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A central challenge in evolutionary biology concerns the mechanisms by which complex

metabolic innovations requiring multiple mutations arise. Here, we propose that metabolic

innovations accessible through the addition of a single reaction serve as stepping stones

towards the later establishment of complex metabolic features in another environment. We

demonstrate the feasibility of this hypothesis through three complementary analyses. First,

using genome-scale metabolic modelling, we show that complex metabolic innovations in

Escherichia coli can arise via changing nutrient conditions. Second, using phylogenetic

approaches, we demonstrate that the acquisition patterns of complex metabolic pathways

during the evolutionary history of bacterial genomes support the hypothesis. Third, we show

how adaptation of laboratory populations of E. coli to one carbon source facilitates the later

adaptation to another carbon source. Our work demonstrates how complex innovations can

evolve through series of adaptive steps without the need to invoke non-adaptive processes.
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E
volutionary novelties frequently depend on the fixation of
multiple, highly specific mutations, where intermediate
stages of evolution seemingly provide little or no benefit1.

Such complex adaptations are widespread in molecular networks
and include the origin of multimeric protein machineries,
establishment of interactions between transcription factors and
their binding sites, receptor–ligand interactions and multi-step
metabolic pathways2–4. According to the notion that evolutionary
adaptation proceeds by the sequential fixation of single beneficial
mutations5, complex adaptations are expected to occur only
sporadically. One theory suggests that many evolutionary
innovations, that is, qualitatively new adaptive traits, have
non-adaptive origins, where neutral mutations prepare the
ground for later beneficial mutations that lead to innovations6,7.
Evidence for this process comes from laboratory evolution of
RNA enzymes8, but its role in the establishment of complex
molecular pathways remains unclear. In the case of metabolic
networks, the theory proposes that ‘many additions of individual
reactions to a metabolic network will not change a metabolic
phenotype until a second added reaction connects the first
reaction to an already existing metabolic pathway’7. However, this
non-adaptive process is expected to be extremely slow, and
furthermore, there is no direct empirical support for this scenario
in bacteria, which are especially prolific in producing metabolic
innovations. Although free-living bacteria increase their genome
size through horizontal gene transfer and gene duplication,
their genomes remain compact, and non-functional sequences
appear to be rare compared with most eukaryotes9. Genes under
relaxed selection are rapidly inactivated and subsequently lost in
free-living bacteria, not least because there is a pervasive
mutational bias towards deletions of genomic segments9.
Consequently, genes encoding functionally completely intact
enzymes that provide no immediate fitness advantage are
generally unlikely to be maintained for long periods. Even
under a scenario where the neutral intermediate-step mutation is
not required to reach high population frequencies (that is,
‘stochastic tunnelling’10), evolution is expected to be slower than
traversing purely adaptive trajectories through natural selection.
Thus, understanding the evolution of complex innovations
remains a formidable challenge.

Previous population genetic models11 and computer
simulations of genetic circuits and RNA molecules12 offer a
potential solution to the problem of complex adaptations. These
works indicate that complex or temporally fluctuating conditions
can facilitate adaptation, partly by allowing populations to escape
fitness plateaus and reach new adaptive peaks. Similarly, a study
on digital organisms revealed that populations often evolve
complex features by building on simpler functions that had
evolved earlier13. However, the extent to which these abstract
considerations apply to specific cellular subsystems remained
unknown, partly due to the shortage of systems-level analysis
that would combine computational modelling and evolutionary
experiments.

In this work, we focus on bacterial metabolic networks to
examine how novel nutrient utilization phenotypes can be
acquired via the addition of new reactions to an organism’s
enzyme repertoire. While not all complexity at the level of
molecular systems are expected to provide a functional
advantage14,15, metabolic pathways utilizing novel nutrients
arguably qualify as adaptive traits. The problem of the
evolution of novel metabolic pathways has two complementary
aspects, relating to their origin and subsequent evolutionary
establishment across multiple species. Previous works were
largely concerned by how novel biochemical reactions arise first
during the course of evolution16,17. In this paper, we ask how
existing enzymatic reactions can assemble to form a novel

metabolic pathway in an organism that already harbours a
complex metabolic network. We extend and generalize an early
suggestion that varying nutrient environments play a prominent
role in the establishment of biosynthetic pathways16.

Specifically, we employ detailed simulations on a pan-genome
scale to demonstrate that complex metabolic innovations can
evolve via the successive acquisition of single biochemical
reactions that each confers a benefit to utilize specific nutrients.
Thus, temporal changes in nutrient availability or complex
environments (where multiple nutrients are available) can
facilitate adaptive evolution of metabolic pathways through the
step-by-step expansion of metabolic niches. Gene acquisition
patterns across bacterial genomes and de novo laboratory
evolution of nutrient utilizations in Escherichia coli (E. coli)
provide clear support for the hypothesis.

Results
Most metabolic innovations demand only a few novel reactions.
In this work, we systematically studied the expansion of metabolic
networks. We specifically asked whether metabolic innovations
can evolve in a purely Darwinian manner through series of
adaptive steps. Our starting point was the previously recon-
structed metabolic network of E. coli K-12, arguably the best
studied and most reliable reconstruction of a genome-scale
metabolic system, composed of 2,077 unique reactions, including
transport processes18. Previous studies showed that bacterial
networks expand largely by acquiring genes involved in the
transport and catalysis of external nutrients, driven by
adaptations to changing environments19. On the basis of these
observations, here we studied the potential selective advantages
conferred by the addition of new metabolic reactions to the
E. coli network. We compiled a data set of 2,566 known
enzymatic and 159 transport reactions across the three kingdoms
of life (‘universal reaction set’) absent from the E. coli model20

(see Methods). We next defined a comprehensive sample of
the external nutrient space, consisting of 1,776 environments
comprised of nutrient sources that can potentially be imported
into the network (Supplementary Data 1). We focused on
minimal media that differ from each other in a single carbon,
nitrogen, sulphur or phosphorus source, thereby maximizing the
variability between conditions while remaining computationally
feasible (Methods). We determined the phenotypic impact of
adding one or more reactions from the universal reaction set
to the E. coli network in each of these environments using
flux balance analysis (FBA)21. FBA identifies a steady-state
flux distribution that maximizes the production of biomass
(a weighted combination of major biosynthetic components)
from a given set of available nutrients. This framework
successfully predicts the growth capacity of wild-type E. coli
across nutrient conditions18, and it is biologically more realistic
than graph-theoretical approaches22.

