
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/173237

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

http://hdl.handle.net/2066/173237

Bitsliced Masking and ARM: Friends or Foes? ?

Wouter de Groot2, Kostas Papagiannopoulos1, Antonio de La Piedra1, Erik
Schneider2 , Lejla Batina1

1 Radboud University Nijmegen, The Netherlands
2 Eindhoven University of Technology, The Netherlands

Abstract. Software-based cryptographic implementations can be vul-
nerable to side-channel analysis. Masking countermeasures rank among
the most prevalent techniques against it, ensuring formally the protec-
tion vs. value-based leakages. However, its applicability is halted by two
factors. First, a masking countermeasure involves a computational over-
head that can render implementations inefficient. Second, physical effects
such as glitches and distance-based leakages can cause the reduction of
the security order in practice, rendering the masking protection less ef-
fective. This paper, attempts to address both factors. In order to reduce
the computational cost, we implement a high-throughput, bitsliced, 2nd-
order masked implementation of the PRESENT cipher, using assembly
in ARM Cortex-M4. The implementation outperforms the current state
of the art and is capable of encrypting a 64-bit block of plaintext in 6,532
cycles (excluding RNG), using 1,644 bytes of data RAM and 1,552 bytes
of code memory. Second, we analyze experimentally the effectiveness of
masking in ARM devices, i.e. we examine the effects of distance-based
leakages on the security order of our implementation. We confirm the the-
oretical model behind distance leakages for the first time in ARM-based
architectures.

Keywords: PRESENT, ARM Cortex-M, bitslicing, masking, SCA

1 Introduction

Nowadays, everyday devices, sensors, vehicles and other items are embedded
with electronics, allowing network connectivity and information exchange. Of-
ten, these fairly simple devices need to maintain a high level of security against
powerful adversaries with passive monitoring, as well as active tampering capa-
bilities.

For instance, side-channel attacks (SCA) allow attackers to learn sensitive
data by observing physical characteristics of a cryptographic implementation.
Their discovery in 1999 by Kocher et al. [32] exposed a blind spot in theoret-
ical, proof-driven cryptography and has motivated researchers to find efficient

? The work described in this paper has been supported by the Netherlands Organiza-
tion for Scientific Research NWO under project ProFIL (628.001.007).

2 Authors Suppressed Due to Excessive Length

countermeasures. A very common option for provably secure software counter-
measures is masking [18], which uses secret-sharing techniques to hinder key
recovery.

However, the masking countermeasure can imply a severe performance over-
head in terms of processing speed due to the quadratic computational complexity
required [30]. Moreover, masking can formally ensure protection against a theo-
retical leakage model, namely the value-based model. As a result, device-specific
divergence from the assumed model can lead to security order reduction. For
instance, software devices often exhibit distance-based leakages, which have been
theorized to reduce the order of a masked scheme by 50% [2].

This paper attempts to answer whether masking countermeasures and ARM
devices are friends or foes. The contribution is twofold and extends to both the
performance factor as well as the security order factor.

First, we improve the current state of the art by creating an efficient, bit-
sliced, 2nd-order implementation of PRESENT. The PRESENT cipher was se-
lected due to its widespread applicability in the Internet of Things context. Our
implementation requires 1,644 bytes of RAM, 1,552 bytes of code memory and
encrypts 32 blocks of data in 209,023 clock cycles, achieving a throughput of
6,532 clock cycles per block, excluding the cost of random number generation.
Thus, we demonstrate that ARM-based architectures can host masked imple-
mentations efficiently, given that the implementors opt for full-scale assembly
programs and use efficient state representations.

Second, we examine potential distance-based leakages in ARM architectures.
That is, we perform side-channel experiments in order to test whether our ARM
Cortex-M4 device is prone to causing order reduction in our 2nd-order imple-
mentation. In addition, we confirm that the observed order reduction follows
the theorized reduction established by Balasch et al. [2]. That is, we confirm
the order-reduction theorem (Section 5) in ARM-based architectures for the first
time.

In the next section, we describe the work of other practitioners who imple-
mented PRESENT and relate their performance figures with our work. In Section
3 we offer a brief description of the PRESENT cipher. Section 4 discusses the de-
sign options and optimizations w.r.t. the masked ARM implementation, as well
as the performance results. Section 5 links the order reduction model suggested
by Balasch et al. [2] to our ARM-based device. Finally, Section 6 concludes and
discusses future work.

2 Related work

In this section, we describe the work of those implementors that addressed the
implementation of PRESENT in software. We do this in ascending order of
word size according to the architecture.

Bitsliced Masking and ARM: Friends or Foes? 3

4-bit architectures Poschmann implemented PRESENT in different software
platforms [39]. In a 4-bit µC, particularly an Atmel ATAM893-D at 2 MHz he
obtained a performance figure of 55,734 cycles per block. He also implemented
PRESENT in an 8-bit ATmega µC clocked at 4 MHz, obtaining a performance
of 10,089 cycles.

8-bit architectures Papagiannopoulos presented a bitsliced implementation
of PRESENT on the 8-bit ATtiny85 µC. He applied bitslicing to the permuta-
tion and substitution layers using a bitslice factor of 8 [38]. That work relied on
the PRESENT Sboxes resulting from the application of 2-stage Boyar-Peralta
heuristic in tandem with SAT solvers [12]. He obtained a throughput (cycles per
block) of 2,967 using 3,816 bytes of Flash and 256 bytes of SRAM. In this work,
we use the same Sbox. Dinu et al. also analyzed the suitability of a wide range of
lightweight block ciphers in sensor-based applications in three different architec-
tures: an 8-bit ATmega, 16-bit MSP430 and 32-bit ARM processor. They do not
apply bitslicing and implemented the Cipher Block Chaining (CBC) and counter
(CTR) modes of operation [23]. The CBC implementation requires 121,906 cy-
cles on the ATmega processor whereas the CTR implementation can obtain one
block of ciphertext in 15,239 cycles. Furthermore, the authors from [25] imple-
ment PRESENT in an ATiny 8-bit µC, using 80 bits keys the required 11,343
cycles, 1,000 bytes of code and 18 bytes of RAM. Using the same platform Pa-
pagiannopoulos decreased the amount of cycles to 8,712 cycles in [37] by using a
merged SP layer, squared and compact representations of the Sbox and minimal
key register rotations. Finally Rauzy et al. presented a design methodology for
inserting Dual-rail with Precharge Logic (DPL) in a software implementation
of PRESENT in an automatic way [41]. They relied on an 8-bit AVR ATmega
163 implementation (bitsliced). They require 235,427 cycles for obtaining a single
block of ciphertext.

