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Azole Resistance in Aspergillus fumigatus: Can We Retain
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Azole resistance in Aspergillus fumigatus has emerged as a global health problem. Although the number of cases of azole-resistant
aspergillosis is still limited, resistance mechanisms continue to emerge, thereby threatening the role of the azole class in the man-
agement of diseases caused by Aspergillus. The majority of cases of azole-resistant disease are due to resistant A. fumigatus originat-
ing from the environment. Patient management is difficult due to the absence of patient risk factors, delayed diagnosis, and limited
treatment options, resulting in poor treatment outcome. International and collaborative efforts are required to understand how re-
sistance develops in the environment to allow effective measures to be implemented aimed at retaining the use of azoles both for food
production and human medicine.
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Aspergillus fumigatus is a saprophytic mold that causes allergic,
chronic, and acute invasive diseases in humans and animals [1].
The fungus is ubiquitous due to an abundant asexual reproduc-
tion cycle, producing many billions of spores, and its ability to
survive in very different environments. The fungus is thermoto-
lerant, able to resist temperatures as high as 60°C, and is impor-
tant for the degradation of organic matter. Although A.
fumigatus is not a primary pathogen for living animals or plants,
it has evolved as an important cause of opportunistic fungal dis-
eases in humans. Several decades ago, invasive aspergillosis was
a much-feared complication of immunosuppressive treatments
as the disease was associated with high morbidity and mortality
[2–4]. The survival rates of immunocompromised patients with
invasive aspergillosis have improved dramatically due to many
factors, one of which is the availability of azole antifungal
drugs. This class comprises a number of agents with activity
against aspergilli, including itraconazole (available for clinical
use since 1997), voriconazole (since 2002), posaconazole
(since 2006), and, most recently, isavuconazole [5]. Each of
these agents has proved beneficial for the treatment of acute in-
vasive and chronic pulmonary aspergillosis, the prevention of
invasive aspergillosis, and for difficult-to-treat disease, such as

central nervous system Aspergillus disease [6, 7]. Recent studies
also show that there is a role for azole therapy in patients with
severe asthma with fungal sensitization as its use improved their
quality of life and pulmonary function [8]. Moreover, azole
drugs are the only anti-Aspergillus agents that are orally avail-
able, and therefore play an important role in long-term or am-
bulatory therapy such as for chronic pulmonary aspergillosis [9].

However, the clinical advances that have been made possible
through the use of azole drugs might be threatened by the
emergence of azole resistance in A. fumigatus [10–12]. We
aim to describe the epidemiology and spread of azole resistance
in A. fumigatus, the clinical implications, and directions of re-
search that will help to understand and possibly contain this
problem.

RESISTANCE DEVELOPMENT IN A. FUMIGATUS

Generally, 2 routes of resistance development are distinguished:
through long-term azole patient therapy and via the application
of azole compounds in the environment [13, 14]. Although the
clinical characteristics of these routes are very different
(Table 1), the fundamental prerequisites for azole resistance de-
velopment are the same: Any setting that brings together active-
ly reproducing Aspergillus and azole compounds has a risk of
mutations developing that confer resistance to azole com-
pounds [14, 17]. Such conditions could be present in a patient
with an aspergilloma receiving azole therapy. Within the pul-
monary cavity, asexual reproduction of A. fumigatus occurs
and spores are produced abundantly, many of which may har-
bor azole resistance mutations. Genetic analysis of A. fumigatus
from dissected aspergillomas and clinical cultures from patients
with aspergilloma indeed confirm that A. fumigatus undergoes
multiple genetic changes during infection, including those
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conferring azole resistance [14]. This may be reflected in diag-
nostic specimens as multiple azole resistance mechanisms may
be present in culture, concomitant with azole-susceptible colo-
nies [17].Although A. fumigatus is a eukaryotic microorganism,
the complex cellular composition does not preclude rapid resis-
tance development in response to antimicrobial exposure, as
seen with bacterial pathogens. However, horizontal gene trans-
fer, which is common in the spread of bacterial resistance, is not
commonly seen in fungi. Acquired resistance has been exclu-
sively described in patients with a cavity or aspergilloma [14,
17]. Resistance mechanisms that are recovered in culture are
characterized by point mutations in the Cyp51A gene, which
is the target of the antifungal azoles (Table 1). However, al-
though the Cyp51A gene is considered a hot-spot for resistance
mutations, many isolates with an azole-resistant phenotype are
found to have no mutations in this gene, which suggests that
other resistance mechanisms are present, some of which have
been identified but many of which remain unknown [18].