Before the addition of novel reactions, the reconstructed E. coli
metabolic network was unable to grow (that is, the rate of
biomass production was zero) in 321 environments in which the
network expanded by the complete universal reaction set was able
to grow (Supplementary Data 1). Using a mixed integer linear
programming (MILP) algorithm, we determined the minimal
number of reactions from the universal reaction set that need to
be added to the E. coli network to support growth in these novel
environments. Strikingly, growth in additional environments
required the addition of only one to three enzymatic and
transport reactions in 74% of the cases (239 out of 321
environments; see Fig. 1). In 21.5% of the novel environments,
acquisition of only one reaction was sufficient for growth (69 out
of 321 environments, see Supplementary Data 2). These results
suggest that in the genotype space around the E. coli metabolic
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network, most metabolic innovations are only a few gene
acquisition steps away.

Complex innovations can arise via changing environments.
One can envisage a simple adaptationist hypothesis by which
complex metabolic innovations can arise. A metabolic phenotype
accessible through the addition of a single reaction may serve as
an exaptation23 from which metabolic phenotypes that demand
the acquisition of multiple reactions can be developed. A major
corollary of this hypothesis is that evolutionary adaptation to
temporally varying environmental conditions facilitates the
expansion of metabolic networks (see also ref. 16). In the
parlance of fitness landscapes, varying environments result in
dynamic landscapes with moving peaks which can be more easily
tracked by hill-climbing evolution (see Fig. 2a,b).

To test the feasibility of the stepwise network expansion
scenario, we focused on reaction pairs that are jointly required to
provide a fitness benefit in at least one environment (for a list of
the 538 such reaction pairs, see Supplementary Data 3). Next, we
added each of the corresponding reactions individually into the
network and asked whether their presence alone provides a
selective advantage across the set of 321 novel environments.
Consistent with the hypothesis, we found that in 40% of the 538
growth-promoting reaction pairs, one of the reactions enables
growth on its own in at least one environmental setting, which
therefore can serve as stepping stones along adaptive trajectories.
For example, while the ability to metabolize chorismate demands
the simultaneous acquisition of two reactions, one of them also
confers L-phenylalanine utilization when added individually to
the network (Fig. 2c). We note that many growth-promoting
reaction pairs are phenotypically equivalent (that is, confer
growth in the same environment) and share the same stepping-
stone reaction (Supplementary Data 3). As a result, in total 8.5%
of the 118 novel environments that require the simultaneous
addition of two reactions becomes accessible through purely
adaptive walks.

To more generally assess the potential for exaptation, we
examined for each novel environment if its growth-promoting
reactions are involved in adaptation to another (intermediate)
environment. To this end, for each environment, we enumerated
all possible minimal reaction sets that can support growth when
added to the E. coli network from the universal reaction set.
On average, 26% of the alternative minimal reaction sets required

for growth in a given environment are also entirely present in at
least one minimal growth-promoting reaction set of a second
environment. This finding indicates that some of the growth-
promoting reaction sets contribute to growth in multiple
environments as parts of larger reaction sets. These figures are
likely underestimates due to incomplete knowledge of available
enzymatic reactions (including promiscuous side activities in the
E. coli metabolic network24) and environmental conditions. We
conclude that traversing complex evolutionary trajectories can be
facilitated by exaptations when the environment varies.

Metabolic gene acquisition patterns support the hypothesis.
The model predicts that acquisition of new metabolic genes
during bacterial evolution should be contingent on the presence
of other genes providing specific adaptations to intermediate
environments. It has been established that a major source of
metabolic network expansion is horizontal gene transfer in
bacteria19,25. Genes recently acquired by E. coli through
horizontal gene transfer confer condition-specific advantages
and contribute to growth only in specific environments19. To test
whether acquisition of an enzyme pair that is potentially
accessible via adaptive steps occurs via a defined order, we used
genomic data from 943 bacteria to reconstruct gene-gain events
along the corresponding phylogeny using parsimony (Fig. 3a,
Methods). As expected under the hypothesis, enzymes that are
predicted to confer fitness benefits on their own and can hence
serve as stepping stones towards two-step adaptations in silico
tend to be gained on an earlier branch of the phylogenetic tree
than their partner enzyme (in 65% of cases, N¼ 33, as opposed to
50% expected by chance, P¼ 0.037, one-tailed one-sample
Wilcoxon signed-rank test, see Methods). We note that this
pattern holds for different parameter values of the gene-gain
reconstruction procedure (see Supplementary Table 1).

In contrast to such cases, growth-promoting enzyme pairs not
accessible gradually are the most likely candidates for co-gain via
horizontal gene transfer. In agreement with this expectation, such
enzyme pairs show a much higher co-gain fraction, that is,
number of co-gain relative to single gain events, compared with
random gene pairs and growth-promoting gene pairs predicted
to be accessible gradually through adaptive evolution via
environmental changes (Po0.001, randomization analysis and
P¼ 0.0038, one-sided Wilcoxon rank test, respectively, N¼ 21,
Fig. 3b, see Methods). Also consistent with the hypothesis,
growth-promoting enzyme pairs that are accessible gradually
through adaptive evolution via environmental changes, have very
low co-gain fractions that are indistinguishable from that of
random gene pairs (P¼ 0.64, randomization analysis, N¼ 40,
Fig. 3b, see Methods). These conclusions are robust to changes in
parameter values of the gene-gain reconstruction procedure (see
Supplementary Tables 2,3).

