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Abstract

Uncoupling of nitric oxide synthase (NOS) secondary to redox signaling is a central mecha-

nism in endothelial and macrophage activation. To date studies on the production of nitric

oxide (NO) during the development of diabetic complications show paradoxical results. We

previously showed that recoupling eNOS by increasing the eNOS cofactor tetrahydrobiop-

terin (BH4) could restore endothelial function and prevent kidney injury in experimental kid-

ney transplantation. Here, we employed a diabetic mouse model to investigate the effects of

diabetes on renal tissue NO bioavailability. For this, we used in vivo NO trapping, followed

by electron paramagnetic resonance spectroscopy. In addition, we investigated whether

coupling of NOS by supplying the cofactor BH4 could restore glomerular endothelial barrier

function. Our data show that overall NO availability at the tissue level is not reduced sixteen

weeks after the induction of diabetes in apoE knockout mice, despite the presence of factors

that cause endothelial dysfunction, and the presence of the endogenous NOS inhibitor

ADMA. Targeting uncoupled NOS with the BH4 precursor sepiapterin further increases NO

availability, but did not modify renal glomerular injury. Notably, glomerular heparanase activ-

ity as a driver for loss of glomerular barrier function was not reduced, pointing towards NOS-

independent mechanisms. This was confirmed by unaltered increased glomerular presence

of cathepsin L, the protease that activates heparanase.

Introduction

Endothelial dysfunction is assumed to contribute to kidney disease progression in diabetes [1]

with endothelial nitric oxide (NO) production as a key feature of healthy endothelium. Uncou-

pling of NOS secondary to redox signaling is a central mechanism in endothelial activation.

We previously showed that recoupling eNOS by increasing the NOS cofactor tetrahydrobiop-

terin (BH4) could restore endothelial function and prevent kidney injury in experimental kid-

ney transplantation [2, 3]. BH4 was also shown to modulate the iNOS isoform in macrophages,

counterbalancing the redox effector pathway in these cells [4], where macrophage activation

has also been implicated in progression of diabetic nephropathy [5, 6].
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Conflicting results about the role of NO in diabetic nephropathy have, however, been pub-

lish in vitro as well as in vivo. Enhanced NO generation have been reported in studies of cul-

tured hyperglycemic endothelial cells, advanced diabetes and diabetic nephropathy [7–9],

whereas NO availability has also been reported to be diminished in the setting of human [10–

12] and rodent [13–15] diabetic nephropathy. Also a time dependent effect has been reported:

NO generation during the early stages of nephropathy was increased while it decreased in later

stages [16, 17].

While eNOS knockout mice have proved to be invaluable for studies assessing the conse-

quences of reduced NO availability in diabetic nephropathy [18], the absence of NO make

these mice unsuited for our studies. Therefore, we treated apolipoprotein E knockout mice

(apoE KO) with streptozotocin to induce stable and reproducible diabetic nephropathy [19,

20]. We used in vivo NO spin-trapping with iron-dithiocarbamate complexes, a highly-sensi-

tive quantitative technique that enables one to detect localized concentrations of trapped NO

in vivo [21–24]. Also, we assessed glomerular endothelial function, by determining glycocalyx

integrity and barrier function.

Surprisingly, we observed enhanced renal NO bioavailability in the setting of diabetic

nephropathy. We also found that sepiapterin, a BH4 precursor, while further augmenting local

NO levels, did not modify renal glomerular injury. This suggests that diabetes-induced endo-

thelial dysfunction is not directly associated with renal NO deficiency. Notably, glomerular

heparanase activity as a driver for loss of glomerular barrier function was not reduced, point-

ing towards NOS-independent mechanisms.

Materials and Methods

Diabetic ApoE KO mouse model

All animal experiments were approved by the ethical committee on animal care and experi-

mentation of the Leiden University Medical Centre. All animal work was performed in compli-

ance with the Dutch governmental guidelines. For our experiments, we used three groups of six

weeks old male ApoE KO mice (Jackson Laboratory, Bar Harbor, ME). Diabetes was induced in

two groups by intraperitoneal injections with streptozotocin (STZ, 60 mg/kg; Sigma-Aldrich,

St. Louis, MO) in citrate buffer (0.1 mol/L, pH = 4.5) for five consecutive days, according to the

DiaComp protocol (Fig 1). The non-diabetic control group was injected with citrate buffer alone.