Resistance mutations are also believed to develop in the envi-
ronment when the fungus is exposed to azole compounds that
exhibit anti-Aspergillus activity [18]. Although A. fumigatus is
not a phytopathogen, many azole fungicides were found to
have activity against A. fumigatus isolates [19, 20]. Some of the
azole fungicides are of the triazole class and have a similar mol-
ecule structure to the medical triazoles [20]. It was hypothesized

that A. fumigatus develops resistance due to use of azole fungi-
cides to combat phytopathogens for crop protection. Because
of the molecule similarity of fungicides with medical triazoles,
the latter also lose activity. In addition to abundant asexual repro-
duction, parasexual and sexual reproduction probably also occurs
in the environment, thereby increasing the fungus’s ability to un-
dergo genetic recombination and thus overcome cellular stress
caused by fungicide exposure. Azole fungicides have a broad
range of applications, including plant and crop protection, pre-
vention of postharvest spoilage, and preservation of materials.
Azole fungicides are used globally, thus creating an environment
where azole-resistant A. fumigatus can thrive. In contrast to the
United States, where environmental azole resistance in A. fumi-
gatus appears to be uncommon [21],health authorities in Europe
have been called to action. The European Centre for Disease Pre-
vention and Control brought together experts from agricultural,
veterinary, and medical fields to discuss the problem of emerging
azole resistance in Aspergillus [22].

Clinically, environmental resistance is characterized by a
complete lack of patient risk factors. Only residency in or visit-
ing of a geographic area with known environmental resistance
can be considered a risk.

EPIDEMIOLOGY

In vitro susceptibility testing of A. fumigatus isolates is not rou-
tinely performed in most clinical microbiology laboratories,
thus underestimating the true prevalence of resistance. Studies
that had investigated the frequency of azole resistance in Asper-
gillus culture collections report finding the first resistant isolates
up to 17 years earlier [23]. TR34/L98H was first found in the
Netherlands in 1998 [13], and recently a TR34/L98H isolate
was reported from Italy, also originating from 1998 [23]. The
TR46/Y121F/T289A resistance mechanism was also first report-
ed in the Netherlands in 2009 [24], but a recent study reported
the recovery of TR46/Y121F/T289A from a patient in the United
States already in 2008 (Table 2) [25]. Surveillance studies and
case series suggest the global presence of azole resistance in A.
fumigatus [15, 16, 25–39], including reports from Europe, the
Middle East, Asia, Africa, Australia and, most recently, North
and South America (Figure 1) [25, 35].

It remains unclear when and where these resistance mecha-
nisms first emerged, although genotyping of epidemiologically
and geographically unrelated strains shows a lower genetic di-
versity among isolates harboring TR34/L98H and TR46/
Y121F/T289A compared with wild-type isolates, which suggests
that each mutation might have originated from a common an-
cestor [24, 40, 41]. Our current understanding is that resistance
traits can migrate rapidly. Isolates harboring TR46/Y121F/
T289A from the Netherlands were found to be genetically highly
related to resistant isolates from India [30]. Whole-genome
sequencing and population analysis indicated that azole-
resistant alleles are segregating into diverse genetic backgrounds,

Table 1. Characteristics of Patient-Acquired Resistance and
Environmental Resistance in Aspergillus fumigatus