Experimental evolution of a complex metabolic innovation.
New metabolic pathways can evolve not only through the
acquisition of full-blown enzymes from other organisms but
also through the enhancement of weak side activities of
existing enzymes3,24. Thus, a further prediction of the hypothesis
is that evolutionary adaptation to a specific nutrient via
accumulating mutations in endogenous genes can influence the
accessibility of adaptive paths towards the utilization of other
nutrients. An early work26 suggests that acquiring the ability to
grow on ethylene glycol (EG, ethane-1, 2-diol) and propylene
glycol (PG, (S)-propane-1, 2-diol), two related carbon sources
unavailable for utilization by wild-type E. coli K12, might
depend on one another in a contingent manner. Specifically,
according to the anecdotal report, E. coli mutants able to grow

140

100

120

80

60

40

20

0
1 2 3 4

Number of additional reactions required

N
um

be
r 

of
 e

nv
iro

nm
en

ts

5 6 7 8 9

Figure 1 | Metabolic innovations in the genotype space around the E. coli
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on EG could be obtained from mutants that could grow on
propylene glycol26. Using these phenotypes as a test bed we
aimed at directly testing the stepwise metabolic niche expansion
scenario by examining (i) whether mutations that enable
growth on propylene glycol per se increase adaptation rates to
EG and (ii) whether the mutations conferring these two distinct

growth phenotypes exhibit epistasis on EG, as predicted by the
hypothesis.

First, we attempted to isolate mutants that can grow on EG
(EGþ ) or propylene glycol (PGþ ) from large populations of
bacteria (Supplementary Methods). No EGþ or PGþ cells were
isolated from B1011 cells with wild-type mutation rate (Table 1),
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Figure 2 | Evolution in varying environments is expected to facilitate the establishment of complex metabolic traits. (a, top) Hypothetical fitness

landscape over a two-dimensional genotype space. The red genotype is well-adapted, that is, it is located on the fitness peak of this starting fitness

landscape. A change to the target environment shifts the fitness peak, so that the red genotype is no longer of high fitness (bottom). Adaptation to the

shifted peak now cannot proceed purely through adaptive steps (that is, hill climbing); it requires the non-adaptive exploration of the neutral part of the

landscape, illustrated by the yellow dotted line. (b) Depicting the same situation, but with an intermediate environment in which the fitness peak is only

slightly shifted relative to the starting environment. The red genotype is located at the foot of the shifted fitness peak in this intermediate environment and

can thus progress through purely adaptive steps, culminating in the yellow high-fitness genotype. When the environment now changes to the same target

environment as in a, the blue genotype represents an exaptation, such that it can now progress towards the target fitness peak through purely adaptive

steps. While b only shows one intermediate environment, the same reasoning applies to more complex scenarios including dynamic landscapes with

moving peaks. (c) Example from simulated metabolic network expansions. E. coli K-12 is unable to utilize chorismate and L-phenylalanine as sole carbon

sources. Simulations show that while chorismate utilization demands the simultaneous addition of two reactions to the network, one of these reactions

(first step; catalysed by phenylalanine ammonia lyase) also confers L-phenylalanine utilization when added individually.
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demonstrating that these substrates demand the acquisition of
one or more very rare specific mutations. Next, we employed
an E. coli strain with an approximately 1,000-fold increased
mutation rate27. In this case, PGþ cells occurred at a low, but
detectable frequency of 1.5� 10� 9, but still no EGþ mutants

were found (Table 1). As discussed, the evolution of EG
utilization might be facilitated by prior adaptation to PG26.
This was indeed so: EG-utilizing cells were detected in PGþ
populations at a frequency of B3.8� 10� 9 (Table 1), indicating
an increase in adaptation rate of at least two orders of magnitude.
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Figure 3 | Evolutionary history of gene gains supports the dynamic environment model. (a) Schematic representation of the phylogenetic comparisons

to study the interdependence between gene-gain events. According to the dynamic environment model, if initial adaptation via a single gain of gene A

serves as a stepping-stone for complex adaptation via a gain of gene B, then acquisition of B is expected to occur more frequently with gene A being present

(contingent gain) compared with A being absent in the ancestral branch points of the bacterial tree (upper panel). Furthermore, enzyme pairs that confer a

growth benefit only when present together are expected to be more frequently co-gained along branches of the bacterial tree in comparison to a gain of

only one of the two (lower panel). Detailed description of the procedures is presented in Methods. (b) Phylogenetic co-gain measure (see Methods) of

jointly beneficial enzymes based on analysis of hundreds of bacterial genomes. Orthologs of enzyme pairs that are beneficial jointly but not accessible

gradually (‘beneficial without individual effect’, N¼ 21) tend to be co-gained on the same branch of the phylogenetic tree. This trend is statistically

significant when compared both with randomized pairs and to enzymes that are growth-promoting as a pair but are accessible gradually through adaptive

evolution via varying environments (‘beneficial with combined and individual effect’, N¼40), Po0.001 (randomization analysis) and P¼0.0038

