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Summary

In this thesis I have examined various topics regarding the relationship between viruses
and the human immune system. I expanded and refined a tool (which can now be found
as R-package SeqFeatR on C-RAN) for the analysis of sequence data and features of
this sequences like HLA type or tropism (see chapter 4) and checked with this tool if
there are differences between some multiple correction approaches for sequence data,
and how Bayesian inference could be used in this context (see chapter 5). It could be
shown that Bayesian inference is superior to the frequentistic methods for this kind of
problem, because multiple correction approaches ignore the fact that different positions
in a sequence alignment may be connected in the protein product of this sequence and
are therefor not independent.

Furthermore, I have examined sequences from HCV with a form of bootstrap algorithm to
find sequence areas which can be used in unknown transmission cases in court. Two areas
were found, one in the hypervariable region and the other at the end of the non-structural
protein NS5B (see chapter 9).

Proteasomal cleavage of alien amino acid sequences inside human cells leads to a presenta-
tion of fragments of these sequences on the surface of the cell as epitopes. To present such
a fragment, not only must it bind to the MHC, but also needs to be in the correct length
to be presented. Therefore viral evolution should favor those viruses, which cannot be cut
into presentable epitopes. With epitope data from IEDB and predicted viral sequences
which bind the MHC, I searched for amino acids inside the flanking regions around the
epitope that may indicate a possible escape mutation against the proteasomal cleavage
processes. Fourteen such amino acids and positions were found (see chapter 7).

I created a model of HBV reverse transcriptase to check if mutations in certain posi-
tions could influence binding with the nucleotide analogue reverse transcriptase inhibitor
Tenofovir. Mutations which were inside the binding pocket for Tenofovir showed, in an
experimental design by the group of Mengji Lu, a decreased affinity towards the drug (see
chapter 10).



Together with Ralf Küppers group I examined NGS from different types of B cells to search
for almost identical sequences between those. We found similar to identical sequences from
two, three and even four kinds of cells in the blood samples of both donors (see chapter 6).
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Zusammenfassung

In dieser Dissertation bearbeitete ich verschiedene Themen aus dem Bereich der 
humanpatho-genen Viren und des menschlichen Immunsystems. Zu diesem Zweck entwarf 
ich ein Programm (welches auf dem R-Archiv C-RAN unter dem Namen SeqFeatR zu 
finden ist) mit dem sich der Zusammenhang zwischen Sequenzdaten und spezifischen 
Eigenschaften, wie etwa HLA Typ oder Tropismus, analysieren läßt (s.h Kapitel 4). Mit 
diesem Programm untersuchte ich ob ein Unterschied zwischen den Verfahren zur 
Korrektur von Alphafehler-Kumulierung bei Sequenzdaten besteht und in welchem Maße 
die Verfahren der Bayesschen Statistik besser für diese geeignet sind (s.h. Kapitel 5). 
Dabei stellte sich heraus, dass letztere für diese Klasse von Problemen eher verwendet 
werden sollten, da Alphafehler-Kumulierungskorrekturen möglichen Abhängigkeite 
zwischen verschiedenen Sequen-zpositionen, welche sich unter Umständen erst im fertigen 
Protein offenbaren, ignorieren.

Weiterhin untersuchte ich HCV Sequenzen mittels einer Variante des Bootstrap-Algorithmus 
um jene Sequenz-Bereiche zu finden, die im Falle von ungeklärten Übertragungswegen 
zur Identifizierung dieser genutzt werden können. Dabei stellten sich zwei Bereiche als 
besonders geeignet heraus: Die hypervariable Region sowie ein Bereich am Ende des 
Nicht-Struktur Protein NS5B (s.h. Kapitel 9).

Die Spaltung von fremden Aminosäuresequenzen innerhalb von menschlichen Zellen durch 
das Proteasom kann zu einer Präsentation dieser Fragmente auf der Zelloberfläche als 
Epitope führen. Um solche Fragmente präsentieren zu können, müssen diese nicht nur an 
das spezifische MHC Molekül binden, sondern auch eine optimale Länge besitzen. Da-
her sollte der evolutionäre Prozess solche Viren fördern, deren Sequenzen sich nicht in 
entsprechende Stücke zerteilen lassen. Durch eine Kombination von Epitopdaten aus der 
IEDB und vorhergesagten viralen Sequenzen, welche sicher an MHC Moleküle binden, 
untersuchte ich, ob innerhalb der flankierenden Regionen um das jeweilige Epitop 
Sequenzpositionen existieren, welche auf eine Mutation hinweisen, die den Schnittmech-
anismus der Zelle verhindert. Ich fand vierzehn Aminosäuren und Positionen, die einen 
solchen Zusammenhang besitzen können (s.h. Kapitel 7).

Um heraus zu finden ob es in der reversen Transkriptase von HBV Positionen gibt, welche 
die Bindung mit dem nukleotidischen Reverse-Transkriptase-Inhibitor Tenofovir 
beeinflussen, erstellte ich ein Modell dieses Enzyms. Mutationen, die innerhalb der 
Bindetasche  für Tenofovir  lagen,  führten  in einer  Versuchsreihe  von  der  Gruppe von



Mengji Lu zu einer verringerten Affinität   zwischen Enzym und Medikament (s.h. 
Kapitel 10).

Zusammen  mit  der Gruppe von Ralf Küppers untersuchte ich Hoch-Durchsatz-Sequenzdaten 
von verschiedenen Arten von B Zellen um ähnliche Sequenzen zu finden. Wir fanden ähn-
liche und sogar identische Sequenzen zwischen zwei, drei und sogar allen vier Arten 
von Zellen jeweils innerhalb der Blutproben jedes der beiden Spender (s.h Kapitel 6).

vii



Table of contentsTable of contents

Summary iv

Zusammenfassung vi

Glossary x

Abbreviations xii

Reference genomes xii

Introduction and globally used methods

Chapter 1 Motivation 3

Chapter 2 Viruses and immune system - an overview 6

Chapter 3 Methods, tools and techniques used globally 29

SeqFeatR and statistical considerations

Chapter 4 SeqFeatR 47

Chapter 5 The multiple testing problem and SeqFeatR 61

Sequence analysis of Sanger and NGS sequences

Chapter 6 The complexity of the human memory B-cell pool 81

Chapter 7 Selection pressure on HCV epitopes 99

viii



Chapter 8 Additional publications - only abstracts 122

Phylogenetic sequences analysis

Chapter 9 Phylogenetic analysis on HCV infection chains 126

Homology modeling

Chapter 10 Mutations in tenofovir exposed HBV 139

Discussion and Outlook

Chapter 11 Discussion and outlook 150

Appendices
A Supplementary Material for Chapter 4 A-3

B Supplementary Material for Chapter 4 - Tutorial A-8

C Supplementary Material for Chapter 7 A-25

List of Figures A-29
List of Tables A-31
List of Algorithms A-33

ix



Glossary

IC50 Half maximal inhibitory concentration. 67, 102, 108, 110

a priori Bayesian inference: the probability before seeing the data. 65, 66
antigen Any substance which provokes an adaptive immune response. 11–15

B cell Cells with a B cell receptor on the cell surface. In mammals B cells are
formed in the bone marrow. 3, 12, 13, 16, 81, 82, 102

CD Cluster of differentiation. Protocol used for the identification of cell surface
molecules providing targets for immunophenotyping of cells. 8, 12

epitope The part of an antigen that is recognized by the immune system. iv, 13, 16

FASTA File format for sequences with one header line for every sequence. 129, A-20

poly-N Repetitious occurrence of the same nucleotide (length > 2). 36

T cell Cells with a T cell receptor on the cell surface. Mature in the thymus
(although some also mature in the tonsils). 12, 13, 15, 16, 102, 104, 110,
113, 116

Abbreviations

bp Base pairs. 36, 130, 131
kb Kilo base pair, equal to 1,000 nucleotides. 100
nM Nanomolar. 102, 108, 110, 111
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ANOVA Analysis of variance. 74
AUC Area under the curve. 73, 75
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C-RAN The Comprehensive R Archive Network. iv, vi, 38, 61
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CTL Cytotoxic T cell. 13, 101, 114
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DNA Deoxyribonucleic acid. 6–9, 12, 36, 103, 106, 151, A-20

ER Endoplasmic reticulum. 15, 101, 115
ERAAP ER aminopeptidase associated with antigen processing (mice). 101, 115
ERAP ER aminopeptidase associated with antigen processing (human). 101, 115

FDR False discovery rate. 64, 65, 71, 74, 75, 110, A-28
FN False negative. 62
FP False positive. 62
FWER Family-wise error rate. 64

GC Germinal center. 81, 82
GWAS Genome-wide association studies. 66

HBV Hepatitis B virus. iv, 7–10, 15, 16, 123, 139, 140, 151
HCV Hepatitis C virus. iv, 3, 7–10, 15, 16, 66, 67, 99–104, 106–116, 126–132, 151
HIV Human immunodeficiency virus. 7–10, 15, 16, 63, 101, 115, 116, 122, 127,

128, 151
HLA Human leukocyte antigen. iv, vi, 13, 66, 67, 71, 72, 74, 75, 102, 107, 110,

112, 114–116, 151, A-27
HVR Hypervariable region. 130, 132

IEDB Immune Epitope Database and Analysis Resource. iv, vi, 67, 74, 75, 102,
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MCMC Markov chain Monte Carlo. 75
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MLE Maximum likelihood estimate. 66

NGS Next generation sequencing. v, 36
NK Natural killer cells. 11
NS Non-structural protein. iv, vi, 10, 100, 103, 106, 114, 130–132

PCR Polymerase chain reaction. 130, 132, 151

RNA Ribonucleic acid. 6–8, 10, 11, 15, 100, 103, 106, 107, 127
ROC Receiver operating characteristic. 73–75

SMRT Single molecule real time sequencing. 151
SNP Single Nucleotide Polymorphism. 66

TAP Transporter associated with antigen. 13, 14, 101
TDF Tenofovir disoproxil. 139, 140
TGS Third generation sequencing. 151
TMV Tobacco mosaic virus. 6
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TP True positive. 62
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Motivation

You have to learn the rules of the game.

ALBERT EINSTEIN

Statistical sequence analysis is a common task in modern biology and health care. As L.L.
Larison Cudmore pointed out in 1977, “All living things need their instruction manual
(even non-living things like viruses) and that is all they need, carried in one very small
suitcase.”[1]. Sequences are the foundation of life itself. Insights can be gained through
knowledge of the secrets of these sequences. Even if the given sequences and questions
asked are diverse, the computer scientist senses their similarity. On the sequence level,
a question about the diversification of B cells is roughly the same as the analysis of
transmission chains in Hepatitis C Virus (HCV), although the obvious object of interest,
B cells and HCV, are quite different.

In this work, several sequence based problems were tackled with different bioinformatic
methods, such as sequence alignment, phylogenetics, or homology modeling. A summary
of the different organisms and methods used can be found in table Table 1.1.

Sequences are essential for many different kinds of analyses, which range from the in-
teraction between pathogens and their hosts up to understanding relationships between
organisms. The focus in this thesis was placed on the former: severe human pathogenic
viruses and the human immune system.

3



1.
M

ot
iv

at
io

n
I

1.
M

ot
iv

at
io

n

Explanatory note 1.1

Table 1.1: Different methods used in this work according to treated topics.

statistics sequence analysis

topic significance
test1

correction
of multiple
testing
errors

sequence
alignment

phylo-
genetics

epitope
prediction

homology
modeling2

B cell X X X
HBV X X
HCV X X X X
HIV X X X X X

1 Fisher’s exact test, t-test, wilcoxon test, etc.
2 homology modeling combines sequence analysis with structure analysis

1.1 Explanatory note

Although all projects in this thesis are based on sequences, each of them has a unique
combination of basic and advanced methods. Because of this, only the most basic meth-
ods and backgrounds are described ahead of the projects in this introduction, and each
project has additional, further information about the exact methods for that project.
This enables the advanced reader to skip the introduction and basic methods section, if
he or she already knows what sequence alignments, phylogenetics or homology modeling
are, and read only the desired chapter of interest. Inexperienced readers should read the
introduction first to understand the more complex context of the following chapters.

4
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Viruses and immune system - an overview

Be careful about reading health books. You may
die of a misprint.

MARK TWAIN

2.1 Viruses

A virus is a small agent which replicates only in living cells of other organisms. The first
found virus was the tobacco mosaic virus (TMV) in 1892 discovered by Dmitri Ivanovsky,
who found out that filtrated fluids from infected plants could infect healthy ones [82].
Viruses range in size between 20 nm and 300 nm, some have a total length up to 1400
nm [23] and are (mostly) classified by the type of genetic information molecule they
encapsulate. DNA viruses use the DNA-dependent DNA polymerase from the host cell
and can be either single-stranded or double-stranded. RNA viruses may utilize RNA
polymerase instead, if they have negative-sense RNA [93, 99]. Positive-sense RNA viruses
can be immediately translated by the host cell [54, 91]. A special form of RNA viruses are
Retroviruses, which use their own reverse transcriptase enzymes to generate DNA that is
included into the host genome [131, 143]. Besides the genetic material all viruses consist
of at least one protein to form a kind of hull as protection called a capsid [28]. Some
viruses also have an envelope containing lipids from the host cell membrane [67, 127].
Adjacent to these proteins are often proteins which manage the cell entry into the host
cell, and inside the hull proteins are often found that stabilize the genetic material. All
in all viruses can have many different shapes [114].

6



2.
V

ir
us

es
an

d
im

m
un

e
sy

st
em

-
an

ov
er

vi
ew

I
2.

V
ir

us
es

an
d

im
m

un
e

sy
st

em
-

an
ov

er
vi

ew
2.

V
ir

us
es

an
d

im
m

un
e

sy
st

em
-

an
ov

er
vi

ew

Viruses 2.1

RNA viruses have a much higher mutation rate than DNA viruses, because of the dif-
ferences in proofreading between DNA polymerases and RNA polymerases. RNA poly-
merases usually lack such proofreading functionality and many mutations are built into
the copies of the viral sequences [29, 30, 96]. DNA viruses mutate more slowly, whereas the
reverse transcribing viruses, which use reverse transcription mechanisms without proof-
reading to insert their internal single strand RNA or double strand DNA molecule into
the hosts cell, have a high mutation rate [32, 110]. This high mutation rate results in a
higher evasion rate against the immune system and - in the case of pathogens - drugs and
vaccines [34, 36, 61]. A consequence of the lack of proofreading are viruses which differ
only in a few nucleotides from one another [55, 126]. This difference can have a high im-
pact on the virulence of the particular viral particle, either in a good or in a catastrophic
way [25] and combined with the selection pressure from the hosts immune system, a viral
quasispecies is created, which ’is a well-defined distribution of mutants that is generated
by a mutation-selection process’ (see [94]). New techniques for sequencing can generate
an overview of such quasispecies for the first time [7, 16, 20], to take a deeper insight into
viral evolution and immune evasion mechanics.

Figure 2.1: Model structure of HIV, HBV and HCV
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Viruses 2.1

Mya Breitbart and Forest Rohwer suggest that there are 1031 viruses on earth [14]. As
of writing researchers know about 5,000 viruses in detail [28] (1062 RNA viruses in the
RNA virus database [8]). The ’viralzone’ currently (August, 2015) contains 129 human
pathogenic viruses [58], but since better detection methods are advancing this number
is increasing. Of these 129 viruses only a few are high risk and possibly deadly for the
infected person and some are still an increasing danger in some countries. Apart from
high risk and deadly viruses such as the Ebola and Pox viruses, the biggest threat posed
is that of viruses with a long incubation period, even if they are only transmitted via
contaminated blood [12, 24, 86]. Examples of such viruses are HIV, HBV and HCV,
which are often called ’the big three’, because they are widespread (and still spreading),
often persistent, and there is no known vaccine, except for HBV [59].

2.1.1 HIV

Figure 2.2: Human Immunodeficiency Virus I genome and proteins

The human immunodeficiency virus (HIV), which causes the acquired immunodeficiency
syndrome (AIDS), was first clinically observed in 1981 in the United States and first
described in 1983 [120]. Today about 34 million people worldwide are infected with HIV-
1 [139], which is one of two forms of the virus. HIV-2 is mostly found in West Africa and
not necessarily fatal. HIV-1 is a roughly spherical retrovirus with a diameter of 120 nm
[33, 41] and is composed of two copies of positive single-stranded RNA. This RNA encodes
normally nine genes (gag, pol, env, tat, rev, nef, vif, vpr, vpu), which encode 19 proteins
(see Figure 2.2). Three of the genes, gag, pol, and env, contain information enabling the
creation of the structural proteins for new virus particles [38] (see Figure 2.1). Especially
env, more precisely the two cleavage products gp41 and gp120, are needed to interact with
the host cell and establish a fusion of both virus particle and cell [142]. HIV-1 can infect
a variety of immune cells. It connects with it’s virion envelope glycoproteins (gp120 ),
the CD4+ receptor [18, 145], and, depending on the tropism of the virus particle, one of
two co-receptors: CCR5 or CXCR4 [9, 45, 102]. Due to the fact that HIV-1 integrates
a reverse transcribed copy of itself in the host DNA, a cure for patients once infected
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Viruses 2.1

is difficult and not yet discovered. There exist drugs that inhibit the replication and
spreading of the virus in different ways, but since the process of reverse transcription is
error-prone the resulting random mutations may cause drug resistance [10, 110]. It is
therefore vital to analyze and identify important regions in the viral genome to better
understand the interaction of virus and host cell.

2.1.2 HBV

Figure 2.3: Hepatitis B Virus genome

In contrast to HIV, a vaccine against the hepatitis B virus (HBV) exists. HBV has
been known since 1885 [81], but there are still many new infections, often in combination
with HIV [70, 101] and HCV [50], even in the Western world were the vaccine is easily
accessible, due to drug use or unprotected sexual contact [4, 75]. Available drugs can only
diminish the infection and so far cannot cure it if chronic [49, 98], which is the case for
350 million people worldwide [76]. HBV is 30 nm - 42 nm in diameter and one of the
smallest enveloped animal viruses known [26]. The envelope consists of three different
surface proteins (see Figure 2.1). Although HBV has a DNA molecule inside the capsid,
it also uses a reverse transcriptase enzyme like a retrovirus and is therefore error-prone [5].
The DNA molecule encodes only four genes (C, X, P, and S), is not fully double-stranded,
and one end of the longer strand is linked with a viral polymerase [57, 72, 128] (see 2.3).
In replication, the viral genome is extended to fully double-stranded and inserted into the
cell nucleus [111]. Then it is transcribed by host enzymes and besides translation of the
viral proteins is reverse transcribed back into the viral DNA [129]. Because of this special
replication, the severe symptoms in chronically infected patients, and the still relatively
high prevalence in certain areas, it is a important field of research.

9
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Viruses 2.2

2.1.3 HCV

Hepatitis C is a common disease in humans with around 170 million people worldwide
infected with the virus, which was found relatively late in the 1970s and isolated in 1989
[22]. Like HIV and HBV, the main transmission mechanisms of HCV is via contaminated
blood, drug use or sexual contact [3, 147]. HCV mainly infects the hepatocytes of the
liver and produces lots of new virions. The virus may also replicate in peripheral blood
mononuclear cells [148]. Up until now there has been no vaccination against HCV, but
several antiviral drugs inhibit the replication of the virus [79, 100]. HCV therapy is
difficult, because of the high error rate of the virus’ RNA-dependent RNA polymerase,
which increases the possibility of escape mutations [108] and generates a highly diverse
quasispecies inside the patient [84]. Another treatment used for patients with liver damage
through HCV is liver transplantation [141]. HCV consists of a positive sense single-
stranded RNA genome with a single open reading frame [21, 62], surrounded by the capsid
and a lipid envelope from the host cell [90] (see Figure 2.1). The translated product of the
genome is then processed further to create 10 active viral proteins (core protein, E1 and E2
and p7; non-structural proteins include NS2, NS3, NS4A, NS4B, NS5A, and NS5B) [46].
This cleavage mechanism is mediated mainly by two viral proteases - NS2 and NS3-4A
[35, 53, 103] and inhibition of one or both results in a greatly reduced viral replication [71]
(see 2.4). Currently HCV is classified into seven genotypes with subgenotypes depending
on sequence similarity. Genotype 1 is found world wide and occurs in a majority of the
patients in the Western world [89]. Like HIV, HCV is still an important topic of research
and particularly next-generation sequencing promises a deeper insight into the variability
of the viral sequences, escape or compensatory mutations.

Figure 2.4: Hepatitis C virus genome and proteins

10



2.
V

ir
us

es
an

d
im

m
un

e
sy

st
em

-
an

ov
er

vi
ew

I
2.

V
ir

us
es

an
d

im
m

un
e

sy
st

em
-

an
ov

er
vi

ew
2.

V
ir

us
es

an
d

im
m

un
e

sy
st

em
-

an
ov

er
vi

ew

Immune system 2.2

2.2 Immune system

The immune system is a combination of biological processes and structures to prevent or
hinder infections by other organisms or viruses. It can be classified by time into innate
immune response and adaptive immune response, or by involved structure into humoral
immunity and cell-mediated immunity [60, 68].

2.2.1 Innate immune response

The innate immune response is also called non-specific immune system [60]. It is the first
defense mechanism against invasion by pathogens and consists of many different structures
and functions. The main components are: cytokine production to recruit immune cells,
identification and removal of foreign substances, activation of the complement cascade to
clear pathogens or mark them for destruction by other cells, acting as a physical barrier,
and activation of the adaptive immune system [60]. Involved leukocytic cells are natural
killer cells (NK cells), mast cells, eosinophils and basophils, and the phagocytic cells.
Mast cells release certain second messengers which cause inflammation and recruiting of
other leukocytic cells. Eosinophils and basophils kill or inhibit the growth of pathogens
with toxins and respiratory burst [149] whereas all phagocytic cells engulf particles and
pathogens [2, 60]. Phagocytic cells are further sub classified as macrophages, neutrophils,
and dendritic cells [2, 60]. In contrast to other types of innate immune cells, NK cells
destroy infected host cells using a similar mechanism as the cells from the adaptive immune
response. NK cells recognize certain proteins with bound self antigens on the surface and
compromise the cell, if a certain self pattern is not shown [60]. Antiviral host defense
is mediated by type I interferons (IFN). Especially the RNA of a virus is recognized by
certain proteins inside the cell, which then activate certain pathways that lead to the
production of IFN. IFN induces the expression of hundreds of interferon-stimulated genes
(ISG) which products inhibit or degrade viral proteins and viral RNA [1, 6, 113].
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2.2.2 Adaptive immune response

In contrast to the innate immune response, the adaptive immune response occurs later
after the infection has taken place and is highly specific [60]. This high specificity is a
result of hypermutation in a DNA region called antigen receptor gene segments, where the
genes are then also rearranged, which is called V(D)J recombination or rearrangement [31,
56, 144] (see Figure 2.5). This recombination is irreversible and all clones of these cells

Figure 2.5: Scheme of the VDJ recombination. The V(D)J recombination occurs in developing lympho-
cytes in early stages of T cell and B cell maturation. Shown here is the recombination of immunoglobulin
heavy chains. In this process, variable (V), diversity (D), and joining (J) gene segments are selected and
combined randomly. Between V and D, and D and J random nucleotides (palindromic (P) and non-templated
(N)) can be inserted and also removed later. This leads to a high diversity in the final rearrangement [42, 80].
The numbers above the first line indicate how many gene segments are available according to [60]. n is the
number of possible genes.

will recognize the same antigen [69], which is important for the immunological memory
[2]. The major functions of the adaptive immune system are: the recognition of non-
self antigens, and the development of a immunological memory in the form of signature
antibodies or T cell receptor [60]. The leukocytic cells of the adaptive immune response
exist in three different stages: naive cells, which have not encountered their cognate
antigen; effector cells, which have encountered their antigen and take part in the acute
immune response; and memory cells, which are long-living cells beyond the acute infection
[2]. Apart from the T cells, which are one kind of cell-mediated immunity, B cells are also
involved in the adaptive immune response [60] as humoral immunity. T cells, which are
called “T” because of their maturation region in the thymus, are subdivided according
to their function and some proteins on the cells surface like CD4 or CD8 and are either
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activated through other T cells (called T helper cells) or binding of the cognate antigen
MHC complex of another host cell [60, 74]. B cells are involved in the creation of antibodies
in blood plasma and lymph and they can be distinguished from other lymphocytes by
the presence of a certain receptor (simply called B cell receptor), which is composed of
a membrane-bound antibody [2, 125]. Like T cells, B cells are subdivided according to
their function and the type of antibodies they secrete [60]. The critical difference between
T cells and B cells is the recognition of their cognate antigen. Whereas B cells recognize
native, soluble antigens, T cells can only recognize a bound form with the MHC molecule
from another cell [60].

2.2.3 MHC and epitopes

Higher vertebrates have a complex system to eliminate infected cells from the body.
The major genes involved in these pathways are called MHC (Major histocompatibility
complex) which produce certain proteins. These gene products are labeled HLA (Human
leukocyte antigen) in humans. In other vertebrates they are called by the same name
as the gene. The MHC genes can be divided into three categories: MHC-class I, MHC-
class II and MHC-class III. MHC-class I and II mediate antigen presentation, MHC-class
III genes are involved in other (not necessarily immune) functions and proteins such as
cytokines and heat shock proteins [92].

The MHC-I antigen procession and presentation pathway consists of the following steps:
in the cytosol, proteins are degraded by the proteasome, some of them at the end of their
useful lifetime, around 40% of them directly after synthesis [119]. Most of the peptide
fragments generated by the proteasome are further degraded by other cytosolic proteases
into single amino acids used for the synthesis of new proteins. Some of the non-degraded
peptides are transported into the endoplasmic reticulum (ER) by the membrane spanning
transporter TAP. There, the peptides can be degraded by aminopeptidases again [116,
121, 146] or exported back into the cytosol, unless they are able to bind to an empty
MHC-I molecule. Once a peptide binds, the MHC-I - peptide complex is transported to
the cell surface, where it is presented to cytotoxic T-lymphocytes (CTL cells) as an epitope
(see 2.6 - MHC-I pathway). The main difference between the MHC-class I pathway and
the MHC-class II pathway is the origin of antigenic proteins, the enzymes responsible for
peptide generation, and the location of loading the peptide on the MHC molecule. MHC-
class II only present proteins from the endosomes or lysosomes, degraded by proteases
inside those (see 2.6 - MHC-II pathway). To summarize, MHC-class I presents antigens
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Figure 2.6: Overview of the MHC pathway system: MHC-I pathway: 1. The proteasome cuts viral
(and other) particles in shorter peptides; 2. Those peptides are transported inside the ER lumen via TAP;
3. In the ER further modifications are made and the peptide is then loaded onto the MHC-class I molecule;
4. This molecule plus peptide is then transported via Golgi apparatus to the cell surface; 5. The peptide is
presented on the surface. MHC-II pathway: A. Viral particles are ingested by endosomal compartments; B.
Inside those particles and with the aid of lysosomes, proteolytic degradation produces peptides out of the viral
proteins; C. The phagolysosome fuse together with Golgi vesicle including inactivated MHC-class II molecules;
D. The MHC-class II molecules binds a suitable peptide; E. The peptide is presented on the surface.

which come from proteins produced inside the cell, whereas MHC-class II presents antigens
from outside the cells.

The proteasome, a multi-subunit protein complex, is responsible for the majority of pro-
tein degradation in the cytosol [47, 136] and is an important part of the MHC-class I
pathway [112]. All proteasomes isolated from eukaryotes contained the 20S proteasome,
which has three catalytic cores β–1, β–2 and β–5 [48]. It is known that the subunits of
20S change under influence of IFN–γ, and it is assumed that these immunoproteasomes
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increase the antigen procession capability of the cell [51]. The proteasome produces pep-
tide fragments with a length of between three and 18 amino acids [17]. The subunits of
20S have different cut preferences, which can be identified through fluorogene activating
peptide substrates (FAP): the β–1 subunit cuts after acidic amino acids, β–2 hydrolyzes
the peptide bond after basic amino acids and β–5 shows a chymotrypsin-like activity with
cut preferences after hydrophobic or aromatic amino acids [97]. This enzyme specificity
is much lower with physiological substrates [66]. The proteasome splits inactive protein
sequences mostly after basic and hydrophobic side chains [13], but the actual preferences
also depend on the surrounding amino acids [95].

The common size of an antigen for a MHC-class I molecule is between 8–10 amino acids
[15, 39, 88, 137]. Since only a small fraction of the peptides generated by the proteasome
are of the correct size, most of them must be processed further either by peptidases in
the cytosol or in the ER [66]. In the ER antigens can bind directly onto the MHC-class I
molecule, after correct trimming by ER-aminopeptidases and removing of the precursor
[117]. Those parts of the antigen which are recognized by the immune system are called
epitopes.

2.2.4 The big three and the immune system

There are big differences between HIV-1, HBV and HCV in the early immune responses.
HBV seems to avoid the induction of strong innate immune responses in the beginning
of an infection [140], whereas HCV induces a strong response, but is able to avoid the
consequences by the interaction of viral proteins with IFNs [11, 37, 130]. Antiviral effects
of type I IFNs against HBV haven been shown in transgenic mice, although the strong
immune response is missing [85]. IFN induces mechanisms which inhibit the formation of
viral capsids and degenerate HBV-RNA and seems to be proteasome dependent [85, 109].
HIV-1 mucosal infections arose from a single virus as is shown in studies in human [64,
115] and rhesus macaques [65] even if they are infected with a huge viral quasispecies.
Innate immune response may even support viral replication due to the recruitment of
additional susceptible T cells to the site [77]. A down regulation of HBV replication via
IFN-γ occurs in the adaptive immune response [52, 135]. In contrast to this, HCV specific
T cells appear much later in the infection [132, 133] and IFN-γ inhibits protein synthesis
and RNA replication of subgenomic and genomic HCV replicons [40]. HIV-1 has a special
status in the adaptive immune response, since it infects particularly those cells, which
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then spread the virus through the body [43, 87]. HIV-1 can even activate innate cells, B
cells and T cells [27, 44, 124] but does not activate IFN-γ [83].

Immunological memory and protective immunity is also very different between the big
three. Recovery from HBV results in lifelong immunity [63], and also lifelong viral par-
ticles in the blood [106], whereas HCV-specific antibodies may be lost after 10–20 years
after clearance [105]. Studies show that reinfections of HCV result in lower HCV titers
and no evidence of liver damage [73, 123]. It is also shown that escape mutations in HBV
are mainly mediated by drugs and not through the immune system. Variants of HBV
typically remain in low abundance in acute hepatitis [138] and even in chronic hepatitis T
cell escape mutants are rare [107]. In contrast to this, HCV shows escape mutations me-
diated by epitope processing[134], MHC binding[19], T cell receptor stimulation [19] and
antibodies[122], which is feasible through a large number of quasispecies when adaptive
immune response occurs [104]. HIV-1 is difficult to grab for immunological memory and
protective immunity. It almost always leads to a chronic infection [118], however there
are some individuals who remain sero-negative after definite exposure to HIV-1, which
appears to be unconnected with the host genotype [78]. This is therefore a constant field
of research.
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3

Methods, tools and techniques used globally

Any sufficiently advanced technology is
indistinguishable from magic.

ARTHUR C. CLARKE

A lot of tools and techniques are available for sequence analysis, starting with the “produc-
tion” of such sequences up to the tools for analysis of the sequences. For most problems
more than one solution exists, which is both good and bad. On the one hand it is good,
because one can use whatever tool and technique is most suitable to the task, but on the
other hand due to this redundancy a result from one tool may not be usable with another.
One example for such an issue are file formats for phylogenetic trees, which are often not
readable by another designated tool [7, 53].

In this work many methods, tools, and techniques from this huge sequence-tool-space
were used. The most important ones are sequence alignments, phylogenetics, statistics
in the case of methods used inside the computer, (next-generation) sequencing as basic
tool to generate sequences, which were then analyzed, and the programming environment
R, which was used to analyze most of the results presented here. Other tools including
SQLite - a database programming language, LATEX and even office tools like open office
were used where appropriate.
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Sequence alignments 3.1

3.1 Sequence alignments

The analysis of sequences is often preceded by an alignment. This alignment is the result of
a method of identifying regions of similarity in DNA, RNA or protein sequences that may
be a consequence of functional, structural, or evolutionary relationships between them.
Often sequence alignments are displayed as a matrix, with different sequences in rows and
sequence positions in columns (see Figure 3.1). In general, one can distinguish alignments
either by the number of sequences (pairwise alignment vs. multiple sequences alignment)
or by the method of alignment (global vs. local alignment, plus hybrid versions).

Figure 3.1: Example of a global sequence alignment with nucleotides from DNA. Colored by type
of nucleotide. Horizontal lines are gaps, which indicate insertions or deletions inside or outside the other
sequence(es) and are abbreviates indel.

Global alignments attempt to align every residue in every sequence and are useful for
sequences of higher similarity and approximately of equal length.

Local alignments align regions of high similarity and should be used in the case of highly
diverse sequences with certain motifs inside.

Pairwise alignments, alignments between exactly two sequences, are often solved with ei-
ther the Needleman–Wunsch algorithm or the Smith-Waterman algorithm, both of which
are examples of dynamic programming, [34, 49]. The Needleman–Wunsch algorithm is a
global alignment algorithm and uses a simple technique which can be performed manually
on a piece of paper if the two sequences are short enough (see example in Figure 3.2). In
our example a simple scoring function is used, but often for protein alignments complex
scoring matrices are more appropriate like PAM or BLOSUM [8, 16], which incorporate
information about the structure of the amino acids to determine the value of a mismatch.
Smith and Waterman transformed the Needleman–Wunsch algorithm to create an algo-
rithm to align sequences locally. The basic idea and method is the same, but with two
exceptions: all negative values are set to zero and backtracking starts at the highest
scoring cell up to the first cell with a zero inside.
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Sequence alignments 3.2

Figure 3.2: Needleman–Wunsch algorithm example. The task for the algorithm example presented here is
to align the sequences AAGCCGTAGT and AGCCATAGTA. A First a matrix is created with row numbers and
column numbers according to the length of the sequences plus one for the possibility of a gap. The scoring
function used here was: match = 1, mismatch = -1 and gap = -1. After defining the scoring function the cells
can be filled. The top left cell is always zero. Every other cell is the best possible score (i.e. highest) from
existing scores to the left, top or top-left (diagonal). As a formula: Mi,j = max(Mi−1,j−1 + Si,j ,Mi,j−1 +
W,Mi−1,j +W ), with i, j index of the matrix, S scoring function (match S(i, j) = 1, mismatch S(i, j) = −1),
W gap penalty. Scores from the top or left represent an insertion or deletion, scores from the diagonal represent
a match or mismatch. B The first row and column is easily filled as there are no top or top-left in the case
of the first row or left and top-left in the case of the first column. C While filling in the matrix according to
the formula above, the cell or cells from which the value was taken has to be marked. Usually an arrow is
used. D When the whole table is filled like described here, the score in the bottom right cell represents the
alignment score for the best alignment. From there the arrows can be traced back to get the alignment. A
diagonal arrow is a letter above a letter, a top or left arrow is a gap. This results in the alignment as pictured
in Figure 3.1 with an alignment score of 8.

Multiple sequences alignments use a type of phylogenetic approach instead, in which
the sequences with the highest similarity are aligned first and the rest of the sequences
successively until all sequences are incorporated into the solution. Most commonly used
tools are Clustal, in different variants, or T-Coffee [17, 36]. Other methods for multiple
sequences alignment often include either more information, as is the case with RNA/amino
acid sequences alignments based on their secondary/tertiary structure, or use general
optimization algorithms such as Hidden Markov models, which are less susceptible to
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Phylogenetics 3.2

noise created by conservative or semi conservative substitutions [20].

