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Abstract

This doctoral thesis presents not only a new traffic assignment model for mixed

traffic systems but also new heuristics for multi-paths routing problems, a case study

in Hanoi Vietnam, and a new software, named TranOpt Plus, supporting three major

features: map editing, dynamic routing, and traffic assignment modeling.

We investigate three routing problems: k shortest loop-less paths (KSLP), dissimilar

shortest loop-less paths (DSLP), and multi-objective shortest paths (MOSP). By

developing loop filters and a similarity filter, we create two new heuristics based

on Eppstein’s algorithm: one using loop filters for the KSLP problem (HELF),

the other using loop-and-similarity filters for the DSLP problem (HELSF). The

computational results on real street maps indicate that the new heuristics dominate

the other algorithms considered in terms of either running time or the average length

of the found paths.

In traffic assignment modeling, we propose a new User Equilibrium (UE) model,

named GUEM, for mixed traffic systems where 2- and 4-wheel vehicles travel to-

gether without any separate lanes for each kind of vehicle. At the optimal solution

to the model, a user equilibrium for each kind of vehicle is obtained. The model is

applied to the traffic system in Hanoi, Vietnam, where the traffic system is mixed

traffic dominated by motorcycles. The predicted assignment by the GUEM model

using real collected data in Hanoi is in high agreement with the real traffic situation

in Hanoi.

Finally, we present the TranOpt Plus software, containing the implementation of all

the routing algorithms mentioned in the thesis, as well as the GUEM model and a

number of popular traffic assignment models for both standard traffic systems and

mixed traffic systems. With its intuitive graphical user interface (GUI) and its strong

visualization tools, TranOpt Plus also enables users without any mathematical or

computer science background to use conveniently. Nevertheless, TranOpt Plus can

be easily extended by further map-related problems, e.g., transportation network

design, facility location, and the traveling salesman problem.

Keywords: mixed traffic assignment modeling, routing algorithms, shortest paths,

dissimilar paths, Hanoi, TranOpt Plus, map visualization
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Zusammenfassung

Diese Dissertation präsentiert nicht nur ein neues Verkehrszuordnungs-Modell für

gemischte Verkehrssysteme, sondern auch neue Heuristiken für Mehrwege-Routing-

Probleme, sowie eine Fallstudie in Hanoi und eine neu entwickelte Software namens

TranOpt Plus mit drei Hauptanwendungen: Kartenbearbeitung, dynamisches Rout-

ing und Modellierung der Verkehrszuordnung.

Wir untersuchen drei Routing-Probleme: k kürzeste schleifenfreie Wege (KSLP),

ungleiche kürzeste schleifenfreie Wege (DSLP) und Pareto optimale kürzeste Wege

(MOSP). Durch die Entwicklung von Schleifenfiltern und eines Ähnlichkeitsfilters,

ergeben sich zwei neue Heuristiken auf Basis des Eppstein-Algorithmus: Eine mit

Schleifenfilter für das KSLP-Problem (HELF) und eine mit Schleifen- und Ähn-

lichkeitsfiltern für das DSLP-Problem (HELSF). Die Rechenexperimente mit realen

Straßenkarten einiger Städte zeigen, dass die neuen Heuristiken die bisherigen in

Bezug auf Laufzeit oder durchschnittliche Pfadlänge dominieren.

Im neuen Verkehrszuordnungs-Modell (TAM) schlagen wir eine neues User-Equilibri-

um-Modell (UE) für gemischte Verkehrssysteme vor, in denen sich 2- und 4-rädrige

Fahrzeuge gemeinsam bewegen, ohne gesonderte Spuren für jede Fahrzeugart zu

verwenden. Bei der optimalen Lösung für das Modell bleibt das Gleichgewicht für

jede Fahrzeugart erhalten. Das Modell wird auf das Verkehrssystem in Hanoi, wo der

gemischte Verkehr von Motorrädern dominiert wird, angewendet. Die vom Modell

produzierten Ergebnisse stimmen mit der realen Verkehrssituation in Hanoi deutlich

überein.

Schließlich präsentieren wir die Software TranOpt Plus, welche alle in der Arbeit

erwähnten Routing-Algorithmen sowie die Verkehrszuordnungs-Modelle sowohl für

Standard- als auch gemischten Verkehr umfasst. Durch die grafische Benutzer-

oberfläche (GUI) und die umfangreichen Visualisierungstools, kann die Software

auch von Benutzern ohne weiterführende Informatik- oder Mathematik-Kenntnisse

verwendet werden. Dennoch kann TranOpt Plus leicht um zusätzliche Graphenprob-

leme, wie beispielsweise Netzwerkdesign, das Facility-Location- und das Traveling-

Salesman-Problem, erweitert werden.

Stichwörter: Verkehrszuordnungs-Modelle für gemischte Verkehrssysteme, Routing-

Probleme, kürzeste Wege, ungleiche kürzeste Wege, Hanoi, TranOpt Plus, Karten-

visualisierung
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Chapter 1

Introduction

Presently urban traffic planning (UTP) plays an increasingly important role in a

large number of countries in the world. One of the fundamental problems in UTP

is traffic assignment modeling (TAM), that is to forecast traffic flows on the links

of a transportation network whenever a change has been made on the system, such

as building new roads, closing current ones, changing traffic rules, and modifying

the signal light system, etc. Without the ability to predict traffic flows, managers

are not able to evaluate UTP projects accurately. Any incorrect decision in UTP

projects could result in an unnecessary waste of invested money and/or may lead to

fatal accidents. Furthermore, urban traffic systems are becoming more complex, i.e.

more vehicles of various kinds are used, more interactions between vehicles and the

traffic system are observed, therefore it is essential to continuously improve TAM in

order to keep it up-to-date with the development of the modern UTP.

1.1 Motivation

While TAM has been rigorously studied in developed countries, e.g. USA, Germany,

and Japan, it is still in the beginning phase of investigation in a number of de-

veloping countries, e.g., Vietnam, the Philippines, Indonesia, Thailand, and India.

The motivation of this doctoral thesis comes from the urban traffic in Vietnam

where commuters in major cities are suffering serious traffic-related problems, such

as traffic jams, air pollution, and fatal accidents. According to the investigations

of the World Bank [64, 65] and Japan International Cooperation Agency & Hanoi

People’s Committee [42], the greatest challenge in the coming decades for the two

largest cities in Vietnam, i.e. Hanoi—the capital city—and Ho Chi Minh City—the

economically most powerful city—is spatial planning for future urbanization.

Developing infrastructure and optimizing traffic systems are two fundamental com-

ponents in spatial planning, thus the government of Vietnam has invested a large

amount of money in them, e.g. 4.5% of the gross domestic product (GDP) of the

1



2 CHAPTER 1. INTRODUCTION

country in 2002. However, the effectiveness of these investments is not as high as

expected due to a number of factors, such as budget management and a serious lack

of dedicated research on the traffic system in Vietnam.

In addition, the urban traffic system in Vietnam is a mixed traffic system dominated

by motorcycles (MTSDM) where motorcycles occupy about 75% to 80% of the whole

share of all the kinds of vehicles. As far as we know, there is no dedicated traffic

assignment (TA) model for the MTSDM in Vietnam at present. This leads to a

fact that all major UTP projects depend on TA models, which are not originally

designed for the traffic system in Vietnam and thus are based on different standards.

Although they can probably be customized to deal with mixed traffic systems, the

accuracy of their applications to the traffic system in Vietnam is still in doubt.

In order to help traffic managers evaluate UTP projects reliably, we investigates a

new TA model, that strongly supports mixed traffic systems, especially for those

dominated by motorcycles. Such a model should be particularly meaningful for

cities like Hanoi in terms of saving public investment and coping with the present

traffic problems.

1.2 Problems and Methods

TAM involves a number of scientific fields in both mathematics and computer sci-

ence, such as discrete optimization, constrained continuous programming problems,

and computer visualization, etc. In order to sketch a general picture of the workflow,

we briefly introduce major problems and the corresponding methods in the following

subsections. The details of these problems and methods will be given in the later

chapters.

1.2.1 Routing Problems

Problems of finding the best paths in terms of a given number of objectives in a graph

(or transportation network) are called routing problems. They are a part of discrete

optimization with a wide range of applications in both academic research and real

problems. Depending on the given objectives and constraints, routing problems can

be divided into several categories. For instance, the shortest path (SP) problem is a

classical problem, that finds a shortest path between two nodes in a given graph. A

generalized version of the SP problem is the k shortest paths (KSP) problem where

the first k ≥ 1 shortest paths are determined, i.e. determining a set of the shortest

path, the second shortest path, . . . , the kth shortest path, between two nodes. When

k equals the number of possible paths, the problem is called the ranking shortest

path problem. If the paths are required to be loop-less, the problem is named as

the k shortest loop-less paths (KSLP) problem.
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If the dissimilarity between each pair of paths is taken into account, then the problem

is the dissimilar shortest loop-less paths (DSLP) problem. The dissimilarity between

two paths is determined by the total length of the common links and the total

length of the different links between them. The DSLP problem has an important

application in transport of hazardous materials where vehicles are not allowed to

travel in the same path since the radiation materials could be accumulated through

time and have negative impacts on people living along the path. In this case,

transport companies must investigate a set of alternative paths which are short in

length and dissimilar from each other.

When the links in the graph have various objectives (properties), e.g. length, travel-

ing times at free flow and at congested flow, drivers may choose their paths accord-

ing to not only one but many objectives. This problem is called the multi-objective

shortest path (MOSP) problem. An example of this problem is in traffic systems

where traffic congestion happens frequently, drivers may select paths according to

both their lengths and the probability of congestion on the paths.

A number of algorithms were proposed to deal with routing problems, for instance

Dijkstra’s algorithm and the A-Star algorithm for the SP problem, Yen’s algorithm,

Martins’ algorithm, and Eppstein’s algorithm for the KSP problem, etc.

1.2.2 Traffic Assignment Modeling

Forecasting traffic flows on the links of a transportation network with given traffic

demands includes three major steps. The first step is to investigate the charac-

teristics of the traffic system as well as the behaviors of drivers. Based on that

information, a number of assumptions are proposed. The second step is to formu-

late all the assumptions as a complete mathematical programming problem, that

can be solved by a suitable method. The last step is to evaluate the model by com-

paring the optimal solution of the mathematical programming problem with real

traffic data.

For instance, the all-or-nothing (AON) model is based on the assumption that drivers

choose a shortest path from a source node to a destination node with respect to only

the lengths of possible paths. The model, however, does not take the possible traffic

delay time into account. This is considered as the biggest disadvantage of the AON

model.

Another well known model is the user equilibrium (UE) model which is based on

the first principle of Wandrop [67] that drivers choose the best path in terms of

traveling time, i.e. the traveling times of all the used paths between two nodes are

the same and less than those of any unused possible path. Due to the similarity

between the principle and real driving behaviors, a number of UE-based models

have been proposed, such as the stochastic user equilibrium and the dynamic user

equilibrium models. These models are included in most of modern traffic planning
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software. Since UE models are formulated as constrained continuous programming

problems, they can be solved efficiently by the Frank-Wolfe algorithm [27], that was

significantly improved by LeBlanc et al. [46] with a grouping technique.

Developing TA models for standard traffic systems, which contain mainly one kind

of vehicle or many kinds with dedicated lanes for each, is significantly simpler than

those for mixed traffic systems where vehicles of various kinds travel together on

the same lanes. It results from the complexity of the characteristics of mixed traffic

flows and the differences in routing behaviors of drivers.

1.2.3 Map Visualization

Working on TAM requires visualization tools, which can simulate all map objects on

computers, e.g. nodes, links, and intersections, such that it is convenient to manage

the properties of objects and to comprehend the computational results of TA models.

In the scope of this thesis we investigate a software, named TranOpt Plus, strongly

supporting map visualization. The current version has three major features: map

editing, dynamic routing, and traffic assignment modeling.

One of the most challenging tasks in map visualization is to find a proper data

structure for representing large maps, that may contain millions of objects. A proper

data structure should not consume too much storage and it must provide quick

access to map objects. Displaying a large number of objects in a short time is also a

challenge. In order to avoid technical difficulty in computer graphic, we employ the

Qt—a cross-platform application framework for building software, that can run on

various kinds of hardware platform, e.g. Windows, Linux, OS X, and Unix-like. Qt

provides various graphical libraries which can handle efficiently large graphs with

millions of objects. We also use other open-source graphics libraries, such as the

MapGraphics library for importing map images and the QCustomPlot library for

data visualization.

Since we aim at working on real street maps of cities worldwide, it is important to

possess a feature for data importing, so that we can utilize available map resources,

such as OpenStreetMap or Google map.

1.3 Outline and Contributions

The thesis is divided into 8 chapters. While this chapter provides a brief introduc-

tion on the problems and the methods, the next chapter, i.e. Chapter 2, gives the

background knowledge needed in later chapters. Chapter 3 introduces the classical

shortest path (SP) problem where only a shortest path is determined. The chapter

also gives the details of two well known algorithms for the SP problem: Dijkstra’s

and A-Star algorithms. They are used widely in a number of algorithms proposed

for the KSP problem, that is investigated in Chapter 4. Chapter 5 investigates



1.3. OUTLINE AND CONTRIBUTIONS 5

traffic assignment modeling with emphasis on the user equilibrium model. After

introducing mathematical formulations and methods for solving the UE model, a

new UE model for mixed traffic systems is proposed along with a mathematical

method for solving the new model. In Chapter 6 the new model is examined on

the traffic system in Hanoi with collected data including the results of the new on-

line survey on traffic behaviors in Vietnam. Chapter 7 introduces a new software,

named TranOpt Plus, that has three main features: graph editor, dynamic routing,

and traffic assignment modeling. The last chapter, i.e. Chapter 8, is for conclusions,

discussions, as well as the perspective of further works. While Appendix A provides

the list of the map instances used in all experiments in the thesis, Appendix B gives

the details of computational results.

Our major contributions in this doctoral thesis are summarized as follows.

Two heuristics for KSP problems: We propose a new heuristic, named HELF,

that is based on Eppstein’s algorithm using loop-filters for the KSLP problem.

The HELF dominates the other examined methods in terms of running time.

A new TA model for mixed traffic systems: The new user equilibrium traffic

assignment model, named GUEM, supports strongly for mixed traffic systems,

especially mixed traffic systems dominated by motorcycles. In the new model,

the traffic demand and the potential paths between each origin-destination

pair of zones are separated according to vehicle kinds. The model ensures

that there exists a user equilibrium for each kind of vehicle. Moreover, it can

be solved efficiently by the Frank-Wolfe algorithm with an improvement of

LeBlanc et al.

A case study in Hanoi Vietnam: In order to run the new model GUEM on the

traffic system in Hanoi, we do not only collect the available data resources, but

also launch an online survey on traffic behavior of drivers living in urban areas

in Vietnam. The survey has 316 participants by September 15, 2015. New

formulas for estimating the parameters of the BPR traveling time function,

applying on roads in Hanoi, are investigated with promising computational

results. Finally, the GUEM model is examined on the traffic system in Hanoi

with all the collected data and the BPR function using new calibrated param-

eters. The computational results proves the model to be highly accurate. This

opens a large number of further applications in traffic planning particularly in

Hanoi and generally in other cities with mixed traffic systems.

The TranOpt Plus software: The software, programmed in C++ since 2013, has

three major features, namely map editing, dynamic routing, and traffic assign-

ment modeling. Various routing algorithms and traffic assignment models, in-

cluding the new routing heuristics HELF, HELSF, and the new model GUEM,
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are implemented and embedded into TranOpt Plus. Moreover, the software

provides a framework for further map-based applications, especially for those

in traffic planning.



Chapter 2

Preliminaries and Terminologies

This chapter provides background knowledge and terminologies needed in the later

chapters. In the first section, i.e. Section 2.1, we introduce basic definitions of sets

and vector spaces. Section 2.2 discusses complexity theory, that is important for

evaluating algorithms. Section 2.3 introduces briefly graph theory, while Section 2.4

investigates priority queues and its efficient implementations: heaps. Optimization

problems are introduced in Section 2.5 with emphases on the first-order optimality

conditions and the Frank-Wolfe algorithm. The last section, i.e. Section 2.6, is spent

on traffic assignment modeling, where a number of popular models are reviewed.

More details of the topics covered in this chapter can be found in the following

materials.

1 T.H. Cormen, Introduction to algorithms. MIT press, 2009, [15].

2 B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms,

fifth edition, Springer, 2011, [45].

3 J. Nocedal and S.J. Wright, Numerical Optimization, second edition, Springer,

2006, [56].

4 Y. Sheffi, Urban Transportation Networks: Equilibrium Analysis with Mathemat-

ical Programming Methods. Prentice-Hall, Inc., Massachusetts Institute of

Technology, 1985, [60].

2.1 Sets and Vector Spaces

A set is a collection of distinguishable elements, also called components, e.g. the set

of natural numbers N = {0, 1, 2, . . .}. If an element e is in a set D, it is written as

e ∈ D. The number of elements of D is denoted as |D|. A set without any element

is the empty set, denoted ∅. A set C is a subset of a set D, denoted C ⊆ D, if

every element of C is also an element of D, i.e., e ∈ C implies e ∈ D.

7
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A vector is a collection of ordered elements. We denote vector A of size n as

A = (a1, a2, . . . , an). The n-dimensional vector space Rn, where n ≥ 1, is the set

of vectors of n real numbers, i.e.

Rn = {(r1, r2, . . . , rn) | ri ∈ R, i = 1, 2, . . . , n}.

A set of points P ⊂ Rn is a convex set if, for all x, y in P and all α in the interval

[0, 1], the point αx+ (1− α)y is also in P .

2.2 Complexity Theory

In mathematics and computer science, an algorithm is a set of rules or operations

to be performed for solving a problem. In order to evaluate an algorithm in terms of

running time, a function is investigated to express how fast the running time of the

algorithm grows as the size of the input increases. This function is called the time

complexity of the algorithm or complexity for short. The complexity function of

an algorithm is based on the number of basic operations needed to implement the

algorithm, e.g. plus, divide, multiply, assignment, comparison, and jump. For the

purpose of estimating the worst case, or an upper bound, of the running time of an

algorithm, the big-O notation is used. We have f(n) = O(g(n)) if there exist two

positive constants α ∈ R+ and n0 ∈ N, such that f(n) ≤ αg(n) for all n ≥ n0. A

polynomial time algorithm is an algorithm with the time complexity function

f = O(g) for some polynomial function g.

The space complexity of an algorithm is a function for estimating the growth of

the memory space needed by the algorithm for performing on computers. The big-O

notation is also used to estimate the worst case of space complexities.

2.3 Graphs

A graph is a mathematical concept with a wide range of applications, e.g. routing

problems, the traveling salesman, and logistic problems, etc. In this section we

introduce not only basic definitions in graph theory but also the graph representation

and trees—a special type of graph.

2.3.1 Definitions

A graph is a set of two basic finite sets: the set of nodes V and the set of links E. It

is normally denoted as G(V,E). A node of a graph is also called vertex or end-point.

Each node can have one or many attributes, e.g. name, capacity, and location, etc.

A link, also called an edge or an arc, is a connection between two nodes.
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(a) Undirected graph

u1 u2

u3

u4

u5

3

5

2

3

2

2

3

2

2

(b) Directed graph

Figure 2.1: Examples of graphs.

Given a graph G(V ,E), we say that G is a subgraph of a graph G(V,E) if V ⊆ V

and E ⊆ E. A node vj ∈ V is an adjacent node of a node vi ∈ V if there is a

link connecting them. The degree of a node vi, denoted as deg(vi), is the number

of links incident to vi. The maximum degree of a graph is the maximum degree

of its nodes.

A link with an associated direction is a directed link. The directed link from a

node vi to a node vj is denoted as (vi, vj), eij or simply (i, j) without any misunder-

standing. Each link has its attributes, e.g. the source node, the destination node,

the length, the flow, and the capacity. The length (or so-called weight) of a link

(vi, vj) is denoted as w(vi, vj) or wij.

A graph is said to be connected if for any pair of nodes of the graph, there exists

a path connecting them. Graphs without any directed links are called undirected

graphs, otherwise they are directed graphs (or digraphs). Figure 2.1 (a) shows

an example of an undirected, connected graph, while Fig. 2.1 (b) shows an example

of a directed graph where the length of each link is given.

A path, say p, from a source node s to a destination node t is a sequence of nodes,

e.g. p = (v1, v2, . . . , vk−1, vk), where v1 = s, vk = t, and (vi, vi+1) ∈ E for all

i = 1, . . . , k − 1. The length of the path p is defined as the total length of its links,

i.e. W (p) =
∑
e∈p

w(e). A path p from s to t is called a shortest path if its length

is not greater than that of any other possible path from s to t, i.e. p ∈ Pst and

W (p) ≤ W (q) for all q ∈ Pst. A cycle (or loop) is a path whose the destination

node is also the source node, e.g. (s, v2, v3, . . . , vl, s). A cycle with a negative length

is called negative cycle (or absorbent cycle). Paths without cycles, i.e. no repeated

nodes, are called loop-less paths. The number of links on a path p is denoted

as |p|. A path p is finite if |p| is finite, otherwise, p is an infinite path. The set of

all possible paths from s to t is denoted as Ps,t.

Given two paths p1 = (e1, e2, . . . , eh) and p2 = (l1, l2, . . . , lk), the similarity, denoted

as S(p1, p2) and the dissimilarity, denoted as D(p1, p2), between p1 and p2 are
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defined as

S(p1, p2) =
1

2

(
W (p1 ∩ p2)

W (p1)
+
W (p1 ∩ p2)

W (p2)

)
and D(p1, p2) = 1− S(p1, p2),

where W (p1 ∩ p2) is the total length of the common links of p1 and p2. When the

destination node of p1 is the same as the source node of p2, i.e. eh = l1, the oper-

ation concatenating the two paths, named link join operation or concatenating

operation, is defined as

p1 ⊕ p2 = (e1, e2, . . . , eh, l2, l3, . . . , lk).

2.3.2 Trees

A tree is an undirected, connected graph without any cycles. There exist a unique

loop-less path connecting two nodes in a tree. A rooted tree is a tree where one

node is selected as a root node. In a rooted tree, if (u, v) is the last link on the

path from the rooted node to the node v, then u is called the parent node of v and

v is a child node of u. Each node except the rooted node has a unique parent node.

Nodes with the same parent are sibling nodes. Nodes without children are called

leaf nodes, or leaves for short. A tree where each node has at most two children is

a binary tree.

v1

v2 v3

v4 v5 v6 v7

(a) (b)

t
5

3
5

4
3

4
3 3

4

5

4

3
5

(c)

Figure 2.2: Examples of (a) a tree, (b) not a tree, and (c) a shortest path tree of a
graph.

Figure 2.2 (a) shows an example of a binary tree with the root node v1 and 4 leaves

v4, v5, v6, and v7. The node v1 is the parent node of v2 and v3, in other words, v2

and v3 are sibling nodes with the same parent v1. In turn, the node v2 is the parent

node of the leaves v4 and v5, the node v3 is the parent node of v6 and v7. Lets

denote the rooted tree in Fig. 2.2 (a) as H, then H.top() refers to the root node of

H, i.e. v1. The set of all the children of a node v on H is GetChildren(H, v),

e.g. GetChildren(H, v1)= {v2, v3}. The graph shown in Fig. 2.2 (b) is not a tree

since it contains a cycle.
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Given an undirected, connected graph G(V,E), a shortest path tree (SPT) to a

node t of the graph G, denoted as SPTT(t), is a tree and a subgraph of G with the

same set of nodes V , such that the unique path from any other node to t in the

tree is a shortest path from that node to t in G. For instance, Fig. 2.2 (c) shows a

graph with 8 nodes, the subgraph with all the nodes and all the red, bold links is a

shortest path tree to the node t of the graph.

2.3.3 Graph Representation

There are two main approaches for graph representation. In the first approach,

named adjacency matrix, information of the links of a graph G(V,E) is stored in

a |V |× |V | matrix, i.e., the information of a link (i, j) is stored in the element A[i, j]

of the adjacency matrix A. The second approach, called adjacency list, stores the

graph’s information in |V | lists. Each list consists of all the in-going links (and/or

out-going links) of a node.

Table 2.1 shows the comparison in terms of time and space complexities of the both

approaches to represent a graph G(V,E) where k is the maximum degree of the

graph. The first four rows indicate the time complexities of the approaches, while the

last row shows the space complexities. The first approach, i.e. the adjacency matrix,

has advantages in the first three operations, i.e. adding, deleting, and searching

a link, however, the second approach has advantage in the fourth operation, i.e.

counting adjacent nodes, and in space complexity when the graph G is sparse, i.e.

when the number of edges |E| is much less than |V |2.

Table 2.1: Comparison of two approaches for graph representing.

Operations Adjacency matrix Adjacency list

Adding a new link O(1) O(1)

Deleting a link O(1) O(k)

Searching a link O(1) O(k)

Counting adjacent nodes O(|V |) O(k)

Memory consumption O(|V |2) O(|E|)

2.4 Priority Queues and Heaps

Many algorithms require a data structure, that can process a large number of el-

ements regarding their comparable keys. One of the most frequently used data

structures is a heap, that is an efficient implementation of a priority queue. This

section briefly summarizes the basic facts of them.
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2.4.1 Priority Queues

A priority queue is an abstract data structure for maintaining a number of el-

ements where each of them has a comparable key, e.g. a real number. A priority

queue supports three basic operations: inserting new element, indicating and ex-

tracting an element with the optimal key. There are two types of priority queues:

min priority queues (MinPQ) and max priority queue (MaxPQ) where the

optimal keys are the smallest and the largest keys, respectively. Since every MaxPQ

can be simulated by a MinPQ, for convenience we only present MinPQs, and if no

further explanation is given, all the forthcoming priority queues are MinPQs. The

three basic operations of a (min) priority queue, say H, are described as follows.

• Insert(H, u) either inserts the element u into H or updates the key of u if u

is already in H.

• Minimum(H) indicates an element with the minimum key. If H is a heap—a

special kind of priority queue mentioned in the next subsection—the operation

is also denoted as H.top().

• ExtractMin(H) returns an element with the minimum key and removes it

from the queue.

2.4.2 Heaps

A heap data structure is an efficient implementation of a priority queue. It is

usually implemented in an array where each element is assigned to a position in the

array according to certain rules.

13

15 36

21 27 39 72

13 15 36 21 27 39 72

Figure 2.3: An example of a bi-
nary heap.

For instance, a (min) binary heap is a heap

data structure, which can be visualized as a

binary tree, such that the key of a node is not

greater than the keys of its children (if exist).

The element with the minimum key is assigned

to the root node of the tree. Figure 2.3 shows

the array and the visualization of a binary heap

with 7 elements. The element at the kth posi-

tion of the array is the parent of the two ele-

ments at (2k)th and (2k+ 1)th positions where

1 ≤ k ≤ 3. Heaps have all the basic oper-

ations of a priority queue, i.e. inserting new

element, indicating and extracting an element with the minimum key. Depending

on how these basic operations are implemented, heaps can be categorized into dif-

ferent types. Table 2.2 shows a review of three popular types of heaps with respect

to the time complexities of the basic operations and to their space complexities in
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Table 2.2: A review of three popular heaps.

Name Finding min Extracting min Inserting

Binary heap O(1) O(log n) O(log n)

Binomial heap O(log n) O(log n) O(log n)

Fibonacci heap O(1) O(log n) O(1)

implementation, where n is the number of elements. The table indicates that the

Fibonacci heap is the best one in terms of time complexity of the inserting operation.

However, the binary heap is most popular heap data structure used in applications

because of its simpleness. Since heaps are the most efficient implementations of

priority queues, it is common that priority queues imply heaps.

2.5 Optimization Problems

In this section a basic introduction of optimization problems (OPs) is given in four

subsections. In Subsection 2.5.1 we give notations and mathematical formulations

of OPs. The next two subsections focus on constrained continuous optimization

problems, that are mentioned in Chapter 5 to prove the existence of an equilibrium

of traffic assignment models. Subsection 2.5.2 is about the first-order optimality

conditions for both constrained and unconstrained problems, while Subsection 2.5.3

presents the Frank-Wolfe algorithm—a well known algorithm for solving large-scale

OPs. Subsection 2.5.4 introduces combinatorial optimization—an area in discrete

optimization with a large number of applications.

2.5.1 Introduction

An optimization problem (OP) is to minimize or maximize a given objective

function over a set of variables. In order to make a problem clear and well defined,

a mathematical formulation is investigated. We use the following notations for the

forthcoming OPs.

• x = (x1, x2, . . . , xn) is the variable vector.

• z : Rn → R is the objective function to be minimized or maximized of a

problem.

• gi : Rn → R and hj : Rn → R are constraint functions, that define the

constraints of the problem. These constraints are normally given as gi(x) ≥ 0

or hj(x) = 0. The set of vectors, that satisfy all the constraints, is the feasible

region of the problem.
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The general mathematical formulation of an OP is

Minimize z(x)

Subject to gi(x) ≥ 0 ∀i ∈ I
hj(x) = 0 ∀j ∈ J,

where I and J are the finite sets of indices of inequality constraints and equality

constraints, respectively. Since a maximization problem can be transformed into a

minimization problem by replacing the objective function z(x) by −z(x), for conve-

nience we only use the minimization formulation to describe optimization problems.

Problems whose variables vary continuously in R, i.e. x ∈ Rn, are called continuous

optimization problems. However there are also problems whose variables are in

sets of non-continuous values, such as a set of integers, a set of natural numbers,

or a set of permutations of events, etc. Such problems belong to the concept of

discrete optimization. Especially, if all the variables of a discrete optimization

problem receive only integer values, i.e. x ∈ Zn, the problem is called integer

programming problem (IP).

When the objective function and all the constraint functions of a problem are linear,

the problem is called linear programming problem or linear program (LP) for

short. The canonical formulation of an LP is as follows.

Minimize cTx

Subject to Ax ≤ b

x ≥ 0,

where c ∈ Rn, A ∈ Rm×n, and b ∈ Rm.

Given an OP over a feasible region ω, a vector x ∈ ω is a local solution of the OP

if there exists a neighborhood E of x, such that f(x) ≤ f(y) for all y ∈ ω ∩ E. An

OP may have one or many local solutions. If z(x) ≤ z(y) for all y ∈ ω, then x is a

global solution of the problem.

A function z, defined on a convex set of points ω, is convex if

z (αx1 + (1− α)x2) ≤ αz(x1) + (1− α)z(x2) for all 0 ≤ α ≤ 1, and x1, x2 ∈ ω.

Minimization problems where the objective function is convex and the feasible region

is a convex set, are called convex minimization problems (CMP). An important

property of a CMP is that any local solution must be a global solution. Figure 2.4

(a) shows an example of a minimization problem with non-convex objective function

on the range [0, 5] having two local solutions y1 and y2. In Fig. 2.4 (b), a convex

minimization problem has only one local solution x2 and it is also the global solution.
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Figure 2.4: Examples (a) minimization problem with two local solutions and (b) a
convex minimization problem with the unique local solution.

2.5.2 The First-Order Optimality Conditions

Given an OP problem without constraints, i.e. minimize z(x) where x ∈ Rn, the

most well known optimality conditions are the first-order conditions which state

that if the function z has a local minimum at x∗ then the gradient of z with respect

to x equals zero at x∗, i.e.

∇xz(x∗) =

(
∂z(x∗)

∂x1

,
∂z(x∗)

∂x2

, . . . ,
∂z(x∗)

∂xn

)
= 0.

The first-order conditions are more complicated when constraints are added to the

problem, i.e.

Minimize z(x)

Subject to gi(x) ≥ 0 ∀i ∈ I
hj(x) = 0 ∀j ∈ J.

The first-order conditions for constrained optimization problems are well known as

Karush-Kuhn-Tucker (KKT) conditions, that were discovered by W. Karush

and published by H.W. Kuhn and A.W. Tucker. The KKT conditions state that if

all the functions gi and hj are continuously differentiable at a local minimum point

x∗, and a number of regularity conditions (mentioned below) are satisfied then there

exist µi and λj, such that∑
i∈I

µi∇gi(x∗) +
∑
j∈J

λj∇hj(x∗) = ∇z(x∗) (KKT)

µigi(x
∗) = 0, ∀i ∈ I (2.1)

µi ≥ 0, ∀i ∈ I. (2.2)
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Constraints (2.1) are called complementary slackness, and µi are called dual

variables. A number of regularity conditions have been proposed, two of them

are described as follows.

Linearity constraints: when gi(x) and hj(x) are affine functions, i.e., they are

composed of a linear function and a constant, e.g. g(x) = Ax+ c.

Linear independence: At x∗ the gradients of the functions hi and those of the

active constraints gi at x∗, i.e. gi(x
∗) = 0, are linearly independent.

When gi(x) and hj(x) are linear functions and the objective function z(x) is strictly

convex, the problem is called a linear constrained convex minimization (LCCM)

problem. In an LCCM problem, the first mentioned regularity condition, i.e. the

linearity constraints, is satisfied, therefore if the KKT conditions are satisfied at a

point, then that point is a global minimum of the problem. The general formulation

of an LCCM problem is described as the following program.

Minimize z(x) (GLCC)

Subject to
n∑
i=1

lijxi = bj ∀j ∈ J (2.3)

xi ≥ 0 ∀i = 1, 2, . . . , n. (2.4)

If x∗ is the minimum point of program GLCC, applying the KKT conditions at x∗

with gi(x) = xi and hj(x) =
n∑
i=1

lijxi − bj we have

µi +
∑
j∈J

(λjlij) =
∂z(x∗)

∂xi
∀i = 1, 2, . . . , n

µix
∗
i = 0 ∀i = 1, 2, . . . , n

µi ≥ 0 ∀i = 1, 2, . . . , n.