(one-sided Wilcoxon rank test), respectively. In addition, such ‘accessible’ pairs are not more likely to be co-gained than expected by chance (P¼0.637).
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It has been reported that constitutive activation of fucO, a gene
encoding an enzyme involved in fucose and rhamnose catabo-
lism, is a prerequisite for growth in PG28. We therefore
hypothesized that fucO upregulation acts as a stepping-stone
mutation towards EG utilization. To test this scenario, we
overexpressed fucO from a strong constitute promoter in wild-
type background29. As expected, fucO overexpression conferred
the ability to utilize PG (Fig. 4a). Remarkably, employing a fucO
overexpressed PGþ strain yielded EG-utilizing cells at a
frequency of B2� 10� 8 (Table 1). As this strain retained a
wild-type mutation rate (Supplementary Fig. 1), this finding
shows that the ability to metabolize PG per se promotes

adaptation to EG. Whole-genome sequencing of an EG-utilizing
strain suggested that B10-fold amplification of a genomic segment
encoding aldA might underlie EG utilization (Supplementary
Table 4). Indeed, simultaneous overexpression of both fucO and
aldA in wild-type background conferred the ability to grow on EG
(Fig. 4b) with a growth kinetics akin to the strain adapted to EG
(Supplementary Fig. 2). Furthermore, as neither fucO nor aldA
alone conferred growth on EG, this finding provides evidence that
the two overexpression mutations act epistatically, as predicted by
the stepwise metabolic niche expansion hypothesis.

How do these two enzymes, FucO and AldA, contribute to EG
utilization? FucO likely acts on EG in addition to its native

Table 1 | Adaptation frequencies of different strains to PG and EG.

Strain Frequency of cells growing on PG Frequency of cells growing on EG

MG1655 Up to 1.6� 10� 11 Up to 1.6� 10� 11

MG1655 mutD5 1.5� 10� 9 Up to 3.1� 10� 11

MG1655 mutD5 adapted to PG Grows on PG 3.8� 10�9

MG1655þ fucO overexpressed Grows on PG 2.1� 10�8

EG, ethylene glycol; PG, propylene glycol.
MG1655 is the reference wild-type strain, while MG1655 mutD5 refers to a strain with an approximately 1,000-fold increased mutation rate. Values are averages of three parallel replicates when PGþ or
EGþ cells were observed and upper estimates35 when no growing cells were obtained (see Supplementary Methods).
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Figure 4 | Utilization of propylene glycol increases adaptation rates towards growth on EG in the laboratory. (a) Growth curve measurements

demonstrating that overexpression of fucO (red) is sufficient for growth in propylene glycol. Wild-type MG1655 strain is depicted in grey. OD600

measurements of six independent replicates were taken every 60 min. (b) Growth curve measurements demonstrating that joint overexpression of both

fucO and aldA is required for growth on EG (black). Neither fucO (red) nor aldA (blue) can achieve this when overexpressed individually. Wild-type MG1655

strain is depicted in grey. OD600 measurements of six independent replicates were taken every 240 min. One replicate population with joint overexpression

of fucO and aldA failed to grow for unknown reason and is not shown. (c) Schematic pathway diagram representing the role of FucO and AldA enzymes in

the utilization of PG and EG. In the first step, FucO catalyses the oxidation of PG and EG to glycolaldehyde and L-lactaldehyde, respectively. We note that

the native activity of FucO operates in the reverse direction by reducing L-lactaldehyde to PG during the catabolism of L-fucose and L-rhamnose. In the next

step, AldA oxidizes the products of FucO to hydroxycarboxylic acids which can be wired into central carbon metabolism following further enzymatic

modifications. The affinity of AldA for L-lactaldehyde (PG utilization) is higher than for glycolaldehyde (EG utilization)30, potentially explaining why growth

on EG requires multiple copies of aldA.
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substrate to produce glycolaldehyde from EG26; AldA, an enzyme
with broad substrate specificity, further converts glycolaldehyde
to glycolate30 (Fig. 4c). Interestingly, in addition to their role in
EG metabolism, both enzymes are involved in PG utilization as
well, indicating that regulatory rewiring of the same enzyme
toolkit can produce multiple qualitatively different phenotypes.

Discussion
Explaining the origin of evolutionary innovations that require
the simultaneous acquisition of multiple mutations, none of
which seemingly confer a benefit individually, remains a central
challenge in evolutionary biology. On the basis of prior
theoretical considerations11,12,16, here we propose that
metabolic innovations accessible through the addition of a
single reaction serve as stepping stones towards the later
establishment of complex metabolic features in another
environment. We provided several lines of evidences in support
of the hypothesis by focusing on the most well-studied molecular
network, cellular metabolism, and by employing three
complementary approaches. First, we simulated the adaptation
of the E. coli metabolic network to novel environments. We
revealed that new complex pathways can evolve via the successive
acquisition of single biochemical reactions that allow the
utilization of specific nutrients. Second, by reconstructing the
evolutionary history of gene gains in bacteria, we demonstrated
that complex metabolic pathways are indeed often established in
a defined order as predicted. Finally, we conducted a laboratory
evolution study of E. coli adaptation to two novel carbon sources;
evolving the ability to utilize one nutrient remarkably facilitated
later adaptation to the other. Thus, complex metabolic traits can
emerge without the need to invoke neutral exploration of
genotype space, a view that is in sharp contrast to non-adaptive
scenarios of evolutionary innovation that rely on the
accumulation of neutral intermediate mutations6,7,31.

Taken together, our study demonstrates that complex
metabolic innovations can evolve by adaptive means through
the step-by-step expansion of nutrient utilization capacities. An
important prediction is that metabolic innovations should be
intertwined in nature: the ability to metabolize certain nutrients
should act as a stepping stone towards the utilization of other
nutrient sources32. A preliminary systems-level analysis based on
nutrient utilization of 168 E. coli strains33 suggests that it may
indeed be so (Supplementary Fig. 3). Experimental case studies on
the evolution of the catabolism of b-galactoside sugars34 and
citrate utilization35 are also consistent with the scenario, but it
remains to be seen how general these findings are. In addition, it
is important to note that functionally linked enzymes frequently
cluster in the bacterial genome or are encoded in the same operon
and tend to be acquired together during evolution19. Future
systematic works should study the extent to which simultaneous
uptake of multiple physiologically linked reactions by horizontal
gene transfer speeds up the evolution of metabolic networks.