Patient-Acquired Resistance Environmental Resistance

Chronic pulmonary aspergillosis
with cavitary lesion or
aspergilloma

All Aspergillus diseases, including
allergic bronchopulmonary
aspergillosis, acute invasive
aspergillosis, chronic colonization in
cystic fibrosis

Previous or ongoing azole therapy in
all patients

Two-thirds of patients have no history
of azole therapy

Clinical failures to azole therapy Clinical failures to azole therapy

Multiple resistance mutations may
be present in a single clinical
sample

Only 1 azole resistance mechanism
present in most patients

Both azole-susceptible and azole-
resistant phenotypes
simultaneously present in culture

Both azole-susceptible and azole-
resistant phenotypes
simultaneously present in culture

Multiazole and panazole resistance
phenotypes

Multiazole and panazole resistance
phenotypes

Point mutations in the Cyp51A gene,
including substitutions at G54,
P216, F219, M220, G138, Y431,
and G448 non-Cyp51A-mediated
resistance mechanisms: HapE
unknown resistance mechanisms

Mutations in the Cyp51A gene in
combination with a transcriptional
enhancer (tandem repeat) in the
promoter region of the gene: TR34/
L98H, TR53, and TR46/Y121F/
T289Aa

High genetic diversity between
azole-resistant isolates from
unrelated patients

Low genetic diversity between azole-
resistant isolates from unrelated
patients

Aspergillus fumigatus colonies may
show an abnormal colony
morphology, lack of sporulation or
reduced growth rate

No apparent fitness cost

a Recently the presence of 2 point mutations was reported in the environment: G54 and
M220 [15, 16].
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which will result in increasing genetic diversity over time [42].
As far as we know, azole resistance, due to mutations in the
Cyp51A gene, is not associated with a fitness cost [43]. The
consequence is that resistant isolates would be predicted to
compete with wild-type isolates in the field and persist in the
environment.

Surveillance studies have shown that between 64% and 71%
of patients with Aspergillus disease due to environmental azole-
resistant A. fumigatus had no history of prior azole therapy [24,
44]. Furthermore, azole resistance may occur in any Aspergillus
disease, including acute invasive aspergillosis, chronic pulmo-
nary aspergillosis, or allergic manifestations such as allergic

Table 2. Country and Year of First Recovery of TR34/L98H and TR46/Y121F/T289A Resistance Mechanisms in Aspergillus fumigatus and Year of Publicationa

TR34/L98H TR46/Y121F/T289A

Country First Case Type of Isolate
Year of Publication

[Reference] Country First Case Type of Isolate
Year of Publication

[Reference]

Netherlands 1998 C + E 2008 [13] United States 2008 C 2015 [25]

Italy 1998 C + E 2015 [23] Netherlands 2009 C + E 2013 [24]

Turkey 2000 C 2015 [26] Belgium 2012 C + E 2012 [12, 27]

Spain 2003 C 2013 [12, 28] Germany 2012 C + E 2015 [12, 15]

Australia 2004 C 2015 [29] India 2012 E 2014 [30]

Iran 2005 C + E 2013 [12, 30] France 2013 C + E 2015 [31]

Belgium 2006 C + E 2012 [12, 27] Tanzania 2013 E 2014 [32]

Denmark 2007 C + E 2010/2011 [12, 33] Denmark 2014 C 2015 [33]

China 2008–2009 C 2011 [30, 34] Spain 2014 C 2015 [28]

India 2008 C + E 2012 [12, 30] Colombia 2015 E 2015 [35]

United Kingdom 2009–2011 C + E 2009 [12, 36]

France 2010 C + E 2012 [12]

United States 2010 C 2015 [25]

Germany 2012 C + E 2012 [12, 15]

Taiwan 2011 C 2015 [37]

Kuwait 2013 C + E 2015 [30, 38]

Poland 2006–2014 C 2015 [39]

Colombia 2015 E 2015 [35]

Abbreviations: C, clinical; E, environmental.
a Due to space restriction, we were not able to include all individual publications. We have cited reviews, which included reports from individual countries over the years.

