrp is real-valued and lower semicontinuous on RE.

(b) There exists a countable partition R¥ = (J52, T, such that for any j € N, the re-

=1
striction of parrrp to Tj is piecewise linear and Lipschitz continuous with a uniform

constant not depending on j. The restriction @MILP|73 admits a representation as

pmrLplT;(t) = H;iQn{q; y2 + max ul (t— Asys) | ya € Ya(1)},
where Ya(t) = {ya € Z™2 | t € pos(A1) + Aay2, y2 > 0} and uy,...,up are the
vertices of the polyhedron {u € RF | AIu < q1}. Moreover, for any j € N, there
exist tj1,...,t;N € R* satisfying

N

T; = ({t;a} + pos(A1) \ | J({tja} + pos(4r))

1=2

and N does not depend on j.

(¢) There ezist constants o, B > 0 such that

lomrnp(t) — omrnp(te)] < aof|ty — tof| + 5

holds for any t1,ty € R¥,

Remark 3.14. (3.12) is referred to as complete mixed-integer recourse, while (3.13)) is
called sufficiently expensive recourse.

Because of the above theorem, (3.12) and (3.13|) are often assumed when dealing with

mixed-integer linear recourse problems in two-stage stochastic programming (see e.g. [153],
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[200], [201]). In view of (3.10) an additional assumption concerning h is needed:

Assumption 3.15 ([Ayp] - Assumptions for mixed-integer linear recourse).
A1, As have rational entries and are such that (3.12)) and (3.13) are fulfilled. Furthermore,

h is continuous and there exist a locally bounded mapping nn : R™ — R and a constant
Yr > 0 such that
17 (x, 2)[| < nw(2) (|2 + 1)

holds for any (x,z) € R™ x R®.

Theorem 3.16. Let f be given by and assume that [A.], [A,] and [Aprrp] are
fulfilled. Set v := max{ye, v}, let M C M be locally uniformly || - ||"P—integrating and
po € M such that (0, ® pio)[Dy—c] = 0 holds for any v € X. Then ¢ : M — R defined in
is upper semicontinuous at g with respect to the relative topology of weak convergence
on M. If X is compact, ¢ is continuous at o and ® : M — 2% defined in is upper
hemicontinuous at pg with respect to the relative topology of weak convergence on M. In

this case, ®(uo) is nonempty and compact.

Proof. By assumption [A,/rrp] and part (a) of Theorem

(f =)=, 2) = omrrp(h(z, 2))

is real-valued and the composition of a continuous and an upper semicontinuous function.
Consequently, f is real-valued and upper semicontinuous on R™ x R® by assumption [A]

and hence Borel measurable. Let o and 8 denote the constants from part (c) of Theorem
and set 3 = al|h(0,0)]| + 8 + [arrzp(h(0,0))]. Then

I(f =)z, 2)| <lemrLp(M(z,2)) = ormrLp(h(0,0))| + [prrLp(h(0,0))]
< a|lh(z,z) — h(0,0)]| + 8 + |earrLp(h(0,0))]
<alh(z,2)| + 8 < (anu(z) + B)(|Iz]™" + 1)

holds for any (z,z) € R" xR®. Since ns_.(x) := an(x)+ 3 is locally bounded, assumption
[Af] is fulfilled for f with exponent v by Lemma Hence, Theorem is applicable
and yields the continuity of Q|xxam at any (x, ) € X x M satisfying (6, ® pu)[Dy—c] =0
with respect to the relative topology induced by mgrn ® 7;; on X x M. Since the feasible
set X is fixed, the stated stability is a direct conclusion from Lemma [3.§ and Theorem

B O

The following result points out a special case in which (0, ® u)[Ds_.] = 0 holds for all
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r e X:

Proposition 3.17. Let f be given by and assume [Aprrrp]. In addition, assume
that p is absolutely continuous with respect to the Lebesgue measure, k = s and that for
any x € X, the mapping hy : R® — R® defined by h,(z) = h(z, 2) is a C*—diffeomorphism.
Then (0 @ p)[D¢—c] =0 holds for any z € X.

Proof. Part (b) of Theorem implies that ¢yrrp is continuous outside of

U [{A2y2} + O(pos(A1))]. (3.14)

Y2E€ZM2, y22>0

Since the set in (3.14) is contained in a countable union of hyperplanes, the Lebesgue
measure of D
x € X, then

is equal to zero. [Aprrp] implies Dy_. C h=YD Fix any

$PMILP WMTILP)'

(0e @ po)[Dy—c] = pul{z €R* | (z,2) € Dy_}]
<pl{z €R?|(z,2) € hil(‘DSDMILP)}]
:M[h;1 (DSOMILP )]-

hy is a Cl—diffeomorphism and hence the Lebesgue measure of h;'(D,,,,, ) is equal
to zero by [189, Lemma 7.25]. Consequently, (6, ® o)[D¢—c] = 0, since p is absolutely
continuous with respect to the Lebesgue measure. O

3.5. Mixed-integer quadratic recourse

In this section, recourse problems with quadratic objective, linear constrains and mixed-

integer variables are considered. Consequently, C' and f take the form
C(z,2) = {y € R™ x Z™ | Ay < h(w, )}

and
Fl,2) = cla,2) +inf{y" Dy +d(z,2) Ty |y € O, 2)} (3.15)

where mi 4+ mo = m, D € Q™*™ is a symmetric, positive definite matrix and A € QF*™,
The linear part of the objective and the right-hand side of the constraint system are given
by mappings d : R x R®* — R™ and h : R® x R® — R, respectively.

