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The administration of an appropriate volume of intravenous fluids, while avoiding fluid 
overload, is a major challenge in the pediatric intensive care unit. Despite our efforts, 
fluid overload is a very common clinical observation in critically ill children, in particular in 
those with pediatric acute respiratory distress syndrome (PARDS). Patients with ARDS 
have widespread damage of the alveolar–capillary barrier, potentially making them vul-
nerable to fluid overload with the development of pulmonary edema leading to prolonged 
course of disease. Indeed, studies in adults with ARDS have shown that an increased 
cumulative fluid balance is associated with adverse outcome. However, age-related
differences in the development and consequences of fluid overload in ARDS may exist 
due to disparities in immunologic response and body water distribution. This systematic 
review summarizes the current literature on fluid imbalance and management in PARDS, 
with special emphasis on potential differences with adult patients. It discusses the
adverse effects associated with fluid overload and the corresponding possible patho-
physiological mechanisms of its development. Our intent is to provide an incentive to 
develop age-specific fluid management protocols to improve PARDS outcomes.

 

 

Keywords: PARDS, fluid balance, management, critical care, children, lung edema

iNTRODUCTiON

Pediatric acute respiratory distress syndrome (PARDS) is one of the most challenging disease entities 
in the pediatric intensive care unit (PICU). PARDS was recently defined by the Pediatric Acute 
Lung Injury Consensus Conference (PALICC) group as acute-onset hypoxic respiratory failure 
with new infiltrate(s) on chest radiography not fully explained by cardiac failure or fluid overload 
(1). This definition is based on the Berlin ARDS definition (2), with several adaptations to more 
adequately adhere to ARDS specifically occurring in children. Importantly, this includes the use of 
pulse-oximetry derived data to obtain the SpO2/FiO2 (S/F) ratio and oxygen saturation index (OSI) 
in the many patients in whom PaO2 measurements are unavailable. Of note, due to the relative 
novelty of the PALICC definition, the articles included in this review still employ the Berlin or older 
AECC definition of ARDS.

Patients with PARDS form a heterogeneous population within the PICU. This is due to the large 
age distribution, as PARDS affects infants to adolescents, and the variety of underlying triggers, 
such as pneumonia, sepsis, trauma, and aspiration. Importantly, differences in the pathophysiology 
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between PARDS and adult ARDS are likely. This is best illustrated 
by the lower incidence (2.0–12.8/100,000 person-years versus 
17.9–81.0/100,000 person-years) and lower mortality (18–35% 
versus 27–45%) of ARDS in children as compared with adults 
(1). Although there are potential age-related differences in lung 
immune and injury responses (3–5), the precise similarities 
and disparities in the pathophysiological mechanisms between 
PARDS and adult ARDS are not fully known. At the same 
time, the development of treatment strategies for PARDS leans 
heavily on adult ARDS studies and Bayesian approaches (6), as 
to circumvent lack of power in pediatric studies. It is needless 
to say that treating children with modalities tested in adults, 
while the current literature suggests important differences may 
exist between PARDS and adult ARDS, is highly undesirable. 
Further exploration of the specific age-related characteristics 
in relation to outcomes and treatments of PARDS is therefore 
highly needed.

Appropriate fluid management has become an important 
non-pulmonary treatment in the current “best practice” care of 
adult patients with ARDS. To prevent aggravation of lung edema, 
it is now generally recommended to avoid positive cumulative 
fluid balance and treat fluid overload after initial hemodynamic 
stabilization. Several studies in adult ARDS patients have studied 
the effect of a restrictive fluid management protocol (7). Most 
importantly, in the NHLBI Fluid and Catheter Treatment Trial 
(FACTT), it was demonstrated that an early restrictive fluid man-
agement protocol in adults with ARDS was effective in preventing 
fluid overload, which was associated with improved oxygenation 
and shorter duration of mechanical ventilation and ICU stay 
(8). This appears in line with the current adult literature on 
sepsis, which suggests that although early goal-directed therapy 
including (aggressive) fluid resuscitation is generally beneficial, 
it does not always lead to reduced mortality (9–11), and may 
even be associated with longer hospitalization and higher organ 
failure scores (11). Hence early fluid resuscitation is most likely 
beneficial, whereas early fluid overload is not. Several studies in 
a variety of populations of critically ill children, including those 
in the general PICU, post heart surgery, and those receiving renal 
replacement therapy, have also shown a positive association 
between early fluid overload and adverse outcome (12–17).