3.2 Phylogenetics

Phylogenetic analyses generate information about the evolutionary relationships between
sequences from molecular sequencing data, although they may be difficult to interpret,
as is shown in Velasco [56]. With phylogenetics a researcher is able to hypothesize the
evolutionary history of taxonomic groups and visualize it as a relationship tree, a well-
known example of which is the tree of life [30]. Before phylogenetics were available,
scientists used distance matrix-based methods based on overall similarity in observable
traits, such as morphology.

Several scientific methods exist to do phylogenetics. The most common ones are distance-
matrix methods, and maximum parsimony, maximum likelihood, and Bayesian inference.
The latter use mathematical models describing the evolution of characters and can use
sequence data, be it nucleotides or amino acids, although distance-matrix, maximum par-
simony and Bayesian inference can be used with any type of suitable data. They are either
parametric (maximum likelihood, Bayesian inference) or non-parametric (distance-matrix,
maximum parsimony). The resulting trees of all methods have a certain terminology, as
shown in Figure 3.3. Sometimes trees are visualized not as a tree, but unrooted or circular
to better display certain features e.g. known differentiators such as the origin of the used
sequence.

Distance-matrix methods use sequence distances from a multiple sequence alignment. The
distances are often defined as the fraction of mismatches at aligned positions. Gaps may
be ignored or counted as mismatches [13, 33]. Often used variants of the distance-matrix
method are neighbor-joining for unrooted trees and UPGMA (Unweighted Pair Group
Method with Arithmetic Mean) for rooted trees [44, 51]. Both use general data clustering
analyses. Neighbor-joining does not assume a constant rate of evolution, whereas UPGMA
does.

Maximum parsimony tries to find the phylogenetic tree that suppose the least evolutionary
change to explain observed data [11]. This method is not statistically consistent, it is not
guaranteed to produce the correct tree with high probability [12], and is therefore not
used in this thesis.
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Phylogenetics 3.2

Figure 3.3: Terminology of phylogenetic trees.

Instead maximum likelihood is a parametric statistical method and it employs an explicit
model of evolution. The quality of the tree highly depends on the chosen model, which
has to be reasonable for the given data. Like maximum parsimony, each tree will get a
score and the tree with the best score is the most likely candidate for the evolution of
the given sequences. Maximum likelihood estimates the likelihood of trees. A likelihood
is relative to the probability of a certain outcome out of all possible outcomes, e.g the
number six on a fair sided dice has a likelihood of about 16,6% or 1/6 to fall. If one does
not know the possible number of outcomes, the number of sides of the dice, but observes
that the number six falls roughly 1/6 of all rolls, one can estimate that the number six
is likely to fall one time out of six. The probability of a tree cannot be calculated, since
no one knows the number of trees, but the probability of the data given a tree can be
computed if one assumes a model. There exist several well-established models, e.g. Jukes-
Cantor (the oldest model and often inappropriate) or GTR (the most general neutral,
independent, finite-sites, time-reversible model), which all assume a certain (different)
kind of evolutionary change [19, 55]. In contrast to maximum parsimony, the branch
length in maximum likelihood has a certain meaning: the branch length is interpreted as
being proportional to the average probability of change on that branch [13]. The drawback
of this method is the model itself. If this model is incorrect, it will produce a biased result
[13].

Bayesian inference uses the same models of evolutionary change as maximum likelihood,
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Phylogenetics 3.3

but is different in both theory and application. It uses Bayes’ theorem (see chapter 5), and
does not produce a single or set of equally optimal trees. Bayesian phylogenetic analysis
calculates the likelihoods of trees in a Markov chain Monte Carlo (MCMC) simulation
and produces a credible sample of trees. One drawback is, of course, the same as with
other Bayesian methods: the need to explicitly set out a set of prior probabilities, to infer
from.

The standard protocol of a phylogenetic analyses includes DNA/Amino Acid sequence
assembly, multiple sequence alignment, model-test and phylogeny reconstruction, an ex-
ample of such a protocol can be found in Nature Protocols [4].

Several obstacles exist in getting a reasonable tree out of the given data. Some characters
are more likely to evolve convergently than others, e.g. in 2013 researchers found conver-
gent amino acid substitutions in genes implicated in hearing and vision in echo-locating
bats and dolphins [37]. Maximum likelihood and Bayesian inference can take some account
for this so-called homoplasy, but the weights further down the tree for those sites have to
be inferred from the data. Horizontal gene transfer is an issue for all three methods. If
genes are transferred not from parents to offspring as is the main assumption in phyloge-
netics, but from for example one bacterium to another, this transformed bacterium will
be placed much farther away than it should be. A possible solution is the assumption
that the largest set of genes that have been inherited together were transmitted vertically.
Hybrids create the same difficulties as horizontal gene transfer and are not uncommon
among plants [58]. It is important to choose a good region in the genome to create the
tree, a region which is similar in highly related species and differs in less related ones, and
of course missing data will also result in a less accurate tree.

Bootstrapping can be used to gain knowledge about the certainty of a particular inner node
in the result tree. With bootstrapping, usually one column (of the sequence alignment) is
left out of the analysis and the frequency whereby this exact node reappears in the result
tree is then counted. This is done usually 100 to 1000 times out of performance reasons,
and the bootstrap number at each node informs the reader how often this node occurred
(see Figure 3.3).
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Homology modeling 3.4

3.3 Homology modeling

Homology modeling is used to generate a tertiary structure out of a protein sequence
and an experimental homologous protein structure. It basically uses the method of pair-
wise/multiple sequence alignments to align the target sequence to one or more reference
sequence(s). Since evolutionarily related proteins tends to show similar sequences and
homologous proteins have a highly similar protein structure, homology modeling can cre-
ate for example the tertiary structure of a protein without the usage of complex NMR
or X-ray experiments. The quality of the model depends on the quality of the sequence
alignment and on the quality of the template structure. Indels inside the alignment may
reduce the quality by creating gaps inside the structure due to poor resolution. Regions
of the target without a matching structure have to be modeled in different ways, for ex-
ample loop modeling. Although homology modeling is prone to errors and should not
be used for purposes that require precise atomic-resolution data such as drug design and
protein–protein interaction predictions, it can be used to obtain qualitative conclusions
regarding the biochemistry of the query sequence, especially relating to residues.

The normal approach in homology modeling is: template selection, sequence alignment,
model construction, and model assessment [31]. The most important step is the search
for a compatible template structure. This is usually done by a BLAST search of the
target sequence, an alignment assisted database search through thousands of sequences
[1]. The best result depends on several factors. The coverage of the aligned region, the
part of the target which can be aligned to the reference, might be the important one.
Other factors include the sequence similarity of both sequences or of their functions, the
similarity of the predicted target, and the template secondary structure. The model itself
is then generated from the given structure and the sequence alignment with fragment
assembly, segment matching or satisfaction of spatial restraints [23, 45, 57]. The last
one, a satisfaction of spatial restraints, is an often used variant and a frequently used
implementation is MODELLER [14]. In the last step, the created structure of the target
is assessed. With either statistical potentials or physics-based energy calculations an
energy value is calculated, which can be used to get an indication of the accuracy of the
model.
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(Next-generation) sequencing 3.5

3.4 (Next-generation) sequencing

For about 25 years, biological sequences could only be examined with the so-called Sanger
Sequencing method, named after it’s creator Frederick Sanger [46]. Sanger Sequencing
uses the normal cell mechanisms to copy DNA so that from a template sequence one
nucleotide after another is added to the result sequence. With this method, sequences
of 750 bp can be generated [47], but the actual number depends on the used technology.
Sanger sequencing uses one template and is therefor very cost-intensive for a set of many
sequences.

In 1996 a new method for sequencing was published by Ronaghi et al. [42], the so-called
pyrosequencing, which utilizes the sequencing by synthesis principle. Pyrosequencing
uses chemiluminescent enzymes and detects if a type of nucleotide solution added to the
template sequences emits light or not. The biggest issue with pyrosequencing are the so-
called poly-N regions, because the intensity difference from 2 or more nucleotide additions
to the sequence is very small and often not measurable [39, 41, 43].

Several other methods have been published since then, which are now summarized in
the term ’Next-generation sequencing’ or short NGS. Besides the pyrosequencing, which
is called 454 after the most used sequencing machine invented by 454 Life Science and
distributed by Roche [21], a second method is widely utilized, the Illumina technology,
which is also the name of the machine and the company distributing the machines [38, 48].
Illumina uses a technique invented in the mid to late 90’s by the company Solexa, in which
nucleotides labeled with different fluorescence marker are added by a DNA polymerase
sequentially to a primer depending on the template DNA. After every added nucleotide a
laser excites the bound nucleotide and a picture is taken to identify which nucleotide was
bound. Since every used nucleotide serves as a terminator for the polymerization, poly-N
occurring in the template are rarely a problem for this method [2, 35, 50]. Other than
that mentioned there are less frequently used systems which also produce sequences on
a large scale, such as single molecule real time sequencing from Pacific Bioscience, which
uses phospho-linked nucleotides and detects in real time the addition of a single nucleotide
to a single strand of DNA [22]. The answer to the question “which method is better”
depends on what the researcher wishes to analyze. Longer sequences are better with the
454 technology, but have more insertion and deletion errors, many short sequences with
fewer errors are possible with the Illumina technology [28, 32, 40].
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Fileformats for sequences 3.5

3.5 Fileformats for sequences

3.5.1 FASTA format

Prior to the development of next-generation sequences, the most frequently used file for-
mat for sequence data was the so-called FASTA format. The original idea was developed
by David J. Lipman and William R. Pearson in 1985 as part of the sequence alignment tool
with the same name [27]. Later NCBI adopted this format for their tools and databases,
and very quickly it became a standard in the field of bioinformatics. A sequence in FASTA
format is represented by two items: the description line and the actual sequence. The
description line starts with a single greater-than (’>’) symbol. The following (usually
80) letters may contain any letter besides the greater-than (a few tools only allow certain
characters). In the original format lines with a semicolon could follow this line, which
were ignored by the tool. The sequences after the description line are in one-letter code
and may contain gaps, asterisks and IUB/IUPAC letters [26]. The length of a FASTA-file
is by definition not restricted.

Example of FASTA format:

>B.KR.1993.Donor_P_93KPS2_7012.HM210885
FFREDLAFPQ-GKAREFSSEQTRANSPTRR-ELQVWGRDNNSLSEAGADR

3.5.2 FASTQ format

The FASTQ format was originally developed to combine sequences in FASTA format with
quality data by Sanger, but is now used for next-generation sequencing data as well [6].
Compared to the FASTA format with two lines, the FASTQ format contains four lines per
sequence. The first two lines correspond to the FASTA format: line 1 is the description
line starting with an ’@’ character instead of the greater-than (’>’) symbol; the second
line is the raw sequence in one-letter code. The third line starts with a plus ’+’ symbol
and can contain the same description as the first line. The fourth one is the most complex
line, containing the mentioned qualities encoded into one letter per sequence position and
therefore with the same length as the second line. This encoding uses ASCII symbols
and depends on the machine used to generate the data [24, 25]. The Sanger format of
FASTQ can encode quality scores from 0 up to 93, whereas the first Illumina sequences
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R - The programming environment used in this thesis 3.6

encoded quality scores between -5 to 62 [6]. The actual encoding should be known to
decode correctly.

The quality score Q itself is an integer mapping of a probability that the corresponding
base call is correct. The now often used Phred Quality score, which originated in the
computer program Phred base-calling, is calculated by the following formula [9, 10]:

Q = −10 log10 P (3.1)

Thus a quality score of 30 tells the user that this base call is wrong in one of a thousand
base calls. A good quality score depends on the sequences and sequencer and the task
which should be solved, but usually base calls lower than 10 are considered as risky and
MacManes recommends certain precautions for quality scores lower than 5 in RNA-seq
[29].

Example of FASTQ format:

@M03645:23:000000000-ACB9C:1:1101:13351:1037 2:N:0:1
NGGGTTCCCTGCCCCATATGGGCTATCTTTCGCACAGTAATAACGCGTGTCCCAGGCTGN
+
#8ACCGGGGG#=BFGGF#=C##=####::C########:#::FFGGGGGGGGGGGGGGG#

3.6 R - The programming environment used in this thesis

R is a programming environment which was originally intended to be used for statistical
problems [18]. Its language is based on S [5] and the functional programming language
Scheme [54]. One or more packages exist for nearly all larger tasks, which anyone can use
freely together with the programming language to solve their own problems. Everyone
is free to submit their code to the central package storage called C-RAN. There is even
a big package resource purely for packages from the bioscience called BioConductor [15].
Due to this system and the simple and easy to learn language, R has grown from a mere
statistical tool to a fully grown programming language and is, besides C++, C#, Java,
Pearl and Python, especially widely used in the field of biosciences [52].

One drawback of R is the speed of the execution of scripts [3]. For long scripts or larger
tasks with loops, the calculation speed drops very quickly with increasing intricacy. R
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R - The programming environment used in this thesis 3.6

was originally invented for small statistical tasks and is not optimized for large amounts
of sequences. Keeping this in mind, R with its thousands of packages is the perfect
programming language to use in sequence analysis problems.
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SeqFeatR for the discovery of
feature-sequence associations

Goals are dreams with deadlines.

DIANA SCHARF

Abstract

Specific selection pressures often lead to specifically mutated genomes. The
open source software SeqFeatR has been developed to identify associations be-
tween mutation patterns in biological sequences and specific selection pressures
(“features”). For instance, SeqFeatR has been used to discover in viral protein
sequences new T cell epitopes for hosts of given HLA types. SeqFeatR supports
frequentist and Bayesian methods for the discovery of statistical sequence-feature
associations. Moreover, it offers novel ways to visualize results of the statistical anal-
yses and to relate them to further properties. In this article we demonstrate various
functions of SeqFeatR with real data. The most frequently used set of functions is
also provided by a web server.
SeqFeatR is implemented as R package and freely available from the R archive

CRAN (http://cran.r-project.org/web/packages/SeqFeatR/index.html). The pack-
age includes a tutorial vignette. The software is distributed under the GNU General
Public License (version 3 or later). The web server URL is https://seqfeatr.zmb.uni-
due.de.

This chapter is based on the following publication:
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Abstract
Specific selection pressures often lead to specifically mutated genomes. The open source

software SeqFeatR has been developed to identify associations between mutation patterns

in biological sequences and specific selection pressures (“features”). For instance, Seq-

FeatR has been used to discover in viral protein sequences new T cell epitopes for hosts of

given HLA types. SeqFeatR supports frequentist and Bayesian methods for the discovery

of statistical sequence-feature associations. Moreover, it offers novel ways to visualize

results of the statistical analyses and to relate them to further properties. In this article we

demonstrate various functions of SeqFeatR with real data. The most frequently used set of

functions is also provided by a web server. SeqFeatR is implemented as R package and

freely available from the R archive CRAN (http://cran.r-project.org/web/packages/

SeqFeatR/index.html). The package includes a tutorial vignette. The software is distributed

under the GNU General Public License (version 3 or later). The web server URL is https://

seqfeatr.zmb.uni-due.de.

Introduction
There is a widening gap between the surge of information rich sequence data, and the human
resources available for analysis. This is a problem that severely hampers progress in biomedi-
cine and other life sciences [1, 2]. Ideally, experimental or clinical researchers who are most
familiar with and interested in their data should be enabled to analyze their data by themselves.
While software for statistics and graphics, such as R [3] (http://www.R-project.org/), are freely
available and well-suited for such analyses, the steep slope of the learning curve is often dis-
couraging experimental and clinical researchers, who are fully occupied with managing experi-
ments or clinical duties. A general and relevant field where this disparity has been expressed to
the authors by clinical researchers, especially immunologists and virologists, is the association
of features of clinical interest with sequences. A concrete example is the association of patients’
HLA (Human Leukocyte Antigen) types with substitutions in a viral protein sequenced from
these patients, as a way of identifying T-cell epitopes and immune escape mutations [4]. There
are powerful computational tools for the identification of associations between sequences and
features, for instance in the domain of genome wide association studies [5], or next-generation
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sequencing exome or genome comparisons [6, 7], but these tools are optimized for specific
application scenarios and not for ease of use in experimental or clinical laboratory settings.

We have developed the R-package SeqFeatR to allow experimental and clinical researchers
easier access to the statistical and graphical capabilities of R for feature-sequence association
studies. R was chosen since it is a powerful, free, open source suite that is available for all com-
monly used computing platforms.

SeqFeatR has been successfully introduced in several virological labs, and sequence-feature
associations identified with SeqFeatR have been experimentally confirmed, as in the case of novel
CD8+ T-cell epitopes in HCV [8], or compensatory substitutions outside such epitopes [9].

These published examples have used the feature “HLA type” and amino acid sequences.
However, SeqFeatR is completely agnostic about the type of feature used, as long as it can be
labeled unequivocally, and it also processes nucleotide sequences. Both will be demonstrated in
section “Examples beyond HLA-sequence association”.

Core functionality of SeqFeatR
Given a set of related nucleotide or amino acid sequences, such as variants of a gene from sev-
eral patients with certain phenotypes, SeqFeatR discovers in those sequences positions that are
statistically associated with a “feature”, for instance with one of the patient phenotypes. An
example of a feature of great clinical importance is the HLA type of a patient. In a patient
infected with highly variable virus, such as HIV, HCV, or HBV, the HLA system of that patient
selects viral variants with immune escape mutations. Thus we can expect that mutations in
viral genome sequences are associated with the patient feature “HLA type”. SeqFeatR detects
such associations, in other words: it finds among all alignment positions those that have a sta-
tistically significant association with a given feature. Analogous to the association of single
alignment positions vs. features, SeqFeatR allows for the screening of associations of position
pairs or tuples with sequence features, though at higher computational cost.

Technically, SeqFeatR reads FASTA formatted multiple sequence alignments, with each
sequence labeled in its header line with the name of the feature, for instance the HLA type of
the patient from whom the respective viral sequence has been extracted. The alignment should
contain sequences that are positive for the feature of interest, and sequences that are negative.
SeqFeatR steps through all alignment columns and applies frequentist or Bayesian methods to
detect associations with the feature.

SeqFeatR itself does not implement alignment functionality, since there are many excellent
programs for multiple sequence alignments that can be used to turn sequence sets into multiple
sequence alignments, for instance MAFFT [10], T-Coffee [11], or Clustal omega [12].

Frequentist approach
In the frequentist approach used in SeqFeatR, Fisher’s exact tests [13] are applied to contin-
gency tables for all letters of the relevant alphabet (amino acid or nucleic acids) at all alignment
positions vs. sequence features. This most frequently requested type of analysis is fast and also
provided by the SeqFeatR web server. Logarithmically scaled p values are plotted along the
alignment with single position resolution (Manhattan plots), or averaged over epitope sized
windows. These association analyses are potentially affected by high numbers of false positives
due to multiple testing. Therefore, SeqFeatR offers methods for multiple testing corrections,
from the very conservative Bonferroni correction to the more relaxed control of False Discov-
ery Rates (FDRs) [14].

Beyond Manhattan plots, SeqFeatR provides some novel visualization tools for advanced
exploratory analyses, for instance an odds-ratio plot that simultaneously shows, along a

SeqFeatR for the Discovery of Feature-Sequence Associations
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sequence, odds-ratios and p values as two aspects of association strength (Fig 1A). Another
new visualization tool is the “Tartan plot” for a synopsis of two arbitrary scalar measures of
sequence position pair association, e.g. (in Fig 1B) − log p from statistical association testing of
amino acids at each pair (i, j) of alignment positions vs. the Direct Information between i, j [15,
16]. The synoptic plotting quickly reveals structure in such data, such as in Fig 1B the strong
association of V1/V2 loops of HIV-1 gp120 protein with the other variable loops and parts of
gp41, both in terms of p values from amino acid pair-association tests, and the more refined
Direct Information.

Bayesian approaches
While the frequentist approach works well in many cases, it has also drawn criticism, for
instance because p values are often abused or misinterpreted [18]. Another problem with the
frequentist approach occurs in situations where the same test is applied to multiple hypotheses,
such as testing for associations with phenotype features for all positions in a multiple sequence
alignment. As mentioned before, it is customary to “correct” the p values, e.g. by the very con-
servative Bonferroni correction or other more liberal alternatives, to avoid an increasing num-
ber of false positive tests results. As a more consistent alternative to deal with these problems,
SeqFeatR offers also Bayesian inference methods [19], namely Bayes factors (BFs) and hierar-
chical models (though these are posing other problems, such as the necessity to specify priors).
In the following we describe the implemented BF approach. For the hierarchical models we
only mention that the SeqFeatR R-package has an interface to the Gibbs sampling engine JAGS
[20]; a detailed account of hierarchical models for sequence feature association analyses will be
given in a separate publication.

Fig 1. Odds-ratio plot and Tartan plot for visualization of statistical associations. AOdds-ratio plot, based on an alignment of region of HIV-1 gp120
around the V3 loop (C296-C331). Here, the feature is the predicted co-receptor tropism of HIV-1 [17] (R5 vs. X4 tropic). Bar heights and colors indicate
logarithms of odds ratios and negative logarithms of p values, respectively. A reference sequence and sequence positions can be added in the top and
bottom rows for orientation. B Tartan plot for the synopsis of two alignment pair association measures, here: −log p from association test between alignment
position pairs (upper right triangle) vs. Direct Information between these pairs (lower left triangle). Association strengths are color coded (color legend on the
right). For orientation, axes can be annotated and sequence substructures can be indicated by lines.

doi:10.1371/journal.pone.0146409.g001
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The BF for two hypothesesH0 andH1, given sequence and feature data D, is the ratio of pos-
terior odds and the corresponding prior odds: BF = (p(H1|D)/p(H0|D))/(π1/π0). In other words,
the BF equals the posterior odds ratio if the prior probabilities π0, π1 are equal and thus the
prior odds ratio is 1. In our caseH1 is the hypothesis that a feature is associated with an amino
acid or nucleotide at an alignment position, andH0 is the hypothesis that there is no such asso-
ciation. The higher the BF, the more likely H1 (association) and the less likely H0 (no associa-
tion). If the prior probability of association π1 is known, the ratio of posterior probabilities of
association over non-association can be computed as BF � π1/(1 − π1).

Here we use a BF for the hypothesisH1 that feature and amino acid at an alignment position
are close to independence vs. H0 that they are independent. A model H1 close to independence
will often be more relevant than a “uniform model” that, for instance, assumes a uniform distri-
bution of contingency table cell probabilities. Albert et al. have derived a BF expression for the
ratio of a close-to-independence model over an independent model based on Dirichlet distrib-
uted elements of contingency tables [21, 22]:

BFKðfyrcgÞ ¼

Z
DirðfKZrZc þ yrcgÞ

DirðfKZrZcgÞ
dfZrgdfZcg

Dirðfyr þ 1gÞDirðfyc þ 1gÞ ;
ð1Þ

where yrc are the observed contingency table counts with row index r and column index c;

DirðfaigÞ ¼ 1=BðfaigÞ
Q

ip
ai�1
i is the Dirichlet distribution of probabilities pi (here: probabili-

ties of contingency table elements) with normalizing multinomial Beta function B and concen-
tration parameters αi; yr, yc are the row and column sums of the observed contingency table; K
is a precision hyperparameter; ηr, ηc are hyperparameters corresponding to probabilities of row
r and column c of tables with row-column independence. Curly brackets indicate that we have
sets of two or more parameters. For instance, in the case of a 2 × 2 contingency table (amino
acid present or absent at an alignment position versus feature present or absent), the Dirichlet
distributions in the integrand depend on four parameters (two columns, two rows) and the
integration therefore runs over four parameters. The prior belief in the independence is
expressed by K: the higher this hyperparameter, the more dominant the independence struc-
ture imposed by ηr ηc will be in comparison to the observed counts yrc in the numerator of Eq
(1), and for K!1 complete independence is achieved. The BF is computed numerically as an
average by importance sampling of Eq (1) using ηr, ηc values that are randomly drawn from a
Dirichlet distribution with concentration parameters evaluated from the entries yrc of the
observed contingency table. The procedure is detailed in Ref. [23]. BFK({yrc}) is reported by
SeqFeatR.

While SeqFeatR allows for setting an explicit K value, it may not be easy to specify an appro-
priate value of K that is applicable to all alignment positions. In such cases, a new empirical
Bayes variant of this BF is convenient. In this variant, an individual value of K is estimated
from each contingency table itself. To derive this value, we first acknowledge that the sum S of
absolute values of differences between the actually observed counts in the contingency table
and the counts expected under independence is a measure of how confident we are that col-
umns and rows are dependent:

S ¼
X
rc

���yrc �
P

kyrk
P

kykc
N

���; ð2Þ

with total table count N = ∑rc yrc. Clearly, for perfectly independent rows and columns, the value
of S reaches its minimum of zero. The maximum of S = N is attained for strong dependence of
rows and columns, for instance for a 2 × 2 table with y11 = y22 = N/2 = n and y12 = y21 = 0. To
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recast S into a measure of prior belief in independence we use as precision hyperparameter in Eq
(1) instead of K the difference KD:

KD ¼ N � S: ð3Þ

A simple interpretation of KD is that if all N counts in the contingency table support indepen-
dence, we have S = 0 and therefore KD = N (maximum prior belief in independence), while if all
counts support association, we have S = N and therefore KD = 0 (minimum prior belief in inde-
pendence). SeqFeatR also offers the option of using KD.

Fig 2 shows that for contingency tables for which independence cannot be rejected as indi-
cated by p� 1 from Fisher’s exact test (lower right corner), KD and K100 yield approximately

Fig 2. Comparison of statistical indicators of association. 200 random contingency tables with total count
N = 100, a typical order of magnitude for analyses of sequence-feature association in practice, are analyzed
by Fisher’s exact test, yielding p values for the rejection of independence (horizontal axis, not corrected for
multiple testing), and by four different BF models, namely K = 1, K = 100, KD, and uniformmodel, with
corresponding BFs on vertical axis. Solid horizontal black line at BF = 1 and dashed vertical line at p = 0.05
for orientation.

doi:10.1371/journal.pone.0146409.g002
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the same BF� 1, i.e. association and independence are given approximately equal weights. In
this corner, the uniform model and even more so the model with low confidence in indepen-
dence (K = 1) have BFs much closer to zero, both favoring independence over dependence. At
the other end of the p value range, on the left side of the plot, the low p values lead to rejection
of independence, and concordant with this, high BFs that favor association over independence.
Here, the increase of BFs in the KD model follows those of lower Kmodels. Effectively, the KD

model suppresses noise by collapsing weak-association cases to BF� 1 (similar to high Kmod-
els), while it readily supports stronger associations (similar to low K or uniform models).

Comparison of frequentist and Bayesian approaches for discovery of
HLA escape substitutions
Recently, we have reported the discovery and experimental confirmation of several HLA escape
substitutions in Hepatitis B Virus (HBV) from chronically infected patients [24] (sequences
available from GenBank, accession numbers KP856971-KP857118). In that report, we had
used SeqFeatR with the frequentist approach for the discovery. In Fig 3 we compare the latter
approach (without correction for multiple testing) and Bayes factors with precision hyperpara-
meters K = 1 and KD. For this comparison, we have chosen two significant associations identi-
fied in Ref. [24], namely the strongest (alignment position 66 with HLA type A�01,
corresponding to position 38 of HBV core protein reference) and the weakest (alignment posi-
tion 96 with HLA type B�44, corresponding to position 67 of HBV core protein reference).

For all three analyses of the association with HLA A�01, alignment position 66 clearly sticks
out with extremely small p value and high values of BFK = 1, and BFKD

(top row of Fig 3). A fre-
quentist would not seriously consider any other position as associated with this HLA, and most
of the positions have p� 1. For K = 1 we have a wide spread around BF = 1, or log10 BF = 0.
Two BFs other than at position 66 lie slightly above BF = 10 (or log10 BF = 1), a threshold often
used to mark “substantial” evidence [25]. However, in contrast to the BF at position 66, these
two BFs are not clearly separated from the bulk of the other BFs. Towards lower BFs, many val-
ues reach down to 10−2 or lower, indicating preference for independence over association at
these alignment positions. For KD we see the noise suppression mentioned earlier as the spread
of the low BFs is constrained to a much smaller range than for K = 1.

For feature HLA B�44 we had only about 21 sequences (compared to 41 for HLA�A01),
leading to a weaker association signal (bottom row of Fig 3). Still, the frequentist analysis
shows position 96 with a p value that is clearly separated from the rest (panel D). However, a
Bonferroni correction collapses all p values to 1, while the FDR correction collapses all to 1,
except for position 96 with a corrected value of 0.16 (S1 Fig). The BFs with K = 1 do not favor
association at any position (panel E). Conversely, for KD position 96 has a clearly elevated BF
(panel F). In summary, the frequentist approach with a strict correction for multiple compari-
sons, or the BF approach with K = 1 would both have led to a missing of the experimentally val-
idated association at position 96, while the frequentist approach without correction, or BFKD

both identify this association.

Detection of phylogenetic bias
Sequences analyzed with SeqFeatR can often be considered samples from different branches of
the same phylogenetic tree, evolved from a common ancestor under selection pressure related
to the “feature”. A good example are again viral genome sequences evolved under selection
pressure by the HLA systems (= features) of infected persons [8, 9, 24]. Under these circum-
stances, it is possible that SeqFeatR reports apparent sequence-feature associations that are due
to a phylogenetic bias in the data. For instance, consider transmission of a virus from a mother
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Fig 3. Comparison of frequentist approach and Bayes factors (BF). Discovery of association of alignment positions of HBV core proteins with patient
HLA types, here: A*01 (top row) and B*44 (bottom row). Sequence numbers in panel titles are feature-carrying fractions of the total of 148 sequences
included in the alignment. Association of sequences with feature HLA were analyzed by Fisher’s exact test (panels A, D), BF with K = 1 (panels B, E), and BF
with KD (panels C, F). Alignment positions with association above certain thresholds (horizontal dashed lines) are marked by red stars and vertical dashed
lines, namely p < 0.01 (A, D), or BF > 10 (B, C, E, F). The p values and BFs shown are the best for each alignment position (lowest p values, highest BFs).

doi:10.1371/journal.pone.0146409.g003
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to several children, all having the same HLA type. In this case, not only HLA escape mutations
of viral proteins are associated with this HLA type, but apparently also mutations specific to
the founder virus of the mother that are transmitted to the children, but unrelated to the HLA
type. A mutation of a viral protein that is really associated with HLA type should co-occur with
the HLA in other parts of the phylogenetic tree (i.e. outside this mother-child transmission),
while this repeated co-occurrence is less likely for mutations that, due to phylogenetic bias, are
only apparently associated with HLA.

SeqFeatR computes a simple quantitative indicator B of the strength of the phylogenetic
bias for a given feature as follows. We expect that a phylogenetic bias is likely, if evolutionary
distances within the group of sequences that carry the feature are much smaller than typical
evolutionary distances in the total set of analyzed sequences. Thus, we define B as

B ¼ 1� hdijifeature
hdijiall

; ð4Þ

where dij is the Levenshtein distance between sequences i and j. The ratio gives the mean dis-
tance between sequences carrying the feature over the mean distance in the total sequence sam-
ple. B lies then between values that typically are close to zero or even become negative for low
bias, and a maximum of 1 for the strongest bias. For instance, in Fig 4E, feature-carrying
sequences are spread out over different parts of the phylogenetic tree of all sequences in the
sample, and consistent with this B = 0.05 signals low bias. Conversely, in Fig 4B feature-carry-
ing leaves are concentrated in a sub-tree, and B = 0.26 indicates higher bias.

If detection of specific substitutions is desired that are associated with the feature, and not
due to phylogenetic bias, a high B suggests extension of the set of sequences, especially with
evolutionarily less closely related sequences that carry the feature.

Examples beyond HLA-sequence association: HIV-1 co-receptor
tropism and genetic species differences
In the above examples we have focused on the HLA type as feature and amino acid sequences.
However, SeqFeatR is agnostic about the type of feature and sequence and therefore can be
applied to other features and nucleotide sequences, too. To illustrate this we give in the follow-
ing two examples.

HIV-1 co-receptor tropism. The Human Immunodeficiency Virus 1 (HIV-1) enters cells
after contact with the cellular receptor CD4 and one of two co-receptors, either CCR5 or
CXCR4 [26]. The choice of the co-receptor (or “co-receptor tropism”) is encoded in the viral
genome, specifically in the third variable loop (V3) of the viral glycoprotein 120 [27]. Since the
co-receptor tropism has implications for prognosis [28] and therapy [29], its determination
from V3 sequence has attracted a lot of interest. Here we demonstrate that SeqFeatR recovers
V3 sequence patterns known to be associated with co-receptor tropism.

To simplify the alignment, we used only V3 sequences of 35 amino acids (S1 Alignment),
the by far most frequent length, from a dataset published earlier [30]. This led to 84 V3
sequences of CXCR4-tropic virus and 928 V3 sequences of CCR5-tropic virus. We then applied
SeqFeatR with co-receptor tropism as feature. The resulting Manhattan plot (S2 Fig) shows
many positions with highly significant deviations between CXCR4- and CCR5-tropic virus.
One of the patterns recognized early on as specific for CXCR4 is the occurrence of positively
charged amino acids at positions 11 and 25, the so-called 11/25 rule [31]. In fact, in the Seq-
FeatR output both positions 11 and 25 have significant deviations between CXCR4- and
CCR5-tropic virus with p-values less than 10−4. Inspection of the alignment confirms that in
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CXCR4-tropic virus both positions 11 and 25 are significantly enriched in positively charged
amino acids Arginine and Lysine in comparison to CCR5-tropic virus.

Genetic species differences. SeqFeatR can be used to discover genetic differences between
species or other taxonomic levels. For the following example we have retrieved from the SILVA
database [32], version 123, RNA sequences of the small ribosomal subunit (SSU) of two closely
related green algae, Chlamydomonas applanata (9 sequences) and Chlamydomonas reinhardtii
(10 sequences). The input alignment is provided as S2 Alignment. Using these two species as
features, we found with SeqFeatR 29 positions with highly significant differences (red stars in
Manhattan plot S3 Fig). Nucleotide sequence differences such as these can be used to under-
stand genetic bases of species differences or to design species specific PCR primers [33].

SeqFeatR addresses various needs and levels of expertise
SeqFeatR has three modes of use, addressing users with different levels of expertise and differ-
ent needs: For users not versed in R programming and with sequence material and features

Fig 4. Phylogenetic distribution of feature-carrying sequences and phylogenetic bias indicator B. The distance-based phylogenetic tree in all six
panels was computed for the same set of 788 East Asian HIV-1 gag protein sequences obtained from the HIV sequence database at http://www.hiv.lanl.gov.
In each panel, those branches are colored red that correspond to sequences that carry an amino acid substitution apparently associated with a certain HLA
type. The numbers to the upper right of each tree are the corresponding values of the bias indicator B, Eq (4).

doi:10.1371/journal.pone.0146409.g004
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that can be transmitted over the Internet, we offer the SeqFeatR web server. For reproducibility
and documentation, the web server generates a detailed report for the user. If the data must not
leave the respective institution, inexperienced users may still use a simple Tcl/Tk-based graphi-
cal user interface (GUI) that can be started by the SeqFeatR_GUI() command from R. Experi-
enced users can access the full range of SeqFeatR commands in R-scripts. Training material
such as tutorial texts (https://cran.r-project.org/web/packages/SeqFeatR/vignettes/SeqFeatR_
tutorial.pdf) and videos are provided for users at all levels.