All mice were housed under normal day-night cycle with free access to drinking water and chow.

Non-diabetic apoE KO mice received standard chow, whereas diabetic apoE KO mice received

cholesterol-enriched chow (0.15 wt%) (Technilab-BMI, Someren, The Netherlands). Twelve

weeks after the induction of diabetes, these mice were divided in two groups: one group was

treated with sepiapterin (10 mg/kg daily) in drinking water for four consecutive weeks, to

increase NO levels. The other group received normal drinking water. Data obtained from non-

diabetic apoE KO mice as well as control diabetic apoE KO mice are previously published [19].

Blood glucose concentrations were measured with an Accu-check glucose meter (Roche,

Basel, Switzerland). When glucose concentrations exceeded 25 mmol/L, mice were treated

with 1–2 units insulin (Lantus, Aventis Pharmaceuticals, Bridgewater, NJ, US) up to three

times per week. Sixteen weeks after STZ injections, at 22 weeks of age, mice were sacrificed to

perform NO-trapping in kidney, liver and heart.

Urine collection and analyses

A 24-hour urine sample was collected at 12, 14 and 16 weeks after STZ injections. Urinary

albumin and creatinine concentrations were determined as previously described [19]. In brief,

albumin concentrations were quantified with Rocket immunoelectrophoresis [25] and
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creatinine concentrations were quantified by the Jaffé method using 0.13% picric acid and a

creatinine standard set (Sigma-Aldrich).

Immunohistochemistry

Following sacrificing by CO2 asphyxiation, one half of a kidney was used for histological assess-

ment of classical markers of glomerular damage and morphometric changes to confirm diabetic

nephropathy. For this, capillary and mesangial matrix area were quantified in Periodic acid-

Schiff (PAS) or Trichrome-stained paraffin embedded 4 μm sections, respectively. We used a

semiautomatic image analyzing system (Leica Q600 Qwin; Leica Microsystems, Cambridge,

UK) to determine the fraction of glomerular surface area by the point-counting method.

Glomerular heparanase expression was quantified after overnight incubation with primary

antibody (Polyclonal rabbit anti-heparanase 1.5 μg/mL, InSight Biopharmaceuticals, Rehovot,

Israel), followed by goat anti-rabbit IgG-Alexa 594 (1/1000), for 1 hour, both in blocking

buffer. Sections were counterstained with Hoechst (1/1000) and embedded in Vectashield

mounting medium (Vector Laboratories Inc., Burlingame, CA). Cathepsin L polyclonal anti-

body (R&D Systems) was incubated overnight, followed by horseradish peroxidase–conju-

gated secondary antibody and 3,3’-diaminobenzidine and counterstained with hematoxylin.

Staining area was quantified as the percentage of stained area divided by the glomerular area.

Determination of nitric oxide

In all three groups, endogenous NO bioavailability was measured by in vivo spin trapping

with iron-diethyldithiocarbamates (Fe2+-DETC) complexes as previously described [19]. After

Fig 1. Experimental set-up for assessment of NO bioavailability. (A) male ApoE KO mice (B6.129P2- Apoetm1Unc/J) were injected with citrate buffer ±STZ.

Diabetic mice received cholesterol enriched diet and insulin from week 8 onwards. At 18 week of age, diabetic mice were treated with sepiapterin or received

normal drinking water for 4 weeks. Urine was collected upon commencing with the experimental procedure and after 2 and 4 weeks of treatment. At 22 weeks,

plasma was collected and the mice were sacrificed.

doi:10.1371/journal.pone.0170065.g001
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30 minutes of spin-trapping, mice were sacrificed using CO2 asphyxiation. Subsequently, ~350

mg sections of kidney, liver and heart tissues were submerged in HEPES buffer (450 μl, 150

mmol/L, pH 7.4) and snap frozen with liquid nitrogen. The yield of paramagnetic ferrous

mononitrosyl-iron complexes (MNIC) was determined with electron paramagnetic resonance

(EPR) spectroscopy. For this, frozen tissue samples were measured at 77 K with an X-band

EMX-Plus spectrometer (Bruker BioSpin, Rheinstetten, Germany) equipped with a Bruker

liquid finger Dewar flask filled with liquid nitrogen. Spectrometer settings were microwave

power, 20 mW; time constant, 82 ms; analog-to-digital conversion time, 82 ms; and detector

gain, 104. The magnetic field was modulated with 5-G amplitude at a frequency of 100 kHz.