In this manuscript, we review the literature on the adverse 
effects of fluid overload with emphasis on potential physiological 
differences in fluid homeostasis between children and adults. In 
addition, we summarize the current evidence for a restrictive 
fluid management protocol specifically in PARDS by a systematic 
literature review.

AGe AND FLUiD OveRLOAD

In adults, multiple studies in patients with ARDS have indicated 
higher cumulative fluid balance is associated with worse disease 
outcome. There is an evident inverse correlation between num-
ber of ventilator-free days (VFDs) and cumulative fluid balance 
(18–23). In two randomized controlled trials comparing con-
servative and liberal fluid treatment, patients in the conservative 
fluid treatment arm were shown to have higher number of VFDs 
(8, 18). The correlation with mortality seems more ambiguous. 

Mortality has been shown to correlate with increasing cumula-
tive fluid balance (21–23), but controversially not to a restrictive 
fluid treatment (8, 18). In one of the above mentioned trials, lung 
injury scores and oxygenation indices were also assessed, which 
both were significantly better when patients received a more 
restrictive fluid treatment. Consequently, these patients spent an 
average of 2.5 days less on ventilation as compared with patients 
treated in the liberal arm (8).

As mentioned above, there are distinct differences in incidence 
and outcome between adult ARDS and PARDS. As fluid overload 
is an important and much prevalent aspect of this disease entity, 
we deem it likely that physiological differences between adults 
and children in fluid homeostasis influence the progression 
and outcome of PARDS. Differences in fluid homeostasis exist 
between children and adults. In humans, aging is associated with 
a decrease in total body water (TBW) (24). The TBW exists of 
extracellular (ECW) and intracellular water (ICW). An often used 
measure to describe fluid compartments is the ECW/TBW ratio. 
With aging, the TBW declines from approximately 70% of body 
weight in infants to 60% in elderly (25). The ECW/TBW ratio ini-
tially decreases in childhood, but increases again after adulthood 
due to a relative increase of the ECW. While the lower ECW/TBW 
ratio in (young) children, together with a high metabolic rate and 
insensible loss, is a risk for dehydration, vice versa elderly with a 
higher ECW/TBW ratio may be more prone for fluid overload. 
For example, in elderly patients suffering from congestive heart 
failure, fluid overload is predominantly reflected by an increase 
in ECW (26). In addition, compensation mechanisms by means 
of redistribution of water between intracellular and extracellular 
compartments during fluid loss or overload may vary between 
children, adults, and elderly (27).

In critically ill children, including those with PARDS, it is likely, 
although yet hypothetical, that age-dependent changes in ICW and 
ECW as described above alter their susceptibility for adverse effects 
in end organs during fluid overload. For example, young children 
have a large brain to intracranial volume ratio as compared with 
adults, possibly making them relatively vulnerable to encephalopa-
thy as a result of brain edema by excess of water. This is for example 
illustrated by the higher susceptibility for cerebral edema accompa-
nying diabetic ketoacidosis in children when compared with adults 
(28, 29). In the lungs, extravascular water content normalized for 
body weight, and thus TBW, is higher in children as compared with 
adults, although it is age-independent when indexed for height (30). 
One could hypothesize that the relative large lung mass to body 
weight renders children less prone for development of lung edema 
by increased hydrostatic pressure during fluid overload. In addition, 
the rate of alveolar fluid clearance (AFC), which is important for the 
resolution of lung edema, may differ between children and adults. 
For example, regulation of expression of the epithelial sodium 
channel (ENaC), one of the essential epithelial channels for fluid 
clearance, appears age-dependent in the lungs and kidneys (31–33). 
ENaC is known to increase shortly before birth, and is implicated 
to decrease with aging. This indicates that children might have 
higher expression of ENaC than adults, possibly making them less 
vulnerable to develop lung edema. Similar age-dependent effects 
of keratinocyte growth factor on AFC have been suggested (34). 
Indeed, studies in animal models have indicated juveniles to be less 
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prone to develop lung edema compared with their adult or senes-
cent equivalents (4). Unfortunately, the relative paucity of human 
and animal studies comparing data from the whole age-spectrum 
with regard to mechanisms and effects of fluid overload at this point 
makes it undesirable to elaborate beyond speculation.