These equalities and inequalities can be rewitten as

x∗i

(
∂z(x∗)

∂xi
−
∑
j∈J

(λjlij)

)
= 0 ∀i = 1, 2, . . . , n, (2.5)

∂z(x∗)

∂xi
−
∑
j∈J

(λjlij) ≥ 0 ∀i = 1, 2, . . . , n. (2.6)

In summary, at the global minimum point of program GLCC, constraints (2.3),

(2.4), and the KKT conditions (2.5), (2.6) are satisfied.
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2.5.3 The Frank-Wolfe Algorithm

In the previous subsections LCCM problems and the general formulation GLCC for

them, as well as the KKT conditions have been presented, this subsection intro-

duces a well known algorithm proposed by Frank and Wolfe [27]. The algorithm is

known under different names, such as the Frank-Wolfe algorithm, the conditional

gradient algorithm, the reduced gradient algorithm, and the convex combination al-

gorithm. The Frank-Wolfe algorithm can be used to solve a general constrained

convex minimization problem, however, in this thesis we only consider LCCM prob-

lems formulated as GLCC.

The idea of the algorithm is to find a better feasible point in a neighborhood of the

current feasible point. After a number of iterations, a sequence of feasible points

approaching the global solution is obtained. Let us assume that the current feasible

point is x1. In order to determine a better feasible point x2 in a neighborhood of

x1, a reducing direction is investigated by using Taylor’s expansion. Suppose that

y is a point in the neighborhood of x1, according to Taylor’s expansion we have

z(y) ≈ z(x1) +∇z(x1)(y − x1).

This means that

z(y) ≈ ∇z(x1)y + z(x1)−∇z(x1)x1.

Because z(x1) − ∇z(x1)x1 is constant, a better solution in the neighborhood of x1

can be obtained by solving the minimum program with respect to the variable y as

follows.

Minimize f(y) = ∇z(x1)y, (2.7)

where y satisfies constraints (2.3) and (2.4) of GLCC. Since 2.7 is a linear program,

it can be easily solved by an existing algorithm, e.g. the simplex algorithm. Let y1

be the optimal solution of 2.7. The vector d = y1 − x1 is a reducing direction.

Because all the constraints of GLCC are linear and x1, y1 are feasible points, x1 +αd

for any α ∈ [0, 1] is also a feasible point of GLCC. This leads to a subproblem,

named one-dimensional minimization problem as follows

Minimize z(x1 + αd) (2.8)

Subject to α ∈ [0, 1].

There are a number of efficient algorithms for 2.8, such as golden section, Fibonacci

search, and polynomial interpolation methods. If α∗ is the optimal solution of 2.8,

then x2 = x1 + dα∗ is the best feasible solution in the neighborhood of x1. Re-

peating the same steps will return a sequence of efficient solutions {x1, x2, . . . , xk}
approaching to the global solution x∗ of GLCC.
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Moreover, according to Taylor’s expansion we have

z(x∗) ≈ z(xk) +∇z(xk)(x
∗ − xk) + 0.5∇2z(xk)(x

∗ − xk)2. (2.9)

Because z is a convex function, we have ∇2z(xk)(x
∗ − xk)

2 ≥ 0. This and (2.9)

imply that

z(x∗) ≥ z(xk) +∇z(xk)(x
∗ − xk). (2.10)

Since yk is the minimum of ∇z(xk)y, ∇z(xk)x
∗ ≥ ∇z(xk)yk holds. From (2.10) we

have

z(x∗) ≥ z(xk) +∇z(xk)(yk − xk).

This means z(xk) +∇z(xk)(yk − xk) is a lower bound on z(x∗). It holds that

z(xk) ≥ z(x∗) ≥ z(xk) +∇z(xk)(yk − xk) for all k ≥ 1. (2.11)

Inequalities (2.11) imply that the Frank-Wolfe algorithm can be stopped at the

iteration k if ∇z(xk)(yk − xk) is less than a given value.

In summary, the FWA starts from a feasible point, say x0, and determines a sequence

of feasible points, that approach the global solution. If xi is the current feasible point

where 0 ≤ i, then the next feasible point, i.e. xi+1 is determined by two major steps

as follows.

• Step 1 (reduction direction): solving the program 2.7 and get the optimal

solution yi, i.e., yi = arg min∇z(xi)y. The vector d = yi − xi is a reducing

direction.

• Step 2 (one-dimension search): investigating the optimal solution α∗ of the

program 2.8, i.e., α∗ = arg min
0≤α≤1

z(xi + αd). The next feasible point is deter-

mined as xi+1 = xi + dα∗.

2.5.4 Combinatorial Optimization

Combinatorial optimization is an area in discrete optimization where an optimal

solution must be identified from a finite set of solutions. Combinatorial optimization

covers a wide range of real problems, such as routing, network design, the travel-

ing salesman, and facility location problems. Most of combinatorial optimization

problems can be formulated as graph problems, that can normally be well defined

as integer programs (IP) and be solved by an IP solver.

An example of combinatorial optimization problem is the shortest path (SP) prob-

lem, that is to find a possible path with the minimum length on a given graph

G(V,E) from a given source node s to a given destination node t. The SP problem
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can be formulated as an IP as follows

Minimize
∑

(i,j)∈E

wijxij (2.12)

Subject to
∑
j

xij −
∑
k

xki =


1 if i = s

−1 if i = t

0 otherwise

∀i ∈ V (2.13)

xij ∈ {0, 1} for all (i, j) ∈ E, (2.14)

where wij is the length of the link (i, j) and the each variables xij receive either the

value 1, if (i, j) is on the determined shortest path from s to t, or 0 in other cases.

Constraints (2.13) are so-called the flow constraints. The optimal solution of the

SP problem can be found by solving its IP formulation using an IP solver, however,

there are also dedicated efficient algorithms for the problem, such as Dijkstra’s al-

gorithm and A-Star algorithm. The details of these algorithms will be discussed in

Chapter 3.

2.6 Traffic Assignment Modeling

Traffic assignment modeling (TAM) is the problem of forecasting traffic flows

on the links (roads) of a given transportation network with given travel demands

between each pair of population zones. It plays a key role in urban traffic plan-

ning. In this section we introduce shortly basic knowledge of TAM and it will be

investigated deeply in Chapter 5. In Subsection 2.6.1 a number of definitions and

terminologies for traffic systems are presented including a review of traveling time

functions. Subsection 2.6.2 gives an overview of popular traffic assignment models

with an emphasis on the user equilibrium model, that is the most well known model

being used in traffic planning.

2.6.1 Introduction

The traffic flow on a link corresponds to the average number of vehicles passing

a certain point on the link within a specified time interval, e.g. 12 cars pass the

entrance point of the link within every 10 seconds. A free flow on a link is a

possible flow when vehicles do not interact with each other, such that they can run

as freely as without other vehicles. Traffic flows are measured in a flow unit, that

usually corresponds to one vehicle of the most common kind of vehicles in the traffic

system. For instance, in a traffic system containing mostly cars, the traffic flow unit

should be the passenger car unit (PCU). Similarly, the motorcycle unit (MCU)

should be the flow unit for traffic systems containing mostly motorcycles. In the
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case of mixed traffic systems (MTS), i.e. traffic systems consist of various kinds

of vehicles traveling together without dedicated lanes for each kind, it is necessary to

estimate the equivalent value of each kind of vehicle in the flow unit corresponding

to a given kind of vehicle. For instance, in an MTS consisting of cars and motorcycles

where MCU is chosen to be the flow unit, in order to estimate the flows on the links,

the equivalent value of a car in MCU must be investigated, e.g. one car equals

3.67 MCU. The equivalent value of a vehicle is normally depended on the physical

characteristics of the vehicle, such as the size, the speed, the acceleration, and the

safety distance to others.

The link capacity of a link is the maximum traffic flow on the link, such that

some conditions are satisfied. For instance, the steady capacity of a link is the

maximum steady-state flow on the link, i.e., the capacity of the point on the link

with the minimum capacity. This point is usually the end point (at an intersection)

or a bottle-neck point on the link. The practical capacity of a link is defined as

the maximum traffic flow, that can go through the link, such that there is no dense

traffic or congestion.

The traveling time on a link depends on many factors, e.g. the capacity of the

link, the traffic flow, and geographical shape of the link, etc. Given a link, the

relationship between traveling time and the traffic flow on the link is called under

different names, e.g. traveling time function, travel cost function, and speed-

flow equation. Branston [8] gave a good review of traveling time functions by 1976

summarized shortly in Table 2.3 with an addition of the conical volume-delay

function proposed by Spiess [62]. Each of proposed functions is based on some

certain observations and data. Thus, they may be accurate for estimating traveling

time on some specific kinds of links where the data was collected and the observations

are made, but may not really accurate on links with different characteristics.

Table 2.3: Overview of a number of popular traveling time functions.

Type Authors Comment

N -line Irwin, Dodd, Cube [41]
Simple, but hard to identify with-
out data

Curvilinear
Smock [61], Soltman

Expensive in computation
Overgaard [57]

Logarithmic
Mosher [54] Not suitable for iterative assign-

mentsexponential

BPR
BPR (USA) [9] Simple, easily and quickly inte-

grable. Suitable for UE modelsSteenbrink [63]

Conical Spiess [62]
Simple, easily and quickly inte-
grable. Suitable for UE models
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The function, that is most accepted in general, is the BPR function, which has

been developed by the Bureau of Public Roads (USA) [9]—one of the former sections

of the Federal Highway Administration. The BPR function computes the traveling

time on a link as

t(x) = T0

(
1 + ρ

( x
Cp

)β)
, (2.15)

where ρ, β are the parameters suggested by BPR engineers to be 0.15 and 4 without

explanation, T0 is the traveling time at free flow, and Cp is the practical capacity of

the link.

In TAM, each of traffic assignment (TA) model has its own assumptions about rout-

ing behaviors of drivers or about transportation networks. The principles proposed

by Wardrop [67] are widely used in TAM as basic traffic assumptions.

Principle 2.6.1. (Wandrop’s first principle) The journey times in all routes

actually used are equal and less than those which would be experienced by a single

vehicle on any unused route. Each user non-cooperatively seeks to minimize his cost

of transportation.

Principle 2.6.2. (Wandrop’s second principle) At equilibrium the average

journey time is minimum. This implies that each user behaves cooperatively in

choosing his own route to ensure the most efficient use of the whole system.

2.6.2 A Review on Popular TA Models

In the literature of traffic planning, many TA models have been proposed. Each

is based on different certain assumptions. A number of models can be applied

to various kinds of traffic systems, some others are developed for a specific traffic

system. In this subsection some popular TA models, that are widely used in traffic

planning, are briefly summarized.

One of the simplest models is the all-or-nothing (AON) model, which is based on

the assumption that drivers choose a shortest length path to travel without con-

sidering other factors. This assumption is reasonable in sparse and uncongested

transportation networks where the traveling time on a link is approximately propor-

tional to the distance of the link. However, in traffic systems where traffic congestion

occurs frequently, a shortest path in terms of length may take more traveling time

than other paths with less traffic flow do. In such traffic systems, the AON model

does not describe exactly the routing behavior of drivers. The AON model can be

solved by assigning all the traffic demands of each origin-destination (O-D) pair

to a shortest path connecting them.

In the incremental model, the traffic demands are assigned on separated steps.

On each step, a part of the traffic demands is assigned to the network based on the

AON model. However, drivers in each step choose the best path in term of traveling
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time instead of length of the path. This means drivers choose the path with shortest

traveling time according to the current traffic flows on the links in the current step.

After each step, the traveling time on each link is updated according to the current

traffic flow on the link. The more traffic demands are assigned on a path, the more

traveling time it takes on that path, thus drivers would not choose a path with a

large traffic flow. This model does not yield an equilibrium, since it depends on

the order of O-D pairs to be assigned, and also on the amount of demand to assign

in each step. Thus, it is difficult to evaluate this model, however, the incremental

model is closer to the real routing behavior than the AON model since it takes the

traffic flows on the links into account while the AON does not.
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Figure 2.5: An example of the user equilibrium model.

Traffic assignment models satisfying the first principle of Wardrop are called user

equilibrium (UE) models since they approach to an equilibrium by drivers, i.e., all

drivers travel on a shortest traveling time path and they are not willing to change

their paths. This assumption is close to the real traffic routing behavior, thus it is

used widely in modern TA models. There are a number of models, developed from

the UE model, such as the stochastic user equilibrium model and the dynamic user

equilibrium model.

Figure 2.5 shows an example of the UE model on a transportation network containing

only cars. There are three possible paths from s to t with the traveling time t1(x1),



2.6. TRAFFIC ASSIGNMENT MODELING 23

t2(x2), and t3(x3) where x1, x2, and x3 are the number of cars on the first, the

second, and the third paths, respectively. The number of traffic demands between s

and t is Dst = 1000 PCU, i.e. there are in average 1000 cars traveling from the origin

s to the destination t every hour. Drivers choose one of the three possible paths to

travel, such that their traveling time is minimum. The optimal solution is x1 ≈ 460

PCU, x2 ≈ 540 PCU, and x3 = 0 PCU. The traveling times on the first path and

second path are equal (around 260 seconds) while the traveling time on the third

path is 300 seconds. No drivers choose the third path to travel since its traveling

time is larger than those of other paths even when its traffic flow is free. Because all

the drivers (either on the first path or on the second path) have to spend the same

amount of traveling time from s to t and that is less than those on the third path,

they are not willing to change their path to another possible path. This means the

system has an equilibrium according to the drivers.

Traffic assignment models satisfying the second principle of Wardrop are called

system optimal (SO) models. All SO models reach to a system equilibrium when

all the drivers cooperate with each other, so that the total traveling time of all the

drivers in the system is minimum. This assumption does not reflect the real traffic

behaviors in many cases, however, it can be applied to traffic systems where drivers

are willing to follow instructions of a traffic controlling center. The model is also

used to estimate a lower bound on the total traveling time of drivers on the system

assigned by other models.





Chapter 3

Shortest Path Problem

This chapter presents the classical shortest path (SP) problem, that has a wide range

of applications in both research and real-world problems. Various algorithms for the

SP problem have been proposed. Among them, Dijkstra’s and A-Star algorithms

are most investigated due not only to their efficiency but also to their ability to be

implemented from two directions. Algorithms for the SP problem mentioned in this

chapter are also reused frequently in a number of algorithms for the k shortest paths

problem presented in Chapter 4.

The chapter is divided into 6 sections. Section 3.1 gives a general introduction on

the SP problem including a review of popular algorithms for it. Section 3.2 and

Section 3.3 present algorithms following the one-directional and the bidirectional

approaches, respectively. A comparison between the implementations of various

algorithms on real city maps is also presented in Section 3.4. Section 3.5 introduces

routing methods on large maps and the last section, i.e. Section 3.6, are conclusions.

3.1 Introduction

Given a graph G(V,E), the SP problem is to find a path in G with the shortest

length (weight) from a given source node s to a given destination node t, i.e.

Minimize W (p)

Subject to p ∈ Pst,

where Pst is the set of all possible paths from s to t and W (p) is the length of the

path p. As mentioned in Subsection 2.5.4, the SP problem can be formulated as an

IP and solved by an IP solver, however, in this thesis we investigate some dedicated

algorithms for it.

If the graph is connected, then there is always a finite shortest path between any

pair of distinct nodes. This is stated in Theorem 3.1.1.

25
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Theorem 3.1.1. Given a connected graph G(V,E), there is a finite shortest path

from a source node s to a destination node t if and only if there are no negative

cycles in the graph G.

Proof. Firstly, we prove that if there is a finite shortest path from s to t, say p∗,

then there are no negative cycles in G. Indeed, for a proof by contradiction, we

assume that there is a negative cycle c = (v1, v2, . . . , vl, v1), i.e. W (c) < 0. Because

G is connected, there is a path from s to v1, say p1, and a path from v1 to t, say p2.

The path p = p1 ⊕ p2 is also a possible path from s to t, thus W (p) ≥ W (p∗). Let

k =

⌈
W (p)−W (p∗)

|W (c)|

⌉
,

where dxe gives the next bigger integer of x. The path defined as

p̄ = p1 ⊕ (c⊕)h ⊕ p2

is a path from s to t including h > k times the cycle c. We have

W (p̄) = W (p1) +W (p2) + kW (c) < W (p∗).

We can create a sequence of paths from s to t with decreasing lengths, and all of

those are less than the length of p∗. This conflicts with the assumption that p∗ is

the path with smallest weight. Hence, there is no negative cycle in G.

Secondly, if there are no negative cycles in G, we prove that the kth shortest path is

finite, where k ≥ 1. Indeed, if there are no cycles in G, then the number of nodes

of any path from s to t does not exceed |V |. This means that all the possible paths

are finite. If G contains (positive) cycles, let c = (v1, v2, . . . , vl, v1) is a cycle in G,

then we have a list of k finite paths D = {qi = p1 ⊕ (c⊕)i ⊕ p2 | i = 1, 2, . . . , k}
where p1 is a path from s to v1 and p2 is a path from v1 to t. We have

W (q1) < W (q2) < . . . < W (qk),

thus the length of the kth shortest path, say p∗k, should not exceed W (qk). If p∗k is

infinite, then there must be a (positive) cycle, say c̄ appear on pk unlimited number

of times. This leads to W (p∗k) = +∞. This conflicts with the statement that the

length of p∗k does not exceed W (qk).

Principle 3.1.2. (Optimality Principle) If v is a node on a shortest path p from

s to t, then the subpath of p from v to t is a shortest path from v to t. In other

words, a subpath of a shortest path is also a shortest subpath.

Proof. We have p = RootP ⊕ SubP1 where RootP and SubP1 are the subpaths of p

from s to v and from v to t, respectively. For a proof by contradiction, we assume
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that there exist a path SubP2 ∈ Pvt, such that W (SubP2) < W (SubP1). Then the

path p̄ = RootP ⊕ SubP2 is also a path from s to t and

W (p̄) = W (RootP ) +W (SubP2) < W (RootP ) +W (SubP1) = W (p).

This means p is not a shortest path from s to t.

In the lectures series of H. Bast [3] a number of popular algorithms were introduced,

while in [70] Zhan gave a review on the implementations of algorithms on real

transportation networks. Table 3.1 summaries a number of existing algorithms for

the SP problem, where |V | is the number of nodes, |E| is the number of links and N

(in the scaling algorithm proposed by Gabow) is the largest graph parameter, that

is said to be smaller than |V |, see [29] for more details.

Table 3.1: Review of popular algorithms for the shortest path problem.

Algorithm name Complexity Author, Year

Bellman-Ford-Moore O(|V ||E|) Bellman [6], 1956;
Moore [53],1959; Ford [26], 1962

O(|V |2 log |V |)
Dantzig 1958, Dantzig 1960,
Minty (Pollack & Wiebenson
1960), Whiting & Hillier 1960

Floyd-Warshall O(|V |3)
Roy 1959; Floyd [25] 1962,
Warshall [68] 1962

Dijkstra with list O(|V |2) Dijkstra [17] 1959

A-Star O(|V |) Hart [37] 1968

Threshold algorithm O(|V ||E|) Glover et al. [32] 1984

Dijkstra with Fibonacci
heap

O(|E|+ |V | log |V |) Fredman & Tarjan [28] 1987

Scaling algorithm O(|E| log1+|E|/|V | |V |) Gabow [29] 1983

Topological ordering O(|V ||E|) Goldberg and Radzik [35] 1993

3.2 One-Directional Search

The one-directional search is an approach, searching from the source node (or

destination node), and then expanding the visited area around the source (or des-

tination) node until the destination (or source) node is visited. In this section,

we present the two most well known algorithms following this approach, namely

Dijkstra’s algorithm and A-Star algorithm. These algorithms cover a wide range

of applications in both academic research and real-world problems. An interesting
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characteristic of these algorithms is that they can be implemented from one direction

or from both directions. The bidirectional implementations of them are introduced

later in the next section.

3.2.1 Dijkstra’s Algorithm

Dijkstra’s algorithm was proposed by Dijkstra [17] in 1959 and has been improved

by various researchers. It is one of the best exact algorithms for the SP problem

in terms of running time and is also used as the standard algorithm for evaluating

other algorithms for the SP problem.

The idea of the algorithm is to update the distances from the source node to other

nodes via their adjacent nodes using the labeling technique. The reached nodes

are labeled as “visiting nodes” and stored in a priority queue with respect to their

current distances from the source node. Let us denote g(s, v), or g(v) for short if

there is no misunderstanding, is the current distance from the source node s to the

node v. In each iteration the node, say u, with the minimum current distance in

the priority queue is extracted from the queue and labeled as “visited node”. The

distance of a node, say v, adjacent to u is updated if it is greater than the sum of

the the distance of u and the length of the link (u, v), i.e. if g(v) > g(u) + w(u, v).

The algorithm terminates when the destination node is visited or when the priority

queue is empty. If the priority queue is empty while the destination node is not yet

visited, then the destination node is not connected to the source node.

Figure 3.1 illustrates Dijkstra’s algorithm to find the shortest path from the node v1

to the node v2. In the initial step, the current distances from v1 to other nodes are

set to infinite, but the distance from v1 to v1 is set to 0. The source node v1 is then

added to the priority queue H. In Step 1, the node v1 is extracted from the list H

and marked as visited node (in red). Then, the distances of its adjacent nodes, i.e.

v3, v4, and v5, are updated. Because g(v1, v3) = ∞ > g(v1, v1) + w(v1, v3) = 3, the

current distance from v1 to v3 is updated to 3, i.e. g(v1, v3) = 3. The node v3 is then

marked as visiting node (in light blue) and added to the priority queue. Repeating

the updating procedure for the node v4 and v5 we have g(v1, v4) = 3, g(v1, v5) = 1.

After Step 1, the priority queue H has three visiting nodes v3, v4, and v5 with their

current distances from v1 as follows: g(v1, v3) = 3, g(v1, v4) = 3, and g(v1, v5) = 1.

The node v5 is the node with minimum distance from the source node v1.

In Step 2, since the visiting node on the priority queue with the smallest current

distance is v5, it is extracted from the priority queue and marked as visited node.

The remaining steps, i.e. Step 3, Step 4, and Step 5, repeat the updating procedure

as in Step 1. The algorithm terminates at Step 5 when the destination node v2 is

visited. The shortest path tree from v1 to all visited nodes is marked in red. Based

on this tree, we can track backward to find the full shortest path from the source

node v1 to not only the destination node v2 but all the visited nodes. For example,
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Figure 3.1: Illustration of Dijkstra’s algorithm.
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the shortest path from v1 to v2 is (v1, v5, v3, v2), the shortest path from v1 to v3 is

(v1, v5, v3).

Dijkstra’s algorithm can also be used to find shortest paths from one source node

to many destination nodes on a given graph. In this case, the algorithm terminates

when the priority queue is empty or when all the destination nodes are visited.

Dijkstra’s algorithm from a source node s to a destination node t is described in

Alg. 3.1 where H is a priority queue of nodes with respect to the current distances

from the source node. Recall that the function Insert(H, v) either adds the node s

into the priority queue H if s is not on H or updates the position of node v (already

in H) as its distance changed. The function ExtractMin(H) returns the element

in H with smallest current distance, and remove it from H.

The previous node of the node v on the shortest path from the source node to v

is stored in Pre(v). By tracking backward the previous nodes of the visited nodes

on the graph, the shortest path from the source node to any visited node can be

explicitly recovered. This tracking procedure, namely RecoverPath(s, t, Pre[]),

is expressed in Alg. 3.2.

The time complexity of Dijkstra’s algorithm depends significantly on the data struc-

ture for graph representing and on the kind of the priority queue of visiting nodes.

The best known complexity of Dijkstra’s algorithm, archived by using Fibonacci

heap, is O(|E| + |V | log |V |), see [28]. The advantages of Dijkstra’s algorithm are

its simpleness and its easy implementation, therefore it is used widely in both aca-

demic research and real-world applications. It is also known as the representative

algorithm in the labeling approach for the shortest path problem. However, the

algorithm has an advantage that it have to visit all the nodes in the neighborhood

of the source node including nodes locating further from the destination node than

the source node does.
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Algorithm 3.1 Dijkstra’s algorithm for the one-to-one SP problem.

1: procedure Dijkstra(G(V,E), s, t)
2: S ← ∅ . Set of visited nodes
3: H ← ∅ . Priority queue of nodes regarding g()
4: g(v)← +∞, Pre(v)← NULL for all v ∈ V
5: g(s)← 0
6: Insert(H, s)
7: while H 6= ∅ do
8: u← ExtractMin(H) . Take out the smallest element
9: if u = t then

10: Break . Stop loop
11: end if
12: S ← S ∪ {u}
13: for all v ∈ V s.t. v 6∈ S, and (u, v) ∈ E do . Adjacent nodes of u
14: if g(v) > g(u) + w(u, v) then
15: g(v)← g(u) + w(u, v)
16: Pre(v)← u
17: Insert(H, v)
18: end if
19: end for
20: end while
21: Return RecoverPath(s, t, Pre[])
22: end procedure

Algorithm 3.2 Recover shortest path from the array of previous nodes.

1: procedure RecoverPath(s, t, Pre[])
2: p← ∅ . Empty path
3: if Pre[t] = NULL then . Two nodes are not connected
4: Return p . Return empty path
5: end if
6: i← t
7: while i 6= s do
8: p← {(Pre[i], i)} ⊕ p
9: i← Pre[i]

10: end while
11: Return p
12: end procedure
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3.2.2 A-Star Algorithm

In 1968 Hart et al. [37] proposed an algorithm, named A-Star (or A∗), that is a

generalized version of Dijkstra’s algorithm. The common idea of the two algorithms

is the labeling technique and updating current distances from the source node s

to the adjacent nodes of the visited node. Both of the algorithms terminate when

the destination node t is visited or when the queue of visiting nodes is empty.

The difference between the algorithms is in the order of nodes to visit. In each

iteration, Dijkstra’s algorithm chooses a node v to visit with respect to only the

current distance from the source node s to v, i.e. g(s, v). The algorithm does not

consider the potential distance from v to the destination node t. Thus, some nodes

staying very far from the destination node may be visited before some closer nodes.

This is said to be the disadvantage of Dijkstra’s algorithm. In order to overcome

that difficulty, A-Star algorithm requires a potential function, denoted h(v, t) or

h(v) for short, to evaluate the potential distance from a node v to the destination

node t. The function returns a lower bound on the shortest distance from a node

to the destination node. The potential function is useful for knowing whether a

node is close to or far away from the destination node. A popular lower bound

of the shortest length between two nodes is the Euclidean distance—the length of

the straight line between the nodes. The Euclidean is surely a lower bound on the

shortest length of a path from v to t. Note that the value of the potential function

at the destination node must be zero, i.e. h(t, t) = 0.

A-Star algorithm chooses nodes to visit according to the sum of the current distance

from the source node s and the lower bound distance to the destination node, i.e.

nodes are visited orderly according to the sum f(v) = g(s, v) + h(v, t). By choosing

nodes to visit with respect to the value of f(v), A-Star algorithm may not need to

visit nodes, that are very far from the destination node, thus the destination node

is possibly reached after visiting fewer nodes than those of Dijkstra’s algorithm.

s t

u

v
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6

123
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Dijkstra track

A∗ track
Euclidean distance

Figure 3.2: Tracking nodes in A-Star algorithm and in Dijkstra’s algorithm.
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Figure 3.2 shows an example of the difference in the order of nodes to visit between

Dijkstra’s algorithm and A-Star algorithm using Euclidean distance as a lower bound

on the length of the shortest length of a path connecting two nodes. Both of the

algorithms start at the source node s and then update the distance from s to the

adjacent nodes u and v, i.e. g(s, u) = 3 and g(s, v) = 5.5. Because g(s, u) < g(s, v),

Dijkstra’s algorithm chooses the node u to be the next visited node. However, it

can easily be seen that the node u is further from the destination node than s. In

other words, the direction from s to u goes away from t, and Dijkstra’s algorithm

cannot take this fact into account. A-Star algorithm considers also the Euclidean

distance from all the nodes to the destination node, i.e. h(u, t) = 12 and h(v, t) = 6.

We have f(u) = g(s, u) + h(u, t) = 15 and f(v) = g(s, v) + h(v, t) = 11.5, thus the

node v is chosen to be the next visited node, and it is actually closer to t than u.

Algorithm 3.3 A-Star algorithm for the one-to-one SP problem.

1: procedure ASTAR(G(V,E), s, t, h(v, t))
2: S ← ∅ . Set of visited nodes
3: H ← ∅ . Priority queue of nodes regarding f()
4: for v ∈ V do
5: g(v)← +∞, Pre(v)← NULL
6: f(v)← +∞
7: end for
8: g(s)← 0, f(s)← h(s, t)
9: Insert(H, s)

10: while H 6= ∅ do
11: u← ExtractMin(H) . Take out the smallest element
12: if u = t then
13: Break . Stop loop
14: end if
15: S ← S ∪ {u}
16: for all v ∈ V s. t. v 6∈ S and (u, v) ∈ E do
17: if f(v) > f(u)− h(u, t) + w(u, v) + h(v, t) then
18: f(v)← f(u)− h(u, t) + w(u, v) + h(v, t)
19: Pre(v)← u
20: Insert(H, v)
21: end if
22: end for
23: end while
24: Return RecoverPath(s, t, Pre[])
25: end procedure

A-Star algorithm to find a shortest path from a source node s to a destination node

t is described in Alg. 3.3, where h(v, t) is a potential function and other denotations

are the same as those in Alg. 3.1.
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It can be easily seen that A-Star algorithm considers more “the future”, whereas

Dijkstra’s algorithm only focuses on the present. A-Star algorithm is obviously the

same as Dijkstra’s algorithm when its potential function is equivalent to zero, i.e.

h(x, t) = 0. Therefore, in theory the complexity of A-Star algorithm equals those of

Dijkstra’s algorithm. However, its average running time for querying a number of

pairs of nodes is normally better than those of Dijkstra’s algorithm. The running

time of A-Star algorithm depends considerably on the potential function h(x), i.e. the

better lower bound the potential function h(x, t) can give, the faster the algorithm

reaches to the destination node. According to this feature, various algorithms based

on A-Star algorithm have been developed by applying different potential functions,

e.g., routing services in real transportation networks using landmark technique or

shortcut technique.

3.3 Bidirectional Search

A number of algorithms, e.g. Dijkstra’s algorithm and A-Star algorithm, visit the

source node (or destination node) first and then enlarge the visited area until the

destination node (or source node) is reached. In other words, those algorithms only

search from one direction and do nothing on the other direction. The idea of the

bidirectional search approach is to search in both directions simultaneously, i.e.

from the source node, called forward search, and from the destination node, called

backward search. When the sets of the visited nodes in the both directions meet

each other and a number of stopping conditions are satisfied, the bidirectional search

terminates. Algorithms following the bidirectional search have their own stopping

conditions.

For instance, the bidirectional version of Dijkstra’s algorithm, so-called bidirec-

tional Dijkstra, terminates when there exists a node visited from both searching

directions. The stopping conditions of bidirectional search using A-Star algorithm,

namely bidirectional A-Star algorithm, is more complex since having a visited

node in both directions does not guarantee that the shortest path is found. The

stopping conditions of bidirectional A-Star are introduced in [34].

Figure 3.3 shows an illustration of the bidirectional Dijkstra to find a shortest path

from the source node s to the destination node t. The green ball illustrates the

visited area in the forward search, while the red ball illustrates the visited area in

the backward search. The balls are enlarged simultaneously until they meet each

other at the node v4, i.e. v4 is visited in both directions. The shortest path from s

to t is the combination of the shortest path from s to v4, i.e. p1 = (s, v11, v4), and

the shortest path from v4 to t, i.e. p2 = (v4, t). In other words, the shortest path

from s to t is

p = p1 ⊕ p2 = (s, v11, v4, t).
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Figure 3.3: An illustration of the bidirectional version of Dijkstra’s algorithm.

Note that, in the forward search, the set of adjacent nodes of a node v is defined as

{y ∈ V | (v, y) ∈ E}, while in the backward search from the destination node, the

set of adjacent nodes of v is {y ∈ V | (y, v) ∈ E}.
The general structure of algorithms following the bidirectional search is described in

Alg. 3.4 where the function RecoverShortestPath() returns the shortest path

based on the information from both the searching directions. In each direction there

is a set of the visited nodes and a priority queue of the visiting nodes. Hf and Sf
are the priority queue of the visiting nodes and the set of the visited nodes in the

forward search, respectively. Similarly, Hb and Sb are the priority queue of the

visiting nodes and the set of the visited nodes in the backward search, respectively.

The stopping conditions are checked outside of the searching directions, however,

they can also be checked inside each of the directions. Both the searches can be

implemented simultaneously in two independent threads, but they must be able to

share some common data to other thread to check the stopping conditions.

Algorithm 3.5 describes the bidirectional Dijkstra where the stopping condition is

checked inside each searching direction. The common data of both directions are

the sets of visited nodes, i.e. the forward search can access to the set of the visited

nodes in the backward search and reverse. In each searching direction, whenever

a node is labeled as visited, e.g. node v, it will be checked if it was visited in the

other searching direction or not. If v was visited in the other searching direction,

the algorithm will terminate. The determined shortest path of the algorithm from

the source node s to the destination t is p = p1 ⊕ p2, where p1 is the determined

shortest path from s to v in the forward search and p2 is the determined shortest

path from v to t in the backward search.
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Algorithm 3.4 General structure of algorithms following the bidirectional search.

1: procedure BidirectionalSearch(G(V,E), s, t)
2: Sf ← ∅ . Set of visited nodes in forward search
3: Hf ← ∅ . Priority queue in the forward search
4: Sb ← ∅ . Set of visited nodes in backward search
5: Hb ← ∅ . Priority queue in the backward search
6: Initializing in the forward search and the backward search
7: Insert(Hf , s), Insert(Hb, t)
8: while Stop condition is not satisfied do

/*Steps in forward search*/
9: u← ExtractMin(Hf)

10: Sf ← Sf ∪ {u}
11: for all v 6∈ Sf and (u, v) ∈ E do
12: if Value of node v is out of date then
13: Update value of v
14: Pref (v)← u
15: Insert(Hf , v)
16: end if
17: end for

/*Steps in backward search*/
18: ū← ExtractMin(Hb)
19: Sb ← Sb ∪ {ū}
20: for all v̄ 6∈ Sb and (v̄, ū) ∈ E do
21: if Value of node v̄ is out of date then
22: Update value of v̄
23: Preb(v̄)← ū
24: Insert(Hb, v̄)
25: end if
26: end for
27: end while
28: Return RecoverShortestPath()
29: end procedure
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Algorithm 3.5 Bidirectional Dijkstra’s algorithm for point-to-point SP problem.