16-bit architectures Poschmann also implemented PRESENT on an 16-bit
Infineon C167CR processor, obtaining a performance figure 19,460 cycles per
block [39]. On the other hand, Dinu et al. relied on the MSP430 of 16-bit for
implementing both the CBC and CTR modes of PRESENT, obtaining a perfor-
mance of 100,786 and 12,226 cycles respectively. In [17], Cazorla et al. evaluated
a variety of lightweight primitives on the 16-bit MSP430 µC that sensor nodes
usually equip due to its low-power and cost. Clocked at 8 MHz, their perfor-
mance figures are 364,587 cycles and 45,573 cycles/byte (they do not employ
bitslicing).

32-bit architectures Dinu et al. implemented PRESENT on the ARM Cortex
architecture [23]. Their CBC implementation requires 138,947 cycles on the ARM
processor whereas their CTR implementation can obtain one block of ciphertext
in 16,919 cycles.

4 Authors Suppressed Due to Excessive Length

64-bit architectures Benadjila et al. explored the software implementation
of the LED, Piccolo and PRESENT block ciphers [5, 29, 43]. They relied on
table-based implementations, vector permutations and bitslice approaches. The
best results for bitsliced PRESENT-80 are 18.7 cycles/byte for 16 plaintexts
in 2,221 cycles in an Intel Core i3 2367M clocked at 1.4 GHz. Matsuda et al.
proposed in [34] the utilization of PRESENT in sensor-related applications for
processing a high-amount of data gathered by nodes. They relied on 3 Intel
architectures, particularly on the Core 45 nm and Nehalem (equipped with the
Streaming SIMD extensions (SSE) 4.1 and 128-bit XMM registers) and on the
Sandy Bridge, equipped with the Advanced Vector Extension (AVX). Executing
32 plaintexts simultaneously via a bitsliced implementation, the require 4.73
cycles/byte on the Sandy Bridge architecture.

Contribution In this manuscript we present a very fast and 2nd-order pro-
tected implementation of the PRESENT block cipher by combining bitslicing
and 2nd-order masking. We rely on the 32-bit ARM Cortex-M4 CPU 3. The an-
alytical results can be seen in section 4.3. Our implementation can encrypt one
PRESENT plain text in 6,532 cycles using 1,644 bytes of RAM and 1,552 bytes
of ROM. To our knowledge, this is the first high-order protected implementation
of PRESENT that includes side-channel evaluation. We have evaluated our im-
plementation against first, second and third-order security using state-of-the art
techniques (Section 5). None of the works described in this section performed
such exhaustive evaluation on their implementation while protecting it against
second-order attacks [5, 17, 23, 25, 34, 37–39, 41]. Our performance figures sug-
gest that our implementation is between 2.5 and 21.2 times faster than prior
art relying on the same architecture (Section 4.4). Further, we have made our
implementation available under the General Public License (GPL)4.

Finally, since the constructions found in PRESENT are also used on the
hash functions SPONGENT and H-PRESENT [8, 10], the same approaches we
present in this manuscript can be applied to their implementation.

3 PRESENT

Given the need of alternative cryptographic primitives aimed at low-power and
compact applications such as RFID and sensor networks, a variety of lightweight
primitives such as PRESENT has been proposed in the last few years [9]. Stan-
dardized in ISO/IEC 29192-2:2012 5, it consists of a substitution-permutation
(SP) network, 80/128-bit key sizes and 64-bit data blocks. PRESENT applies
the following layers during 31 rounds to a 64-bit state b:

3 In particular, we used an STM32F417IG SoC by ST clocked at 168 MHz with 1,024
Kbytes of Flash and 196 Kbytes of RAM.

4 http://tinyurl.com/zw7zlkv (Accessed 24 June 2016)
5 http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?

csnumber=56552 (Accessed 24 June 2016)

Bitsliced Masking and ARM: Friends or Foes? 5

1. addRoundKey: During the execution of PRESENT, 32 round keys (Ki

w.r.t. 1 ≤ i ≤ 32) are generated via a key schedule using the encryption
key K as an input. The last subkey, K32 is used for post-whitening. Each
round key Ki has a size of 64 bits. Thus, each execution of addRoundKey
is comprised of the XOR operation between the state and the round key, i.e.
b′ ← b⊕Ki.

2. sBoxLayer: This layer is a non-linear substitution operation that relies on
a 4-bit Sbox (F4

2 → F4
2), applied 16 times per round to the state. The 64-bit

state is divided in 16 groups of 4 bits that feed the PRESENT Sbox (Table
1).

Table 1: 4-bit PRESENT Sbox
x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] c 5 6 b 9 0 a d 3 e f 8 4 7 1 2

3. pLayer: This layer consists of a linear bit-wise permutation where each bit
i of the state (bi) is moved to another position P (i) according to Table 2.

Table 2: Permutation table of PRESENT
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P (i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P (i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P (i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P (i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

Finally, the round subkeys are generated as follows. Given a key K of 80
bits s.t. K79,K78, ...,K0, a round key i of 64 bits is the 64 left most bits of K
updated via the following operations:

1. 61 bits rotations to the left of K.
2. The left most 4 bits are processed in the PRESENT Sbox.
3. The round counter is exclusive-ored with the bits K19, ...,K15 of K.

4 Bitsliced Masking of PRESENT for ARM Cortex-M4

The current section describes the design choices investigated in order to develop
a protected, high-throughput, assembly-based PRESENT implementation. Sec-
tions 4.1, 4.2 describe the logic-level optimizations performed, while Section 4.3
discusses the instruction-level improvements.

6 Authors Suppressed Due to Excessive Length

4.1 Bitslicing and Efficient Sbox Representation

CPU architectures tend to operate best on their native word size or half-words
and they encounter performance issues with bit-level manipulation. To deal
with this issue, the Cortex-M4 features bit-banding support6, as well as a wide
selection of bit-field instructions. However, applying them in the context of
PRESENT requires extensive use of load and store instructions or numerous
bit extractions/insertions, often resulting in poor performance.

Bitslicing is a technique introduced by Biham to tackle this inefficiency for
DES [6]. Instead of using registers to store consecutive bits of a state, one uses
them to hold one specific bit from several different states, effectively transforming
bit-level operations into SIMD equivalents.