With these settings, a single field sweep provided adequate sensitivity. During the experiments,

the inside of the EPR cavity (ER 4119 HS-W1, cylindrical TE011 mode; Bruker) was continu-

ously flushed with dry nitrogen to prevent condensation of ambient humidity on the cool

Dewar flask.

Determination of plasma ADMA concentrations

Asymmetric NG, NG-dimethyl-L-arginine (ADMA) is a endogenous inhibitor of nitric oxide

synthases. Therefore, we measured plasma ADMA concentrations with a commercially avail-

able enzyme-linked immunosorbent assay kit (DLD Diagnostika GmbH, Hamburg, Germany)

according to the manufacturer’s protocol.

Determination of glomerular endothelial glycocalyx coverage

For electron microscopic visualization of the glycocalyx, three mice per group were anesthe-

tized (intraperitoneal). Left kidneys were perfused with 0.5% bovine serum albumin (BSA)

and 5 U/mL heparin in 5 mL Hepes-buffered salt solution (HBSS), followed by 2 mL of cat-

ionic ferritin (horse spleen, 2.5 mg/mL, Electron Microscopy Sciences, Fort Washington, PA)

in HBSS alone at 2 mL/minute, as described before [19]. Kidneys were excised, the capsules

removed and stored in fixative (1.5% glutaraldehyde + 1% paraformaldehyde in 0.1 mol/L

sodium-cacodylate buffered solution, pH 7.4) overnight at 4˚C and further prepared for trans-

mission electron microscopy (TEM). Data was collected into large virtual slides (stitches) that

provide an overview of the glomeruli, allowing for high-detail assessment and quantitative

analysis of glomerular (patho)physiology [26]. Images (2Kx2K) were acquired at an accelera-

tion voltage of 120 kV, on FEI Tecnai T12 microscopes (FEI, Eindhoven, the Netherlands),

equipped with FEI Eagle 4Kx4K CCD cameras. The polyanionic glycocalyx on the surface of

endothelial cells can be visualized using TEM by binding of electron-dense cationic substances,

such as cationic ferritin [27]. Within the stitches, individual capillary loops were captured and

glycocalyx coverage was quantified in 6–11 capillary loops in 9 glomeruli. The percentage of

cationic ferritin positive endothelial surface coverage was determined using an automatic grid

overlay in the public domain NIH ImageJ version 1.46. For every capillary, a minimum of 80

crosshairs was at the intersection of the endothelium. This resulted in a percentage glycocalyx

positive area.

Statistical analysis

Data are presented as mean ± SD, unless stated otherwise. Changes in ACR during treatment

were analyzed using a linear-mixed model regression analysis, since samples were collected

over time and were therefore animal dependent (SPSS Statistics, version 20, IBM). Differences

in other experiments with continuous variables were determined using one-way ANOVA and

post hoc analysis with Tukey’s multiple comparison test. P<0.05 was considered statistically

significant.

Nitric Oxide in Diabetic Nephropathy
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Results

Diabetes increases renal NO levels

NO levels were determined as MNIC yields in various tissues (Fig 2), showing considerable

variation between the tissue types. In particular, the liver was found to produce higher quanti-

ties of NO compared to renal and cardiac tissue. The findings in non-diabetic apoE KO mice

are in qualitative concordance with previous findings in other rodent models such as rats [28]

and C57Bl/6 mice (the latter revealing 0.34 ± 0.1 pmol MNIC / mg in kidney; 2.1 ± 1.0 in liver

and 0.52 ± 0.1 pmol MNIC / mg heart). Upon STZ-induced diabetes, apoE KO mice revealed

increased renal NO (0.51 ± 0.16 in diabetic apoE KO mice vs 0.29 ± 0.12 pmol MNIC / mg tis-

sue in non-diabetic apoE KO, P<0.01 [19]). Of note, the effect of diabetes on NO bioavailabil-

ity in cardiac tissue was considerably smaller (P<0.02), whereas STZ induced a reduction in