We speculate that the major barrier to the dynamic environ-
ment model of complex adaptation may be the absence of
relevant series of environmental conditions. This restriction could
be lifted when multiple novel substrates are simultaneously
present in a single environment and evolution proceeds by
successively acquiring the capacity to utilize them. We emphasize
that other conceptually different mechanisms might also
contribute to the adaptive expansion of metabolic networks. For
example, stepping-stone reactions might evolve as repair
processes in an adaptive response to metabolite damage36, to
degrade toxic environmental chemicals3, or to produce novel
secondary metabolites37.

Our work has important ramifications for understanding
genetic interaction networks and the development of industrially

useful microbes. First, epistatic interactions between metabolic
genes of the same pathway should often be environment-specific:
our results suggest that in many cases, one of the genes should
provide fitness benefits independently of the other in at least one
environment. Large-scale mapping of genetic interactions across
a broad range of environmental conditions would provide
a direct way to test this prediction38. Second, we anticipate
that evolutionary engineering of microbes to obtain desired
phenotypes could be facilitated by temporally varying the traits
under selection39.

Finally, our study could have important implications beyond
the evolution of metabolism. Earlier studies claimed that varying
environments accelerate evolutionary adaptation in genetic
circuits and RNA molecules12. In computer science,
standard genetic algorithms have a tendency to quickly
converge to a local solution, and hence frequently fail to
identify more promising regions of the search space40.
Application of dynamically changing ‘environments’ offers a
natural strategy to maintain the diversity required to explore the
adaptive surface41.

Methods
Reconstruction of the universal reaction set. To study the potential adaptive
value of adding new reactions to the E. coli metabolic network, we compiled a data
set of metabolic reactions reported from species across the three kingdoms of life
(universal reaction set) and absent from E. coli. First, we mapped the metabolites of
the manually curated E. coli genome-scale metabolic model18 to the Model SEED
database20 (and http://blog.theseed.org/model_seed/), a comprehensive resource
for automatically generated genome-scale metabolic network reconstructions.
Because Model SEED does not contain the most recent version (iJO1366 (ref. 42))
of the E. coli network reconstruction, we used an earlier version (iAF1260 (ref. 18))
that is widely utilized and has been extensively tested43. As a second step, we added
all mass-balanced biochemical reactions from the Model SEED database to the
E. coli model. From this draft network, we removed duplicate reactions. Next, we
removed ‘perpetuum mobile’ cycles, that is, flux distributions capable of producing
energy without consuming any nutrients (see Supplementary Methods and
Supplementary Table 5). Finally, we removed unconditionally blocked reactions
(that is, those unable to carry a flux under any condition). The resulting curated
universal reaction network contains 4,949 metabolic reactions and 444 nutrient
uptake reactions, of which 2,566 and 159 are not present in the E. coli network,
respectively. The universal network is available as a computational Systems Biology
Markup Language (SBML) model (Supplementary Data 4).

For more details on the reconstruction of the universal reaction set, see
Supplementary Methods.

Defining novel in silico nutrient environments. We first defined a comprehensive
set of nutrient environments by starting from a glucose minimal medium for
E. coli. For each environment, we replaced the carbon (C), nitrogen (N), phosphate
(P) or sulfur (S) source by an alternative one. To obtain a list of environments that
is both representative of novel nutrient compounds and computationally tractable,
we focused on only those growth media that differed from glucose minimal
medium by one compound instead of enumerating all possible combinations of
C, N, P and S-sources, as in previous works24,31. Although this approach does not
take into account more complex conditions, it allowed us to focus on single C, N,
P and S-sources and to maximize the variability between conditions. See
Supplementary Data 1 for the list of resulting 1,776 conditions.

Next, we determined the viability of both the E. coli network and the universal
network across these conditions using FBA21. A network was deemed inviable in a
given environment if its maximum biomass production was zero. Before adding
novel reactions, the reconstructed E. coli metabolic network was unable to grow in
321 environments in which the network expanded by the universal reaction
set allowed growth (Supplementary Data 1). We considered these 321 conditions as
the set of available novel environments to which E. coli can possibly adapt by
adding reactions from other species.

Finding growth-promoting reaction sets in new environments. To calculate the
minimum number of active, non-coli reactions in a particular environment we
applied a MILP-based algorithm on the universal metabolic model similar to the
problem of finding the shortest elementary flux mode44. The basis of the MILP
problem was the steady-state assumption:

Sv ¼ 0

Where S is the stoichiometric matrix and v is the flux vector for all reactions.
The reactions of the model were handled differently depending on whether
they are part of the E. coli model or they can be added to the coli model
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during evolution. The flux constraints on the E. coli reactions were the same as
in FBA:

li � vi � ui

Next, for each environment in which the universal network was viable but the
wild-type E. coli network was not able to grow we set the nutrient uptake
constraints to mimic the environment (li of the exchange reactions). The lower
bound of the biomass production reaction was then constrained to 10� 4 as the
minimal growth requisite:

lbiomass ¼ 1e� 4

The reversible non-coli reactions of the universal network were decomposed into
two opposing irreversible reactions. This way the fluxes of the non-coli reactions
can only take positive values. Let N0 be the number of non-coli reactions. We
assigned a binary variable to each non-coli reaction, bi, which tells whether the
non-coli reaction r0 i (i¼ 1, y, N0) is active (bi¼ 1) or not (bi¼ 0). The following
equations ensure these rules:

v0i � e bi

u0i;max bi � v0i

Where v0 i is the flux and u0 i is the maximal possible flux of reaction r0 i, while e is
the minimal flux value (in our calculations e¼ 10� 8). Also to avoid having two
opposing reactions derived from the same reversible reaction being active
simultaneously we introduced the following constraint:

bi þ bj � 1; i; jð Þ 2 set of opposing reaction pairsf g

Finally, the objective of the MILP problem was to minimize the active non-coli
reactions:

minimize
X

bi; i 2 1; ::;N 0f g

The result of this minimization is the minimum number of non-coli reactions need
to be added to the coli model to allow growth in a particular environment.