ADveRSe eFFeCTS OF FLUiD OveRLOAD

Fluid overload in children with PARDS, and more broadly in 
all critically ill patients, may have an adverse effect on clinical 
outcome by leading to interstitial edema resulting in impaired 
oxygenation and perfusion of several tissues in the human 
body. Increased hydrostatic pressure as a consequence of intra-
vascular fluid challenge is a major mechanism of this increase 
in extravascular water content. However, the development of 
interstitial edema by fluid overload is not solely due to height-
ened hydrostatic pressure as explained by the Starling forces 
(35). In addition, it may be explained by the proinflammatory 
response of the endothelium to increasing intravascular pressure 
with mechanical stress, which by itself adds to further leakage of 
proteins and fluid (35–37). Lately, interest is given to a specific part 
of the endothelium; the glycocalyx. The glycocalyx is a layer lining 
the luminal side of the endothelium, which consists of a complex 
web of membrane-bound proteoglycans, glycoproteins, and gly-
cosaminoglycans (GAGs) (38). Degradation of the glycocalyx with 
shedding of components such as GAGs into the circulation leads 
to activation of proinflammatory and coagulation pathways result-
ing in increased endothelial permeability (39, 40). Interestingly, 
recent studies suggest that intravascular fluid overload may also 
cause glycocalyx degradation; however, the extent and clinical 
importance of this effect is yet unclear (41, 42).

Fluid overload can have deleterious consequences for many 
end organs. In patients with PARDS, the lungs appear particu-
larly affected and the aggravation of lung edema is therefore 
considered a key mechanism of adverse outcome by fluid 
overload. Extravascular accumulation of protein-rich edema in 
the lungs is a hallmark of PARDS and occurs by disruption of 
the alveolar–capillary barrier. The principal proinflammatory, 
cell death, and proteolytic and coagulation pathways underlying 
this increased lung permeability have been reviewed elsewhere 
(43, 44). As a consequence of this increased alveolar–capillary 
permeability, patients with PARDS are likely to develop lung 
edema at a lower hydrostatic pressure threshold as is suggested 
by early studies in dogs (45, 46). In addition, increased systemic 
venous pressure as a consequence of fluid loading diminishes 
the lymphatic drainage, which also decreases the absorption 
rate of lung edema (47). Importantly, in children with acute 
respiratory failure, including PARDS, the extravascular lung 
water content, as measured by hemodynamic volumetric 
monitoring, correlates with both the extent of fluid overload 
and lung permeability, and is predictive of survival and duration 
of mechanical ventilation (48).

Other tissues, especially encapsulated organs such as the kid-
neys and liver, may be specifically prone for adverse effects of fluid 
overload by lower perfusion pressures. This could be explained 
by the capsule acting as an unyielding shield leading to a type 
of compartment syndrome (49–51). For example, a number of 

studies have shown that a high cumulative fluid balance is associ-
ated with the development of acute kidney injury (AKI) in criti-
cally ill patients (52–56). In particular, in the setting of ongoing 
oliguria despite hemodynamic stabilization, fluid overload may 
be harmful (49). Moreover, the healing of skin and other tissues, 
as well as the incidence of gastro-intestinal complications such 
as ileus, after surgery are negatively affected by interstitial edema 
resulting from fluid overload (57, 58).

eFFeCT OF FLUiD OveRLOAD iN PARDS

In summary, fluid overload may be associated with negative 
outcome in critically ill children including those with PARDS, 
although important differences between children and adults in 
susceptibility and pathophysiology may exist. In order to address 
the current evidence that advocates or would support a restric-
tive fluid management specifically in PARDS, we performed a 
systematic review as described below. An overview of the search, 
screening and selection process of the studies can be found in 
Figure 1. Due to heterogeneity of the data, a meta-analysis was 
not deemed possible. The systematic literature search and criti-
cal appraisal are presented in the supplemental material of this 
manuscript.

Overview of included Studies
All studies included in this systematic review were part of a 
prospective or retrospective observational cohort or post  hoc 
analysis. Table 1 holds the descriptions of the included studies. 
The correlations found between fluid balance and outcomes were 
broadly similar across the included articles. Table 2 provides a 
summary of the overall findings.