Supporting Information
S1 Fig. Frequentist approach with correction for multiple testing. Association of alignment
positions of HBV core protein with patient HLA types A�01 (A) and B�44 (B). Sequence num-
bers in panel titles are feature-carrying fractions of the total of 148 sequences included in the
alignment. Association of sequences with feature HLA were analyzed with Fisher’s exact test,
and resulting p values were corrected for multiple testing with FDR option.
(TIFF)

S2 Fig. Association of V3 sequence positions with HIV-1 co-receptor tropism.Manhattan
plot output of SeqFeatR showing sites in the V3 amino acid sequences S1 Alignment that are
significantly associated with co-receptor tropism.
(PDF)

S3 Fig. Association of Chlamydomonas SSU nucleotide sequence position with species.
Manhattan plot output of SeqFeatR showing sites in the SSU nucleotide sequence alignment S2
Alignment that are significantly associated with Chlamydomonas species, here: Chlamydomo-
nas reinhardtii (RH) vs Chlamydomonas applanata (AP).
(PDF)

S1 Alignment. V3 amino acid sequences of CCR5- and CXCR4-tropic HIV-1. S2 Fig was
produced by SeqFeatR with this input. All sequences (84 from CXCR4-tropic and from 928
CCR5-tropic virus) have the same length of 35 amino acids and have not been submitted to an
extra alignment step. Note that the feature labels “X4” (for CXCR4-tropic) and “R5” (for
CCR5-tropic) have been added at the end of the FASTA headers after a semicolon.
(FA)

S2 Alignment. Alignment of SSU nucleotide sequences from Chlamydomonas. Alignment
of RNA sequences of small ribosomal subunit sequences: 9 from Chlamydomonas applanata,
10 from Chlamydomonas reinhardtii. S3 Fig was generated by SeqFeatR with this input. Note
again that the last element of the FASTA header stands for the feature, here: RH for reinhardtii
and AP for applanata.
(FA)
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The multiple testing problem and SeqFeatR

To kill an error is as good a service as, and
sometimes even better than, the establishing of a
new truth or fact.

CHARLES DARWIN

Abstract

Hypotheses testing is very common in science, especially in medical science. There
is a ongoing conflict between the camps of a classical hypothesis testing background
and those of a Bayesian background. For classical hypothesis testing scientists the
multiple testing problem and therefore a multiple testing correction seems natural.
Bayesian Inference sees itself without such multiple testing problems. Sequence
data, as investigated in this work, is problematic for multiple testing correction, as
it is for independent tests, and nucleotides or amino acids are all but random and
independent.
I investigated the best method to analyze the given data (sequence data and

features) for my R-package SeqFeatR. Bayesian Inference solutions showed much
better results for our test set than the multiple testing corrections available in C-
RAN-package stats. Thus I included Bayes Factors and Hierarchical Bayes into
SeqFeatR.
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Introduction 5.1

5.1 Introduction

5.1.1 Overview: Error rates and their corrections

Hypotheses testing is very common. For a given hypothesis the results of one or more
experiments are evaluated to see if the null hypothesis (H0) can be rejected (and the
alternative hypothesis (H1) can be accepted) or not. The decision value is often the p-
value, with which the user can estimate if the null hypothesis should be rejected. The
p-value is the probability of getting the results (or more extreme results), given that the
null hypothesis is true. For a set of rejection areas R (rejection area = the set of values
for the test statistic that leads to rejection of H0) the p-value of an observed statistic S
= s is:

p(s) = min
sεR

P (SεR|H0 true) (5.1)

In every statistical conclusion one can make two types of error: the first are Type-I errors,
where the null hypothesis is rejected although it is true (= false positive), the second are
Type-II errors, where the null hypothesis is not rejected although it is false (= false
negative). The probability of making at least one false positive decision is α, and of not
making this error 1-α (see Table 5.1). The value α usually equals the significance level of
a test.

If there is not just one test, but m tests, the probability of not making an error is (1−α)m

and of making at least one error 1− (1−α)m. The probability for one false positive in 100
tests may be close to one, depending on the actual value of α, which can be very critical

Table 5.1: Overview of Type-I and Type-II errors in hypothesis testing
actual situation “Truth”

Decision H0 true H0 false

Do not reject H0 Correct decision (1- α)
Incorrect decision
(Type II error β)

TN FN

reject H0

Incorrect decision
Correct decision (1- β)(Type I error α)

FP TP

62



5.
T

he
m

ul
ti

pl
e

te
st

in
g

pr
ob

le
m

an
d

Se
qF

ea
tR

II
5.

T
he

m
ul

ti
pl

e
te

st
in

g
pr

ob
le

m
an

d
Se

qF
ea

tR
5.

T
he

m
ul

ti
pl

e
te

st
in

g
pr

ob
le

m
an

d
Se

qF
ea

tR
5.

T
he

m
ul

ti
pl

e
te

st
in

g
pr

ob
le

m
an

d
Se

qF
ea

tR
II

5.
T

he
m

ul
ti

pl
e

te
st

in
g

pr
ob

le
m

an
d

Se
qF

ea
tR

5.
T

he
m

ul
ti

pl
e

te
st

in
g

pr
ob

le
m

an
d

Se
qF

ea
tR

Introduction 5.1

in certain areas like tests for serious illnesses. These tests can have a big impact on the
life of a person, such as a male patient who lost his job and home because of the positive
result in a HIV test in 1985 [39]. This would be bad enough if the test was correct, but if
it was a false positive the situation would be even worse [8]. The false positive rate - the
probability of having a false positive - can be calculated in different ways, which makes
it difficult to choose the right one for any given situation. The first calculation method
simply divides the number of false positives by the total number [9], the second divides
the number of false positives by the sum of true positives and false positives [15] and the
third divides the number of false positives by the sum of false positives and true negatives
[37]:

1.FPR = FP

Total
(5.2)

2.FPR = FP

TP + FP
= P(H0 true|reject H0) = 1− positive prediction value (5.3)

3.FPR = FP

TN + FP
= P(reject H0|H0 true) = 1− specificity (5.4)

These three possible interpretations of a false positive rate result in big differences as
Germanson noted in 1989 [21]. The second variant is often used today. Since a false
positive is unwanted, there exist many different methods to control the false positive rate
and to correct the values to minimize the chance for a false (positive) result:

V = # false positives
R = # rejected hypothesis
E = the expected value

PCER = E(V )/m Per-comparison error rate (5.5)

PFER = E(V ) Per-family error rate (5.6)

FWER = P (V ≥ 1) Family-wise error rate (5.7)

FDR = E(V
R
|R > 0)P (R > 0) False discovery rate (5.8)

pFDR = E(V
R
|R > 0) Positive false discovery (5.9)

The most well-known correction is the Bonferroni [50] correction, a method to control the
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Introduction 5.1

Family-wise error rate (FWER). The Bonferroni correction simply corrects the p-value by
the number of tests m. It rejects any hypothesis with p-value ≤ α

m
.

p̃j = min[mpj, 1] (5.10)

However the interpretation of findings depends on the number of tests and not the test
itself. Likewise there is an increased Type-II error, where one cannot reject the general
H0 (= all single H0 are true), even if there are effects. Perneger describes the Bonferroni
method as “unnecessary at best and deleterious at worst” [32]. Another FWER method
was invented by Holm [24], who in contrast to the single step approach by Bonferroni,
used a sequential approach, where the p-values are sorted and ranked in ascending order
and each value is multiplied not with m, but with a decreasing m:

p̃j = min[(m− j + 1) · pj, 1] (5.11)

This method is not as strict as Bonferronis but Pernegers objections are still applicable.
FWER methods are appropriate if any false positive would be bad.

False discovery rate is a method which allows a certain number of false positives. It
controls the proportion of false positives among the set of rejected hypothesis. Benjamini
and Hochberg developed the FDR and formalized it in 1995 [4]. For an FDR level δ
the p-values are sorted and ranked in ascending order and divided into those which are
considered significant (≤ rank j) and those which are not (> rank j). For all significant
p-values p(j):

p(j) ≤ δ
j

m
(5.12)

Storey and Tibshirani extended the FDR into the pFDR, which is the calculated FDR
assuming that there is at least one positive hypothesis test and named a measure of
statistical significance q-value, which numbers the expected proportion of false positives
for calling a certain single result significant [44]. In contrast to the p-value, the q-value
for a set of rejection areas R of an observed statistic S = s was defined as:

q(s) = min
sεR

pFDR(R) = min
sεR

P (H0 true|SεR) (5.13)

The q-value is the p-value with the conditional statement and event of interest reversed,
so that it is more intuitive in certain questions.

64



5.
T

he
m

ul
ti

pl
e

te
st

in
g

pr
ob

le
m

an
d

Se
qF

ea
tR

II
5.

T
he

m
ul

ti
pl

e
te

st
in

g
pr

ob
le

m
an

d
Se

qF
ea

tR
5.

T
he

m
ul

ti
pl

e
te

st
in

g
pr

ob
le

m
an

d
Se

qF
ea

tR
5.

T
he

m
ul

ti
pl

e
te

st
in

g
pr

ob
le

m
an

d
Se

qF
ea

tR
II

5.
T

he
m

ul
ti

pl
e

te
st

in
g

pr
ob

le
m

an
d

Se
qF

ea
tR

5.
T

he
m

ul
ti

pl
e

te
st

in
g

pr
ob

le
m

an
d

Se
qF

ea
tR

Introduction 5.1

5.1.2 The problem with sequence data

All of the above corrections are for multiple tests. "‘Multiple"’ refers to the same ex-
periment, where the tests themselves are repeated but independently. If the tests are
not independent, multiple comparison corrections give unwanted results [16, 35, 40]. The
(position-wise) analysis of sequence data, be it nucleotides or amino acids, is not inde-
pendent, since the change of one nucleotide or amino acid often results in the change of
one or more nucleotides or amino acids at other positions.

Problem: Can we even consider using multiple corrections for sequence data? And if we
can use them, how should we include the connection of different positions?

5.1.3 A possible answer - Bayesian Inference

Bayesian Inference is a statistical method derived from a special case of a statistical
problem solved by Thomas Bayes and generalized by Pierre-Simon Laplace [42]. It uses
"‘Bayes’ Rule"’, the form of Bayes’ theorem and therefore a method to analyze conditional
probabilities with two types of evidence. One type of evidence is known a priori through
knowledge, and the other evidence is the result of some form of test [43]. Bayes’ rule is not
limited to only one pair of prior and test results, but can be used with the posterior from
one analysis and another test - which is then called "‘Hierarchical Bayes"’ or "‘Bayesian
Updating"’. Bayesian Inference for a parameter θ can be formalized:

P(θ|data) = P(data|θ) · p(θ)
p(data) → posterior ∝ likelihood · prior (5.14)

with p(θ) being the prior and the probability before seeing the data and P(data|θ) the
probability of the data given the parameter. The posterior P(θ|data) represents the infor-
mation combination of the viewed data and the prior. One of the bonuses of the Bayesian
approach is that there is no need for multiple testing correction. Bayesian testing has a
built-in penalty for this [19, 26]. In a Bayes Factor approach, a Bayesian Inference vari-
ant in which two models or hypotheses are compared, the evidence of association can be
weighed against a prior probability and, unlike for example Bonferroni, without reference
to the number of sequence positions tested. This may lead to an increased rate of false
positive associations, but since the expected number of true positive associations will also
increase, the FDR will remain roughly constant [41].
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Methods 5.2

5.1.4 Bayes and amino acid/nucleotide sequence data

Bayes’ Theorem cannot be applied directly to sequence data, since at first sight there
is one vital piece of information missing: The a priori probability for an amino acid
or nucleotide at a certain position being a certain letter. A possible way out of this
problem is an analysis of as many sequences of the same kind as possible and the usage
of those frequencies as a ’good guess’, as was done by Garabed in 2008 [17]. Stephens
recommended another approach in his review article on Bayes in GWAS settings: a Bayes
Factor is combined with an a priori probability, so that the single nucleotide polymorphism
(SNP) is associated with the phenotype in question [41]. These a priori probabilities may
be the same value for the whole genome or may vary across SNPs and should be in the
range of 10−4 to 10−6 [11]. Wakefield recommended instead - assuming a normal prior
distribution with a mean of zero and variance W - a Bayes Factor calculated from the
maximum likelihood estimate (MLE) of the log OR and its sampling variance, which
results by specifying W as a function of an assumed effect size distribution, in a Bayes
Factor, which is unaffected by sample size [38, 48].

A more important question is if Bayes is better than a direct multiple comparison cor-
rection on the results from a classical hypothesis testing approach for sequences based
data. This was tested with the R-package SeqFeatR, HCV sequences and three datasets
of epitopes from HCV.

5.2 Methods

5.2.1 Data

I used an amino acid dataset from the Anti-D cohort [13, 49] consisting of 81 HCV
sequences from Core up to NS2 with known HLA types of the sequences, and reduced
this dataset to all sequences, which were HLA-A*02 (29 sequences).
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Methods 5.2

5.2.2 Sample epitopes for the sequences

I used three different approaches to get epitopes for the sequences:

1. Predicted epitopes from the IEDB prediction tool [27], which is a meta-predictor (uses
more than one method): I predicted all epitopes for the 29 sequences of HLA-A*02:01 and
HLA-A*02:06. An epitope with an ANN (Artificial Neural Networks) IC50 value of 500
or less was considered a positive match after the recommendations from IEDB and You
[51]. All epitopes with higher values were considered a mismatch (414 positive epitopes).

2. Known epitopes from the Los Alamos database [53]: I took all epitopes for our selected
region from the Los Alamos database (54 epitopes, none from the NS2 region).

3. Known epitopes from IEDB database [47]: I downloaded the known positive epitopes
from IEDB for HCV and all HLA-A*02 alleles and compared the epitope sequence to H77
to get start and end points for the epitopes (32 epitopes).

5.2.3 Bayesian Inference in SeqFeatR - Bayes factors

A variant of the Bayesian method for evaluation is a Bayesian model comparison with the
usage of the so-called Bayes Factor. The Bayes Factor is used to evaluate the probabilities
of two different models and therefore a possibility to estimate which model is better. A
detailed description of Bayes Factors in SeqFeatR is given in chapter 4.

The BF for two hypotheses H0 and H1, given data D, is the ratio of posterior odds and
the corresponding prior odds: BF = (p(H1|D)/p(H0|D)) / (π1/π0).

It is important to note that with this technique the better of two models is favored,
which must not necessarily be the best model for the data. SeqFeatR has an added extra
column in the csv output which provides an estimate of the simulation standard error of
the computed value of the Bayes factor.
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Methods 5.2

5.2.4 Bayesian Inference in SeqFeatR - Hierarchical - with example

A more complex variant of Bayesian Inference is "‘Hierarchical Bayes"’. In Bayesian Infer-
ence a hierarchical model is characterized by priors which are in themselves probability
distributions called hyperpriors. In a basic model, only one position and one amino acid
is taken into consideration for the evaluation of a significant difference. In a more general
approach all amino acids and all positions are sampled in one model. This type of model
is more realistic in that amino acids and sequence positions are by no means indepen-
dent. Instead, it is very common that one sequence position influences another one due
to binding affinities inside the secondary or tertiary structure of the protein.

Alignment positions, e.g 1-20-21-35, can be simulated with a multinomial distribution,
which is used to model n observations that fall into one of a finite number of mutually
exclusive categories. The categories in this case are all alignment positions, and those
positions are mutually exclusive. Likewise amino acids or nucleotides can be simulated
with a multinomial distribution. A multinomial distribution is a more general form of the
binomial distribution, in which more than two outcomes are possible.

ni = the number of times outcome i occurs

pi = the probability of outcome i

p = n!
(n1!)(n2!) . . . (nk!)

pn1
1 p

n2
2 . . . pnkk (5.15)

The likelihood function of the multinomial distribution can be described as:

f(x1, . . . , xk|θ1, . . . , θk) =
(

n!
x1! . . . xk!

)
θx1

1 . . . θxk
k (5.16)

The probability that an observation falls into category i is given by Θi, whereas the vector
X = (X1, . . . , Xk) counts how many of these observations fall into each category.

A conjugated priori distribution for the multinomial distribution is the so-called Dirichlet
distribution. The Dirichlet distribution - a generalized form of the Beta distribution -
is parametrized by a vector α of positive real numbers. The multinomial distribution
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Table 5.2: Example for hierarchical Bayes with two alignment positions and three amino acids.
Feature A P Y
1 3 5 0
2 0 3 5

may return for example the probabilities of an amino acid being an Alanine, Proline
or Tyrosine, the Dirichlet distribution how probable a specific distribution of Alanines,
Prolines and Tyrosines is. If those probabilities were uniformly distributed (each amino
acid has the same probability to occur) the vector α would contain the same values
for each possibility. The posterior probability distribution for a Dirichlet distribution is
again Dirichlet distributed, but takes the vector X into account and has the parameters
α1 +X1, . . . , αk +Xk [10, 22].

Example

For purposes of illustration I classify the sequences’ feature according to the number of
amino acids and assume only one alignment position.

Observations within each alignment position are easily depicted as being multinomial
(with k = 3).

(XA, XP , XY )|(ΘA,ΘP ,ΘY ) ∼Multinomial(ΘA,ΘP ,ΘY ) (5.17)

Θi is the probability that an observation falls into category i, thus ΘA is the probability
that Alanine was observed. The vector (XA, XP , XY ) is a vector of counts of the number
of amino acids in each of the three categories.

If we assume that our alignment positions are independent, the prior distribution for the
multinomial parameters are also independent and uniform (for example equal one):

(ΘA,ΘP ,ΘY ) ∼ Dirichlet(1, 1, 1) (5.18)

Thus the posterior probability equals:
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(ΘA,ΘP ,ΘY )|(XA, XP , XY ) ∼ Dirichlet(1 +XA, 1 +XP , 1 +XY ) (5.19)

For the example mentioned above, this leads to:

(Θf1A
,Θf1P

,Θf1Y
)|(Xf1A

, Xf1P
, Xf1Y

) ∼ Dirichlet(3 + 1, 5 + 1, 0 + 1) (5.20)

E[(Θf1A
,Θf1P

,Θf1Y
)|(Xf1A

, Xf1P
, Xf1Y

)] = (0.36, 0.55, 0.09)1 (5.21)

(Θf2A
,Θf2P

,Θf2Y
)|(Xf2A

, Xf2P
, Xf2Y

) ∼ Dirichlet(0 + 1, 3 + 1, 5 + 1) (5.22)

E[(Θf2A
,Θf2P

,Θf2Y
)|(Xf2A

, Xf2P
, Xf2Y

)] = (0.09, 0.36, 0.55) (5.23)

(5.24)

The alignment positions in this example were treated as independent in which each posi-
tion does not interact with another, but this is not generally the case. Usually the amino
acid at one sequence position interacts at least with their direct neighbors, but may also
interact with amino acids several positions up- or downstream. Therefore we must expect
that the alignment positions are not independent. We cannot model the multinomial pa-
rameters with the uniform Dirichlet distribution, but can use a common hyperparameter
that reflects a common central tendency. I use the Gamma distribution with shape and
scale = 1 for those pseudo-counts (representing the number of observations that we have
already seen), because it can be easily calculated and the parameters within the vector α
are always positive. For the posterior distribution, we must add the counts for the “new”
observations Xi.

(ΘA,ΘP ,ΘY ) ∼ Dirichlet(AA, AP , AY ) (5.25)

(ΘA,ΘP ,ΘY )|(XA, XP , XY ) ∼ Dirichlet(AA +XA, AP +XP , AY +XY ) (5.26)

With this slight change, the calculation becomes quite complex and should be solved with

1Example calculation of the expected value E: E[(Θf1A
,Θf1P

,Θf1Y
)|(Xf1A

, Xf1P
, Xf1Y

)] =
( 3+1

3+1+5+1+0+1 ,
5+1

3+1+5+1+0+1 ,
0+1

3+1+5+1+0+1 )
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Methods 5.2

special tools and programs, e.g via the R-packages R2jags[46], rjags[34], and Jags [33] -
a program for the analysis of Bayesian Hierarchical models using Markov Chain Monte
Carlo (MCMC) simulations. A basic interface to this tools is integrated into SeqFeatR.

If we calculate this depended version, the results are:

E[(Θf1A
,Θf1P

,Θf1Y
)|(Xf1A

, Xf1P
, Xf1Y

)] ≈ (0.35, 0.57, 0.08) (5.27)

E[(Θf2A
,Θf2P

,Θf2Y
)|(Xf2A

, Xf2P
, Xf2Y

)] ≈ (0.08, 0.40, 0.51) (5.28)

(5.29)

These values are similar to the results from the independent approach but not identical,
even for such a simple example.

However as mentioned above, sequence positions are linked together in some form and
theoretically we can use the same technique to combine sequence position, feature and
amino acid together.

5.2.5 SeqFeatR prediction

SeqFeatR was used with all available corrections for multiple testing (Bonferroni, Holm,
Hochberg, Hommel, BH, BY, FDR [4, 5, 23–25]) and Bayesian Inference on a given set of
sequences with HLA information and the results for HLA-A*02 were selected for further
analysis. Two variants of Bayes Factor calculation were used. The standard calculation
with a fixed Dirichlet Precision Parameter and SeqFeatRs Bayes Factors with a calculated
Dirichlet Precision Parameter (see chapter 4).
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Methods 5.3

5.2.6 Comparison of multiple corrections and Bayesian Inference

Figure 5.1: Example of true/false positives and true false negatives in the comparison between different
multiple corrections and Bayesian Inference with epitope data from HCV sequences calculated by SeqFeatR.
The first epitope is a true positive, the second epitope a false negative. SeqFeatR was used to search for hints
of an possible epitope at each sequence position in an alignment of 81 amino acid HCV sequences with given
HLA types.

To compare the results from the different methods, true and false negatives and true and
false positives had to be defined. A true positive - an epitope found, where an epitope
was in the original data from the database - was noted if the result had one or more lower
p-values or higher posterior probabilities/Bayes Factors at the epitope position (usually
eight to twelve positions plus two in both of the flanking regions, because there could
also be mutations outside of but belonging to the epitope, to permit processing of the
epitope (see chapter 7)). A false negative was noted, if there was no low p-value or high
probability/Bayes Factors at a given epitope position. A true negative was noted for every
amino acid outside all of the epitope sequence positions, which had a high p-value or low
posterior probability/Bayes Factor, whereas a false positive was noted for every amino
acid outside all epitope sequence positions, which had a low p-value or high posterior
probability/Bayes Factor (see Figure 5.1).
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Results 5.4

5.3 Results

5.3.1 Results from SeqFeatR

The multiple comparison correction for SeqFeatR corrected all of the p-values to 1, regard-
less of the chosen method. Only for no correction (“none”) and Bayesian Inference/Bayes
Factors were the result values for some positions different.

5.3.2 ROC Curves and AUC values

The ROC for the three different kinds of epitope datasets showed Bayesian Inference as
a superior model to compensate for multiple testing in every case. "‘No correction"’ had
slightly to moderate inferior results, whereas all other multiple corrections were no better
than pure guesses (see Figure 5.2). Of the three Bayesian methods, the Bayes Factor with
a fixed Dirichlet Precision Parameter showed the highest AUC values, and thus seems to
be the best choice for this dataset.

The area under the curve (AUC) values for the ROC confirmed those impressions (see
Table 5.3).

5.4 Discussion

The results show that for sequence data and epitopes multiple correction procedures
are not appropriate, since every tested method of correction eliminated all signals. The
mathematical reason for this total elimination of sequence data signal as used by SeqFeatR
is that there is a very high number of tests and thus the multiple corrections increase all
p-values to one. SeqFeatR checks every position for every occurring amino acid, and tests
which one has the lowest p-value. For a sequence set with only 5 amino acids and 3
different kinds of features, and on every position occurrence of all possible amino acids,
SeqFeatR makes 300 tests. This increases dramatically with the sequence length and the
number of features.

In the comparison of the different methods it could be shown that Bayesian Inference is
almost always better than no multiple correction, and always better than all used multiple
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Figure 5.2: ROC for each of the three datasets. “Predicted” was taken from the prediction tool on the IEDB
website, “Los Alamos” from the Los Alamos database and “IEDB” from the IEDB database. All datasets were
compared with the results from SeqFeatRs prediction for a set of 81 amino acid HCV sequences with given
HLA types. Shown are the ROC for HLA-A*02 and two versions of Bayes Factors (fixed or variable Dirichlet
Precision Parameter), hierarchical Bayes, no multiple correction on p-values and FDR multiple correction.
FDR is a representative for all of the results from multiple corrections (Bonferroni, Holm, Hochberg, Hommel,
BH, BY, FDR).

corrections (see 5.2). Only in the case of predicted epitopes, "‘no correction"’ has similar
lower false positive rate at a medium sensitivity and is therefore similar to Bayesian
Inference. But one has to keep in mind that predicted epitopes means precisely that,
predicted and not verified, and that this dataset has to be treated with caution. Also,
I used a very simple hierarchical model to calculate the results, which is not uncommon
among statisticians [1, 30], and there are several more complex methods to insert the prior
probability. Those analyses could incorporate a Poisson prior and an ANOVA analysis as
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Table 5.3: AUC values for the ROC. “Predicted” was taken from the prediction tool on the IEDB website, “Los
Alamos” from the Los Alamos database and “IEDB” from the IEDB database. All datasets were compared
with the results from SeqFeatRs prediction for a set of 81 amino acid HCV sequences with given HLA types.
Shown are the ROC for HLA-A*02 and two versions of Bayes Factors (fixed or variable Dirichlet Precision
Parameter), hierarchical Bayes, no multiple correction on p-values and FDR multiple correction. FDR is a
representative for all of the results from multiple corrections (Bonferroni, Holm, Hochberg, Hommel, BH, BY,
FDR).

Data set method AUC value

Predicted

Bayes Factor fixed 0.94
Bayes Factor variable 0.94
Hierarchical Bayes 0.96
multiple correction 0.5

no correction 0.94

Los Alamos

Bayes Factor fixed 0.97
Bayes Factor variable 0.92
Hierarchical Bayes 0.82
multiple correction 0.5

no correction 0.59

IEDB database

Bayes Factor fixed 0.97
Bayes Factor variable 0.90
Hierarchical Bayes 0.83
multiple correction 0.5

no correction 0.64

in the example used by Kruschke [28]. Another simple possibility would be to incorporate
the R-package conting, which analyzes contingency tables with Bayesian Inference and
uses Poisson priors and MCMC to evaluate the probability density [31].

It is not remarkable in itself that our Bayesian approach showed better results than the
"‘corrected"’ ones, because many scientists have discovered similar findings in the last few
years. Bayesian Inference seems to be better suited for their problems than a classical
hypothesis testing method like a t-test or Fisher’s exact Test [2, 18, 36]. But it is often
difficult to estimate which is better. In 2001 Austin et al. studied the differences between
a Bayesian and a classical hypothesis testing approach for profiling hospitals, and found
that they differ, but could not tell which one is better because he did not know the correct
values [3]. In 2007 a similar comparison was made by Storvik et al. for DNA Databases
[45]. Efron and Roderick J Little suggested to use a combination of both methods [14, 29],
which has been already done by some groups [6, 7, 12, 20], and was further implemented
later on by other groups [29, 52]. In the future, such combinations of both sides could
also be used for the problem given here.
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Complexity of the human memory B cell
compartment is determined by the versatility
of clonal diversification in germinal centres

I would rather live in a world where my life is
surrounded by mystery than live in a world so
small that my mind could comprehend it.

HARRY EMERSON FOSDICK

Abstract

Our knowledge about the clonal composition and intraclonal diversity of the hu-
man memory B cell compartment as well as the relationship between memory B
cell subsets is still limited, although these are central issues for our understanding
of adaptive immunity. We performed a deep sequencing analysis of rearranged im-
munoglobulin (Ig) heavy chain genes from biological replicates, covering more than
100,000 memory B lymphoctes from two healthy adults. We reveal a highly similar
BCR repertoire among the four main human IgM+ and IgG+ memory B cell sub-
sets. Strikingly, in both donors 45% of sequences could be assigned to expanded
clones, demonstrating that the human memory B cell compartment is characterized
by many, often very large B cell clones. Twenty percent of the clones consisted of
class switched and IgM+ (IgD+ ) members, a feature that correlated significantly
with clone size. Hence, we provide strong evidence that the vast majority of Ig mu-
tated B cells – including IgM+IgD+CD27+ B cells – are post-germinal center (GC)
memory B cells. Clone members showed high intraclonal sequence diversity and
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high intraclonal versatility in Ig class and IgG subclass composition, with particular
patterns of memory B cell clone generation in GC reactions. In conclusion, GC
produce amazingly large, complex and diverse memory B cell clones, equipping the
human immune system with a versatile and highly diverse compartment of IgM+

(IgD+ ) and class-switched memory B cells.

This chapter is based on the following publication: Bettina Budeus, Stefanie Schweigle,
Martina Przekopowitz, Daniel Hoffmann, Marc Seifert, and Ralf Küppers (2015). Com-
plexity of the human memory B-cell compartment is determined by the versatility of
clonal diversification in germinal centers.

http://www.pnas.org/content/early/2015/08/28/1511270112.long
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Complexity of the human memory B-cell compartment
is determined by the versatility of clonal diversification
in germinal centers
Bettina Budeusa,1, Stefanie Schweigle de Reynosob,1, Martina Przekopowitzb, Daniel Hoffmanna, Marc Seifertb,2,
and Ralf Küppersb,2,3

aBioinformatics, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany; and bMedical Faculty, Institute of Cell Biology (Cancer Research),
45122 Essen, Germany

Edited by Klaus Rajewsky, Max-Delbruck-Center for Molecular Medicine, Berlin, Germany, and approved August 12, 2015 (received for review June 9, 2015)

Our knowledge about the clonal composition and intraclonal di-
versity of the human memory B-cell compartment and the relation-
ship between memory B-cell subsets is still limited, although these
are central issues for our understanding of adaptive immunity. We
performed a deep sequencing analysis of rearranged immuno-
globulin (Ig) heavy chain genes from biological replicates, covering
more than 100,000 memory B lymphocytes from two healthy
adults. We reveal a highly similar B-cell receptor repertoire among
the four main human IgM+ and IgG+ memory B-cell subsets. Strik-
ingly, in both donors, 45% of sequences could be assigned to
expanded clones, demonstrating that the human memory B-cell
compartment is characterized by many, often very large, B-cell
clones. Twenty percent of the clones consisted of class switched
and IgM+(IgD+) members, a feature that correlated significantly
with clone size. Hence, we provide strong evidence that the vast
majority of Ig mutated B cells—including IgM+IgD+CD27+ B cells—
are post-germinal center (GC) memory B cells. Clone members
showed high intraclonal sequence diversity and high intraclonal
versatility in Ig class and IgG subclass composition, with particular
patterns of memory B-cell clone generation in GC reactions. In
conclusion, GC produce amazingly large, complex, and diverse
memory B-cell clones, equipping the human immune system with
a versatile and highly diverse compartment of IgM+(IgD+) and
class-switched memory B cells.

IgV gene repertoire | human memory B cell subsets | IgM memory |
clonal composition

The diversity of B lymphocytes is granted by the variability of
their B-cell receptors (BCRs). This variability is generated in

recombination processes during B-lymphocyte development in
the bone marrow, where Ig variable (V), diversity (D), and
joining (J) gene segments are combined to form antibody heavy
and light chain V region genes (D segments only for the heavy
chain). As a consequence, each naive B cell is equipped with a
unique BCR (1). If B cells are activated by recognition of an
antigen and T-cell help is provided, these B cells are driven into
germinal center (GC) reactions where they undergo strong pro-
liferation and further diversify their BCRs. The process of somatic
hypermutation (SHM), which introduces point mutations and also
some deletions and insertions into the V region genes at a very high
rate, is activated in proliferating GC B cells (2, 3). Mutated GC B
cells are then selected by interaction with follicular T helper and
dendritic cells for improved affinity (4). GC B cells with un-
favorable mutations undergo apoptosis. A large fraction of GC B
cells performs class switch recombination to exchange the origi-
nally expressed IgM and IgD isotypes by IgG, IgA, or IgE (5). GC
B cells undergo multiple rounds of proliferation, mutation, and
selection, so that large GC B-cell clones are generated. Positively
selected GC B cells finally differentiate into long-lived memory B
cells or plasma cells (6).
The human memory B-cell compartment was originally thought

to be mainly or exclusively composed of class-switched B cells,

which typically account for about 25% of peripheral blood (PB)
B cells (7). However, the detection of somatically mutated IgM+ B
cells pointed to the existence of non–class-switched memory B
cells (8). Besides rare CD27+ B cells with high IgM but low or
absent IgD expression (IgM-only B cells; typically less than 5% of
PB B cells) also IgM+IgD+CD27+ B cells harbor mutated V genes,
whereas IgM+IgD+CD27− B cells are mostly unmutated, naive B
cells (9, 10). Hence, the two IgM+CD27+ populations were pro-
posed to represent post-GC memory B-cell subsets (10). As both
subsets together comprise about 25% of PB B cells and are de-
tectable at similar frequencies in secondary lymphoid tissues (11),
they represent a substantial fraction of the human B-cell pool.
Moreover, as CD27 is also expressed on class-switched memory B
cells, CD27 was proposed as a general memory B-cell marker (10,
12). Further studies refined this picture and revealed that about
10–20% of IgG+ B cells are CD27 negative, so that presumably
also CD27− memory B cells exist (13).
However, there are still major controversies and unresolved

issues regarding the human memory B-cell compartment. First,
the origin of the IgM+IgD+CD27+ B-cell subset is debated, and it
has been proposed that these cells are not post-GC B cells but
either “effector B cells,” derived from a particular developmental
pathway with SHM as primary BCR diversification mechanism
(14), or memory B cells generated in T-independent (TI) immune
responses (15). Moreover, another study proposed the existence
of a subset of IgM+IgD+CD27+ B cells that represent human
(GC independent) B1 B cells (16), although this is controversially

Significance

The complexity of the human memory B-lymphocyte compart-
ment is a key component to depict and understand adaptive
immunity. Despite numerous prior investigations, the generation
of certain memory B-cell subsets, the dependency on T-cell help,
and the composition, size, and diversity of clonal expansions are
either poorly understood or debated. Here we provide an exten-
sive and tightly controlled immunoglobulin heavy chain variable
(IGHV) gene repertoire analysis of four main humanmemory B-cell
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Author contributions: M.S. and R.K. designed research; S.S.d.R. and M.P. performed re-
search; B.B., M.P., D.H., and M.S. analyzed data; and B.B., M.S., and R.K. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Data deposition: The sequences reported in this paper have been deposited in the GenBank
Sequence Read Archive (accession no. SRP062460).
1B.B. and S.S.d.R. contributed equally to this work.
2M.S. and R.K. contributed equally to this work.
3To whom correspondence should be addressed. Email: ralf.kueppers@uk-essen.de.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1511270112/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1511270112 PNAS | Published online August 31, 2015 | E5281–E5289

IM
M
U
N
O
LO

G
Y
A
N
D

IN
FL
A
M
M
A
TI
O
N

PN
A
S
PL

U
S

6.
T

he
co

m
pl

ex
it

y
of

th
e

hu
m

an
m

em
or

y
B

-c
el

l
po

ol
II
I

6.
T

he
co

m
pl

ex
it

y
of

th
e

hu
m

an
m

em
or

y
B

-c
el

l
po

ol
6.

T
he

co
m

pl
ex

it
y

of
th

e
hu

m
an

m
em

or
y

B
-c

el
l

po
ol

6.
T

he
co

m
pl

ex
it

y
of

th
e

hu
m

an
m

em
or

y
B

-c
el

l
po

ol
II
I

6.
T

he
co

m
pl

ex
it

y
of

th
e

hu
m

an
m

em
or

y
B

-c
el

l
po

ol
6.