1: procedure BIDIJKSTRA(G(V,E), source, dest)
2: Sf ← ∅, Hf ← ∅
3: Sb ← ∅, Hb ← ∅
4: for v ∈ V do
5: gf (v)← +∞ . Distance from s
6: gb(v)← +∞ . Distance to t.
7: end for
8: Insert(Hf , s), Insert(Hb, t)

/*Steps in forward search*/
9: while Hf 6= ∅ do

10: u← ExtractMin(Hf) . Element with smallest g()
11: if u ∈ Sb then Stop . Visited in both directions
12: Hf ← Hf \ {u}; Sf ← Sf ∪ {u}
13: for all v 6∈ Sf that (u, v) ∈ E do
14: if gf (v) > gf (u) + w(u, v) then
15: gf (v)← gf (u) + w(u, v)
16: Pref (v)← u
17: Insert(Hf , v)
18: end if
19: end for
20: end while

/*Steps in backward search*/
21: while Hb 6= ∅ do
22: ū← ExtractMin(Hb)
23: if ū ∈ Sf then Stop . Visited in both directions
24: Hb ← Hb \ {ū}; Sb ← Sb ∪ {ū}
25: for all v̄ 6∈ Sb that (v̄, ū) ∈ E do
26: if gb(v̄) > gb(ū) + w(v̄, ū) then
27: gb(v̄)← gb(ū) + w(v̄, ū)
28: Preb(v̄)← ū
29: Insert(Hb, v̄)
30: end if
31: end for
32: end while
33: Return RecoverShortestPath()
34: end procedure
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3.4 Comparison and Discussion

Table 3.2 shows the comparison of the running times of Dijkstra’s and A-Star algo-

rithms following both the one-directional and bidirectional search approaches. The

column labeled “Maps” indicates the map instances of cities in Germany, Vietnam,

USA, Thailand, the Philippines, Taiwan, and Cambodia. The remaining columns are

categorized into two groups: one for the running times of Dijkstra’s algorithm and

the other for A-Star algorithm. In turn, each group has two columns: one labeled

“1 Direction” shows the running times of the algorithm following one-directional

search approach and the other labeled “Bidirectional” shows the running times of

the algorithm following the bidirectional search approach. The last row labeled

“Average” are the average running times of the algorithms on all the map instances.

The running times are in millisecond.

Table 3.2: Comparison of Dijkstra’s algorithm and A-Star algorithm following the
one-directional and the bidirectional approaches.

Maps
Dijkstra (ms) A-Star (ms)

1 Direction Bidirectional 1 Direction Bidirectional

HD-DE1k 0.2667 0.5333 0.2000 0.2000

HP-VN2k 0.4000 0.3000 0.1000 0.2000

BH-VN4k 1.6000 0.6000 0.6667 0.3333

NY-USA5k 1.6000 0.9000 1.1000 0.6000

VT-VN5k 0.8000 0.6000 0.3333 0.2667

MH-DE6k 1.2000 0.7333 0.8667 0.7333

DN-VN8k 1.4000 1.0000 0.3333 0.3333

HN-VN9k 1.8000 0.8000 0.4000 0.8667

PP-CB9k 3.0000 1.9333 0.9333 1.2000

MNL-PP12k 3.4000 2.6000 0.8000 1.2667

TP-TW21k 5.8667 3.1333 3.2000 1.7333

BK-TL22k 7.6667 5.3333 2.0667 2.4000

HCM-VN24k 10.8667 7.1333 2.7333 2.8667

Average 3.0667 1.9692 1.0564 1.0000

In the experiments, a number of pairs of nodes were randomly selected on each map

instance, and they were used to test all the algorithms, i.e., all the algorithms ran

on the same O-D pairs of nodes. In implementing A-Star algorithm we used the Eu-

clidean distance between two nodes as the lower bound on the length of the shortest

path connecting the nodes. The time for calculating lower bounds is defined as the

preprocessing time of A-Star algorithm, that is not mentioned on Table 3.2. The

results of the bidirectional search approach can be considerably improved by using

the parallel computing technique, however, we did not use the technique. Instead,
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each loop in back search is implemented after one loop in forward search. The map

instances are approximately ordered by the total number of nodes and links, i.e. the

maps at lower rows are larger than the maps at higher rows. For example, the map

in the last row, named HCM-VN24k, is the map of Ho Chi Minh City in Vietnam,

that has approximately 24 thousands of nodes. The instance named HD-DE1k is a

small map of Heidelberg city in Germany with about one thousand nodes.

It can be seen that , in most of the experiments Dijkstra’s algorithm following

the bidirectional approach has better running times than original algorithm, i.e.

following one-directional search, while the bidirectional A-Star, in some cases, has

larger running time than those of A-Star algorithm. This is the results from the

stopping conditions in the bidirectional A-Star. As we mentioned above, having

a node visited in both searching directions does not guarantee that bidirectional

A-Star terminates. Thus, the bidirectional A-Star has to take additional time for

checking all the stopping conditions. A-Star algorithm generally has better running

times than those of Dijkstra’s algorithm, in both one-directional and bidirectional

approaches. This is reasonable since A-Star algorithm allows more information from

the preprocessing to be received, while in Dijkstra’s algorithm no preprocessing step

is required. The difference increases when the size of the maps increases. The

average running time of Dijkstra’s algorithm on this map is 10.8667 milliseconds

while the average running time of A-Star algorithm is 2.7333 milliseconds (decrease

by nearly 75%).

In conclusion, the bidirectional search approach is generally better than the one-

directional search approach, in terms of running time, especially when apply to large

city maps or in complex maps. The running times of A-Star algorithm is significantly

better than those of Dijkstra’s algorithm, however, it requires a preprocessing step

and a potential function, thus A-Star algorithm is suitable in real applications where

the preprocessing step can be done once and the query time should be short.

3.5 Routing in Large Maps

Routing services in real-world applications are increasingly important. While the

size of maps can be very large, e.g. millions of nodes, the query times are expected

to be very short. For instance, in transport, when drivers update the position

continuously during the trip via the Global Positioning System (GPS) signal, they

might lose the way in some moments and the router should be able to find out an

alternative route immediately. In order to reduce the query times, most algorithms

proposed for routing on large maps require preprocessing steps. The steps may take

considerable running time varies from several minutes to even several days according

to the algorithms. The memory space required in the preprocessing step can be less

than a Gigabyte or larger than hundreds Terabytes.
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Table 3.3: Review of speed-up techniques on the map of Western Europe. Source:
Bast et al. [4].

Preprocessing Queries

Hour Gb Avg. scan Time (µs)

Dijkstra − 0.4 9300000 2550000.00

Bidirectional Dijkstra − 0.4 4800000 1350000.00

CRP 1 : 00 0.9 2766 1650.00

Arc Flags 0 : 20 0.6 2646 408.00

CH 0 : 05 0.4 280 110.00

CHASE 0 : 30 0.6 28 5.76

HLC 0 : 50 1.8 − 2.55

TNR 0 : 20 2.5 − 1.25

TNR+AF 1 : 45 5.4 − 0.99

HL 0 : 37 18.8 − 0.56

HL−∞ 60 : 00 17.7 − 0.25

Table lookup 145 : 30 1208358.7 − 0.06

In [4], Bast et al. conducted a survey on recent advances in routing algorithms on

real transportation networks. Most of them are further developed from the proposed

algorithms for the SP problem, however, the data structures and the preprocessing

play significantly important roles. Although the preprocessing steps may take con-

siderable time and space, the query times are very short, e.g. milliseconds for routing

in the whole world map. Bast et al. have collected a number of recent speedup tech-

niques in routing algorithms for real transportation networks.

Their computational results in the transportation network of Western Europe are

showed in Table 3.3. Most of the experiments were run on a single core of an Intel

X5680 3.33 GHz CPU. The first column indicates the name of the algorithm or

speedup techniques including Dijkstra’s algorithm and the bidirectional Dijkstra.

The remaining columns are divided into two groups: one labeled “Preprocessing”

contains the information of the preparing step, and the other labeled “Queries”

contains the information of queries. In turn, each group has two columns. In

preprocessing group, there are two columns namely “Hour” and “Gb” indicating

preprocessing time in hour and the memory space for storing the information in

Gigabyte, respectively. In the queries group, the column labeled “Avg. scan” indi-

cates the average number of scanned nodes for each query, while the column labeled

“Time (µs)” indicates the average query time in microsecond (µs). It can be seen

that the two versions of Dijkstra’s algorithm do not require a preprocessing step,

whereas the others take considerable time for that step. However, the average query

times of Dijkstra’s algorithm and the bidirectional Dijkstra are significantly larger
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than those of the other algorithms with the preprocessing step.

Table 3.4: A comparison of some algorithms for routing in San Francisco Bay. Source:
Goldberg [33].

Preprocessing Queries

Hour Gb Avg. scan Max scan Time (ms)

Bidirectional Dijkstra 0.0 0.5 10 255 356 27 166 866 7633.9

A-Star + Landmark 1.6 2.3 250381 3584377 393.4

Reaches + Shortcuts 11.3 1.8 14684 24618 17.4

Reaches + Shortcuts
+ Landmark

12.9 3.6 1595 7450 3.7

In another study, Goldberg [33] also presented a short overview of a number of

popular routing algorithms on the map of San Francisco Bay with 330024 nodes and

793681 links. Table 3.4 shows the computational results of the examined algorithms

including the maximum number of scanned nodes, i.e. number of visited nodes in

the worst case. All implementations are in a personal laptop with 2 GB of RAM

and dual-core 2.0 GHz processor. The meanings of columns are the same with those

of Table 3.3.

3.6 Conclusions

The shortest path problem is an important problem with a large number of appli-

cations in both academic and real-world problems. Various algorithms have been

proposed for the problem. Dijkstra’s and A-Star algorithms are the two most pop-

ular algorithms for the problem in academic research. While Dijkstra’s algorithm is

popularly used in researching and teaching, the other is used widely in real-world

applications. A-Star algorithm is obviously identical to Dijkstra’s algorithm when

it uses a potential function equal to zero, i.e. h(x, t) = 0. Both Dijkstra’s algorithm

and A-Star algorithm can be implemented in bi-directional search approach, i.e. for-

ward search from the source node and backward search from the destination node,

simultaneously.

Our experiments on real maps of cities in some countries show that, the bidirectional

versions of Dijkstra’s algorithm and A-Star algorithm are more efficient than the

original versions following one-directional approach, in terms of running times. A big

advantage of the bidirectional approach is that it visits fewer nodes than those in the

one-directional approach. Moreover, both searching directions can be implemented

simultaneously in two different threads. With a preprocessing step and a suitable

potential function, the running times of A-Star algorithm on real maps are generally

better than those of Dijkstra’s algorithm.
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In order to deal with routing on large maps, e.g. maps of countries, continents or the

whole world, a number of methods have been proposed based on existing algorithms

for the classical shortest path problem. Most of them require a preprocessing step

that may take several hours or even many days and a large memory space. Due

to the preprocessing step, the query times are cut down dramatically. In addition,

there are also a large number of speed up techniques for routing in real maps, e.g.

highway hierarchies and goal directed, but in the scope of this thesis, we do not go

into details. We focus more on routing algorithms without preprocessing steps that

can be applied efficiently on small or medium graphs with thousands of nodes.



Chapter 4

K Shortest Paths Problem

The k shortest paths (KSP) problem is an extension of the classical shortest

path problem. Instead of finding a path with the shortest length, the KSP prob-

lem aims at finding the k ≥ 1 best paths, in terms of one or a given number of

objectives, e.g. length, traveling time, and dissimilarity between paths. Although

the problem was proposed in the 1960s, it still receives significant attention from

various researchers in recent decades, since it plays an increasingly important role

in real-world applications, such as transportation logistic, drivers guiding services,

and traffic planning. According to the constraints and the objectives, the problem

can be categorized into different problems. In this chapter, four of these problems

are investigated, namely the k shortest non-loop-less paths (KSNLP), the k short-

est loop-less paths (KSLP), the dissimilar shortest loop-less paths (DSLP), and the

multi-objective shortest paths (MOSP) problems.

The contributions of this chapter include two new heuristics based on Eppstein’s al-

gorithm: one using loop filters (HELF) for the KSLP problem and the other using

loop-and-similarity filters (HELSF) for the DSLP problem. The new heuristics are

tested and compared with a number of popular algorithms on real transportation

networks.

This chapter is divided into 8 sections. In Section 4.1, the background is introduced,

while Section 4.2, Section 4.3, and Section 4.4 present three popular approaches for

the KSP problem with representative algorithms for each approach. Eppstein’s algo-

rithm is emphasized since it is one of the best algorithms in terms of time complexity

for the KSP problem. In Section 4.5 the new heuristic, named HELF, for the KSLP

problem is presented with the computational results. Based on the HELF another

new heuristic, named HELSF, is proposed for the DSLP problem in Section 4.6.

Section 4.7 investigates the MOSP problem with a particular case, named the bi-

objective shortest paths (BOSP) problem, where only two objectives are considered

simultaneously. In the last section, i.e. Section 4.8, conclusions and discussion are

given.

43
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4.1 Introduction

In a large number of modern routing applications users may require many alternative

paths. For instance, in navigation systems drivers look for the most suitable path

according to their objectives. It is a fact that the shortest-length path is always

on the list of priorities, however, the shortest-length path, sometimes, takes more

traveling time than others because of the crowded traffic flow on it. There may

be other drivers taking the air pollution situation and the road safety into their

consideration. In this case, finding a set of k > 1 best paths, in terms of considering

objectives, is meaningful for drivers. According to the constraints and the objectives,

the KSP problem can be categorized into some groups of problems as follows.

KSNLP: The k shortest non-loop-less paths problem aims at finding the first k

shortest paths between a given pair of nodes on a given graph. The paths can

either contain or not contain loops (cycles). The best running time in theory

belongs to the algorithm proposed by Eppstein [20]. The time complexity

of Eppstein’s algorithm for finding k shortest non-loop-less paths from one

source to one destination is O(|E|+ |V | log |V |+ k|V |) where |V | and |E| are

the number of nodes and links on the graph, respectively.

KSLP: The k shortest loop-less paths problem is restricted to the condition

that the paths must be loop-less, i.e. they do not contain any loops. If two

nodes in the given graph are connected, there is certainly at least one loop-less

path connecting them, however, the number of loop-less paths may be domi-

nated by the number of paths containing loops. Therefore, finding a shortest

loop-less paths should be more difficult than finding non-loop-less paths, the-

oretically. A well known algorithm for the KSLP problem was proposed by

Yen [69]. The time complexity of Yen’s algorithm (using Dijkstra’s algorithm)

is O(k|V |(|E|+ |V | log |V |)).

DSLP: The dissimilar shortest loop-less paths problem aims at finding a set of

k shortest loop-less paths such that each path is dissimilar from each other, i.e,

the minimum dissimilarity between two paths is not less than a given value.

MOSP: The multi-objective shortest paths problem is the problem of find-

ing a set of k non-dominated paths (defined later) from a source node to a

destination node in terms of a given number of objectives.

The first three problems mentioned above, i.e. the KSNLP problem, the KSLP

problem, and the DSLP problem, are one-objective problems. They all select paths

based on their lengths, however, each of them has different constraints. The KSNLP

problem and the KSLP problem have the constraints of either containing loops

or not, while the DSLP problem has the constraint of the dissimilarity between
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two paths. Even though, they share a number of common characteristics, thus

some approaches can be applied to deal with all of them. In the last mentioned

problem, i.e. the MOSP problem, various objectives are taken into consideration

simultaneously. The approaches for this problem are much different from the those

for the one-objective KSP problems.

In the previous chapter, Theorem 3.1.1 states that there exists a finite shortest path

between a given connected pairs of node if and only if the graph has no negative

cycles. This statement is held for the kth shortest path, i.e. there exists a finite kth

shortest path between two connected nodes on a given graph if and only the given

graph does not contain any negative cycles, therefore in the rest of this thesis only

graphs without negative cycles are in consideration. As in the SP problem, there

is also an optimality principle for the KSP problem, that is stated in the

following principle.

Principle 4.1.1. Given a connected graph G(V,E), if v is a node on the finite kth

shortest path, say pk, from s to t, then the subpath of pk from v to t is a hth shortest

path from v to t, where h ≤ k.

Proof. For a proof by contradiction, we assume that h > k, i.e. there are h − 1

paths, say q1, q2, . . . qh−1, from v to t that are shorter than the subpath of pk from v

to t, say qtail. Let qhead denotes the subpath of pk from source node s to v, so that

pk = qhead ⊕ qtail. The set D = {li = qhead ⊕ qi | i = 1, 2, . . . h− 1} consists of h− 1

paths from s to t, for each i = 1, 2, . . . h− 1 we have

W (li) = W (qhead) +W (qi) < W (qhead) +W (qtail) = W (qk).

This means that the lengths of h− 1 paths on D are smaller than the length of pk,

thus pk cannot be the kth shortest path where h > k.

Table 4.1 gives a review on a number of proposed algorithms for one-objective KSP

problems. They can be grouped into three major approaches. The first one is the

labeling approach where the extended version of Dijkstra’s algorithm is a represen-

tative algorithm. The second one is the path-removing approach. The idea of this

approach is that the (h+1)th shortest path is a shortest path in the new graph gener-

ated from the original graph by removing the first h shortest paths. A representative

algorithm following this approach is Martins’ algorithm. The last approach is the

path-deviating where a number of path candidates are generated from the previously

determined path and put into a priority queue with respect to the lengths of the

candidates. Algorithms in this approach have to ensure that the next shortest path

is one of the candidates being stored in the priority queue. Yen’s algorithm and

Eppstein’s algorithm are representative algorithms following this approach. While

the former algorithm of them, i.e. Yen’s algorithm, can find loop-less paths, the later

one can determine only non-loop-less paths.
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Table 4.1: Some works on k shortest paths problems.

Year Author Commment

1971 J.Y. Yen [69]
Finding the k shortest loop-less paths. It is
one of the most well known algorithm for
the KSP problem.

1984 E.Q.V. Martins [48]
An algorithm in paths removing approach.
The next shortest path is found after
removing previous shortest paths.

1993 A. Aggarwal et al. [1]
Finding a minimum weight K-link path in
graphs with Monge property and
applications.

1997 D. Eppstein [20]
Finding the k shortest non-loop-less paths.
It is a popular algorithm in path-deviating
approach for KSP problem.

1999 V.M. Jiménez et al. [43]
Computing the k shortest paths: A new
algorithm and an experimental comparison.

1999 M.B. Pascoal et al. [58]
Labeling approach as an extension of
Dijkstra to find k shortest paths.

2003 V.M. Jiménez et al. [44]
A lazy version of Eppstein k shortest paths
algorithm.

2011 H. Aljazzar et al. [2]
K∗: A heuristic search algorithm for finding
the k shortest paths.

4.2 Labeling Approach

As for the shortest path problem (SP), the labeling approach for the KSP

problem also uses labeling techniques to update the status of nodes. In order to

illustrate this approach, we introduce an extension of Dijkstra’s algorithm, named

Extension-Dijkstra, for the KSNLP problem.

Suppose that a graph G = (V,E), a source node s ∈ V , a destination node t ∈ V ,

and a natural number k ≥ 1 are given. Unlike in Dijkstra’s algorithm for the SP

problem where only the best current path from the source node s to a reached node

v is stored, the Extension-Dijkstra stores the current k best paths from s to every

reached node.

The pseudo code of Extension-Dijkstra for finding k shortest paths from s to t is

described in Alg. 4.1 where D is the set of shortest paths from s to t and H is

the priority queue of the generated paths. Each path p = (v1, v2, . . . , vl) is im-
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Algorithm 4.1 An extension of Dijkstra’s algorithm for the KSP problem.

1: procedure KSP-Dijkstra(G(V,E), s, t, k)
2: D ← ∅ . Set of found paths
3: H ← ∅ . Priority queue of paths based on length
4: Count(v)← 0 for all v ∈ V , . Number of determined paths from s to v
5: Count(s)← −1
6: id← 1 . First path with id = 1
7: DestNd(id)← s, RootList(s)← {id}
8: W (id)← 0
9: Insert(H, id)

10: while Count(t) < k and H 6= ∅ do
11: p← Extractmin(H) . Path with the smallest length
12: u← DestNd(p) . Destination node of the path
13: Count(u)← Count(u) + 1
14: if u = t then
15: NewPath← explicit path of p . Next shortest path
16: D ← D ∪NewPath
17: end if
18: if Count(u) ≤ k then
19: for node v adjacent to u do
20: id← id+ 1 . New path from s to v
21: DestNd(id)← v . Destination node of the new path
22: Root(id)← p . Root path of the new path
23: W (id)← W (p) + w(u, v)
24: RootList(v)← RootList(v) ∪ {p}
25: Insert(H, id)
26: end for
27: end if
28: end while
29: return D
30: end procedure
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plicitly expressed by its root path Root(p) = (v1, v2, . . . , vl−1) and its destination

node DestNd(p) = vl. The root path of paths with only one node is a null path

(a path without nodes). The notation Count(v) indicates the number of selected

shortest paths from the source node s to node v. According to Principle 4.1.1, in

the Extension-Dijkstra algorithm, only the first k shortest paths from source node

to each reached node are stored, thus Count(v) ≤ k for all v ∈ V . The set of the

root paths of all determined paths to v is RootList(v), that is used to recover all

the full paths from s to v. Each path generated by the algorithm has an identity

number, denoted id, and the length W (id).

In the initial step of Alg. 4.1, the first path, with the identity number id = 1, is

investigated. It has only the node s and its length is 0. The path is put into the

priority queue of the generated paths H. The algorithm terminates either when the

number of selected paths from s to the destination node t equals k—when there

are at least k possible loop-less paths from s to t—or when the priority queue H is

empty, i.e. all possible loop-less paths are determined. At a reached node the next

determined path from the source node s to it is always equal or greater than the

previously determined path, i.e. paths are generated in non-decreasing order. More

details and the proof for the correctness of the algorithm can be found in the work

of Pascoal et al. [58].

The advantages of Extension-Dijkstra are its simpleness and easy implementation.

In addition, it can be more efficient when dealing with the KSNLP problem from

one source to many destinations. However, the algorithm takes considerable time

and space to store the generated paths from the source node to all the nodes that

have been reached. This disadvantage makes Extension-Dijkstra not efficient to

implement on large graphs with thousands of nodes.

4.3 Path-Removing Approach

The path-removing approach is based on Principle 4.3.1, in other words, the

next shortest path is determined after removing the previously determined paths

from the graph, e.g. the second shortest path is determined after removing the first

determined shortest path from the graph, the third shortest path is found after

removing the first and the second determined shortest paths, etc.

Principle 4.3.1. Given a graph G(V,E), a source node s, and a destination node t.

The kth shortest path from s to t, if exists, is a shortest path in the graph after

removing the k − 1 previously determined shortest paths from s to t.

Each algorithm, following the path-removing approach, has its own methods for

removing paths from a given graph. The general structure of the algorithms fol-

lowing this approach are described in Alg. 4.2 where s is the source node, t is
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Algorithm 4.2 The path-removing approach for the KSP problem.

1: procedure KSP-RMPaths(G(V,E), s, t, k)
2: D ← ∅ . Array of found paths
3: for i← 0, k − 1 do
4: p← ShortestPath(G, s, t) . Find a shortest path
5: if p 6= NULL then
6: D[i]← p
7: RemovePath(G(V,E), p)
8: else
9: Stop . All paths found

10: end if
11: end for
12: Return D
13: end procedure

the destination node, and k is the number of paths to determine. The function

RemovePath(G(V,E), p) removes path p from the graph G(V,E). In each iter-

ation, a shortest path of the current graph is determined by one of the existing

algorithms for the SP problem, e.g. Dijkstra’s algorithm or A-Star algorithm. If the

function ShortestPath() returns an nonempty path, it is added to the set of the

determined shortest paths and then removed from the graph. The algorithm termi-

nates when k paths have been found—when k iterations have been implemented—or

when no more paths between the source node s to the destination node t are found,

i.e. the function ShortestPath() return an empty path. The time complexity of

algorithm in this approach is O(k[OSP +ORmP ]) where OSP is the complexity of the

shortest path algorithm used in the algorithm and ORmP is the complexity of the

method for removing a path.

A well known algorithm following this approach is proposed by Martins in 1984 [48].

In Martins’ algorithm, a certain path is removed from a graph by adding virtual

nodes and virtual links, called virtual objects, to the graph, as well as removing

a number of links from the graph. The virtual node of a node vi, denoted v̄i, has

the attributes of its original node vi, and is linked to vi. A virtual link of a link is

created by replacing one or both the nodes of the link by their corresponding virtual

nodes, e.g. (v1, v̄2) and (v̄1, v̄2) are virtual links of the link (v1, v2). A virtual link

has all the attributes of its original link.

In order to remove a path p = (v1, v2, . . . , vl) from a graph G(V,E), Martins’ algo-

rithm transforms the graph as follows.

• For each intermediate node on p, i.e. vi where 2 ≤ i ≤ l − 1, create a virtual

node v̄i linked to the node, and add it into the graph, i.e.

V = V ∪ {v̄i | 2 ≤ i ≤ l − 1}.



50 CHAPTER 4. K SHORTEST PATHS PROBLEM

• Add the virtual link (v̄i, v̄i+1), where 2 ≤ i < l − 1, to the graph, i.e.

E = E ∪ {(v̄i, v̄i+1) | 2 ≤ i < l − 1}.

• For each link not in p coming to an intermediate node of p, say (u, vi) 6∈ p

where 2 ≤ i ≤ l − 1, replace it by its virtual link (u, v̄i), i.e.

E = E \ {(u, vi) | 2 ≤ i ≤ l − 1} ∪ {(u, v̄i) | 2 ≤ i ≤ l − 1}

where (u, vi) ∈ E and (u, vj) 6∈ p. This step replaces the header of each link

not in p coming to an intermediate node on p by its virtual node. After this

step, we have

E+(v̄i) = {u ∈ V | (u, vi) ∈ E and u 6= vi−1} ∪ {v̄i−1},

and E+(vi) = {vi−1}.

• Replace the last link on p by its virtual link i.e.

E = E \ {(vl−1, vl)} ∪ {(v̄l−1, vl)}.

Each possible path on the new graph refers to a path on the original graph, and

each path in the original path except p is linked to a path in the new graph. A path

on the original graph can be recovered from its linked path on the new graph by

replacing virtual nodes, if exist, by their original nodes.

Figure 4.1 shows an illustration of Martins’ algorithm for finding two shortest paths

from v1 to v4. In Step 1, Fig. 4.1 (a), the first shortest path on the original graph

G is p1 = (v1, v2, v3, v4). The path p1 can be determined by any available algorithm

for the SP problem. The path is then removed by transforming the graph G in Step

2, Fig. 4.1 (b). In Step 3, the shortest path on the new graph is p̄ = (v1, v5, v̄3, v4).

It refers to the second shortest path p2 = (v1, v5, v3, v4) on the original graph G.

Martins’ algorithm for removing the path p = (v1, v2, . . . , vl) from the graph G(V,E)

is described in Alg. 4.3 where the function RemoveLink(G, (u, v)) removes the link

(u, v) from the graph G, and the function NewLink(u, v, w) creates a new link from

u to v with length w. There are two important remarks on the algorithm. First, the

paths determined may contain loops, therefore, in order to find loop-less paths, the

loop-less condition must be checked for every found path. Second, in every iteration,

a number of virtual nodes are added to the graph, this makes the size of the graph

bigger. When k is large, the size of the graph after a number of iterations may be

significantly larger than those of the original graph. Thus, the running times of the

algorithm for finding a shortest path in later iterations are considerably greater than

those in the former iterations.
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(a) Step 1: Find the shortest path p1 = (v1, v2, v3, v4)
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(b) Step 2: Remove p1 from G(V,E)
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(c) Step 3: Find the shortest path p̄2 = (v1, v5, v̄3, v4) that
refers to the original path p2 = (v1, v5, v3, v4)

Figure 4.1: An illustration of Martins’ algorithm.



52 CHAPTER 4. K SHORTEST PATHS PROBLEM

Algorithm 4.3 Martins’ algorithm for removing a path from a graph.

1: procedure Martin-RemovePath(G(V,E), p)
2: if vh−1 = s then
3: RemoveLink(G, (s, t))
4: Stop
5: end if
6: for all i← 2, h− 1 do
7: V = V ∪ {v̄2} where v̄i is the virtual node corresponding to the node vi
8: for (v, vi) ∈ E s.t. v 6= vi−1 do
9: E ← E ∪ {NewLink(v, v̄i, w(v, vi))}

10: end for
11: end for
12: for all i← 2, h− 2 do
13: E ← E ∪ {NewLink(v̄i, v̄i+1, w(vi, vi+1)) }
14: end for
15: E ← E ∪ { NewLink(v̄h−1, t, w(vh−1, t))}
16: RemoveLink(G, (vh−1, t))
17: end procedure

Let Maxd be the maximum degree of the graph and L be the maximum number of

nodes on the determined paths, then the time complexity for removing a path from

the graph is O(L.Maxd). The complexity of Martins’ algorithm using Dijkstra’s al-

gorithm for finding a shortest path in each iteration is O(k[L ·Maxd+m+ n̄ log(n̄)]),

where m = |E|+ kL and n̄ = |V |+ kL.

4.4 Path-Deviating Approach

In this section, the path-deviating approach for the KSP problem and two well

known algorithms following the approach, namely Yen’s algorithm and Eppstein’s al-

gorithm, are presented. The idea of the path-deviating approach is to create path

candidates from the previously determined path. These candidates are inserted into

a priority queue regarding their lengths. Each algorithm following this approach has

its own method for generating candidates such that the next shortest path is surely

one of them.

Algorithm 4.4 describes the general steps of algorithms following the path-deviating

approach for finding k shortest paths from the source node s to the destination

node t on the graph G(V,E). At the beginning, the shortest path determined by an

existing algorithm for the SP problem, e.g. Dijkstra’s algorithm or A-Star algorithm,

is inserted into the priority queue of path candidates H. In each iteration, the path

in the priority queue with minimum length is selected to be the next shortest path.

It is also removed from the list, whereas the new candidates generated from it are
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Algorithm 4.4 The path-deviating approach for the KSP problem.

1: procedure KSP-DevApp(G(V,E), s, t, k)
2: D ← ∅ . Array of found paths
3: H ← ∅ . Priority queue of path candidates
4: p0 ← ShortestPath(G, s, t)
5: if p0 =NULL then
6: Stop . Two nodes are not connected
7: end if
8: Insert(H, p0)
9: for i← 0, k − 1 do . k iterations

10: p← ExtractMin(H)
11: D[i]← p
12: for q ∈ DeviationPaths(G, p,D) do
13: Insert(H, q)
14: end for
15: if |H| = 0 then . All paths found
16: Stop
17: end if
18: end for
19: Return D
20: end procedure

inserted into the queue. Depending on the method for generating candidates, the

selected paths may contain loops or not contain any loops.

4.4.1 Yen’s Algorithm

In 1971, Yen [69] proposed an algorithm following the path-deviating approach for

finding the k shortest loop-less paths. The algorithm is called Yen’s algorithm.

In order to generate candidates from a given path, say p = (v1, v2, . . . , vl), Yen’s al-

gorithm turns at each node on p, i.e. vi, where 1 ≤ i ≤ l. The turning node is called

the spur node. The candidate deviated from the spur node vi has two subpaths.

The first subpath is the root path, denoted as Ri, containing the first i−1 links on

p, i.e. Ri = (v1, v2, . . . , vi). The second part, named spur path, is a shortest path

from vi to t that is not a subpath of any previously generated paths that have the

root path Ri.

In Fig. 4.2, the path p = (v1, v2, v3, v4) is the shortest path from v1 to v4. The path

p̄1 = (v1, v5, v6, v4) is the deviated path of p turning at v1. The root path of p̄1 is a

null path and the spur path of p̄1 is (v1, v5, v6, v4). The deviated path of p turning

at v2 is p̄2 = (v1, v2, v5, v6, v4) where R2 = (v1, v2) is the root path, and (v2, v5, v6, v4)

is the spur path. There is no deviated paths of p turning at v3 or v4.
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Figure 4.2: An example of a deviated path in Yen’s algorithm.

Generating the candidate, turning at the spur node vi of a path p = (v1, v2, . . . , vl),

follows 5 steps.

• Step 1: For each generated path that has the first i − 1 links as the root

path Ri = (v1, v2, . . . , vi), remove its (i)th link from the graph, e.g. if the path

(v1, v2, . . . , vi, u1, u2, . . . uh) is already generated, then remove the link (u1, u2)

from the graph.

• Step 2: Remove all the nodes vj, where 1 ≤ j ≤ i− 1, from the graph. As a

sequence, all the links from/to vj are also removed.

• Step 3: Find a shortest path, say Rspur
i from vi to the destination node t on

the new graph. It plays as the spur path of the new candidate.

• Step 4: Concatenate the root path and the spur path to generate the new

candidate path, i.e. pnew = Ri ⊕Rspur
i .

• Step 5: Recover the original graph. This step prepares for generating the

next candidate.

Step 1 ensures that the new candidate is not similar to any path that has been

generated, thus each path is generated at most once. Whereas, Step 2 makes sure

that the spur path of the new candidate does not contain any node of the root path,

as a result the new candidate is loop-less. Step 3 and Step 4 create a new loop-less

path candidate by combining the root subpath and the determined shortest path

from the spur node to the destination node.