Remark 3.18. Stability of two-stage stochastic programs with mized-integer quadratic
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recourse has been analyzed in [67)]. While the authors of the mentioned paper also con-
sider the situation where D is positive semidefinite, they confine their stability analysis to
MEeasures in

Pz = {ue P(RY) | plE) = 1}, (3.16)

where = C R® is a fized compact set. Note that for any gauge function v : R® — [0, 00)
and any compact set = C R®, P=z C MY s relatively compact for the V—weak topology by
Theorem and hence locally uniformly y—integrating by Proposition [2.67.

Furthermore, [64] only examines an objective function that is based on the expectation
(although their model may reflect some kind of risk-aversion, see page 465 in [64] for
details) and assumes d and h to be of a special form (for any fixed z, d is linear in x,
while h does not depend on x). Consequently, the present analysis allows to extend some

results of [6|] in various directions.

Several stability results are available for parametric programs with linear constraints (see
e.g. [18], [45], [46], [95], [120], [136], [137], [146], [147], [205] for continuous and [I18] for
integer variables and refer to [20] (chapter 5), [21], [63] or [64] for the mixed-integer case).
The following theorem is a combination of [63, Theorem 2.2] and [64, Lemma 2.7, Remark

2.8] and will be used to analyze f:

Theorem 3.19. Assume that C'(t) == {y € R™ x Z™2 | Ay < t} # 0 holds for any
t € R*. Then the mapping emigp : R™ x R*F — R defined by

ormiop(u,t) = igf{yTDy +u'ylyel(t)}

is real-valued and lower semicontinuous on R™ x R*. Furthermore, there exists a constant

kmipqQ > 0 such that
[onmrqr(u,t) —emigpr(u, 1) < karrgp(max{||(u, )|, | (', )|} (Jlu—u'[| + ]|t =#'||+ 1)+ 1)

holds for any (u,t), (u',¥') € R™ x R¥.
The following assumption is motivated by Theorem

Assumption 3.20 ([Ay7gp] : Assumptions for mixed-integer quadratic recourse).
C'(t) # O for any t € R*, the mappings d and h are continuous and there exist constants
Y4, Y = 0 and locally bounded mappings ng,np, : R™ — R such that

ld(z, 2)[| < na(z)([[2[™ + 1) and [|h(z, 2)|] < na(z)((|2]™ + 1)
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hold for any (z,z) € R™ x R®.
Assumption [Apsrgp] admits the following result:

Theorem 3.21. Let f be given by and assume that [A.], [A,] and [Argp] are
fulfilled. Set v := max{~¢, 2V, 274}, let M C M be locally uniformly || - |"? —integrating
and py € M such that (6, @ po)[Dy—c] = 0 holds for any x € X. Then ¢ : M — R
defined by is upper semicontinuous at pg with respect to the relative topology of weak
convergence on M. If X is compact, o is continuous at g and ® : M — 2% defined in
s upper hemicontinuous at pg with respect to the relative topology of weak convergence

on M. In this case, ®(up) is nonempty and compact.
Proof. By assumption [Aps7gp] and Theorem

(f =)z, 2) = pmrgr(d(z, 2), h(x, 2))

is real-valued and the composition of two continuous and one lower semicontinuous func-
tion. Consequently, f is real-valued and lower semicontinuous on R™ x R® by [A.]. In
particular, f is Borel measurable. Set ¢o := |pamrqpr(d(0,0),h(0,0))] + kaprgp and
no := ||(d(0,0), 2(0,0))||. For any (z, z) € R" x R*, Theorem [3.19] yields

[(f =)@, 2)| <lemiqr(d(z,2),h(z,2)) — emir(d(0,0), h(0,0))] + vo — kmigp
< kmigp max{||(d(z, z), h(z, 2)) [, no}(|d(z, 2) | + [[h(z, 2)|| + 2n0 + 1) + w0
< rmrqp(lld(z, 2)|| + [h(z, 2)]| + 2n0 + 1)* + w0
<K ([ld(z, 2)|I” + [1h(z, 2)|* + 1),

where &' := 9kprrQp(2n0 + 1) + ¢g. By assumption [Arrgp], the latter implies

|(f =)@, )| < wma(@)* (127 + 1)% + &' (@) (|2l + 1)% + &'
< np—e(@) (|22t 4 1),

where ny_c(z) := 8" (n4(x)? + np(x)? + 1) is locally bounded. Hence, [Af] is fulfilled for
f with exponent v by Lemma and assumption [A.]. Consequently, Theorem m
Lemma and Theorem are applicable and yield the stated stability. O

The following remark points out a case in which the assumption (0, ® p0)[D¢—c] = 0 for
all x € X of Theorem [3.21]is automatically fulfilled:
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Remark 3.22. Assume that [A.], [A,] and [Arrgp] are fulfilled and that the projection

of C(z,z) to the integer components, i.e. the set
{yo € 2" | Fy1 € R™ : (y1,142) € C(x, 2)},

does not depend on x and z. Then f is continuous on R™ xR® by [64, Lemma 2.9]. Hence,
Dy_. = 0.