Figure 1. Shaded areas show countries that have reported the TR34/L98H and TR46/Y121F/T289A resistance mechanism in clinical or environmental Aspergillus fumigatus
isolates.
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bronchopulmonary aspergillosis. It is possible that azole pro-
phylaxis or azole monotherapy provides a selective advantage
for azole-resistant A. fumigatus and might increase the risk
for azole-resistant breakthrough infections [45]. Unfortunately,
the environmental resistance route was found to be the domi-
nant route for resistance cases. In the Netherlands, between
82% and 89% of azole-resistant cases were due to TR34/L98H
and TR46/Y121F/T289A (P. Verweij, personal communication),
whereas this was the case in 64% of cases in Belgium [27] and
87% of cases in Turkey [26].

DETECTION OF AZOLE-RESISTANT DISEASE

Azole-resistant Aspergillus disease is difficult to diagnose, as
Aspergillus cultures are negative in the majority of patients. Bio-
markers based on Aspergillus cell wall components, such as gal-
actomannan or 1,3-β-D-glucan, are unable to detect azole
resistance. At best, circulating biomarkers may indicate treat-
ment failure if they continue to increase during azole therapy.
Several investigators have used in-house molecular tests to de-
tect azole resistance mutations directly in patient samples, using
both tissue and respiratory secretions [46, 47]. Recently, a com-
mercial polymerase chain reaction (PCR)–based assay became
available (AsperGenius, PathoNostics, Maastricht, the Nether-
lands) that enables the detection of several Aspergillus species
and includes markers for the detection of the TR34/L98H and
TR46/Y121F/T289A resistance mechanisms. Preliminary clini-
cal validation studies indicate that this approach is feasible
when bronchoalveolar lavage fluid is tested, although only
very few Aspergillus culture-negative and resistance PCR-
positive cases have been described [48]. The sensitivity of the
resistance PCR might be a limiting factor, as only a single
copy of the Cyp51A gene is present in each Aspergillus cell, in
contrast with the multigene targets that are commonly used for
detection of Aspergillus species. This is especially a concern when
only serum is tested. A negative resistance PCRmay be due to the
high detection limit of the test rather than the absence of resis-
tance mutations, and therefore it will prove difficult to rule out
resistance. Furthermore, at present, only 2 resistance mutations
are detected, while at least 15 Cyp51A gene–mediated resistance
mechanisms have been described [18].

Azole resistance can be tested when A. fumigatus is recovered
through culture. However, even in culture-positive patients,
resistance may be missed due to concomitant presence of
azole-susceptible and azole-resistant colonies [38]. Further-
more, positive cultures may have to be sent to reference labora-
tories, due to limited availability or experience with fungal
resistance testing on site, thus causing delay of effective therapy.

MANAGEMENT OF AZOLE-RESISTANT
ASPERGILLUS DISEASES

All studies to date show that azole resistance is associated with
treatment failure [24, 36, 44, 45]. Mortality rates in case series

of patients with culture-positive azole-resistant invasive aspergil-
losis varied between 50% and 100% [24, 44, 45].Preclinical exper-
imental models also indicate that an elevated azole minimum
inhibitory concentration (MIC) significantly reduces the efficacy
of azole monotherapy [49], but controlled trials that compare
azole-resistant with azole-susceptible cases in relation to treat-
ment success have not been performed. Nevertheless, it seems
important to identify patients with azole-resistantAspergillus dis-
ease as early as possible to initiate effective therapy. Furthermore,
azole resistance mechanisms generally reduce the activity of all
azoles. In vitro susceptibility testing of TR34/L98H isolates
showed that 99.6% of isolates were resistant to itraconazole,
92.4% to voriconazole, and 97.8% to posaconazole. For TR46/
Y121F/T289A 100% of isolates were resistant to voriconazole,
whereas 82.7% were resistant to itraconazole and 94.9% to pos-
aconazole [50]. The recently introduced new azole isavuconazole
also had high MICs in strains with reduced susceptibilities to
other triazoles, mirroring changes in voriconazole susceptibility
[5]. These results indicate that the clinical role of azoles in
azole-resistant aspergillosis will, at best, be very limited.