NO bioavailability in hepatic tissue (P<0.01). Clearly, STZ-induced diabetes affects NO

homeostasis in a tissue-dependent fashion, although prolonged treatment of diabetic mice

Fig 2. Tissue-dependent variation in NO free radical induction. (A) EPR spectrum of frozen kidney samples. The

characteristic triplet structure of the mononitrosyl-iron complex (MNIC, double-headed arrow) centers around g = 2.035

and represents the formation of local nitric oxide in 334–370 mg tissue. (B-D) Quantification of nitric oxide formation in

kidney, liver and heart tissue, shown as mean pmol MNIC / mg wet tissue ±SD, n = 7–9. E) Plasma ADMA concentrations,

shows as mean ±SD, n = 8. *P<0.05, compared with ApoE; #P<0.05 compared with DM. ApoE = ApoE KO mice, DM =

diabetic apoE KO mice, DM + S = diabetic apoE KO mice + sepiapterin.

doi:10.1371/journal.pone.0170065.g002
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with sepiapterin, a tetrahydrobiopterin (BH4) precursor, was found to induce a 2- to 3-fold

increase of bioavailable NO in kidney, heart and liver tissue (Fig 2).

To see how these different observations at the tissue level reflect those observed in plasma,

we also determined the formation of asymmetric dimethyl arginine (ADMA), a known endog-

enous inhibitor of eNOS. These studies uncovered a small increase in plasma ADMA concen-

trations upon STZ-induced diabetes (0.48 ± 0.13 μmol/L vs. 0.61 ±0.11 μmol/L, P<0.05; Fig

2E). Treatment with sepiapterin for four weeks did not affect plasma ADMA concentrations.

Increased NO levels do not improve diabetic nephropathy in diabetic

apoE KO mice

Fourteen weeks after inducing diabetes, we observed common characteristics of diabetic

nephropathy, including mesangial expansion, mesangiolysis, and, glomerular hypertrophy, as

we described elsewhere [19]. An ensuing treatment with sepiapterin for four weeks did not

prevent the development of diabetic renal lesions as quantified in PAS- and Trichrome-stained

glomeruli (Fig 3A–3C). Importantly, for these studies we verified that sepiapterin did not affect

blood glucose concentrations at the selected dose (Fig 3D).

To assess the effect of sepiapterin on kidney function, we collected 24-hours urine samples

prior to treatment with sepiapterin, as well as at 2 and 4 weeks after treatment. Diabetic apoE

KO mice were characterized by progressive albuminuria (Fig 3E [19]), which is in keeping

with a parallel increase in urine production and urinary albumin excretion [19]. Multiple com-

parisons reveal that a 4-week sepiapterin treatment regimen is insufficient to reduce albumin-

uria as compared to non-treated mice (-11.8 ± 7.1%, p = 0.46).

To visualize the consequences of sepiapterin treatment on the endothelial glycocalyx, we

quantified the binding of cationic ferritin to the negatively-charged glycocalyx. As shown in

Fig 4, diabetic mice displayed decreased endothelial coverage (40.7 ± 7.5%), as compared to

non-diabetic apoE KO mice (83.6 ± 8.3%, P<0.05; Fig 4A and 4B [19]). Interestingly, treat-

ment with sepiapterin seems to lead to a partial restoration of the glycocalyx, based on the

observation that some glomeruli in non-diabetic mice display cationic ferritin coverage,

whereas other glomeruli do not. This phenomenon resulted in high variability in glycocalyx-

coverage data (61.6 ± 25.8%, P<0.1).

In diabetes, various factors can lead to disruption of the glycocalyx [29]. Heparanase-medi-

ated degradation of heparan sulphate represents one of the most widely recognized causes of

glycocalyx perturbation. In particular locally active heparanase plays a critical role in the devel-

opment of diabetic nephropathy in mice [30]. We previously confirmed enhanced glomerular

heparanase protein expression in diabetic apoE mice, compared to non-diabetic apoE KO

mice (39.3 ± 10.8% vs. 13.1 ± 9.2%, P<0.01; Fig 4A and 4C). A notable observation is that

sepiapterin treatment did not lead to a reduction in the expression levels of this enzyme

(36.1 ± 7.4.8%), nor in the heparanase activator cathepsin L (30.2 ± 12.5% vs. 27.3 ± 11.3 for

non-treated diabetic mice). This suggests that heparanase is continuously activated by immu-

nocyte derived cathepsin L despite treatment with sepiapterin, which could potentially explain

that restoration of glycocalyx coverage by sepiapterin in diabetic nephropathy was only partial.