In our implementation, we employ a bitsliced representation of factor 32, i.e.
we process in parallel 32 cipher blocks, 64 bits each, resulting in 256 bytes per
bitsliced encryption. Doing so, allows us to efficiently compute both the substi-
tution and the permutation layer of PRESENT. Analytically, the Sbox can be
decomposed into GF (2) operations which can be accelerated by via the SIMD-
like instructions and it no longer requires the application of memory lookup
tables.7. Similarly, the bit permutations can be accelerated by directly exchang-
ing the memory contents of the corresponding bitsliced bits according to the
permutation pattern, instead of relying on bit extraction, insertion and shifting.

The GF (2) decomposition of the Sbox has sparked interest in the optimiza-
tion of boolean circuits w.r.t. computational efficiency. In our implementation,
we use the optimized boolean circuit suggested for PRESENT by Courtois et
al. [21]. The optimized representation was generated by applying the Boyar-
Peralta heuristic [12], which reduces the circuit’s gate complexity, i.e. the number
of AND, OR, XOR, NOT operations. The representation is shown below.

T1 = X2^X1; T2 = X1&T1; T3 = X0^T2; Y4 = X3^T3; T2 = T1&T3;

T1 ^= Y4; T2 ^= X1; T4 = X3|T2; Y3 = T1^T4; X3 =~ X3;

T2^ = X3; Y1 = Y3^T2; T2 |= T1; Y2 = T3^T2;

Values X1–X4 represent an Sbox input, T1–T4 hold temporary values and Y1-Y4
are output values. The total cost is 14 operations, 4 non-linear (AND, OR) and
10 linear (XOR,NOT).

4.2 Boolean Masking

Chari et al. [18] were among the first to suggest that splitting intermediate values
using a secret sharing scheme would force attackers to analyze joint distribution

6 Bit-banding allows individual bits to be addressed as though they were bytes in
RAM.

7 Note that implementations based on lookup tables can be prone to timing side-
channel attacks in the presence of memory caches.

Bitsliced Masking and ARM: Friends or Foes? 7

functions on multiple points. That is, a dth-order masking scheme splits a sen-
sitive value x into d+ 1 shares (x0, x1, . . . , xd) as follows:

x = x0 ⊕ x1 · · · ⊕ xd (1)

Assuming sufficient noise, it has been shown that the number of traces required
for a successful attack grows exponentially w.r.t. the order d [18, 40].

Masking involves several implemenation angles, e.g. Goubin et al. [26],
Messerges [35] and recently Coron [19] applied the masking principle in lookup
tables used in Sbox computation. Adopting a different implementation angle,
Trichina [47], Canright [14], Akkar et al. [1] and Blömer et al. [7] applied mask-
ing in the context of GF operations used in Sbox computation. This operation-
based approach was formalized by Ishai, Sahai, and Wagner’s shared secret ap-
proach (ISW), which introduced the notion of private boolean circuits [30]. ISW
provided implementors with a provably secure method to mask operations in
GF (2) for any masking order d.

This work employs a bitsliced representation of PRESENT and enhances
the implementation using a 2nd-order protection scheme. As demonstrated in
Section 4.1, the Sbox is decomposed into GF (2) operations. Thus, ISW is our
technique of choice in order to apply 2nd-order protection on the boolean oper-
ations required for the Sbox computation.

Table 3 shows the ISW equivalent of common boolean operations when ap-
plied to bitsliced operands a and b, as well as the computational cost involved
for each operation. The values zi,j where 1 ≤ i < j ≤ (d + 1) are drawn
from a uniform random distribution and the remaining zi,j are computed us-
ing (zi,j ⊕ aibj) ⊕ ajbi. Note that the cost of the NOT operation is a single
negation, the cost of the XOR operation is linear and the cost of the AND,OR
operations is quadratic. In our implementation, the OR operation is converted
to a single AND and three NOT operations in order to apply the ISW method.

Table 3: ISW equivalents of common boolean operations

Operation ISW Equivalent Cost

NOT(a) ¬a0 O(1)
XOR(a,b) ai ⊕ bi O(d)
OR(a,b) NOT(AND(NOT(a),NOT(b))) O(d2)
AND(a,b) aibi ⊕

⊕
i 6=j zi,j O(d2)

The quadratic computational complexity of non-linear operations can re-
sult in a computationally demanding masked Sbox. To avoid this, several tech-
niques [15, 16, 21, 27, 45] on reducing the multiplicative complexity of an Sbox,
i.e the number of AND,OR operations. The decomposition that we currently use
(shown in Section 4.1) is optimal w.r.t. multiplicative complexity, since brute-
force techniques [28] demonstrate that the minimal complexity in GF (2) of
cryptographically relevant, 4-bit Sboxes is 4 non-linear operations.

8 Authors Suppressed Due to Excessive Length

4.3 ARM-based Optimizations

Our implementation targets the ARM Cortex-M4 microcontroller architecture
using ARM assembly with Thumb2 encoding. Thus, we use a 32-bit architec-
ture with 14 general purpose registers designed for low-cost, low-power appli-
cations. The implementation board is the Riscure Pinata 8 which is based on
the STM32F417IG SoC by ST and embeds an ARM 32-bit Cortex-M4 CPU
clocked at 168 MHz. It features 1,024 Kbytes of Flash and 196 Kbytes of RAM.
The device is also equipped with a TRNG on the board in order to generate
the random values associated to our masking implementation. In the case of the
STM32F417IG, the TRNG generates 32-bit random numbers via an integrated
analog circuit. Note that the computational penalty w.r.t. random number gen-
eration is particularly steep when implemented on-the-fly, amounting to roughly
25 percent of the total computation. Still, we note that the random numbers
can be precomputed in advance, given that the application context allows for
idle intervals between consecutive encryptions. Below, we discuss implementa-
tion details and efficiency improvements pertaining to the ARM architecture,
memory organization and assembly instructions.

1. Memory organization: Our design requires two full bitsliced states in
RAM, each comprising of three sub-states corresponding to the three-share
masking scheme. The two full bitsliced states are needed because the per-
mutation layer would otherwise overwrite unprocessed data. We optimize for
cycles by integrating the permutation into the Sbox and writing words to
their permuted destination immediately after the Sbox computation.
Wherever the code operates on shares we organize our fetch and store data
in batches so as to reduce overhead. In most cases we use the LDM and
STM instructions to load or store three or four words at a time. This yields
improvements in the Sbox computation when reading in the next four words
to be substituted, in the key schedule, where three words at a time are read
in for processing and also when converting a regular state representation
from/to a bitsliced one.