T
he

co
m

pl
ex

it
y

of
th

e
hu

m
an

m
em

or
y

B
-c

el
l

po
ol

II
I

6.
T

he
co

m
pl

ex
it

y
of

th
e

hu
m

an
m

em
or

y
B

-c
el

l
po

ol

83



discussed (17). The existence of CD27+ B-cell precursors in fetal
liver (18) and of (infrequently and lowly) mutated IgM+IgD+CD27+

B cells before birth and also in immunodeficient patients considered
to lack GC indeed support a GC independent generation (whereas
IgM-only B cells are missing in these instances, so that they are
generally considered to represent post-GC memory B cells) (19,
20). The seemingly close relationship of PB IgM+IgD+CD27+ B
cells and splenic marginal zone B cells (21), which are considered
to be key players for TI immune responses, has been taken as
argument for an origin of these cells from TI immune responses
(15). However, a prior focused IgV gene study showed that for
large IgG+ memory B-cell clones often also IgM+IgD+CD27+

members can be found, arguing for a GC origin of at least a
fraction of the latter cells (22). Second, the relationship between
the various memory B-cell subsets is unclear. Are these subsets
generated in common GC reactions that give rise to distinct types
of memory B cells, or are they typically derived from independent
immune responses or GC reactions? Third, how diverse is the pool
of memory B cells generated from a GC B-cell clone in terms of
intraclonal IgV gene diversity, and how large can memory B-cell
clones be?
Next-generation sequencing (NGS) of IgV genes allows a

comprehensive overview on the composition and diversity of the
lymphocyte compartment (23–26). Several previous studies al-
ready analyzed human IGHV gene repertoire diversity. Although
important findings were made, these studies did not include all
PB memory B-cell subsets, e.g., CD27-negative class-switched B
cells or IgM-only B cells, and/or were mostly based on small
samples sizes and, thus, limited in estimating the complexity and
clonal composition of the memory B-cell pool (27–29). Espe-
cially the clonal relationship between IgM+IgD+CD27+ and
post-GC memory B cells—although existing in principle (22)—
has been claimed to be rare (27), thus supporting the view of a
GC-independent generation of this large human B-cell subset.
However, revelation of clonal overlap and expansion of the
highly complex memory B-cell compartment requires the anal-
ysis of extensive cell numbers and independent testing pro-
cedures, thus far lacking in previous approaches. Thus, the clonal
composition and the IgV mutation patterns of the four major
human PB IgM+ and IgG+ memory B lymphocyte subsets, as well
as their clonal relationship, are unclarified. In this study, we
explore these issues comprehensively by NGS and provide mo-
lecular evidence for a reevaluation of our understanding of mem-
ory B-cell subsets.

Results
Human PB Memory B-Cell Subsets Display Nearly Identical IGHV Gene
Repertoires. We sort-purified the four major human IgM+ and
IgG+ PB B-cell subsets carrying mutated IgV genes, i.e.,
IgM+IgDlow/-CD27+ (IgM-only), IgM+IgD+CD27+, IgG+CD27+,
and IgG+CD27− B cells, according to their relative frequency in
PB, to a total of 200,000 B lymphocytes, from two adult healthy
donors (Fig. S1 A–C and Table S1). Plasmablasts were excluded as
CD27high cells. For each donor and B-cell subset, two cell aliquots
were separately processed to test for reproducibility of the analysis
and to be able to identify clone members with identical mutation
patterns within one B-cell subset. IGHV genes of the three largest
families 1, 3, and 4 were amplified by RT-PCR. After stringent
quality filtering (Materials and Methods and Table S1), we included
66,652 IGHV gene rearrangements from donor 1 and 40,658 from
donor 2 in the analysis.
The average IGHV gene frequency and use reflects the typical

repertoire of the three major IGHV gene families in human PB
(30) and appeared highly similar among the subsets (Fig. 1). To
quantify this, we considered IGHV genes used with substantial
frequency (>5% of rearrangements in at least one population)
and differential expression (at least twofold change) between two
B-cell subsets. These criteria were applied to exclude random

variation, because biological replicates did not show statistically
significant variations above these thresholds (Fig. S1C). Only few
IGHV gene frequencies (7 of 42 per subset for donor 1, 6–9 of 42
per subset for donor 2) differed significantly (P < 0.05; Fig. 1)
between populations. Thus, only a minor fraction of IGHV genes
(on average 17% in both donors) is differentially used between
memory B-cell subpopulations. The high similarity of the IGHV
gene rearrangement repertoires of the four memory B-cell sub-
sets is underlined by highly similar length distributions of the
complementarity determining region (CDR)III (Fig. S1D).

Memory B-Cell Subsets Differ in Their Median Mutation Frequencies,
Showing a Consistent Pattern Among Donors. The median IGHV
mutation frequency of memory B-cell populations was 2.7%
and 3.0% (donors 1 and 2, respectively) for IgG+CD27−, 7.1% and
7.1% for IgG+CD27+, 3.4% and 3.7% for IgM+IgD+CD27+, and
4.8% and 4.7% for IgM-only B cells (Fig. 1B). These frequencies
are similar to previously published data (10, 13, 31), showing that
our analysis reproduces (and extends) existing smaller datasets.
Moreover, not only the median mutation frequencies of the dis-
tinct B-cell subsets, but also their distribution, is strikingly similar
between the donors (Fig. S2A). All populations showed a ho-
mogenous distribution of values, indicating that these are ho-
mogenous populations (Fig. S2).

IgG3+ Memory B Cells May Include a Fraction of T Cell-Dependent, but
GC-Independent, Generated Lymphocytes. In line with earlier
studies (13, 31), IgG3+ B cells represented a severalfold larger
fraction among IgG+CD27− than IgG+CD27+ B cells (Fig. 2A).
The IgG+CD27− subset contained more than 50% (donor 1) and
30% (donor 2) IgG3+ B cells and in both donors less than 10%
IgG2+ B cells, whereas the IgG+CD27+ B-cell subset showed an
opposite distribution (Fig. 2A). The average fraction of IgG1-
switched B cells was similar between both subsets. IgG4 tran-
scripts were not detected in donor 1 and only at a very low fre-
quency in donor 2. The median mutation frequencies (Fig. 2B)
and the distribution of mutations (Fig. S2B) were similar in both
donors; however, they differed between IgG subclasses. The
mutation load was lower in IgG+CD27− than IgG+CD27+ B
cells, as previously published (13, 29). An interesting observation
was that virtually unmutated IgV gene sequences (defined as
≥99% IGHV germ-line homology) were preferentially found
among IgG3+CD27− B cells: 11% and 6% (donors 1 and 2, re-
spectively) and 12% and 14% of IgG1- and IgG2-switched se-
quences from CD27− B cells, respectively, were unmutated,
whereas 25% and 18% of IgG3-switched sequences lacked so-
matic mutations (P < 0.001 by Fisher’s exact test; Fig. 2C). In
contrast, less than 1% of IgG+CD27+ sequences were unmutated.
To assess whether this may be related to a frequent GC in-
dependent generation of IgG3+ B cells (13), we analyzed the B-cell
CLL/lymphoma 6 (BCL6) major mutation cluster (MMC) in con-
ventional class-switched (IgG+IgG3−CD27+), IgG3+CD27+ and
IgG3+CD27− B cells of two healthy donors as an indicator of a GC
experience (22). We determined a mutation frequency of 0.08–
0.11% in IgG+IgG3−CD27+ lymphocytes (Table S2). IgG3+CD27−

B cells harbored on average significantly less BCL6 mutations
(0.05%), but still a substantial fraction of the cells showed muta-
tions. Furthermore, among unmutated IGHV gene sequences from
IgG3+CD27− B cells belonging to clones, 65% and 34% (donors 1
and 2, respectively) of these sequences could be assigned to clones
with somatically mutated members. Together, this may indicate that
a small fraction of IgG3+CD27−memory B cells is generated before
GC diversification (Discussion).

The Human Memory B-Cell Pool Is Composed of IgM+(IgD+) and IgG+

Post-GC Cells, Which Are Often Common Members of Large Clones.
We detected a surprisingly high fraction of 44% and 46% clon-
ally related IGHV genes (Fig. 3A) in donors 1 and 2, respectively.

E5282 | www.pnas.org/cgi/doi/10.1073/pnas.1511270112 Budeus et al.
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This observed clonality is not even saturated (Fig. 3B). A con-
tamination with plasmablasts, containing up to 1,000-fold more
Ig transcripts than memory lymphocytes, would lead to a sig-
nificant overestimation of clonality. However, plasmablasts were
largely excluded by cell sorting and a bias from cells with high Ig
transcript level was eliminated by sequence collapsing (Materials and
Methods). Moreover, the average number of identical sequences
before collapsing did not differ significantly between clonally ex-
panded (present in two replicates) and unexpanded sequences
(present in one replicate), as determined by robust TOST, e = 1
(https://cran.r-project.org/web/packages/equivalence/index.html),
which would be the case if the observed clonality was simply de-
rived from expanded plasmablasts. Similarly, an overestimation of
clonality by PCR amplification is excluded by collapsing identical
sequences as described in Materials and Methods.
An average of 33% (36% and 27% for donors 1 and 2, re-

spectively) of the clones contained only IgG sequences, 47%
(40% and 59%) contained only IgM sequences, and 20% (24%
and 14%) of the clones were composed of IgM+ and IgG+ se-
quences (Fig. 3A and Table S3). The fraction of composite
clones consisting of IgM+IgD+CD27+ and IgM-only/IgG+ B cells
(considering that IgM-only B cells are accepted as post-GC B
cells) increased with clone size and represented a large pro-
portion (40.7% and 41.5%) of sequences assigned to clones with
at least four members (Fig. 3C). Similar results were obtained,
when IgM+IgD+CD27+ and IgM-only were considered as one
B-cell subset (Fig. S3A). Both parameters, clone size and com-
posite clone structure, correlated significantly by power law with
a smaller exponent for composite clones (−2.5 vs. −3.1). Thus,

the more members a clone has, the higher the chance that it is
composed of both IgG+ (±IgM-only) and IgM+IgD+CD27+ B
cells. The frequency of sole IgG clones steadily decreased with
rising clone size. However, there was still a considerable number
of clones with only IgM+IgD+CD27+ (Fig. 3B) or IgM+IgD+CD27+

and IgM-only (Fig. S3A) members.
To clarify whether IGHV genes of IgM+IgD+CD27+ B cells

belonging to IgM+/IgG+ composite clones were distinct from
sequences of unique IgM+IgD+CD27+ B cells or clones with only
IgM+IgD+CD27+ B-cell members (potentially indicating a het-
erogeneity of the IgM+IgD+CD27+ B-cell subset), their IgV gene
rearrangement patterns were compared. However, IGHV gene
use (Fig. S3B) and median CDRIII length (42 nucleotides) were
practically identical. Although it seemed that the median muta-
tion frequency of IGHV genes from unique IgM+IgD+CD27+ B
cells or clones composed of only these cells was mildly lower, this
tendency was also detectable comparing unique and clonal IgM-
only B-cell sequences (presumably reflecting that members of
large clones have undergone on average more proliferation and
hence SHM in the GC than members of small clones; Fig. S3C).
We conclude that IgM+IgD+CD27+ B cells without a detectable
relationship to IgG+ memory B cells and those being members of
shared clones with IgG+ memory B cells represent a homogenous
population.
Taken together, our analysis shows a surprisingly high clonality

among memory B-cell subpopulations. The fraction of IgM and
IgG composite clones is substantial and, importantly, increases
with clone size. Unique and clonal IgM+ sequences are mostly
identical in their BCR repertoire features.

Fig. 1. BCR repertoire and mutation analysis of human PB memory B-cell subsets. (A) The relative use of individual IGHV gene segments of families 1, 3, 4,
and 7 among memory B-cell subpopulations shows highly similar patterns. Statistically significant differences between individual subsets are marked (*P <
0.05, **P < 0.01, ***P < 0.001; Fisher’s exact test). Test results were not corrected for multiple comparisons to estimate the maximum number of gene
segments differing between B-cell subsets with the full specificity of Fisher’s exact test. Only IGHV gene segments comprising at least 5% of total sequences in
at least one condition and showing at least twofold difference in frequency between two B-cell subsets were considered. The separator in each column marks
the amount of sequences contributed by each vial. (B) IGHV gene mutation frequencies (mutations/100 bp) of memory B-cell subsets are distinct. Median
values (black bars) are given as numbers, and box plots represent 25 and 75 percentiles. ***P < 0.001; t test.
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IgM+IgD+CD27+ and IgM-Only B Cells Represent a Homogenous Memory
B-Cell Subset with Prolonged GC Participation of the Latter. The ob-
servation that IgM-only B cells show a mildly higher mutation
frequency than IgM+IgD+CD27+ B cells (Fig. 1B) may suggest a
distinctness of both populations. However, a more detailed analysis
revealed that their BCR repertoires are practically identical re-
garding IGHV gene use (Fig. S3B) and average CDRIII length
(consistently 42 nucleotides). Minor variations in IGHV gene fre-
quencies were similarly detectable in biological replicates, thus
representing B-cell sampling variability. In line with this, IgM-only
and IgM+IgD+CD27+ B cells frequently belonged to common
clones (Table S3). These results strongly indicate that IgM-only and
IgM+IgD+CD27+ B lymphocytes are one and the same population.
However, how can the different IGHV mutation frequencies

be explained? Key to this question is the genealogical analysis of
B-cell clones: from a total number of 9,312 (donor 1) and 5,301
(donor 2) clones, we selected 628 and 417 clones with at least
seven members, respectively, for detailed analysis. Notably, in
line with their higher mutation load, IgM-only sequences showed
a significantly higher “mean distance to root” than clonally related
IgM+IgD+CD27+ sequences (0.72 vs. 0.68; P < 0.001, Fisher’s
exact test), i.e. IgM-only cells on average derived frommore highly
mutated members of a GC B cell clone than IgM+IgD+CD27+

cells (Table S4 and Fig. S4).
Taken together, IgM-only and IgM+IgD+CD27+ B cells derive

from common GC reactions, and IgM-only memory B cells de-
rive from GC B-cell clone members that acquired more muta-
tions and down-regulated IgD and hence presumably typically
resided longer in GCs.

Genealogic Analysis of Memory B-Cell Clones. B-cell clones often in-
cluded members of distinct memory B-cell subsets. However, their
distribution in clone dendrograms differed clearly. IgM+IgD+CD27+

and/or IgM-only B cells in genealogic trees frequently showed a
broadly diversified, “bushy” structure (Fig. 4 A–C) including many

members with few mutations, presumably reflecting their generation
in early phases of GC reactions. In contrast, IgG+ clone members
typically had more shared mutations (long branches) and mostly
heavily mutated sequences (Fig. 4 D–F). Their single-rooted, narrow
structures indicate generation in later GC-phases or on secondary
GC passage. To further substantiate the distinctness of IgM and IgG
memory B-cell clone patterns, we defined and measured typical
genealogic tree parameters (32, 33) (Table S4 and Fig. S4). Whereas
sole IgM or sole IgG clones can be clearly distinguished by den-
drogram properties, composite clones show “composite tree struc-
tures” (Fig. 5). Thus, composite clones represent chimeras of sole
IgM and IgG clones.
The interwoven pattern of IgM+ and IgG+ B cells in common

clones substantiated that IgM memory B cells frequently derive
from common GC reactions with class-switched memory B cells
(Fig. 4 G–L, Fig. S5, and Table S5). A further interesting finding
was that clones for which a substantial number of members were
identified (1,045 clones with at least seven members) were rarely
dominated by one cell type (Fig. 4 B–H), but usually a surpris-
ingly heterogeneous clone composition in terms of B-cell subset
was observed (Fig. 4 J–L and Table S5). The picture was dif-
ferent when considering IgG subclass use in clones with at least
seven IgG members. For 79% of clones, only a single IgG sub-
class was identified. Dendrograms including more than one IgG
subclass rarely showed subbranch-specific class switching events
(Table S5 and Fig. S5).
Taken together, the genealogical analysis of memory B-cell

clones strongly underlines the frequent generation of memory
B-cell subsets in common GC reactions. Moreover, we revealed
particular patterns of memory B-cell clone generation in GC re-
actions and relationships between distinct memory B-cell subsets.

Discussion
In the present work, we obtained detailed insight into the com-
position of the human memory B-cell pool in terms of IGHV

Fig. 2. IgG subclass use and mutation pattern of human PB memory B cells. (A) The IgG subclass composition of IgG+CD27+ and IgG+CD27− B-cell subsets
revealed a significantly larger fraction of IgG3-switched B cells among the latter subpopulation (P < 0.001 by Fisher’s exact test). (B) IGHV gene mutation
frequencies (mutations/100 bp) of IgG memory B-cell subclasses. Median values (black bars) are given as numbers; box plots represent 25 and 75 percentiles.
*P < 0.05, ***P < 0.001; t test. (C) Ig-unmutated sequences were preferentially detectable among IgG+CD27− B cells, and among these, the IgG3+ fraction
showed the highest frequency of unmutated sequences.

E5284 | www.pnas.org/cgi/doi/10.1073/pnas.1511270112 Budeus et al.
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gene repertoire, clonal composition, complexity, and relationship
between IgM+IgD+CD27+, IgM-only, IgG+CD27+, and IgG+CD27−

B cells, including IgG subclass information. Considering only se-
quences with at least twofold coverage, we reliably determined
intraclonal diversity, as technical artifacts were largely eliminated.
Additionally, replicate analyses significantly enhanced the repro-
ducibility and stability of statistical evaluations and allowed for
precise determination of clonal expansions. Evaluating 41,000 and
67,000 memory B cells of two donors, we obtained a representa-
tive overview of the memory IGHV gene repertoire and clonal

composition. The four B-cell subsets analyzed were strikingly
similar in IGHV gene use and CDRIII length, implying identical
generation pathways and highly similar selection processes. How-
ever, there were significant differences in the IGHV gene mutation
loads, with IgM-only B cells carrying on average more mutations
than IgM+IgD+CD27+ B cells and IgG+CD27+ memory B cells
carrying more IGHV mutations than IgG+CD27− B cells. These
observations validate and extend prior smaller studies (13, 27,
31). The distribution of mutation frequencies indicated that each
B-cell subset was homogenous and not a mixture of two or more

Fig. 3. Clonal composition of human memory B cells. (A) The relative fraction of single and clonal B-cell sequences per donor is given. Clonal sequences are split
up into sole IgM (IgM+IgD+CD27+ or IgM-only) clones, sole IgG clones and composite clones (IgM+IgD+CD27+ and/or IgM-only and IgG+ B-cell sequences). Numbers
denote the fraction of sequences in each category. (B) To estimate the fraction of clones with increasing sample size, we determined clonality among randomly
selected sequence samples per donor—sample sizes ranging from two to the maximum number of available sequences—by our CDRIII clustering approach. The
regression curves (locally weighted scatter plot smoothing) revealed an unsaturated clonality of the memory B-cell pool in both donors. (C) Correlation of clone
type fractions and clonal sizes. The larger a clone, the more likely it is of composite subtype (IgM+IgD+CD27+ and IgM-only/IgG+ B cells). This correlation is
statistically highly significant (***P < 0.001; Fisher’s exact test, composite vs. noncomposite) already for clone sizes of more than three members. In contrast, clones
consisting only of IgG+ B-cell sequences (with or without IgM-only B cells) are practically undetectable when sufficient numbers of B cells are analyzed. Bin sizes
were chosen arbitrarily for clarity of the depiction, Fig. S3D shows a version of this figure lacking bins. In the legend, ∧ indicates “and,” and ∨ indicates “or.”

Budeus et al. PNAS | Published online August 31, 2015 | E5285
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major separate populations. The interindividually consistent mu-
tation frequencies indicate that memory B-cell subsets are gen-
erated largely independent of individual immune histories (see
discussion of clonal compositions).
A further notable observation was that IgG+CD27− B cells

include a considerable fraction of IGHV-unmutated sequences,
particularly among IgG3+CD27− B cells (25% and 18% of se-
quences unmutated in donors 1 and 2, respectively). An analysis
of BCL6 mutations, a molecular indicator of a GC experience as
only GC B cells acquire BCL6 mutations (22), revealed a po-
tential generation of (a fraction of) IgG3+CD27− B cells before
GC differentiation, as recently described for some murine
memory B cells (34). However, the involvement of T-cell support
in the generation of these pre-GC memory B cells is supported
by the considerable amount of unmutated IgG3+CD27− B-cell
sequences belonging to somatically diversified clones. Finally, as
still 20% of IgG3+CD27− vs. 30–40% of IgG+CD27+ memory B
cells were BCL6 mutated, this nevertheless indicates that the
majority of IgG3+CD27− B cells (harboring also a low IGHV
mutation load) is GC derived.
A major finding of our analysis is the surprisingly high degree

of clonal relation among memory B cells (45% of total se-

quences). Certainly, it is expected that, from a single GC clone,
numerous memory B cells are generated. However, considering
that only 41,000 and 67,000 cells of an estimated human adult PB
memory B-cell pool of 2.6 × 108 cells were analyzed, this striking
clonality was unexpected. Clearly, we still underestimate the extent
of clonal relatedness, given the restricted numbers of memory B
cells investigated, as is evident from the nonsaturated fraction of
clonal sequences in both samples (Fig. 3B). Several clones with
more than 50 members were detected, which may be projected to
total sizes of more than 150,000 members in PB (and presumably
more members in lymphoid tissues) (35). Importantly, the high
clonality of the memory B-cell compartment does by no means
entail that this compartment is restricted in its complexity, due to

Fig. 4. Genealogic analysis of human memory B-cell clones. (A–C) Sole IgM
clones usually show an early and broad diversification, leading to bushy
dendrograms. (D–F) Sole IgG clones tend to have long roots and narrow
shapes. (G–L) typical examples of composite clone dendrograms, where IgM
and IgG memory B-cell subsets are intermingled. Specific subsets are in-
dicated by a gray scale code (legend), germ-line IGHV (root), and sequential
mutation events are marked as small black circles. Less than 1% of nodes or
leaves represent more than one sequence; occasional contributions from
independent subsets are given as circles with split shading.

Fig. 5. Statistical comparison of genealogical trees of memory B-cell clone
subtypes. Tree parameters are defined in Table S4. Whereas sole IgM and
sole IgG clones are statistically significant different in their dendrogram
patterns, composite clones show combinations of these patterns. The higher
intraclonal diversity of mixed clones compared with sole IgM or IgG clones
likely reflects that the combination of mutation patterns of IgM and of IgG
members results in high values for intraclonal diversity (**P < 0.01, ***P <
0.001; paired t test, error bars show SEM).

E5286 | www.pnas.org/cgi/doi/10.1073/pnas.1511270112 Budeus et al.
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intraclonal diversity and diversity in Ig isotype or IgG subclass
composition (see below).
Because the origin of IgM+IgD+CD27+ B cells is debated, we

were particularly interested in the characterization of clone
compositions. In both donors, 20% of clonal sequences belonged
to composite IgG+ and IgM+ B-cell clones. At first glance, this
implicates that most clones are either class-switched or non–
class-switched, but importantly, the largest fraction of non-
composite clones consists of only two or three members. Indeed,
with increasing clone size, the fraction of composite clones sig-
nificantly rises, representing more than 50% of clones with more
than nine members (Fig. 3B), whereas the frequency of sole IgG
clones steadily decreased, suggesting that for most if not all IgG+

clones IgM+IgD+CD27+ members can be identified if enough
sequences are analyzed.
Moreover, the highly similar IGHV gene use and CDRIII

length distribution of IgM+IgD+CD27+ B cells in comparison
with classical GC-derived IgG+ and IgM-only memory B cells
(with an accepted GC origin), is a further strong indication that
also IgM+IgD+CD27+ B cells are GC derived. This argument holds
also true for unique IgM+IgD+CD27+ B-cell sequences and (usu-
ally small) IgM+IgD+CD27+ B-cell clones without IgG+ members:
the highly similar IGHV gene repertoires of IgM+IgD+CD27+

B-cell clonally related to IgG+ memory B cells and those without
such a relationship detected argues that at least the majority of
unique and sole IgM+ clone sequences represent a homogenous
population with those IgM+IgD+CD27+ B cells with a clear GC
origin. Perhaps, GC-independent IgM+IgD+CD27+ B cells exist in
young children (16, 18, 36), but become a minor B-cell population
in adults. A frequent common GC origin of IgM+IgD+CD27+ and
IgG+ memory B cells was already indicated from a previous small
scale PCR study (22). Moreover, our recent global gene expression
profiling study also indicated a close relationship of IgM+IgD+CD27+

and IgG+ B cells, sharing key features of post-GC memory
B cells (37). The existence of human post-GC IgM+IgD+CD27+

memory B cells is further indicated from a study of specific
memory B cells (38). The main reason why prior NGS studies
detected few (if any) clonally related IgM+ and IgG+ B cells is most
likely that too few B cells were analyzed per donor; the chance to
find composite clones simply increases with sample size (27–29).
Further insight into the GC-dependent generation of IgM memory
B cells is provided by genealogic tree analyses of more than 1,000
informative clone dendrograms. First, IgM and IgG clone
members are often intermingled and thus derived from a single
mutating GC B-cell clone, excluding that these mutated IgM+ B
cells were generated GC independently. Second, IgM members
on average locate more close to the root, explaining their lower
IGHV mutation frequency. Assuming that somatic mutations
accumulate (probably not linearly but steadily) with additional
cycles of proliferation and mutation of GC B cells, higher mutated
B cells on average experienced an extended GC residence.
Therefore, we propose shifts in the generation of distinct memory
B-cell subsets in the course of the GC reaction. This idea is sub-
stantiated by distinct replication histories, showing on average less
cell divisions for, e.g., IgM+IgD+CD27+ than IgG+CD27+ B cells
(31). Hence, the lower mutation load of IgM+CD27+ B cells does
not indicate a separate (GC independent) origin of these cells,
as has been proposed by others (21). Third, the relationship of
IgM-only and IgM+IgD+CD27+ B cells is resolved: previous
studies discussed that these subsets represent developmentally
or functionally different B-cell subtypes (20, 21, 39). However,
their IGHV gene repertoire similarity is striking, as is the
clonal overlap between both subsets. Finally, the significantly
longer distance to root of IgM-only B cells in clone dendro-
grams may explain the reduced IgD expression and higher
mutation load in IgM-only B cells by their generation from
more advanced GC B cells. Notably, B cells down-regulate
IgD on prolonged stimulation (40). The homogeneity of PB

IgM-only and IgM+IgD+CD27+ B cells is also supported by their
identical gene expression patterns (37).
Similar to the relationship of IgM+IgD+CD27+, IgM-only, and

IgG+ memory B cells, also IgG+CD27− and IgG+CD27+ B cells
apparently are generated in an ordered pattern in common GC
reactions, rather than in distinct immune responses, as CD27 is
up-regulated in GC B cells and IgG+CD27+ lymphocytes show
higher mutation loads, but both subsets show high clonal overlap
in this and a previous study (28). Many examples showed that
IgG+CD27− and IgG+CD27+ memory B cells were often derived
from common GC B-cell clones.
Clones including multiple IgG+ members are often dominated

by a single IgG subclass. In these instances, class-switching might
have occurred early in GC B-cell clone expansion and remained
stable without consecutive switching events, or it occurred mul-
tiple times in the GC B-cell clone, but was repeatedly directed to
the same IgG subclass. Indeed, targeting of specific Ig subclasses
during class switching is well regulated (41). The few large IgM+

B-cell clones lacking IgG+ members (Fig. 4A) indicate that GC re-
actions without generation of IgG+ memory B cells can also exist.
When analyzing clone dendrograms (Fig. 4 and Fig. S5), one

must keep in mind that we sampled only a small fraction of the
clone members, and some memory clones might be composed of
members that underwent different numbers of GC reactions.
Nevertheless, the analysis of typical, repeatedly identified den-
drogram structures allows inferences on GC dynamics and se-
lective pressures guiding memory B-cell development:
Our study indicates that the early and broadly diversified IgM+

post-GC B cells represent a reservoir of flexible lymphocytes that
facilitate immune adaptation to modified pathogens. In contrast,
some sole IgG+ and mixed clones (Fig. 4 D and F and Fig. S5 B
and F) show a high number of shared mutations from the root to
the first node, which in most or all instances might reflect a
secondary (or higher order) GC passage of a memory B-cell that
has acquired the shared mutations in (an) earlier GC passage(s).
Indeed, murine and also human IgM memory B cells preferen-
tially reenter GC reactions (37, 42), although also IgG memory B
cells have this capacity (43). Some clones are characterized by
many individual mutations per clone member (Fig. 4 F and Fig.
S5 A and I). These high numbers of member-specific mutations
may reflect that in these instances mostly only highly mutated
GC B-cell clone members were selected into the memory B cell
pool and that many members of subbranches did not survive the
selection in the GC, with only particular combinations of mutations
yielding a sufficient high affinity and fitness for selection into the
memory B-cell pool. The detection of single or few clone members
with many unique mutations (i.e., early branching) belonging to a
distinct memory B-cell subset in clones otherwise dominated by (an)
other memory B-cell subset(s) (Fig. 4F and Fig. S5A) indicates that
the decision to undergo class-switching or to express CD27 can
sometimes be made early in a member of a GC B-cell clone and be
kept during multiple additional rounds of proliferation and muta-
tion until the cells differentiate into memory B cells.
Finally, most clone members differ from each other by point

mutations, meaning that throughout all phases of a GC reaction,
an amazing variety of memory B cells is produced. This important
immune strategy to produce a diverse antigen-specific memory
B-cell compartment facilitates responses to variants of the original
antigen.
Taken together, human PB memory B-cell subsets share a

highly similar IGHV gene repertoire, and most if not all
IgM+IgD+CD27+ B cells in adults are post-GC memory B cells.
Moreover, memory B cells show a surprisingly high clonality
and often include very large clones, composed of most or even
all combinations of memory subsets and IgG subclasses. Thus,
IgM+ and IgG+ memory B cells often derive from common GC
reactions. Their specific generation is dynamically and presumably
chronologically regulated.
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Materials and Methods
Cell Separation. Two healthy adult donors for PB (both male, 35 and 38 y of
age, infection free for more than 6 mo) were recruited from the Medical
School in Essen. The study protocol was approved by the Internal Review
Board of the Medical School in Essen. PB mononuclear cells were isolated by
Ficoll-Paque density centrifugation (Amersham) from 500 mL PB. CD19+ B
cells were enriched to >98% by magnetic cell separation using the MACS
system (Miltenyi Biotech).

Cell Sorting. The B-cell suspension of each donor was split into two ali-
quots and stained with anti-CD27-APC, anti-IgD-PECy7, anti-CD23-PE and
anti-IgM-FITC or anti-CD27-APC, anti-IgD-PE, and anti-IgG-FITC antibodies (all
Becton Dickinson Biosciences) and sorted with a FACSAria cell sorter (Becton
Dickinson Biosciences) as IgM+IgD+ memory (IgM+IgD+CD27+CD23−), IgM-only
(IgM+IgD−CD27+CD23low/-), IgG+CD27+ memory (IgD−IgG+CD27+), or IgG+

CD27− memory (IgD−IgG+CD27−) B cells according to the relative frequency of
each population in two equal-sized replicates per population. Plasmablasts
(CD23−CD27high) were excluded from the analysis. Purity was >99% for each
population as determined by reanalysis on a FACSCanto flow cytometer
(Becton Dickinson Biosciences) in combination with FACSDiva software.

Experimental Strategy. The four major human PB B-cell subsets carrying
mutated IgV genes were sort-purified to a total of 200,000 B lymphocytes,
according to their relative frequency in PB, from two adult healthy donors
(Fig. S1 A and B and Table S1). To control for technical bias, each population
was sorted in two equal-sized biological replicates (termed A and B for
donor 1, and C and D for donor 2) and processed in parallel. The average
mean fluorescence intensity (MFI) of IgD expression on sorted cells was 519
and 324 for IgM-only and 5,748 and 4,603 for IgM+IgD+CD27+ B cells (donors
1 and 2, respectively), i.e., the two subsets of IgM+CD27+ B cells were clearly
separated. RNA was extracted, and full-length IGHV gene rearrangements of
the IGHV1, 3 and 4 families (the VH1 primer also amplifies IGHV7 family
gene segments), including the 5′ part of IGHC, were amplified. The IGHC
primer for Cγ was designed to allow the determination of the Cγ subclass.
PCR products were processed and sequenced on a Roche 454 Sequencer. To
exclude artificial sequence variants, we aimed at 10-fold coverage of each
rearrangement (retrieving on average 2 × 106 sequences per 200,000 cells
per donor) so that after quality filtering (base calling, minimum length, and
454 error correction), we based data analysis on sequences that were de-
tected at least twice (mean coverages: ninefold and fourfold for donors 1
and 2, respectively). Identical sequences in one cell aliquot were collapsed
and counted once. With this strategy, we aimed at avoiding potential PCR-
introduced biases of the repertoire (Table S1). This strategy also eliminates a
potential bias due to contaminating plasmablasts, as identical transcripts
from a plasmablast would be collapsed to a single sequence. To account for
germ-line IGHV diversity, for every donor, the germ-line configuration of
IGHV1, 3 and 4 alleles was determined from the two most frequently used
IGHV alleles among sequences scored unmutated. As population-based PCR
approaches can generate PCR hybrid artifacts, we determined the IGHV
gene assignment of a random collection of 1,000 sequences for the 5′ and 3′
end of the IGHV region independently. Only for six sequences, the IGHV gene
assignment was inconsistent, indicating a neglectable PCR hybrid artifact
frequency in our sample.

RNA Isolation and IGHV RT-PCR. B cells were sorted into TRIzol lysis buffer
(Sigma-Aldrich), and RNA was isolated with the RNeasy micro Kit (Qiagen)
and reverse transcribed with primers specific for Cμ (5′-CCACGCTGCTCGTAT-3′)
and Cγ (5′-TAGTCCTTGACCAGG-3′) for 1 h at 42 °C according to the Sensi-

script protocol (Qiagen). IGHV gene PCR of IGHV1 (including IGHV7), 3, and
4 family rearrangements was carried out with leader peptide-specific pri-
mers 5′-CTCACCATGGACTGGACCTGGAG-3′ (VHL1), 5′-ACCATGGAGTTTGG-
GCTGAGCTG-3′ and 5′-ACCATGGAACTGGGGCTCCGCTG-3′ (VHL3.1 and 3.2,
respectively), and 5′-AAGAACATGAAACACCTGTGGTTCTTC-3′ (VHL4) and
5′-GCTCGTATCCGACGGGGAATTCTCAC-3′ (Cμ) or 5′-GCAGCCCAGGGCSGCT-
GTGC-3′ (Cγ) specific primers at 60 °C annealing temperature for 35 cycles with
the Phusion High-Fidelity DNA polymerase (Finnzymes; Thermo Scientific).

Bcl6 Mutation Analysis. The Bcl6 major mutation cluster was amplified by
seminested PCR strategy in 2.5 mM MgCl2, 125 μM dNTPs, 0.125 μM each
primer (5′-CGCTCTTGCCAAATGCTTTGGC-3′ and 5′-CTCTCGTTAGGAAGATC-
ACGGC-3′), and 1.2 U High Fidelity DNA polymerase mix (Roche) in the first
and 1.75 mM MgCl2, 67 μM dNTPs, 0.125 μM each primer (5′-CGCTCTTG-
CCAAATGCTTTG-3′ and 5′-GACACGATACTTCATCTCATC-3′), and 1.2 U Fer-
mentas Taq DNA polymerase in the second round of amplification. PCR
products were purified with EZNA Cycle pure kit (VWR International), cloned
with the pGEM-T Easy cloning kit (Promega), and sequenced from both
strands with second-round amplification primers.