Yen’s algorithm for generating candidates from a given path p is expressed in Alg. 4.5

where D is the set of all the generated paths. The function SubPath(p, i, j) returns

the subgraph between the ith node and the jth node of the path p. The function

GetLink(p, j) returns the jth link on the path p, while the function GetNode(p, j)

returns the jth node on the path p. The function RemoveLink(G, q) removes

the link q from the graph G, while the function RemoveNode(G, u) removes the

node u and its related links, i.e. links come to or links from u, from the graph G.
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The function Recover(G) returns the original graph after removing nodes and

links. The algorithm terminates when all the candidates turning from the nodes on

the path p have been generated. If no valid candidates have been generated, the

algorithm returns an empty set.

One of the greatest advantages of Yen’s algorithm is that the determined paths are

loop-less. The time complexity of the algorithm depends significantly on the algo-

rithm for finding a shortest path from every spur node to the destination node. If

the complexity of the utilized algorithm for finding a shortest path is O(f(G)),

then the complexity of Yen’s algorithm is O(k|V |f(G)), e.g. the complexity is

O
(
k|V |(|E||V | log(|V |)

)
when Dijkstra’s algorithm is used.

Algorithm 4.5 Yen’s algorithm for generating candidates from a path.

1: procedure Yen-DeviationPaths(G(V,E), p,D)
Note: D is the set of the previously generated paths.

2: C ← ∅ . Set of deviated paths from p
3: for j ← 1, p.size() do
4: spurNode← GetNode(p, j)
5: rootPath← SubPath(p, 1, j)

/*Step 1*/
6: for all q ∈ D s.t. SubPath(q, 1, j)≡ rootPath do
7: RemoveLink(G,GetLink(q, j))
8: end for

/*Step 2*/
9: for u← 1, j − 1 do

10: RemoveNode(G,GetNode(rootPath, u))
11: end for

/*Step 3*/
12: spurPath← ShortestPath(G, spurNode, t)

/*Step 4*/
13: if spurPath 6= NULL then
14: newPath← rootPath⊕ spurPath . New path from s to t
15: Insert(C, newPath)
16: Insert(D,newPath)
17: end if

/*Step 5*/
18: Recover(G) . Recove to the original graph
19: end for
20: Return C
21: end procedure
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4.4.2 Eppstein’s Algorithm

In [20] Eppstein proposed an algorithm, following the path-deviating approach, that

can determine the k shortest non-loop-less paths in time O(|E| + |V |lg(|V |) + k).

The algorithm, called Eppstein’s algorithm (EA), is one of the most prominent

algorithms for the KSP problem in terms of time complexity, however, the paths,

determined by the algorithm, may contain loop. In this subsection, we present the

original version of Eppstein’s algorithm, that is lately used to develop new heuristics

for the KSLP problem in Section 4.5 and for the DSLP problem in Section 4.6.

Let Tt be a shortest path tree to the destination t on a given graph G(V,E). The

links on Tt are called basic links, and the links not in Tt are called side tracks.

Side tracks with the same source node are sibling side tracks. Figure. 4.3 shows

an example of a shortest path tree to the node t (or v4). The basic links on Tt are

marked in red, while the side tracks are dotted lines. The two side tracks (v1, v5)

and (v1, v7) are siblings turning from the node v1.

Note that, there may be a number of shortest path trees to a node on a given graph,

however in Eppstein’s algorithm only one of them is needed. It is easy to determine

such a shortest path tree by Dijkstra’s algorithm, mentioned in Chapter 3, from all

the nodes to one destination node.
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Figure 4.3: An example of a shortest tree to the node t.

Each possible path p from the source node s to the destination node t is a com-

bination of its side tracks and its basic links staying on Tt. The basic links on p

connect the side tracks, thus they can be determined if the sequence of the side

tracks on p and the shortest path tree Tt are available. This means that path p can



4.4. PATH-DEVIATING APPROACH 57

be recovered from the sequence of its side tracks and Tt. For instance, in Fig. 4.3 the

path p = (v1, v5, v3, v8, v4) has two side tracks (v1, v5), (v3, v8) and two basic links

(v5, v3), (v8, v4). The first basic link (v5, v3) connects the destination node of the

first side track to the source node of the second side track. The second basic link

connects the destination node of the second side track, i.e. v8, to the destination

node t.

Proposition 4.4.1. Given a graph G(V,E), a source node s, a destination node

t, and a shortest path tree Tt to t. Every possible path from s to t can be uniquely

expressed as a sequence of side tracks.

Proof. Assume that p = (s = v1, v2, . . . , vl = t) is a path from s to t. The sequence

of the side tracks on p is S = {S1, S2, . . . , Sh}. The function BP(u, v) returns

the unique path connecting u and v on the shortest path tree Tt. For convenience

let l.src and l.dest denote the source node and the destination node of a link l,

respectively. The path p can be recovered from the sequence of side tracks S as

follows.

p = BP (s, S1.src)⊕ S1 ⊕MiddlePath⊕BP (Sh.dest, t), (4.1)

where MiddlePath =
h−1⊕
i=1

[BP (Si.src, Si+1.dest)⊕ Si+1]. This means p can be im-

plicitly expressed as the sequence of its side tracks and that sequence is unique. In

deed, if S̄ is a different sequence of side tracks from S. By recovering the full path

from S̄ as (4.1), we should get a new path different from p.

Let d(v) be the distance from node v to the destination node, i.e. the shortest length

of a path from v to t. For each link (u, v) ∈ E the increasing cost of (u, v) is defined

as δ(u, v) = w(u, v) + d(v) − d(u). In other words, δ(u, v) is the increasing length

of the shortest path from u to the destination via the link (u, v) to the length of a

shortest path from u to the destination node that may not go through (u, v). Thus,

the increasing cost of a link is always greater or equal to zero, and the increasing

cost of a link on the shortest path tree is always zero, i.e.

• δ(v, r) ≥ 0 for all (v, r) ∈ E,

• δ(v, r) = 0 if link (v, r) is on the shortest path tree Tt.

Figure 4.4 shows the increasing costs of all the links of the example graph in Fig. 4.3,

where t is the destination node and the tree consisting of all the nodes and all

the red links is a shortest path tree. The increasing costs of basic links are zero.

The increasing cost of the side track (v5, v8) is zero but it is not on the shortest

path tree since there are two possible paths from v5 to t with the shortest length:

p1 = (v5, v3, t) and p2(v5, v8, t). The increasing costs of other side tracks are greater

than zero.
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Figure 4.4: The increasing costs of links.

The increasing cost of a path is defined as the sum of the increasing costs of all the

links on the path, i.e. δ(p) =
∑
e∈p

δ(e). Since the increasing cost of a basic link is zero,

the increasing cost of a path equals the sum of the increasing costs of all the side

tracks on the path. The meaning of the increasing cost of a path is that it indicates

the greater amount of the path’s length to the shortest length. This statement is

expressed in the following proposition.

Proposition 4.4.2. The length of a path equals the sum of the shortest length (length

of a shortest path) and the increasing cost of the path.

Proof. Assume that path p = (s = v1, v2, . . . , vl = t), we have

δ(p) =
l−1∑
i=1

δ(vi, vi+1) =
l−1∑
i=1

(w(vi, vi+1) + d(vi+1)− d(vi))

=d(t)− d(s) +
l−1∑
i=1

w(vi, vi+1) = d(t)− d(s) + w(p).

Sine d(t) = 0, we have w(p) = δ(p)+d(s) where d(s) is the length of a shortest path

from s to t.

Due to Proposition 4.4.2, the lengths of paths can be compared to each other with

respect to their increasing costs. The idea of Eppstein’s algorithm is to generate

orderly path candidates from a previously determined path regarding their increasing

costs. Each candidate generated from a parent path is called a deviated path.
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Definition 4.4.3. Given a path p = (v1, v2, . . . , vh), a path q = (u1, u2, . . . , ul) is a

deviated path of p if there exists i ∈ N where 1 ≤ i < min{l, h} such that

• vj = uj for all j = 1, 2, . . . , i;

• (ui, ui+1) is a side track;

• SubPath(p, i, h) is a shortest path from vi to t;

• SubPath(q, i+ 1, l) is a shortest path from ui+1 to t.

The path q is called the deviated path from p via the side track (ux, ux+1), and p is

the parent path of q.

Paths, deviated from a parent path via sibling side tracks, are called sibling de-

viated paths. For instance, in Fig. 4.4, (v1, v5) and (v1, v7) are two sibling side

tracks, thus the paths p1 = (v1, v5, v3, v4) and p2 = (v1, v7, v6, v4) are two sibling

deviated paths of the path p = (v1, v2, v3, v4) via the sibling side tracks (v1, v5) and

(v1, v7), respectively. The path p3 = (v1, v5, v8, v4) is the deviated path of p1 via the

side track (v5, v8), however, it is not a deviated path of p.

Lemma 4.4.4. If q is the deviated path from p via a side track e, then the length of

q is equal to the sum of the length of p and the increasing cost of the side track e,

i.e. d(q) = d(p) + ε(e).

Lemma 4.4.4 can be easily proved by the definitions of side track and deviated

path. According to Lemma 4.4.4, the deviated paths from the same parent path

can be ordered with respect to the increasing costs of the side tracks that they are

deviated via, i.e. the last side tracks of paths. In order to rank the side tracks

coming out from the nodes on the path p = (v1, v2, . . . , vl), at each node vi where

1 ≤ i ≤ l, Eppstein’s algorithm (EA) builds a local heap, denoted as LHeap(vi),

containing all the sibling side tracks coming out from vi. In order to compare the

deviated paths from different nodes on p, a global heap at each node vi, denoted as

GHeap(vi), is constructed by inserting the head element of the local heap at vi, i.e.

LHeap(vi).top(), to the global heap at the previous node on p, i.e. GHeap(vi−1). In

other words, the global heap at a node v consists of all the best side tracks coming

out from all the nodes on the shortest path from v to the destination node.

For instance, Fig. 4.5 illustrates the local-heaps and the global-heaps of the nodes

on the path p = (s = v1, v2, v3, v4 = t), that is shown in Fig. 4.4. Each of the heaps

(local or global) is a binary heap. They are built as following steps. Firstly, the

local heaps at v1, v2, and v3 are built. Each of them has a head element that is the

side track with the minimum increasing cost coming from the corresponding node.

All these head elements are then used to create the global heaps. The global heaps

are built backward, i.e. the global heap at the node closest to the destination, i.e.
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v3, is built at first. It contains only the head element of the local heap at v3, i.e. the

side track e3,6 with increasing cost 4. The global heap at v2 is created by inserting

the header element of the local heap at v2 into the global heap at v3. It contains two

side tracks with the same increasing cost 4. Finally, the global heap at v1 is built

by inserting the head element of the local heap at v1 into the global heap at v2.
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Figure 4.5: Building local and global heaps at nodes on a shortest path.

Eppstein’s algorithm follows the general structure in Alg. 4.4 of the path-deviating

approach for the KSP problem. However, it is a fact that, each path may have a

large number of deviated paths, thus generating all the path candidates deviated

from the previously determined path in each iteration could lead to memory leak and

slow down the operating speed of the algorithm. In addition, it does not make sense

if we generate more than k deviated paths from a parent path, thus in each iteration

only a number of the best path candidates are generated. There may be various

strategies of selecting the best candidates. They depend on the data structures and

also on the characteristics of the graph.

In the original version of EA, the set of potential path candidates from a path, say

p, has at most 5 elements. It consists of the best deviated path from p and at most

4 best local and global sibling candidates of p that are not generated. Each sibling

candidate of p has the same parent path of p, i.e. they differ from p over the last
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side track. The last side tracks of these sibling candidate are children of the last

side track of p in the local or global heaps.

Assume that the path p is implicitly expressed by the sequence of its side tracks as

p = (S1, S2, . . . , Sh), i.e. p is deviated from its parent pparent = (S1, S2, . . . , Sh−1) via

Sh. The candidates from p are generated in the following steps.

• Step 1: generate the best deviated path of p by adding the side track with

the minimum increasing cost coming out from the nodes on the subpath of

p between the destination node of the last side track, i.e. Sh.dest(), and the

destination node. The added side track is the head element of the global heap

at the destination node of the last side track, i.e. GHeap(Sh.dest()).top(). The

new candidate is

newCandidate = (S1, S2, . . . , Sh, S),

where S = GHeap(Sh.dest()).top().

• Step 2: generate the local sibling candidates of p from pparent. Each

sibling is deviated from pparent via a side track that is a child of Sh on the local

heap at Sh.source(), i.e.

newCandidate = (S1, S2, . . . , Sh−1, S),

where S ∈ GetChildren(Lheap(Sh.source()), Sh).

• Step 3: if Sh is in the global heap at Sh.source(), generate the global sibling

candidates of p from pparent via side tracks that are the children of Sh on the

global heap at Sh.source(), i.e.

newCandidate = (S1, S2, . . . , Sh−1, S),

where S ∈ GetChildren(GHeap(Sh.source()), Sh).

Eppstein’s algorithm (EA) for generating candidates from path p is described in

Alg. 4.6 where the function SideTrack(p) returns the sequence of the side tracks of

p. The function GetFullPath(S) returns the full path that is implicitly expressed

by the sequence of side tracks S. If p is a path on the shortest path tree, i.e. p has

no side track, only the best deviated path from p via the head element of the global

heap at the source node s is generated. Otherwise, the candidates are generated as

three steps mentioned above.

The advantage of EA is to quickly generate deviated paths from a given path. There

are a number of improvements for EA, e.g. in [44] Jiménez et al. proposed the lazy

version of EA algorithm that can reduce the time for building global heaps. However,

EA cannot guarantee that the found paths are loop-less.
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Algorithm 4.6 Eppstein’s algorithm to generate candidates from a path.

1: procedure Eppstein-DeviationPaths(G(V,E), s, t, p, GHeap[], LHeap[])
2: C ← ∅ . Set of deviated paths from p
3: if SideTracks(p)= NULL then . p is the shortest path
4: NewCandidate← GHeap(s).Minimum() . Path with 1 side track
5: C ← C ∪ {GetFullPath(NewCandidate)}
6: Stop
7: end if
8: (S1, . . . , Sh)← SideTracks(p) . Sequence of side tracks presenting p

/*Step 1: Best candidate deviated from p*/
9: Sh+1 ← GHeap(Sh.dest()).Minimum()

10: NewCandidate← (S1, . . . , Sh, Sh+1)
11: C ← C ∪ {GetFullPath(NewCandidate)}
12: TurnNd← Sh.source() . Turnning node

/*Step 2: The next siblings of p*/
13: for all s̄ ∈ GetChildren(LHeap(TurnNd), Sh) do
14: NewCandidate← (S1, . . . , Sh−1, s̄)
15: C ← C ∪ {GetFullPath(NewCandidate)}
16: end for

/*Step 3: Candidates on the global heap*/
17: if Sh ∈ GHeap(TurnNd) then
18: for all s̄ ∈ GetChildren(GHeap(TurnNd), Sh) do
19: NewCandidate← (S1, . . . , Sh−1, s̄)
20: C ← C ∪ {GetFullPath(NewCandidate)}
21: end for
22: end if
23: Return C
24: end procedure
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4.5 New Heuristics for the KSLP Problem

In this section, we investigate heuristics for the KSLP problem based on algorithms

which can find orderly shortest paths but they cannot ensure that the found paths

are loop-less, e.g. Martins’ algorithm and Eppstein’s algorithm. In order to reduce

the number of visited paths by Eppstein’s algorithm, we investigate loop filters that

can determine parent paths whose all the deviated paths contain loops. The new

heuristic based on EA using the loop filters for the KSLP problem dominates other

examined algorithms in terms of running time on real city maps.

4.5.1 Heuristic Approach

A heuristic is a method for problem solving that does not ensure finding the optimal

solution but in many cases it is efficient enough to find a satisfactory solution. For

some difficult problems where finding the optimal solution would be impossible or

would take a large amount of time, some heuristics can be applied to speed up the

process of finding a good-enough solution. One of the most popular heuristic is

so-called trial-and-error, i.e. trying a feasible solution if it is the optimal solution

or it satisfies all the stopping conditions, if neither of them is true, the next feasible

solution is examined.

As shown in Section 4.4, among algorithms proposed for the KSP problem, Yen’s al-

gorithm is the only one that ensures the found paths are loop-less. The paths de-

termined by the other algorithms, i.e. Martins’ algorithm and Eppstein’s algorithm,

may contain loops. The idea of the trial-and-error heuristic, based on those algo-

rithms, is to check the loop-less condition for every path determined. If a path

contains loops, it is removed, otherwise it is selected to be the next shortest loop-

less path. The heuristic proceeds further until k loop-less paths are obtained or all

possible paths have been visited. Such heuristics using Martins’ and Eppstein’s al-

gorithms are named the heuristic based on Martins’ algorithm (HMA) and the

heuristic based on Eppstein’s algorithm (HEA), respectively.

Algorithm 4.7 describes the general structure of the HMA and the HEA for the

KSP problem. The structure follows all the steps as those in the original algo-

rithms, i.e. Martins’ algorithm an EA, but it sets a limit on the number of itera-

tions to ensure that the heuristics will terminate within a given time without any

memory leak. The maximal number of iterations is normally related to k, e.g.

Imax = 1000k. Some other stopping conditions may be used according to the kind

of graphs or the strategies of the heuristics, such as the upper bound on running

time or maximum size of the heaps of visited paths, etc. In each iteration, the func-

tion NextShortestPath(s, t) returns the next shortest path (may contain loop)

determined by the original algorithms. The path is then checked if it is loop-less
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or not. It is inserted into the set of found path if it is loop-less, otherwise it is

eliminated and the heuristic goes to the next iteration.

Algorithm 4.7 Structure of heuristics for the KSLP problem.

1: procedure Heuristic-KSLP(G(V,E), s, t, k)
2: D ← ∅ . Set of found shortest loop-less paths
3: Imax← maximum number of iterations
4: i← 0
5: while |D| < k and i < Imax do
6: p← NextShortestPath(s, t)
7: if p is loop-less then
8: D ← D ∪ {p}
9: end if

10: i← i+ 1
11: end while
12: Return D
13: end procedure

Table 4.2: Comparison between Yen’s algorithm, the HMA, and the HEA for finding
10 shortest loop-less paths.

Maps
Yen Martins (HMA) Eppstein (HEA)

Vs Fs Time Vs Fs Time Vs Fs Time

HD-De1k 10 10 0.0311 29.27 10 0.0749 437.33 10.00 0.0090

HD-VN2k 10 10 0.0286 29.20 10 0.0672 1486.80 9.80 0.0206

BH-VN4k 10 10 0.1022 34.00 10 0.1775 1648.73 9.40 0.0297

NY-USA5k 10 10 0.1021 15.43 10 0.0664 1437.29 9.43 0.0423

VT-VN5k 10 10 0.1334 36.67 10 0.1889 2895.27 9.27 0.0438

MH-DE6k 10 10 0.1237 29.93 10 0.1885 1411.80 9.40 0.0445

DN-VN8k 10 10 0.1213 20.60 10 0.1415 748.07 9.40 0.0610

HN-VN9k 10 10 0.1394 19.60 10 0.1462 1348.93 9.40 0.0503

PP-CB9k 10 10 0.3411 13.13 10 0.1201 12.33 10.00 0.0645

MNL-PP12k 10 10 0.4783 18.33 10 0.2223 858.73 9.73 0.1000

TP-TW21k 10 10 0.7248 20.25 10 0.4489 20.92 10.00 0.1023

BK-TL22k 10 10 0.9907 25.47 10 0.6782 55.33 10.00 0.1071

HCM-VN24k 10 10 1.7383 17.60 10 0.5347 44.53 10.00 0.2015

Average 10 10 0.3888 23.81 10 0.2350 954.31 9.68 0.0674

Table 4.2 shows the computational results of Yen’s algorithm, the HMA, and the

HEA for finding 10 shortest loop-less paths on the real maps of various cities. The

first column labeled “City maps” indicates the map instances using for the experi-

ments. The rest of the columns are grouped into three blocks: one for Yen’s algo-
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rithm, one for the HEA, and the other for the HMA. In turn, each block has three

columns: one labeled “Vs” shows the average number of paths visited, one labeled

“Fs” shows the average number of paths found, and the last one labeled “Time”

indicates the average running time. The maximum number of iteration is set to 1000

times k, i.e. Imax = 10000. All the experiments were implemented in a personal

desktop computer with an Intel (R) dual Core at 2.20 GHz processor and 2 GB of

RAM.

It can be seen that the running times of Yen’s algorithms are greater than those of

the two heuristics, i.e. HMA and HEA. The number of paths visited by the HEA is

significantly greater than those by the HMA. In some experiments, the HEA stops

before 10 loop-less paths are determined, whereas the HMA is able to determine

all the 10 shortest loop-less paths. However, the HMA has better running times

than those of the HMA in all the cases. This is reasonable since the HEA is based

on Eppstein’s algorithm that can generate a large number of shortest non-loop-less

paths in a shorter time than those of Martins’ algorithm. Other computational

results with different values of k can be found in Appendix B.

4.5.2 Loop Filters for Eppstein’s Algorithm

As shown in Table 4.2, the HEA dominates the HMA in terms of running time,

however, in order to find 10 shortest loop-less paths it has to visits a large number

of paths, and in some cases, the maximum number of iterations is reached before

10 shortest loop-less paths are determined. In order to reduce the number of the

visited paths, we introduce loop filters that can predetermine paths from which only

the candidates with loops are generated.

In Eppstein’s algorithm, the sequence of the side tracks of a deviated path is created

by adding a side track to the sequence of the side tracks of the parent path. Thus, all

the deviated paths have a common subpath of the parent path from the source node

to the destination node of the last side track on the parent path. If this common

subpath contains a loop, then all the deviated paths contains a loop. Such parent

paths are called bad-parent paths. The idea of loop filters is to predetermine

such bad-parent paths. The detected bad-parent paths are removed from the list

of considering paths without generating candidates. Thus, the number of path

candidates should probably decrease. Theorem 4.5.1 and Theorem 4.5.2 shows two

cases of bad-parent paths.

Theorem 4.5.1. Given a graph G(V,E) and a path p ∈ Ps,t—expressed as the

sequence of its side tracks (S1, S2, . . . , Sh)— if there exists l ∈ {1, 2, . . . , h− 1} such

that the subpath p1 of p from s to the destination node of Sl contains loops, then all

the candidates generated from p in Step 2 and Step 3 of Alg. 4.6 also contain loops.

Proof. Assume that q is a candidate generated from p in Step 2 of Alg. 4.6, and

q can be expressed as the sequence of its side tracks as (S1, S2, . . . , Sh−1, S). The
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explicit expression of q is

q =BP (s, S1.src)⊕ S1 ⊕

(
h−1⊕
i=1

[BP (Si.src, Si+1.dest)⊕ Si+1]

)
⊕BP (S.dest, t)

=p1 ⊕

(
h−1⊕
i=l

[BP (Si.src, Si+1.dest)⊕ Si+1]

)
⊕BP (S.dest, t).

This means that p1 is also a subpath of q, therefore, if p1 contains a loop, then q

also contains a loop.

Theorem 4.5.2. Given a graph G(V,E) and a path p ∈ Ps,t—expressed as the

sequence of its side tracks (S1, S2, . . . , Sh)—if the subpath p1 of p from s to the des-

tination node of the last side track, i.e. Sh.dest(), contains loops, then the candidate

generated from p in Step 1 of Alg. 4.6 also contains loops.

Proof. By recovering the explicit expression of the candidate q generated from p in

Step 1 of Alg. 4.6 as in the proof of the Theorem 4.5.1, we can prove that p1 is also

the subpath of q. Thus, if p1 contains a loop, then q also contains a loop.

The new heuristic, named heuristic based on Eppstein’s algorithm using

loop filters (HELF), applies the loop filters based on Theorem 4.5.1 and Theo-

rem 4.5.2 into Alg. 4.6. The HELF is described in Alg. 4.8. While the loop filter

before Step 1 applies directly Theorem 4.5.2, the loop filter before Step 2 and Step 3

applies Theorem 4.5.1 with l = h−1. It is possible to use only one of the loop filters,

however, in our implementation both the filters are used.

4.5.3 Computational Results

In the first evaluation of the loop filters for Eppstein’s algorithm, the computational

results of the HELF and those of the HEA are compared in terms of average number

of visited paths, average number of found paths and running time. The second

evaluation focuses on the comparison of the running times of the HEA, the HMA,

Yen’s algorithm and the HELF.

In our experiments, all the methods were programmed in C++ and ran under the

Windows platform on a personal desktop computer with an Intel (R) dual Core at

2.20 GHz processor, and 2 GB of RAM. The algorithms ran on the real maps of cities

in Vietnam, Germany, USA, Thailand, The Philippine, Cambodia and Taiwan. For

each map instance, all the method ran on the same pairs of randomly selected nodes

on the map.

Table 4.3 shows the comparison between the computational results of the HEA and

the HELF on finding 10 shortest loop-less paths on the real maps. The meanings

of the columns are the same with those of Table 4.2. The computational results
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Algorithm 4.8 The HELF for generating path candidates.

1: procedure HELF-DeviationPaths(G(V,E), s, t, p, GHeap[], LHeap[])
2: C ← ∅ . Set of deviated paths from p
3: if SideTracks(p)= NULL then . p is the shortest path
4: NewCandidate← GHeap(s).Minimum() . Path with 1 side track
5: C ← C ∪ {GetFullPath(NewCandidate)}
6: Stop
7: end if
8: (S1, . . . , Sh)←SideTracks(p) . Sequence of side tracks presenting p

/*Step 1: Best candidate path deviated from p*/
9: if SubPath(p, s, Sh.dest()) is loop-less then . First filter

10: Sh+1 ← GHeap(Sh.dest()).Minimum()
11: NewCandidate← (S1, . . . , Sh, Sh+1)
12: C ← C ∪ {GetFullPath(NewCandidate)}
13: end if

/*Step 2: The next siblings of p*/
14: if SubPath(p, s, Sh−1.dest()) is loop-less then . Second filter
15: TurnNd← Sh.source() . Turning node
16: for all s̄ ∈ GetChildren(LHeap(TurnNd), Sh) do
17: NewCandidate← (S1, . . . , Sh−1, s̄)
18: C ← C ∪ {GetFullPath(NewCandidate)}
19: end for

/*Step 3: Candidates on the global heap*/
20: if Sh ∈ GHeap(TurnNd) then
21: for all s̄ ∈ GetChildren(GHeap(TurnNd), Sh) do
22: NewCandidate← (S1, . . . , Sh−1, s̄)
23: C ← C ∪ {GetFullPath(NewCandidate)}
24: end for
25: end if
26: end if
27: Return C
28: end procedure
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Table 4.3: Comparison between the HEA and the HELF on finding 10 shortest
loop-less paths.

City maps
Eppstein (HEA) HELF

Vs Fs Time Vs Fs Time

HD-DE1k 437.33 10.00 0.0090 75.33 10.00 0.0106

HP-VN2k 1486.80 9.80 0.0206 91.50 10.00 0.0131

BH-VN4k 1648.73 9.40 0.0297 152.87 10.00 0.0197

NY-USA5k 1437.29 9.43 0.0423 20.71 10.00 0.0181

VT-VN5k 2895.27 9.27 0.0438 169.13 10.00 0.0237

MH-DE6k 1411.80 9.40 0.0445 63.87 10.00 0.0217

DN-VN8k 748.07 9.40 0.0610 37.80 10.00 0.0334

HN-VN9k 1348.93 9.40 0.0503 37.87 10.00 0.0389

PP-CB9k 12.33 10.00 0.0645 11.87 10.00 0.0393

MNL-PP12k 858.73 9.73 0.1000 38.00 10.00 0.0785

TP-TW21k 20.92 10.00 0.1023 18.75 10.00 0.1057

BK-TL22k 55.33 10.00 0.1071 25.87 10.00 0.0859

HCM-VN24k 44.53 10.00 0.2015 20.33 10.00 0.1351

Average 954.31 9.68 0.0674 58.76 10.00 0.0480

Table 4.4: Reduced times due to applying the loop filters to Eppstein’s algorithm.

Maps
k=5 k=10 k=20 k=30 k=40 k=50 k=60

Diff.(%) Diff.(%) Diff.(%) Diff.(%) Diff.(%) Diff.(%) Diff.(%)

HD-DE1k −14.67 +17.78 −83.75 −77.66 −90.63 −88.75 −83.95

HP-VN2k −28.93 −36.41 −77.80 −79.15 −88.13 −88.24 −90.93

BH-VN4k −12.17 −33.86 −75.35 −75.46 −77.94 −83.70 −82.36

NY-USA5k −9.42 −57.09 −57.64 −66.53 −68.44 −64.08 −80.28

VT-VN5k −12.93 −45.97 −75.36 −80.11 −79.56 −74.43 −86.90

MH-DE6k −32.47 −51.35 −47.23 −66.74 −73.65 −75.10 −81.24

DN-VN8k +0.96 −45.25 −51.85 −66.05 −61.34 −68.76 −85.13

HN-VN9k −9.38 −22.55 −6.10 −33.28 −51.14 −62.18 −67.45

PP-CB9k −16.15 −39.05 −15.15 −38.70 −29.18 −4.57 −45.27

MNL-PP12k −27.05 −21.47 −14.57 −39.05 −38.12 −45.75 −67.17

TP-TW21k −7.31 +3.34 −19.23 −0.78 −29.48 −5.06 −40.25

BK-TL22k −13.37 −19.85 −9.32 −17.03 −16.35 −37.25 −68.25

HCM-VN24k −6.73 −32.98 −35.70 +1.54 −2.35 −3.02 −42.53

Average -14.59 -29.59 -43.77 -49.15 -54.33 -53.91 -70.90

of the HEA showed on Table 4.2 are reused, thus we can indirectly compare the

computational results of the HMA with the computational results of the HELF. It

can be easily seen on Table 4.3 that the average number of visited paths by the

HELF is significantly smaller than those by the HEA. As a result, the HELF can
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find all the 10 shortest loop-less paths in all the maps that the HEA cannot due to

the limitation on the number of iterations. In most of cases, the HELF has better

running time than those of the HEA, but there are two exceptions on the maps

namely “HD-DE1k” of Heidelberg, Germany and “TP-TW21k” of Taipet, Taiwan.

The average running times of the HELF in those cases are lightly greater than the

average running times of the HEA since the contribution of reducing the number of

visited paths cannot compensate the additional spending time for the loop filters.

This fact may happen in some rare cases, e.g. when the source node is close to the

destination node or when the number of visited paths with loops is significantly

small in comparison to the number of visited paths without loop. However, those

cases are not popular in our experiments, and the benefit of using the loop filters is

generally enough to compensate the additional computing time.
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Figure 4.6: Comparison of running times of the HMA, Yen’s algorithm, the HEA,
and the HELF.

Table 4.4 shows the values of the percent deviation of the running time of the HELF

and the running time of the HEA, i.e. 100(THELF −THEA)
/
THEA, where THELF and

THEA are the running times of the HELF and the HEA, respectively. There are 7

columns for 7 values of k in the range [5, 60]. The results show that, in most of the

cases, the running time of the HELF is better than those of the HEA. There are

4 cases where the running times of the HELF are lightly greater than the running

times of the HEA, however, when k is greater than 30, the HELF dominates the
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HEA in all the cases. This implies that using the loop filters in the HELF has a

significantly effective. The effectiveness of the loop filters is greater when k increases.

This fact is indicated in the last row of Table 4.4 that shows the average differences

of running time between the two methods. The difference is −14.59% with k = 5

and up to −70.90% with k = 60.

Figure 4.6 illustrates the average running times of the HMA, Yen’s algorithm, the

HEA and the HELF with different values of k. In all the cases, the HELF dominates

others. In addition, when k increases, the running time of the HELF grows slowly

while those of the others grow rapidly. More details about the computational results

can be found in Appendix B.

4.6 Dissimilar Shortest Paths Problem

The dissimilar shortest loop-less paths (DSLP) problem is an extension of the

KSP problem where the paths are not only loop-less but also dissimilar from each

other. An application of the DSLP problem is in hazardous material transport

where managers have to make a routing plan such that the probability of accidents

on each area is equal to those on other areas. Similarly, in radiation materials

transportation if a large number of vehicles travel in similar paths, it could be

dangerous for people living around the paths since the radiation can be accumulated

vehicle by vehicle. The DSLP problem has been studied by various researchers, e.g.

Erkut et al. [22], Dell’Olmo et al. [16], and Marti et al. [47]. In this section, we

present some approaches for the DSLP problem including an approach using the

HELF presented in Section 4.5.

Given a graph G(V,E), two nodes s, t, number of paths k ≥ 1, and the lower

bound on minimum dissimilarity between two paths 0 < ε ≤ 1. There are two

major approaches for finding k shortest loop-less paths from s to t such that the

dissimilarity between two found paths is not less than ε. The first approach, called

subset selecting, is to find a set P of h > k shortest loop-less paths, and then select

the best k dissimilar paths in P . The second approach, named on-line approach,

determines the best dissimilar shortest paths one by one.

4.6.1 Subset Selecting Approach

Algorithms following the subset selecting approach consist of two main steps.

The first step is to determine a set P of h > k shortest loop-less paths by an

algorithm for the KSLP problem, whereas the second step is to select the best k

dissimilar paths from the h predetermined paths in the first step. Some methods

have been proposed for selecting the set of the k best dissimilar paths from set P ,

such as the max-min method or the p-dispersion method.

Assume that P = {p1, p2, . . . , ph} is a set of paths, the max-min method for
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finding the best subset of k dissimilar paths in P is described in Alg. 4.9 where ε is

the lower bound on the dissimilarity between two paths and the function Diss(p, q)

returns the dissimilarity between the paths p and q. In each iteration, one path in P

is selected and added to the set D of the determined paths. The selected path is a

path that the minimum dissimilarity between it and other paths on P is maximal. If

the maximum value is less than the lower bound on dissimilarity ε, then the method

terminates.