2. Loop Unrolling: To improve the efficiency of our Sbox implementation,
which encrypts twelve shares (four bit-sliced data blocks of three shares
each), we unroll the substitution process to reduce the unnecessary read/write
steps required for a looped construction. The unrolling adds considerable size
to the code, yet we achieve trading code size for throughput. Note that un-
rolling is performed with memory access in mind. For example, we mentioned
that adding the key schedule is performed in a loop of three words. This op-
timizes the key schedule operation and maximizes the amount of data we
can bring from/to the RAM.

3. Key Schedule: The round key is not stored in a bitsliced fashion and the
key schedule is computed on the fly. Note that round key precomputation is
also a valid implementation option, assuming that the key does not need to

8 https://www.riscure.com/security-tools/hardware/pinata (Accessed 24 June
2016)

Bitsliced Masking and ARM: Friends or Foes? 9

be renewed often. Since, key refreshing can act as a side-channel countermea-
sure, we chose to retain the on-the-fly key updates. Updating the round key
requires a push through the Sbox for four bits each round. To that purpose,
we use Cortex-M4’s UBFX instruction for extracting a contiguous series of
bits from a word in an efficient manner. In addition, we used ARM’s bar-
rel shifter function, which allows the second operand to be shifted with no
additional cost before an instruction is performed.

4.4 Performance Results

The current section summarizes the achieved performance results w.r.t. through-
put and size. We depict in Tables 4, 5 the performance figures of the works
described in Section 2. As mentioned, we outperform prior art on the same ar-
chitecture between 2.5 and 21.2 times [23].

Table 4: PRESENT implementations, comparison with prior art (performance)
Work Implementation Bitslicing Bitslicing factor Protected Platform No. cycles per block

This work PRESENT-80 yes 32 yes ARM Cortex–M4 6,532

[23] PRESENT-80, CBC no - no ATmega 121,906
[23] PRESENT-80, CBC no - no MSP430 100,786
[23] PRESENT-80, CBC no - no ARM Cortex-M3 138,947
[23] PRESENT-80, CTR no - no ATmega 15,239
[23] PRESENT-80, CTR no - no MSP430 12,226
[23] PRESENT-80, CTR no - no ARM 16,919

[37] PRESENT-80 no - no ATiny 8,721

[41] PRESENT-80 yes 8 no ATMega163 78,403
[41] PRESENT-80, DPL yes 8 yes ATMega163 235,427

[38] PRESENT-80 yes 8 no ATiny85 2,967

[5] PRESENT-80, table no - no Corei3-2367M 988
[5] PRESENT-80, vperm yes 2 no Corei3-2367M 890
[5] PRESENT-80 yes 8 no Corei3-2367M 2,039
[5] PRESENT-80 yes 16 no Corei3-2367M 3,138

[34] PRESENT-80 yes 32 no Xeon E3-1280 37.84
[34] PRESENT-80 yes 16 no Xeon E3-1280 52.16
[34] PRESENT-80 yes 8 no Xeon E3-1280 67.68

[17] PRESENT-80 no - no MSP430 364,587

[39] PRESENT-80 no - no ATAM893-D 55,734
[39] PRESENT-80 no - no ATMega163 10,089
[39] PRESENT-80 no - no C167CR 19,460

As expected, the ISW implementation of the Sbox dominated CPU time,
accounting for 95,88 percent of all clock cycles within the encryption process.
A complete breakdown of the memory and time overheads required for different
modules is provided in Table 6.

5 Masking Effectiveness in ARM Cortex-M4

In this section, we assess experimentally the security level (masking order) pro-
vided by the ISW masking scheme, taking into account the possibility of distance-
based leakages in ARM Cortext-M4. In addition, we investigate whether the

10 Authors Suppressed Due to Excessive Length

Table 5: PRESENT implementations, comparison with prior art (size)

Work Implementation Code (bytes) RAM (bytes)

This work PRESENT-80 1,548 1,644

[38] PRESENT-80 3,816 256

[39] PRESENT-80, ATMega 1,494 272
[39] PRESENT-80, C167CR 45.9·103 -

[23] PRESENT-80, CBC, ATMega 1,388 56
[23] PRESENT-80, CBC, MSP430 1,108 52
[23] PRESENT-80, CBC, ARM 1,304 124
[23] PRESENT-80, CTR, ATMega 1,416 54
[23] PRESENT-80, CTR, MSP430 1,244 58
[23] PRESENT-80, CTR, ARM 1,532 140

[37] PRESENT-80 1,794 -

[41] PRESENT-80, bitslicing 1,620 288
[41] PRESENT-80, bitslicing + DPL 3,056 352

Table 6: SW transformations of common logical operations

Operation Code Size (%) No. Cycles (%)

main 208 (13.44) 3,807 (1.82)
sbox 892 (57.62) 200,404 (95.88)
updatekey 146 (9.43) 1,688 (0.81)
addroundkey 176 (11.37) 1,209 (0.58)
split data 60 (3.88) 1,292 (0.62)
unsplit data 66 (4.26) 623 (0.30)

theoretical repercussions of distance-based leakages can be confirmed experi-
mentally. In other words, we examine whether the cost of “lazy engineering” as
introduced by Balasch et al. [2] is applicable to an ARM-based microcontroller.

5.1 Experimental Pitfalls

The effective and efficient evaluation of the actual mask order of cryptographic
implementations remains an open problem due to several evaluation pitfalls.

Effectivity-wise, when evaluating a masking scheme via the measured power
consumption, we face the pitfall of the limited attack scope. That is, a partic-
ular attack technique in use may fail to exploit the available leakage due to
e.g. an unsuitable choice of intermediate values or an incorrect power model
assumption9. Moreover, introducing additional countermeasures on top of the

9 Knowledge about the device can often be limited in the context of black-box evalu-
ations.

Bitsliced Masking and ARM: Friends or Foes? 11

masking scheme may render particular exploitation techniques ineffective, while
the implementation remains vulnerable to different lines of attack.

In order to tackle this issue, the research community followed several ap-
proaches. Prior research established generic side-channel distinguishers such as
Mutual Information Analysis (MIA) [4], the Kolmogorov-Smirnov and the Cràmer-
von Mises tests [48,49], which require minimal assumptions about the noise and
the power model of the device under test. On the other side of the spectrum,
Standaert et al. [44] proposed an evaluation framework assuming the strongest
possible adversary, equipped with extensive profiling capabilities and Bayesian
templates.

While being effective, the aforementioned approaches focus on leakage ex-
ploitation and perform key recovery, which may require a large number of traces.
Thus, they face the efficiency pitfall w.r.t. computational and storage require-
ments. Note that this increased demand for resources is magnified when inserting
extra countermeasures in a masked implementation. Thus, it can be difficult to
decide with confidence whether the masking order is reduced or not.