Enumerating all possible minimal reaction sets in silico. The MILP optimiza-
tion model described above not only provide the minimal number of reactions that
support growth in new environments but also the list of the non-coli reactions
involved in this solution: one of the minimal reaction sets. However, multiple
equivalent minimal sets might exist for any given environment. To identify another
minimal reaction set we extended the MILP problem with a new constraint which
prevents the algorithm to find the same solution again:

X
Bibið Þ �

X
Bi � 1; i 2 1; ::;N 0f g

Where Bi is the binary solution of the first minimal reaction set, and Bi equals to
1 or 0 if reaction r0 i was active or inactive in the first solution, respectively. This
constraint is fulfilled only if the two solutions differ in at least one active reaction.
We can harvest more minimal reaction sets in an iterative way where after each
solution we add a new constraint and we run the algorithm again. Our algorithm
stopped when the new solution had more active reactions than the size of the
minimal reaction sets, that is, when we collected all minimal reaction sets. This
algorithm is based on the method of finding the k-shortest elementary flux
modes44.

Defining growth-promoting reaction pairs using modelling. To systematically
test the dynamic environment model, we investigated all possible two-step
adaptation scenarios. First, we inactivated all non-coli reactions in the universal
reaction network. Next, we activated two non-coli reactions at a time and applied
FBA to calculate the fitness of the model in each environment where the native
E. coli model cannot grow. By repeating this procedure we probed all possible
reaction pairs in the universal reaction set and identified those that provide growth
in at least one environmental condition (3,290,895 reaction pairs in total, 538 are
beneficial in at least one condition). As a next step, we determined if the identified
two-reaction adaptations can be accessed by the consecutive addition of single
beneficial reactions to the network, that is, whether at least one of the two reactions
provide a fitness benefit on its own in any of the environments. For this purpose,
we repeated the above procedure but instead of activating reaction pairs we
activated single reactions and evaluated their fitness effect across environments
using FBA. The list of 538 reaction pairs and corresponding environments can be
found in Supplementary Data 3.

Software and computation used in metabolic network analyses. All
simulations were implemented in GNU R (ref. 45) using the sybil package for
constraint-based modelling46. As optimizer for linear programming and MILP we
used ILOG CPLEX 12.5. The linear programming was done on a 64-bit Ubuntu
Linux system with an Intel Core-i7 quadcore processor. MILP problems were
solved on a Red Hat Enterprise Linux Server release 6.2 with 96 Intel Xeon central
processing units.

Phylogenetic analysis of gene-gain events. To investigate contingent gain and
co-gain in the evolutionary history of genes, we first generated the phylogenetic
presence and absence profile across the present-day species for each reaction by
mapping the profiles from gene to reaction level. Presence and absence profiles of
orthologous genes across 943 bacterial species were obtained from EggNOG v3.0
(ref. 47). Reactions catalysed by enzyme complexes consisting of multiple gene
products (‘AND’ relationships) are considered to be present in a species only when
all genes of the complex are present in the genome. Reactions catalysed by
isoenzymes (‘OR’ relationships) are considered to be present when at least one
isoenzyme is encoded in the genome.

Next, we inferred the most parsimonious ancestral presence/absence states of
each reaction by using a phylogenetic tree of the 943 eubacteria, retrieved from
STRING v9.05 (http://string905.embl.de/newstring_download/species.tree.v9.05.txt)
(ref. 48). Reaction presence and absence states across branch points along the
phylogenetic tree, that is, the ancestral states, are calculated by using the tree and
the present-day presence/absence state of the reaction. The ancestral state is
inferred by minimizing the number of gene-gain and loss events across the tree that
matches the present-day state. Such a maximum parsimony strategy is commonly
used as it allows for the analysis of gene histories on a genome-wide scale in a
computationally efficient manner, and has shown to be successful in explaining
patterns in genome content and evolution19,49,50. Calculations were carried out
using PAUP51 with a gain/loss penalty ratio of 2/1 (ref. 52) and a delayed transition
assumption (DELTRAN)49. We note that our results are robust against variations
in PAUP parameter values (see Supplementary Tables 1–3).

Contingent gain analysis. For each stepping-stone reaction pair A–B, A is defined
as the reaction that is beneficial in a given nutrient environment without B, while a
gain of B is only beneficial in another environment when A is already present. For
each A–B pair we calculated the phylogenetic contingent gain fraction (f), defined
as f¼ p1/(p1þ p2), where p1 is calculated by dividing the number of evolutionary
events where B is gained in the descendent (d) when A is already present in the
ancestor (a) (a10_d11) by the total number of all possible gain and loss scenarios
taking place in the descendant when A is present but B is absent in the ancestor
(a10_dXX, where X¼ 0 or 1), and p2 is calculated by dividing the number of
evolutionary events where B is gained in the descendant when A is absent in the
ancestor (a00_d01) by the total number of all possible gain and loss scenarios
taking place in the descendant when both A and B are absent in the ancestor
(a00_dXX, where X¼ 0 or 1). The observed distribution of fractions was then
compared with the null-hypothesis that a gain of B is independent of the presence
of A, that is, f¼ 0.5, using a one-tailed one-sample Wilcoxon signed-rank test.