Mortality was one of the primary outcomes in this systematic 
review and was reported in most of the included studies. Flori 
et  al. showed that mortality was associated with increasing 
cumulative fluid balance (grouped in sets of 10 ml/kg/day) in 
both bivariate and multivariate regression (OR 1.12, 95% CI 
1.06–1.20, p  <  0.001 and 1.08, 95% CI 1.01–1.15, p  =  0.02, 
respectively) (59). Valentine et al. examined the same associa-
tion in critically ill children with acute lung injury (ALI) accord-
ing to the AECC definition of ALI (60). A trend of difference in 
cumulative fluid balance between survivors and non-survivors 
was found (p = 0.11). In the post hoc analysis by Willson et al. 
the increased cumulative fluid balance (as averaged per meter 
squared of body surface) was associated with in-hospital mor-
tality on days 1–7 (p < 0.001) in children with ALI/ARDS (61). 
Hu et al. examined children with acute hypoxemic respiratory 
failure (AHRF) in China (62). A subgroup of these patients 
(n = 306, 66%) was identified according to the AECC criteria 
of ARDS. With regard to fluid data, they showed that non-
survivors of AHRF had higher median fluid balances, although 
this was statistically not significant (p = 0.079). The mortality of 
patients with a daily fluid balance ≤10 ml/kg/day was lower than 
the group with a balance of >10 ml/kg/day (p = 0.049). There 
were no fluid data presented of only the ARDS subgroup. The 
last included study by Randolph et al. on the relation between 
weaning duration and fluid balance in mechanically ventilated 
children in the PICU held no data on mortality (63).
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The other primary and important outcome measure was the 
number of VFDs measured at day 28 after admission or dura-
tion of ventilation. VFDs were used in three of the five included 
studies (59–61) and in all three fewer VFDs were associated with 
higher cumulative fluid balance. Valentine et al. reported that in 
days 2–4 of admission in the PICU, a higher cumulative fluid bal-
ance was associated with fewer VFDs (p = 0.01, 0.01, and 0.05 for 
days 2, 3, and 4, respectively) (60). Likewise, Willson et al. found 
the number of VFDs to be significantly inversely related to fluid 
balance (p < 0.001) (61). The study of Randolph et al. looked at 
fluid balance during weaning of ventilation and at the time of 
extubation (63). Their primary outcome was extubation success 
and secondary outcome was duration of weaning. Fluid balance 
was assessed at the time when an extubation readiness test (ERT) 
was performed or at the time of extubation, thus late in the 

course of disease. Cumulative fluid balance was neither at time of 
ERT nor at time of extubation associated with successful extuba-
tion (p = 0.56 and p = 0.77, respectively). Duration of weaning 
showed a non-significant relation with higher cumulative fluid 
balances at ERT (Hazard ratio 0.94, 95% CI 0.87–1.00, p = 0.06); 
however, it was (marginally) significant when predicted by the 
cumulative fluid balance values at extubation (Hazard ratio 0.94, 
95% CI 0.87–1.00, p =  0.051). An important note to be taken 
into account when comparing the study of Randolph et  al. to 
the others is that ARDS was not defined explicitly or analyzed 
separately.

One study found that a higher cumulative fluid balance 
showed a trend of an association with longer duration of stay 
in the PICU and hospital (61). This outcome was not addressed 
in other studies. These authors also compared the oxygenation 
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TABLe 2 | Description of findings on correlation between cumulative fluid 
balance and clinical outcomes.

Outcome Results

Mortality Significant association in three out of four studies  
in which mortality was assessed

Flori p = 0.02
Willson p < 0.001
Hu p = 0.079
Stratified in ≤10 or >10 ml/kg/day p = 0.049
Valentine p = 0.11

VFDs Significant association in three out of three studies  
in which VFDs were assessed

Flori p = 0.02
Valentine p = 0.01
Willson p < 0.001

Oxygenation 
failure

Significant association in 1 out of 1 study  
in which degree of oxygenation failure was assessed

Willson p = 0.011
Other Willson

PICU-free days p = 0.14
Hospital-free days p = 0.06

Randolph
CFB at extubation associated with duration of 
weaning

p = 0.051

TABLe 1 | Summary of included articles.