Generation of Amplicon Library. For unidirectional sequencing of IGHV gene
rearrangements with the GS FLX Titanium emPCR Kit (Lib-L) (Roche), the
appropriate adapter sequences with different barcodes defining the two
donors, the B-cell populations, and the replicates were added by PCR to the
amplified IGHV gene templates. Each library was gel-purified (QIAquick;
Qiagen), and the appropriate amount of amplified DNA was pooled
according to the relative size of each B-cell population in PB before se-
quencing with Roche 454 GS-FLX+ Titanium by LGC Genomics.

Determination of Clonality. Sequences were considered clonally related when
using the same IGHV gene and sharing at least 90% CDRIII sequence identity,
accounting for intraclonal diversity by SHM. A CDRIII length tolerance of 5%
was included to consider insertions or deletions generated by SHM. More-
over, clonal sequences had to be present either in two different B-cell
populations or replicates or had to have at least two nonshared substitutions
in the IGHV segments, accounting for rare PCR-introduced nucleotide vari-
ants. These stringent parameters revealed a high number of clones, but also
included presumably 5% false positives. The latter was estimated through
manual evaluation of alignments. If, for example, N-nucleotides differed by
several nucleotides or different IGHD or IGHJ segments were used, such
sequences were treated as not expanded.

Bioinformatics.All statistical and bioinformatical evaluations were performed
in R (www.R-project.org/) and based on the international ImMunoGeneTics
information system (IMGT) database (www.imgt.org/). The determination of
IgG subclass use was based on pairwise alignments of the amplified C regions
with the germ line. Mutation frequencies and genealogical trees were calculated
based on the number or relative position of nucleotide exchanges in the IGHV
region of each sequence in comparison with the most similar allelic variant
present in the respective donor (determined from unmutated sequences).
Genealogic trees were calculated with IgTree (kindly provided by Ramit Mehr,
Bar-Ilan Universität, Ramat-Gan, Israel) (44). Intraclonal diversity denotes the
mean number of nonshared substitutions of all sequences belonging to a clone.
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Supporting Information
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Fig. S1. Cell sorting strategy of memory B-cell subpopulations. (A) IgM+IgD+CD27+ and IgM-only B cells are separated after
enrichment of B cells by CD19 MACS according to their surface IgD level. CD27high plasmablasts are excluded. (B) Postsort analysis
of IgM+IgD+CD27+ and IgM-only B cells from donor 1. (C) IgG+CD27+ and IgG+ CD27− B cells are defined by surface IgG and CD27
expression. Pre- and postsort analysis of donor 1 is shown. (D) The relative use of individual IGHV gene segments of families 1, 3, 4,
and 7 among memory B-cell subpopulations and biological replicates is highly similar. Minor variations between subpopulations
are detectable at similar ranges in biological replicates. No statistically significant differences are detectable between any two
conditions among single IGHV genes with >5% frequency and greater than twofold change. The separator in each column marks
the amount of sequences contributed by each allelic variant of the respective IGHV gene. (E) CDRIII length spectratyping reveals
highly similar distributions between memory B-cell subpopulations. The separator in each column marks the amount of sequences
contributed by each vial.
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Fig. S2. Distribution of mutation frequencies in B-cell subpopulations and biological replicates. (A) In both donors, the distributions in mutation frequency
(mutations/100 bp) are highly similar in replicate analyses and distinct for each memory B-cell population analyzed. (B) The distribution of mutation fre-
quencies (mutations/100 bp) in IgG subclasses.
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Fig. S3. Clonal composition of human memory B cells. (A) Correlation of clone type fractions and clonal sizes as in Fig. 3B, except that clones composed of
IgM+IgD+CD27+ and IgM-only sequences are included in the IgM clone fraction. ∧ indicates “and,” and ∨ indicates “or.” (B) IGHV gene use and (C) mutation
frequencies (mutations/100 bp) of single or clonal sequences—no matter whether derived from composite or sole IgM (homogenous)—are very similar to each
other. (D) Correlation of clone sizes and clone types as in Fig. 3C, nonstaggered depiction.
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Fig. S4. Explanation of shape parameters used to describe genealogic dendrograms.

Fig. S5. Genealogic analysis of human memory B-cell clones. (A–I) Selected dendrograms of IgM+IgD+CD27+, IgM-only, and IgG+CD27+ composite clones,
where the B-cell subtypes are intermingled according to their IGHV gene mutation pattern. (J–Q) Selected dendrograms of B-cell clones including class switched
B cells with more than one IgG subclass. Specific subsets are indicated by a gray scale code (legend); germ-line IGHV (root) and sequential mutation events are
marked as small black circles. Less than 1% of nodes/leaves represent more than one sequence; occasional contributions from independent subsets or IgG
subclasses are given as split-colored circles and additional colors, respectively.
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Table S1. Input cell numbers and number of sequences retrieved by NGS

Cell sample (replicate vial)

Donor 1

IgG+CD27− IgG+CD27+ IgM+IgD+CD27+
IgM-only
CD27+ Total

A B A B A B A B A+B

# input cells 8,000 8,000 45,000 45,000 50,000 50,000 5,500 5,500 217,000
# 454 reads retrieved 75,747 77,171 363,212 392,155 582,051 340,066 85,455 75,382 1,991,239
# reads> 300 bp length 73,841 75,112 320,145 365,358 577,016 331,317 83,696 74,287 1,900,772
# unique sequences (identical sequences collapsed) 28,677 26,567 79,599 78,315 148,274 81,009 22,525 23,078 488,044
# sequences with ≥ twofold coverage 7,710 6,949 21,155 20,271 30,285 15,807 5,366 5,076 112,619
# sequences after 454 error correction* 4,766 3,992 12,121 9,497 19,410 9,077 3,889 3,900 66,652

Donor 2

C D C D C D C D C+D

# input cells 10,000 10,000 46,000 46,000 50,000 50,000 5,500 5,500 223,000
# 454 reads retrieved 79,630 93,677 360,117 519,422 547,384 409,085 67,107 52,783 2,129,205
# reads> 300 bp length 68,466 86,169 274,638 387,728 456,433 344,669 58,871 45,839 1,722,813
# unique sequences (collapsing of identical sequences) 39,313 49,170 103,627 115,420 235,542 183,475 29,655 24,712 780,914
# sequences with ≥ twofold coverage 4,549 6,038 13,534 16,068 21,179 16,206 2,750 2,126 82,450
# sequences after 454 error correction* 2,372 2,584 6,138 4,637 11,683 10,219 1,705 1,320 40,658

*Insertions/deletions arising from incorrect length determination of sequences of identical nucleotides, typically occurring by 454 base calling.

Table S2. BCL6 mutation analysis of human IgG3 class-switched memory B cells

Donor Cell type
No. of total
sequences

No. of mutated
sequences

No. of sequence with n
mutations Fraction of

mutated
sequences (%)

Mutation
frequency (%)

Fisher’s exact test vs.
IgG+IgG3−CD27+1 2 3 4 5 6

1 IgG+IgG3−CD27+ 21 10 8 1 1 47.6 0.08
IgG3+CD27+ 30 15 7 4 1 2 1 50.0 0.14
IgG3+CD27− 47 9 7 1 1 21.3 0.05

2 IgG+IgG3−CD27+ 20 7 5 1 1 35.0 0.11
IgG3+CD27+ 35 10 4 4 2 28,6 0.17
IgG3+CD27− 31 6 3 2 1 19.4 0.05

Total IgG+IgG3−CD27+ 41 17 13 1 1 1 1 41.5 0.09
IgG3+CD27+ 65 25 11 8 1 2 3 38.5 0.11 NS
IgG3+CD27− 78 15 10 2 1 1 1 20.5 0.05 P < 0.05
T cells* 18 0 0 0

NS, not significant.
*As expected, the BCL6 MMC of T cells, analyzed as background control, was unmutated.
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Table S4. Shape parameters of genealogic dendrograms

Parameter Definition Biological meaning

Intraclonal diversity Average frequency of unique
(i.e., not shared by all nodes/leaves)
mutations within a tree

Unique mutations per B-cell clone member

# of head nodes Number of mutations, shared by all
nodes within a tree

Shared mutations per B-cell clone member

Distance root to maximum
outdegree (depth of node
with maximum outdegree)

Number of mutations to the node-level
with maximum outdegree

Relative time point of clone member, from
which a maximal number of distinct
mutations occurred

#1 level of maximum nodes
(maximal number of nodes
with same depth)

Tree height with maximum number
of nodes

Relative time point of maximum number of
clone members considering clonal expansion

Mean distance to root Average number of mutations per leaf Average number of mutations per B-cell
clone member

Maximum distance leaf to split Maximum number of unique mutations per
leaf (branch length)

Maximum number of unique mutations per
sequence of a clone

Mean distance leaf to split Average number of unique mutations per
leaf (average branch length)

Average number of unique mutations per
sequence of a clone

Table S5. Overview on sole B-cell subset/IgG subclass and
composite clone numbers with at least seven clone members

Clone types Count % total

No. clones with more than six members* (total) 1,045
IgM+IgD+CD27+ 297 28,42
IgM-only CD27+ 17 1,63
IgG+CD27+ 155 14,83
IgG+CD27− 10 0,96
Composite 566 54,16
Composite with ≥90% subset dominance 86 8,23

No. clones with more than six IgG+ members (total) 254
IgG1 13 5,12
IgG2 132 51,97
IgG3 57 22,44
IgG4 0 0,00
Composite 52 20,47
Composite with ≥90% subclass dominance 10 3,94

*Clone sizes of more than six members were chosen arbitrarily, however,
ensuring that a substantial clone sample number (>1,000) was available for
genealogic analysis and sufficient leaves per dendrogram exist to allow dif-
ferential structure analysis.
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Proteasomal selection pressure on hepatitis C
virus epitopes

I have not failed. I’ve just found 10,000 ways
that won’t work.

THOMAS A. EDISON

Abstract

Proteasomal cleavage of proteins in human cells leads to presentation of epitopes
at the cell surface. Those presentations can be recognized by cells from the immune
system, which then activate the immune response. Evasion of such recognizability is
a constant drift for pathogen evolution, in which those pathogens are favored which
have mutations that either disable the recognition itself, the binding to the present-
ing molecule, or the cleavage itself. Several escape mutations for either recognition
or binding evasion are known for Hepatitis C virus (HCV). Escape mutations out-
side epitopes towards no cleavage by the proteasome may occur due to an inability
to escape binding or recognition inside the epitope.
We analyzed the flanking regions of HCV epitopes from the Immune Epitope

Database with MHC binding prediction, which were classified either as recognized
or not, and searched for amino acids inside those regions, which showed a significant
difference between both sets. We found fourteen differing amino acids inside the
15+15 amino acids long flanking region.
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Introduction 7.1

7.1 Introduction

7.1.1 Flaviviridae

Flaviviridae is a family of viruses which are mostly spread by arthropod vectors. The
name originated from the Latin word flavus, which means yellow and labels a prominent
virus of this family, the yellow fever virus [47]. Flaviviridae are divided into four genera:
the Flavivirus, Hepacivirus, Pegivirus and Pestivirus. All but the last genera include
viruses which can infect humans. The most prominent members of the Flaviviridae are,
other than the mentioned yellow fever virus, Dengue Fever, West Nile Virus, and Tick-
borne encephalitis virus of the Flavivirus, and Hepatitis C of the Hepacivirus [9]. All
Flaviviridae viruses have linear, single-stranded RNA genomes of positive polarity with
a length between 9.6 to 12.3 kb. The viral particles are enveloped, spherical, and about
40 nm - 60 nm in diameter [54]. From the RNA genome one polyprotein is synthesized,
which is then processed through host and viral proteases. All polyproteins are organized
similarly, although the members of the genera are only distantly related. In the N-terminal
region are core and envelope proteins, in the C-terminal region are the non-structural ones
[41]. A common feature is the location of serine protease and helicase activities in the NS3
region and an RNA-dependent RNA polymerase near the C-terminus of the polyprotein
[40]. Most of the human pathogen Flaviviridae do not induce a chronic infection. Two
exceptions are Hepatitis C and GBV-C, which can lead to chronic infections. In the case
of HCV 80% of humans exposed to the virus develop a chronic infection [34]. GBV-C
instead takes a chronic course in around 20%-30% [15, 25]. Up until now GBV-C does
not seem to cause a human disease [5].

7.1.2 HCV

Hepatitis C is a disease that occurs frequently with around 170 million people worldwide
infected with the HC-virus. Genomic studies from different genotypes suggest that this
virus evolved around 1,100 to 1,350 years ago (95% credible region, 600 to >2,500 years
ago)[39]. The different (sub)genotypes evolved 400 to 200 years ago from genotype 1b
[42] and have an estimated rate of mutation of 1.8× 10−4 (95% credible region 0.9× 10−4
to 2.9× 10−4)[39]. Compared to its long time in the human population it was discovered
relatively late in 1970s and isolated in 1989 [7].
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Introduction 7.2

7.1.3 The proteasomal cleavage and ER procession

Proteins in human cells are constantly degraded by peptidases and processed to be pre-
sented by the MHC-class I system on the cell surface. Proteins in the cytosol are cleaved
by the ubiquitin-proteasome system and peptides are generated [33]. Up until now, there
are three proteasomes known: the constitutive proteasome, which can be found in every
cell type, the immunoproteasome, which can be induced by interferon-γ, and the thy-
moproteasome in thymal cells [14]. The proteasome cleaves proteins into peptides with
a length between 3-18 amino acids [4]. Sometimes new peptides are generated through
a reversal of proteolysis and ligation of smaller fragments [53]. Those peptides are then
transported via TAP into the lumen of the ER. TAP can transport peptides of a length
of between 7 and 40 amino acids [37] and transfers the peptide in the ER to MHC-class
I molecules. Those molecules are in complex with TAP/tapasin, ER60 and calreticulin
[36]. In this so-called Peptide Loading Complex (PLC), peptides can bind directly but
are cleaved by aminopeptidases if they are to long [21]. Currently there are three known
aminopeptidases in this system in the ER: ERAP1, ERAP2, and IRAP, which is homolo-
gous to the first two [43] respectively ERAAP in mice [19]. Each of these aminopeptidases
have different trimming preferences and specificity. The trimming of the antigenic pre-
cursor, which often removes only one additional amino acid, is largely affected by the
N-terminal specificity of the aminopeptidase [4]. The preferred residue for ERAP1 is
leucine, whereas for ERAP2 it is arginine [18, 50]. IRAP can cleave both substrates [31].

For HIV it is known that certain mutations in the flanking regions of an epitope lead
to reduced presentation of the epitope [32], and it was also shown, that the cleavage of
in vitro constructed flanking regions with known epitopes depends on the amino acid
composition [49].

7.1.4 Main hypothesis

Our main hypothesis is that because of its long duration in the human population HCV is
adapted to the human immune system not only with escape mutations inside the epitopes
to evaded recognition through CTL, but also in the flanking regions of possible epitopes
in a way, that the MHC-class I pathway cannot produce the antigen - MHC complex.
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Methods 7.2

7.2 Methods

7.2.1 Data

A dataset from IEDB[52] was generated for HCV epitopes. All epitopes listed in the
database are given either as T cell response, B cell response or MHC binding and sorted
into positive ones (at least one positive test) and negative ones (no positive test so far). We
retrieved the 194 epitopes for T cell response and HLA-A*02. For each epitope BLAST
[1] was used to get the surrounding sequences out of H77, because the original sequence
data was not available in most cases. Fifteen amino acid positions in front of the epitope
and fifteen amino acids behind the epitope were taken into account for further analysis.

A prediction of all HLA-A*02 MHC binder, and thus potential epitopes, in the sequence of
HCV reference genome H77 [3, 6, 23] was carried out with the prediction tools on the IEDB
website [52]. The predictions were made using the IEDB analysis resource Consensus tool
[22] which combines predictions from ANN respectively NetMHC (3.4) [27, 35], SMM [38]
and Comblib [48]. The predicted epitopes were sorted by IC50 and epitopes from the
IEDB database into a positive and a negative set: all predicted epitopes with an IC50 <
5000 nM and an entry in the database were selected as positive, all predicted epitopes
with an IC50 < 50 nM and no entry in the database were selected as negative. For actual
numbers see Table 7.1. The difference in IC50 refers to the fact that even a weak binder
can be presented and recognized, but for the negative list we wanted to be sure that the
entries are not simply in the list because of weak or no binding to the MHC molecule.

Table 7.1: Number of predicted HLA-A*02 MHC binder of HCV intersected with T cell epitopes. T cell
epitopes were taken from IEDB database, MHC binder were predicted with tools from IEDB out of the HCV
reference sequence H77.
type number
T cell+ + predicted IC50 < 5000 nM 690
T cell+ + predicted IC50 < 500 nM 278
T cell− + predicted IC50 < 50 nM 337

A second dataset from IEDB was generated from human HLA-A*02 positive epitopes.
Additional refinement was necessary since these epitopes were not compared to predicted
ones and some epitopes had a length larger than twelve or shorter than seven, which had

102



7.
Se

le
ct

io
n

pr
es

su
re

on
H

C
V

ep
it

op
es

II
I

7.
Se

le
ct

io
n

pr
es

su
re

on
H

C
V

ep
it

op
es

7.
Se

le
ct

io
n

pr
es

su
re

on
H

C
V

ep
it

op
es

7.
Se

le
ct

io
n

pr
es

su
re

on
H

C
V

ep
it

op
es

II
I

7.
Se

le
ct

io
n

pr
es

su
re

on
H

C
V

ep
it

op
es

7.
Se

le
ct

io
n

pr
es

su
re

on
H

C
V

ep
it

op
es

II
I

7.
Se

le
ct

io
n

pr
es

su
re

on
H

C
V

ep
it

op
es

7.
Se

le
ct

io
n

pr
es

su
re

on
H

C
V

ep
it

op
es

Methods 7.2

to be removed. Then all remaining epitopes were clustered to eliminate potential double
entries in the data.

Further, we downloaded polymerase (NS5b) sequences, one from each, from different
Flaviviridae (HCV, West Nile Fever, Tick-Born Encephalitis, Yellow Fever, and GBV-C),
and human DNA-directed RNA polymerase I subunit RPA49 from Uniprot [8] to compare
the amino acid frequencies inside those proteins and search for significant changes.

7.2.2 Analysis of RNA-dependent RNA polymerase from Flaviviridae

Every amino acid of the RNA-dependent RNA polymerase protein sequences from Fla-
viviridae was counted and then compared by a Fisher’s exact test with all other counts
of this amino acid.

7.2.3 Flanking regions

The flanking regions of an epitope are up- and downstream of the epitope. The size of
the flanking regions for this analysis was 15 nucleotides. We call the flanking regions plus
the epitope an extended epitope (see Figure 7.1).

Figure 7.1: Scheme of an extended epitope. An extended epitope is the epitope plus 15 amino acids upstream
and downstream of it.

All flanking regions were clustered before analysis, because some of them showed the
same sequence despite a different epitope in the middle. This was because all flanking
regions were taken from H77 and not the original sequence were the epitope was found.
To eliminate this potential bias the amount of those flanking regions which showed the
same sequence were reduced to one.
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Methods 7.2

7.2.4 Analysis of significant differences between the HCV epitopes

For this analysis two different tests were carried out with all epitope datasets: a Fisher’s
exact test and a Mann-Whitney-U test (see Figure 7.2).

Figure 7.2: Flowchart for proteasomal selection pressure on hepatitis C virus epitopes. Dark gray boxes are
input or output data, light gray boxes are statistical or mathematical functions. Measured T cell epitopes
from IEDB database are combined with predicted epitopes out of H77. A position wise Fisher’s exact test and
a Mann-Whitney-U test of scrambled and unscrambled sequences are compared to extract those amino acids
and positions, which are different between the sets of epitopes (HCV+, HCV-, and human+)

Fisher’s exact test for positive and negative epitopes

A Fisher’s exact test was carried out for every flanking regions sequence position (i) and
every amino acid (j) for both datasets to examine which position in the flanking regions
of the epitopes differs between the positive (p) and the negative set (n).

pi,j,p =

(
|flankingi,j,p|+|flankingi,j,n|

|flankingi,j,p|

)(
|flankingi,¬j,p|+|flankingi,¬j,n|

|flankingi,¬j,p|

)
(

|flanking|
|flankingi,j,p|+|flankingi,¬j,p|

) (7.1)
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Methods 7.3

The p-values were than adjusted for multiple correction with the p.adjust function from
the R-stats package with the method of “FDR”.

Mann-Whitney-U test for original and scrambled flanking regions

Further tests for every position p and every amino acid a were carried out to check if the
results from the Fisher’s exact test were due to too few epitopes. Two hundred times a
scrambled set(letters at position were inserted randomly) from every epitope was created
to be used in the Fisher’s exact test and compared with two hundred equally generated
p-values created with the correct order of amino acids in a Mann-Whitney-U test [29]:

Rp,a = Rank values of p-values for correct amino acid order

Rp,a = Rank values of p-values for scrambled amino acid order

np,a1 = # of p-values for correct amino acid order = 200

np,a = # of p-values for scrambled amino acid order = 200

U = min(np,a1np,a + np,a1(np,a1 + 1)
2 −

∑
Rp,a1 , np,a1np,a + np,a(np,a + 1)

2 −
∑

Rp,a)

(7.2)

Since np,a1 , np,a > 25 it was approximated by a normal distribution:

Z =
U − np,a1np,a

2√
np,a1np,a(np,a1 +np,a+1)

12

≈ N(0; 1) (7.3)
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7.3 Results

7.3.1 The amino acid frequencies of HCV NS5b are highly similar to GBV-C and
human DNA-directed RNA polymerase

Figure 7.3: Percentage of amino acids in RNA Polymerase in HCV, Tick-Borne Encephalitis, Dengue
Fever/West Nile Fever, Yellow Fever, GBV-C and human. Shown are those amino acids, which displayed
a significant difference between at least two viruses, or virus and human. The sequences of Dengue Fever and
West Nile Fever were completely identical, hence only one bar for both is shown. Fisher’s exact test: * <
0.05, ** < 0.015, *** < 0.001

The comparison of the amino acid frequencies of NS5b, the RNA-dependent RNA poly-
merase, of certain Flaviviridae and human DNA-directed RNA polymerase I showed sig-
nificant differences in a Fisher’s exact test. In twelve amino acids more than one pair
of either viruses or virus and human showed differences (alanine, cystein, glutamic acid,
glycine, isoleucine, leucine, methionine, asparagine, proline, serine, valine, tryptophan).
In two amino acids at least one pairing showed disparity (isoleucine, valine). The amino
acid frequencies of Dengue Fever and West Nile Fever had no difference at all and their
sequences were completely identical. The percentage of more than half of the amino
acids from HCV and either the human sequence or GBV-C showed certain similarities,
being either higher or lower than the rest of the Flaviviridae (see Figure 7.3). The RNA
polymerase of HCV and the RNA polymerase of GBV-C showed significantly increased
amounts of alanine, cystein and proline, and significantly decreased amounts of trypto-
phan compared with the other Flaviviridae. The RNA polymerase of HCV and the RNA
polymerase of humans showed significantly increased amounts of leucine, proline and ser-
ine and significantly decreased amounts of glutamic acid and tryptophan compared with
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Results 7.3

other Flaviviridae. Trends could be estimated in glycine (decreased amount in HCV and
human) and methionine (decreased amount in HCV, GBV-C and human). In summary,
there seems to be an interesting similarity between the composition of RNA polymerases
of HCV, GBV-C and humans in contrast to the other Flaviviridae.

7.3.2 Epitopes in IEDB are not distributed equally over whole H77

We compared the positive and negative epitopes to the reference sequence H77 to get an
overview of the distribution of epitopes in the sequence and searched if there were regions
with a high density of epitopes and regions without any epitopes at all. The epitope
distribution was not equal (see Figure 7.4) and regions existed with lots of epitopes and
regions with only a few or none. The known secondary structure of the HCV proteins
seem to have no connection with a high load of epitopes. Probably some regions are more
often examined than others, due to better protocols or known interactions.

Figure 7.4: Overview of the genome sequence positions of the used HLA-A*02 epitopes. For every genome
sequence position the number of epitopes covering this position was noted. The epitopes were taken from
IEDB and intersected with a prediction of MHC binder of different IC limits with tools from IEDB. Breaks mark
beginning and end of HCV proteins, which are noted above the plot, according to [28]. Secondary structure
for H77 above the plot was obtained from Uniprot.
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7.3.3 Amino acid amounts are different between HCV and human epitopes

The numbers for all amino acids in the extended epitope positions were collected and
compared with each other to search for general differences in the amount of certain amino
acids. Those differences would potentially show as significant in the Fisher’s exact test,
although they do arise only from general disparity. The comparison between both HCV
datasets, alanine, glycine, and histidine showed a significant difference in the amount.
In the comparison between the human and HCV negative datasets, alanine, aspartic
acid, glutamic acid, glycine, lysine, asparagine, glutamine, serine, threonine, valine, and
tryptophan showed a significant difference in the amounts. In the comparison between
the human and HCV positive datasets, alanine, cystein, aspartic acid, glutamic acid,
glycine, histidine, lysine, asparagine, glutamine, arginine, threonine, valine, and trypto-
phan showed a significant difference in the amounts (see Table 7.2 and Figure 7.5).

7.3.4 Fourteen amino acids are different between HCV+ and HCV-

The comparison between both HCV epitope datasets and the humane epitope dataset
showed several differences (see Table 7.3). As expected, a second comparison with a
dataset generated with IC50 < 500nM showed fewer significant differences. The most
frequent amino acids, which showed a significant difference between the human dataset
and both HCV datasets, were glutamic acid and alanine. Both amino acids also showed a
highly significant difference in overall frequency (see Figure 7.5), so it is likely that those
amino acids have a general difference between human and HCV genomes.

The position wise significant p-values under consideration of the results from the Mann-
WhitneyU Test leave 16 amino acids and positions in the first set (comparison of HCV
positive and negative epitopes), eleven amino acids and positions in the second set (hu-
man epitopes and negative HCV epitopes), and 37 amino acids and positions in the third
set (human epitopes and positive HCV epitopes) from all possible combinations. Four
amino acids showed significantly increased frequencies in the flanking regions of positive
HCV epitopes in the comparison of both HCV datasets, which indicates that those amino
acids may be responsible for epitope processing in HCV, respectively may not hinder the
processing. Twelve amino acids showed a significantly increased frequency in the flanking
regions of negative HCV epitopes. Those amino acids may hinder the human protea-
som and prohibit processing. Six amino acids had a significantly increased frequency in
the flanking regions of negative HCV epitopes in the comparison with human epitopes.
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Table 7.2: Significant differences in a Wilcoxon test between the amino acid numbers in the flanking regions
between human, HCV+ and HCV- datasets. Compared were all amino acids without using the position. No
correction was applied to the p-values.

type amino acid p-value

HCV+ & HCV−
A 0.019
G 0.002
H 0.022

HUMAN+ & HCV−

A < 0.001
D 0.021
E < 0.001
G 0.008
K < 0.001
N 0.002
Q 0.002
S 0.041
T < 0.001
V 0.008
W < 0.001

HUMAN+ & HCV+

A < 0.001
C 0.008
D 0.004
E < 0.001
G < 0.001
H 0.004
K < 0.001
N 0.033
Q < 0.001
R 0.007
T < 0.001
V 0.002
W 0.003

Fourteen amino acids showed a significantly increased frequency in the flanking regions
of negative HCV epitopes in the comparison with human epitopes (see Figure 7.6).

A comparison between HCV-/HCV+ and HCV-/Human shows two positions in the flank-
ing regions with the same amino acids: at position 10 both HCV+ have an increased
amount of glutamic acid and at position 22 both HCV- have an increased amount of
leucine. The former indicates a positively charged binding pocket in one of the processing
enzymes, the later a neutral binding site.
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Table 7.3: Top ten p-values from comparison between positive and negative epitopes with an Fisher’s exact
test. Three datasets were used all for HLA-A*02. The HCV positive and negative datasets were generated
from HCV T cell data from IEDB in combination with MHC predicted data out of the HCV reference genome
H77. The first dataset is a comparison between both HCV datasets, the second one is a comparison between
human T cell data from IEDB and the negative HCV epitopes, the third one was a comparison between
human T cell data and the positive HCV epitopes. FDR was applied to the p-values to correct for multiple
testing errors. The p-values were taken from the analysis of the positive dataset generated with an in IC50
< 5000nM . The last column shows if the data points show up in the comparison with the positive dataset
generated with an in IC50 < 500nM .

HCV+ & HCV-

position Fisher p-value amino acid in IC50 < 500 nM
4 0.021 S
5 0.024 K
9 0.020 L
10 0.024 H
10 0.039 E
11 0.028 L
17 0.020 N x
19 0.020 S
23 0.028 H
28 0.024 C

HUMAN+ & HCV-

1 0.045 W
10 0.014 E x
10 0.028 Q
11 0.019 E x
12 0.024 W x
15 0.045 M
22 0.024 E x
25 0.039 A
30 0.024 G x
30 0.028 E x

HUMAN+ & HCV+

3 0.005 E x
8 0.014 T x
15 0.004 E
16 0.000 E x
16 0.020 A x
21 0.020 A x
22 0.004 E
25 0.012 A x
28 0.021 A x
30 0.002 A x
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Figure 7.5: Amino acid numbers in HCV and human extended epitope. Shown is the relative frequency for
every amino acid inside human an HCV extended epitope. The negative epitopes were selected with an IC <
50 nM , the positive epitopes were selected with IC < 500 nM . Wilcoxon test: * < 0.05, ** < 0.015, *** <
0.001

A combination of these results with the results from the general frequencies analysis leads
to a reduced set of significant differences (see Table 7.4). Most of the significantly different
amino acids between the human and one of the HCV datasets have to be treated carefully,
because there is a general difference and one cannot tell if there is a underlying position
based difference. Only two amino acids, leucine at position 22 and methionine at position
15, are still a real difference inside the flanking regions of negative HCV epitopes in the
comparison with human epitopes and only one amino acid, phenylalanine at position
3 is still a real difference inside the flanking regions of positive HCV epitopes in the
comparison with human epitopes. In the comparison between the flanking regions of
both HCV epitope datasets only one amino acid had to be excluded, histidine at position
10 and 23.

111



7.
Se

le
ct

io
n

pr
es

su
re

on
H

C
V

ep
it

op
es

II
I

7.
Se

le
ct

io
n

pr
es

su
re

on
H

C
V

ep
it

op
es

7.
Se

le
ct

io
n

pr
es

su
re

on
H

C
V

ep
it

op
es

7.
Se

le
ct

io
n

pr
es

su
re

on
H

C
V

ep
it

op
es

II
I

7.
Se

le
ct

io
n

pr
es

su
re

on
H

C
V

ep
it

op
es

7.
Se

le
ct

io
n

pr
es

su
re

on
H

C
V

ep
it

op
es

II
I

7.
Se

le
ct

io
n

pr
es

su
re

on
H

C
V

ep
it

op
es

7.
Se

le
ct

io
n

pr
es

su
re

on
H

C
V

ep
it

op
es

Results 7.4

Figure 7.6: Significant amino acids and their positions between positive and negative epitopes. All those
amino acids and positions are shown which had a significant difference in the frequency between either human
and HCV or positive and negative HCV dataset. The direction of the bar is according to the Odds ratio value
and indicates in which set the amino acid is more frequent. Marked in horizontal gray bar are those amino
acids, which could be used in a in vitro test, to render positive epitopes negative. Marked in vertical gray
bar are two positions with an increased amino acid in either HCV+ in HCV+/HCV- and HCV-/Human or
HCV- in HCV-/HCV+ and HCV-/Human which points to a possible connection between sequence position
and processing.

7.3.5 Epitopes for verification

We selected twelve epitopes from the list of known HLA-A*02 epitopes from the Los
Alamos database to be further processed in vitro. An epitope was selected if it had the
correct amino acid at the correct position for a positive epitope, so that a modification
into another amino acid should render this epitope negative (see Table 7.5). Or if it did
not have the correct amino acid for a negative epitope. A modification of this amino acid
into the amino acid more frequent in the negative epitopes should render this epitope
negative.

112



7.
Se

le
ct

io
n

pr
es

su
re

on
H

C
V

ep
it

op
es

II
I

7.
Se

le
ct

io
n

pr
es

su
re

on
H

C
V

ep
it

op
es

7.
Se

le
ct

io
n

pr
es

su
re

on
H

C
V

ep
it

op
es

7.
Se

le
ct

io
n

pr
es

su
re

on
H

C
V

ep
it

op
es

II
I

7.
Se

le
ct

io
n

pr
es

su
re

on
H

C
V

ep
it

op
es

7.
Se

le
ct

io
n

pr
es

su
re

on
H

C
V

ep
it

op
es

II
I

7.
Se

le
ct

io
n

pr
es

su
re

on
H

C
V

ep
it

op
es

7.
Se

le
ct

io
n

pr
es

su
re

on
H

C
V

ep
it

op
es

Discussion 7.4

Table 7.4: Overview of the number of significant amino acid changes between human and positive/ negative
HCV epitopes. T cell epitopes from IEDB combined with predicted MHC binder were compared position wise
and amino acid-wise with a Fisher’s exact test. Noted is also if there were significant differences in the amino
acid frequencies between both extended epitopes, which was also calculated with a Fisher’s exact test. Marked
with gray are those fields, that had a significant amino acid change, but no significant different amino acid
frequency.

HCV+ & HCV- sda* HN+ & HCV- sda* HN+ & HCV+ sda*
Amino acid #significant #significant #significant

A X 1 X 8 X
C 1 X
D X 1 X
E 2 4 X 9 X
F 1
G X 1 X 3 X
H 2 X 3 X
K 1 X 4 X
L 4 1
M 1 1
N 1 X 1 X
Q 1 X 4 X
R X
S 3 X
T X 1 X
V X 1 X
W 2 X 1 X
Y 1

*sda: significant difference in the amino acid frequencies. HN: Human

7.4 Discussion

Our data was composed from MHC-binding and T cell assays. MHC-binding assays test
if a given short amino acid chain binds to a certain MHC molecule. A T cell assay is
a test for (memory) T cell proliferation after a second exposure to a given short amino
acid chain. These tests react positively with an increased cell proliferation, if the T cell
recognizes the molecule. This is no guarantee per se that the recognition of the short
amino acid chain is the result of a previous antigen processing that resulted in this amino
acid. One possibility would be a cross reaction [46]. Therefore it is not sure if the basic
data from IEDB is appropriate for the task of finding differences in the amino acid chain
between those regions which are processed by the proteasom and those which are not.
To eliminate this factor of uncertainty, we used the T cell assay dataset to select from
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Table 7.5: HLA-A*02 epitopes with labeled amino acids. Shown are extended epitopes with a significant
difference between the flanking regions of positive and negative HCV epitopes. Flanking regions were taken
from the reference sequence H77, epitopes from Los Alamos database.