Algorithm 4.9 The max-min method for the DSLP problem.

1: procedure DSP-MaxMin(P, k, ε)
2: D ← p1 . p1 is the shortest path
3: P ← P \ {p1}
4: while |D| < k do
5: dopt ← Max

pi∈P
Min
pj∈D

Diss(pj, pi) . Optimal value

6: if dopt ≥ ε then
7: p∗ ← arg min{Max

pi∈P
Min
pj∈D

Diss(pj, pi) } . Optimal path on P

8: D ← D ∪ {p∗}
9: P ← P \ {p∗}

10: else
11: Stop
12: end if
13: end while
14: Return D
15: end procedure

Another method for selecting the best k dissimilar paths from a given set of paths

P is the p-dispersion method that is introduced by Erkurt et al. in [22]. The

advantage of this method in comparison to the max-min method is that, it can be

solved efficiently by a number of existing algorithms for the p-dispersion problem,

see [21].

In summary, the subset selecting is an approach for the DSLP problem with a

large number of efficient existing algorithms. However, the disadvantage of this

approach is that, it cannot guarantee to find out k satisfactory paths if the set of

the predetermined shortest loop-less paths is not large enough. There is no upper

bound on the number of shortest loop-less paths should be predetermined to gain k

dissimilar paths with a given lower bound of dissimilarity between two paths.

4.6.2 On-line Approach

In the on-line approach, paths are determined one after another. The next dissim-

ilar path is determined according to the information of all the previously determined
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paths. Three well known methods in this approach are the gateway method, the

penalty method, and the heuristic based on ranking algorithms (HRA).

Gateway method: In this method, a set of k distinct nodes, so-called gates, must

be predetermined. The dissimilar shortest paths are determined as the shortest paths

containing one of the predetermined nodes. The method requires the knowledge of

the “gates”. However, it cannot guarantee that the optimality on the length of paths

as well as the dissimilarity between determined paths.

Penalty method: The idea of this method is to add penalty costs to the links

on the previously selected paths so that the next shortest path on the updated

graph should be dissimilar from the previously selected paths. There are various

strategies for adding penalty costs regarding the characteristics of the considering

maps. The advantage of this method is the high probability of finding dissimilar

paths. However, the length of the next selected path may be considerably greater

than those of the previously selected paths. Algorithm 4.10 describes the penalty

method for finding k shortest dissimilar paths from s to t where PCost is the penalty

factor, ε is the lower bound on dissimilarity between two paths, and Imax is the

maximum number of iterations.

Algorithm 4.10 Penalty method for the DSLP problem.

1: procedure DSP-Penalty(G(V,E), s, t, k, PCost, ε)
2: D ← ∅ . Set of dissimilar paths
3: Imax← maximum number of iterations
4: i← 0 . Number of iteration
5: while |D| < k and i < Imax do
6: i← i+ 1
7: p← ShortestPath(G, s, t)

/*Add penalty cost*/
8: for all e on p do
9: w(e)← w(e)(1 + PCost) . Add penalty cost

10: end for
11: if Min

q∈D
{Diss(p, q)} ≥ ε then

12: D ← D ∪ {p}
13: end if
14: end while
15: Return D
16: end procedure

Heuristic based on ranking algorithm (HRA): In the previous sections, a num-

ber of methods for the KSLP problem have been investigated, such as the HMA,

Yen’s algorithm, the HEA, and the HELF. Those methods can orderly determine

the shortest loop-less paths regarding their lengths. They can be used to determine
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dissimilar shortest loop-less paths by checking the dissimilarity condition for the

determined paths. The idea of HRAs is to apply try-and-error method for all the

paths generated by the ranking algorithms. A shortest loop-less path is accepted if

it is dissimilar from other previously selected paths. The general structure of HRAs

is described in Alg. 4.11. The meanings of parameters are the same with those in

Alg. 4.10. Since in HRAs paths are visited orderly by their lengths, the average

length of the selected paths is surely minimal. This fact is the advantage of HRAs,

however, HRAs may have to visit a significantly large number of loop-less paths for

finding a given number of dissimilar paths.

Algorithm 4.11 General structure of the heuristic based on ranking methods for
the DSLP problem.

1: procedure DSP-HeuristicRanking(G(V,E), s, t, k, ε)
2: D ← ∅ . Set of dissimilar paths
3: Imax← maximum number of iterations
4: i← 0 . Number of iteration
5: while |D| < k and i < Imax do
6: i← i+ 1
7: p← next loop-less path
8: if Min

q∈D
{Diss(p, q)} ≥ ε then

9: D ← D ∪ {p}
10: end if
11: end while
12: Return D
13: end procedure

4.6.3 A New Heuristic and Results

As shown in Section 4.5, the HELF for the KSLP problem dominates other methods

in terms of running time, thus in order to evaluate the HRA and the penalty method

for the DSLP problem, we compare the penalty method using the bidirectional Di-

jkstra for finding shortest path, and the heuristic using the HELF for generating

loop-less paths. The heuristic using the HELF is named heuristic based on Epp-

stein’s algorithm using loop-and-similarity filters (HELSF). It follows all the

steps as those in the HELF to generate orderly loop-less paths, but every generated

path is checked both the loop-less condition and the dissimilarity condition.

Table 4.5 gives the computational results of the HELSF and the penalty method

using the bidirectional Dijkstra on the map of Hanoi, Vietnam. The penalty method

are implemented with three different penalty factors, i.e. β = 0.2, β = 0.4, and

β = 0.6. The first left column labeled “Min Diss” shows the values of lower bound on

the dissimilarity between two paths. These values are in the range [0.10, 0.40]. The
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rest of the columns are grouped into 4 blocks. The first block is the computational

results of the HELSF, the last three blocks are the computational results of the

penalty method with different values of penalty factors. In turn, each block has two

columns: one labeled “Time(s)” shows the average running times in second, the other

labeled “Length” shows the average ratios of the average length of selected paths to

the length of the shortest path, e.g. the value 1.15 in the “Length” column means

the average length of all the determined paths is 1.15 times the shortest length.

The results show that the running times of the penalty method are significantly less

than those of the HELSF. Furthermore, when the lower bound on the dissimilarity

increases, the running time of the HELSF increases significantly while the running

time of penalty method is not considerably affected.

Table 4.5: Computational results of the HELSF and the penalty method using the
bidirectional Dijkstra.

Min Diss.
HELSF

Penalty-Bidirectional Dijkstra

β = 0.2 β = 0.4 β = 0.6

Time(s) Length Time(s) Length Time(s) Length Time(s) Length

0.10 0.1346 1.0162 0.0215 1.0909 0.3220 1.1336 0.0366 1.2163

0.15 0.2373 1.0223 0.0220 1.0935 0.0227 1.1336 0.0395 1.2163

0.20 0.5359 1.0285 0.0221 1.0989 0.0394 1.1336 0.0271 1.2163

0.25 1.3659 1.0383 0.0344 1.1165 0.0371 1.1381 0.0338 1.2163

0.30 1.9469 1.0587 0.0223 1.1165 0.0225 1.1514 0.0329 1.2163

0.35 3.2555 1.0847 0.0243 1.1323 0.0275 1.1721 0.0434 1.2163

0.40 8.4200 1.1223 0.0231 1.1411 0.0377 1.1784 0.0225 1.2326

However, the HELSF provides better set of dissimilar paths in terms of the average

length of the paths, i.e. the average length of paths determined by the HELSF is

less than those by the penalty method.

In conclusion, both the HELSF and the penalty method have advantages and disad-

vantages in comparison to the other. According to the objectives, e.g. running time

or average of lengths, the most suitable method for the DSLP problem is selected.

4.7 Multi-objective Shortest Paths Problem

As defined in Subsection 4.1, the multi-objective shortest paths problem (MOSP)

is the problem of determining k ≥ 1 best paths corresponding to a given number of

objectives. Normally, these objectives conflict with each other, thus it is normally

impossible to get a solution that is the optimal solution regarding all the objectives.

The motivation of this section comes from a fact in transport that drivers may choose

their paths with respect to not only one but a number of objectives. In the first 5

sections of this chapter, routing problems regarding one objective, i.e. length, have
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been studied. In Section 4.6 the dissimilarity between paths is also considered. In

addition to routing problems related to path-selecting behaviors in transportation

networks, we introduce the MOSP problem in this section.

In Subsection 4.7.1, basic facts, including some recent studies as well as existing

approaches, about the MOSP problem are introduced. Subsection 4.7.2 presents a

particular case of the MOSP problem, named bi-objective shortest paths (BOSP)

problem, where only two objectives are considered simultaneously. In order to de-

termine quickly a set of a given number of optimal paths for the BOSP problem,

we present the multi-objective combinatorial optimization (MOCO) approach with

a simple heuristic following the approach.

4.7.1 Introduction

Given a graph G(V,E) where each link e ∈ E has m > 1 attributes (objectives).

The map from links on G to its objectives is given as

f : E 7−→ Rm

e −→ f(e) = (f1(e), f2(e), . . . , fm(e)),

where fi(e), i = 1, . . . ,m, is the ith attribute of the link e. If p = (e1, e2, . . . , el) is

a path on G, then the vector of objectives of p is f(p) = (f1(p), f2(p), . . . , fm(p)),

where fi(p) =
∑
e∈p

fi(e), for i = 1, 2, . . . ,m.

Definition 4.7.1. Given two paths p1 and p2, we say that p1 dominates p2, denoted

as p1 <D p2, if fi(p1) ≤ fi(p2) for all i = 1, 2, . . . ,m and there exists 1 ≤ j ≤ m

such that fj(p1) < fj(p2).

A path p ∈ Pst is a non-dominated path from s to t if p is not dominated by

any other paths in Pst. The MOSP problem is the problem of finding all or k ≥ 1

non-dominated paths from a given source node to a given destination node.

Definition 4.7.2. Let C be a cycle (loop) in graph G(V,E). The cycle C is an

absorbent cycle if there exists i ∈ {1, 2, . . . , h} such that fi(C) < 0.

In the MOSP problem, if a connected graph contains an absorbent cycle, then there

is an infinite non-dominated path, thus there is no finite algorithm that can find

all the non-dominated paths, i.e. no algorithm can determine all the non-dominated

paths in a finite time. This is confirmed in the following theorem.

Theorem 4.7.3. Given a connected graph with an absorbent cycle. The is no finite

algorithm that can find all the non-dominated paths.

Proof. Let p = (v1, . . . , vm, C, vn, . . . , vh) be a path from s to t containing an ab-

sorbent cycle C. We have the set S = {pl | pl = (v1, . . . , vm, C
l, vn, . . . , vh)}, where
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C l is a path including l times cycle C. Because C is an absorbent cycle, so there

is u ∈ {1, 2, . . . , k} such that fu(C) < 0. Assume that there exists a finite algo-

rithm that can find the set of all non-dominated paths X = (q1, q2, . . . , qN). Let

fu(q
v) = arg min{fu(qi) | 1 ≤ i ≤ N}. Because fu(C) < 0 there is l > 0 such that

fu(p
l) < fu(q

v). This means that pl is not dominated by any paths in X and the

algorithm cannot determine pl. The conflict indicates that the assumption is not

true.

According to Theorem 4.7.3, algorithms, that aim at determining all the non-

dominated paths, cannot apply to graphs with an absorbent cycle. Since this thesis

focuses on road networks where objectives on links are positive, we consider only

graphs without absorbent cycles.

There are a number of approaches for the MOSP problem have been proposed by

various researchers in recent decades. The labeling approach is a popular approach

for the MOSP problem with many algorithms and speed-up strategies for the ap-

proach. According to the review of Medaglia et al. [50], Martins [49] is one of the

pioneers in the labeling approach for the MOSP problem. Another approach is

the near shortest path (NSP) that generates a number of candidates from the

shortest-length path and selects non-dominated paths from those candidates. The

multi-objective combinatorial optimization (MOCO) approach aims at deter-

mining the non-dominated supported paths that are the shortest path with respect

to a linear combination of the objectives. This approach recently receives attention

of various researchers, such as Ehrgott and Gandibleux [19], Geisberger et al. [30].

A survey on this approach is investigated by Bast et al. [4].

In the next subsection, we introduce the bi-objective shortest paths problem and the

MOCO approach, that can work efficiently on large transportation networks. We

also present a simple heuristic for finding a set of k non-dominated paths following

the MOCO approach.

4.7.2 Bi-Objective Shortest Paths Problem

The bi-objective shortest paths (BOSP) problem is a case of the MOSP prob-

lem when only two objectives are considered simultaneously. For instance, in traffic

systems where traffic jams occur frequently, drivers may choose their paths based

on both traveling time at un-congested condition (free flow) and traveling time at

congested condition (over-capacity flow). The BOSP problem has all the features

of the MOSP problem, therefore, algorithms for the MOSP problem can be applied

for solving the BOSP problem. However, there are also a large number of particu-

lar algorithms proposed for the BOSP problem or proposed for the MOSP problem

but work efficiently on the BOSP problem. The multi-objective combinatorial op-

timization (MOCO) is such an algorithm that is efficient for determining a set of
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non-dominated paths for the BOSP problem. In this subsection, we introduce the

MOCO algorithm with a heuristic based on it for the BOSP problem.

Given a graph G = (V,E) where each link (i, j) ∈ E has two objectives: the first

one is denoted as cij and the second one is denoted as tij. Let p be a path on G, the

objectives of p are

• C(p) =
∑

(i,j)∈p
cij—the first objective of p,

• T (p) =
∑

(i,j)∈p
tij—the second objective of p.

The BOSP problem is to find a set D ⊂ Pst of k non-dominated paths from s to t

in terms of the first objective and second objective of paths.

Theorem 4.7.4. If p∗ = arg min
p∈Pst

[βC(p) + (1− β)T (p)] where 0 < β < 1, then p∗ is

a non-dominated path.

Proof. For a proof by contradiction, we assume that p∗ is dominated by a path

p ∈ Pst, i.e.,

C(p∗) ≥ C(q) and T (p∗) ≥ T (q), (4.2)

where equalities (4.2) do not happen concurrently. Because 0 < β < 1, the following

inequalities are held

βC(p∗) ≥ βC(q) and (1− β)T (p∗) ≥ (1− β)T (q). (4.3)

Since equalities (4.3) do not happen simultaneously, it holds that

βC(p∗) + (1− β)T (p∗) > βC(q) + (1− β)T (q). (4.4)

Because (4.4) conflicts with the definition of p∗, the theorem is proved.

Definition 4.7.5. A path p∗ ∈ Pst from s to t is a supported path if there exists

0 < β < 1 such that p∗ = arg minp∈Pst [βC(p) + (1 − β)T (p)]. Otherwise, p∗ is a

non-supported path.

Definition 4.7.6. Given a graph G(V,E) where each link e has two objectives ce
and te, and 0 < β < 1. The virtual length of link e, denoted as w(e), is defined

as w(e) = βce + (1− β)te.

Theorem 4.7.7. Given a graph G(V,E) and 0 < β < 1. Each link e ∈ E has two

objectives ce and te. If p∗ is a shortest path in terms of virtual lengths, then p∗ is a

supported path.
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Proof. The virtual length of path p∗ is calculated as the sum of virtual lengths of

the links on p∗, i.e.

W (p∗) =
∑
e∈p∗

[βce + (1− β)te]

= βC(p∗) + (1− β)T (p∗).

Since p∗ is a shortest path, for any q ∈ Pst we have W (p∗) ≤ W (q), i.e.

βC(p∗) + (1− β)T (p∗) ≤ βC(q) + (1− β)T (q), ∀q ∈ Pst.

This implies that p∗ is a non-dominated path, according to Theorem 4.7.4.

Based on Theorem 4.7.7, we introduce a simple heuristic, named heuristic on

multi-objective combinatorial optimization (HMOCO), to determine a set of

k of non-dominated paths that are also supported paths. The HMOCO is described

in Alg. 4.12 where s is the source node, t is the destination node, and k ≥ 1 is the

number of paths. There are at most 2k−1 iterations. In each iteration, a new value

of β in the range (0, 1) is given. The function ShortestPath(G(V,E,W ), s, t)

returns the shortest path from s to t in terms of virtual length W . The returned

path is a non-dominated supported path from s to t. If the path is not yet selected,

it is put on the set of selected paths. The value of β can be changed according to

different strategies to get as much as possible supported paths.

Algorithm 4.12 The HMOCO for the MOSP problem.

1: procedure HMOCO(G(V,E), s, t, k)
2: D ← ∅ . Set of selected paths
3: i← 1
4: while i < 2k and |D| < k do
5: β ← i

2k

6: for all e ∈ E do
7: we ← βce + (1− β)te . Update the virtual length
8: end for
9: pi ← ShortestPath(G(V,E), s, t) . Regarding virtual lengths

10: if pi 6∈ D then
11: D ← D ∪ {pi}
12: end if
13: i← i+ 1
14: end while
15: Return D
16: end procedure

Note: All the paths determined by Alg. 4.12 are supported and non-dominated,

however, there may be non-dominated, non-supported paths that could not be de-
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Figure 4.7: Example of a non-dominated, non-supported path.

termined by the algorithm. For instance, Fig. 4.7 (a) shows a graph where each

link e has two attributes denoted as (ce, te). Three possible paths from v1 to v2 are:

the path p1 = (v1, v4, v2) with C(p1) = 4, T (p1) = 9, the path p2 = (v1, v3, v2) with

C(p2) = 6, T (p2) = 6, and the path p3 = (v1, v3, v4, v2) with C(p3) = 5.5, T (p3) = 8.

All the paths, i.e. p1, p2, and p3 are non-dominated paths.

With β = 0.1 the virtual lengths of the links in the graph are shown in Fig. 4.7 (b)

where p2 is the shortest path on the graph with respect to the new virtual lengths.

Thus, p2 is a supported path. Similarly with β = 0.9 the virtual lengths of the links

are shown in Fig. 4.7 (c), and p1 is the shortest path with respect to the new virtual

lengths. The path p1 is also a supported path.

We prove that p3 is a non-supported path by contradiction. Assuming that p3 is a

supported path, i.e. there exists 0 ≤ β ≤ 1 such that

p3 = arg min
p∈{p1,p2,p3}

{βC(p) + (1− β)T (p)},

we have

5.5β + (1− β)8 ≤ 4β + 9(1− β)

and

5.5β + (1− β)8 ≤ 6β + 6(1− β).
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These inequalities are equal to 2.5β ≤ 1.0 and 2.0 ≤ 2.5β. This leads to a conflict

that 1.0 ≥ 2.5β ≥ 2.0. Thus, the path p3 is not a supported path.

In conclusion, the multi-objective shortest paths (MOSP) problem is an important

problem relating to path-selecting behaviors of drivers in transportation networks.

There are a large number of approaches proposed for the MOSP problem, such as the

labeling approach, the near shortest path approach, the multi-objective combinato-

rial optimization (MOCO) approach, etc. A particular case of the MOSP problem

is the bi-objective shortest paths (BOSP) problem that is the most investigated by

researchers recently. We have introduced a simple heuristic, named HMOCO, fol-

lowing the combinatorial optimization approach for the BOSP problem. Although

the HMOCO cannot guarantee that all non-dominated paths can be determined,

it can be useful in applications that need to determine quickly a given number of

non-dominated paths.

4.8 Conclusions and Discussion

In this chapter we have introduced various problems of finding shortest paths in

terms of one or many objectives and approaches for those problems. Among them

Eppstein’s algorithm is the best one in terms of time complexity, however, the de-

termined paths by the algorithms may contain loops. In order to reduce number of

visited path with loops, we introduced the loop filters for the Eppstein’s algorithm.

Based on these filters we propsed two new heuristics for the KSLP and the DSLP

problems, in Section 4.5 and Section 4.6. The new heuristics, named HELF and

HELSF, were tested on real city maps and showed theirs advantages in computa-

tional times to the other examined algorithms. In the last section of the chapter,

i.e. Section 4.7, we introduced the multi-objective shortest paths (MOSP) problem

with a particular case when only two objectives are considered simultaneously. The

multi-objective combinatorial optimization (MOCO) is a prominent approach to find

a set (may be not all) of non-dominated paths.

For the further works on the KSLP problem, we are investigating methods for re-

ducing the computational time of the proposed loop filters for Eppstein’s algorithm.

Such methods could have a significant impacts on the total running time of the

HELF and the HELSF. Other filters, that can detect bad parent paths, are also

taken into account.



Chapter 5

Mixed Traffic Assignment

Modeling

In this chapter, we investigate traffic assignment modeling on mixed traffic systems

(MTS) that are popular in a number of developing countries, e.g., the Philippines,

Taiwan, India, Thailand, and Vietnam, etc. The user equilibrium model, mentioned

in Section 2.6, is utilized to develop a new traffic assignment model for mixed traffic

systems. At the optimal solution of the new model, an equilibrium for each kind

of vehicle is obtained. The promising computational results of the model using the

real data in Hanoi, Vietnam, in Chapter 6 show the accuracy of the model and open

a wide range of applications in further traffic planning problems.

The chapter is organized as follows. In the first section, i.e. Section 5.1, we introduce

the basic knowledge about mixed traffic systems with an emphasis on mixed traffic

systems dominated by motorcycles. Section 5.2 gives the details of the user equi-

librium model, such as the mathematical formulations and methods for solving the

model. We also introduce an important improvement, proposed by LeBlanc et al.,

for the Frank-Wolfe algorithm to solve the UE model. Section 5.3 introduces a

new UE model for mixed traffic systems. The model separates traffic demands into

two groups: the demands of 2-wheel vehicles and the demands of 4-wheel vehi-

cles. Furthermore, public transportation vehicles are also taken into account in the

new model. The mathematical formulation of the new model as well as an efficient

method to solve it are investigated in this section. At last, Section 5.4 are conclusion

and discussions.

5.1 Mixed Traffic Systems

A traffic system is a system consisting of traffic-related objects, such as roads, vehi-

cles, signal lights, and driving policies, etc. In order to point out the characteristics

of a traffic system we present the definition of traffic lane—one of the most important

objects in traffic systems.

81
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Definition 5.1.1. A traffic lane is a part of a road that is designed for a single

line of vehicles traveling one after one. The crucial role of lanes is to guide drivers

and reduce the traffic conflicts. A lane is normally marked by two color lines, mostly

white or yellow.

The widths of traffic lanes for cars vary from 2.7 to 4.6 meters with respect to the

country and the types of roads. For instance, in Germany the minimum lane width

of the two-lane roads is 3.5 meters, however, the popular lane width of roads in the

Autobahn system—the federal highway system in Germany without speed limit for

some classes of vehicles, is 3.75 meters. The lane width of highways in the United

States of America (USA) is typically 3.7 meters. Whereas, the width of lanes for

bicycles is normally in the range of 1.2 to 1.5 meters.

Figure 5.1: An example of a mixed traffic system in Vietnam. Source: Vnexpress
online newspaper, 2015.

In standard traffic systems lanes are assigned to different kinds of vehicles with

respect to the size and the speed of vehicles. For instance, the lanes for bicycles are

normally small and stay on the left-most side or the right-most side of the roads,

while the lanes for 4-wheel vehicles, e.g. cars, buses or trucks, are broader and are

located at the center of the roads. In a number of cases, the lanes for 4-wheel vehicles

are divided according to the kinds or speeds of 4-wheel vehicles, e.g. personal cars,

trucks, or public buses.

A mixed traffic system (MTS) is characterized by a mixture of various kinds of

vehicles traveling together without dedicated lanes for each kind of vehicle.
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Figure 5.1 is an example of an MTS with a number of different kinds of vehicles,

e.g. motorcycles, personal cars, and buses. Due to the differences over occupied

road surface, speed, and driver behavior, it is normally more difficult to control

an MTS than to control a standard traffic system. This fact comes partly from

vehicles that are as small as motorcycles, but as fast as cars. These vehicles are

called 2-wheel vehicles, for convenience we often use motorcycles to mention this

kind of vehicle. Note that other kinds of vehicles with two wheels but low speeds,

e.g. bicycles, are not taken into account. It is dangerous to make narrow lanes for

only 2-wheel vehicles because their speeds (in the cities) are as high as those of a

cars and they are very flexible. Moreover, it is not effective in terms of economy,

especially in traffic systems where 2-wheel vehicles dominate other kinds of vehicles.

In most mixed traffic systems 2-wheel motor vehicles are allowed to travel on the

standard lanes for 4-wheel vehicles. Because of their small sizes, they can pass over

other vehicles (even cars) on the same lane. This means the traveling on lanes is

not in a single line any more.

In a number of countries motorcycle is the most popular kind of personal vehicle.

When motorcycles dominate other kinds of vehicles, the traffic system is called

mixed traffic system dominated by motorcycles (MTSDM). In an MTSDM

the traffic flow unit is normally the motorcycle unit (MCU). In order to estimate the

flow on a link in an MTS, the equivalent values of different kinds of vehicles in MCU

are investigated by various researchers, e.g. Chandra and Kumar [13], Chu et al. [14],

Cao and Sano [11], etc.

5.2 User Equilibrium Model

As mentioned in Section 2.6 the UE model is based on the first principle of Wan-

drop [67] which states that the traveling times on all the actually used paths between

an original-destination (O-D) pair of zones are the same and less than those of

any unused paths. In this section, we make a review on proposed mathematical

formulations for the UE model and then introduce the Frank-Wolfe algorithm for

these formulations with an important improvement of LeBlanc et al. Some further

materials about topics covered in this section are as follows.

1. M.J. Beckmann, C.B. McGuire, and C.B. Winsten. Studies in the Economics of

Transportation. Rand Corporation, 1955, [5].

2. M. Frank and P. Wolfe, An algorithm for quadratic program, 1956, [27].

3. L.J. LeBlanc, E.K. Morlok, and W.P. Pierskalla. An efficient approach to solving

the road network equilibrium traffic assignment problem, 1975, [46].

4. Y. Sheffi, Urban Transportation Networks: Equilibrium Analysis with Mathemat-

ical Programming Methods, 1985, [60].
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Given a graph G(V,E) representing a transportation network, in order to formulate

the UE model, we use some notations as follows.

• P ⊆ V is the set of population zones that have traffic demands to/from at

least one other zone.

• drs is the traffic demand from the node r ∈ V to the node s ∈ V . The

demand drs is greater than zero if both of the nodes r and s are population

zones, i.e. drs ≥ 0 if r, s ∈ P , otherwise, drs = 0.

• xij is the total traffic flow on the link (i, j).

• tij(xij) is the traveling function on the link (i, j) where xij ∈ E is the traffic

flow on the link.

• zij(xij) =
xij∫
0

tij(ω)dω is the contribution of the link (i, j) to the objective

function.

5.2.1 The Original Formulation

In 1955, Beckmann [5] proposed a mathematical formulation whose optimal solu-

tion satisfies the first principle of Wandrop. In order to formulate the UE model,

Beckmann uses the variable xsij as the traffic flow on the link (i, j) going to s. The

original mathematical formulation of the UE model is described as follows

Minimize z(x) =
∑

(i,j)∈E

xij∫
0

tij(ω)dω, (OUE)

Subject to xij =
∑
s∈P

xsij ∀(i, j) ∈ E (5.1)

drs =
∑
j∈O(r)

xsrj −
∑
i∈I(r)

xsir ∀s ∈ P, r ∈ V, r 6= s (5.2)

xsij ≥ 0 ∀(i, j) ∈ E, s ∈ P, (5.3)

where x = (xsij) is the variable vector, O(r) is the set of the out-going nodes from

r, i.e. O(r) = {s ∈ V | (r, s) ∈ E}, and I(r) is the set of the in-going nodes to r,

i.e. I(r) = {v ∈ V | (v, r) ∈ E}. Equalities (5.1) state that the total flow on a link

is the sum of all the flows going to the destination zones. Equalities (5.2) are flow

constraints, i.e. for each zone s ∈ P , the total flow to s on the links going out from

the node r is equal to the sum of the flows on the links going to r and the demand

from r to s. Inequalities (5.3) are non-negativity constraints. The objective function

of OUE can be rewritten as z(x) =
∑

(i,j)∈E
zij(xij).
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Lemma 5.2.1. If tij(x) is an increasing continuously differentiable function on

[0,∞) for all (i, j) ∈ E, then the objective function of OUE is convex with respect

to xij and xsij.

Proof. We have
∂z(x)

∂xij
=

∑
(u,v)∈E

∂zuv(x(uv))

∂xij
.

Because with two different links (i, j) and (u, v) the total flows xij and xuv on them

are independent, it holds that ∂zuv(x(uv))/∂xij = 0 if (u, v) 6= (i, j). So we have

∂z(x)/∂xij = tij(xij)− tij(0). Since tij(xij) is increasing continuously differentiable,

it holds that ∂tij(xij)/∂xij ≥ 0. Hence

∂2z(x)

∂2xij
=
∂tij(xij)

∂xij
≥ 0.

This means that the objective function z(x) is convex with respect to xij. We also

have
∂z(x)

∂xsij
=
∂z(x)

∂xij
× ∂xij
∂xsij

= (tij(xij)− tij(0).

From this it holds that

∂2z(x)

∂2xsij
=
∂tij(xij)

∂xsij
=
∂tij(xij)

∂xij

∂xij
∂xsij

=
∂tij(xij)

∂xij
≥ 0.

Therefore, z(x) is also convex regarding xsij.

Corollary 5.2.2. If tij(x) is an increasing continuously differentiable function on

[0,∞) for all (i, j) ∈ E, then program OUE is a linear constraints convex minimiza-

tion (LCCM) program.

Proof. According to Lemma 5.2.1, the objective function of OUE is strictly convex.

Moreover, it has linear constraints, so the program is an LCCM.

In the UE model, the BPR function is widely used as the traveling time function on

a link. In the rest of this thesis, we use the BPR function for all the formulations of

the UE model, however, other traveling time functions could also be utilized. For

each link (i, j) ∈ E we have

tij(x) = T 0
ij

[
1 + ρ(

x

Cij
)4

]
= aij + 5b4

ij

where aij = T 0
ij and bij =

ρT 0
ij

5C4
ij

, Cij is the capacity, and T 0
ij is the traveling time

at free flow of the link (i, j). Since the BPR function is an increasing continu-

ously differentiable function, program OUE is an LCCM program, according to
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Lemma 5.2.2. Thus, it can be solved by the Frank-Wolfe algorithm—mentioned

in Subsection 2.5.3—however, the mathematical formulation of a real-scale traffic

assignment (TA) problem may have millions of variables. For such large problems,

the Frank-Wolfe algorithm takes considerable time to solve the model. Fortunately,

this difficulty can be overcome with a crucial improvement by LeBlanc et al. that is

investigated in the next subsection.

5.2.2 Solving by the Frank-Wolfe Algorithm

In 1975, LeBlanc et al. [46] introduced an important improvement to the Frank-Wolfe

algorithm for solving OUE. They proposed a grouping technique that transforms a

linear programming problem with |V ||E| variables into |V | subproblems with |E|
variables. Therefore, instead of solving a big problem, we just need to solve a

number of smaller subproblems. This improvement to the Frank-Wolfe algorithm

gains advantages in both running time and memory consumption.

Recall that the Frank-Wolfe algorithm repeats two basic steps, namely finding a

reducing direction and one-dimension search. In OUE x = (xsij), where (i, j) ∈ E
and s ∈ P , is the vector of the flow variables with the size |x| = |E| × |P |. A

bottleneck of the Frank-Wolfe algorithm is in the first step of determining a reducing

direction. If |V | = 5000, |E| = 10000, and |P | = 100, then the size of the variable

vector |x| = 106. In this case, it takes considerable time to solve the first step

even with some very efficient algorithms, such as the Simplex algorithm that is an

efficient algorithm proposed by Dantzig for linear programming. Moreover, in the

Frank-Wolfe algorithm both of the steps are repeated a number of times. Thus,

it is difficult to solve OUE in real time by using directly the original Frank-Wolfe

algorithm. In order to divide the problem into smaller subproblems, LeBlanc et al.

group variables into a number of smaller groups that are independent of each other.

Because the variables in each subproblem are totally separated from any variables in

other subproblems, the optimal solution to OUE is obtained by the optimal solutions

of all the subproblems.

In the first step of the Frank-Wolfe algorithm we have

Mininmize ∇z(x)y = Minimize
s∈P∑

(i,j)∈E

∂z(x)ysij
∂xsij

. (5.4)

Note that
∂z(x)

∂xsij
=
∂z(x)

∂xij

∂xij
∂xsij

=
∂z(x)

∂xij
=

∑
(u,v)∈E

∂zuv(xuv)

∂xij
.

For every two different links (i, j) 6= (u, v) the total flows on each of them is inde-
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pendent of the total flow on the other, i.e.

∂zuv(xuv)

∂xij
= 0, thus we have

∂z(x)

∂xsij
=
∂fij(xij)

∂xij
= tij(xij) = cij.

Therefore, (5.4) becomes

Minimize
∑
s∈P

∑
(i,j)∈E

cijy
s
ij ≥

∑
s∈P

Minimize
∑

(i,j)∈E

cijy
s
ij. (5.5)

The right hand side of (5.5) contains |P | separated problems. For each node s ∈ P ,

there is a subproblem whose variables are the traffic flows on all the links to s,

i.e. ysij. The subproblem corresponding to the node s ∈ P is

Minimize
∑

(i,j)∈E

cijy
s
ij (5.6)

Subject to
∑

(i,j)∈E

ysij −
∑

(k,i)∈E

yski = dis ∀i 6= s, i ∈ V (5.7)

ysij ≥ 0 ∀(i, j) ∈ E.

Because there is no relationship between variables of a subproblem to those of any

other subproblem, the equality in (5.5) is really achieved.