Study Design Outcome 
measure 

variable 
measure 

Subjects Definition ARDS Outcome NOS 
total

Flori  
et al. (59)

Post hoc 
analysis of a 
prospective 
observational 
study 

PICU mortality, 
VFDs

Cumulative 
fluid balance 
in 10 ml/
kg/day 
increments

313 children 
with ALI 

ALI according to AECC definition OR 1.08 (p = 0.02) mortality with 
increasing cumulative FB, VFDs 
(p = 0.02)

8

Valentine 
et al. (60)

Multicenter, 
retrospective 
cohort study

VFDs Cumulative 
fluid balance 
and fluid 
overload (%)

168 children 
meeting ALI 
criteria

ALI according to AECC definition Increasing cumulative FB at day 
2–4 associated with fewer VFDs 
(p = 0.01/p = 0.01/p = 0.05). 
Cumulative fluid balance was not 
associated with mortality (p = 0.11) 

7

Willson 
et al. (61) 

Post hoc 
analysis of 
pediatric arm 
of prospective, 
randomized, 
placebo-
controlled trial

In-hospital 
mortality, 
duration of 
MV, PICU, and 
hospital LoS, 
VFDs, OSI

Cumulative 
fluid balance

110 children 
with direct 
ALI/ARDS

ALI/ARDS according to AECC  
definition

Cumulative FB was associated 
with mortality (p < 0.001), VFDs 
(p < 0.001), PICU-free days (p = 0.14), 
and hospital-free days (p = 0.06). 
OSI increase of 0.52/l/m2 increase FB 
(p = 0.011)

8

Hu et al. 
(62) 

Prospective 
study in 26 
PICUs

Incidence, 
mortality and 
burden of 
AHRF and 
ARDS 

Daily fluid 
balance

461 patients 
with AHRF, 
of which 306 
(66%) ARDS 

AHRF: PaO2 ≤50 mmHg or PaO2/
FiO2 ≤250 mmHg for ≥6 h, needing 
FiO2 >30% and PEEP >2 cm H2O to 
maintain PaO2 >60 mmHg or SpO2 
>90%. ALI/ARDS according to AECC 
definition

In AHRF: non-survivors had higher 
median FB (p = 0.079). Mortality of 
FB ≤10 ml/kg/day lower than >10 
(p = 0.049). No specific ARDS data

6

Randolph 
et al. (63)

Prospective 
clinical trial 

Extubation 
success (use 
of ERT) and 
duration of 
weaning

Cumulative 
fluid 
balance at 
extubation 
and start 
weaning 

301 children 
with 
mechanical 
ventilation 
>24 h

No mention of ARDS definition No relation cumulative FB with 
successful extubation. Duration of 
weaning with cumulative FB at ERT 
(HR 0.94, p = 0.06) and at extubation 
(HR 0.94, p = 0.051). No ARDS  
data only

7

PICU, pediatric intensive care unit; ALI, acute lung injury; AECC, American-European consensus conference; VFDs, ventilator-free days; MV, mechanical ventilation;  
LoS, length of stay; OSI, oxygenation saturation index; FB, fluid balance; AHRF, acute hypoxemic respiratory failure; ERT, extubation readiness test.
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saturation index (OSI) and fluid balance and found that for every 
liter per meter square body surface increase in fluid balance, the 
OSI increased with 0.52 point (p = 0.011) (61).

CLiNiCAL iMPLiCATiONS

Fluid overload early in PARDS progression seems to have a 
major impact on recovery. In particular early fluid overload is of 
main interest, as this seems to negatively affect clinical outcome. 
Late fluid overload may have a more modest effect on outcome 
(63), potentially because the cumulative fluid balance curve 
flattens out after the first few days of admission. Children with 
other causes of critical illness, such as shock or post-cardiac 
surgery, have shown the same trend of effect (56, 64). Likewise, 
in the general PICU population, early fluid overload is associ-
ated with longer duration of mechanical ventilation and worse 
oxygenation (13). The peak of illness, which is usually at or a 
few days after admission, coincides with the presence of early 
fluid overload. During this period of critical illness, one could 
speculate that children are especially vulnerable to the effects of 
fluid overload. Even more so, the positive fluid balance might 
enhance inflammatory processes (65), which may contribute to 
the association with adverse outcomes seen mainly in this first 
period. Vice versa, inflammation in itself could also worsen fluid 
accumulation by causing (endothelial) tissue damage (e.g., to the 
glycocalyx) and increasing permeability in the lungs. For pediat-
ric critical care specialists, it is important to realize that children 
with PARDS appear particularly vulnerable for developing fluid 
overload already in the early phase of admission (15, 60). In 
order to prevent and/or adequately handle early fluid overload 
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in daily practice, it is important to be very aware of the signifi-
cance of this phenomenon. In particular, fluid treatment should 
probably be tailored more to the actual needs of patients, taking 
into account fluid responsiveness not only during resuscitation 
but also with regard to maintenance fluid therapy during the 
recovery phase (66).