Amino acid flanking region epitope flanking region protein

4S

WLLSPRGSRPSWGPT ADLMGYIPLV GKVIDTLTCGFADLM Core
TLCSALYVGDLCGSV FLVSQLFTF SPRRHWTTQDCNCSI E1
SIASWAIKWEYVVLL FLLLADARV CSCLWMMLLISQAEA E2
GSRSLTPCTCGSSDL YLVTRHADV IPVRRRGDSRGSLLS NS3
CSGSWLRDIWDWICE VLSDFKTWL KAKLMPQLPGIPFVS NS5a

5K RNLGKVIDTLTCGFA ALMGYIPLV GAPLGGAARALAHGV Core

9E MTCMSADLEVVTSTW VLVGGVLAA LAAYCLSTGCVVIVG NS4a
MGGNITRVESENKVV ILDSFDPLV AEEDEREVSVPAEIL NS5a

10E SIASWAIKWEYVVLL FLLLADARV CSCLWMMLLISQAEA E2
AVQTNWQKLEVFWAK HMWNFISGI QYLAGLSTLPGNPAI NS4b

22X LIFCHSKKKCDELAA KLVALGINAV AYYRGLDVSVIPTSG NS3
MGGNITRVESENKVV ILDSFDPLV AEEDEREVSVPAEIL NS5a

MHC binding assay results epitopes which are recognized and those which only bind the
MHC molecule. In this way we could be sure that the epitopes used are at least able to
be presented by the cell.

Our findings indicate that over the whole length of the 15 amino acids in front of the
epitope and the 15 amino acids behind it, not only the immediate vicinity may be im-
portant for processing, but also positions further away. Previous studies of this topic are
rare and mostly findings are made accidentally in the search for escape mutations inside
the epitope, as in the study of Timm et al., in which a change of alanine to threonine in
the COOH-terminal flanking region showed no altered IFN-γ secretion [51]. Seifert et al.
found a Y/F mutation in HLA-A*02 patients at position one of the carboxy flanking re-
gion, which prevented proteasomal cleavage at this position [44]. In the N-terminal region,
amino acid frequencies are increased in both data sets, but only in the negative dataset in
the C-terminal region. The results also show that (basic or acidic) polar amino acids are
better for epitope processing, than non-polar ones. This conforms with the results from
Livingston et al., who found that non-polar amino acids perform poorly at least at the C1

terminus and positively charged amino acids (K or R) are most frequently associated with
optimal CTL responses [26]. Godkin et al. found in 2001 for MHC-class II that phenylala-
nine, isoleucine, valine, leucine, proline, lysine, and glutamic acid at the N-terminal and
arginine, histidine, and lysine at the C-terminal flanking region were most frequent, but
MHC-class II molecules can present larger epitopes with still attached flanking regions
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[17]. However, Steers et al. found a different result for HIV epitopes: aliphatic amino
acids with a non-polar side chain and a neutral side chain charge, and neutral amino
acids with non-polar and neutral side chain charge at the N-terminal flanking region, and
aliphatic amino acid with a polar side chain, and a neutral side chain charge or basic
amino acid with a (non) polar and neutral side chain charge at the C-terminal flanking
region [49].

It is notable that on the N-terminal site of the flanking region amino acid changes are in
the positive and negative HCV dataset, but on the C-terminal site only in the negative.
The amino acids which are more frequent in the positive flanking regions are simultane-
ously less frequent in the negative ones, which indicates a selection pressure against those
amino acids and vice versa with those amino acids which are more frequent inside the
negative flanking regions. The proteasom is said to cleave only the C-terminus of the
MHC ligand, so that the ligand with its N-terminal flanking region will then enter the
ER, where this precursor is clipped. This means that those amino acids on the C-terminal
site may be important for the cleavage by the proteasome, whereas the amino acids at
the N-terminal flanking region may be more important for the cleavage inside the ER.
This cleavage is mainly managed through the ERAP (ERAAP) proteins, but not by that
alone. Experiments have shown that ERAAP deficient mice show poor MHC-I presenta-
tion for certain peptides, but normal or even increased amounts for other peptides [45].
Wild-type mice immunized with ERAAP-ko mice cells showed a potent immune response
and analysis of those bound peptides revealed large changes in the composition and the
proportion of N-terminally extended peptides [2, 20].

Leucine is the preferred amino acid for HLA-A*02 binding of epitopes at position 2 [30]
and the preferred amino acid for the aminopeptidase ERAP1. Our findings show a higher
amount of leucine in the N-terminal flanking region of negative epitopes. The reason for
this could be that epitopes overlap and those positions are also inside another epitope.

The comparison between HCV and human data proved to be extremely difficult, because
almost all amino acids showed huge differences in the amount. This huge discrepancy
may mask real effects at certain positions, for example: if there is generally more alanine
in HCV genomes than in human genomes, an increased amount of alanine at a certain
position in humans, leads to a reduced significance at this position. This could indicate
the wrong assumption that every missing significant difference between human flanking
regions and HCV flanking regions for those amino acids, which showed a general difference
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in the amount of amino acids, is more interesting than those which had a significant
difference. One could not analyze such a problem with our techniques.

Our results denote that there is not "‘the best amino acid"’ to evade proteasomal cleavage
at every position in the flanking region, but only a good one, which has to be also suitable
for the original function of the protein. Throughout the field, there are a lot of amino acid
mutations known that destroy the function of the protein. Those changes, despite their
increased chance to evade the proteasom, would not remain in a stable viral population
[10, 11]. Therefore it is difficult to estimate if there is a ranking inside amino acids at a
basis of escape from proteasomal cleavage.

Although an escape mutation in the flanking region is not directly in connection with the
HLA/ T cell specific recognition, the HLA type may influence those evasive mechanisms
[12], although the changes in the sequence are small compared to the actual epitope [13].
Such mutations are only necessary if the epitope is recognized and a mutation inside the
epitope leads to a reduced viral fitness. In this study, all epitopes were included, regardless
of the HLA specificity. This may have led to less significant data. A second problem could
be that it was not checked whether the patients behind those epitopes received any kind
of treatment or had co-infections for which they received treatment. For HIV infections
Kourjian et al. found that certain antiviral drugs change the peptides produced by the
aminopeptidases, e.g. a reduced trimming of the N-terminus or enhanced cleavage of
acidic residues [24]. Ghany et al. proclaims that up to 8% of those with chronic HCV
infection may be HIV co-infected [16], and thus we may have compared epitopes generated
through antiviral drugs with those generated by the uninfluenced proteasome.
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Additional publications - only abstracts

I have contributed in the following papers with certain tools written in R (as for example
SeqFeatR) or with my expertise:

8.1 Differential selection in HIV-1 gp120 between subtype B and East
Asian variant B’

Dang S, Wang Y, Budeus B, Verheyen J, Yang R, Hoffmann D. Virologica Sinica (2014)

HIV-1 evolves strongly and undergoes geographic differentiation as it spreads in diverse host
populations around the world. For instance, distinct genomic backgrounds can be observed
between the pandemic subtype B, prevalent in Europe and North-America, and its offspring
clade B’ in East Asia. Here we ask whether this differentiation affects the selection pressure
experienced by the virus. To answer this question we evaluate selection pressure on the HIV-1
envelope protein gp120 at the level of individual codons using a simple and fast estimation
method based on the ratio k a /k s of amino acid changes to synonymous changes. To validate
the approach we compare results to those from a state-of-the-art mixed-effect method. The
agreement is acceptable, but the analysis also demonstrates some limitations of the simpler
approach. Further, we find similar distributions of codons under stabilizing and directional
selection pressure in gp120 for subtypes B and B’ with more directional selection pressure in
variable loops and more stabilizing selection in the constant regions. Focusing on codons with
increased k a /k s values in B’, we show that these codons are scattered over the whole of gp120,
with remarkable clusters of higher density in regions flanking the variable loops. We identify
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Adaption of HBV core to T cell selection pressure 8.3

a significant statistical association of glycosylation sites and codons with increased k a /k s
values.

Link: http://link.springer.com/article/10.1007%2Fs12250-014-3389-y

8.2 Adaptation of the hepatitis B virus core protein to CD8+ T cell
selection pressure

Helenie Kefalakes, Bettina Budeus, Andreas Walker, Christoph Jochum, Gudrun Hilgard,
Andreas Heinold, Falko Heinemann, Guido Gerken, Daniel Hoffmann, Joerg Timm Hep-
atology (2015)

Background & Aims: Chronic infections with the hepatitis B virus (HBV) are worldwide an
enormous public health problem. Effective suppression of viral replication can be achieved with
inhibitors of the viral polymerase. However, in most cases lifelong treatment is required to avoid
recurrence of viremia. Activation of HBV-specific CD8 T cells by therapeutic vaccination may
promote sustained control of viral replication by clearance of cccDNA from infected hepatocytes.
Importantly, little is known about the exact targets of the CD8 T cell response and the extent of
selection pressure on the virus. Here, it was hypothesized that CD8 T cell responses associated
with strong selection pressure on the virus can be identified by viral sequence analysis. Methods:
The HBV core gene was amplified and sequenced from 148 patients with chronic HBV infection
and the HLA class I genotype (A and B locus) was determined. Residues under selection pressure
in the presence of particular HLA class I alleles were identified by a statistical approach utilizing
the novel analysis package ‘SeqFeatR’. Candidate CD8 T cell epitopes were confirmed by analysis
of PBMCs from patients with chronic infection. Results: With a false discovery rate set to 0.2 a
total of 9 residues under selection pressure in the presence of 10 different HLA class I alleles were
identified. Additional immunological experiments confirmed that 7 of the residues were located
inside epitopes targeted by patients with chronic HBV infection carrying the relevant HLA class
I-allele. Consistent with viral escape some of the selected substitutions impaired recognition
by HBV-specific CD8 T cells. Conclusion: Viral sequence analysis allows identification of HLA
class I-restricted epitopes under reproducible selection pressure in HBV core. The possibility of
viral adaptation to CD8 T cell immune pressure needs attention in the context of therapeutic
vaccination.

Link: http://onlinelibrary.wiley.com/doi/10.1002/hep.27771/abstract
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AmpliconDuo for High-Throughput Sequencing 8.3

8.3 AmpliconDuo: A Split-Sample Filtering Protocol for High-Throughput
Amplicon Sequencing of Microbial Communities

Anja Lange, Steffen Jost, Dominik Heider, Christina Bock, Bettina Budeus, Elmar
Schilling, Axel Strittmatter, Jens Boenigk, Daniel Hoffmann PLoS One (2015)

High throughput sequencing (HTSeq) of small ribosomal subunit amplicons has the potential for
a comprehensive characterization of microbial community compositions, down to rare species.
However, the error-prone nature of the multi-step experimental process requires that the result-
ing raw sequences are subjected to quality control procedures. These procedures often involve
an abundance cutoff for rare sequences or clustering of sequences, both of which limit genetic
resolution. Here we propose a simple experimental protocol that retains the high genetic res-
olution granted by HTSeq methods while effectively removing many low abundance sequences
that are likely due to PCR and sequencing errors. According to this protocol, we split samples
and submit both halves to independent PCR and sequencing runs. The resulting sequence data
is graphically and quantitatively characterized by the discordance between the two experimen-
tal branches, allowing for a quick identification of problematic samples. Further, we discard
sequences that are not found in both branches ("‘AmpliconDuo filter"’). We show that the ma-
jority of sequences removed in this way, mostly low abundance but also some higher abundance
sequences, show features expected from random modifications of true sequences as introduced by
PCR and sequencing errors. On the other hand, the filter retains many low abundance sequences
observed in both branches and thus provides a more reliable census of the rare biosphere. We
find that the AmpliconDuo filter increases biological resolution as it increases apparent com-
munity similarity between biologically similar communities, while it does not affect apparent
community similarities between biologically dissimilar communities. The filter does not distort
overall apparent community compositions. Finally, we quantitatively explain the effect of the
AmpliconDuo filter by a simple mathematical model.

Link: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0141590
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9

Phylogenetic analysis on HCV infection chains

Chaos was the law of nature; Order was the
dream of man.

THE EDUCATION OF HENRY ADAMS

Abstract

Around 170 million people worldwide are infected with HCV. Depending on the
origin of the infection a patient might get compensations for health, moral and
economic distresses he has to suffer from. An example for such a compensation is
the Anti-D law in Germany for women and their offspring, who were infected by
contaminated blood. Since HCV is an RNA-virus and has a high mutation rate,
direct infections would be visible in the similarity of the patient’s viral sequences
compared to the potential source.
We studied HCV sequences from the Anti-D cohort and HCV sequences from the

Hepatitis C Virus (HCV) Database Project to find regions in the genome where
closer related sequences could be distinguished from the farther related ones. We
used R to build a bootstrap-like method, in which the distance of two random
sequences from the same genotype is noted. This estimation is repeated Θ times for
a given window length λ. If all pairs from the Θ repetitions were direct neighbors in
a phylogenetic tree and therefore had the smallest distance in the tree, λ would be
appropriate as a genome region to identify infection chains. We found two genome
regions to fit our requirements: A part around the hypervariable region 2 and a part
of the NS5-B sequence.
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Introduction 9.1

9.1 Introduction

50% to 80% of HCV infections are chronic and lead eventually to cirrhosis and hepato-
cellular carcinoma. It is not uncommon that an infected person searches for the source
of his or her infection because there may be compensations paid for health, moral and
economic distress [24]. Often these sources are intravenous injected drugs or blood trans-
fusions [4, 36, 48], before blood donor screening by second-generation antibody test was
introduced [3], but even now there are cases of unsafe injection practices, which can lead
to health-care–associated hepatitis C [5, 12, 53], either through transmission from health
care worker to patient or from patient to patient [8, 14]. Also four cases of homicide with
HCV are known [17, 20, 40, 42]. In around 10% of cases the infection chain is unknown
[13].

In large outbreaks such as the Anti-D cohort in east Germany [19, 52], where women were
immunized with infected blood, a lot of compensation is being paid to the victims through
an insurance for injury from immunization [2, 18, 22, 23] and every year new patients
come forward who claim to have been infected in such situations. Such discussions, if the
patient is right, are often enervating for both sides. The blood tragedy in Canada is even
thematized in a novel [41]. So it is vital not only for the victims, but also for the potential
source to estimate if an infection chain exists and if compensation should be paid by the
people responsible.

An analysis of the degree is needed to identify if the HC-virus from two subjects is related.
Since RNA viruses such as HIV and HCV evolve very fast (0.13 to 2.24 ∗ 10−1/genome
site/yr [26, 33]) and HCV employs an RNA-dependent RNA polymerase, which has no
proof-reading function to correct for errors in the copy, changes in the basic genetic
material are often unique for a subspecies. Viral populations accumulate enough such
changes in a short time period, that molecular phylogenetic inference methods can be
used to analyze the short-term history of these viruses.

Molecular phylogenetic analyses are widely used to examine the degree of nucleotide or
amino acid sequences. The first methods for such an analysis were distance based in
the 1960s. Later on maximum parsimony and maximum likelihood [21, 47] - both being
character based methods - were introduced. With increasing computational power, bigger
datasets and lager problems could be analyzed. For both kinds of analysis more complex
models and methods were found like Bayesian Inference [28, 43], which are included in
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Methods 9.2

a maximum likelihood method [50]. Often bootstrapping is used to get a qualitative
value of the correctness of a single branch. Bootstrapping is a statistical method (for
random sampling with replacement) which allows estimation of the sampling distribution
of almost any statistic. So it is possible to analyze if a set of samples from an infected
patient derived from a given source, if there is a precondition fulfilled: there have to
be enough phylogenetic signals for reconstructing their evolutionary history [30]. A low
signal can occur mainly through two situations. Analyzing a relatively slow evolving
region, which results in too few genetic differences or the saturation of substitutions in
a very fast evolving region. Neither will result in a reliable estimation of the degree of
relationship. The first situation is more common, and therefore hypervariable regions in
the sequences like E1/E2 from HCV are often used [24, 25], but there is also one case
where the core region of HCV was used as evidence in court [44]. For HIV there are more
cases of molecular phylogenetic analyses used in court to provide evidence that would
lead to compensations being paid [6, 37].

We examined HCV sequences from different (sub)genotypes and different countries to find
regions where we could distinguish closer related sequences from the rest of the sequences.
These regions could then be used to identify if two sequences are closely related, and the
result could be used as evidence in court.

9.2 Methods

9.2.1 Data

We took 45 known Anti-D HCV sequences and made a sequence set with all of the
sequences from the Hepatitis C Virus Database Project [32] (4th October 2012). This
sequence set was heavily purified for duplicated sequences and sequences which differ
massively from the rest of the set (sequence similarity below 60 percent), since we want
to identify regions in similar sequences. Amino acids in front of the starting codon were
removed. The remaining set contained 1883 sequences (see Table 9.1).

The sequences were aligned with the reference sequence H77 [7, 16, 31]. Most of the 1883
sequences were of subtype 1 (1479 sequences) and 2 (162 sequences). The rest of the
known subtypes 3 - 6 were relatively few (242) and their subtypes were merged.
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Methods 9.3

Table 9.1: Overview of the composition of the used HCV sequence set.
subtype 1? 1a 1b 1c 1e 1g 2? 2a 2b 2c 2d 2i
number 20 679 776 2 1 1 12 31 89 8 1 5

subtype 2j 2k 2l 2m 2q 2r 3 4 5 6 ?
number 5 4 1 3 2 1 66 64 9 78 25

9.2.2 Computational Analysis

To find the best region in the sequence for the estimation of related sequences, we created
a bootstrap like procedure. We generated 100 trees (M) of a set of 20 sequences (N), each
200 nucleotides long, and counted the number of trees in which two test sequences with
the same genotype were direct neighbors. We used the R-packages ape [39] and phangorn
[49] to generate the trees for this method.

Data: sequences in FASTA format
Result: list with bootstrap values for a range of sequence positions

1 initialization (N, M);
2 for region in sequence regions do
3 b = 0;
4 sequence 1 = select random sequence;
5 sequence 2 = select random sequence;
6 find subtype for this two sequences;
7 if subtypes are the same then
8 selected sequences = get N sequences of same subtype;
9 model = use model test on selected sequences;

10 while m <M+1 do
11 set of sequences = random number of sequences out of N;
12 create tree from model and set of sequences;
13 if sequence 1 and sequence 2 are neighbors then
14 increase b by 1;
15 end
16 end
17 write position and b to result file;
18 end
19 end

Algorithm 9.1: find_with_trees algorithm
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Results 9.4

Table 9.2: HCV positions with the longest stretch of 100% bootstraps.
Position start Position end

First position Alignment 1554 1760
H77 1575 1833

Second position Alignment 8945 9150
H77 8471 8850

9.3 Results

We got bootstrap-like values (which we call pseudo-bootstraps) from the ’find_with_-
trees’ algorithm for regions of each 200bp over the whole genome. These values indicate
where the tree-building function in the algorithm can easily differ two sequences of a
certain subtype (e.g. two sequences from the Anti-D-cohort out of a set of sequences
with subtype 1b). The analysis showed two larger regions of high discriminatory power,
one around the hypervariable region 2 and one in NS5B (see Figure 9.1). For a better
overview we combined every 5 single values together and displayed the mean as a line
plot.

In the list output, we could identify those regions more easily. We chose those regions
which had the longest stretch of pseudo-bootstraps above 95. Around the hypervariable
region 2 it is in the H77 reference genome 1575-1833 and for NS5B it is 8471-8850 (see
Table 9.2).

9.4 Discussion

We could identify two regions in the HCV genome with our bootstrap-like algorithm.
Those regions were: a part around the hypervariable region 2 (HVR2), and a part of the
non-structural protein 5B (NS5B). This reflects other paper in the field. In 2002 Salemi
and Vandamme used maximum likelihood methods to analyses whole HCV genomes and
also found the NS5B region to give the best results for their method followed by NS3 [45].
In 2007 Kato et al. analyzed blood samples from injecting drug users and found a highly
similar nucleotide sequence inside NS5B and they proclaimed that it could demonstrate
not only in-house or iatrogenic infection, but also be used for forensic applications such as
identifying accomplices [29]. Pagani et al. found in 2012 that subtyping of HCV genomes
is better done with NS5B sequencing instead of a commercial PCR/hybridization method
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Discussion 9.4

Figure 9.1: Bootstrap values for the whole HCV genome. Every point is the pseudo-bootstrap value from a
comparison of a region of 200 bp. As black line plot is the mean value of every 5 single points. The HCV
genome is noted above.

based on the conserved 5’-untranslated region [38]. But up until now there is no consensus
about which region should be used. Other studies tried NS3, core, and envelope proteins
[11, 15, 27, 35]. DeCarvalho-Mello et al. found in 2010 that sequences from different
origins showed similar sequence patterns inside NS5B and NS3 [9].

Most of the previous studies mentioned analyzed sequences from certain outbreaks or med-
ical sets, where a relationship between the sequences was known or could be guessed. Our
dataset consists only of sequences from the Hepatitis C Virus (HCV) Database Project [32]

131



9.
P

hy
lo

ge
ne

ti
c

an
al

ys
is

on
H

C
V

in
fe

ct
io

n
ch

ai
ns

IV
9.

P
hy

lo
ge

ne
ti

c
an

al
ys

is
on

H
C

V
in

fe
ct

io
n

ch
ai

ns
9.

P
hy

lo
ge

ne
ti

c
an

al
ys

is
on

H
C

V
in

fe
ct

io
n

ch
ai

ns
9.

P
hy

lo
ge

ne
ti

c
an

al
ys

is
on

H
C

V
in

fe
ct

io
n

ch
ai

ns
IV

9.
P

hy
lo

ge
ne

ti
c

an
al

ys
is

on
H

C
V

in
fe

ct
io

n
ch

ai
ns

9.
P

hy
lo

ge
ne

ti
c

an
al

ys
is

on
H

C
V

in
fe

ct
io

n
ch

ai
ns

IV
9.

P
hy

lo
ge

ne
ti

c
an

al
ys

is
on

H
C

V
in

fe
ct

io
n

ch
ai

ns
9.

P
hy

lo
ge

ne
ti

c
an

al
ys

is
on

H
C

V
in

fe
ct

io
n

ch
ai

ns
9.

P
hy

lo
ge

ne
ti

c
an

al
ys

is
on

H
C

V
in

fe
ct

io
n

ch
ai

ns
IV

9.
P

hy
lo

ge
ne

ti
c

an
al

ys
is

on
H

C
V

in
fe

ct
io

n
ch

ai
ns

Discussion 9.4

and the Anti-D sequence set up until October 2012, which is of course specific for Germany.
For this sequence set sequence based relationships are easy to recognize, since Anti-D se-
quences clearly separate in phylogenetic analyses with other subtype 1b sequences [51].
An early analysis in 1998 of sequences from the Anti-D cohort by McAllister had some
difficulties on PCR level and found that the HVR region of Anti-D sequence are very
diverse [34]. Casino et al. showed one year later that no phylogenetic relationship exists
between those sequences inside the HVR [10].

Since we found HVR2, not NS3, to be the second region of interest a combination of these
two region should be made to investigate the relationship of HCV sequences. This com-
bination would increase the chance to better identify the infection chain, as DeCarvalho-
Mello et al. suggested, too [9]. NS5B sequence similarity gives a quick overview over the
relationship of the sequences, whereas the HVR enables to take a deeper look inside, be-
cause this region has a stronger selection against the immune system [1, 34, 46], but also
a high risk of errors through PCR. NS5B alone is not diverse enough, HVR too much,
but together they should give a clear picture. The found results should be analyzed in
vitro to confirm that NS5B and HVR are suitable for use in forensics.
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Mutations rtP177G and rtF249A in the
reverse transcriptase domain of hepatitis B

virus polymerase confer resistance to tenofovir

Time flies like an arrow; fruit flies like a banana

GILBERT BURCK

Abstract

Long term antiviral therapy with nucleoside/nucleotide analogs have been rou-
tinely used to treat chronic hepatitis B virus (HBV) infection but may lead to the
emergence of drug-resistant viral mutants. However, the HBV resistance mutations
for tenofovir (TDF) remain controversial. It is speculated that the genetic bar-
rier for TDF resistance may be high for HBV. We asked whether selected amino
acid substitutions in HBV polymerase may reduce susceptibility to TDF. A series
of amino acids in HBV polymerase were selected based on bioinformatics analysis
for mutagenesis. The replication competence and susceptibility to TDF of the mu-
tated HBV clones were determined both in vitro and in vivo. nineteen mutations in
HBV polymerase were included and impaired the replication competence of HBV
genome in different degrees. The mutations at rtL77F (sS69C), rtF88L (sF80Y),
and rtP177G (sR169G) also significantly affected HBsAg expression. The HBV
mutants with rtP177G and rtF249A were found to have reduced susceptibility to
TDF in vitro with a resistance index of 2.53 and 12.16, respectively. The testing in
in vivo model based on the hydrodynamic injection revealed the antiviral effect of
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TDF against wild type and mutated HBV genomes and confirmed the reduced the
susceptibility of mutant HBV to TDF.

This chapter is based on the following publication:

Bo Qin, Bettina Budeus, Liang Cao, Chunchen Wua, Yun Wang, Xiaoyong Zhang, Simon
Rayner, Daniel Hoffmann, Mengji Lu, Xinwen Chen (2013). The amino acid substitu-
tions rtP177G and rtF249A in the reverse transcriptase domain of hepatitis B virus
polymerase reduce the susceptibility to tenofovir. Antiviral Research 97.

http://www.sciencedirect.com/science/article/pii/S0166354212002872
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The amino acid substitutions rtP177G and rtF249A in the reverse
transcriptase domain of hepatitis B virus polymerase reduce the
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a b s t r a c t

Long term antiviral therapy with nucleoside/nucleotide analogs have been routinely used to treat chronic
hepatitis B virus (HBV) infection but may lead to the emergence of drug-resistant viral mutants. However,
the HBV resistance mutations for tenofovir (TDF) remain controversial. It is speculated that the genetic
barrier for TDF resistance may be high for HBV. We asked whether selected amino acid substitutions
in HBV polymerase may reduce susceptibility to TDF. A series of amino acids in HBV polymerase were
selected based on bioinformatics analysis for mutagenesis. The replication competence and susceptibility
to TDF of the mutated HBV clones were determined both in vitro and in vivo. nineteen mutations in HBV
polymerase were included and impaired the replication competence of HBV genome in different degrees.
The mutations at rtL77F (sS69C), rtF88L (sF80Y), and rtP177G (sR169G) also significantly affected HBsAg
expression. The HBV mutants with rtP177G and rtF249A were found to have reduced susceptibility to
TDF in vitro with a resistance index of 2.53 and 12.16, respectively. The testing in in vivo model based
on the hydrodynamic injection revealed the antiviral effect of TDF against wild type and mutated HBV
genomes and confirmed the reduced the susceptibility of mutant HBV to TDF.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Patients with chronic hepatitis B (CHB) have been successfully
treated with interferon and nucleoside/nucleotide analogs includ-
ing lamivudine (LMV), adefovir dipivoxil (ADV), entecavir (ETV),
telbivudine (LdT), and tenofovir (TDF) (Zoulim and Locarnini,
2009). The nucleoside/nucleotide analogs inhibit reverse transcrip-
tion of the hepatitis B virus (HBV) polymerase, but do not directly
interfere with the formation of covalently closed circular DNA
(cccDNA). Therefore, long term antiviral therapy is necessary,
which usually induces the emergence and selection of drug-resis-
tant mutations in the viral polymerase (Zoulim and Locarnini,
2009). Since the HBV polymerase gene is overlapped by the surface
protein gene, the mutations in HBV polymerase may also result in
amino acid (aa) substitutions in HBsAg that potentially result in
immune escape or modification of viral fitness (Torresi, 2002;
Villet et al., 2009).

Several HBV polymerase gene mutations have been reported to
account for drug resistance. In particular, mutations at rtM204I or
rtM204V in the YMDD motif within the reverse transcript (RT)
domain of the HBV polymerase lead to LMV and LdT resistance
(Brunelle et al., 2005). These mutations are usually accompanied
by compensatory mutations of rtL180M and/or rtV173L which
restore HBV replication capacity (Pallier et al., 2006). In addition
to the substitutions at position rt204, a combination of mutations
in the B, C, or D domain of HBV-RT could result in resistance to ETV
(Zoulim and Locarnini, 2009).

TDF is widely used to treat HBV patients in the US and Europe. To
date, only a few aa substitutions like rtA194T, rtV214A, and
rtQ215S associated with TDF resistance have been reported and still
need to be further confirmed (Liu et al., 2009; Zoulim and Locarnini,
2009). It has been shown rtA181V+rtN236T double mutants are
resistant to TDF in vitro; however, clinical data suggested patients
with rtA181 or rtN236T remain susceptible to TDF (Qi et al.,
2007). On the other hand, TDF, as a first-line antiretroviral drug
for human immunodeficiency virus (HIV) since 2001 (Soler-Palacin
et al., 2011), does induce resistant mutations in HIV RT with the
K65R mutation of HIV RT reducing TDF susceptibility about 2-fold

0166-3542/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.antiviral.2012.12.007

⇑ Corresponding authors. Address: Wuhan Institute of Virology, Chinese Academy
of Sciences, Wuhan 430071, China. Tel./fax: +86 027 87199106.

E-mail addresses: mengji.lu@uni-due.de (M. Lu), chenxw@wh.iov.cn (X. Chen).
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(Whitcomb et al., 2003). Substitution K70E within HIV-RT was se-
lected in HIV patients with virological failure under TDF therapy
(Delaugerre et al., 2008). Co-mutations M41L, L210W, and T215Y
reduce TDF susceptibility about 4-fold. However, one or two of
them retain partial TDF susceptibility (Miller et al., 2004). The crys-
tal structures of two related complexes of HIV-1 RT with template
primer and TDF were determined (Tuske et al., 2004). The availabil-
ity of HIV RT structural information makes it possible to determine
the relative position of the aa residues with respect to the active
center of the enzyme as well as the distance to the substrate if
TDF is used for the modeling.

In the present study, we used another strategy to assess the po-
tential of HBV to develop TDF resistance. Given the homology be-
tween HIV RT and HBV polymerases (Bartholomeusz et al., 2004),
we aligned their primary aa sequences and identified correspond-
ing positions of aa residues in HBV polymerase and HIV RT. Based
on this alignment, the distances of a given aa residue in HBV poly-
merase to the TDF substrate could be estimated by comparison
with HIV RT. Therefore we selected a number of aa residues
according to their distances to TDF, predicted on the basis of a bio-
informatics approach. We assumed that an aa substitution at a gi-
ven position, especially with a change to an aa residue with a large
or complex side chain, may influence the binding of the natural
substrates and nucleoside/nucleotide analogs and leads to changed
replication competence and nucleoside/nucleotide analogs resis-
tance of mutant HBV genomes in some cases. To test this hypoth-
esis, a series of replication-competent HBV constructs harboring
different mutations were then constructed according the predic-
tions. The replication capacity and resistance phenotype were ana-
lyzed both in vitro and in vivo. The results demonstrated that two
mutations, rtP177G and rtF249A, significantly reduced HBV sus-
ceptibility to TDF and could be potentially used as a reference for
TDF-resistance. Interestingly, the positions rtP177 and rtF249
may be not in direct contact with TDF molecule but make contacts
to the template and primer oligonucleotides, respectively. Our ap-
proach could generally contribute to the understanding of HBV
drug resistance.

2. Materials and methods

2.1. Plasmid constructs

For construction of HBV mutant plasmids with aa substitutions,
the plasmid pHBV1.3 containing a replication-competent wild-
type (WT) HBV 1.3-fold over-length genotype A genome (GenBank
accession No. U95551, ayw) was used as a backbone (Gan et al.,
1987; Lei et al., 2006). Mutations were introduced into the HBV
polymerase gene by PCR-based mutagenesis using the primer pairs
Primer-F, Primer-R and primers with the specific mutations listed
in Table S1. Plasmids pHBV1.3-rtXs (X stands for the mutation,
for example ‘‘P177G’’) were produced and the aa substitutions
are presented in Fig. 1B. For in vivo assay, pAAV-HBV-1.3 and
pAAV-HBV1.3-rtXs were constructed based on plasmid pHBV1.3
and pHBV1.3-rtXs respectively. The plasmids pHBV1.3/pHBV1.3-
rtXs and pAAV were digested by Sac I, then end-filled with T4
and Klenow DNA polymerase, respectively. The recovered products
were digested by HindIII and ligated by T4 ligase to generate
pAAV-HBV-1.3 or pAAV-HBV1.3-rtXs.

2.2. Cells and mice

Hepatoma cell line Huh7 cells were cultured in Dulbecco’s mod-
ified Eagle medium (DMEM; Invitrogen) supplemented with 10%
fetal bovine serum (FBS; Gibco), 2 mM/L of glutamine, 100 IU/mL
of penicillin and 100 IU/mL of streptomycin at 37 �C in a 5% CO2

atmosphere. Female BALB/c mice (6–8 weeks of age; H-2d) and fe-
male C57BL/6 (6–8 weeks of age; H-2b) were held under specific
pathogen-free conditions in the Central Animal Laboratory of Wu-
han Institute of Virology, Chinese Academy of Sciences and were
handled following the guidelines of the animal ethical standards
(Meng et al., 2008).

2.3. Nucleoside analogs

Lamivudine (LMV) (Glaxo Smith Kline), adefovir dipivoxil (ADV)
(Gilead Sciences), entecavir (ETV) (Bristol-Myers Squibb Co), tel-
bivudine (LdT) (Novartis), and tenofovir (TDF) (Gilead Sciences)
were dissolved in appropriate solution according to the manufac-
tures’ instructions and used at the indicated concentrations.

2.4. Enzyme-linked immunosorbent assay (ELISA)

HBsAg and HBeAg in mouse sera and culture supernatants
of Huh7 cells transfected with the plasmids pHBV1.3 and
pHBV1.3-rtXs were detected by using a commercial routine diag-
nostic assay for HBsAg and HBeAg (Kehua, Shanghai) according to
the manufacturer’s instructions.

2.5. Western blot analysis

Huh7 cells transfected with indicated plasmids were harvested
at 72 hour post transfection (hpt). The protein concentrations were
determined with a Bio-Rad protein assay kit (Bio-Rad). Total cell
lysates (50 lg) were submitted to Western-blot assay by probing
with anti-HBcAg antibody (Dako) and anti-b-actin (Beyotime),
with appropriate secondary antibody. Densitometry assays were
performed simultaneously.

2.6. Immunohistochemical (IHC) staining

Liver tissue was collected from mice sacrificed at the indicated
time points. Intrahepatic HBcAg was detected by IHC staining of
formalin-fixed paraffin-embedded liver tissue sections using rabbit
anti-HBc antibodies (DAKO) with appropriate HRP-conjugated
secondary antibody, and visualized by the Envision System (Huang
et al., 2006). The liver sections were also stained with hematoxylin
and eosin.

2.7. Detection of encapsidated HBV DNA

Huh7 cells (1 � 106) were transfected with 2 lg of the plasmids
pHBV1.3 and pHBV1.3-rtXs by using lipofectamine 2000 (Invitro-
gen) and cultured in the presence of the different nucleoside/
nucleotide analogs at the indicated concentrations. To control the
transfection efficiency, a SEAP expression vector was cotransfected
to monitor the transfection efficiency. Encapsidated HBV replica-
tive intermediates were purified and subjected to Southern blot
analysis as described previously (Meng et al., 2008; Qiu et al.,
2011).

HBV DNA was quantified by real-time PCR using the primers
(RC-sense and RC-antisense, Table S1) specially designed for the
detection of HBV relaxed circular (rc) genomes in Sybr green reac-
tion mix (Roche). Plasmid pAAV-HBV1.3 was used as a standard.
All samples were analyzed in triplicate.