In order to evaluate the effective masking order, we opt for a more recent
approach called leakage detection methodology [31]. This approach focuses on
leakage detection and disregards exploitation. Thus, the acquisition and the com-
putational cost is reduced while the methodology can retain its generic nature.

Despite the gain achieved via decoupling detection and exploitation, the leak-
age detection methodology still presents challenges w.r.t. efficiency. In the con-
text of software masking, we need to combine multiple time samples in order to
evaluate the masked implementation. Thus, we rely on the work by Schneider
et al. [42], who extended the leakage detection methodology into higher-order
evaluations by providing efficient, incremental formulas that can handle the com-
putation involved with minimal memory requirements. In certain cases, we also
resort to traditional evaluation techniques such as correlation-power analysis
(CPA) [13], despite their limited attack scope, so as to enhance our discussion.

5.2 Bitsliced Masking and Distance-Based Leakages

In order to perform leakage detection and determine the actual masking order,
we opt to use the fixed vs. random, non-specific t-test statistic. The process
involves two steps: a custom acquisition of two trace sets (populations) and a
population comparison based on statistical inference.

In the first step, we perform a fixed vs. random acquisition and obtain two
distinct trace sets for comparison: Sfixed and Srandom, under the same encryp-
tion key. For Sfixed, the input plaintext is set to a fixed value, while for Srandom,
the input is drawn from a uniformly random distribution. Following the sugges-
tion from Shneider et al. [42], the implementation receives the fixed or random
plaintext in a non-deterministic and randomly-interleaved manner. This type
of acquisition is performed in order to randomize the implementation’s internal
state and avoid measurement-related variations over time, e.g. due to environ-
mental parameters. The evaluation test to be performed is non-specific, i.e. we

12 Authors Suppressed Due to Excessive Length

target all sensitive values computed during encryption. Thus, we maintain a wide
attack scope, without any prior assumptions on the leakage model or intermedi-
ate values.

The acquisition is performed on the ARM-based Pinata device, using a Pi-
coscope 5203 oscilloscope and the Riscure current probe 10. The device clock
operates on 168 MHz and the oscilloscope’s sample rate is 1 GSample/sec. We
also apply post-processing in the form of signal resampling.

For the second step, we model the sets Sfixed and Srandom as independent
random samples {S1

fixed . . . S
n
fixed} and {S1

random . . . S
m
random} drawn from nor-

mal distributions with means µfixed, µrandom, standard deviations σfixed, σrandom
and σfixed 6= σrandom. Subsequently, leakage detection methods will test the
equality of means µfixed, µrandom (null hypothesis). Finding a statistic for this
test is known as the Behrens-Fisher problem and an approximate solution is the
Welch t-test [33] with υ degrees of freedom, as shown below.

Hnull : µfixed = µrandom

Halt : µfixed 6= µrandom
(2)

w =
µfixed − µrandom√
σ2
fixed

n +
σ2
random

m

(3)

υ =
(
σ2
fixed

n +
σ2
random

m)2

σ4
fixed

n2(n−1) +
σ4
random

m2(m−1)

(4)

The null hypothesis Hnull is rejected at a given level of significance α, if |w|>
tα/2,υ, where tα/2,υ is the value of the Student t distribution with υ degrees of
freedom11. In the evaluation context, rejecting Hnull implies leakage detection,
i.e. potential evidence of an ineffective masking scheme. A common rejection cri-
terion that we also use in our analysis is |w|> 4.5, which corresponds to υ > 1000
and α > 0.99999 [22]. Note that that Hnull rejection shouldn’t be interpreted
directly as an applicable vulnerability. Even after detection, the amount of traces
required for exploitation may render an attack infeasible.

In this work, we need to evaluate the masking order provided by our ARM-
based, 2nd-order masked cipher. From a theoretical point of view, a 2nd-order
ISW masking countermeasure is capable of preventing value-based leakages of
order 2 or less. However, practice has demonstrated that software implemen-
tations, including ARM microcontrollers, may exhibit leakages with large di-
vergence from the value-based leakage abstraction. An exemplary case is the
distance-based leakage model, observed by Daemen et al. [46], addressed by
Coron et al. [20] and recently formalized by Balasch et al. [42]. This particular
divergence leads in the reduction of the security order. Balasch et al. theorized

10 https://www.riscure.com/security-tools/hardware/current-probe (Accessed
24 June 2016)

11 Note that side-channel analysis usually employs two-tailed tests.

Bitsliced Masking and ARM: Friends or Foes? 13

that a dth-order scheme can reduce to order bd2c and provided experimental val-
idation using an AVR-based microcontroller. We will refer to this formalization
as the order-reduction theorem. To address such leakage divergence issues in our
implementation, we use the Welch t-test in order to verify experimentally the
theoretical security claims.

We commence the evaluation by testing the 1st-order security of our masked
cipher. We perform the 1st-order t-test on the first round of bitsliced PRESENT.
The size of both Sfixed and Srandom is 10k traces with 30k samples per trace.
The trace waveform and t-test results are visible in Figures 1,2. We observe
that that we remain well below the 4.5 threshold, indicating that our 2nd-order
masked PRESENT implementation is able to maintain 1st-order security.

Fig. 1: Trace waveform of 1st round,
masked, bitsliced PRESENT after re-
sampling.

Fig. 2: 1st-order t-test evaluation for 2nd-
order masked PRESENT cipher. The re-
sults suggest absence of 1st-order leakage.

To enhance our confidence, we also perform a 1st-order CPA attack, with
a large amount of traces (800k) to exploit potential 1st-order leakages. We use
the HW model and a custom-made selection fuction due to the bitsliced Sbox
computation. Similarly to Balasch et al. [3], the selection function must take
into account that not all Sbox output bits leak at the same time due to the
GF (2)-oriented Sbox implementation. Thus, our selection function focuses on
key bits from different registers that once combined through the Sbox, affect
a single bit of the Sbox output. Attacking a section of the 1st round with 10k
traces, while the RNG is disabled, is successful, confirming the validity of our
choice w.r.t. the leakage model (HW) and selection function. The results are
visible in Figure 3. We also perform the CPA attack with enabled RNG and the
results are visible in Figure 4. In order to manage the computation required,
we employ the techniques suggested by Bottinelli et al. [11], i.e. we partition
the 800k traces, compute correlation coefficient per partition, then recombine in
order to reduce the execution and memory workload.