3.6. Mixed-integer recourse problems with convex continuous

relaxation

In this section, a fairly general class of recourse problems is considered: Let C' and f be
given by
C(x,2) ={y e R™ x Z™ | g(y) < h(z,2)}

and
f(z,2) =c(x,2) + irylf{v(y) |y e C(x,2)}, (3.17)

where mj + mg = m, the right-hand side of the constraint system is given by the mapping
h:R"xR® — RF v:R™ = Ris convex and g = (g1,...,9x) : R™ — R* is such that
for any i € {1,...,k}, ¢; is convex and has a closed epigraph. The following well known

result about convex functions will be useful in the analysis of f:

Lemma 3.23. Let v : R™ — R be convex. Then for everyr > 0, v is Lipschitz continuous
on B,(0) with constant

Lo(r) ::2< max |u(y)y+2v(0)|>. (3.18)

T \ye{2r,—2r}m

In particular, v is continuous on R™.

Proof. Combine Lemma A and Theorem A in [I73]. O

Denote by Cig : RF — 2R™ the set-valued mapping

Crar(t) :=={y e R" | g(y) < t}.

The following is known about Cl.¢; :
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Theorem 3.24 ([19, Corollary 5]).
Assume that Cpe(t) # O holds for any t € R and that Cre(0) is compact. Let ty,... 1
denote the components of t € R¥, then for any r > 0,

K(T‘) = sup lnf{Hy B y/H | y/ € Crel(t)}
t€ B (0), y¢Cror(t) Max{g(y) —t5 | 7 =1,... k}

1$ finite and such that
doo(Crer(t), Crea(t')) < K(r)||t — || V¢, € B,(0),

where do, denotes the Hausdorff distance.
In view of [Af], an additional assumption allowing to bound the growth of K (r) is needed:

Assumption 3.25 ([Acony] : Assumptions for mixed-integer convex recourse).
Cre1(0) is compact, Crer(t) N (R™ x ZM2) £ () for any t € R¥, h is continuous and there
exist a locally bounded mapping n, : R®™ — R and constants vy, ky, Yo, KK, YK > 0 such
that

1Az, 2) | < mu(x) (|21 + 1), |o(y)] < solllyl™ +1) and K(r) < kg (7 +1)

hold for any (x,y,z) € R™ x R™ x R* and r > 0.
The above assumption admits the following result:
Theorem 3.26. Let f be given by (3.17) and assume that [A.], [A,] and [Acon,| are
fulfilled. Set

v = max{ye, 7 (vx + 1) (7w + 1)},
let M C MIP be locally uniformly || - ||"P—integrating and assume that pg € M is such
that (6, @ po)[Dy—c] = 0 holds for any x € X. Then ¢ : M — R defined by [(3.7) is
upper semicontinuous at po with respect to the relative topology of weak convergence on
M. If X is compact, ¢ is continuous at py and ® : M — 2% defined in (3.8) is upper

hemicontinuous at pg with respect to the relative topology of weak convergence on M. In

this case, ®(uo) is nonempty and compact.

Proof. Fix any (x,z) € R™ x R®. Since g is continuous by Lemma Crei(h(zx, z))
is closed and the boundedness of C;(0) and Theorem yield that Cye(h(zx,z)) is
bounded. Consequently,

C(x,2) = Cre(h(z,2)) N (R™ x Z™2)
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is the intersection of a compact and closed set and thus compact. Furthermore, v contin-

uous by Lemma [3.23] which implies that
inf{v(y) | y € C(r,2)}
is finite and the infimum is attained. Hence, f is real-valued and admits the representation

f(z,2) = c(z, z) + min,{v(y) | y € C(x, 2)}.

C' is upper hemicontinuous: Otherwise, there would exist a point (zg,29) € R™ x R®, an
open set O C R™ and sequences {(z;, z;) hien € R™ x R® and {y; }1en € R™ such that

C(xo,20) C O, (x1,2) € B%(xo,zo), h(zxy, z) € B%(h(:po,zo)), y € C(x,2) and y; ¢ O
hold for any [ € N. By Theorem [3.24]

Sup doo(Crer(M(z0, 20)), Crei(h(x1, 21))) < K([[h(z0, 20)[| + 1),

which implies that

Uw} € (JCna) € | Cralhlznz) S {Cra(h(zo,20))} + Bi(jn(ao,z0))+1)(0)
=1 =1 =1

is bounded. Consequently, y; — 7 for some y € R™ can be assumed without loss of
generality. y; € C(xy,2) C R™ x Z™2 holds for any [ € N and implies y € R™ x Z™2.
Furthermore, by h(x;, z;) — h(xo, z0), Theorem yields that g € Cp.ei(h(z0, 20)). Thus,

g € Crer(h(zo, 20)) N (R™ x Z™?) = C(x0, 20) C O.
On the other hand, y; ¢ O for any [ € N and O is open, which yields the contradiction
y ¢ O. Hence, C' is upper hemicontinuous.

Since h and v are continuous, the upper hemicontinuity of C' allows to apply Theorem
to conclude that f — ¢ is lower semicontinuous. By [A.], the latter implies that f is lower

semicontinuous and hence Borel measurable.