Even though prevention is always more desirable than treat-
ment, fluid overload is a common problem and needs to be 
treated. Fluid overload could be partially caused by an excess of 
fluid treatment or nutrients, which is an important pointer to 
base new fluid protocols on. To treat fluid overload, critically ill 
patients, both children and adults, often receive diuretics. In the 
population of critically ill children, furosemide has been shown 
to effectively achieve diuresis (67). In the particular setting of 
hypoproteinemic adult patients with ALI, treatment with the 
combination of furosemide and albumin improved oxygenation, 
hemodynamics, and fluid balance (19, 20). In animal models of 
ALI, furosemide also improved lung injury scores and oxygena-
tion (68). The downside to diuretics is that patients are prone to 
become drug resistant, in which case increased amounts of the 
drug, a change of the administration route, or more drugs are 
needed. Moreover, loop diuretics such as furosemide are not 
compatible with all drugs, which must be taken into account 
when prescribing them (69).

Another more invasive method of reducing fluid overload 
is continuous renal replacement therapy (CRRT) (70). In 
multiple distinct populations of critically ill children, greater 
fluid overload at start of CRRT has been associated with 
mortality, even after adjusting for disease severity (14, 71–74). 
It is suggested that an earlier start of CRRT may result in 
better outcome as survivors have significantly less days in the 
PICU prior to start of CRRT than non-survivors do (71, 74). 
Sutherland et al. discuss the possibility of a threshold for CRRT 
initiation. For example, based on the recommendation by the 
American College of Critical Care Medicine, a threshold of 
>10% fluid overload is suggested for “an intervention” (14, 75). 
It seems that the choice of using CRRT to treat fluid overload 
can be defended; however, the optimal timing for initiation still 
remains to be elucidated and potential complications should be 
taken into account.

Although fluid restriction could be one of the strategies to 
prevent or overcome fluid overload, it is at the same time one 
of the main impeding factors in achieving energy requirements 
(76). Accomplishing sufficient nutrition is particularly important 
to prevent nutritional depletion, muscle wasting, and decreased 
immune function (70, 76) and is associated with better outcome 
(77). The development of clear fluid and nutritional protocols will 
be greatly beneficial in achieving optimal balance in both strate-
gies. A Bayesian statistical approach could be the key to designing 
a randomized controlled trial in children with enough power to 
adequately assess the optimal fluid (and nutritional) protocol in 
children with PARDS. The gross effect of fluid overload seems 
similar in children and adults; however, the size of the effect can-
not be readily compared due to the nature of the retrospective 
studies in children and lack of prospective randomized trials.

CONCLUSiON

Pediatric acute respiratory distress syndrome is a complex disease 
entity in need of multimodal therapy, of which fluid treatment 
is a major component. The current literature on fluid balance in 
PARDS is sparse but demonstrates that fluid overload is associated 
with worsening clinical outcome, such as fewer VFDs and worse 
oxygenation. Varying evidence was found on the relation with 
mortality and increasing fluid balance. In particular, early fluid 
overload was found to be of main influence. However, definite 
evidence by randomizing liberal versus restrictive fluid treatment 
in PARDS is lacking. This systematic review indicates the overall 
effect of fluid overload on outcomes is rather similar to the effect 
seen in adults; however, the size of effect cannot be compared at this 
time. Given the accumulating evidence for differences in (patho)
physiology and outcome between children with PARDS and adults 
with ARDS, as well as known differences in fluid homeostasis 
related to aging, further study of the effects of specific tailor made 
fluid maintenance strategies in PARDS is highly warranted. In par-
ticular, the place for early diuretic and renal replacement therapy 
in order to limit fluid overload need to be explored. Further studies 
are needed to determine whether development of specific age-
related fluid management protocols, taking into account all aspects 
of PARDS, is essential for optimal treatment of this patient group.
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