In the absence of management guidelines, an expert panel re-
cently discussed the approach they would use in patients with
documented azole-resistant Aspergillus disease, or in regions
where azole resistance has been reported [51]. As clinical evi-
dence is generally lacking, the panel members relied on anecdotal
experience, preclinical studies, and expert opinion with respect to
treatment decisions. Most experts recommended moving away
from azole monotherapy in patients in whom azole resistance
was documented, switching to liposomal amphotericin B or vor-
iconazole in combination with an echinocandin. In areas with
confirmed environmental resistance, the threshold at which
first-line therapy with azole monotherapy should be avoided
was the subject of much debate, but most experts would consider
moving away from azole monotherapy when resistance rates ex-
ceeded 10%. In that situation, azole-echinocandin combination
therapy or liposomal amphotericin B was deemed an appropriate
alternative choice [51]. It is therefore important to determine if
azole resistance is present in a hospital by regular resistance test-
ing of (stored) clinical A. fumigatus isolates. Most surveillance
studies indicate that the frequency of azole resistance is still
below the 10% threshold [52]. These studies relied on screening
of unselected clinical A. fumigatus isolates, through, for instance,
the use of agar plates supplemented with different azoles [52].Al-
though this approach is useful to determine the frequency of re-
sistance, the role of environmental mutations, and trends over
time, 2 recent Dutch studies indicated that the frequency of resis-
tance may vary considerably between departments or risk groups
within the same hospital. In one study, a resistance rate of 26%
was found in A. fumigatus culture-positive patients in the inten-
sive care unit, which was higher than in all other departments in
the hospital (14%; P = .06) [53]. The authors suggested that pa-
tients with (undiagnosed) azole-resistant invasive aspergillosis
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might fail azole therapy while in the department. Subsequent
clinical deterioration of the patient requires intensive care sup-
port where cultures become positive due to progressive disease.
Another study reported the highest azole resistance rates in
hematology patients, when primary A. fumigatus cultures were
analyzed for resistance [54]. Therefore, general resistance surveil-
lance might not reflect resistance rates in specific high-risk
patient groups and detailed audits will be required to determine
which primary treatment strategy would be appropriate.

A “POSTAZOLE” ERA?

Compared with antibacterial resistance, the looming problem of
azole resistance in A. fumigatus may seem relatively insignifi-
cant as the number of patients affected is low and the question
can be raised if drug resistance in an opportunistic pathogen is
altogether a threat to public health. After all, Aspergillus diseases
affect only specific patient groups with chronic lung disease or
those with immunosuppression. Although the number of azole-
resistant cases is still low, there is every reason to assume that
new azole resistance mechanisms will continue to emerge in
the environment and rapidly migrate across the world, as has
been the case with TR34/L98H and TR46/Y121F/T289A [12,
13, 24]. Increasing azole resistance rates will challenge our cur-
rent primary treatment recommendation (ie, voriconazole
monotherapy), necessitating alternative treatment strategies
such as azole-echinocandin combination therapy or liposomal
amphotericin B in hospitals or wards where the 10% resistance
threshold is exceeded [51]. In addition, the number of cases of
breakthrough aspergillosis in patients on azole prophylaxis will
increase and certain manifestations of invasive aspergillosis,
such as central nervous system aspergillosis, will be virtually un-
treatable as the use of voriconazole will be precluded. The ad-
vances made with the clinical use of the azole class will be at

least partly lost and, unless new drug targets are discovered,
the overall mortality of Aspergillus diseases will increase
(Table 3).