Let (z,2) € R™ x R® be fixed. Based on the considerations above, there exist y* € C(z, 2)
and yj € C(0,0) satistying f(x,z) = c(x,z) + v(y*) and f(0,0) = ¢(0,0) + v(yg). Since
Cret(R(0,0)) is compact,

do := max{|ly —¢/|| | v,%" € Cret(h(0,0))}
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is finite. Theorem and assumption [Acon,| yield

[v* =¥l < doo(Crer(h(, 2)), Cra(h(0,0))) + do
< K([|7(z, 2)|| + [[2(0, 0)[| + 1) ([[R(z, 2)[| + [[2(0,0)]|) + do
< 26 (||B(z, 2)[| + [|R(0,0)[| + 1) + do
< K (h(a, 2| + 1),

where k* 1= 27K 251 (|| (0, 0)|] + 1)7% T + dy. Let Ly (||ly* — yill + |lygll + 1) be given by
" [AConv} imphes

Ly(lly™ = woll + llwoll +1) < 2[v(y)| + 4[v(0)|

max
ye{E2(ly*—ys I +lyslI+1)}™
< 2k (2vm)" (lly" = woll + llwo Il + 1) + 2k, + 4|v(0)]
< wr(ly* —yol™ + 1),

where k1, 1= 2k, (4v/m) " (||l + 1) + 2k, + 4|v(0)|. Since
1y < lly" = woll + llwoll + 1,
Lemma [3.23| and the above inequalities yield

[(f =)@, 2)] <|v(y™) — vyl + [v(yo)l
< Lo(lly* = yoll + llwoll + Dllv™ — woll + [v(yo)]
<26y — wpll T + 261 + [0(yg)]
< 26 (K) (e, 2) [ + 1) 4 26 + [u(yg))|
< R(||h(z, 2)|| 0RO 4 1),

where & 1= 2725 (k%) + 2k + |o(yg)|. Finally, [Acony] implies

|(f = )@, 2)| < Ry () OK DD (2| 1) CreA DO 4 g
< mpe(@)(||2|[mOR IO ),
where 17_c(z) = R(2n,(z)) KD F) 4 & s locally bounded. Consequently, [A;] is
fulfilled for f with exponent v by Lemma [3.5] and Theorem [2.84] is applicable. The stated
stability is a direct conclusion from Lemma, [3.8 and Theorem O

If all variables in the recourse problem are continuous, the assumption (J; ® po)[Dy—c] =0
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3. STABILITY OF TWO-STAGE MEAN-RISK MODELS

of Theorem holds automatically:

Remark 3.27. Assume that [A.], [Ay] and [Acony] are fulfilled and that there are no
integrality constraints in the description of C, i.e. that C(x,z) = Cre(h(z,2)) holds
for any (x,z) € R™ x R*. Then C is both upper and lower hemicontinuous by Theorem
3.24. Thus, the mapping [ given by is continuous by Theorem . Consequently,
Dy .= 0.
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4. Stability in stochastic bilevel
programming

This chapter applies the results of section to derive weak continuity of functionals
arising from stochastic bilevel problems with mean-risk objective functions. In this setting,
the function f is essentially given by the optimal value function of a parametric problem,
where only optimal solutions to the lower level problem are feasible. This results in
weaker analytical properties and poses additional difficulties in view of the verification of

assumption [Ay].

The framework of mean-risk stochastic bilevel programming is introduced in section 4.1
while section is devoted to the case where the lower level problem is quadratic and
uniquely solvable. Finally, section [4.3]examines the situation where the lower level problem
is quadratic and allowed to have more than a single solution. However, in section it
is assumed that the randomness does not affect the lower level objective function. In the
vein of chapter [3| sufficient conditions for stability with respect to perturbations of the

underlying measure are discussed.

Parts of this chapter have also been submitted for publication (see [68] for a preprint).

4.1. Mean-risk stochastic bilevel problems
Consider the parametric bilevel optimization problem
"min"{c(z,z) + q(x,y,2) |z € X,y € C(z,2)}, (4.1)
x

where the leader variable x is to be chosen from a fixed nonempty set X C R" and the
upper level objective function is given as the sum of the mappings ¢ : R” x R®* — R and
q:R"xR™xR* - R. In (4.1), z € R® is a parameter, while y reflects the follower’s

decision and is an optimal solution to the lower level problem given by the multifunction
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4. STABILITY IN STOCHASTIC BILEVEL PROGRAMMING

C:R" x R — 2B™
Clz,z) = argminy{yTDy +d(z,2) "y | Ay < h(z, 2)},

which involves matrices A € R¥*™ and D € R™™ and mappings d : R x R® — R™
and h : R™ x R® — R¥. Without loss of generality, D is assumed to be symmetric. Note
that the minimum in is only taken with respect to x, which reflects the assumption
that the decision on y is made by a different actor (the follower) who is able to observe
x beforehand. Since the quadratic program defining C' may have more than one optimal
solution, problem is not well defined in general. In bilevel optimization, this issue
is typically resolved by considering either the best (optimistic approach) or the worst
(pessimistic approach) y with respect to the upper level objective function. While the

optimistic approach yields

Popt(2) - min{c(z, 2) + min{q(z,y, 2) [y € C(x,2)} | = € X},

::fOPt($>z)
the pessimistic one results in the problem
Ppes(2)  min{e(w, 2) + max{a(w,.2) | y € Cla, 2)} | = € X}

= mmin {c(z,2) — m;n{—q(a?,y,z) |y e C(z,2)} |z e X}.

::fpes(zvz)

Both P, (z) and P, (z) are well defined and still depend on the parameter z. Under
stochastic data uncertainty and an information constraint, these programs give rise to
stochastic bilevel problems: For the following analysis, z is assumed to be the realization
of a known random vector Z(w) : ' — R® defined on some probability space (', F',P').
Depending on which interplay between decision and observation is assumed, three settings

are possible:

(a) Z(w) can be observed before deciding on x. In this case, Py (Z(w)) and Ppes(Z(w))

boil down to deterministic bilevel problems.