2.8. HBV challenge by hydrodynamic injection (HI) in mice

C57BL/6 mice were challenged by hydrodynamic injection of
replication-competent pAAV-HBV1.3 and pAAV-HBV-rtXs respec-
tively, as described previously (Huang et al., 2006). Ten micro-
grams of each plasmid in a volume of 0.9% NaCl solution
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Fig. 1. (A) Alignment of amino acid sequences of HBV-RT genotypes A–H and HIV-RT. Coloring indicates sequence conservation across all nine sequences (see Section 2). For
clarity, only the HBV-RT wild type sequence (V01460.1) is shown together with the HIV-RT sequence. The two sites P177 and F249 where TDF resistance mutations have been
found in HBV-RT are marked by arrowheads, and asterisks mark residues with distances of up to 4 Å from any heavy atom of TDF in the X-ray structure of HIV-RT or the
corresponding homology model of HBV-RT. (B) Structure of HBV reverse transcriptase and location of substitution sites. HBV P protein is divided into four regions, terminal
protein, spacer, reverse transcriptase and RNaseH. Reverse transcriptase is subdivided into seven regions, G, F, A, B, C, D, and E. All the amino acid substitutions examined in
this present study are located in A–E. (C) Detection of HBV replication intermediates by Southern blot. HBV replication intermediates relaxed circular (RC), double stranded
linear (DL) and single stranded (SS) HBV DNAs are indicated (upper panel). The HBcAg was detected using Western blot with mouse polyclonal antibody (Dako, Carpinteria,
CA). Beta-actin was used as a loading control (Middle panel). The intensity of RC and SS form of HBV replication intermediates were analyzed and compared with the wild
type (set as 100, the numbers below the Southern blot). Intracellular encapsidated HBV DNA levels of each construct were compared with that of wild type genome (set as
100%, lower panel). (D) The expression of HBsAg and HBeAg were measured by commercial ELISAs (Kehua, Shanghai). Each value is the mean of three independent
experiments. The error bars represent the standard deviation. Statistically significant differences between the groups are displayed as ⁄(p < 0.05) or ⁄⁄(p < 0.01).
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equivalent to 0.08 mL/g of the mouse body weight were injected
into the tail veins of mice within 8 s. After 1 day post hydrody-
namic injection (dphi), every mouse of the treatment group was
treated with 500 lg TDF daily through intraperitoneal injection.

2.9. Multiple alignment of HIV RT and HBV polymerase sequences

Sequences were taken from GenBank, and translated from
nucleotide to amino acid sequences using UGENE. For pairwise se-
quence alignments, the EMBOSS program ‘‘water’’ was used. Multi-
ple sequence alignments were performed with T-COFFEE (Taly
et al., 2011) and MUSCLE (Edgar, 2004). In all alignment proce-
dures, default settings were employed. A homology model of
HBV-RT, the reverse transcriptase domain of HBV polymerase,
based on the complex of HIV-RT with TDF (PDB entry 1T03:B),
and the mentioned multiple sequence alignment was prepared
with modeller (Eswar et al., 2008) and visualized with pymol
(Bramucci et al., 2012). Figures showing alignment and homology
model, respectively, were consistently color-coded according to
the degree of sequence conservation in each column of the align-
ment from yellow (=100% identity, i.e. complete conservation in
column) to blue (=13% identity, i.e. all residues in column differ-
ent). This sequence conservation was computed with R-package
bio3d (Grant et al., 2007).

2.10. Statistical analysis

The statistical analysis was carried out using GraphPad
(GraphPad Software). Differences in multiple comparisons were
determined for statistical significance using the Student’s t-test.
p < 0.05 was considered as statistically significant. Results were
presented as Means ± S.D.

3. Results

3.1. The estimation of the distances of the aa residues of HBV
polymerase to TDF bound to the active center

So far, TDF-resistance-associated aa substitutions of HBV-RT
remain elusive and controversial. Therefore, we attempted to
answer the question whether specific aa substitutions may lead
to a reduced susceptibility of HBV to TDF.

Sequences of HBV-RT of genotypes A through H and HIV-RT
were submitted to pairwise and multiple sequence alignments
(Fig. 1A). The alignment of the RT domains of both enzymes as
shown in Fig. 1A was essentially the same for all alignment algo-
rithms used. In particular the catalytic YMDD motif and several
positions known to interact with TDF in HIV-RT were conserved
between both enzymes. Based on the sequence alignment of HBV
polymerase (GenBank accession No. CAA48354.1) and HIV-RT
(HIV-1 polymerase protein gene, GenBank accession No.
HQ718313), 19 aa residues in the HBV polymerase were selected
to test their potential role in the development of TDF-resistance.
These aa residues are distributed in the RT domains A, B, C, D,
and E of the HBV polymerase (Fig. 1B). However, when matched
to their counterparts in the HIV RT, they may have different dis-
tances to the bound substrate TDF according to the structural
information of HIV RT (Fig. S1).

For the introduction of aa substitutions, three criteria were con-
sidered: (1) the side chain of the mutated aa residues should be
significantly different to the wild type if possible; (2) the intro-
duced aa substitution in HBV polymerase should have no or little
influence in the coding sequence of HBsAg; (3) The number of
nucleotide need to be mutated should be as less as possible. A ser-
ies of point mutations on HBV replication-competent pHBV1.3

were designed and constructed using fusion PCR (Fig. 1B). Among
these substitutions, rtL77F, rtD83E, rtF88L, rtP177G, rtM204I and
rtM204I resulted in the aa substitutions sS69C, sM75K, sF80Y,
sR169G, sI195M and sW196S in HBsAg, respectively.

3.2. Replication of pHBV1.3-rtXs in Huh7 cells

To determine the replication competence of HBV genomes with
aa substitutions in HBV-RT, pHBV1.3-rtXs were transfected into
Huh7 cells and the intracellular encapsidated viral genomes were
extracted and subjected to Southern-blot analysis (Fig. 1C, upper
panel).

For pHBV1.3-rtL77F, -rtK239E, -rtG244Y, -rtL247F, and -rtG251Y,
no HBV replication intermediates were detected in Southern blot
(Fig. 1C), indicating that the substitution mutants resulted in a
complete loss of replication competence. These aa residues may be
functionally essential for both RT and DNA polymerase activities of
HBV polymerase or the aa substitutions prevented binding of the
substrates, considering the large chains of the aa substitutions. For
pHBV1.3-rtF88L, rtP177G, rtA194T, -rtM204I and -rtM204V, sin-
gle-stranded (SS) DNA bands were synthesized, whereas the relaxed
circular (RC) DNA bands were relatively weak or invisible. Compared
with pHBV1.3, the levels of intracellular encapsidated HBV DNA
were about 11.9%, 66.3%, 10.4%, 51.2%, and 50.8% for pHBV-rtF88L,
-rtP177G, -rtA194T, -rtM204I, and -rtM204V, respectively, indicat-
ing a reduced replication competence. In contrast, pHBV-rtF249A
and -rtM250I only produced RC DNA bands and their levels were
12.9% and 25.8% as compared to that of pHBV1.3, respectively
(Fig. 1C, lower panel), which suggest that these two aa substitutions
may impair the RT activity of HBV polymerase. The remaining 7 aa
substitutions, rtL82V, rtD83E, rtN238R, rtT240Y, rtK241R, rtN248H,
and rtQ267K, had no obvious effect on HBV replication capacity.

In all cases, the HBcAg expression levels were comparable
(Fig. 1C, middle panel), indicating that HBcAg expression is not
associated with HBV replication in vitro. Thus, the failure of the
detection of HBV replication intermediates was not related to
HBcAg expression.

The levels of HBsAg and HBeAg in culture supernatants of trans-
fected Huh7 cells were measured by ELISA. HBsAg was absent from
the supernatant of pHBV1.3-rtL77F transfected cells, while pHBV-
rtF88L and pHBV-rtP177G produced significantly lower amounts
of HBsAg compared to pHBV1.3 (Fig. 1D). The aa substitutions
rtL77F, rtF88L, and rtP177G in HBV polymerase lead to the corre-
sponding aa substitutions sS69C, sF80Y and sR169G in HBsAg
which significantly affected HBsAg expression and/or secretion.
The remaining mutated HBV genomes expressed similar levels of
HBsAg compared with the wild type, although some of them exhib-
ited changes in the HBsAg sequence. Nevertheless, in all cases,
HBeAg expression levels were comparable, indicating that the plas-
mid transfection efficiency was the same.

3.3. TDF-resistance assay in vitro

To analyze the influence of the aa substitutions in HBV poly-
merase described above on the susceptibility to nucleoside/nucle-
otide analogs, we first determined the concentration range of
nucleoside/nucleotide analogs that inhibited the replication of wild
type HBV in Huh7. Huh7 cells were transfected with pHBV1.3 and
treated with different concentration of the nucleoside/nucleotide
analogs 6 h later. Encapsidated HBV DNA was then extracted at
96 h and detected by Southern blot. All tested drugs LMV, ADV,
LdT, ETV, and TDF inhibited HBV DNA replication and the half max-
imal effective concentration (EC50) of these drugs were 1.15, 1.38,
11.56, 0.79, and 0.19 lM, respectively (Fig. S2A–E). As reported
previously, all nucleoside/nucleotide analogs did not affect HBcAg,
HBsAg and HBeAg expression (Figs. S2 and S3).
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Subsequently, the sensitivity to TDF of the replication compe-
tent HBV genomes with aa substitutions was tested in Huh7 cells.
Southern blot and subsequent densitometry analysis demonstrated
that pHBV-rtP177G and -rtF249A displayed reduced sensitivity to
TDF, as manifested by sustained viral replication upon TDF treat-
ment (Fig. 2A). This phenotype is in contrast to pHBV1.3, for which
viral DNA production decreased sharply as TDF concentration in-
creased. Other mutants, including pHBV-rtL82V, -rtD83E, -rtN238R,
-rtT240Y, -rtK241R, -rtN248H, -rtM250I, and -rtQ267K exhibited a
similar TDF sensitivity to pHBV1.3 (Fig. S4). HBV RC DNA was quan-
tified by real-time PCR and the results showed that the antiviral ef-
fect of TDF to pHBV-rtP177G and -rtF249A were significantly
compromised compared to pHBV1.3 (Fig. 2B), as manifested by
the observation that EC50 of TDF to pHBV-rtP177G and -rtF249A
were 0.48 and 2.31 lM, respectively, which were significantly high-
er than that for pHBV1.3 (0.19 lM) (Fig. 2C). The resistance indexes
of the HBV genomes with rtP177G and rtF249A substitutions to TDF
were 2.53 and 12.16, respectively.

In addition, pHBV-rtP177G and -rtF249A remained sensitive to
LMV, ADV, ETV, and LdT (Fig. 2D).

3.4. rtP177G and -rtF249A compromise antivirus effect of TDF in mice

The aa substitutions rtP177G and -rtF249A in HBV polymerase
conferred a certain degree of resistance to TDF in vitro. However,
it is not clear whether such HBV mutants are able to replicate
in vivo and show a different susceptibility to TDF compared with
the wild type HBV genome. Then on, we explored the mouse model
based on HI to characterize HBV replication upon TDF treatment.
C57BL/6 mice were respectively challenged with pAAV-rtP177G, -
rtF249A, -rtA194T, or -HBV1.3 by HI and treated with 500 lg TDF
or PBS daily. HBV DNA in the serum and liver from mice was mea-
sured by real-time PCR targeted to RC at the indicated time points.

HBV DNA and HBsAg became detectable in mouse sera after HI
with pAAV-HBV1.3 (Fig. 3), comparable with the previous
published data (Yin et al., 2011). Serum HBV DNA reached the peak

Fig. 2. TDF-resistance assay in vitro. Huh7 cells were transfected with pHBV1.3, -rtP177G, and -rtF249A, respectively, and then treated with the different concentrations of
TDF. Encapsidated HBV DNAs were purified from intracellular core particles for Southern-blot and real-time PCR analysis. (A) Southern blot for detection of HBV replication
intermediates: wt (left), rtP177G (middle), rtF249A (right). (B) Analysis of HBV RC DNA by specific real-time PCR. The relative replication competence pHBV1.3, -rtP177G, and
-rtF249A was given as the percentage of the RC DNA compared with the untreated control. The EC50s are indicated. (C) Real-time PCR to analyze the susceptibility of
pHBV1.3, rtP177G, and rtF249A to LMV, ADV, ETV and LdT. Each value is the mean of at least 3 independent experiments. The error bars represent the standard deviation.
Statistically significant differences between the groups are displayed as ⁄(p < 0.05) or ⁄⁄(p < 0.01).
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level at 7 dphi, decreased gradually thereafter, but remained posi-
tive for the complete observation period of 5 weeks (Fig. 3A). Daily
treatment with TDF led to a significant reduction of the HBV DNA
levels from 7 dphi on and suppressed the HBV DNA level below
50% of the control on 13 dphi (Fig. 3B). The serum HBsAg titers in
mice were determined by ELISA. Results showed that HBsAg in
all the mice injected with pAAV-HBV1.3 was detected at 3 dphi,
and declined gradually from 7 to 36 dphi (Fig. 3D). HBsAg levels
were comparable in mice irrespective of TDF treatment. We further
detected intrahepatic HBcAg by IHC staining with specific antibody
(Fig. S5). HBcAg was strongly expressed in hepatic cells in pAAV-
HBV-1.3 injected mice for 3 weeks and persisted weakly thereafter,
at least up to 32 dphi. TDF treatment significantly decreased the
hepatic HBcAg expression compared with the corresponding un-
treated mice, indicating TDF inhibits the formation of HBV nucleo-
capsids. Taken together, the antiviral activity of TDF could be
demonstrated in the mouse model based on HI.

Similarly, serum HBV DNA reached the highest level at 7 dphi in
pAAV-HBV1.3-rtP177G injected mice, in contrast to rtF249A that
displayed a delayed viral DNA maximum level at 11 dphi
(Fig. 3A). The result of Southern blot with the liver tissue also con-
firmed pAAV-HBV1.3 possessed a higher replication potential than
pAAV-rtP177G and -rtF249A in vivo (Fig. 3C), in accordance with
in vitro results (Fig. 1C). Despite the reduced replication compe-
tence of HBV genomes with the aa substitution in HBV polymerase,

high serum HBV DNA levels could be established and maintained
in mice after HI with both mutant HBV genomes for the experi-
mental period (Fig. 3A). In pAAV-rtP177G and -rtF249A injected
mice, TDF suppression of HBV DNA replication appeared to be less
effective. HBV DNA levels in TDF treated mice were lower than that
in control mice however and remained over the 50% marker for a
prolonged time over 20 d (Fig. 3A), consistent with the in vitro data
obtained in the previous experiments.

In mice receiving injections with pAAV-HBV1.3-rtF249A, HBsAg
levels were comparable in mice irrespective of TDF treatment,
comparable with previous findings. In contrast, HBsAg from
pAAV-rtP177G injected mice, either TDF treated or not, was always
undetectable (Fig. 3D), and was consistent with the in vitro assay
(Fig. 1D). HBcAg expression was not detected in liver sections of
mice that received HI with pAAVHBV1.3-rtA194T, -rtP177G, and -
rtF249A (data not shown), most likely due to the decreased
replication competence of mutated HBV genomes in mice.

3.5. The aa substitution rtP177G and rtF249A in the structure model of
HBV RT

A homology model of the HBV-RT structure was built based on
the multiple sequence alignment of HIV-RT with eight HBV-RT
sequences representing HBV genotypes A through H. Fig. 4 shows
that the sequence in the putative TDF-binding region of HBV-RT

Fig. 3. TDF-resistance assay in vivo. C57BL/6 (H-2b) mice were challenged with pAAV-HBV1.3, -rtP177G, and -rtF249A by tail vein HI. After 1 d, mice were treated with 500 lg
TDF per day. At the indicated time points, HBV DNA and proteins in the sera and liver were measured by qRT-PCR targeted to HBV RC DNA, Southern blot, ELISA, and IHC,
respectively. (A) The analysis of HBV DNA in mouse sera of HBV1.3, -rtP177G, and -rtF249A treated with TDF or vesicle by real time RT-PCR. (B) The antiviral effect of TDF
in vivo was shown as the inhibition rate of serum HBV DNA in TDF-treated mice compared with that of untreated control mice. The average HBV DNA copy numbers of the
untreated control group at each indicated time points were set as 100%. (C) To detect the HBV DNA in the liver, mice from each group were killed at the indicated time points.
Total DNA was isolated from the liver tissue and subjected to Southern blot. (D) Kinetics of HBsAg expression. The HBsAg level was determined by a commercial ELSA and
given as optical density value (OD 450). S/N means samples/Negative.
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is well-conserved and similar to that of HIV-RT. In the model, the
two positions rtP177 and rtF249 are close to the bound TDF mole-
cule though not in direct contact with it (Fig. 4A). However, rtP177
and rtF249 apparently do make contacts to the template and pri-
mer oligonucleotides, respectively (Fig. 4B).

4. Discussion

Viral mutants with RT mutations resistant to nucleoside/nucle-
otide analogs may be selected during long-term antiviral therapy.
However, to date, TDF-associated resistance mutations have sel-
dom been found in patients (Zoulim and Locarnini, 2009). For the
first time, we combined the bioinformatics analysis, phenotypic as-
say for drug resistance, and in vivo analysis based on HI. Such an
approach may be generally useful to understand the structure–
function relationship of aa substitutions involved in drug resis-
tance and their biological relevance. Interestingly, the mutated
HBV genomes with aa substitutions rtP177G and rtF249A in HBV
RT showed reduced replication capacity but enhanced resistance
to TDF in both in vitro and in vivo analysis. The alignment of HBV
RT with HIV RT and bioinformatics analysis suggested that
rtP177 and rtF249 may not in directly interact with TDF molecule
but with the template and primer oligonucleotides. Thus, the accu-
rate molecular mechanisms leading to TDF resistance by these aa
substitutions remain to be determined. The important implication
of our results is that the aa substitutions in HBV RT may reduce the
susceptibility to TDF. It needs to be investigated whether such or
similar aa substitutions may play a role in long term TDF
treatment.

HBV polymerase is a multi-functional protein with the activity
of RNA- and DNA-dependent DNA polymerization. The conserved
RT domain catalyzes reverse transcription using the TP domain
as a protein primer to initiate the process, and is also involved in
the packaging of pgRNA into viral nucleocapsids (Beck and Nassal,
2007; Lee, 1997). Here, the aa substitutions rtL77F, rtK239E,
rtG244Y, rtL247F, and rtG251Y may strongly disturb the polymer-
ase function and led to the complete loss of replication capability
of HBV mutants. The YMDD catalytic motif is shared by both
HBV RT and HIV RT (Zoulim, 2004) and the substitutions rtM204V
and rtM204I result in HBV resistance to LMV and in the reduction
of HBV replication competence, due to the lower affinities of the
YMDD-mutant polymerases for the natural dNTP substrates
(Gaillard et al., 2002). Southern blot analysis indicated that beside
rtM204V and rtM204I, HBV with rtF88L, rtP177G, and rtA194T
substitutions also produced significantly less RC forms of HBV
replication intermediates. The effect of the substitution rtA194T

on HBV replication competence has been documented in an earlier
publication, whereas the rtF88L and rtP177G substitutions have
not been found in patients so far. Notably, substitutions rtF249A
and rtM250I lead to no or less SS DNA, but still produced RC
DNA, likely due to a change of the relative activities of the RT
and DNA-dependent DNA polymerase. Thus, the different aa sub-
stitutions affected HBV replication through very different molecu-
lar mechanisms. Further experiments are needed to reveal the
mechanisms associated with the rtF88L, rtP177G, and rtA194T sub-
stitutions. The aa residues that are not located at the catalytic
pocket or substitutions at sites which do not impact HBV polymer-
ase conformation may maintain similar replication capacity as the
wild type; these aa substitutions comprise rtL82V, rtD83E,
rtN238R, rtT240Y, rtK241R, rtN248H, and rtQ267K.

It has been reported that the rtA194T mutation is associated
with TDF resistance found in two HBV-HIV-coinfected patients
(Sheldon et al., 2005), and this was confirmed in cell lines (Ami-
ni-Bavil-Olyaee et al., 2009), although a subsequent report failed
to confirm this finding (Delaney et al., 2006). Here, we also failed
to detect sufficient replication capacity of HBV in the presence of
the rtA194T substitution both in vitro and vivo, so the susceptibility
to TDF cannot be evaluated. Drug-resistance mutations often result
in reduction of replication capacity and adaptive mutations occur
in an attempt to restore the replication capacity, like the compen-
satory mutations rtL80I and/or rtV173L and/or rtL180M for
rtM204V/I. This could be the reason for the low replication capac-
ity of the HBV genome with mutation rtA194T in our study. Consis-
tently, the aa substitutions rtP177G and rtF249A impaired the
replication competence of HBV in vitro. In the background of a po-
tential adaptive co-substitution mutant HBV genomes with
rtP177G and rtF249A may recover their replication capacity.

It is desirable to establish in vivo models with prolonged persis-
tence of drug-resistant HBV genomes, mimicking chronic HBV
infection in patients. The HBV mouse model based on HI has been
used to study HBV replication (Giladi et al., 2003). Here, we dem-
onstrated the usefulness of the HI mouse model to study drug
resistant HBV mutants. The HBV genomes with rtP177G and
rtF249A substitutions, which are resistant to TDF in vitro, also have
reduced sensibility to TDF in C57BL/6 mice. Thus, this model could
be refined and better standardized in the future.
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Fig. 4. A homology model of HBV-RT based on HIV-RT. Coloring according to the degree of conservation as described in Section 2 from yellow (complete conservation) to blue
(high diversity). (A) The overview showing HBV-RT with bound primer and template oligonucleotides, and TDF molecule (sticks). (B) Close-up around TDF with the catalytic
YMDD motif indicated by dots above molecular surface. The central catalytic D205 and the two resistance relevant positions P177 and F249 are labeled. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.antiviral.2012.12.
007.
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Discussion and outlook

If you want a guarantee, buy a toaster

CLINT EASTWOOD - THE ROOKIE

The internal struggle against infectious diseases is an important evolutionary process [5]
with two sides of the same coin. Mainly, the host tries to evade the viral effects, if they
cumber the host, but sometimes viral sequences end up engulfed in the hosts sequences
and their proteins usefully assimilated into the internal processes of the host cell. So far
there are dozens of examples known, some of them as astonishing as the evolution of the
mammal placenta, which incorporates different viral envelope proteins in different classes
of mammals and suggests therefore that mammal and with it human evolution was partly
made possible by viruses [3, 16]. But those useful in-corporations are rare, and much of
evolution is driven by antiviral techniques [25]. All living species use some kind of immune
system to avert being destroyed by parasites [18, 20]. The mammal and especially the
human immune system consists of complex processes to evade viruses and other unwanted
intruders [9, 12, 21] and the human MHC-system is an example of disease-driven selective
pressure [8, 26]. The research of this multilayer system - be it on the viral side or the side
of the immune system - is important to understand, process, and to develop new useful
drugs, which interact between virus and immune system.

Many aspects of the interaction between viruses and the immune system were highlighted
in this thesis through sequence analyses. (Nucleotide-) Sequences are the basis of ev-
erything in biology and medicine [1]. They contain the basic information regarding the
building blocks of viruses and living organisms [1]. Analysis of sequences enable re-
searchers to get a basic idea of the interaction of the products of those sequences and
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the underlying systems of evolution and selection pressure. These kinds of analyses are
possible since Fred Sanger invented sequencing of DNA in the 1950s [22]. The invention
of the next-generation sequencing methods in the 1990s enables researchers to dive even
deeper into the sequence space and quasispecies of viruses and immune system cells. New
third generation sequencing techniques (TGS)[15] will increase the amount of sequences
further and be able to grant new insights into the mechanisms of polymerases[23]. An
example for these new techniques is Nanopore Based Sequencing in which a sequence is
guided through a nanopore and each nucleotide passing measured. Up until now this
technique is not advanced enough and has a high error rate, but it is cheap, since no
expensive chemicals are necessary, and fast [4, 6, 11]. A second kind of improvement is
the cost of sequencing, which will decline further in the near future. As more and more
next-generation sequencing techniques became available, a race for the 1,000 $ per genome
started, and was finished by different companies. The newest inventions are Illuminas new
sequencer named HiSeq X Ten Sequencer[13, 24] and Pacific Biosciences SMRT, which
enables the customer to carry out next-generation sequencing of long fragments up to
20,000 nucleotides without a PCR [2, 10, 14, 17]. With only 1,000$ or less for sequence
reads from a single whole genome with good quality, and the new possibility to get long
reads, sequencing will become an important tool in medical research.

There are many sequences available from the viral big three: HIV, HBV, and HCV.
Those sequences, together with further information like patients HLA type or known
epitopes, may contain everything needed as a basis to develop new vaccines or drugs
against infections, which are necessary to decrease the amount of infections. Razavi et
al. predicted the total number of HCV infections should decline or remain flat, whereas
the number of liver diseases will increase, but they only analyzed first world countries
in Europe, Australia, and America [19], while in Asia and/or third world countries it
may be worse. The development of a drug against HCV or a vaccine would significantly
decrease both infection rate and disease effects. A patient with HIV however can never be
fully cured. For those patients early antiretroviral therapy to sustain suppression of viral
replication, and therefore lower the HIV transmission rate, is needed [7]. The development
of such drugs which are safer, simpler, and better tolerated is still a developing field of
research.

The amount of sequences is huge even now, but will only increase with more experiments
made and therefore tools for sequence analysis are becoming more and more important.
Be it the implications of infection chains, viral tropism, or the diversity of quasispecies, all

151



11
.

C
on

cl
us

io
ns

an
d

ou
tl

oo
k

V
I

11
.

C
on

cl
us

io
ns

an
d

ou
tl

oo
k

11
.

C
on

cl
us

io
ns

an
d

ou
tl

oo
k

11
.

C
on

cl
us

io
ns

an
d

ou
tl

oo
k

V
I

11
.

C
on

cl
us

io
ns

an
d

ou
tl

oo
k

11
.

C
on

cl
us

io
ns

an
d

ou
tl

oo
k

V
I

11
.

C
on

cl
us

io
ns

an
d

ou
tl

oo
k

11
.

C
on

cl
us

io
ns

an
d

ou
tl

oo
k

11
.

C
on

cl
us

io
ns

an
d

ou
tl

oo
k

V
I

11
.

C
on

cl
us

io
ns

an
d

ou
tl

oo
k

V
I

11
.

C
on

cl
us

io
ns

an
d

ou
tl

oo
k

V
I

11
.

C
on

cl
us

io
ns

an
d

ou
tl

oo
k

11.0

these things can be analyzed through sequences. The implementation of such a tool was
accomplished with the R-package SeqFeatR, which was up until now used in four different
groups in the medical field of research, but is available to all interested researcher of the
sequence space, and will provide further insights into the relationship of viruses and the
immune system in the future.
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S1 Alignment

V3 amino acid sequences of CCR5- and CXCR4-tropic HIV-1. Figure A.2 was produced
by SeqFeatR with this input. All sequences (84 from CXCR4-tropic and from 928 CCR5-
tropic virus) have the same length of 35 amino acids and have not been submitted to an
extra alignment step. Note that the feature labels “X4” (for CXCR4-tropic) and “R5”
(for CCR5-tropic) have been added at the end of the FASTA headers after a semicolon.

S2 Alignment

Alignment of SSU nucleotide sequences from Chlamydomonas. Alignment of RNA
sequences of small ribosomal subunit sequences: 9 from Chlamydomonas applanata, 10
from Chlamydomonas reinhardtii. Figure A.3 was generated by SeqFeatR with this input.
Note again that the last element of the FASTA header stands for the feature, here: RH
for reinhardtii and AP for applanata.
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Figure A.1: Frequentist approach with correction for multiple testing. Association of alignment positions
of HBV core protein with patient HLA types A*01 (A) and B*44 (B). Sequence numbers in panel titles are
feature-carrying fractions of the total of 148 sequences included in the alignment. Association of sequences
with feature HLA were analyzed with Fisher’s exact test, and resulting p values were corrected for multiple
testing with FDR option.
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Figure A.2: Association of V3 sequence positions with HIV-1 co-receptor tropism. Manhattan plot
output of SeqFeatR showing sites in the V3 amino acid sequences Figure A that are significantly associated
with co-receptor tropism.
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Figure A.3: Association of Chlamydomonas SSU nucleotide sequence position with species. Man-
hattan plot output of SeqFeatR showing sites in the SSU nucleotide sequence alignment Figure A that are
significantly associated with Chlamydomonas species, here: Chlamydomonas reinhardtii (RH) vs Chlamy-
domonas applanata (AP).
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Supplementary Material: Tutorial for
R-package SeqFeatR
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SeqFeatR discovers feature - sequence associations B

This tutorial gives you some of the technical background underlying SeqFeatR that should
enable you to understand what SeqFeatR does and also how to use it and how to interpret
the output. If you are solely interested in a HowTo, you may find the following two video
tutorials helpful:

• For the GUI in the SeqFeatR R-package: https://www.youtube.com/watch?v=
-CYidGPE6dw

• For the SeqFeatR web-server: https://www.youtube.com/watch?v=3z4Smk3mI18

B.1 SeqFeatR discovers statistically significant feature - sequence as-
sociations

Imagine the following alignment1 of amino acid sequences in FASTA format, taken from
14 patients that either have a certain feature (“f”) or do not have that feature (“n”).
The feature may for instance be an HLA type2, a genetic disease, etc. In the following
FASTA formatted input for SeqFeatR you can see a letter (f or n) indicating feature or
not-feature at the end of each comment line:

>P01_HLA_A01_00_B01_02;f
LPDIQGNENMGYQPSWIFCGMETNGSQCLEEMFHCCWINC
>P02_HLA_A01_00_B01_02;f
MPDWNQKWGNDHLASINLD-WLKTIQQPGIEKHLRFYENW
>P03_HLA_A01_02_B01_02;f
VPDASGKHGIIGMDVTSSMERRHGMVQLPWPAMVWGRPHW
>P04_HLA_A01_00_B01_02;f
MPDVRGVGCARRDCLIVHRFCMPFNNQVYCKVWIVYWTYK
>P05_HLA_A01_00_B01_02;f
QPDTPKITRKEATAIHKCGIHWQTNCQKLSTVHPFHHQVD
>P06_HLA_A01_02_B01_02;f

1The “alignment” shown here does not look like a good alignment. Usually, alignments show much more
columns where many sequences have the same amino acids, and there may also be gaps, indicated by
“-” in some sequences. This bad alignment was chosen for one reason only: it demonstrates that it
can be difficult to spot relationships between features and sequence positions.

2Human leukocyte antigen (https://en.wikipedia.org/wiki/Human_leukocyte_antigen), a classifi-
cation scheme of human immune systems.
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SeqFeatR discovers feature - sequence associations B

SWDDFSDFTMVHQWYAQGTLGPYKAMQLKMIFQGVSIMEV
>P07_HLA_A01_02_B01_02;f
IPDEPCYCCVKNKILTVEIGVHHAKSQVRRNIDNIRRKTE
>P08_HLA_A04_03_B04_03;n
HFST-ICPYIWKMYFTWMGQKLVIQKVNGRTPPHCDECNQ
>P09_HLA_A04_03_B04_03;n
SNFT-TTKLRDQHNLYPAGLQEIEHKVDHQILGIYGQIWY
>P10_HLA_A04_03_B04_03;n
ETSTALRTQDQTFMLALRANYMVMLKVLDCISVKLFICWR
>P11_HLA_A04_03_B04_00;n
DSSTMDAECSTLQRFIWWHAHYAWIRVAKKPYCLDCPYAV
>P12_HLA_A04_03_B04_03;n
KKSTLGIARGIQRSHGWYWRQTHCVMVLTPSQHKMGEKSW
>P13_HLA_A04_03_B04_00;n
ICSTELCGCLINWPPMQWIVFAHMDDVNDSQTNTCDMRSQ
>P14_HLA_A04_03_B04_03;n
GPSTNARTMGGQDCAYMTHTLTKHIWVILAFDPIMIVHKP

Can you discover statistically significant associations of the feature with the presence or
absence of certain amino acids at certain sequence3 positions? It is difficult to spot such
associations with the naked eye, but they are there:

• There is a strong association of feature f with amino acid P at the second position,
though patient 14 is an exception as she is n and still has P at second position.

• There is a strong association of n (i.e. not having feature f) with amino acid T at
fourth position, though patient 5 is an exception as he has f and still has a T at
fourth position.

In its basic application, SeqFeatR tests all sequence positions and quickly identifies the
second and fourth positions as being statistically significantly associated with the feature
(f) or its absence (n). SeqFeatR shows these associations graphically in two ways, as
Manhattan plot and as odds ratio (OR) plot.

3Strictly, we are not dealing with sequence positions but with sequence alignment positions.
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The core of SeqFeatR: Fisher’s exact test B

B.2 The core of SeqFeatR: Fisher’s exact test

B.2.1 An example: association of a feature with sequence

We have mentioned that in the above alignment there is seemingly a strong association
of the occurrence of amino acid P at position 2 with the feature f . The probability and
strength of this association can be quantified, respectively, by a p-value computed with
Fisher’s exact test, a well-known statistical test for association, and by an odds ratio
(OR). At its core, SeqFeatR does exactly this.

In the above example of the association of P at position 2 with feature f , SeqFeatR
internally would first collect occurrences in a frequency table and then compute from that
frequency table p-value and OR:

• 6 sequences with feature f and P at position 2

• 1 sequence with feature f and not P at position 2

• 1 sequence with feature n (= not f) and P at position 2

• 6 sequences with feature n and not P at position 2

SeqFeatR collects these data in a frequency table:

Proline
+ -

feature f
+ 6 1
- 1 6

Submitting this table to Fisher’s exact test yields a p-value of 0.0291. At a significance
level of 0.05 we therefore reject the null hypothesis (= no association of f and P at position
2) and rather assume an association of f and P at position 2.

The strength of the association is quantified by the odds ratio (OR) that is computed
from the elements of the above contingency table:

OR = Nf,P2/Nf,not P2

Nnot f,P2/Nnot f,not P2
= 6/1

1/6 = 36.
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The core of SeqFeatR: Fisher’s exact test B

(Note: there are several methods to estimate the odds ratio. The simple one shown here
is called Wald’s method. The one used by SeqFeatR yields about 23.5.)

An OR much greater than 1 (OR� 1) as we have it here (OR = 36) means that we have
a strong positive association of the feature f with P2: f and P2 occur much more often
together than expected if we had no association.

If we have a weak or no association, the OR lies around 1. Then f and P2 would occur
together and not together in the same ratios.

If we have a strong negative association, 0 < OR � 1. In case of f and P2, a negative
association means that f and P2 occur less often together than expected if we had no
association.

B.2.2 Another example: association of HLA type and sequence

In the above set of FASTA formatted sequences, we had ended each sequence header with
the name of a feature, either f or n, separated from the rest of the header line by a
semicolon. A specific type of feature that is often used in SeqFeatR analyses is the HLA
type. (For the HLA type there is an optional way of telling SeqFeatR about this specific
feature by giving the positions of the HLA information in the FASTA header, see section
B.4 of this tutorial and first tab of SeqFeatR graphical user interface.) For instance,
SeqFeatR will automatically discover in the sequences above a significant association
between HLA*B01 and amino acid D at third sequence position:

• 7 sequences with HLA*B01 and D3

• 0 sequences with not HLA*B01 and with D3

• 0 sequences with HLA*B01 and not D3

• 7 sequences with not HLA*B01 and not D3

Thus, we obtain the following contingency table:

D
+ -

HLA B*01
+ 7 0
- 0 7
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Graphical output B

Fisher’s exact test yields a p-value < 0.001 and we have an OR of infinity. Thus we have
a significant and strongly positive association of HLA*B01 and D3.

B.3 Graphical output

B.3.1 − log10 p-value plot (“Manhattan plot”)

The so-called Manhattan plot, i.e. a plot of − log10 p-values along the sequence, is a con-
venient means to discover significant associations of sequence alignment positions with
features. SeqFeatR produces Manhattan plots consisting of two separate plots (Figure
B.1): The top half of the plot focuses on complete epitopes or putative epitopes comprising
“windows” of several sequence positions (e.g. windows of 9 positions), while the bottom
half gives a more detailed picture of the same data at the level of single sequence posi-
tions. The x-axis for both plots is the same, namely the positions in the input sequence
alignment.