Despite the observed partial restoration of the luminal glycocalyx and possible regulatory

effect of eNOS on heparanase [31], increasing NO bioavailability with sepiapterin was not

capable to restore endothelial function.

Discussion

Endothelial dysfunction plays a critical role in the pathogenesis of diabetes. Diabetes is associ-

ated with loss of glomerular barrier function. Activation of extracellular heparanase by

Nitric Oxide in Diabetic Nephropathy
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inflammatory cells or injured epithelial cells was shown to be of critical importance to cause

loss of the glomerular endothelial glycocalyx and proteinuria [30, 32]. Nitric oxide (NO)

through intracellular s-nitrosylation is a key modifier of cellular function and to ensure cellular

quiescence and tissue homeostasis. The three NO synthases (eNOS, iNOS and nNOS) are how-

ever complex oxidoreductases with the potential to produce NO as well as reactive oxygen spe-

cies [33]. Specifically, for the production of NO they require the cofactor tetrahydrobiopterin

(BH4). Diabetes has been shown to result in loss of BH4 availability and uncoupling of NOS [7,

34].

Fig 3. Sepiapterin does not reduce albuminuria in diabetic apoE KO mice. (A) PAS-stained glomeruli of apoE KO

mice (apoE), diabetic apoE KO mice (DM) and diabetic apoE KO mice treated with sepiapterin (DM + S), showing

heterogeneous diabetic lesions 14 weeks after induction of diabetes with STZ (20). Scale bars: 20 μm. Sepiapterin did not

affect mesangial area (B,C), nor blood glucose concentrations (D). Data are shown as mean ±SD, *P<0.05 compared with

apoE, n = 8. (E) Albumin-creatinine ratios (ACR) at baseline, 2- and 4 weeks after treatment, as indicated by mean ± SEM,

*P<0.05 compared with apoE, n = 14–23.

doi:10.1371/journal.pone.0170065.g003
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The present study shows that improving the NO producing capacity at the tissue level in

the kidney does not result in reduction of glomerular heparanase activity or improvement

of glomerular barrier function. Our observations add several new insights about 1] NO mea-

surements, 2] NO sources in different diabetes models, and 3] the glomerular endothelial

glycocalyx:

1. When measuring NO availability at the tissue level using state-of-the-art spin trapping tech-

nique (EPR) that allows for quantitative NO measurements, diabetes perse is not associated

with overall reduction in NO. In fact, NO availability was increased in the kidney and heart

upon diabetes, while liver NO was decreased, despite elevated levels of the endogenous

NOS inhibitor asymmetric dimethylarginine (ADMA). Reports on NO availability in diabe-

tes have varied from decreased to increased, pointing to the variation in models and the

Fig 4. Increased NO levels affect endothelial glycocalyx non-uniformly. (A) Representative microscopic images of cationic ferritin (TEM; top),

heparanase (HPSE, immunofluorescence; middle) and cathepsin L (CTSL; bottom) in glomeruli of apoE KO mice (apoE), diabetic apoE KO mice

(DM) and diabetic apoE KO mice treated with sepiapterin (DM + S). (B) Quantification of endothelial cationic ferritin coverage in 6–8 capillary loops in

9 glomeruli of 3 mice, shown as mean percentage of total capillary length ± SD, (C) Quantification of glomerular heparanase expression, shown as

mean area percentage ± SD. (D) Quantification of glomerular cathepsin L expression, shown as mean area percentage ± SD. *P<0.05 compared

with ApoE, n = 6–8. Scale bars: 500 nm in TEM images; 20 μm in fluorescent and light microscopic images.