(b) If both the leader and the follower have to make their decisions without knowledge of
Z(w), the lower level problem turns into a one-stage stochastic program. The follower
has various possibilities of handling the stochastic uncertainty, e.g. via mean-risk

models, chance constraints or models based on stochastic dominance. For any of the
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4. STABILITY IN STOCHASTIC BILEVEL PROGRAMMING

resulting well defined problems, the set C'(z) of optimal solutions only depends on
the leader’s decision x. Assuming that the leader is aware of the follower’s model,
Popi(Z(w)) and Ppes(Z(w)) turn into one-stage stochastic bilevel problems of the
form

min{e(z, Z(w)) + min{+q(z,y, Z(@)) |y € C(@)} | = € X},
T y
where the objective function is subject to stochastic uncertainty.

(c) The leader has to decide on = without knowledge of Z(w), while the follower solves
the lower level problem knowing both x and the realization of the parameter Z(w).
The resulting problems Py (Z(w)) and P, (Z(w)) bear close structural similarities

to the problems considered in chapter [3| and take the form
min{f(z, Z(w)) | = € X}, (4.2)
X

where f : R® x R® — R is given by f = fopt or f = fpes, depending on which

approach is considered.

Throughout this chapter, setting (c¢) and purely exogenous stochasticity shall be assumed.
Note that this interplay between decision and observation is also considered in [9] and
[131].

Remark 4.1. Classical two-stage stochastic problems can be seen as special stochastic
bilevel programs, where the optimistic approach is taken and every feasible point of the
lower level is optimal. On the other hand, can be understood as a two-stage problem,
where the recourse is given by an optimization problem over the set of optimal solutions

to the lower level problem.

Since the decision on x has to be made without knowledge of Z(w), the problem in (4.2))
is not well defined. However, under assumptions [A¢] and [A,], it gives rise to the well

defined mean-risk problem
min{Q(z, ) | x € X}, (4.3)

where p =P o Z=1 € P(R®) and the objective function
Qz, 1) = Ry((0: ® ) o f1)

is exactly as in (2.4]) (see section for details). The following analysis examines the
behavior of (4.3)) under perturbations of p with respect to the topology of weak conver-
gence. Let ¢ be given by (3.7) and denote the optimal value function of problem (4.3
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4. STABILITY IN STOCHASTIC BILEVEL PROGRAMMING

with respect to the parameter . In the same vein, let the optimal solution set mapping
® be given by (3.8).

The subsequent sections focus on identifying sufficient conditions on the data of problem
([4.1), under which assumption [A ;] automatically holds for fop: or fpes. In such situations,
Theorem yields continuity of a restriction of () with respect to the product topology of
the standard topology on R™ and the relative topology of weak convergence on a suitable
subset M of P(R®). Theorem [3.7] and Lemma [3.§] then allow for immediate conclusions
about ¢ and .

As before, Lemma allows to work with f — ¢ instead of f whenever assumption [A] is

fulfilled. In addition, the following assumption will be imposed on g¢:

Assumption 4.2 ([A,] : Assumptions on g).
q s continuous and there exist a locally bounded mapping 1, : R" — R and constants

Vg5 Vq,> = 0 such that

lq(z,y, 2)| < ng(x)([[y[™* + 1)([[=[]">= + 1)

holds for any (x,y,z) € R™ x R™ x R*.

4.2. Quadratic lower level problems with unique solutions

This section examines the case where the lower level problem is always uniquely solvable.

The following result will be helpful:

Theorem 4.3 ([136, Corollary 5.1]).
Let
dom C* := {(t1,t2) € R™ x R¥ | C*(t1,t2) # 0}

denote the domain of the set-valued mapping C* : R™ x RF — 28" given by
C*(t1,t2) :== argminy{yTDy +t]y| Ay < to}.

Assume that C is a convexr subset of dom C* on which C* is single-valued. Then C* is
Lipschitzian on C, i.e. there exists a constant L* > 0 such that for any (t1,t2), (t],t5) € C,
it holds that

ly = y'll < L[t £2) = (#, £3)1,

where {y} = C*(t1,t2) and {y'} = C*(t|,t}).
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4. STABILITY IN STOCHASTIC BILEVEL PROGRAMMING

Theorem [4.3] motivates the following assumption:

Assumption 4.4 ([Ayrrs]: Assumptions for unique lower level solution).

C* is single-valued on the convex hull of
{(d(x, z),h(x,2)) | (x,2) € R" x R*}.

Furthermore, d and h are continuous and there exist a constant vqp, > 0 and a locally

bounded mapping nap : R™ — R such that

H(d(.ﬁC,Z),h((lZ,Z))” < nd,h(x)(HZH’Yd’h + 1)
holds for any (x,z) € R™ x RS,

Remark 4.5. Since assumption [Ayprs) implies fopr = fpes, it is not necessary to distin-

guish between the optimistic and the pessimistic approach.

Remark 4.6. If D is positive definite, the mapping y v y' Dy +t] vy is strictly convex by
[I77, Theorem 2.14] and inf,crm y Dy +t]y > —oco for any t; € R™. Consequently, C*

1s single-valued on the convex set
R™ x {t € R¥ | {y e R™ | Ay < o} # 0}

(see e.g. the theorem in [5])]). In this case, the first part of assumption [Ayrrs| can

weakened to

{y e R™ | Ay < h(z,2)} # 0

for any (x,z) € R™ x R®.