14 Authors Suppressed Due to Excessive Length

Fig. 3: 1st-order CPA attack results
with RNG turned off, in selected sec-
tion of the 1st round.

Fig. 4: 1st-order CPA attack results with
RNG turned on, from 100k to 800k traces.
The attack does not exploit any leakage.

The results demonstrate that no 1st-order leakage can be exploited in the
presence of our 2nd-order scheme. Both the t-test and the CPA result is in ac-
cordance with the order-reduction theorem, since a 2nd-order masked implemen-
tation can maintain b 22c = 1 order of security in the presence of distance-based
leakages.

Assuming that our device exhibits distance-based leakage, it is of particular
interest to prove experimentally that the order-reduction theorem holds when
we test the 2nd-order security of our ARM-based masked implementation. Per-
forming a 2nd-order evaluation requires pre-processing the acquired trace sets
in order to generate all possible 2-tuples (pairs) of distinct samples via a combi-
nation function. Subsequently, the multivariate 2nd-order t-test is performed on
the generated trace sets in order to determine the robustness of the 2nd order.

The main hindrance of this process is the computational complexity pertain-
ing to generating and processing all

(
NoSamples

2

)
sample pairs. Even with a small

number of samples per trace, the evaluation cost can quickly become prohibitive.
To address this issue, researchers have relied on intuitive selection of points of
interest in conjunction with naive search [36] or they deployed heuristic tech-
niques such as projection pursuits [24] to perform point of interest selection
for higher-order attacks. In our evaluation, we follow the intuitive approach by
focusing on a reduced version of the 1st round which contains the substitution
layer. Inside this reduced round, we enumerate naively all possible pairs. Given
the bitsliced nature of the implementation and the considerable RNG overhead,
the reduced round has a length of 800 samples. In order to keep the processing
cost manageable, we use the incremental formulas suggested by Schneider et al.
which enable the efficient computation of the multivariate statistical moments
required for 2nd-order t-tests. The memory-less feature of the computation yields
significant improvement compared to straightforward computation techniques.
In addition, we partition the reduced round into windows of 150 samples each
and perform the attack in each window independently. Figure 6 shows the t-test

Bitsliced Masking and ARM: Friends or Foes? 15

results using 10k fixed input traces and 10k random input traces for the sample
window with the largest detected leakage.

Fig. 5: Trace waveform of reduced 1st
round masked, bitsliced PRESENT.

Fig. 6: 2nd-order t-test results. The rejec-
tion of Hnull indicates potential leakage.

The test value slightly exceeds the threshold, indicating potential leakage.
Thus, it hints the experimental verification of the order-detection theorem in
our ARM-based device for 2nd-order ISW schemes. However, several concerns
were raised over the t-test robustness, usually w.r.t. the exact threshold value
(Appendix A from [2], [22]). As a result, it remains an open question whether
2nd-order leakages are practically exploitable in our context. To investigate this,
we perform a 2nd-order CPA-based attack using the centered product combi-
nation function and the custom bitsliced selection function on the 1st round of
PRESENT. The point selection window has size 100 samples and we use 100k
traces. The results are visible in Figure 7 and show that the leakage is exploitable
with roughly 60k traces.

As a result, we suggest that the order-reduction theorem remains applicable
in software-based, masked implementations for the ARM Cortex-M4. However,
we recommend that the exploitation is always verified in practice.

Moreover, we need to stress the fact that this type of behavior has been
observed in a specific ARM-based device. Although it provides indications on
the behavior of similar architectures, this experimental result should not be
extrapolated as a hard fact w.r.t. all ARM Cortex-M devices. Naturally, a 3rd-
order multivariate t-test is able to detect a large amount of leakage, as shown in
Figure 8 and indicates that a 3rd-order attack is also applicable.

16 Authors Suppressed Due to Excessive Length

Fig. 7: 2nd-order CPA on section of the
1st round exploiting the available leak-
age.

Fig. 8: 3rd-order t-test results on a sec-
tion of the 1st round, indicating strong 3rd-
order leakage.

6 Conclusions

This paper investigated the speed and space requirements of a bitsliced imple-
mentation of PRESENT on the ARM Cortex-M4 architecture, protected with
2nd-order ISW masking. In addition, we explore and confirm the applicability
of the order-reduction theorem in the context of ARM-based devices. From the
attacker point of view, future work can involve deciding on the optimal strat-
egy to attack masked implementations, given the amount of leakage available
in different security orders. From the defender’s point of view, implementors
need to also investigate the computational cost of the randomness required for
masking, which itself may pose a bigger issue than the quadratic computational
complexity of masking.

7 Acknowledgments

We would like to thank Rafael Boix–Carpi from Riscure BV for his advice and
help.

References

1. Mehdi-Laurent Akkar, Régis Bevan, and Louis Goubin. Two power analysis attacks
against one-mask methods. In Bimal K. Roy and Willi Meier, editors, Fast Software
Encryption, 11th International Workshop, FSE 2004, Delhi, India, February 5-7,
2004, Revised Papers, volume 3017 of Lecture Notes in Computer Science, pages
332–347. Springer, 2004.

2. Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and François-
Xavier Standaert. On the cost of lazy engineering for masked software implemen-
tations. In Smart Card Research and Advanced Applications - 13th International

Bitsliced Masking and ARM: Friends or Foes? 17

Conference, CARDIS 2014, Paris, France, November 5-7, 2014. Revised Selected
Papers, pages 64–81, 2014.

3. Josep Balasch, Benedikt Gierlichs, Oscar Reparaz, and Ingrid Verbauwhede. Dpa,
bitslicing and masking at 1 ghz. In Cryptographic Hardware and Embedded Systems
- CHES 2015 - 17th International Workshop, Saint-Malo, France, September 13-
16, 2015, Proceedings, pages 599–619, 2015.

4. Lejla Batina, Benedikt Gierlichs, Emmanuel Prouff, Matthieu Rivain, François-
Xavier Standaert, and Nicolas Veyrat-Charvillon. Mutual information analysis: a
comprehensive study. J. Cryptology, 24(2):269–291, 2011.

5. Ryad Benadjila, Jian Guo, Victor Lomné, and Thomas Peyrin. Implementing
lightweight block ciphers on x86 architectures. In Tanja Lange, Kristin E. Lauter,
and Petr Lisonek, editors, Selected Areas in Cryptography - SAC 2013 - 20th In-
ternational Conference, Burnaby, BC, Canada, August 14-16, 2013, Revised Se-
lected Papers, volume 8282 of Lecture Notes in Computer Science, pages 324–351.
Springer, 2013.