RETAINING THE AZOLE CLASS

In medicine we are confronted with the consequences of azole
resistance selection in the environment, and given the promi-
nent role of azole compounds both for management of fungal
disease in humans and animals and for food production, the
optimum strategy to overcome azole resistance would be to
aim to retain the use of azoles for both applications. Measures
that prohibit the use of specific azoles in the environment may
severely compromise global food production and may not be ef-
fective. Although 5 azole fungicides were identified that might
play a role in the emergence of resistance mutations [11, 20, 22],
many azole fungicides show activity against A. fumigatus and
thus may contribute to providing an environment with a selec-
tive advantage for azole-resistant strains, thus facilitating its
persistence and spread.

An integrated approach focusing on clinical management,
public health surveillance programs, and resistance selection
in the environment is necessary to improve the survival of pa-
tients with azole-resistant aspergillosis, to track the emergence
and spread of resistance mechanisms, and to understand how
azole resistance develops in A. fumigatus in the environment.

Investigations in the environment should incorporate all ap-
plications of azoles including those in agriculture, biocides, and
medicine. Recently, 2 Cyp51A point mutations, G54 and M220,
were recovered from the environment in Germany [15], Roma-
nia, India, and Tanzania [16]. These mutations were previously
considered to be associated with the patient route of resistance
development, but the recovery from the environment suggests
that these mutations either develop in the environment or

Table 3. Reported Mortality Rates in Patients With Invasive Aspergillosis in Different Time Periods

Aspergillus Disease

Era IA Comment CNS IA Comment

c-AmB era 65% [2] 122 of 187 patients receiving c-AmB died. 95%–100% [3] Literature review

71.6% [55] 187 of 261 patients with IA died. 99% [56] Review of 141 cases of CNS IA in
immunocompromised patients, of whom 140
died.

Azole era 27.5% [57] 9-wk mortality: 39 of 142 patients receiving voriconazole
monotherapy.

45.6% [7] Retrospective analysis of 81 patients with CNS IA
treated with voriconazole

28.5% [58] Population-based study analyzing 8563 aspergillosis
cases in France.

35.4% [59] Literature review: 4 of 11 patients with CNS IA
who received voriconazole monotherapy.

Azole resistant 100% [44] Culture-positive patients with proven and probable IPA
treated with voriconazole (5/5)

86% [24, 44, 60] 7 cases of azole-resistant CNS IA have been
reported, of which 6 were fatal.

88% [45] 8 HSCT patients with culture-positive, azole-resistant IA,
of whom 7 died.

100% [54] ICU patients with culture-positive azole-resistant IA died
(10/10), compared with 21 of 28 (75%) with azole-
susceptible IA.

Abbreviations: c-AmB, conventional amphotericin B; CNS, central nervous system; HSCT, hematopoietic stem cell transplant; IA, invasive aspergillosis; ICU, intensive care unit; IPA, invasive
pulmonary aspergillosis.
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that through use of azoles in hospitals and veterinary practices
these mutations migrate to the environment. By understanding
how azole resistance develops and persists in the environment,
effective measures can be designed and implemented that pre-
vent resistance development. It was suggested that the applica-
tion of azole fungicides is crucial for the risk of resistance
selection in A. fumigatus rather than the volume of use [61].
If this is the case, changes in current practices may reduce the
risk of resistance selection without losing the azole class as a
whole. An integrated approach would require an international
and multidisciplinary collaboration including healthcare pro-
fessionals, epidemiologists, researchers from agricultural and
veterinary medicine, mycologists, and experts in fungal genet-
ics. Furthermore, governments and other policy makers should
recognize that action is urgently warranted if we want to retain
the clinical use of azoles and evade a “postazole” era. However,
if we are successful in preventing azole resistance selection in
the environment, only time will tell if the clinical burden of
azole-resistant Aspergillus disease will also diminish.
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