Assumption [Ayrrs] admits the following result concerning stability of the stochastic

bilevel problem (4.3)):

Theorem 4.7. Assume that [A.], [Ag], [A,] and [Ayrrs| are fulfilled and let f be given
by [ = fopt = fpes- Set v := max{Ve,VanVqy + Vqz} and let M C MI* be locally
uniformly || - ||"P—integrating. Then the optimal value function ¢ defined in s upper
semicontinuous with respect to the relative topology of weak convergence on M. If X 1is
compact, @ is continuous and the optimal solution set mapping ® : M — 2% \ {0} defined
m is compact-valued and upper hemicontinuous with respect to the relative topology

of weak convergence on M.
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4. STABILITY IN STOCHASTIC BILEVEL PROGRAMMING

Proof. By assumption [Ayrrs] and Theorem there is a Lipschitz continuous mapping
y* : R™ x RF — R™ satisfying C(z,2) = {y*(d(x, 2), h(z,2))} for any (z,2) € R" x R®,
Consequently, by assumptions [A.] and [A],

f(z,2) = c(z, 2) + q(z, y* (d(x, ), h(z, 2)), 2)

is continuous on R™ x R® and hence Borel measurable. Fix any (z,z) € R” x R® and let
L* denote the Lipschitz constant from Theorem Assumption [Ayrrs| implies

ly*(d(z, ), Wz, 2))|| < L¥[[(d(x, 2), h(z, 2)) || + L7][(d(0,0), ~(0,0))]| + [ly"(d(0, 0), ~(0, 0))]]
< Lnap(@)(|[2]74" + 1) + L7 (d(0, 0), h(0,0))[| + [ly*(d(0,0), 2(0,0)) |
<0 (@)([[z]7*" + 1),

where n*(x) := L*nq 5, + L*||(d(0,0), 2(0,0))||+ |ly*(d(0,0), ~(0,0))]|| is locally bounded. In

combination with assumption [A,], the latter yields

I(f — ) (x,2)] < ng(z)(|ly*(d(z, 2), h(x, 2))|["2v + 1)(||z]] 2= + 1)
< mg(@) (20" (@)) 709 + 1) (244705 + 1) (2] 70+ + 1)
< nyela)(|z] om0 4 1),

where n¢_c(x) := 3n4(x)((27*(x)) *v 4 1) is locally bounded. Consequently, [A] is fulfilled
for f with exponent ~ by assumption [A.| and Lemma Since Dy = (), Theorem m

is applicable and the stated stability is a direct conclusion from Lemma [3.8 and Theorem

B O

4.3. Quadratic lower level problems with random right-hand side

In this section, the case where the lower level problem may have more than one solution
is considered. However, it is assumed that only the right-hand side of the inequalities
describing the feasible set of the lower level depends on x and z, while the mapping d in

the lower level objective function is constant. Consequently, f takes the form
f(x,2) =c(x,2) & Inyin{:i:q(a:,y, z) |y € argminy/{y’TDy' +dgy | Ay < h(z,2)}}, (4.4)

where dy € R™ is fixed. The following result will be used to analyze f:
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4. STABILITY IN STOCHASTIC BILEVEL PROGRAMMING

Theorem 4.8 ([138, Theorem 4.2]).
If D positive semidefinite, the set-valued mapping C : Rk — oR™ given by

~

C(t) == argminy{yTDy +dgy| Ay <t}

is Lipschitzian on dom C := {t € R¥ | C(t) # 0}, i.e. there exists a constant L > 0 such
that
doo (C(1), C()) < Lilt =t/

holds for any t,t € dom C.

Theorem motivates the following assumptions. Note that the assumption imposed on

q is more restrictive than [A]:

Assumption 4.9 ([Arrps] : Assumptions for random right-hand side).

There exist constants vy ,,V, . > 0 and a continuous mapping n; : R" — R such that
la(z,y,2) — a2,y 2)| < mg(@ = 2")(lly = o/ [T + |2 = 2'[]75)

holds for any (z,y, 2), (2',y',2’) € R™" x R™ x R*. Furthermore, D is positive semidefinite,
{y € R™ | Ay < h(z,2)} # 0 holds for any (x,2) € R™ x R® and there exists a vector
to € R* such that

|inf{y" Dy +dgy | Ay < to}| < oo, (4.5)

In addition, h is continuous and there exist a constant v, > 0 and a locally bounded
mapping N, : R™ — R such that

1Az, 2)| < mn(2)(ll2]™ + 1) V(z, 2) € R* x R

For the optimistic approach f = fopt, further assume that ming{q(z,y,2) |y € C(x,2)} is
solvable for any (z,z) € R™ x R® and sup,{q(wo,y,20) | v € C(x0,20)} is finite for some
(.CI?(),Z(]) € R™ x R%.

For the pessimistic approach f = fpes, assume that ming{—q(z,y,z) | y € C(x,2)} is
solvable for any (z,z) € R" x R® and sup,{—q(wo,y, 20) | y € C(x0, 20)} is finite for some
(xo,zo) € R” x R?,

Remark 4.10. By the existence theorem of quadratic programming (see e.g. [54)]), (4.5)
yields C(to) # 0. The latter implies

dom C = {t e R¥ | {y e R™ | Ay < t} # 0},
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i.e. the solvability of the lower level problem whenever its feasible set is nonempty. Further-
more, there exists a finite set E C R™ such that for any t € dom C’, C’(t) 18 a polyhedron

having exactly the elements of E as its extreme directions (see [95]).

Remark 4.11. Consider the case where q(z,y,z) = qg—y for some fixed vector gy € R™.
If there exists some to € R* such that max,{|q y| | y € C(to)} is solvable, Remark
implies g3 e = 0 for any e € E and hence the solvability of min,{+qJy |y € C(t)} for any
t € RF.