Program (5.6) is an LP, thus, it can be solved by the Simplex algorithm, however it

can be transformed into the shortest path problem from all the nodes in P (excluding

s) to s. Indeed, if we denote yrsij as the traffic flow from r to s on the link (i, j),

then we have ysij =
∑
r∈P

yrsij . The optimal solution to program (5.6) is achieved at

the optimal solutions of |P | subproblems. Each subproblem is actually the shortest

path problem from node r ∈ V to s, that is formulated as

Minimize
∑

(i,j)∈E

cijy
rs
ij

Subject to
∑

(i,j)∈E

yrsij −
∑

(k,i)∈E

yrski =

{
drs if i = r,

0 otherwise,
∀i 6= s, i ∈ V

yrsij ≥ 0 ∀(i, j) ∈ E.

The solution to this program is

yrsij =

{
drs if (i, j) belongs to the shortest path,

0 otherwise.

Thus, the solution to program (5.6) can be determined by finding the shortest paths
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from every node r ∈ V to the node s, and then assigning all the traffic demand drs
to the shortest path from r to s. Note, because drs = 0 for all r 6∈ P , we actually

need to find the shortest path from every node r ∈ P to s.

In conclusion, with the improvement of LeBlanc et al., the Frank-Wolfe algorithm

can solve effectively formulation OUE of the UE model on large graphs with thou-

sands of nodes by solving a number of subproblems that can be easily solved by an

existing shortest path algorithm, e.g. Dijkstra’s algorithm or A-Star algorithm.

5.2.3 A Generalized Formulation

The disadvantage of the original formulation of the UE model, i.e. OUE, is that it re-

stricts further constraints of routing behaviors, i.e., if we add more constraints about

routing behaviors into OUE, it might lose the linearity, as a consequence, it is harder

to solve the model. In order to overcome this disadvantage of formulation OUE, a

general formulation of the UE model has been proposed. The general formulation

separates the routing behaviors and the assignment modeling by predetermining the

sets of potential paths for each pair of zones and doing traffic assignment modeling

on those sets. Potential paths are defined as paths that drivers may select to travel

from a zone to another zone according to their routing behaviors. Predetermining

this set of paths enables us to add any kinds of routing behaviors into the UE model

without changing the structure of its mathematical formulations.

Let Prs be the set of the potential paths from r ∈ P to s ∈ P , and the variable

xprs indicates the traffic flow on the potential path p ∈ P rs. Let us denote

δpij =

{
1 if the link (i, j) is on p,

0 otherwise.

The general formulation of the UE model is expressed as

Minimize z(x) =
∑

(i,j)∈E

zij(xij), (GUE)

Subject to xij =
∑
r,s∈P

∑
p∈P rs

δpijx
p
rs ∀(i, j) ∈ E (5.8)∑

p∈P rs

xprs = drs ∀r, s ∈ P (5.9)

xprs ≥ 0 ∀r, s ∈ P, p ∈ Prs, (5.10)

where x = (. . . , xpij, . . .) is the vector of the flow variables on all the potential paths of

all the O-D pairs of zones. Equalities (5.8) mean that the total flow on a link equals

the sum of all the flows on the potential path containing the link. Constraints (5.9)

ensure that the traffic demand between an O-D pair of zones is assigned completely
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to the potential paths connecting them. We will prove that mathematical formu-

lation GUE has a user equilibrium at the optimal solution, and it can be solved

efficiently by the Frank-Wolfe algorithm with a similar grouping technique as the

improvement of LeBlanc et al.

Indeed, in formulation GUE, xij is not used as a variable, we use it to make the

formulation short and clear. The objective function z() is increasing continuously

differentiable with respect to each variable xpij, thus program GUE is an LCCM

program, and it satisfies the KKT conditions at the optimal solution. It means that

at the optimal solution, with any O-D pair of zones r, s ∈ P and r 6= s and p is a

potential path from r to s, there exist a series of numbers λuv, such that

xprs

(
∂z(x)

∂xprs
−
∑
u,v∈P

λuvluv

)
= 0 and

∂z(x)

∂xprs
−
∑
u,v∈P

λuvluv ≥ 0,

where

luv =

{
1 if u = r and v = s,

0 otherwise.

The KKT conditions equal

xprs

(
∂z(x)

∂xprs
− λrs

)
= 0, (5.11)

and
∂z(x)

∂xprs
− λrs ≥ 0. (5.12)

We have

∂z(x)

∂xprs
=
∑

(i,j)∈E

(
∂zij(xij)

∂xij

∂xij
∂xprs

)
=
∑

(i,j)∈E

(
tij(xij

∂xij
∂xprs

)

)
, (5.13)

where

∂xij
∂xprs

= δpij =

{
1 if (i, j) lies on path p,

0 otherwise.

It can be seen that the right side of (5.13) is the traveling time on the path p from

r to s, denoted as cprs. Hence, equality (5.11) indicates that at the optimal solution,

for every pair of zones r, s ∈ P if xprs > 0, i.e., the potential path p from r to s

is actually used, then the total traveling time on p equals the constant value λrs.

Inequality (5.12) means that the traveling time on any potential path from r to s

is not less than λrs. These conditions prove that at the optimal solution the first

principle of Wardrop is satisfied, i.e. GUE is a mathematical formulation of the UE

model. This formulation will be used in the next section for the new UE model for
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mixed traffic systems.

We now prove that the generalized formulation GUE can be solved efficiently by the

Frank-Wolfe algorithm. Indeed, we also use the grouping technique similar to the

grouping technique of LeBlanc et al. We have

∇z(x)y =
∑
r,s∈P

∑
p∈Prs

∂z(x)

∂xprs
yprs

=
∑
r,s∈P

∑
p∈Prs

cprsy
p
rs.

The first step in the Frank-Wolfe algorithm becomes

Minimize
∑
r,s∈P

∑
p∈Prs

cprsy
p
rs ≥

∑
r,s∈P

Minimize
∑
p∈Prs

cprsy
p
rs. (5.14)

Because there are no constraints on the limitation of the flows on links, and the

variable yprs is independent of yqu,v when (r, s) 6= (u, v), the equality is really reached

in (5.14). Thus, the first step of the Frank-Wolfe algorithm for GUE is separated

into |P |2 subproblems. Each subproblem corresponds to an O-D pair of zones, say

r, s, that is formulated as

Minimize
∑
p∈Prs

cprsy
p
rs

Subject to
∑
p∈Prs

yprs = drs

yprs ≥ 0 ∀p ∈ Prs.

This linear program can be easily solved by simple operations. The optimal solution

is obtained when all the traffic demands from r to s are assigned to the path on the

set of potential paths Prs with the smallest traveling time, i.e.

yprs =

{
drs if cprs = min{cqrs | q ∈ Prs},
0 otherwise.

In conclusion, formulation GUE for the UE model can be efficiently solved by the

Frank-Wolfe algorithm using the grouping technique proposed by LeBlanc et al.

Furthermore, it separates the routing behaviors and the main formulation, such that

the further routing behaviors will not effect the main structure of the UE model.

Due to the advantages of the GUE formulation, in the next section, we investigate a

new UE model for mixed traffic systems with a mathematical formulation extended

from GUE.
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5.3 A New Model for Mixed Traffic Systems

Unlike in standard traffic systems where each kind of vehicle has its own lanes to

travel, in a mixed traffic system (MTS) vehicles of various kinds travel together in

the same lanes. In addition, different kinds of vehicles have different routing behav-

iors, thus, the potential paths for them are different. Our idea is to separate the

traffic demands and potential paths with respect to kinds of vehicles. In this section,

we investigate a new traffic assignment model for an MTS called generalized user

equilibrium for mixed traffic systems (GUEM). First, we present the math-

ematical formulation of the GUEM model, then we discuss about solving the new

model by using the Frank-Wolfe algorithm with the improvement of LeBlanc et al.

5.3.1 The Formulation of the GUEM Model

In this thesis, we only consider mixed traffic systems with two major kinds of vehicles

that can be described as 2-wheel vehicles and 4-wheel vehicles. For convenience, we

use motorcycles and cars to mention 2-wheel vehicles and personal 4-wheel vehicles.

Buses are not includes in cars. Further kinds of vehicles can be added easily into

the new model. The motorcycle unit (MCU) is used as the flow unit. Each of 2-

wheel vehicles is equivalent to one MCU. The equivalent value of a car in MCU is

investigated by various researchers, e.g. Chandra and Kumar [13], Chu et al. [14], and

Cao et al. [11]. Given two population zones (nodes) r, s ∈ P , and a link (i, j) ∈ E,

a number of new notations are used for the coming formulations as follows.

• dcrs is the traffic demands of cars (4-wheel vehicles) from r to s.

• dmrs is the traffic demands of motorbikes (2-wheel vehicles) from r to s.

• P c
rs is the set of potential paths for cars from r to s.

• Pm
rs is the set of potential paths for motorbikes from r to s.

• α is the equivalent value of a 4-wheel vehicle in MCU.

• Bij is the fixed bus flow on the link (i, j). We have Bij = bij × αbus, where

bij is the bus flow on the link (ij) and αbus is the equivalent value of a bus in

MCU.

• x(c)p
rs is the variable of demands of cars traveling from r to s on the path p ∈ P c

rs.

• x(m)q
rs is the variable of demands of motorbikes traveling from r to s on the

path q ∈ Pm
rs .
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The mathematical formulation of the new UE model for mixed traffic systems is as

follows.

Minimine z(x) =
∑

(i,j)∈E

zij(xij) (GUEM)

Subject to xij =
∑
r,s∈P

[α
∑
p∈P c

rs

δpijx
(c)p
rs +

∑
q∈Pm

rs

δqijx
(m)q
rs ] +Bij ∀(i, j) ∈ E (5.15)

dcrs =
∑
p∈P c

rs

x(c)p
rs ∀r, s ∈ P (5.16)

dmrs =
∑
q∈Pm

rs

x(m)q
rs ∀r, s ∈ P (5.17)

x(c)p
rs ≥ 0 ∀r, s ∈ P, p ∈ P c

rs (5.18)

x(m)q
rs ≥ 0 ∀r, s ∈ P, q ∈ Pm

rs (5.19)

where x = (. . . , x
(c)p
rs , . . . , x

(m)p
rs , . . .) is the vector of all variables of the flows on

potential paths for both motorcycles and cars. Constraints (5.15) mean that the

total flow on a link is equal to the sum of all the traffic flows all vehicles going

through the link and the bus flow. Constraints (5.16) ensure that the traffic demands

of cars from each O-D pair of zones are assigned completely to the potential paths for

cars. Similarly, the meaning of constraints (5.17) is that all demands of motorcycles

are assigned to potential paths for motorcycles. Constraints (5.18) and (5.19) are

non-negativity constraints.

The set of potential paths for each kind of vehicle contains possible paths that drivers

may select to travel regarding their objectives. This involves various factors, such

as the characteristics of the traffic system, the weather or the culture of the country.

For instance, in a number of countries drivers would not select paths whose length

is two times greater than the shortest length. In this case, there should be an upper

bound on the length of potential paths. The sets of potential paths may contain

dissimilar shortest paths whose lengths are smaller than two times the shortest

length. In another case, where traffic managers know about a number of popular

paths between some O-D pairs, they can add it into the set of potential paths. Since

there may be a great number of objectives and constraints on potential paths, we

would not be able to go into details for all of them, however, we present some simple

kinds of the sets of potential paths as follows.

• Set of k shortest loop-less paths. This set of potential paths can be used when

drivers choose the path to travel regarding only the length of paths.

• Set of k shortest loop-less paths with a given upper bound on the lengths of

the paths. Similar to the previous set of potential paths, however, there is an

upper bound on the lengths of paths. For instance, the length of paths should

not exceed two times the length of the shortest path.
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• Set of k shortest dissimilar loop-less paths. All the accepted paths are dissim-

ilar from each other, i.e. the dissimilarity between two paths is not less than

a given value.

• Set of k shortest dissimilar loop-less paths with an upper bound on the lengths

of the paths, i.e. paths are dissimilar to each other and their length is less than

a given upper bound.

• Set of k non-dominated paths according to a given number of objectives, such

as the length, the probability of traffic jams, and the safety of roads, etc.

These kinds of potential paths can be determined by using an efficient algorithm for

the KSP problem mentioned in Chapter 4.

Theorem 5.3.1. The new traffic assignment model, formulated as program GUEM,

is a UE model in the sense that at the optimal solution of the program there is an

equilibrium based on drivers for each kind of vehicle.

Proof. We have

∂z(x)

∂x
(c)p
rs

=
∑

(i,j)∈E

(
∂fij(xij)

∂xij
× ∂xij

∂x
(c)p
rs

)
=
∑

(i,j)∈E

tij(xij)×
∂xij

∂x
(c)p
rs

= α
∑

(i,j)∈E

tij(xij)× δpij

= αwp(x), (5.20)

where wp(x) is the traveling time on the path p for cars at the traffic flow x. Similarly,

we have ∂z(x)/∂x
(m)q
rs = wq(x), where wq(x) is the traveling time on the path q for

motorcycles at the traffic flow x.

Because GUEM is an LCCM program, at the optimal point the KKT conditions are

satisfied, i.e. given r, s ∈ P , r 6= s, there exist λcuv and λmuv such that

x(c)p
rs

(
∂z(x)

∂x
(c)p
rs

− λcrs
)

= 0

∂z(x)

∂x
(c)p
rs

− λcrs ≥ 0

x(m)q
rs

(
∂z(x)

∂x
(m)q
rs

− λmrs
)

= 0

∂z(x)

∂x
(m)q
rs

− λmrs ≥ 0.
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These conditions equal two groups of conditions as follows.

(KKTcar)

x(c)p
rs (αwp(x)− λcrs) = 0

αwp(x)− λcrs ≥ 0.

(KKTmotor)

x(m)q
rs (wq(x)− λmrs) = 0

wq(x)− λmrs ≥ 0.

The (KKTcar) conditions indicate that any car path, say p ∈ Prs, that is actually

used by at least one car driver, i.e. x(c)p > 0, has the same traveling time λcrs/α.

The traveling time on any path that is not used by any car driver, i.e. x(c)p = 0,

is greater or equal to λcrs/α. These conditions ensures the equilibrium state for car

drivers at the optimal solution. Similarly, the (KKTmotor) conditions ensure the

equilibrium state for motorcycle drivers.

5.3.2 Solving the GUEM Model

In order to solve program GUEM, we also use the Frank-Wolfe algorithm with the

same grouping technique applied to program GUE. In the step of determining the

reducing direction, we have

Minimize ∇z(x) · y

= Minimize
∑
r,s∈P

∑
p∈P c

rs

∂z(x) · y(c)p
rs

∂x
(c)p
rs

+
∑
q∈Pm

rs

∂z(x) · y(m)q
rs

∂x
(m)q
rs


= Minimize

∑
r,s∈P

α ∑
p∈P c

rs

wp(x) · y(c)p
rs +

∑
q̄∈Pm

rs

wq(x) · y(m)q
rs


≥
∑
r,s∈P

α×Minimize
∑
p∈P c

rs

wp(x)y(c)p
rs + Minimize

∑
q∈Pm

rs

wq(x)y(m)q

 . (5.21)

The equality can be reached in (5.21) according to the same reason as in the case

of GUE. Therefore, (5.21) can be solved by dealing with a number of subproblems.

Each O-D pair of zones r, s ∈ P has two corresponding subproblems formulated as

follows.

Minimize
∑
p∈P c

rs

wp(x)y(c)p
rs (5.22)

S. t. dcrs =
∑
p∈P c

rs

y(c)p
rs

y(c)p
rs ≥ 0 ∀p ∈ P c

rs.

Minimize
∑
q∈Pm

rs

wq(x)y(m)q
rs (5.23)

S. t. dmrs =
∑
q∈Pm

rs

y(m)q
rs

y(m)q
rs ≥ 0 ∀q ∈ Pm

rs .

These subproblems are very easy to solve with a number of basic mathematical
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operations. The optimal solution to linear program (5.22) is

y(c)p
rs =

{
dcrs if wp(x) = min{wp̄(x) | p̄ ∈ P c

rs},
0 otherwise.

And the optimal solution to program (5.23) is

y(m)q
rs =

{
dmrs if wq(x) = min{wq̄ | q̄ ∈ Pm

rs},
0 otherwise.

5.4 Conclusions and Discussion

In this chapter, we investigated mathematical formulations of the UE model, such

as OUE and GUE. The advantage of formulation GUE is that, it separates the flow

constraints and the routing behaviors of drivers, such that it is able to add further

constraints of routing behavior without changing the structure of the formulation.

A well known algorithm for solving programs OUE and GUE is the Frank-Wolfe al-

gorithm. In 1975, LeBlanc et al. introduced the crucial improvement for this method

to deal with these programs on large transportation networks. The improvement is

based on the grouping technique of variables, where a big problem is divided into a

number of subproblems that can be efficiently solved by the Simplex algorithm or

by existing algorithms for the shortest path problem, e.g. Dijkstra’s algorithm and

A-star algorithm.

Based on the UE model, we have introduced a new traffic assignment model, named

GUEM, for mixed traffic systems. The model is formulated for two major kinds of

vehicles, namely 2-wheel vehicles and 4-wheel vehicles, however, it can be extended

to further kinds of vehicles. The new model also takes the fixed bus flow on each link

into account. In order to solve GUEM, the Frank-Wolfe algorithm is used with a

grouping technique similar to those of LeBlanc et al. Due to the grouping technique,

the model can be solved by solving a number of subproblems that need only basic

mathematical operations. At the optimal solution of formulation GUEM of the new

model, an equilibrium based on each kind of vehicle is gained. This means the

GUEM model is a UE model. The accuracy of the model is examined in the traffic

system dominated by motorcycles in Hanoi, presented in Chapter 6.

Because of the generality of the GUEM model, we can add more constraints on

routing behaviors of drivers and also apply various kinds of traveling time functions

to the model. It is in our plan to develop further traffic assignment models from the

GUEM model, such as a dynamic user equilibrium model for mixed traffic where

the traffic demands are dynamic.





Chapter 6

A Case Study: Hanoi Vietnam

This chapter presents the case study in Hanoi—the capital city of Vietnam—where

the traffic system is characterized as a mixed traffic system dominated by motorcy-

cles. There are an increasing number of serious traffic-related problems in Hanoi,

e.g. traffic jams, air pollution, fatal accidents, etc. Traffic planning is determined

as one of the priority investments for the future development of the city, however,

there is a serious lack of particular research on the traffic in Hanoi, and on the urban

traffic in Vietnam, in general.

Our contributions to this chapter include the traffic data collection with an online

survey on the traffic behaviors in Vietnam, the parameter calibration for the BPR

function applied to traffic system in Hanoi, and the implementation of the GUEM

model using the collected data. The predicted traffic flows resulting from the new

model GUEM are analyzed and compared to the real data of the traffic situation

provided by the Remon-Hanoi project. The big agreement between the predicted

output and the real traffic situation proves the accuracy of the new model. It opens

a wide range of applications in traffic planning not only in Hanoi, but also in other

major cities in Vietnam.

The outline of this chapter is given as follows. Section 6.1 gives the overview of

the traffic system in Hanoi while Section 6.2 introduces the traffic data acquisition.

In Section 6.3, we investigate a method for calibrating the parameters of the BPR

function applying to the traffic in Hanoi. The implementation and the computa-

tional results of the GUEM model using the BPR function using the new calibrated

parameters and the collected data are presented in Section 6.4. The last section, i.e.

Section 6.5, is for the conclusion and discussions.

6.1 The Hanoi Traffic System

Vietnam is a developing country in Southeast Asia with more than 94 million in-

habitants by 2015, according to [12]. Vietnam’s economy has been growing rapidly

97
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in the last two decades after the reformation (Doi moi) of the national economic

system. Accompanying with the fast growth of economy is the high urbanization at

an 2.95% annual rate of change in the period 2010-2015. By 2015, approximately

33.6% of the total population live in urban areas. This fact creates a large pressure

on the existing urban traffic infrastructure, especially in major cities, e.g. Hanoi, Ho

Chi Minh City, DaNang, and HaiPhong, where the government has invested a large

amount of money and efforts to improve the traffic systems. According to the report

of the World Bank [64], the amount of money invested in the traffic infrastructure

reached 4.5% of the gross domestic product (GDP) of Vietnam in 2002. However,

the traffic system cannot meet the rapidly increasing traffic demands, especially

in urban areas. A number of traffic-related problems still remain serious in major

cities.

Hanoi is the capital city and also the second largest city in Vietnam. According to

the survey made by the general statistic office (GSOV) of Vietnam [31]—available

on the website: www.gso.gov.vn—Hanoi has a population of nearly 6.7 million with

about 3 million inhabitants living in the urban districts of Hanoi by 2011. In the city

of Hanoi there are about 300, 000 personal cars and over 3.8 million motorcycles in

2012, according to [66], excluding the number of vehicles coming from other neighbor

areas. The number of personal vehicles is increasing by 15% every year but the traffic

infrastructure is still poor. It cannot meet the increasing demand of traffic, see [40].

The traffic system in Hanoi is a mixed traffic system dominated by motorcycles, i.e.,

the traffic contains various kinds of vehicles traveling together without dedicated

lanes for each kind of vehicles, and motorcycles dominate other kinds of vehicles.

Figure 6.1 shows a traffic jam at the Khuat Duy Tien intersection—the first in-

tersection with 4 traffic levels in Hanoi. It is also the major gate in the West of

Hanoi connecting the neighbor metropolitan area Ha Dong to the center of Hanoi.

Traffic jams occur in this intersection frequently because of not only the extremely

large amount of traffic demands but also the inefficient traffic controlling. As it can

be seen, motorcycles, personal cars, and buses use the same lanes. The number of

motorcycles dominates the number of other kinds of vehicles.

Figure 6.2 shows the development of vehicles in Hanoi in 2002, 2010, and 2015.

It can be seen in the diagrams that the share of personal cars is rising rapidly,

however, the share of motorcycles still dominates others. The share of public buses

in 2015 may be higher since the data is based on the online survey where most of

participants are officers while students and old people are the two main groups using

public buses. However, the data shows the trend that the total share of personal cars

and public buses is increasing up to almost 24% while the total share of motorcycles

reaches the saturation proportion at approximately 76%. It is a fact that the public

transport system can meet approximately 10% of the traffic demands. In the next

couple of years, the new city electric tram system will be launched, planned in 2016.

The new system may enhance the proportion of public transportation, however, it

http://www.gso.gov.vn/Default_en.aspx?tabid=491
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Figure 6.1: Traffic congestion at the Khuat Duy Tien intersection in Hanoi on
October 8, 2015. Source: VnExpress online newspaper.
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Figure 6.2: Vehicle share in Hanoi in 2002, 2010, and 2015. Source: Tranmoc 2002,
Molt 2010, and Nam 2015.



100 CHAPTER 6. A CASE STUDY: HANOI VIETNAM

is predicted that motorcycles will remain the major kind of vehicles in the next

decade, i.e. by 2030. A number of the characteristics of the traffic system in Hanoi

are pointed out as follows.

• It is a typical mixed traffic system dominated by motorcycles that account

about 75% of the total number of vehicles. The rest of vehicles are mostly

personal cars, small vans, and public buses.

• There are a large number of narrow roads that allow only 2-wheel vehicles to

travel on.

• Drivers often break the traffic rules, e.g., they do not keep the minimum safety

distance to other vehicles, drivers turn left or right without considering the

traffic flow, etc. They may select paths even when their decisions can cause

congestion.

• There are a considerable number of bidirectional roads without any separators,

thus drivers can change to the opposite direction wherever they want.

• It is popular that residential houses locate beside the roads. This fact leads

to behaviors of crossing the road to go home frequently even in rush hours.

With such characteristics, the traffic system in Hanoi is difficult to control effi-

ciently. A number of traffic projects in Hanoi focusing on assigning traffic flows and

building new traffic infrastructures have been launched. Recently, traffic planning

in Hanoi receives an increasing attention of researchers. Some of them investigate

macroscopic problems, such as traffic management [39, 64] and urban traffic develop-

ment [42]. Some others study specific problems, e.g. characteristics of traffic systems

dominated by motorcycles [11, 14, 38, 52], mixed traffic simulation [18], and public

transportation system [55]. Our purpose, with a different objective, is to investigate

a suitable TA model for the traffic system in Hanoi. The new model functions as

the background for further applications in traffic planning, such as transportation

network design, traffic management, and projects evaluation.

6.2 Data Acquisition

The lack of data is one of the biggest obstacle in traffic planning in Hanoi. A number

of data are totally unavailable while some others are out of date. Even with some

available data, the accuracy of them is still a question. Therefore, the first task of a

traffic project in Hanoi is always data collection. In this section, we present methods

for data collection in three subsections corresponding to geographical data, traffic

demand data, and an online survey on traffic behaviors in Vietnam.
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6.2.1 Geographical Data

The concerning geographical data is the transportation map of Hanoi that includes

the data of geographical objects, e.g. roads, intersections, and connectors, etc. A

number of map sources are available on the Internet, such as Google Maps, Open-

streetmap, etc. In this doctoral project we imported mostly from openstreetmap

(OSM) [36] that provides open, free, editable maps of the whole world. All the

OSM data are contributed by volunteers and released with an open-content license.

There are various methods for exporting OSM data. The simplest way is to use the

“Export” function on the main page www.openstreetmap.org, however, this method

cannot apply to a large area. The map data of large areas, e.g. a country, can be

obtained from other resources, such as on the website geofabrik.de.

Because the OSM data were contributed by volunteers on the Internet without

warranty of the accuracy of the data, all the exported OSM data were corrected via

a number of steps. In the first step the locations of links and nodes were compared

with those in the map provided by Here Map and Google Maps on the websites

maps.google.com and www.here.com, respectively. In the second step, we used the

software, named Java OpenStreetMap (JOSM), to filter out unnecessary map

objects, such as the locations of restaurants, banks, and super markets, etc.

In OSM data, roads are classified into a number of popular types of highways,

e.g. primary, secondary, and living street, etc. This classifying does not give exact

information of the widths of the ways. Therefore, in the third step, we collected also

the data of the widths of links by using the distance estimating tools on the Google

Earth—a virtual globe, map, and geographical information program provided by

Google—that is available at the website earth.google.com.

6.2.2 Traffic Demand and Traffic Flow Data

The traffic demands of an origin-destination (O-D) pair of zones are the number of

trips from the origin to the destination within a given range of time, e.g. an hour

or a day. The matrix of all the traffic demands from each zone to each other is

called the O-D matrix or demand matrix. We investigated the O-D matrices

of both motorcycles and personal cars. There were very few such kinds of data

available in Hanoi. To our knowledge, by 2015, the only traffic demand data in

Hanoi were collected in a project named the comprehensive urban development

program in Hanoi capital city (HAIDEP) in 2007 [42]. The HAIDEP project was a

project in cooperation between Japan International Cooperation Agency and Hanoi

People’s Committee for planning the space development of the urban area in Hanoi

with vision to the year 2030. The project investigated seriously the traffic demands

between 313 population zones corresponding to 313 wards (or quarters) of all the

districts of Hanoi and Ha Tay—a former province next to Hanoi that was subsumed

http://www.openstreetmap.org/
http://download.geofabrik.de/
https://maps.google.com
https://www.here.com/
https://earth.google.com/
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into Hanoi in August, 2008.

In this doctoral thesis, we focus on the traffic demand data in the urban area of

Hanoi, thus we consider each of the rural districts and urban wards as one popu-

lation zone. As a result, the number of zones is reduced by 180 to 133. The O-D

matrix for the 133 zones was recalculated from the former O-D matrix for 313 zones.

Furthermore, the data of the HAIDEP project were collected in the range 2005 to

2007, i.e. the data were almost 10 years old by 2015. In order to update the data,

we adapted the data according to the growth of the population. For each O-D pair

of zones, the traffic demands were updated by multiplying the former data demand

with the ratio of population 2015 to the population in 2005, i.e.

d2015 = d2005
P2015

P2005

,

where d2005 and d2015 are the traffic demands between an O-D pairs and P2005, P2015

are the populations of Hanoi in 2005 and in 2015, respectively. Because the rates

of population growth vary according to areas, it could be better if we update the

traffic demand based on the information of population growth of the zones instead

of the population growth of the whole city. However, the data of population of each

zone were not easy to acquire.

Another investigated kind of traffic data is the statistic of traffic flows on the links

in the traffic system in Hanoi. This kind of data was recorded by the CadPro com-

pany [10] that was employed by the Hanoi government for building and maintaining

the traffic management system (TMS) in Hanoi. By early 2015, CadPro has estab-

lished hundreds of traffic cameras at the major intersections. Each traffic camera

sends the video stream to the server where the data stream is analyzed by various

image processing techniques to estimate the average speed as well as the traffic flow

on the road. The data is updated in every single time interval, e.g. 2 minutes, or 5

minutes.

6.2.3 Traffic Survey in Vietnam

One of the most challenging tasks in traffic assignment modeling is to figure out the

routing behaviors of drivers. In Vietnam by 2015 there were only few surveys on

the traffic behaviors of drivers in urban areas, they were even not publicly available.

That was our motivation to make a survey on urban traffic in Vietnam. The survey

was launched on August 15th, 2014 using Google Form—available at the website

www.google.com/forms. It was distributed online via a number of social networks

and popular forums in Vietnam, e.g. Facebook and Otofun groups. By September

15th, 2015 there were 316 participants, where 84% of them come from Hanoi and

more than 7% of the participants come from Ho chi Minh City. The rest stay in other

major cites in Vietnam. On the survey, we did not ask questions about personal

https://www.google.com/forms/about/
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information, thus the participants could feel free to give their answers.

The first part of the survey are questions about the job groups, the kind of vehicles,

the living locations, as well as the working locations. Whereas the second part and

the third part are questions about the daily demands of traveling and the driving

behaviors. The result of the kinds of vehicles in 2015 is illustrated in Fig. 6.2 in

comparison to the existing data in 2002 and in 2010, see [55]. It can be seen that, in

the period from 2002 to 2010, the shares of motorcycles and personal cars increase

rapidly due to the economic growth. In the period from 2010 to 2015, the share

of personal cars keeps increasing rapidly, while the share of motorcycles might be

saturated and goes down slightly. The increase in the number of buses is not as fast

as those of the personal cars and motorcycles. As a result, the proportion of public

bus decreases slightly. Figure 6.3 visualizes the shares of the working groups. The

result shows that nearly 90% of the participants have fixed working places. The

number of officers is more than a half of the total participants.

In the second part, a number of questions about the daily traffic demand are given,

e.g. the departure time and the favorite paths, etc. According to the results of the

survey, the trip distributions of the participants are illustrated in Fig. 6.4. The

trips are categorized into 4 groups: the trips from home to the working place in the

morning, the trips from the working place to home in the afternoon, the trips going

home at the lunch time, and the trips back to working place after the lunch time.

In Vietnam, it is common that employers go home for the lunch instead of having

lunch in restaurants or in canteens. The time interval is one hour, e.g. the value of

the trips at x = 6 is the percentage of trips from 6 AM to 7 AM. Note that on the

the survey of the HAIDEP project, only the number of trips within a day between

each O-D pair of zones was investigated, the trip distribution within a day was not

in the consideration. With the trip distribution and the traffic demand within a

day, the traffic demand in each time interval can be calculated easily. As it can

be seen, the most crowded time intervals are from 7 AM to 9 AM when people go

to work and from 5 PM to 7 PM when people go home. This is in high agreement

with the traffic situation in Hanoi, since most of traffic jams occur during those time

intervals. Especially, in only one hour from 7 AM to 8 AM, the number of trips

takes 23.48% of the total number of trips within a day—nearly 6 times higher than

the average number in one hour.

In the third part, a number of questions about driving behaviors are given. On the

multi-choice question about the behaviors when drivers meet traffic congestion, there

are 4 options: driving on the sidewalks to get over the congestion, staying orderly in

the queue, turning back, and other actions. The results in Fig. 6.5 show that there

are nearly 40% of the participants consider the action “turning back”, about 17%

of the participants consider the action “driving on the side tracks”, and only 60%

of them consider the action “staying on the queue and waiting”—the appropriate
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Figure 6.3: The share of working groups in Hanoi 2015. Source: Nam, 2015.
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Figure 6.5: The actions of drivers in traffic congestion. Source: Nam, 2015.
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Figure 6.6: The causes of lane crossing actions. Source: Nam, 2015.
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action because other actions, i.e. driving on the sidewalks and turning back, could

make the traffic situation worse.

In Hanoi, the policy about separated lanes for cars and motorcycles was tested on

a number of roads, thus on the survey, we also give a question about lane crossing

behaviors. The results of this question is visualized in Fig. 6.6. It is a big surprise

that only 5% of the participants confirm that they have never gone on the wrong

lanes. The rest, i.e. 95% of the participants admit that they have at least one time

gone on the wrong lanes because of various reasons, e.g. unclear lane separators,

going faster, or traffic conflict, etc.
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Figure 6.7: Number of alternative paths.
Source: Nam, 2015.
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Figure 6.8: Actions of drivers at a traffic
light turning red. Source: Nam, 2015.

On the question about the number of

alternative paths from home to the

working place and back, the most

common answers are two or three

paths, while the number of partici-

pants having more than 5 alternative

paths is not significant, see Fig. 6.7.

There are about 10% of the partici-

pants having only one path from home

to the working place and back. This

is reasonable, since the traffic system

in Hanoi depends mostly on a number

of major roads known as ring roads

and centering roads. Thus, in the rush

hours, a very large number of people

go on the same major roads. For in-

stance, to travel from the East to the

West of the city, people have to use

one of the three ring roads. Simi-

larly, to travel between the North and

the South of the city, people have to

choose one of the centering roads.

In this part, we investigate the daily

used paths to go to work and to come

back home of participants. This kind

of data is used to evaluate the set of predicted potential paths for each O-D pair

of zones used in the new traffic assignment modeling. In Hanoi, crossing red light

is a common traffic behavior, especially when there are no traffic polices at the

intersections. Figure 6.8 shows the results of the survey on drivers’ actions when

they are in a traffic flow going through an intersection and the traffic light is changing

to red but the flow of people keeps going on. It can be seen that, about 19.5% of

the participants would pass the red light if they are in such a situation. This is also
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a reason for the frequent traffic conflicts at the intersections.