Co-gain analysis. For the phylogenetic co-gain analysis we calculated for reaction
pairs the co-gain fraction, defined as f¼ n1/(n1þ n2), where n1 is the number of
evolutionary events where both reactions were absent in the ancestor (a) and both
were gained in the descendent (d) (a00_d11), and n2 is the number of evolutionary
events where both reactions were absent in the ancestor and only one was gained
in the descendent (a00_d10 or a00_d01). We compared the fractions (f) from
reaction pairs that are predicted to be beneficial for growth only when they are
simultaneously gained, referred to as ‘beneficial without individual effect’, with
the fractions from reaction pairs that are beneficial for growth in a specific
environment when co-gained, but at least one of the reactions is also beneficial on
its own in a different environment (beneficial with combined and individual effect)
(see Fig. 3b in main text). A one-sided Wilcoxon rank test was used. In addition,
we compared the fractions from ‘beneficial without individual effect’ reaction pairs
with the expected co-gain fraction by chance (randomization (without individual
effect)). To do that, we broke the pairing between reactions and shuffled the
reactions into new pairs, thereby generating a new list of gene pairs. This was
repeated 1,000 times. Then we determined for each of the 1,000 reaction pair list if
the mean co-gain fraction is higher than that of the ‘beneficial without individual
effect’ and summed these (n1). P-value was calculated as P¼ (n1þ 1)/1,001. The
randomization analysis was also carried out for reaction pairs that are beneficial for
growth in a specific environment when co-gained, but at least one of the reactions
is also beneficial on its own in a different environment (beneficial with combined
and individual effect versus randomization (combined and individual effect)).

Strains and plasmids and primers for laboratory adaptation. E. coli K-12
MG1655 was considered as the wild-type strain in our experiments. MG1655
mutD5 was constructed using a suicide plasmid-based genome engineering method
incorporating a C-4T mutation at position 236,110 on the genome (within the
dnaQ gene) resulting in a T15I mutation of the encoded enzyme described
previously27. Standard steps and plasmids (pST76-A, pSTKST) of this methodology
have been described53. Briefly, an approximately 800-bp-long targeting DNA
fragment carrying the desired point mutation in the middle was synthesized by
PCR, then cloned into a thermosensitive suicide plasmid (pST76-A). This plasmid
construct was then transformed into the cell, where it was able to integrate into the
chromosome by way of a single crossover between the mutant allele and the
corresponding chromosomal region. The desired co-integrates were selected by the
antibiotic resistance carried on the plasmid at a non-permissive temperature for
plasmid replication (42 �C). Next, the pSTKST helper plasmid was transformed,
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then induced within the cells, resulting in the expression of the I-SceI meganuclease
enzyme, which cleaves the chromosome at the 18 bp recognition site present on
the integrated plasmid. The resulting chromosomal gap is repaired by way of
RecA-mediated intramolecular recombination between the homologous segments
in the vicinity of the broken ends. The recombinational repair results in either a
reversion to the wild-type chromosome, or in a markerless allele replacement,
which can be distinguished by sequencing the given chromosomal region.
See Supplementary Table 6 for the primers used for the mutation construction.

For the overexpression of FucO, the pCA24N plasmid containing the fucO gene
was selected from the ASKA library29 and isolated from the host strain, then
electroporated into the MG1655 strain. Overexpression of the gene was achieved by
the addition of 50 mM IPTG.

For the simultaneous overexpression of fucO and aldA, the chloramphenicol
resistance cassette (CmR) of the pCA24N-aldA plasmid from the ASKA library
was exchanged to the kanamycin resistance marker (KmR), resulting in
pCA24N-aldA-Km. The pCA24N-aldA plasmid was first linearized by inverse PCR
amplification using the pCA24N_frame_1 and pCA24N_frame_2 primer pair
flanking the CmR cassette. The PCR product was treated with DpnI for 60 min at
37 �C and purified using the DNA Clean & Concentrator-5 Kit (Zymo Research
#D4004). The KmR marker was PCR amplified from a pSTKST template using the
ASKA-Gibson_Kan_Fw and ASKA-Gibson_Kan_Rev primers. The PCR fragment
was then isolated from 1% agarose gel using the GeneJET Gel Extraction Kit
(Thermo Scientific #K0691). The resulting DNA fragments were assembled using
Gibson assembly cloning (Gibson Assembly Master Mix, New England Biolabs
#E2611), according to the manufacturer’s protocol, then electroporated into
electrocompetent E. coli DH10B cells. Correct assemblies were verified by colony
PCR using the ASKA-S2 and aldA-1 primer pair. Sequences of primers used in this
construction are listed in Supplementary Table 7.

Media used in laboratory adaptation. Minimal salts (MS) medium was used as
described previously34, supplemented either with 0.4% glycerol, 30 mM (S)-propane-
1, 2-diol (propylene glycol, PG), or 30 mM ethane-1, 2-diol (EG). Antibiotics were
employed in the following working concentrations: 50mg ml� 1 ampicillin (Ap),
25mg ml� 1 chloramphenicol (Cm) and 25mg ml� 1 kanamycin (Km).

Adaptation of strains for growth on PG and EG. Three replicates of each indi-
vidual strain were started from single colonies grown on MSþ 0.4% glycerol agar
plates (with Cm added where the fucO overexpression plasmid was present) at 30 �C.
An MG1655 strain carrying the pCA24N-fucO plasmid was previously found to grow
at 30 �C in 2 ml MS media supplemented with 30 mM PG (with 25mg ml� 1 Cm and
50mM IPTG added). This culture was subsequently plated onto MSþ 0.4% glycerol
(þCm) agar plates, from which the PGþ colonies, starters for selection for
EG-utilization, were isolated. We opted for glycerol as a base carbon source to avoid
catabolite repression (that is, the inhibition of utilization of various other carbon
sources) as in ref. 28. Starter cultures were then grown in 2 ml MSþ 0.4% glycerol
(þCm where needed), from which 250ml was then transferred to 25 ml fresh liquid
MS mediaþ 0.4% glycerol (and Cm where needed). Cultures were grown to
stationary phase at 30 �C, after which total cell count was determined by plating of
appropriate dilutions onto MSþ 0.4% glycerol agar plates. The remainder of the
cultures were then harvested and resuspended in 400ml MS media without carbon
source and finally plated in two halves onto MS agar plates supplemented with either
30 mM PG or 30 mM EG (with Cm and 50mM IPTG added where the fucO
overexpression plasmid was present). Plates were then incubated at 30 �C for 40 days
after which adapted colonies were counted and isolated. The plates were placed in
plastic bags for the duration of the incubation to prevent significant drying of the agar
media. Rates of adaptive mutations were calculated based on three replicate
experiments as follows. When adapted colonies were observed, we simply calculated
the average ratio of the number of adapted colonies per total cell number. In cases
where no growing colonies were obtained, we calculated an upper limit to the
adaptive mutation rate following the approach presented in ref. 35. Specifically, we
made use of the fact that the Poisson distribution has a 5% probability of yielding zero
events when the expected number of events is three. Thus, assuming no more than
three adaptive mutations among all the cells tested in the three replicate experiments
gives an upper bound on the adaptive mutation rate per cell per generation.