Remark 4.12. Assumption [Arrps] does not exclude the linear case D = 0 € R™*™,

since only positive semidefiniteness is assumed.

Assumption [Arrrs| admits the following stability result for the stochastic bilevel problem

E3):

Theorem 4.13. Let f be given by and assume that [A], [A,] and [Arrus| are
fulfilled. Set ~ = max{yc,yhyfl‘,y + 7;1"’2} and let M C M be a locally uniformly
||-[|"P—integrating set. Then the optimal value function ¢ defined in 1S upper semicon-
tinuous with respect to the relative topology of weak convergence on M. If X is compact,
@ is continuous and the optimal solution set mapping ® : M — 2X \ {0} defined in
1s compact-valued and upper hemicontinuous with respect to the relative topology of weak

convergence on M.

Proof. f — c is continuous: Consider any converging sequence {(x;, z;) ey € R™ x R® and
denote its limit by (z,2) := lim;_,o(2,2;). By assumption [Arrgs] and Remark

there exists a vector y € C(Z, z) satisfying (f — ¢)(z, 2) = q(&,y, Z). Furthermore, since
{h(z,2) | (z,2) € R" x R*} C dom C,

Theoremyields doo(C(Z, 2), C(21, 21)) < L||h(ZE, Z) — h(xy, )|, which, by the continuity
of h, implies the existence of a sequence {y; };en satisfying lim;_, . y; = y and y; € C(xy, 2;)
for any I € N. In the optimistic setting, the latter yields (f — ¢)(x, 21) < q(z1, y1, ) for
any [ € N and hence

limsup(f — ¢)(z1,21) < limsup q(z1, y1, z1) = q(2,9, 2) = (f — ¢)(z, 2),

=0 l—00

i.e. the upper semicontinuity of f —c. In the pessimistic setting, a similar argument shows

that f — ¢ is lower semicontinuous.
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Again by assumption [Arrms| and Theorem there exist sequences {y; }ien and {71 }ien
such that yl* € C(LU[,Z[), (S C(jvz)v (f - C)(.TJ[, Zl) = Q(xbyl*a Zl) and

lyi —wll < LIz, 2) — h(zi, 21) |
hold for any I € N. Consequently, in the optimistic setting,

(f=e)(@,2) = (f =)z z0) < a(@ G0, 2) —a(wr, yi's 21) < (@ =) (|G—yi 0w + || 2= =72+)

holds for any [ € N, which implies (f — ¢)(Z, 2) — liminf; . (f — ¢)(x1, z1) < 0 and hence
the lower semicontinuity of f — c¢. In the pessimistic setting, a similar argument shows

that f — ¢ is upper semicontinuous.

By [A.] and the considerations above, f is continuous and hence Borel measurable. Fix an
arbitrary vector (z,z) € R” x R® and let y € C(x, z) be such that (f —c)(z, 2) = q(z,y, 2).
By Theorem there exists a vector yo € C(x0,yo) such that

ly = yoll < LAz, 2) = h(zo. 20)ll
<) |z + 1),

where 7(z) := L(nu(z) + ||h(z0, 20)||) is locally bounded. By assumption [Aggrpms], the
constant ¢ := max,{|q(xo,y’, 20)| | ¥ € C(zo, 20)} is finite. Hence,

\(f —o)(z,2)| <lq(z,y,2) — q(xo,yo,20)| + ¢
< mi(x —20)(ly — yolav + ||z — 20/=) + ¢
< np—e(@)([J2] a0 + 1),

where ny_.(z) = 205 (v — 20)((27(z)) Y2y + 2% (|| 20| 9w + 1)) + § is locally bounded.
Consequently, [Af] is fulfilled for f with exponent v by assumption [A.] and Lemma
Since Dy = (), Theorem is applicable and the stated stability is a direct conclusion
from Lemma [3.8 and Theorem [3.7 O

If the set of optimal solutions to the lower level problem is compact, a weaker assumption

on q is sufficient:

Assumption 4.14 ([A 45| : Alternative assumptions for random right-hand side).
D is positive semidefinite, {y € R™ | Ay < h(x,2)} # 0 holds for any (z,z) € R™ x R®
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and there exists a vector tg € R¥ such that C(ty) is bounded and
|inf{y" Dy +dgy | Ay < to}| < oo.
y

Furthermore, h is continuous and there exist a constant v, > 0 and a locally bounded

mapping N, : R™ — R such that

1Az, 2)[| < m () (|2 + 1) V(z,2) € R" X R?.

Under assumption [A 4y], the following holds for problem (4.3)):

Theorem 4.15. Let f be given by and assume that [A.], [Ag], [A)] and [Aay]
are fulfilled. Set v := max{ye,YhVqy + Vg.z} and let M C M be locally uniformly
| - ||"P—integrating. Then the optimal value function ¢ defined in is upper semicon-
tinuous with respect to the relative topology of weak convergence on M. If X is compact,
@ is continuous and the optimal solution set mapping ® : M — 2%\ {0} defined in
1s compact-valued and upper hemicontinuous with respect to the relative topology of weak

convergence on M.