Finally, we investigate which factors affect the routing behaviors of drivers. The

result in Table 6.1 points out that most of participants consider the probability of

congestion, the length, and the traffic density on the path as main factors affecting

their routing behaviors. This indicates that the two most major factors influencing

the routing behaviors of drivers are geographic distance and the probability of traffic

jams.

Table 6.1: The effected factors on routing behaviors. Source: Nam, 2015.

Factors Selection (%)

Probability of congestion on the path 83.1

The length of the path 72.5

The traffic density of the path 51.1

The cleanliness of the path 39.1

Number of traffic lights on the path 31.3

Appearance of traffic polices on the path 17.3

Other factors 8.1

On the survey, we also ask the participants for the personal opinions of the partic-

ipants about the traffic system, their proposed solutions, as well as their attitude

toward the public transportation system. Most of the participants claim that the

traffic system in Hanoi is dysfunctional and should be improved as soon as possible.

A number of reasons for the bad traffic situations as well as proposed solutions to

deal with these problem are figured out. This shows that the traffic problems in

Hanoi not only are the problems of the government but also involve people living in

the city.

6.3 Parameter Estimation of the BPR Function

The traveling time function BPR is used widely in traffic assignment models, in par-

ticularly for the UE model, however, the parameters for the function are different

according to many factors, such as the kinds of traffic systems, the included compo-

nents of traveling time, etc. Therefore, the original suggested values of parameters of

the BPR function may be not proper for applying to in a number of traffic systems.

In this section, we investigate the parameters of the BPR function applying to the

MTSDM in Hanoi. The new BPR function consists of not only the driving time,

but also the waiting time at the signal line on the link. The new BPR function,

denoted as NBPR, is evaluated by comparing with the BPR function using original

suggested parameters, and with the simulated time in the traffic simulation software,
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named VISSIM—a microscopic multi-modal traffic flow simulation software package

developed by Planung Transport Verkehr AG (PTV group) in Karlsruhe, Germany.

6.3.1 Link Capacity in Motorcycle Unit

Since we consider the MTSDM in Hanoi where motorcycles occupy about 75% total

number of vehicles and all kinds of vehicles travel in the same lanes, it is reasonable

to define the traffic flow unit as Motorcycle Unit (MCU) rather than Passenger

Car Unit (PCU). In order to estimate the practical capacity of a given link in an

MTSDM, we use the certain saturation flow of the link that is investigated by

Hien and Montgomery in [38]. In the research, they also use MCU as the flow unit

and a regression model to develop a formula of saturation flow within 4 seconds of

the green phase of the signal light on the link. The formula of the saturation flow

of a link in Hanoi is given as follows.

4S = 12.08 + 2.13 (W − 3.5)− 47.12
Prt

Rrt
− 36.15

Plt

Rlt
, (6.1)

where S is the average number of out-going vehicles in 1 second of the green phase,

W is the width of the link in meters, Prt
Rrt

and Plt
Rlt

are the proportions between the

number of turners and the turning radius on the right side and on the left side,

respectively. In one cycle of the signal light, the maximum number of vehicles can

go though the link is the number of vehicles go though the signal line at saturation

flow in the green phase, thus, the practical capacity of a link can be calculated as

Cp =
tg · S
tg + tr

, (6.2)

where tg, tr are the green and red times of the traffic light, respectively, and Cp is

the practical capacity flow, i.e., the maximum vehicles can go through the link in

one second without congestion.

In order to evaluate the proposed practical capacity formula in (6.2), simulation

software VISSIM [23, 51] is utilized. Some common kinds of links in Hanoi are

simulated. The traffic behaviors of drivers in Hanoi are also imitated in the software.

The simulated capacity of a link is measured as the maximum entering flow such

that no congestion is observed. This is done by adjusting the entering flow to the

link. For example, at first, we run the simulation with the entering flow of 50 cars

and 100 motorcycles. The entering flow is increased by 5 cars and 15 motorcycle

each time. The adjustment terminates when congestion occurs, and the entering

flow of the previous simulation is the simulated capacity of the link.

The results indicate that the differences between the predicted capacity and the

simulated capacity are in the range [−2.67%, 8.70%]. These small differences prove

that the formula in (6.2) is reliable, and it is used in the forthcoming sections.
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6.3.2 Parameters Setting for the BPR Function

As mentioned in Chapter 2, the BPR function is given as

t(x) = T0

(
1 + ρ

( x
Cp

)β)
,

where ρ and β were suggested by BPR engineers to be 0.15 and 4, respectively,

without any explanation. The suggested parameters were questioned by some re-

searchers. In [63] Steenbrink applied the BPR function with new parameter values

a = 2.62 and b = 5, and he indicated that the new set of parameters is most suitable

for the BPR function. However, in the paper Steenbrink used the steady capacity

Cs instead of practical capacity, and the data was collected in some regions with low

ratio x
Cs

of flow and capacity. Nevertheless, Florian and Nguyen [24], showed that

the original BPR function with a = 0.15 and b = 4 generally gives a better traveling

time estimation than the one proposed by Steenbrink.

In [62] Spiess formulated the conical volume-delay function as

t(x) = T0

(
2 +

√
a2(1− y)2 + b2 − a(1− y)− b

)
, (6.3)

where a is the parameter of the function, y = x
Cp

and b = 2·a−1
2·a−2

. The formula of

the conical function is different from the formula of the BPR function, but it still

has all the advantages of the BPR function. It even has one more advantage that

the computation of the function without logarithms is easier than those of the BPR

function. With all of its advantages, the conical function is also used widely in traffic

planning to estimate the traveling time on links.

Figure 6.9 shows the traveling times estimated by the BPR function and the conical

function using various sets of parameters. It is clear that, when the ratio between

the flow x and the capacity Cp of the link is smaller than 1, both functions have

close values, but when this ratio is greater than 1 the conical function seems to be

closer to the BPR function with β = 4 than to the BPR function with β = 5. This

refers that the BPR function, in general, predicts better the traveling times with

β = 4 than with β = 5. This is in agreement with the paper of Florian and Nguyen

mentioned above. Respecting to these results, we fix the value β = 4 for the BPR

function, and the function becomes

t(x) = T0

(
1 + ρ(

x

Cp
)4

)
, (6.4)

where T0 and ρ are two parameters being calibrated.

We consider a link in an MTSDM with the length L and the maximum allowed speed

on the link V0. The driving time is denoted as td, and the average waiting time is

denoted as tw. Assume that one cycle of the traffic light consists of two phases: the
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Figure 6.9: A comparison between the BPR and the conical functions using different
parameters.

green phase with duration time tr seconds and the red phase with duration time

tg seconds. The yellow phase is normally quite short and it is added to the previous

phase (red or green). The signal cycle starts with the red phase at time 0. The

variable t is the time when the vehicle arrived at the signal line. We consider two

cases when the flow is free and when it is equal to the capacity of the link.

At free flow: vehicles are not influenced by each other, thus they can run at the

maximum allowed speed V0. The the running time at free flow is

td0 =
L

V0

. (6.5)

The dependence of the waiting time at free flow on the arrival time t is described

in Fig. 6.10 (a). If 0 ≤ t < tr, the signal light is on the red phase. Because of the

free flow, there is no queue of waiting vehicles, thus the considering vehicle can go

out as soon as the light turns to green. Hence, the waiting time is equal to the time

waiting for the light changing to green tw0 = tr− t. If the vehicle arrives at the green

phase, i.e. tr ≤ t < tr + tg, the vehicle can go through without stopping, i.e. tw0 = 0.

The average waiting time at free flow is computed as follows

tw0 (average) =
1

tg + tr
(

∫ tr

0

(tr − t)dt+

∫ tr+tg

tr

0dt)

=
t2r

2(tr + tg)
. (6.6)
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Figure 6.10: The waiting time of a vehicle w.r.t. arrival time (a) at free flow and
(b) at capacity flow.

From (6.5) and (6.6), the total traveling time at free flow T0 is described as

T0 =
L

V0

+
t2r

2(tr + tg)
. (6.7)

At capacity flow: vehicles move smoothly on the link at a speed close to the

maximum allowed speed V0. However, the real driving distance is less than the

length of the link L because of a waiting queue at the signal line. In our observation

on the traffic in Hanoi, the driving time at capacity flow is similar to the driving

time at free flow, i.e., tdc = L
V0

, however, the waiting time is much bigger than the

waiting time at free flow. Figure 6.10 (b) describes the waiting time at capacity flow

as a function of the arrival time t. Two cases have to be considered.

Case 1: 0 ≤ t < tr. The signal light is now red, and the waiting time for the signal

light turning from red to green is tr − t. The number of vehicles in the queue is

t Cp (MCU) so the queuing time is t Cp

S
. Replace Cp by the right side of (6.2) we

have the queuing time is t tg
tr+tg

. So, the total waiting time in this case is

twc (t) =tr − t+
t tg

tr + tg

=tr − t
tr

tg + tr
. (6.8)

Case 2: tr ≤ t < tr + tg. The signal light is now green, but there is a queue of

waiting vehicles which is entered the queue in the previous red phase. Thus, the

waiting time in this case is the queuing time. Number of entered vehicle in the range

[0, t] is t Cp, however, the number of out-going vehicles in the range [tr, t] is (t−tr)S.
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Thus, the waiting time in this case is calculated as

twc (t) =
t Cp − (t− tr)S

S

= tr − t
tr

tg + tr
. (6.9)

The right sides of (6.8) and (6.9) are the same, and they are the function of waiting

time at capacity flow that is shown in Fig. 6.10 (b). The average of waiting time at

capacity flow is calculated as follows

twc =
1

tr + tg

∫ tr+tg

0

(tr − t ·
tr

tr + tg
)dt

=
tr
2
.

Therefore, the traveling time at capacity flow is

tc = tdc + twc =
L

V0

+
tr
2
. (6.10)

According to the BPR function in (6.4), the traveling time at capacity flow can be

computed as

tc = T0

(
1 + ρ

(Cp
Cp

)4
)
. (6.11)

This implies

ρ =
tc
T0

− 1. (6.12)

From (6.7), (6.10), and (6.12), the parameter a can be calculated as

ρ =
trtg

t2r + 2 L
V0

(tr + tg)
. (6.13)

Replacing T0 and ρ in (6.4) by the right side of (6.7) and the right side of (6.13),

respectively, we have the new BPR traveling time function for the traffic system in

Hanoi as follows

t(x) =
( L
V0

+
t2r

2(tr + tg)

)(
1 +

( trtg

t2r + 2 L
V0

(tr + tg)

)( x
Cp

)4
)
, (6.14)

where Cp is the practical capacity of the link is calculated as (6.2).

We have presented the method of parameter calibration for the BPR function ap-

plying to the traffic in Hanoi, however, the method can be apply to other traffic

systems.
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6.3.3 Computational Results

Table 6.2 shows the values of the parameter ρ for a number of common kinds of

links in Hanoi calculated as formula (6.13). These values range from 0.050 to 0.286.

In most of the links, these value differs substantially from the default fixed value

0.150 suggested by the BPR engineers in [9]. The columns are divided into two

groups with the same headers. The meanings of the columns in each group are

as follows. The column labeled “ L
V0

(s)” indicates the running time in second of a

single vehicle on a link with the length L at the maximum allowed speed V0. The

columns labeled “tr (s)” and “tg (s)” are the time in second of the red phase and

the green phase, respectively. The column, labeled “T0 (s)”, indicates the results of

the average traveling time (in second) on the link and the last column, labeled “ρ”,

shows the results of the estimation of parameter ρ.

Table 6.2: Values of parameter ρ for some common links in Hanoi.

L
V0

(s) tr (s) tg (s) T0 (s) ρ L
V0

(s) tr (s) tg (s) T0 (s) ρ

30 60 30 50.000 0.200 90 60 30 110.000 0.091

30 45 45 41.250 0.273 90 45 45 101.250 0.111

30 30 60 35.000 0.286 90 30 60 95.000 0.105

30 40 20 43.333 0.154 90 40 20 103.333 0.065

30 30 30 37.500 0.200 90 30 30 97.500 0.077

30 20 40 33.333 0.200 90 20 40 93.333 0.071

60 60 30 80.000 0.125 120 60 30 140.000 0.071

60 45 45 71.250 0.158 120 45 45 131.250 0.086

60 30 60 65.000 0.154 120 30 60 125.000 0.080

60 40 20 73.333 0.091 120 40 20 133.333 0.050

60 30 30 67.500 0.111 120 30 30 127.500 0.059

60 20 40 63.333 0.105 120 20 40 123.333 0.054

In the first evaluation of the new function, VISSIM were again used to simulate

traffic on a link in Hanoi. In the simulation, the entering flow were varied from free

flow to 2 times of the link capacity, i.e., 0 ≤ x
Cp
≤ 2, since these values are adequate

for the real traffic situation in Hanoi. Figure 6.11 shows the simulated time and the

predicted time by the new BPR function (using the new proposed parameters) and

by the original BPR function (using original parameters) of a link in Hanoi.

In more details, Table 6.3 shows the gaps between the traveling times predicted by

the two BPR functions, i.e. the original BPR function and the new BPR function

and the average simulated traveling times on VISSIM. The results shows that the

new BPR function can estimate approximately the total spent times on a link in an

MTSDM and is significantly better than the original BPR function.
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Figure 6.11: The predicted times by the original BPR function, the new BPR
function, and the simulated times on VISSIM.

Table 6.3: Gaps between BPR functions and the simulated time.

Flow/Capacity New BPR (%) Original BPR (%)

free flow 2.70 2.70

0.25 3.97 4.03

0.50 7.38 8.43

0.75 4.11 9.19

1.00 8.99 21.60

1.25 21.79 41.20

1.50 21.98 49.08

1.75 3.89 39.61
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6.4 Running the GUEM Model in Hanoi

The new traffic assignment model GUEM, investigated in Section 5.3, was examined

in Hanoi with the collected data and the new BPR function. The examination

is introduced in two subsections. While Subsection 6.4.1 presents notes on data

preparation for the examination, Subsection 6.4.2 shows the computational results

of the new model.

6.4.1 Data Preparation

We extracted the traffic demand in one hour between 7 AM to 8 AM—the most

crowded time interval according to the trip distribution shown in Fig 6.4. The

number of trips in this time interval is 23.48% the total number of trips within

a day. We created two O-D matrices in this interval: one for motorcycles and

the other for personal cars. The parameters of the BPR function on each link in

the traffic system in Hanoi were calculated as mentioned in the previous section,

i.e. Section 6.3. The lengths of links were calculated according to the longitude and

the latitude of the nodes on the link. The width of a link was determined by the

attribute “Width” of the link—contributed by users. For links without a given data

of width, we estimated the link’s width by its type, e.g. a primary highway has a

default width of 12 meters. However, for most of main links in Hanoi, we estimated

the width by using the “rule tool” of Google Earch application. The types of links

were also used to determine the maximum allowed speed on the links. The times of

the traffic signal phases and other information was also updated. They were set to

the default values if no information is available.

For each O-D pair of population zones, we defined a set of potential paths as the

set of the 15 dissimilar shortest paths with the minimum dissimilarity 15% and an

upper bound on the length as two times the the shortest length. It means that we

computed the 15 shortest loop-less paths, such that the dissimilar between two of

them is not less than 15% and the length of a determined path is not longer than

two time the shortest length.

6.4.2 Computational Results

In order to evaluate the accuracy of the GUEM model on the traffic system in Hanoi,

we analyzed the predicted flows by the model to figure out the most crowded links

with respect to the ratio of the predicted flows and the capacity of the links. The

information about these links is compared with the data of locations with a high

frequency of traffic congestion.

Figure 6.12 shows the agreement between the predicted traffic flows and the real

traffic situation provided by the Remon-hanoi project [59]. In Fig. 6.12 (a) the width
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(a) Predicted traffic flows by the new UE model.

(b) Real traffic situation provided on the website of the Remon-hanoi
project.

Figure 6.12: Predicted traffic flows in comparison to a real situation in Hanoi
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of the dark red bar on a road is directly proportional to the ratio of the predicted

flow to the capacity x
Cp

. The visualization is on the TranOpt Plus software that

is introduced in Chapter 7. Fig. 6.12 (b) is a real traffic situation of a common

working day provided on the website remon-hanoi.net, see [59]. The green bars,

yellow bars and dark-red bars on roads indicate that the speed levels of vehicles in

those areas are a little bit slow, slow and very slow, respectively. The locations of

roads with yellow and dark-red bars are marked with red circles for comparison with

the locations of roads with a high probability of congestion predicted in Fig. 6.12

(a). The high agreement of the two sets of locations proves the accuracy of the new

model GUEM on the traffic system in Hanoi.

6.5 Conclusion and Discussion

In this chapter, we have presented the whole project of traffic assignment modeling

in Hanoi, Vietnam including data acquisition, model setting, and model implementa-

tion. In data acquisition, both the geographic data and traffic data are investigated

from available resources. Furthermore, the results of the online survey on traffic

behaviors in Vietnam with 316 participants are also introduced.

In order to run the new proposed model GUEM on the traffic system in Hanoi, we

calibrated the parameters for the BPR function on the links in the Hanoi traffic

system. The computational results showed that the new BPR function—the BPR

using new set of parameters—can predict better the traveling time on a link in the

traffic system of Hanoi than the original BPR function can.

The potential paths for cars and motorcycles from each O-D pair of zones were

defined as the set of 15 dissimilar shortest loop-less paths, where the minimum

dissimilarity between two paths is 15% and the upper bound on the length of a path

is two times the shortest length. The GUEM model was run with all the collected

data and gave the results, that were in big agreement with the real traffic situation.

The promising results of the GUEM model open a number of further developments.

First, we are going to develop a dynamic user equilibrium model for mixed traffic

systems based on the GUEM model where the traffic demand are dynamic, i.e. it can

change dynamically. A stochastic user equilibrium model for mixed traffic systems

is also in consideration for further developments of the GUEM model. Because all

of the UE models depend significantly on the set of potential paths for each O-D

pair of zones, we are going to improve the method of determining the potential

paths from each pair of zones. This can be done by adding more constraints on

routing behavior into the multi-objective shortest paths problem, e.g., when drivers

are guided by a traffic information system. We also plan to test the GUEM model

not only in Hanoi but also in another major cities in developing countries where the

traffic is characterized by a mixture of 2-wheel and 4-wheels vehicles.

http://www.remon-hanoi.net/en
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Last but not least, the running time of the GUEM model is also in our consideration

to improve, since it takes about 4 minutes to run the model on a transportation

network with approximate 4000 nodes and 10000 links on a personal computer with a

2 GB of RAM and a 2-GHz dual-core processor. In various traffic planning problems,

e.g. network design, we may have to repeat the GUEM model a number of times,

thus it is reasonable to keep improving the running time of the model.
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Software: TranOpt Plus

One of the main contributions of this thesis is a software, named TranOpt Plus, that

provides a framework for map-based problems, such as traffic planning and routing

problems. The current version, i.e. TranOpt Plus 1.0.2 released on March 12, 2015,

includes three major features: map editing, dynamic routing, and traffic assignment

modeling. All the implementations of the routing algorithms, mentioned in Chap-

ter 4, and the traffic assignment models, mentioned in Chapter 5, are available in

TranOpt Plus. In addition, further map-based applications can be easily embedded

into TranOpt Plus.

The outline of this chapter is as follows. Section 7.1 overviews TranOpt Plus

while Section 7.2 introduces the major features of the software. In Section 7.3, we

present a number of the open-source libraries, used in TranOpt Plus. The traffic-

network graph algorithm (TNGA) is introduced in Section 7.4, and the software

packing process is described in Section 7.5. The last section, i.e. Section 7.6, is for

conclusion and discussions.

7.1 Overview

The motivation for the development of TranOpt Plus comes from a fact that there

are a large number of map-related problems needing visualization framework. For

instance, the results of routing services or traffic assignment modeling on large maps

could be challenging for users to understand and to evaluate if they (the results) are

not visualized. Various open-source libraries for graph visualization are available,

such as Open Graph Drawing Framework (OGDF), Gephi, and Graph Visualization

(Graphviz). They can be obtained from the websites www.ogdf.net, gephi.github.io,

and www.graphviz.org, respectively. However, they are more or less supporting

general kinds of graphs while we focus on transportation networks, that can easily

import and export available open-source data, e.g. from OpenStreetMap. Further-

more, available open-source packages are normally large with many libraries, that
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are not in our interests. Thus, we investigate a possible small visualization software,

that is able to cope with large graphs, such as transportation networks of cities.

The software is named TranOpt Plus, and it consists of two major components:

libraries for mathematical algorithms and libraries for visualization.

TranOpt Plus is programmed in C++11, that is the version released on August

12th, 2011 of the standard C++ programming language. In order to handle the

code files, we use the free version of the Qt Creator—a cross-platform integrated

development environment provided by the Qt Company. There is also a commercial

version, however, it is out of the scope of our project. TranOpt Plus has been

developed since December, 2013. The first version was released in March 2015,

and the current version, i.e. TranOpt 1.0.2, was released on September 15th, 2015.

The software currently supports only the Windows platforms, and it was tested on

Windows 7 and Windows 8. Figure 7.1 is a screen shot of TranOpt Plus showing

determined paths by the dynamic routing feature. Map objects, e.g. nodes and links,

are displayed on the background made of map image layers, that are imported from

the OpenStreetMap server.

Figure 7.1: The interface of TranOpt Plus.

The source code of TranOpt Plus can be divided into two major parts: the problem-

implementations and the problem-visualization. The former part is pure C++ and

independent source code. They are packaged in the TNGA library. All the men-

tioned mathematical problems in this doctoral thesis, i.e. routing problems and

traffic assignment models, are formulated and solved in the TNGA library. The
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later part, i.e. visualization, consists of the source code for visualizing the problems,

such as graphical user interface (GUI), map visualization, and traffic assignment

illustration.

Table 7.1 shows the major libraries used in TranOpt Plus. Excluding the TNGA

library, there are three major open-source libraries namely Qt library, Mapgraphics

library and QCustomPlot library. The later two are also developed from the free

version of the Qt library. The MapGraphics library supports for adding a number

of map layers to applications with abilities of zooming, rotating, and customizing

map objects. The libraries are developed by the user “Raptorswing” on GitHut -

a web based version control system for software development. We use the version

of the MapGraphics library released on March 1st, 2015. QCustomPlot is a Qt,

C++ library that provides a number of tools for plotting and for data visualiza-

tion. There are two versions of the QCustom Plot library: the free version (default

version) is licensed under GNU General Public License, i.e., the library can be redis-

tributed under GNU General Public License. It was developed by E. Eichhammer

and published on the website www.qcustomplot.com. More details of these libraries

are presented in Subsection 7.3 and Subsection 7.4.

Table 7.1: Major libraries in TranOpt Plus software.

Name Comment Author

Open source libraries

Qt Library The free version The Qt Company

MapGraphics Fixed and further developed Raptorswing

QCustomPlot Plot functions Emanuel Eichhammer

Developed libraries

TNGA/Routing Routing algorithms N. T. Nam

TNGA/TA Traffic Assignment models N. T. Nam

In addition, all the icons used in TranOpt Plus were originally imported from open

resources, that have GNU General Public License. Some of them were customized

and redistributed under the same license.

The general working architecture of TranOpt Plus is illustrated in Fig. 7.2 with

three levels. The top level is the graphical user interface where users can edit maps,

enter data, and see the results. At this level, users do not know about all the things

behind, such as the problem formulations or the implementations of algorithms, etc.

The second level is the converter, that reads the entered data, check the validity,

and transforms them into pure mathematical problems. For instance, when users

enter the source node and the destination node for the dynamic routing feature, the

converter will convert the current map into a graph and call a suitable function in

the TNGA library to solve it. The lowest level is the implementations of the TNGA

http://www.gnu.org/licenses/gpl.html
http://www.qcustomplot.com/
https://github.com/raptorswing/MapGraphics
http://www.qcustomplot.com/
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library where all mathematical problems are solved and sent the results back to the

GUI level.

GUI
Map editing

Data entering
Result visualizing

CONVERTER
Checking validity

Formulating problems
Connecting GUI to TNGA

TNGA Library
Problem solving
Returing results

Figure 7.2: The working architecture of TranOpt Plus.

7.2 Main Features

The current version of the software, i.e. TranOpt Plus 1.0.2 released on September

15th, 2015, has three major groups of features: map editing, dynamic routing, and

traffic assignment modeling. In this section we introduce these major features of the

software and the other features are presented in the next section.

7.2.1 Map Editing

TranOpt Plus provides a number of tools for importing, creating, editing, and ex-

porting transportation maps. Maps are stored in the file format, named Extensible

Markup Language (XML), that is a markup language for encoding documents in

a human-readable and machine-readable format. The data structure of graphs in

TranOpt Plus is the similar as the data structure of OpenStreetMap (OSM) files.

Therefore, TranOpt Plus can import a map in the OSM file as well as export the cur-

rent map to a OSM file. The details of the map data structure used in TranOpt Plus

are described in Appendix A with examples.

The simplest method to create a new map of an area on TranOpt Plus is to import an

OSM file of the area from the OSM server on osm.org. The imported OSM file may

http://www.openstreetmap.org/
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contain a large number of unnecessary objects, thus the function “Save as” is used

to save the imported OSM file as a new OSM file, that contains only the map objects

of the area. Users can also create new maps without importing existing maps. The

first step is to locate the area by using a number of provided tools, such as zoom out,

zoom in, and hand-hold. The software also provides various kinds of maps on the

background, such that users can easily locate an area. Another facility supporting

for locating an area is the “Location Search” tool, that has the interface shown in

Fig. 7.3. Users can locate an area by giving the GPS coordinates of the area, or

by selecting a country on the list of countries. GPS stands for Global Positioning

System, that is operated and maintained by the U.S. Air Force. It provides the

latitude and the longitude of positions on the Earth. The list of countries and their

average GPS positions were edited from the collection of Frank Donnelly, that was

mostly extracted from the NGA’s GEOnet Names Server (GNS) and from USGS

Geographic Names Information System (GNIS).

Figure 7.3: The “Location Search” tool of TranOpt Plus.

With the “Graph editor” tools, users can add new map (graph) objects, such as

nodes, ways, areas, zones, and linking edges. Each map object has a number of in-

ternal and external attributes. The internal attributes are fundamental attributes,

such as the longitude, the latitude, and the visibility status. All the internal at-

tributes cannot be removed, however the values of those can be edited. All the

map objects of the same kind have the same list of internal attributes. The exter-

nal attributes of an object are defined by users for their purposes. TranOpt Plus

provides tools for customizing the external attributes of the selected object, thus

TranOpt Plus is able to work with various kinds of problems using different kinds
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Figure 7.4: The interface of “Adding properties” tool for the selected object.

of data. For instance, in traffic assignment modeling, the capacity of a link is de-

termined by the external attributes “highway” and “width”. The assigned flow on

a link is stored in the attribute “flow” of the link. Figure 7.4 shows the interface

of the “Add property” feature of TranOpt Plus. Users can create new attributes

and give a name and a value for each new defined attribute, or user can editdelete

existing attributes.

Table 7.2: Notable attributes of the basic map items in TranOpt Plus.

Item Attributes Possible values

Node
“is bendpoint” yes (1) or no(0)

“intersection” yes or no

Zone
“tm zone”” name of the zone

“order” order of the zone

Way

“highway” trunk, primary, secondary, tertiary, res-
idential, living street, unclassified

“one way” yes or no

“ban car” yes or no’

“ban motor” yes or no

“width” width of the way in meter

Link
“flow” the assigned flow

“capacity” the capacity of the link

Linking line
“tm connector” yes or no

“highway” NOT HIGHWAY DEFINED

Area “tm zone boder” yes or no

Table 7.2 shows a number of notable external attributes of the basic map objects
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in TranOpt Plus. Some attributes are available in every object of a kind of map

object, e.g. every way must have the “highway” attribute and its value should be

one of the given values, i.e. trunk, primary, secondary, tertiary, residential, living

street, and unclassified. In contrast, there are also external attributes, that may

exist in a number of objects and may not exist in other objects of the same kind.

For instance, “is bendpoint” is an external attribute of node objects, however, some

nodes do not contain the attribute explicitly, those nodes receive the default value

of the attribute, i.e. false. Normally such attributes have boolean values, i.e. yes (1)

or no (0).

7.2.2 Dynamic Routing

The dynamic routing feature provides a number of routing algorithms mentioned

in Chapter 3 and in Chapter 4, e.g. Dijkstra’s algorithm, A-Star algorithm, Epp-

stein’s algorithm, the HELF, Yen’s algorithm, and Martins’ algorithm.

Figure 7.5: Finding dissimilar shortest loop-less paths on TranOpt Plus.

The interface of the “Dynamic routing” feature is shown in Fig. 7.5. There are

two routing options corresponding to the two popular kinds of vehicles: motorcycles

and cars. The routing map is prepared, such that it contains only the links, which

vehicles of the selected kind are allowed to travel on. The attributes “ban-car” and

“ban-motor” on links indicate which kinds of vehicles are not allowed to travel on

the links. For example, if the value of the attributes “ban-car” is “yes” or “1”,

then motorcycles are not allowed to travel on the link. Links without both of these
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attributes allow vehicles of all kinds to travel on. In order to find the most suitable

route, a number of parameters should be given by users, e.g. the identification

numbers of the source node and the destination node must be given on the text boxes

named “Source id” and “Destination id”, respectively. The identification number of

a graph object is displayed on the status bar at the bottom of TranOpt Plus when

the object is selected. According to the selected algorithm, different parameters are

required in advance. The text box named “No. paths (K)” is for giving the number

of paths, that users want to determine. The text box named “Min dissimilarity” is

for the minimum dissimilarity between two paths, that is required for determining

dissimilar shortest loop-less paths. The text box named “Max length-ratio” is for the

upper bound on the length of the determined path and the length of the shortest

path. For instance, if the value 1.5 is given to this parameter, then the selected

algorithm will find only paths whose length does not exceed 1.5 times the length

of the shortest path. If the penalty method is selected to find dissimilar shortest

loop-less paths, then the penalty factor should be entered in the text box named

“Penalty factor”.

In the group box, named “Routing algorithms”, there are a number of provided

algorithms and routing functions. The combo box named “Shortest algs” provides

algorithms for the shortest path (SP) problem, such as Dijkstra’s algorithm and A-

Star algorithm and their variations following bidirectional approach. The combo box

named “Dissimilar algs” provides algorithms for the DSLP problem, e.g. Yen’s algo-

rithm, Penalty A-Star, the HELSF. Each push button executes a certain function.

The button named “K-Dissimilar” determines the dissimilar shortest loop-less paths

from the source node referred by the given identification number to the determined

destination node using the selected algorithm with the given parameters. The button

named “Shortest path” determines the shortest path. The button named “Original

graph” removes all the results of the previous execution and recovers the original

map. The button named “Shortest tree” determines a shortest path tree from the

given source or to a destination node. If both the source node and the destination

node are given, then it determine a shortest path tree from the source node to all

other nodes on the map. In order to determine the shortest path tree to a given

destination node, the text box “Source id” must be empty.

The determined paths by the routing functions are marked in blue. The source

node and the destination node are visualized as small squares with blue border and

filled in red. The information area at the bottom of the dynamic panel displays the

information on the execution, such as the running time, and the number of paths

determined.
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Figure 7.6: The interface for traffic assignment modeling feature.

7.2.3 Traffic Assignment Modeling

The feature of traffic assignment modeling provides tools to deal with TAM,

such as entering input data, solving the selected model, visualizing the output, and

analyzing the results. The current version TranOpt Plus 1.0.2 offers some TA models

including the all or nothing (AON) model, the incremental (INC) model, and the

general user equilibrium for mixed traffic systems (GUEM). Further models can be

added easily.

Figure 7.6 is a screen shot of the modeling feature. The workflow of the feature is

as follows. The first step is map preparation where a map containing population

zones is require. Each zone must have at least two attributes namely “tm zone” and

“order”. Note that the values of the attribute “order” of all zones must be in the

sequence of integer numbers from 1 to the number of zones. This order is also the

order of zones in the O-D matrices. All the attributes of map objects are provided

and edited in this step, such that the map represents certainly the considering traffic

system. The second step is to enter traffic data, i.e. enter the O-D matrices. Each

O-D matrix corresponds to the traffic demand of a kind of vehicle. The size of an

O-D matrix is equal to the number of zones available on the current map. In the

case a provided O-D matrix has the size bigger than the number of zones, only the

sub-matrix of it is used. Users can import the traffic demand from a traffic modeling

demand (TMD) file, i.e. *.TMD, or enter it directly on the table corresponding to

the matrix. The third step is to select the model and enter the required parameters.

Depending on which model is selected, the corresponding panel of the parameters of

the model is displayed. All the data and the entered parameters for the TA model are
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Figure 7.7: The results of the GUEM model and the AON model.

Figure 7.8: A comparison of the outputs of GUEM model and AON model.
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collected and checked for validity by the converter. The model is then formulated

and solved mathematically by a corresponding solver in the TNGA library. The

predicted flows on links are assigned to the attribute “flow” of the links. They

are displayed by color bars, e.g. green is the default color for the traffic flow. The

width of a bar on a link indicates the volume of the predicted traffic flow on that

link. For displaying the results of models, that contain a time sequence, i.e. models

where the traffic demands are assigned in a number of time intervals, TranOpt Plus

provides a playing control area at the left-down panel of the main form. In that case

TranOpt Plus shows the assigned flows for every time interval one after another.

Users can also save the predicted flows to analyze or to compare them with those

by other models.