doi:10.1371/journal.pone.0170065.g004

Nitric Oxide in Diabetic Nephropathy

PLOS ONE | DOI:10.1371/journal.pone.0170065 January 19, 2017 8 / 14



often indirect measurements of NO activity. Given the complex nature of in vivo NO radical

detection, surrogate markers for free NO levels have oftentimes been utilized as a readout,

including plasma NOx levels, nitrate, nitrosothiols or nitrosylated heme. In this context, we

note that previous reports of enhanced NO production in diabetes [8] were based on the

quantification of downstream metabolites of NO, such as NOx or nitrate. Furthermore, pre-

vious reports on decreased renal NO production in rat 7–10 days after induction of diabetes

are based on decreased urinary nitrite/nitrate excretion [35, 36] or decreased plasma

nitrite/nitrate levels at 8 weeks after induction of diabetes [15]. Importantly, these NO

metabolites serve as poor indicators of the actual NO free radical levels. This is largely in

part due to the fact that enhanced synthesis of NO augments NOx generation, whereas a

concomitant increase in oxidative stress or reactive oxygen species (ROS) has been estab-

lished to trigger a rapid depletion of local NO levels. As such, the detection of MNIC, the

formation of which is specific for NO free radicals in biological tissues, represents a more

suitable experimental and diagnostic approach for detecting local NO levels [21, 22, 37].

2. Renal NO production in diabetes will be dependent upon different sources including endo-

thelium, macrophages [38] and the tubular system [39]. Chronic uncoupling or inhibition

of eNOS has been shown to accelerate kidney disease [40, 41]. Conditions commonly

observed in patients with kidney disease, such as hyperglycemia, are characterized by an

increase in the generation of advanced glycation end products (AGEs) [42]. AGEs actively

promote NO insufficiency by scavenging NO free radicals [13] via pro-inflammatory AGE-

specific receptors [43–45], or modification of plasma proteins such as albumin [46]. We

recently described that the streptozotocin induced diabetic apoE mouse model, which faith-

fully recapitulates the renal changes in diabetes, is characterized by macrophage activation,

which may explain the increased NO availability. McNeill et al showed in a series of elegant

studies that macrophage function is modulated by NOS coupling and BH4 availability [4],

as was previously also shown by us for endothelial function [3]. The current data show that

it is possible to increase NO production further in diabetes by coupling through BH4 avail-

ability, indicating that uncoupling of NOS enzymes was present in the model. In contrast to

the current study, sepiapterin showed renal protective effect in diabetic db/db mice [47]

and ZSF1 rats, which can possibly be explained by the fact that these models are primarily

characterized by insulin resistance. Insulin signaling is coupled to NOS activation and

impaired insulin signaling may thus have altered the coupling state of NOS in these models.

In our model, mice received small amounts of insulin to keep blood glucose concentrations

within reasonable range. Given that insulin stimulates NO release by endothelial cells [48,

49], this could serve as an explanation for the fact that we did not observe overall NO defi-

ciency in our diabetic apoE KO mice.

3. Endothelial cells are covered with a dense layer of proteoglycans and glycosaminoglycans,

the endothelial glycocalyx. It is the first barrier of the vascular wall and is vasculoprotective

[50] by acting as a permeability barrier [51–53], a mechanosensor [50, 54–57], and by regu-

lating inflammation [58–61]. Loss of endothelial glycocalyx occurs, amongst others, during

oxidative stress and inflammation, both present in diabetes. This is related to the induction

of glycocalyx degrading enzymes, such as hyaluronidase, heparanase and chondroitinase

[62, 63]. Of these, heparanase activity has been suggested to be affected by NO bioavailabil-

ity [31]. Heparanase-induced glycocalyx degradation leads to albuminuria [1] and

increased glomerular heparanase expression was shown to be associated with the develop-

ment of diabetic nephropathy in humans and mice [30, 64].
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Immunocytes have been implicated in activation of extracellular heparanase and degrada-

tion of heparan sulfate in the glycocalyx [1]. Whereas multiple cells can secrete heparanase

upon activation, including endothelium, podocytes and immunocytes [30], its activation

requires the cleavage of a linker protein by the protease cathepsin L [30, 65]. While sepiapterin

successfully increased the modulating potential of NO in this model of diabetic nephropathy,

immunocytes were not affected, hence glomerular heparanase and cathepsin L were not

reduced and glycocalyx properties not restored.

Conclusion

In conclusion, our data show that overall NO availability at the tissue level is not reduced in

diabetes, despite the presence of factors causing endothelial dysfunction, and the presence of

increased levels of the endogenous NOS inhibitor ADMA. Targeting uncoupled NOS with the

BH4 precursor sepiapterin increases NO availability, but does not modify renal glomerular

endothelial barrier function.
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