Growth curve measurements. Individual colonies of strains MG1655,
MG1655þ pCA24N-fucO, MG1655þ pCA24N-aldA-Km and MG1655þ
pCA24N-fucOþ pCA24N-aldA-Km were grown and isolated from MSþ 0.4%
glycerol plates carrying the desired antibiotic for the given plasmids. Starter cul-
tures from single colonies were grown in 5 ml liquid MS media supplemented with
0.4% glycerol, as well as 50mM IPTG and 25 mg ml� 1 Cm and/or 25mg ml� 1 Km
in the case of plasmid-harbouring strains. Cultures were grown until saturation
after which 10 ml MS media supplemented with 30 mM of either PG or EG as well
as 50mM IPTG and 25mg ml� 1 Cm and/or 25mg ml� 1 Km where needed, were
inoculated with the overnight cultures at a 100� dilution. A total of 100ml of these
samples were then placed in six separate wells on a 96-well tissue culture plate (Jet
Biofil), and placed in a PowerWave XS2 (BioTek) microplate spectrophotometer
and grown at 30 �C. The edges of the plate were sealed with Breathe-Easy gas
permeable sealing membrane (Diversified Biotech) to prevent evaporation.

Mutation rate measurements. We estimated mutation frequencies of BW25113
(wild-type) and BW25113 overexpressing the FucO protein from the pCA24N_
fucO plasmid. Briefly, cells resistant to rifampicin (carrying mutations in rpoB
(ref. 54)) were selected and counted. After overnight growth at 37 �C, ten tubes of
1 ml LB (þ 25mg ml� 1 chloramphenicol in the case of pCA24N_fucO carrying
samples) were inoculated with approximately 104 cells each. FucO overexpression
was induced by adding 50mM IPTG after 2 h of growth, and cultures were grown to
early stationary phase, all at 37 �C. Appropriate dilutions were spread onto non-
selective LB agar plates and LB agar plates containing rifampicin (100 mg ml� 1).
The samples were incubated at 37 �C and colony counts were performed after 24 or
48 h, respectively. Mutation rates were calculated with the Ma–Sandri–Sarkar
maximum-likelihood method55 using the FALCOR web tool56.

Ion Torrent library construction for whole-genome sequencing. Fragment
libraries were constructed from purified genomic DNA using NEBNext Fast
DNA Fragmentation & Library Prep Set for Ion Torrent (New England Biolabs)
according to manufacturer’s instructions. Briefly, genomic DNA was enzymatically
digested and the fragments were end-repaired. Ion Xpress Barcode Adaptors
(Life Technologies) were than ligated and the template fragments size-selected
using AmPure beads (Agencourt). Adaptor ligated fragments were then PCR
amplified, cleaned-up using AmPure beads, quality checked on D1000 ScreenTape
and Reagents using TapeStation instrument (Agilent) and finally quantitated using
Ion Library TaqMan Quantitation Kit (Life Technologies). The library templates
were prepared for sequencing using the Life Technologies Ion OneTouch protocols
and reagents. Briefly, library fragments were clonally amplified onto Ion Sphere
Particles (ISPs) through emulsion PCR and then enriched for template-positive
ISPs. More specifically, PGM emulsion PCR reactions utilized the Ion OneTouch
200 Template Kit (Life Technologies), and as specified in the accompanying
protocol, emulsions and amplification were generated using the Ion OneTouch
System (Life Technologies). Enrichment was completed by selectively binding the
ISPs containing amplified library fragments to streptavidin-coated magnetic beads,
removing empty ISPs through washing steps, and denaturing the library strands to
allow for collection of the template-positive ISPs. For all reactions, these steps were
accomplished using the Life Technologies ES module of the Ion OneTouch System.
Template-positive ISPs were deposited onto the Ion 318 chips (Life Technologies);
finally, sequencing was performed with the Ion PGM Sequencing Kit (Life
Technologies).

Ion PGM sequencing data processing and mutation calling. The PGM
sequencing data was processed using Ion Torrent Suite v4.2.1 in order to perform
signal processing and base calling. Read mapper module of Torrent Suite (tmap)
was used to align raw reads to the E. coli K12 MG1655 genome sequence
(U00096.3). Torrent Variant caller (tvc) module of Torrent Suite was subsequently
applied to detect single nucleotide mutations as well as small in/del variants.
Variant caller was programmed to run in high stringency mode requesting at least
12� read coverage and at least 66% mutation frequency. Only those variants were
taken into account that were supported by sequencing on both strands. BAM
alignment files were imported in CLC Genomics Workbench v7.5.1 (CLCBio)
and variant regions were manually inspected in all strains. Large genomic
rearrangements (deletions or amplifications with lengths above 10 kb) were
manually identified using CLC Genomics Workbench Tool.

Sequencing data of the ancestral and evolved strains are deposited in the NCBI
SRA database (accession numbers SRX1167076 and SRX1167031).
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