6. Eli Biham. A fast new DES implementation in software. In Eli Biham, editor, Fast
Software Encryption, 4th International Workshop, FSE ’97, Haifa, Israel, January
20-22, 1997, Proceedings, volume 1267 of Lecture Notes in Computer Science, pages
260–272. Springer, 1997.

7. Johannes Blömer, Jorge Guajardo, and Volker Krummel. Provably secure masking
of AES. In Helena Handschuh and M. Anwar Hasan, editors, Selected Areas in
Cryptography, 11th International Workshop, SAC 2004, Waterloo, Canada, August
9-10, 2004, Revised Selected Papers, volume 3357 of Lecture Notes in Computer
Science, pages 69–83. Springer, 2004.

8. Andrey Bogdanov, Miroslav Knezevic, Gregor Leander, Deniz Toz, Kerem Varici,
and Ingrid Verbauwhede. SPONGENT: the design space of lightweight crypto-
graphic hashing. IEEE Trans. Computers, 62(10):2041–2053, 2013.

9. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: an ultra-lightweight block cipher. In Pascal Paillier and Ingrid Ver-
bauwhede, editors, Cryptographic Hardware and Embedded Systems - CHES 2007,
9th International Workshop, Vienna, Austria, September 10-13, 2007, Proceedings,
volume 4727 of Lecture Notes in Computer Science, pages 450–466. Springer, 2007.

10. Andrey Bogdanov, Gregor Leander, Christof Paar, Axel Poschmann, Matthew J. B.
Robshaw, and Yannick Seurin. Hash functions and RFID tags: Mind the gap.
In Elisabeth Oswald and Pankaj Rohatgi, editors, Cryptographic Hardware and
Embedded Systems - CHES 2008, 10th International Workshop, Washington, D.C.,
USA, August 10-13, 2008. Proceedings, volume 5154 of Lecture Notes in Computer
Science, pages 283–299. Springer, 2008.

11. Paul Bottinelli and Joppe W. Bos. Computational aspects of correlation power
analysis. IACR Cryptology ePrint Archive, 2015:260, 2015.

12. Joan Boyar and René Peralta. A new combinational logic minimization technique
with applications to cryptology. In Paola Festa, editor, Experimental Algorithms,
9th International Symposium, SEA 2010, Ischia Island, Naples, Italy, May 20-
22, 2010. Proceedings, volume 6049 of Lecture Notes in Computer Science, pages
178–189. Springer, 2010.

13. Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Cryptographic Hardware and Embedded Systems - CHES
2004: 6th International Workshop Cambridge, MA, USA, August 11-13, 2004. Pro-
ceedings, pages 16–29, 2004.

18 Authors Suppressed Due to Excessive Length

14. D. Canright and Lejla Batina. A very compact ”perfectly masked” s-box for AES
(corrected). IACR Cryptology ePrint Archive, 2009:11, 2009.

15. Claude Carlet, Louis Goubin, Emmanuel Prouff, Michaël Quisquater, and Matthieu
Rivain. Higher-order masking schemes for s-boxes. In Fast Software Encryption
- 19th International Workshop, FSE 2012, Washington, DC, USA, March 19-21,
2012. Revised Selected Papers, pages 366–384, 2012.

16. Claude Carlet, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche. Algebraic
decomposition for probing security. In Advances in Cryptology - CRYPTO 2015
- 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20,
2015, Proceedings, Part I, pages 742–763, 2015.

17. Mickaël Cazorla, Sylvain Gourgeon, Kevin Marquet, and Marine Minier. Survey
and benchmark of lightweight block ciphers for MSP430 16-bit microcontroller.
Security and Communication Networks, 8(18):3564–3579, 2015.

18. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In Advances in Cryptology
- CRYPTO ’99, 19th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 15-19, 1999, Proceedings, pages 398–412, 1999.

19. Jean-Sébastien Coron. Higher order masking of look-up tables. In Advances in
Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark, May
11-15, 2014. Proceedings, pages 441–458, 2014.

20. Jean-Sébastien Coron, Christophe Giraud, Emmanuel Prouff, Soline Renner,
Matthieu Rivain, and Praveen Kumar Vadnala. Conversion of security proofs from
one leakage model to another: A new issue. In Constructive Side-Channel Analysis
and Secure Design - Third International Workshop, COSADE 2012, Darmstadt,
Germany, May 3-4, 2012. Proceedings, pages 69–81, 2012.

21. Nicolas Courtois, Daniel Hulme, and Theodosis Mourouzis. Solving circuit opti-
misation problems in cryptography and cryptanalysis. IACR Cryptology ePrint
Archive, 2011:475, 2011.

22. A. Adam Ding, Cong Chen, and Thomas Eisenbarth. Simpler, faster, and more
robust t-test based leakage detection. IACR Cryptology ePrint Archive, 2015:1215,
2015.

23. Daniel Dinu, Yann Le Corre, Dmitry Khovratovich, Léo Perrin, Johann
Großschädl, and Alex Biryukov. Triathlon of lightweight block ciphers for the
internet of things. NIST Lightweight Cryptography Workshop 2015, 2015:209, 2015.

24. François Durvaux, François-Xavier Standaert, Nicolas Veyrat-Charvillon, Jean-
Baptiste Mairy, and Yves Deville. Efficient selection of time samples for higher-
order DPA with projection pursuits. In Constructive Side-Channel Analysis and
Secure Design - 6th International Workshop, COSADE 2015, Berlin, Germany,
April 13-14, 2015. Revised Selected Papers, pages 34–50, 2015.

25. Thomas Eisenbarth, Zheng Gong, Tim Güneysu, Stefan Heyse, Sebastiaan In-
desteege, Stéphanie Kerckhof, François Koeune, Tomislav Nad, Thomas Plos,
Francesco Regazzoni, François-Xavier Standaert, and Löıc van Oldeneel tot Olden-
zeel. Compact implementation and performance evaluation of block ciphers in at-
tiny devices. In Aikaterini Mitrokotsa and Serge Vaudenay, editors, Progress in
Cryptology - AFRICACRYPT 2012 - 5th International Conference on Cryptology
in Africa, Ifrance, Morocco, July 10-12, 2012. Proceedings, volume 7374 of Lecture
Notes in Computer Science, pages 172–187. Springer, 2012.

26. Louis Goubin and Jacques Patarin. DES and differential power analysis
(the ”duplication” method). In Çetin Kaya Koç and Christof Paar, editors,

Bitsliced Masking and ARM: Friends or Foes? 19

Cryptographic Hardware and Embedded Systems, First International Workshop,
CHES’99, Worcester, MA, USA, August 12-13, 1999, Proceedings, volume 1717 of
Lecture Notes in Computer Science, pages 158–172. Springer, 1999.