TranOpt Plus provides a number of tools for analyzing and comparing the predicted

flows by different models. The tool named “Comparing assigned flows” with the

interface in Fig. 7.7 displays the predicted traffic flows in Hanoi by the AON model

on the left side and by the GUEM model on the right side. Due to this feature,

users can observe the difference of the predicted flows on a particular area. In can be

seen that the predicted flows by the AON model at the city center are significantly

larger than those by the GUEM model. Users can also filter the links by the values

of predicted flows or by the ratios between the predicted flow and the capacity of

the links.

Another analyzing tool is the “Assigned flows statistic”, that draws the statistics

of the number of links whose the ratio of the predicted flow to the capacity is in a

given range. For instance, Fig. 7.8 shows the statistic of the predicted flows of the

AON model and the GUEM model on the traffic system of Hanoi, that are shown

in Fig. 7.7. The statistic points out that the number of links with the ratio of the

predicted flow to the capacity larger than 2 by the AON model is 5.4% the total

number of links, while those by the the GUEM model is 1.84%. This reflects the

characteristic of the AON model that drivers choose the shortest path (in length)

to travel without considering the density of the traffic flow on the path. In contrast,

in the GUEM model, drivers choose the paths by the traveling time, thus drivers

avoid paths where the traffic flow is significantly larger than the capacity.

7.2.4 Supporting Features

Excluding the main features, TranOpt Plus provides also a number of supporting

features, such as file information manager, map tile tool, save as tool, and customize

tool.

The “Filter tool” is used for filtering the map objects according to either kinds

of objects or traffic flows. In the filter by objects, users can show or hide objects

in selected kinds. For instance, if the check box named “Show Node Objects” is

disable, all the nodes on the current map will be invisible. Another filter is the
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flow filter, that can hide or show link objects satisfying some constraint of flow and

capacity.

The Matrix tool provides a number of basic matrix operators, e.g. plus matrices

and minus matrices. The matrix tool is useful in preparing the O-D matrices.

The “Help tool” consists of the manual of TranOpt Plus and the book of classes

for software developers. The content for the help tool is stored as a hyper text

markup language (HTML) file.

Figure 7.9: The widget for map sources
controling.

Figure 7.10: The file information man-
agement panel.

The “Map tile tool” is the tool for

changing the back group of the current

map. Each map tile is a fixed size square

on the background. The current version

TranOpt Plus 1.0.2 supports 4 kinds of

map tile. The basic one is the “Grid Tile”,

that displays only the white color. Each

kind of the rest display one kind of map

image imported from the OSM server, i.e.

MapQuest Aerial, MapQeustOSM, and

OpenStreetMap. Users can also use a

number of different kinds of map tile si-

multaneously, and can also change the

opacity of each kind. Figure 7.9 shows the

list of the kinds of map tile.

The “File information tool” is the facil-

ity for file information management. The

file information panel locates at the bot-

tom of the left tool bar of TranOpt Plus.

Figure 7.10 shows the information of the

current map. It contains the map of Hanoi

with the predicted flows by the GUEM

model. Users can also edit the information

of the file and save it for further usage.

The “Options tool” can be categorized

into two groups: the group of options for

editing the displaying of map objects and the group of options for setting parameters

for the traffic system. The display editing is the facility for changing the displays of

the map objects. Users can change the color, the width of a kind of object, e.g. node,

zone, link. The display width of each kind of highway (in pixel) can also changed.

For instance, Fig. 7.11 shows the setting of the color of a selected link (edge). The

traffic setting is the facility for setting a number of parameter for the traffic system,

e.t. the maximum allowed speed (ms) on each kind of highway, the standard width

(meter) of the highway.
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Figure 7.11: The “Options tool” of TranOpt Plus.

Figure 7.12: An image file exported by the “Save Scene As” feature.
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The “Save as tool” is used for save the graph as a number given type formats,

e.g. osm, xml. Further more, the whole map and the current view of the map can

be saved as various formats, e.g. png format, or jpg format, or the pdf format.

Figure 7.12 is the image file of the whole map of Hanoi, with 133 zones, exported

by the “Save Scene As” function.

For convenience TranOpt Plus provides a number of shortcut keys, that are shown

in Table 7.3.

Table 7.3: The list of shortcut keys of TranOpt Plus 1.0.2.

Shortcut keys Description

File menu

“Ctrl” + “N” Create a new map (graph)

“Ctrl” + “O” Open a map

“Ctrl” + “S” Save the current map to the current file

“Ctrl” + “Shift” +“S” Save the current map as different formats

“Ctrl” + “Alt” + “V” Save current view to a file (*.png, *.jpg, *.pdf)

“Ctrl” + “Alt” + “S” Save current scene to a file (*.png, *.jpg, *.pdf)

“Ctrl” + “Q” Quit the application

Tools and helps

“F1” Open the TranOpt Plus’s manual

“F2” Matrix tools

“F3” Traffic assignment results comparison tools

“F4” Flow statistic tool

“Shift” +“F1’ ’ Open book of classes—the helping book for developers

“Ctrl” + “I” Information of the current version of TranOpt Plus

Open windows and others

“Alt” + “F” Show the filter windows

“Alt” + “P” Show the object property windows

“Alt” + “T” Show the tile map windows

“Shift” + “G” Show the graph editor windows

“Shift” + “R” Show the routing windows

“Shift” + “T” Show the traffic assignment modeling windows

7.3 Open-source Libraries

As we mentioned in Section 7.1, there are three major open-source libraries used

in TranOpt Plus for visualization, namely Qt, QCustomPlot, and MapGraphics
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libraries. The later two are developed from the first one, i.e. Qt. In this section we

provides more details of these libraries, such as the utilities, the state of the art, and

the limitation.

7.3.1 Qt Library

Qt is a cross-platform application framework being used widely for software develop-

ing widely, see [7]. Qt can run on various hardware platforms without or with a little

change in the underlying code base. Some main supported platforms are Windows,

Embedded Linux, Android, iOS, WayLand. Qt has many modules, for example,

Qt Core, Qt GUI, Qt Multimedia, Qt Network, Qt WebKit, and Qt Widgets. It

contains a number of libraries supporting strongly for graphical user interface and

graph visualization in a wide range of applications.

In TranOpt Plus, we use the Qt Core, the Qt GUI, and the Qt Widgets to design the

graphical interface as well as to visualize problems. The Qt libraries were developed

in C++ with a number of new features, such as a powerful mechanism for com-

munication between objects, named signals and slots, the queryable and designable

object attributes, and the object ownership in a natural way with guarded pointers.

Using Qt Core is similar to using the standard libraries in C++. The Qt GUI and

Qt Widgets provide a large number of classes for graphical user interface (GUI) and

visualization. Especially, the Graphics View Framework in Qt Widgets offers

a surface (QGraphicsScene) for managing and interacting with a large number of

graphical items, and a view widget (QGraphicsView) for displaying the items sup-

porting zooming and rotation. The framework has ability to handle a millions of

items efficiently while it consumes a proper amount of memory space.

Qt Creator is a cross-platform C++ and a part of software development kit (SDK)

for Qt GUI application development framework. Two of the most valuable features

of Qt creator are a visual debugger and an integrated GUI layout and form designer.

The strong debugger enables developers detect not only the grammar errors but also

the logical errors. Developers can stop the running program at any breaking point

and observe the values of objects.

7.3.2 MapGraphics Library

MapGraphics library (MGL) is a library based on the Qt graphic framework.

MapGraphics library is originally developed for integrating various kinds of maps

into Qt applications. It provides a graphic framework similar to the one of Qt

with a scene to manage the graphic object and a view to display the graphic items.

Basically, the scene illustrates the flat surface of the earth and the view display

all objects on a rectangle area on the scene. Each graphic item is a map object

on the surface of the earth with a GPS position. MapGraphics library provides a
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facility to convert the position of a point displayed on the computer’s screen to the

GPS position. Since the scene and the view defined in the MapGraphics library is

developed from the scene and view of the Qt library, they are able to manage a large

number of graphic objects.

In TranOpt Plus, we use the framework of MapGraphics library to visualize the

map objects. Originally, the library provides the tile item as a square area with

map image. We have further developed a number of graphic items, such as node,

way, zone, and area. MapGraphics library is still in development, thus it has a

number of bugs, that have been fixed partly during the project of TranOpt Plus.

7.3.3 QCustomPlot Library

The QCustomPlot is a library for plotting and data visualization. It is developed

from the Qt Widgets module and it has no further dependencies. The library fo-

cuses on generating high quality two-dimensional plots, graphs, and charts. The

QCustomPlot library supports most popular kinds of plots, graphs, or charts for

data visualization. It is also able to export the results to various formats, e.g. png,

jpg, and pdf. The library enables users to strongly customize plots and easily embed

to Qt applications.

In TranOpt Plus, the QCustomPlot library is used to visualize the results of traffic

assignment modeling. It is also utilized to visualize the comparison between the

predicted flows by two different models, see Fig. 7.8.

7.4 The TNGA Library

The traffic-network-graph algorithms (TNGA) is a library providing a number

of graph algorithms and traffic assignment modeling. It is a pure C++ library and

plays a fundamental role in TranOpt Plus. The TNGA library has three major

parts: mathematical facilities, routing algorithms, and traffic assignment models.

7.4.1 Mathematical Facilities

The mathematical facilities in the TNGA library include the data structure of the

graph and a number of popular heaps. In the TNGA library, the adjacent list data

structure is used to represent graphs. This means if G(V,E) is a graph with |V |
nodes, its links are stored in an array of |V | lists. Each list contains all the links

going-out from the node, and also all links going-in the node. This data structure

is suitable for large graphs with thousands of nodes.

There are four kinds of priority containers in the TNGA library: binary heap, Fi-

bonacci heap, priority list and priority queue. All of them are programmed as

templates, thus they are easy to use in many contexts with different kinds of data.
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7.4.2 Routing Algorithms

The TNGA library provides a number of algorithms for routing problems, such as the

shortest path (SP) problem, the k shortest loop-less paths (KSLP) problem, and the

dissimilar shortest loop-less paths (DSLP) problem. Most algorithms implemented

in the TNGA library are mentioned in Chapter 3 and Chapter 4. The algorithms,

that are implemented in the TNGA library for the routing problems, are as follows.

• The shortest path problem: Both of Dijkstra’s algorithm and A-Star al-

gorithm are implemented in both versions: one directional search (original

version) and bidirectional search. Further more, Dijkstra’s algorithm is also

implemented for one source to many destinations and for many sources to one

destination. Both of the algorithms are implemented using a binary heap.

• The k shortest loop-less paths problem: There are 4 algorithms for the

KSLP problem, that are implemented in the TNGA library: Yen’s algorithm,

Eppstein’s algorithm, Martins’ algorithm, and the HELF. Eppstein’s algorithm

and Martins’ algorithm can also find the non-loop-less shortest paths. The

Fibonacci heap is used to implement Eppstein’s algorithm and the HELF.

• The dissimilar shortest loop-less paths: The HELDF is implemented as

an extension of the HELD. The penalty method is also implemented with two

versions: one using Dijkstra’s algorithm and one using A-Star algorithm.

7.4.3 Traffic Assignment Models

The TNGA library provides a number of traffic assignment models and the methods

for solving the models. The version 1.0.2 supports three traffic assignment mod-

els: the all-or-nothing (AON) model, the incremental (INC) model, and the GUEM

model. Each model supports both standard traffic systems and mixed traffic sys-

tems. When a model is run on standard traffic systems, it assigns only the traffic

demand of cars, and when it is run on mixed traffic systems, it assigns the traf-

fic demand of cars (4-wheel vehicles) and motorcycles (2-wheel vehicles). Different

models have different sets of parameters and different solvers. The predicted traffic

flow on a link by a model is stored in the attribute named “flow” of the link.

7.5 Software Packing

TranOpt Plus was packed by the Nullsoft Scriptable Install System (NSIS) -

an open-source system for creating installers on the Windows platform. It belongs

to Nullsoft, and is distributed on nsis.sourceforge.net. The NSIS is a script-driven

system and it runs on the given scripts.

http://nsis.sourceforge.net/Main_Page
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Table 7.4: List of libraries and files for TranOpt Plus packing.

Name Folder Comment

tnga.dll Main folder Traffic-network-graph algirithms

MapGraphics.dll Main folder Open source library

qcustomplot.dll Main folder Open source library

Qt5Core.dll Main folder Qt library

Qt5Gui.dll Main folder Qt library

Qt5Network.dll Main folder Qt library

Qt5Concurrent.dll Main folder Qt library

Qt5PrintSupport.dll Main folder Qt library

Qt5Widgets.dll Main folder Qt library

Qt5Xml.dll Main folder Qt library

icudt51.dll Main folder Qt supporting library

icuin51.dll Main folder Qt supporting library

icuuc51.dll Main folder Qt supporting library

libgcc s dw2-1.dll Main folder Qt supporting library

libstdc++-6.dll Main folder Qt supporting library

libwinpthread-1.dll Main folder Qt supporting library

qminimal.dll /platforms/ Platforms supporting library

qoffscreen.dll /platforms/ Platforms supporting library

qwindows.dll /platforms/ Platforms supporting library

TranOpt.exe Main folder Application file

TranOpt.ico Main folder The icon file

config.xml Main folder Configuration file

places.txt /data/ Places with GPS positions

*.osm /examples/ Examples of OSM files

/TrafficModeling/*.html /manual/ Files for TranOpt manual

/tranopt/*.html /manual/ Files for TranOpt book of classes
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Packing TranOpt Plus requires a number of libraries including the Qt libraries, the

MapGraphics library, the QCustomPlots library, the TNGA library, and some other

supporting libraries. Each library is given in the format of Dynamic Link Library

(DLL), that is proposed by Microsoft.

Table 7.4 shows the list of included libraries and files for packing TranOpt Plus

as an installer. The DLL files are categorized into some groups. The first three

are the TNGA, the MapGraphics, and the QCustom library. A number of Qt and

Qt supporting libraries are also included. Those mentioned libraries are located

at the main installed folder. There is a subfolder, named “platforms”, containing

three supporting libraries for the Windows platform. A number of OSM files are

included in the subfolder named “examples”. The subfolder named “data” contains

data files for the software, e.g. the text file of the places with GPS coordinates.

All files for the feature “Help” are stored in the subfolder “manual” consisting of

two smaller folders namely “TrafficModeling” and “tranopt”. Each of these folders

contains html files and pictures. The main folder also contains other files, such as

the Windows executable application file “TranOpt.exe”, the icon file “TranOpt.ico”,

and the configuration file “config.xml”.

7.6 Conclusion and Discussion

In this chapter we have presented the TranOpt Plus software with the three major

features, namely map editing, dynamic routing, and traffic assignment modeling, as

well as a number of supporting features. The three open-source libraries used in

TranOpt Plus are the Qt libraries, the MapGraphics library, and the QCustomPlot

library. These libraries provide tools for programming the graphical user interface

as well as the visualization of TranOpt Plus software. The TNGA library plays

a fundamental role in the software, since it provides the classes for routing algo-

rithms and traffic assignment modeling. The software were tested on Windows 7

and Windows 8.

TranOpt Plus provides a strong framework for further map-related problems, such

as network design, facility location, traffic optimization, etc. All the computational

results of running the GUEM model in Hanoi were done and visualized on Tra-

nOpt Plus, see Chapter 6.

Further works on TranOpt Plus are in consideration as follows.

• Improving the speed of displaying large graphs, e.g. graph with millions of

objects, and managing caches storing map tiles more efficiently;

• Implementing the TNGA library using parallel computing for some algorithms;

• Adding further map-related problems into TranOpt Plus;

• Creating a new version of TranOpt Plus working on Linux systems.





Chapter 8

Conclusions and Discussion

This doctoral thesis has introduced three major fields related to urban traffic plan-

ning: routing problems, traffic assignment modeling, and software development.

In Chapter 3, we implemented Dijkstra’s algorithm and A-Star algorithm for the

shortest path (SP) problem, following both the one-directional and the bidirectional

search approaches. The results indicate a fact that the algorithms, following the

bidirectional search approach, dominate those following the one-directional search

approach. The running times of A-Star algorithm were generally better than those

of Dijkstra’s algorithm, however, the former algorithm, i.e. A-Star, needs a prepro-

cessing step where a lower bound on the length of the shortest path between two

nodes is calculated.

In Chapter 4, we introduced a new heuristic based on Eppstein’s algorithm, using

loop-filters named HELF for the k shortest loop-less path (KSLP) problem. The

computational results showed that the loop-filters can predetermine a large num-

ber of paths, from which all the candidates are loop-less, thus, the running time

decreases significantly. The HELF also dominates other algorithms, i.e. Yen’s al-

gorithm, the heuristic based on Marins’ algorithm (HMA), and the heuristic based

on Eppstein’s algorithm (HEA), in terms of running time. By adding a similarity

filter into the HELF, we developed a new heuristic, named HELSF, for the dissim-

ilar shortest loop-less paths (DSLP) problem. The HELSF was compared to the

penalty method, using the bidirectional Dijkstra, on a real map of Hanoi. The re-

sults showed that the penalty method consumed less running time than those of

the HELSF, however, the HELSF determined better paths in terms of the average

length.

In Chapter 5, we proposed a new general user equilibrium (UE) traffic assignment

model named GUEM for mixed traffic systems. In the GUEM model, the traffic

demands and the potential paths between each origin-destination (O-D) pair of zones

are separated with respect to the kinds of vehicles, i.e. 2-wheel or 4-wheel vehicle.

More than that, the constant public bus flows on links are taken into account and

further kinds of vehicles can also be added to the new model. We have proved that,
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at the optimal solution of the GUEM model, there is an equilibrium for each kind

of vehicle.

In Chapter 6 we investigated the mixed traffic system dominated by motorcycles

(MTSDM) in Hanoi. We did not only collect the available data from former projects

but have also made an online survey on the traffic behaviors in major cities in

Vietnam. Furthermore, we calibrated the parameters of the BPR function, applying

to the MTSDM in Hanoi. The collected data and the new BPR function were used to

run the GUEM model for the traffic system in Hanoi. The high agreement between

the predicted flows and the real traffic situation in Hanoi proved the accuracy of the

GUEM model.

Chapter 7 presented our software, named TranOpt Plus, that has three major fea-

tures: map editing, dynamic routing, and traffic assignment modeling. The graphi-

cal user interface (GUI) of the software makes it easy to use even for people who have

little knowledge of mathematics and computer science. Furthermore, TranOpt Plus

plays as a frame-work for further map-based applications in traffic planning, e.g.

network design, traffic controlling, and facility location.

With all the achievements in this project, we would like to contribute tools for

traffic optimization in urban areas where the traffic system is a mixture of 2-wheel

and 4-wheel vehicles. For further works, we are going to improve the algorithms

for routing problems and investigate new traffic assignment models for mixed traffic

systems. The TranOpt Plus software will be enlarged by new features.



Appendix A

Map Instances

This appendix presents the details of the data, used for all experiments in this

doctoral thesis, such as the data format, the map instances, and the population

zones in Hanoi. All the map instances, used for testing routing algorithms, are the

real city maps exported from openstreetmap.org [36].

Listing A.1: The XML format of OSM files.

<?xml version=’ 1 .0 ’ encoding=’UTF−8 ’ ?>

<osm version=’ 0 .6 ’ upload=’ t rue ’ genera tor=’JOSM ’>

<bounds minlat=’ 1 .9 ’ minlon=’ 16 .8 ’ maxlat=’ 1 .99 ’ maxlon=’ 17 .9 ’ />

<node id=’ 91 ’ l a t=’ 10 .97 ’ lon=’ 106 .89 ’ >

<tag k=’ amenity ’ v=’ parking ’ />

</node>

<node id=’ 92 ’ l a t=’ 10 .95 ’ lon=’ 106 .87 ’ />

<way id=’ 1 ’ changeset=’ 10546455 ’>

<nd r e f=’ 91 ’ />

<nd r e f=’ 92 ’ />

<tag k=’ highway ’ v=’ l i v i n g s t r e e t ’ />

</way>

. . .

<r e l a t i o n id=”318” v i s i b l e=” true ”>

<member type=”way” r e f=”3” r o l e=” plat form ”/>

</ r e l a t i o n>

</osm>

The original exported files are in the standard OSM format, that is expressed in

Listing A.1. There are a number of major map objects, such as, the boundary of

the map, the nodes, the ways, and the relations between objects. The boundary is

the area located by the given minimum and maximum latitudes, longitudes.

Each node and each way may have a number of different attributes including a unique

identification number given in the attribute “id”. The latitude and longitude of a

node are given in the attributes “lat” and “lon”, respectively. The identification
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numbers of the nodes on a way are stored in the attribute “nd”. Other attributes

in nodes and ways are stored in tags. Each tag has two attributes: “k” for the

name of the attribute and “v” for the value of the attribute. In order to filter out

unnecessary objects in exported OSM files, e.g. the nodes representing restaurants,

banks, supermarkets, we used the the JOSM software, which is a free extensible

editor for OpenStreetMap (OSM) written in Java and supporting download and

upload OSM data.

The map instances were collected in 13 cities in Germany, Vietnam, USA, Thailand,

the Philippines, Taiwan, and Cambodia. Table A.1 provides the list of the map

instances with basic information. The first column, labeled “Name” indicate the

names of maps in short. The short name of a map instance is created as {the city

code}-{country code}{number of nodes}. For example, the name MH-DE6k means

that it is the map of the city Mannheim in Germany (Deutschland), and it has about

6 thousand nodes. These short names are used in all the tables of computational

results for routing problems. The second column, labeled “City” shows the names

of the cities of the maps. The third column, labeled “Country” indicates the name

of the countries corresponding to the cities. The fourth and fifth columns, named

“Nr. nodes” and “Nr. links”, give the number of nodes and the number of links of

the maps, respectively. Some instances are not the full size but apart of the maps

of the cities.

Table A.1: The list of map instances.

Name City Country Nr. nodes Nr. links

HD-DE1k Heidelberg Germany 1752 3517

HP-VN2k Hai Phong Vietnam 2731 6733

BH-VN4k Bien Hoa Vietnam 4749 11788

NY-USA5k New York The USA 5653 11322

VT-VN5k Vung Tau Vietnam 5030 12978

MH-DE6k Mannheim Germany 6439 12504

DN-VN8k Da Nang Vietnam 8267 22927

HN-VN9k Hanoi Vietnam 9753 24205

PP-CB9k Phnompenh Cambodia 9896 26312

MNL-PP12k Manila The Philippines 12932 34638

TP-TW21k Taipet Taiwan 21137 49774

BK-TL22k Bangkok Thailand 22775 48139

HCM-VN24k HoChiMinh City Vietnam 24965 62566

Basically, each OSM file represents a map containing nodes and ways and a way in

OSM is similar to a path in the graph, i.e. a way is a sequence of links. In order to

transform a map in an OSM file to a graph, we used TranOpt Plus software. The

https://josm.openstreetmap.de/
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transformed graph is saved in a TNG format, which is described in Listing A.2. The

first lines in a TNG file are the information of the graph, such as name of graph

and information of the graph. The real data is stored from the lines between the

line “START DATA” and the line ”EOF”. The first data line is the number of

nodes. The next lines are links on the graph. Each line representing a link has three

numbers: the first number is the source node, the second one is the destination

node, and the last one is the length of the link. The data of links and node data is

separated by the line“NODE POSITION”. Each line of the node data representing

a node has three numbers: the identification number of node, the longitude, and the

latitude of the node. The TNG file may contain or not contain the node positions.

The position of nodes are used in a number of algorithms, e.g. A-Star algorithm. If

a TNG file does not contain the node positions, the default position at (0, 0) is set

to all nodes in the graph.

Listing A.2: The format of TNG file supported by graph in TNGA library.

NAME: SampleGraph

INFOR: Created by TranOpt Plus 1 .0

START DATA

2731

0 1 1309.19

0 2 662.159

1 0 297.658

2 1 36.8423

2 0 372.757

NODE POSITION

0 106.64 20 .86

1 106 .72 20 .84

2 106 .65 20 .85

EOF

Table A.2 shows the list of 133 population zones in Hanoi, used in Chapter 6 for

running the GUEM model. The list is customized from the project HAIDEP [42].

The first column labeled “Ord” indicates the order of zones. The next two columns

labeled “Lat” and “Lon” are the latitude and longitude of the centers of the zones,

respectively. The column labeled “Name” indicates the name of the zones. The first

128 zones are the quarters of the 9 urban districts in Hanoi. The ending of a quarter

is the brief code of the district’s name, i.e. BD stands for Ba Dinh, HK stands for

Hoan Kiem, TH stands for Tay Ho, LB stands for Long Bien, CG stands for Cau

Giay, DD stands for Dong Da, HBT stands for Hai Ba Trung, HM stands for Hoang

Mai, and TX stands for Thanh Xuan. The last 5 zones are the districts out of the



144 MAP INSTANCES

center of Hanoi, i.e. Dong Anh, Gia Lam, Tu Liem, Thanh Tri, and Ha Dong.

Table A.2: Population zones in Hanoi, customized from data of the HAIDEP
project [42].

Ord Lat Lon Name Ord Lat Lon Name

1 21.04719 105.84910 Phuc Xa, BD 68 21.02244 105.83726 Van Chuong, DD

2 21.04504 105.84139 Truc Bach, BD 69 21.02311 105.83114 Hang Bot, DD

3 21.04223 105.80932 Vinh Phuc, BD 70 21.01531 105.81257 Lang Ha, DD

4 21.03587 105.81013 Cong Vi, BD 71 21.01956 105.83862 Kham Thien, DD

5 21.03730 105.81840 Lieu Giai, BD 72 21.01723 105.83428 Tho Quan, DD

6 21.04157 105.84710 Nguyen Trung Truc, BD 73 21.01427 105.83110 Nam Dong, DD

7 21.03866 105.84129 Quan Thanh, BD 74 21.01514 105.83862 Trung Phung, DD

8 21.03829 105.82810 Ngoc Ha, BD 75 21.01194 105.82537 Quang Trung, DD

9 21.03347 105.83975 Dien Bien, BD 76 21.01137 105.82252 Trung Liet, DD

10 21.03427 105.82756 Doi Can, BD 77 21.01237 105.83713 Phuong Lien, DD

11 21.03016 105.80994 Ngoc Khanh, BD 78 21.00838 105.81798 Thinh Quang, DD

12 21.03086 105.82550 Kim Ma, BD 79 21.00435 105.83117 Trung Tu, DD

13 21.02688 105.81955 Giang Vo, BD 80 21.00669 105.83609 Kim Lien, DD

14 21.02068 105.81582 Thanh Cong, BD 81 21.00144 105.83926 Phuong Mai, DD

15 21.03704 105.85695 Phuc Tan, HK 82 21.00524 105.82214 Nga Tu So, DD

16 21.03882 105.85061 Dong Xuan, HK 83 21.00303 105.82846 Khuong Thuong, DD

17 21.03715 105.84671 Hang Ma, HK 84 21.01863 105.84583 Nguyen Du, HBT

18 21.03559 105.85168 Hang Buom, HK 85 21.01332 105.86585 Bach Dang, HBT

19 21.03464 105.84993 Hang Dao, HK 86 21.01588 105.85738 Pham Dinh Ho, HBT

20 21.03471 105.84776 Hang Bo, HK 87 21.01501 105.85073 Bui Thi Xuan, HBT

21 21.03301 105.84558 Cua Dong, HK 88 21.01670 105.85344 Ngo Thi Nham, HBT

22 21.03045 105.85464 L Thai To, HK 89 21.01247 105.84504 Le Dai Hanh, HBT

23 21.03275 105.85275 Hang Bac, HK 90 21.01277 105.85645 Dong Nhan, HBT

24 21.03199 105.84854 Hang Gai, HK 91 21.01076 105.85331 Pho Hue, HBT

25 21.02763 105.86192 Chuong Duong Do, HK 92 21.01117 105.86029 Dong Mac, HBT

26 21.02831 105.85046 Hang Trong, HK 93 21.00743 105.87108 Thanh Luong, HBT

27 21.02516 105.84257 Cua Nam, HK 94 21.00535 105.85697 Thanh Nhan, HBT

28 21.02857 105.84570 Hang Bong, HK 95 21.00609 105.85002 Cau Den, HBT

29 21.02517 105.85482 Trang Tien, HK 96 21.00429 105.84599 Bach Khoa, HBT

30 21.02298 105.84737 Tran Hung Dao, HK 97 20.99887 105.84438 Dong Tam, HBT

31 21.02036 105.85747 Phan Chu Trinh, HK 98 20.99793 105.86869 Vinh Tuy, HBT

32 21.02081 105.85179 Hang Bai, HK 99 21.00096 105.85182 Bach Mai, HBT

33 21.08508 105.80778 Phu Thuong, TH 100 21.00010 105.86067 Qunh Mai, HBT

34 21.07787 105.82572 Nhat Tan, TH 101 21.00036 105.85628 Qunh Loi, HBT

35 21.06825 105.83700 Tu Lien, TH 102 20.99594 105.85776 Minh Khai, HBT

36 21.05719 105.82616 Quang An, TH 103 20.99477 105.84818 Truong Dinh, HBT

37 21.06158 105.80383 Xuan La, TH 104 20.99499 105.89051 Thanh Tri, HM

38 21.05400 105.83865 Yen Phu, TH 105 20.98920 105.87462 Vinh Hung, HM

39 21.05264 105.81368 Buoi, TH 106 20.98315 105.83214 Dinh Cong, HM

40 21.04428 105.82383 Thuy Khue, TH 107 20.99090 105.86492 Mai Dong, HM

41 21.07525 105.89641 Thuong Thanh, LB 108 20.98834 105.85110 Tuong Mai, HM

42 21.06117 105.86853 Ngoc Thuy, LB 109 20.97384 105.82155 Dai Kim, HM

43 21.06790 105.91574 Giang Bien, LB 110 20.98359 105.84818 Tan Mai, HM

44 21.06332 105.89452 Duc Giang, LB 111 20.98520 105.86030 Hoang Vn Thu, HM

45 21.05752 105.90254 Viet Hung, LB 112 20.98429 105.84294 Giap Bat, HM

46 21.04928 105.88604 Gia Thuy, LB 113 20.97674 105.89654 Linh Nam, HM

47 21.04506 105.86919 Ngoc Lam, LB 114 20.97556 105.85496 Thinh Liet, HM

48 21.04399 105.92491 Phuc Loi, LB 115 20.97228 105.88445 Tran Phu, HM

49 21.03722 105.87306 Bo De, LB 116 20.96485 105.83706 Hoang Liet, HM

50 21.03094 105.91683 Sai Dong, LB 117 20.96245 105.87255 Yen So, HM

51 21.01900 105.88512 Long Bien, LB 118 21.00306 105.80367 Nhan Chnh, TX

52 21.02171 105.91477 Thach Ban, LB 119 21.00133 105.81494 Thuong Dinh, TX

53 21.03947 105.89693 Phuc Dong, LB 120 20.99718 105.82120 Khuong Trung, TX

54 21.00715 105.90002 Cu Khoi, LB 121 20.99634 105.83052 Khuong Mai, TX

55 21.04435 105.80324 Nghia Do, CG 122 20.99591 105.80400 Thanh Xuan Trung, TX

56 21.04548 105.79125 Nghia Tan, CG 123 20.99148 105.83890 Phuong Liet, TX

57 21.04023 105.77426 Mai Dich, CG 124 20.98656 105.81011 Ha Dinh, TX

58 21.03489 105.79253 Dich Vong, CG 125 20.98878 105.81858 Khuong Dinh, TX

59 21.03439 105.78506 Dich Vong Hau, CG 126 20.99336 105.79835 Thanh Xuan Bc, TX

60 21.03667 105.80142 Quan Hoa, CG 127 20.98553 105.79912 Thanh Xuan Nam, TX

61 21.02132 105.79046 Yen Hoa, CG 128 20.98239 105.81245 Kim Giang, TX

62 21.01033 105.79815 Trung Hoa, CG 129 21.14362 105.79761 Dong Anh

63 21.02861 105.82935 Cat Linh, DD 130 21.06122 105.96606 Gia Lam

64 21.02652 105.84011 Vn Mieu, DD 131 21.03709 105.70822 Tu Liem

65 21.02743 105.83278 Quoc Tu Giam, DD 132 20.90577 105.85712 Thanh Tri

66 21.02187 105.80411 Lang Thuong, DD 133 20.95418 105.74640 Ha Dong

67 21.01938 105.82552 O Cho Dua, DD



Appendix B

Computational Results

This appendix shows the details of the computational results of the algorithms,

mentioned in Chapter 4, i.e. the heuristic based on Martins’ algorithm (HMA),

Yen’s algorithm, the heuristic based on Eppstein’s algorithm (HEA), and the heuris-

tic based on Eppstein’s algorithm using loop-filters (HELF), for the KSLP problem.

Table B.1, Table B.2, Table B.3, Table B.4, Table B.5, Table B.6, and Table B.7

show the computational results of the algorithms corresponding to 7 different values

of k, i.e. k ∈ {5, 10, 20, 30, 40, 50, 60}.
The meanings of the columns of all the tables are the same as follows. The first

column, labeled “Maps”, indicates the map instances using for the experiments.

The remaining columns are grouped in 4 blocks corresponding to the computational

results of the 4 mentioned algorithms, i.e. the block “Martins (HMA)” for the HMA,

the block “Yen” for Yen’s algorithm, the bock “Eppstein (HEA)” for the HEA, and

the block “HELF” for the HELF. In turn, each block has 3 columns. The first column

in each block, labeled “Vs”, indicates the average numbers of visited paths by the

algorithms, the second column, named “Fs”, show the average numbers of loop-less

paths found by the algorithms within the given maximum number of iterations, and

the last column, labeled “Time”, gives the running times of the algorithms. The

last row of each table shows the average values of the computational results in all

the map instances.

For the heuristics, i.e. the HMA, the HEA, and the HELF, the maximum number of

iteration is set to 1000×k, e.g. Imax = 5000 for the case k = 5. All the experiments

were implemented in a personal desktop computer with an Intel (R) dual Core at

2.20 GHz processor and 2 GB of RAM.
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Mathematical Symbols

∀ For all elements
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Rn n dimensional space
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