Proof. Under assumption [A 43], the mapping C' is compact-valued and both upper and
lower hemicontinuous on R x R* by Theorem [.§ and Remark [£.10] Furthermore, ¢ and

q are continuous by assumptions [A.] and [A,]. Consequently,
fz,2) = c(w, z) £ min{£q(z,y,2) | y € C(z, 2)}
is continuous by Theorem and hence Borel measurable. Set
wo := max{||yo|l | yo € C(0,0)} < o0

and fix any (z,2) € R" x R® and let y € C(x, ) be such that f(x,z) = c¢(x, 2) + q(z, y, 2).
By Theorem there exists a vector yo € C(0,0) such that

1y = ol < A@)([[=™ + 1),
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where 7(z) := L(n,(x) + ||h(0,0)|) is locally bounded. Thus, by assumption [A],

(f =)@, 2)| = la(@,y,2)| < ng(@)(ly —woll™* + rg™ + 1)(|l2]*= + 1)
< g(@) (kg™ + D) (i) v (2] ™ + 1) + 1) ([l]['*= + 1)
< 20 (@) (kg™ + 1)(27vip(x) 10y + 1)([[2] 70 + 1)([l2] 7= + 1)
< np—cl@)(||z[r7ev e 4 1)

Ni—c(x) := 3ng(z) 2709 (k)" +1)(272v7)(z)%w +1) is locally bounded. Consequently, [Af] is
fulfilled for f with exponent v by assumption [A.] and Lemma Since Dy = (), Theorem
Lemma [3.8 and Theorem are applicable and yield the stated stability. O
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A. Appendix

In the following, selected results of relevance for the proofs in the present thesis are recalled

for the convenience of the reader.

Theorem A.1 (Change of variable, see e.g. Theorem 16.13 in [4§]).
Let (Q1,F1), (9, F2) be measurable spaces and fix a measure v on (Qq,F1). For any
(F1, Fo)—measurable mapping T : Q1 — Qa, let v o T~ denote the image measure of v
under T, i.e.
(voT~Y)[B] = v[T~(B)] VB € F.
Then
| ot ot yan) = [ (go)ie) vian

1971

holds for any nonnegative, (Fa2, B(R))—measurable function g : Q2 — R.

Theorem A.2 (Vitali’s theorem, see e.g. Proposition 3.12 in [134]).
Fiz a probability space (Q, F,P) as well as a constant p > 0 and consider a sequence
{Yotnen C LP(Q, F,P). If{Y,}nen converges in probability to Y1, the following statements

are equivalent:
(a) lim, o || Y, — Yi|, = 0.
(b) limyp o0 [[Yallp = [[Y1]lp-
(¢) The random variables |Y,|P, n € N are uniformly integrable.

Conversely, {Y, }nen converges in probability to Y1 whenever (a) holds.
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B. List of symbols

Functions and measures

Oz the Dirac measure at z, see e.g. [7, Definition 12.17]

AF the Lebesgue measure on R¥

Aﬁ the restriction of \¥ to A C R¥

IR R% the product probability measure of probability measures 1 and v

E, the distribution function induced by o € P(R) via F,(t) = o[(—o0, t]]
F;! the quantile function associated with o € P(R), see

R, see (23)
Q see (24)

E the expectation, see Example [2.25

Var the variance, see Example [2.26

Cov the covariance, see Example [2.26

pEE the expected excess, see Example |2.27]

pg Ea the expected excess of order ¢, see Example [2.27
P the semideviation, see Example [2.28

ol the excess probability, see Example [2.29

VaR, the value-at-risk, see Example [2.30

CVaR, the conditional value-at-risk, see Example [2.31
Il the Euclidean norm

Il oo the supremum norm, see

-1

- lp the LP—norm

Il - ”ﬂ(Rm’Rk) the operator norm

9n see (2.7)

s the Prokhorov metric, see Definition [2.35
A see [2.38

p see (2.10)

v see Remark |2.58

0 see ([2.16)
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the indicator function of the set A

the supremum with respect to <g, see Definition [2.75)

the infimum with respect to <g, see Definition [2.75

the absolute value with respect to <g, see Definition [2.76

the biconjugate of o, see section 11 A in [177]

see Corollary [2.62

the Wasserstein metric of order ¢, see Proposition [2.63

the Fortet-Mourier metric of order ¢, see Proposition [2.63
the Hausdorff distance

see
see

Sets and spaces

R
Cp(R?)
I
B(R®)

M(p, v)
L(u,v)
LP(Q, F,P)
LO(Q, F,P)

= [—OO, OO]

the space of all bounded and continuous functions A : R® —+ R
the dual space of the normed space F

the Borel o—algebra of R*, see Definition

the space of Borel probability measures on R?, see Definition
see Definition

= M!'Hp, the space of Borel probability measures on R® having

finite moments of order p

see Proposition |2.63

see Proposition [2.63
the standard LP— space on the probability space (2, F,P), 0 < p < oo

the space of finite-valued random variables on (92, F,P)
the open || - ||[—ball of radius € centered at ¢

the closed || - ||—ball of radius € centered at ¢

the interior of the set A

the topological boundary of the set A

the power set of the set A

see (2.13)

see Definition [2.53

the domain of the mapping o, see (2.79)
the set of discontinuities of the function f

see Theorem |3.9

see Theorem (3.9
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B. LIST OF SYMBOLS

Topologies and notions of convergence

TS the topology of weak convergence, see Definition [2.32
Rt weak convergence in the sense of Definition [2.32

N weak™® convergence, see Corollary [2.39

A convergence in distribution, see Definition |2.42

Ty see Definition [2.53

g convergence with respect to 7y, see Definition [2.53
TR the standard topology on R"

1 ® T2 the product topology of 7 and 7
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