27. Dahmun Goudarzi and Matthieu Rivain. On the multiplicative complexity of
boolean functions and bitsliced higher-order masking. IACR Cryptology ePrint
Archive, 2016:557, 2016.

28. Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, and Kerem Varici.
Ls-designs: Bitslice encryption for efficient masked software implementations. In
Carlos Cid and Christian Rechberger, editors, Fast Software Encryption - 21st In-
ternational Workshop, FSE 2014, London, UK, March 3-5, 2014. Revised Selected
Papers, volume 8540 of Lecture Notes in Computer Science, pages 18–37. Springer,
2014.

29. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The
LED block cipher. In Cryptographic Hardware and Embedded Systems - CHES
2011 - 13th International Workshop, Nara, Japan, September 28 - October 1, 2011.
Proceedings, pages 326–341, 2011.

30. Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware
against probing attacks. In Dan Boneh, editor, Advances in Cryptology - CRYPTO
2003, 23rd Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 17-21, 2003, Proceedings, volume 2729 of Lecture Notes in Com-
puter Science, pages 463–481. Springer, 2003.

31. Gilbert Goodwill Joshua Jaffe Gary Kenworthy Jeremy Cooper, Elke DeMulder
and Pankaj Rohatgi. Test vector leakage assessment (tvla) methodology in practice.

32. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings,
pages 388–397, 1999.

33. Richard J Larsen and Morris L Marx. An introduction to mathematical statistics
and its applications; 5th ed. Prentice Hall, Boston, MA, 2012.

34. Seiichi Matsuda and Shiho Moriai. Lightweight cryptography for the cloud: Exploit
the power of bitslice implementation. In Emmanuel Prouff and Patrick Schaumont,
editors, Cryptographic Hardware and Embedded Systems - CHES 2012 - 14th Inter-
national Workshop, Leuven, Belgium, September 9-12, 2012. Proceedings, volume
7428 of Lecture Notes in Computer Science, pages 408–425. Springer, 2012.

35. Thomas S. Messerges. Securing the AES finalists against power analysis attacks.
In Bruce Schneier, editor, Fast Software Encryption, 7th International Workshop,
FSE 2000, New York, NY, USA, April 10-12, 2000, Proceedings, volume 1978 of
Lecture Notes in Computer Science, pages 150–164. Springer, 2000.

36. Elisabeth Oswald, Stefan Mangard, Christoph Herbst, and Stefan Tillich. Practical
second-order DPA attacks for masked smart card implementations of block ciphers.
In Topics in Cryptology - CT-RSA 2006, The Cryptographers’ Track at the RSA
Conference 2006, San Jose, CA, USA, February 13-17, 2006, Proceedings, pages
192–207, 2006.

37. Konstantinos Papagiannopoulos and Aram Verstegen. Speed and size-optimized
implementations of the PRESENT cipher for tiny AVR devices. In Michael Hutter
and Jörn-Marc Schmidt, editors, Radio Frequency Identification - Security and
Privacy Issues 9th International Workshop, RFIDsec 2013, Graz, Austria, July
9-11, 2013, Revised Selected Papers, volume 8262 of Lecture Notes in Computer
Science, pages 161–175. Springer, 2013.

20 Authors Suppressed Due to Excessive Length

38. Kostas Papapagiannopoulos. High throughput in slices: The case of present,
PRINCE and KATAN64 ciphers. In Nitesh Saxena and Ahmad-Reza Sadeghi,
editors, Radio Frequency Identification: Security and Privacy Issues - 10th Inter-
national Workshop, RFIDSec 2014, Oxford, UK, July 21-23, 2014, Revised Se-
lected Papers, volume 8651 of Lecture Notes in Computer Science, pages 137–155.
Springer, 2014.

39. Axel Poschmann. Lightweight cryptography - cryptographic engineering for a
pervasive world. Cryptology ePrint Archive, Report 2009/516, 2009. http:

//eprint.iacr.org/.
40. Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks:

A formal security proof. In Advances in Cryptology - EUROCRYPT 2013, 32nd
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Athens, Greece, May 26-30, 2013. Proceedings, pages 142–159, 2013.

41. Pablo Rauzy, Sylvain Guilley, and Zakaria Najm. Formally proved security of
assembly code against power analysis: A case study on balanced logic. CoRR,
abs/1506.05285, 2015.

42. Tobias Schneider and Amir Moradi. Leakage assessment methodology - A clear
roadmap for side-channel evaluations. In Cryptographic Hardware and Embedded
Systems - CHES 2015 - 17th International Workshop, Saint-Malo, France, Septem-
ber 13-16, 2015, Proceedings, pages 495–513, 2015.

43. Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru Ak-
ishita, and Taizo Shirai. Piccolo: An ultra-lightweight blockcipher. In Cryptographic
Hardware and Embedded Systems - CHES 2011 - 13th International Workshop,
Nara, Japan, September 28 - October 1, 2011. Proceedings, pages 342–357, 2011.

44. François-Xavier Standaert, Tal Malkin, and Moti Yung. A unified framework for
the analysis of side-channel key recovery attacks. In Advances in Cryptology -
EUROCRYPT 2009, 28th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Cologne, Germany, April 26-30, 2009.
Proceedings, pages 443–461, 2009.

45. Ko Stoffelen. Optimizing s-box implementations for several criteria using SAT
solvers. IACR Cryptology ePrint Archive, 2016:198, 2016.

46. Keccak team. Note on side-channel attacks and their countermeasures.
47. Elena Trichina. Combinational logic design for AES subbyte transformation on

masked data. IACR Cryptology ePrint Archive, 2003:236, 2003.
48. Nicolas Veyrat-Charvillon and François-Xavier Standaert. Mutual information

analysis: How, when and why? In Cryptographic Hardware and Embedded Systems -
CHES 2009, 11th International Workshop, Lausanne, Switzerland, September 6-9,
2009, Proceedings, pages 429–443, 2009.

49. Carolyn Whitnall, Elisabeth Oswald, and Luke Mather. An exploration of the
kolmogorov-smirnov test as a competitor to mutual information analysis. In Smart
Card Research and Advanced Applications - 10th IFIP WG 8.8/11.2 International
Conference, CARDIS 2011, Leuven, Belgium, September 14-16, 2011, Revised Se-
lected Papers, pages 234–251, 2011.