Let us start the discussion with the more fundamental bottom part of Figure B.1, the
simple Manhattan plot. In this plot, SeqFeatR can mark a significance level α (here:
α = 0.01) with a horizontal line. Associations with − log10 p-values above that line (i.e.
p-values < α) are shown with a special symbol (here: red stars) and considered significant.
To ease the visual localization of the highly significant positions, they are additionally
marked with vertical lines that hit the sequence axis at the corresponding positions. (The
resolution of the x-axis is usually to coarse to show single positions, but sufficient to
localize significantly associated positions in the fully resolved csv-file which is given as
second output file.)

Now the top part of the Manhattan plot of Figure B.1, focusing not on single positions
but on complete putative epitopes. If the features in your SeqFeatR input have been
HLA types, and if you then see several sequence positions in close proximity showing up
with high − log10 p values in the Manhattan plot, you may have found a HLA epitope.
The top part of the Manhattan plot highlights such position clusters. It can potentially
show three different curves, a black, a red, and a yellow curve, each indicating potential
epitopes. The red and yellow curves are optional.

The black curve directly relates to the bottom part of the plot: it shows the number of
sequence positions with significant feature association in a window of 9 amino acids (or
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Graphical output B

Figure B.1: Manhattan plot (p-values along sequence). The y-axis scales with the − log10(p-value), i.e. the
higher the point, the more significant the association. Top half of figure combines three different ways of
showing possible epitopes: (1) possible epitopes from a window-wise statistical analysis of your data (black
line), (2) known epitopes, e.g. from the literature (red line), (3) pieces of sequence alignment that conform
with certain sequence patterns (yellow line). Bottom half of figure: Manhattan plot with the p-values for each
sequence position. There are additional annotations in this graphic to explain what you see in red. Those are
not in the real output from SeqFeatR.
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Graphical output B

any other window length given by the user), divided by the window width (e.g. 9). The
default window width of 9 amino acids corresponds to a typical length of a MHC I binding
peptide. This window is shifted over the whole sequence and the fraction of significantly
associated position computed for each window position and plotted as y-value at that
position. An HLA epitope will show up as bump of the black curve to high values, similar
to the bump in the top part of Figure B.1.

The red curve (optional) allows the user to mark known epitopes, e.g. published in the
literature or in a database. This can be helpful for comparisons. You can enter data for
the red curve in an extra csv file (“Known epitopes” in SeqFeatR GUI and web interface).
Here an example of what you could put into such a csv file4:

4;12;A1
2;9;A3

This example marks two known epitopes with two lines of the form EpitopeStart;
EpitopeStop; HLAtype. The first line (4;12;A1) corresponds to the epitope shown as
bump of the red line in the top of Figure B.1. The level of the bump is always at a value
of 1.0 for these known epitopes. The bump is only shown if the HLA type in the csv file
matches the HLA type in the sequence alignment.

With the yellow curve (optional) the user can mark alignment regions that are conforming
with given sequence patterns. Such patterns can be defined in another csv file (“Known
binding motifs” in SeqFeatR GUI and web interface) following this format5.:

Genotype;Motif;Reference
A*01;x[PV]xxxx[DENQ]EN;SYFPEITHI

The header line (Genotype; Motif; Reference) describes the structure of the follow-
ing lines. All elements in one row are separated by semicolons. The first element
is the HLA type (here: A*01), the second is the actual definition of the motif (here:
x[PV]xxxx[DENQ]EN), and the third gives a reference to the origin of this motif 6.

4A similar example is part of the R-package SeqFeatR and there called Example_epitopes_aa.csv.
5A similar example is part of the R-package SeqFeatR and there called Example_HLA_binding_motifs_-

aa.csv
6SYFPEITHI is just an example of a possible reference – the motif was not really taken from SYFPEITHI
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Graphical output B

The definition of the motif requires a bit of explanation. The motif shown here covers
nine amino acid positions. Here the nine amino acid positions are shown as indices:

x1 [PV ]︸ ︷︷ ︸
2

x3x4x5x6 [DENQ]︸ ︷︷ ︸
7

E8N9

The letter x stands for: “this could be any amino acid”. The two square brackets at
positions 2 and 7 show which amino acids are allowed at these two positions, e.g. proline
(P) or valine (V) at position 2. At position 8 there has to be a glutamate (E), and at
position 9 must be an asparagine (N). Many sequences conform with this particular motif
description, e.g. APYEILDEN or SVRKTSQEN. In general, motifs should be expressed in the
same way using the elements x, [], and capitals ACDE...Y. SeqFeatR shows a bump of
the yellow line to 1.0 if several conditions are fulfilled simultaneously: (a) the HLA type
in the sequence alignment matches the HLA type in the csv file, (b) the motif occurs in
one of the aligned sequences, and (c) in the sequence window covered by the motif there
is at least one significant association of an alignment position with the HLA.

B.3.2 Advanced SeqFeatR plotting, e.g. odds ratio plot

The R-package SeqFeatR offers a number of more advanced commands that are not yet
available through the web interface of SeqFeatR. A nice example is the odds ratio plot
that requires the use of the function orPlot of the R-package SeqFeatR. This is why you
could be interested in the odds ratio plot:

While the Manhattan plot is a useful means to gain an overview over the distribution
of significant sequence–feature associations along the alignment, there is still important
information missing: Which amino acid is characteristic for the positions with low p-value?
Is an amino acid overrepresented or underrepresented at such a position in sequences with
a certain feature? All this information can be extracted from the csv file produced by
SeqFeatR, but the program also provides a new plot, that we call odds ratio plot, to
visualize this information (Figure B.2).

We had introduced the odds ratio (OR) in section B.2.1 as a way to quantify the strength
of the association. The OR tells us whether a feature is over- or underrepresented at a
position (OR > 1 or OR < 1, respectively), with OR = 1 indicating vanishing association.
For easier visual recognition, we show the logarithms (log10 OR) of the OR values along
the sequence. To given an example: using this logarithmic representation, a tenfold
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Graphical output B

overrepresentation of an amino acid at a sequence position in sequences with a certain
feature (e.g. HLA type) shows up in the OR plot as upwards pointing bar of length 1, a
tenfold underrepresentation as downwards pointing bar of length 1.

Figure B.2: Example odds ratio plot. Here we analyze amino acid sequences of HIV-1 gp120 protein variants,
and we have as feature the so-called co-receptor tropism of HIV-1, which can be “R5” or “not R5” (the latter
is often called “X4”). The odds ratio (OR) plot shows for each sequence alignment position the association
strength log10(OR) as bar height and the p-value as bar color. The plot demonstrates that high values of
log10 OR (long bars) and high statistical significance (blue color) are not the same.

There is one important caveat: even if a long OR bar indicates strong association, it still
may not be statistically significant. This may be confusing at first, but think about a
situation in which you have a small set of sequences, say two sequences, with a certain
feature, and one without the feature. In the sequences with the feature we have amino
acid A at the first alignment position, in the sequences without the feature we have G at
that position. Thus A is overrepresented and G underrepresented in the sequences with
the feature, right? In fact your OR would be infinity (see example in section B.2.2). But
would you believe this? Probably not, since your sequence set is so small that the p-value
from the Fisher’s exact test is 0.33.

Therefore the odds ratio plot allows you to combine OR information and p-value infor-
mation. In Figure B.2 OR bars with low p-values (highly significant) are filled with a
blue color, while OR bars with higher p-values (not so highly significant) are filled with a
green hue. As you can see, by far not all long bars are blue, i.e. only a subset of positions
may have strong and significant associations with the feature.
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Input: sequences and features B

B.4 Input: sequences and features

The whole SeqFeatR analysis is critically dependent on the input. Therefore we summa-
rize here how to prepare the input data properly.

First, before you submit sequences to SeqFeatR, you have to align them, i.e. do not submit
sequences to SeqFeatR, but a multiple sequence alignment (MSA). There exist several pop-
ular tools for this task, for mafft (http://www.ebi.ac.uk/Tools/msa/mafft/). Make
sure that the resulting MSA is in FASTA format (or Pearson/FASTA) (for a description
of FASTA format, see https://en.wikipedia.org/wiki/FASTA_format, an example is
shown on page A-9). Usually, this output format can be chosen as option in the input
form of mafft and other MSA programs, so you do not have to do this manually.

In the FASTA formatted MSA, we have one block for each sequence. Such a block
consists of a header line (starting with >) that can be used to describe the sequence, and
the sequence itself on the following lines. SeqFeatR expects in each FASTA header line
a label that tells it which feature this sequence carries. There are two different types of
features that can be put into FASTA headers:

1. A feature can be given by a letter or word at the end of each FASTA header after
a semicolon, as in:

• >some information;feature

• >patient 1;f

• >HCVA;n

• etc.

Anything after a semicolon in the FASTA-header is interpreted as name of a feature.

2. HLA types are a special case of features accepted by SeqFeatR. Here an example
snippet from a FASTA file with the encoded HLA type information in the FASTA
headers (see also example on page A-9):

>P1 HLA_A0403_B0403 donor 1
SNFT-TTKLRDQHNLYPAGLQEIEHKVDHQILGIYGQIWY
ETSTALRTQDQTFMLALRANYMVMLKVLDCISVKLFICWR
DSSTMDAECSTLQRFIWWHAHYAWIRVAKKPYCLDCPYAV
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Input: sequences and features B

>P2 HLA_A0403_B0404 donor 2
...

Now let us focus on the first header and for orientation write numbers 123...
beneath the header that give us the positions of the characters in that line:

>P1 HLA_A04_03_B04_03 donor 1
123456789.123456789.123456789.1234

Here, HLA_A04_03 corresponds to HLA-A*04:037 with locus A, group number 04,
and variant 03. The group number “04” covers positions 10 and 11 of the line,
the variant “03” is at positions 13 and 14. Analogously, for the B locus we have
group “04” at positions 17 and 18, and variant “03” at positions 20 and 21. We give
SeqFeatR these four position intervals of A and B groups and variants, as shown
in Figure B.3. Importantly, the HLA types in all FASTA blocks in one MSA file
have to take the same positions in their respective lines to be properly recognized
by SeqFeatR.

Figure B.3: Screenshot of SeqFeatR web interface with filled HLA positions.

7See e.g. https://en.wikipedia.org/wiki/Human_leukocyte_antigen#Nomenclature
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Multiple comparison correction B

B.5 Multiple comparison correction

SeqFeatR applies the same statistical test to many sequence alignment positions. Under
these conditions it is likely that some of the statistical test yield a low p-value just by
chance, and not because of a real association.

An example may illustrate this so-called multiple testing problem (or multiple comparison
problem): imagine you toss a fair coin (fair = fifty-fifty chance for head and tail) four
times. The most probably result is that you have 2 times head and 2 times tail. The
probability to have 4 times head is only 1 in 16 (1/2 for the first toss times 1/2 for the
second ... = (1/2)4 = 1/16). Now let us do 16 of these 4-toss experiments, i.e. we toss
the coin 16× 4 times. Then we expect that in one of these 4-toss experiments we will see
4 times head, just by chance. If we only consider the experiment with the outcome of 4
times head, we have the wrong impression that the coin is not fair. In the same way, a
set of sequence alignment positions corresponds to a set of random experiments, and if
we carry out many association tests, some of them seemingly indicate an association, but
that association is not real.

SeqFeatR offers various types of corrections (graphical user interface/web interface: P-
value correction) as available through the standard R-stats package function p.adjust
(in R call help page of p.adjust for more information). This includes e.g. very conservative
Bonferroni correction or the probably more useful False Discovery Rate correction.

B.6 Hints

• Do not use a word processor such as Word or LibreOffice/ OpenOffice to prepare
the sequence alignment input. These programs likely destroy the FASTA format by
(invisible) extra characters and invalidate the input. Instead, use an editor for raw
text such as notepad in Windows systems, or gedit, vim etc. on Linux systems.

• SeqFeatR can only understand letters from canonical DNA/acrshortRNA (A, C, G,
T, U) and amino acid alphabets (A, C, D, E, ...) in the FASTA sequences. Do not
use special characters (?!; etc.) or characters for wobbles (R, K, Y, ...) in sequences.
You can however use X or B for unidentified nucleic acids or amino acids.
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Bayes Factor B

B.7 Advanced Feature: Bayes Factor in SeqFeatR

If for any reason you do not want to work with p-values, you can use SeqFeatR with
Bayes Factor (BF) instead of the above mentioned Fisher’s exact test. The BF for two
hypotheses H0 and H1, given sequence and feature data D, is the ratio of posterior odds
and the corresponding prior odds: BF = (p(H1|D)/p(H0|D)) / (π1/π0). In other words,
the BF equals the posterior odds if the prior probabilities π0, π1 are equal and thus the
prior odds is 1.

Imagine the following table:

certain amino acid
+ -

feature f
+ p11 p12

- p21 p22

In our case, H1 is the hypothesis that a feature is associated with an amino acid or
nucleotide at an alignment position, and H0 is the hypothesis that there is no such asso-
ciation. The higher the BF, the more likely H1 (association) and the less likely H0 (no
association).

Here we use a BF for the hypothesis H1 that feature and amino acid at an alignment
position are close to independence vs. H0 that they are independent. Albert and Gupta
presented a ’close to independence’ model which is now used in SeqFeatR 8. The prior
belief in the independence is expressed by a user chosen K: the higher this hyperparame-
ter, the more dominant the independence structure will be in comparison to the observed
counts, and for K →∞ complete independence is achieved.

While SeqFeatR allows for setting an explicit K value, it may not be easy to specify an
appropriate value of K that is applicable to all alignment positions. Therefore, SeqFeatR
also offers an empirical Bayes variant of this BF. In this variant, an individual value of
K is estimated from each contingency table itself.

8Albert J. Bayesian Computation with R. Springer Verlag; 2009.
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Mutation tuples B

B.8 Advanced Feature: Discovering associations between mutation tu-
ples and features

If you have discovered single positions with feature associations, you can use SeqFeatR to
discover if those positions correlate and are as a combination associated with a feature.
These associations are far from visible in the sequences itself, but they are there:

• There is a strong association of feature HLA ∗A01 with amino acid pair PQ at the
3 position and 27 position, though patient 6 is an exception as she is HLA ∗ A01
and has not PQ but WQ.

• There is an association of feature HLA∗A02 with amino acid pair DH at the 3 and
23 position, though patient 6 is an exception as she is HLA ∗A02 and has not DH
but DY.

SeqFeatR tests all sequence position pairs below a given p-value and quickly identifies the
3+27 pair as being statistically significantly associated with the feature (HLA∗A01) or its
absence. SeqFeatR shows these associations graphically as a heat map and in combination
with another feature as a “Tartan plot”.

B.8.1 An example: association of HLA type and pairs

We have noted that in the above alignment there is seemingly a strong association of the
occurrence of amino acids P at position 3 and amino acid Q at position 27 with the feature
HLA ∗A01. The probability and strength of this association can again be quantified, by
a p-value computed with Fisher’s exact test and by an odds ratio.

In the above example of the association of P at position 3 and Q at position 27 with
feature HLA ∗ A01, SeqFeatR internally would first collect occurrences in a frequency
table and then compute from that frequency table p-value and OR like in the case of a
single position B.2.1:

• 6 sequences with HLA*A01 and P3Q27

• 0 sequences with not HLA*A01 and with P3Q27

• 1 sequences with HLA*A01 and not P3Q27
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Tartan plot B

• 7 sequences with not HLA*A01 and not P3Q27

Thus, we obtain the following contingency table:

DH
+ -

HLA A*01
+ 6 1
- 0 7

Fisher’s exact test yields a p-value < 0.005 and we have an OR of Infinity. Thus we have
a significant and strongly positive association of HLA*A01 and P3Q27.

B.9 Tartan plot: visual comparison of different associations of features
and sequence position tuples

The Tartan plot is a way to visualize the comparison of two different types of associa-
tions between pairs of sequence alignment positions (lower left vs. upper right triangle).
Association strengths are color coded (color legend on the right) and depend e.g. on
the p-value of the association of this pair and the feature. For orientation, axes can be
annotated and sequence substructures can be indicated by lines. The different types of
associations can be for example two different HLA types, or HLA type and distance in
the protein of the sequences. Here we show an example of two HLA types, HLA*A01 and
HLA*B03 B.4.
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Tartan plot B

Figure B.4: Tartan plot. This plot combines the information of two position-pair and feature association.
The first feature (upper triangle) is HLA*A01, the second one (lower triangle) is HLA*B03. A color-filled field
represents the value of a position-pair according to the color legend. There are additional annotations in this
graphic to explain what you see in red. Those are not in the real output from SeqFeatR.
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Table C.1: Significant p-values from comparison between positive and negative epitopes with an Fisher’s exact
test. Three datasets were used all for HLA-A*02. The HCV positive and negative datasets were generated
from HCV T cell data from IEDB in combination with MHC predicted data out of the HCH reference genome
H77. This dataset was a comparison between both HCV datasets. FDR was applied to the p-values to correct
for multiple testing errors.

HCV+ and HCV−

position Fisher p-value amino acid MW p-value
4 0.0453318905 M
4 0.0212912181 S
5 0.0239590308 K
7 0.0453318905 L
9 0.0453318905 E
9 0.0203958021 L
10 0.0390251451 E
10 0.0239590308 H
11 0.0282174805 L
17 0.0203958021 N
19 0.0203958021 S
21 0.0398472595 S
22 0.0460295601 L
23 0.0275357767 H
28 0.0239590308 C
28 0.0453318905 Y
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Table C.2: Significant p-values from comparison between positive and negative epitopes with an Fisher’s exact
test. Three datasets were used all for HLA-A*02. The HCV positive and negative datasets were generated
from HCV T cell data from IEDB in combination with MHC predicted data out of the HCH reference genome
H77. This dataset was a comparison between human T cell data from IEDB and the negative HCV epitopes.
FDR was applied to the p-values to correct for multiple testing errors.

HUMAN+ and HCV−

position Fisher p-value amino acid MW p-value
1 0.0453318905 W
10 0.0282174805 Q
10 0.0139489695 E
11 0.018770049 E
12 0.0242838185 W
15 0.0453318905 M
22 0.0239590308 E
22 0.0454598032 L
25 0.0394199305 A
30 0.0239590308 G
30 0.0275357767 E
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Table C.3: Significant p-values from comparison between positive and negative epitopes with an Fisher’s exact
test. Three datasets were used all for HLA-A*02. The HCV positive and negative datasets were generated
from HCV T cell data from IEDB in combination with MHC predicted data out of the HCH reference genome
H77. This dataset was a comparison between human T cell data and the positive HCV epitopes. FDR was
applied to the p-values to correct for multiple testing errors.

HUMAN+ and HCV+

position Fisher p-value amino acid MW p-value
3 0.0048242837 E
3 0.0409545159 F
4 0.0340193345 E
5 0.0347537615 Q
5 0.0460295601 W
8 0.0139489695 T
9 0.0340193345 Q
14 0.0239590308 N
14 0.0275357767 E
14 0.0398472595 H
15 0.0239590308 H
15 0.0454598032 Q
15 0.0044454765 E
16 0.0001687577 E
16 0.0203958021 A
16 0.0453318905 K
17 0.0239590308 K
19 0.0212912181 A
20 0.0453318905 G
20 0.0464373392 A
20 0.0239590308 D
21 0.0203958021 A
21 0.0282174805 E
22 0.0044454765 E
23 0.0239590308 H
23 0.0261121552 A
25 0.0122052311 A
25 0.0398472595 K
25 0.0454598032 Q
26 0.0239590308 V
26 0.0275357767 K
27 0.0275357767 E
27 0.0479014747 G
28 0.0212836442 A
28 0.0239590308 G
28 0.0331642414 E
30 0.002149528 A

A-28



Li
st

of
F

ig
ur

es
V
II

Li
st

of
F

ig
ur

es
Li

st
of

F
ig

ur
es

Li
st

of
F

ig
ur

es
V
II

Li
st

of
F

ig
ur

es
Li

st
of

F
ig

ur
es

V
II

Li
st

of
F

ig
ur

es
Li

st
of

F
ig

ur
es

Li
st

of
F

ig
ur

es
V
II

Li
st

of
F

ig
ur

es
V
II

Li
st

of
F

ig
ur

es
V
II

Li
st

of
F

ig
ur

es
V
II

Li
st

of
F

ig
ur

es
Li

st
of

F
ig

ur
es

Li
st

of
F

ig
ur

es
V
II

List of Figures

Chapter 2 – Viruses and immune system - an overview

2.1 Model structure of HIV, HBV and HCV 7
2.2 Human Immunodeficiency Virus I genome 8
2.3 Hepatitis B Virus genome 9
2.4 Hepatitis C virus genome 10
2.5 VDJ rearrangement 12
2.6 Overview of the MHC pathway system 14

Chapter 3 – Methods, tools and techniques used globally

3.1 Example of a sequence alignment 30
3.2 Needleman–Wunsch algorithm example 31
3.3 Terminology of phylogenetic trees 33

Chapter 5 – The multiple testing problem and SeqFeatR

5.1 Example of true/false positives and true false negatives 72
5.2 ROC for each of the three datasets 74

Chapter 7 – Selection pressure on HCV epitopes

7.1 Scheme of an extended epitope 103
7.2 Flowchart for HCV 104
7.3 Percentage of amino acids in RNA Polymerase in different Fla-

viviridae and human 106
7.4 Overview of the genome sequence positions of the used epitopes 107
7.5 Amino acid numbers in HCV and human extended epitope 111

A-29



Li
st

of
F

ig
ur

es
V
II

Li
st

of
F

ig
ur

es
Li

st
of

F
ig

ur
es

Li
st

of
F

ig
ur

es
V
II

Li
st

of
F

ig
ur

es
Li

st
of

F
ig

ur
es

V
II

Li
st

of
F

ig
ur

es
Li

st
of

F
ig

ur
es

Li
st

of
F

ig
ur

es
V
II

Li
st

of
F

ig
ur

es
V
II

Li
st

of
F

ig
ur

es
V
II

Li
st

of
F

ig
ur

es
V
II

Li
st

of
F

ig
ur

es
Li

st
of

F
ig

ur
es

Li
st

of
F

ig
ur

es
V
II

List of Figures D

7.6 Significant amino acids and their positions between positive and
negative epitopes 112

Chapter 9 – Phylogenetic analysis on HCV infection chains

9.1 Bootstrap-values for the whole HCV genome. 131

Appendix A – Supplementary Material for Chapter 4

A.1 Frequentist approach with correction for multiple testing A-5
A.2 Association of V3 sequence positions with HIV-1 co-receptor tropism. A-6
A.3 Association of Chlamydomonas SSU nucleotide sequence position

with species. A-7

Appendix B – Supplementary Material for Chapter 4 - Tutorial

B.1 Manhattan plot. A-14
B.2 Odds ratio plot. A-17
B.3 Screenshot of SeqFeatR web interface with filled HLA positions. A-19
B.4 Tartan plot. A-24

A-30



Li
st

of
F

ig
ur

es
V
II

Li
st

of
F

ig
ur

es
Li

st
of

F
ig

ur
es

Li
st

of
F

ig
ur

es
V
II

Li
st

of
F

ig
ur

es
Li

st
of

F
ig

ur
es

V
II

Li
st

of
F

ig
ur

es
Li

st
of

F
ig

ur
es

Li
st

of
F

ig
ur

es
V
II

Li
st

of
F

ig
ur

es
V
II

Li
st

of
F

ig
ur

es
V
II

Li
st

of
F

ig
ur

es
V
II

Li
st

of
F

ig
ur

es
Li

st
of

F
ig

ur
es

Li
st

of
F

ig
ur

es
V
II

List of Tables

Chapter 1 – Motivation

1.1 Different methods used in this work according to treated topics. 4

Chapter 5 – The multiple testing problem and SeqFeatR

5.1 Overview of Type-I and Type-II errors in hypothesis testing 62
5.2 Example for hierarchical Bayes 69
5.3 AUC values for the ROC 75

Chapter 7 – Selection pressure on HCV epitopes

7.1 Number of predicted HLA-A*02 MHC binder of HCV intersected
with T cell epitopes from IEDB 102

7.2 Significant differences between the amino acid numbers in HCV
and human epitopes 109

7.3 Top ten p-values from comparison between positive and negative epitopes 110
7.4 Overview of the number of significant amino acid changes between

the epitopes 113
7.5 HLA-A*02 epitopes with labeled amino acids 114

Chapter 9 – Phylogenetic analysis on HCV infection chains

9.1 Overview of the composition of the used HCV sequence set. 129
9.2 HCV positions with the longest stretch of 100% bootstraps. 130

Appendix C – Supplementary Material for Chapter 7

A-31



Li
st

of
T

ab
le

s
V
II

Li
st

of
T

ab
le

s
Li

st
of

T
ab

le
s

Li
st

of
T

ab
le

s
V
II

Li
st

of
T

ab
le

s
Li

st
of

T
ab

le
s

V
II

Li
st

of
T

ab
le

s
Li

st
of

T
ab

le
s

Li
st

of
T

ab
le

s
V
II

Li
st

of
T

ab
le

s
V
II

Li
st

of
T

ab
le

s
V
II

Li
st

of
T

ab
le

s
V
II

Li
st

of
T

ab
le

s
Li

st
of

T
ab

le
s

Li
st

of
T

ab
le

s
V
II

List of Tables D

C.1 Significant p-values from comparison between positive and negative
HCV epitopes A-26

C.2 Significant p-values from comparison between human and negative
HCV epitopes A-27

C.3 Significant p-values from comparison between human and positive
HCV epitopes A-28

A-32



Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
Li

st
of

A
lg

or
it

hm
s

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
Li

st
of

A
lg

or
it

hm
s

V
II

Li
st

of
A

lg
or

it
hm

s
Li

st
of

A
lg

or
it

hm
s

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
Li

st
of

A
lg

or
it

hm
s

Li
st

of
A

lg
or

it
hm

s
V
II

List of Algorithms

Chapter 9 – Phylogenetic analysis on HCV infection chains

9.1 find_with_trees algorithm 129

A-33



Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
Li

st
of

A
lg

or
it

hm
s

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
Li

st
of

A
lg

or
it

hm
s

V
II

Li
st

of
A

lg
or

it
hm

s
Li

st
of

A
lg

or
it

hm
s

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
Li

st
of

A
lg

or
it

hm
s

Li
st

of
A

lg
or

it
hm

s
V
II

Der Lebenslauf ist in der Online-Version aus Gründen des Datenschutzes nicht 
enthalten.



Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
Li

st
of

A
lg

or
it

hm
s

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
Li

st
of

A
lg

or
it

hm
s

V
II

Li
st

of
A

lg
or

it
hm

s
Li

st
of

A
lg

or
it

hm
s

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
Li

st
of

A
lg

or
it

hm
s

Li
st

of
A

lg
or

it
hm

s
V
II

Der Lebenslauf ist in der Online-Version aus Gründen des Datenschutzes nicht 
enthalten.



Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
Li

st
of

A
lg

or
it

hm
s

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
Li

st
of

A
lg

or
it

hm
s

V
II

Li
st

of
A

lg
or

it
hm

s
Li

st
of

A
lg

or
it

hm
s

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
Li

st
of

A
lg

or
it

hm
s

Li
st

of
A

lg
or

it
hm

s
V
II

Der Lebenslauf ist in der Online-Version aus Gründen des Datenschutzes nicht 
enthalten.



Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
Li

st
of

A
lg

or
it

hm
s

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
Li

st
of

A
lg

or
it

hm
s

V
II

Li
st

of
A

lg
or

it
hm

s
Li

st
of

A
lg

or
it

hm
s

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
Li

st
of

A
lg

or
it

hm
s

Li
st

of
A

lg
or

it
hm

s
V
II

Own contribution, co-authors and collaborators for the published manuscripts

SeqFeatR for the discovery of feature-sequence associations

This chapter is based on the following publication:

Bettina Budeus, Jörg Timm, and Daniel Hoffmann (2015). SeqFeatR for the discovery 
of feature-sequence associations.

http://www.plosone.org/article/related/info%3Adoi%2F10.1371%2Fjournal.pone. 
0146409

BB developed the tool and R-package and wrote parts of the manuscript and tutorial. 
DH wrote most parts of the manuscript and tutorial and supervised the development. JT 
established the tool in his lab and verified the results in vitro.

Complexity of the human memory B cell compartment is determined by the versatility 
of clonal diversification in germinal centres

This chapter is based on the following publication:

Bettina Budeus, Stefanie Schweigle, Martina Przekopowitz, Daniel Hoffmann, Marc 
Seifert, and Ralf Küppers (2015). Complexity of the human memory B-cell 
compartment is de-termined by the versatility of clonal diversification in germinal 
centers.

http://www.pnas.org/content/early/2015/08/28/1511270112.long

BB processed the next generation sequences, analyzed the results, created most of the 
figures and tables except Fig. S1A and B and Tab. S2 and Tab. S4 and contributed to 
the manuscript. SS purified the blood samples, sorted the cells, did a PCR and created 
the tree files as model for the tree figures. MP analyzed BCL6. DM provided ideas and 
contributed to the manuscript. MS and RK wrote most parts of the manuscript and 
provided analytical insights and support.

http://www.plosone.org/article/related/info%3Adoi%2F10.1371%2Fjournal.pone.0146409
http://www.plosone.org/article/related/info%3Adoi%2F10.1371%2Fjournal.pone.0146409
http://www.pnas.org/content/early/2015/08/28/1511270112.long


Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
Li

st
of

A
lg

or
it

hm
s

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
Li

st
of

A
lg

or
it

hm
s

V
II

Li
st

of
A

lg
or

it
hm

s
Li

st
of

A
lg

or
it

hm
s

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
Li

st
of

A
lg

or
it

hm
s

Li
st

of
A

lg
or

it
hm

s
V
II

Mutations rtP177G and rtF249A in the reverse transcriptase domain of 
hepatitis B virus polymerase confer resistance to tenofovir

This chapter is based on the following publication:

Bo Qin, Bettina Budeus, Liang Cao, Chunchen Wua, Yun Wang, Xiaoyong Zhang, Simon 
Rayner, Daniel Ho˙mann, Mengji Lu, Xinwen Chen (2013). The amino acid 
substitutions rtP177G and rtF249A in the reverse transcriptase domain of 
hepatitis B virus polymerase reduce the susceptibility to tenofovir. Antiviral 
Research 97.

http://www.sciencedirect.com/science/article/pii/S0166354212002872

BB created the model of the HBV polymerase, analyzed it regarding the chosen mutations 
and contributed to manuscript preparation.

Erklärung:
Hiermit erkläre ich, gem.�  9 der Promotions ordnung der Math.-Nat. Fakultäten  zur Erlangung  
der Dr.rer.nat.,  dass die oben genannten Beteiligungen  an den wissenschaftlichen 
Veröffentlichungen der Wahrheit entsprechen.

Plankstadt, den
Unterschrift d. wissenschaftl.

Betreuers/ Mitglieds der Uni-

versität Duisburg-Essen

Erklärung:

Hiermit erkläre ich, gem.�9 der Promotions ordnung der Math.-Nat. Fakultäten zur Erlangung 
der Dr.rer.nat., dass von mir die urheber- und lizensrechtliche Seite (Copyright) geklärt wurde 
und Rechte Dritter der Publikation nicht entgegenstehen.  

Plankstadt, den
Unterschrift der Doktorandin

Unterschrift der Doktorandin

http://www.sciencedirect.com/science/article/pii/S0166354212002872


Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
Li

st
of

A
lg

or
it

hm
s

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
Li

st
of

A
lg

or
it

hm
s

V
II

Li
st

of
A

lg
or

it
hm

s
Li

st
of

A
lg

or
it

hm
s

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
V
II

Li
st

of
A

lg
or

it
hm

s
Li

st
of

A
lg

or
it

hm
s

Li
st

of
A

lg
or

it
hm

s
V
II

Erklärung:

Hiermit erkläre ich, gem.�6 Abs.2, f der Promotions ordnung der Math.-Nat. Fakultäten

zur Erlangung der Dr.rer.nat., dass ich das Arbeitsgebiet, dem das Thema �Statisti-

cal analysis of sequence populations in virology and immunology� zuzuordnen ist, in

Forschung und Lehre vertrete und den Antrag von Bettina Budeus befürworte.

Plankstadt, den

Name des wissenschaftlichen

Betreuers/ Mitglieds der Uni-

versität Duisburg-Essen

Unterschrift d. wissenschaftl.

Betreuers/ Mitglieds der Uni-

versität Duisburg-Essen

Erklärung:

Hiermit erkläre ich, gem.�7 Abs.2, c und e der Promotionsordnung der Math. -Nat.

Fakultäten zur Erlangung des Dr.rer.nat., dass ich die vorliegende Dissertation selbständig

verfasst und mich keiner anderen als der angegebenen Hilfsmittel bedient habe und alle

wörtlich oder inhaltlich übernommenen Stellen als solche gekennzeichnet habe.

Plankstadt, den

Unterschrift der Doktorandin

Erklärung:

Hiermit erkläre ich, gem.�7 Abs.2, d und f derPromotionsordnung der Math. -Nat.

Fakultäten zur Erlangung des Dr.rer.nat., dass ich keine anderen Promotionen bzw. Pro-

motionsversuche in der Vergangenheit durchgeführt habe, dass diese Arbeit von keiner

anderen Fakultät abgelehnt worden ist, und dass ich die Dissertation nur in diesem Ver-

fahren einreiche.

Plankstadt, den

Unterschrift der Doktorandin


	Summary
	Zusammenfassung
	Glossary
	Abbreviations
	Reference genomes
	I Introduction and globally used methods
	1 Motivation
	1.1 Explanatory note
	References

	2 Viruses and immune system - an overview
	2.1 Viruses
	2.2 Immune system
	References

	3 Methods, tools and techniques used globally
	3.1 Sequence alignments
	3.2 Phylogenetics
	3.3 Homology modeling
	3.4 (Next-generation) sequencing
	3.5 Fileformats for sequences
	3.6 R - The programming environment used in this thesis
	References


	II SeqFeatR and statistical considerations
	4 SeqFeatR
	5 The multiple testing problem and SeqFeatR
	5.1 Introduction
	5.2 Methods
	5.3 Results
	5.4 Discussion
	References


	III Sequence analysis of Sanger and NGS sequences
	6 The complexity of the human memory B-cell pool
	7 Selection pressure on HCV epitopes
	7.1 Introduction
	7.2 Methods
	7.3 Results
	7.4 Discussion
	References

	8 Additional publications - only abstracts
	8.1 Selection in gp120 between subtype B and B'
	8.2 Adaption of HBV core to T cell selection pressure
	8.3 AmpliconDuo for High-Throughput Sequencing


	IV Phylogenetic sequences analysis
	9 Phylogenetic analysis on HCV infection chains
	9.1 Introduction
	9.2 Methods
	9.3 Results
	9.4 Discussion
	References


	V Homology modeling
	10 Mutations in tenofovir exposed HBV

	VI Discussion and Outlook
	11 Conclusions and outlook
	References


	VII Appendices
	A Supplementary Material for Chapter 4
	B Supplementary Material for Chapter 4 - Tutorial
	B.1 SeqFeatR discovers feature - sequence associations
	B.2 The core of SeqFeatR: Fisher's exact test
	B.3 Graphical output
	B.4 Input: sequences and features
	B.5 Multiple comparison correction
	B.6 Hints
	B.7 Bayes Factor
	B.8 Mutation tuples
	B.9 Tartan plot

	C Supplementary Material for Chapter 7
	List of Figures
	List of Tables
	List of Algorithms


