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Abstract 

Quantifying mean annual flow of rivers (MAF) at ungauged sites is essential for assessments of global 

water supply, ecosystem integrity and water footprints. MAF can be quantified with spatially explicit 

process-based models, which might be overly time-consuming and data-intensive for this purpose, or with 

empirical regression models that predict MAF based on climate and catchment characteristics. Yet, 

regression models have mostly been developed at a regional scale and the extent to which they can be 

extrapolated to other regions is not known. In this study, we developed a global-scale regression model 

for MAF based on a dataset unprecedented in size, using observations of discharge and catchment 

characteristics from 1,885 catchments worldwide, measuring between 2 and 106 km2. In addition, we 

compared the performance of the regression model with the predictive ability of the spatially explicit 

global hydrological model PCR-GLOBWB by comparing results from both models to independent 

measurements. We obtained a regression model explaining 89% of the variance in MAF based on 

catchment area, mean annual precipitation and air temperature, average slope and elevation. The 

regression model performed better than PCR-GLOBWB for the prediction of MAF, as root-mean-square 

error (RMSE) values were lower (0.29 - 0.38 compared to 0.49 - 0.57) and the modified index of 

agreement (d) was higher (0.80 - 0.83 compared to 0.72 - 0.75). Our regression model can be applied 

globally to estimate MAF at any point of the river network, thus providing a feasible alternative to 

spatially explicit process-based global hydrological models. 

Keywords: mean annual discharge; river discharge; global hydrology; empirical modelling; predictions in 

ungauged basins; scaling relationships; model comparison; PCR-GLOBWB; spatial error model. 

1. Introduction 

Mean annual discharge or flow of rivers (hereafter abbreviated as MAF) is an important indicator of global 

water supply, with applications in irrigation supply assessment, climate change vulnerability assessment 

(Chang, 2003; Santini and di Paola, 2015), hydropower assessment (Hall et al., 2004), water footprinting 

(Hanafiah et al., 2011; Hoekstra et al., 2011; Jefferies et al., 2012; Pfister et al., 2009; Tendall et al., 2014), 

and for quantifying sediment fluxes (Syvitski et al., 2003). It also represents one of the most important 
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factors determining the ecosystem integrity of freshwater biodiversity (Oberdorff et al., 1995; Oberdorff et 

al., 2011; Poff and Zimmerman, 2010; Xenopoulos and Lodge, 2006; Xenopoulos et al., 2005). Despite its 

importance, streamflow data availability is limited, and monitoring is in rapid decline since the mid-1980s 

(Shiklomanov et al., 2002). Modelling approaches have long been used to estimate MAF at ungauged sites 

and are generally divided into two categories: spatially explicit process-based models and regression-based 

empirical models. 

State-of-the-art spatially explicit numerical models for global-scale calculations of streamflow are 

Macroscale Hydrological Models (MHM) or Global Hydrology and Water Resources Models (GHWM) 

(Alcamo et al., 2003; Gosling and Arnell, 2011; Hanasaki et al., 2008; van Beek and Bierkens, 2008; Van 

Der Knijff et al., 2010; Widén-Nilsson et al., 2007; Wisser et al., 2010). As these models account for the 

spatial variability of the physical processes involved within catchment hydrology and are capable of 

predicting streamflow even at the daily time scale, they are computationally and data intensive.  

Regression-based approaches to calculate MAF are less time-consuming and computationally less 

intensive. Moreover, regression equations relating streamflow to explanatory catchment characteristics like 

upstream drainage area, precipitation and temperature may help to better understand general hydrological 

patterns and processes across different scales (Burgers et al., 2013; Farmer et al., 2015). However, to date, 

regression-based approaches relating mean annual streamflow to catchment characteristics have been 

mainly applied at a regional scale (Hortness and Berenbrock, 2001; Stuckey, 2006; Tran et al., 2015; Verdin 

and Worstell, 2008; Vogel et al., 1999) or to specific climate zones (Syvitski et al., 2003), and the extent to 

which these models can be extrapolated to other regions is not known. Regression relationships at the global 

scale have hardly been established so far. An exception is Burgers et al. (2013), who derived MAF 

relationships at a global scale using precipitation and catchment area as predictors. However, their model 

explained only 56% of the variance in MAF, which is low compared to the range of 77-99% achieved by 

regional regression models (e.g. Verdin and Worstell (2008)). Yet, the regional studies typically included 

a larger number of predictors, which suggests that the explanatory power of a global-scale regression model 

may increase if relevant predictors are added. In addition, the applicability of global regression relationships 
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for the prediction of mean annual streamflow has not yet been tested. Therefore, the aim of this study was 

twofold: 1) to establish an empirical regression model relating MAF to easily retrievable catchment 

characteristics at the global scale; 2) to test the predictive ability of the regression model in a backcasting 

analysis and compare its performance with the predictive performance of PCR-GLOBWB, a spatially 

explicit MHM (van Beek et al., 2011). To our knowledge, our study is the first to make an explicit 

comparison of the predictive abilities of a process-based and a regression-based global-scale model. 

We based our regression model on measured long-term average MAF from 1,885 catchments worldwide, 

ranging from 2 km2 to 106 km2 in size. We used five predictor variables, including two climatic variables – 

mean annual precipitation and air temperature – and three geomorphologic variables – area, mean slope 

and mean elevation of the catchment. Drainage area, mean annual precipitation and mean annual 

temperature are often used as predictors of MAF in regional regression modelling studies (Verdin and 

Worstell, 2008; Vogel and Sankarasubramanian, 2000; Vogel et al., 1999). The dependence of MAF on 

drainage area is a well-accepted power relationship reflecting the self-similarity of river systems 

(Rodríguez-Iturbe and Rinaldo (2001). Mean annual precipitation represents the potential runoff of the 

catchment, as it equals the amount of water supplied to the catchment (Thomas and Benson, 1970). We 

selected the mean annual temperature as a proxy for the potential evapotranspiration (PET), because 

temperature is a major determinant of evapotranspiration (Hamon, 1963; Lu et al., 2005; Thornthwaite, 

1948). Furthermore, previous regression analyses of MAF have shown an increased explained variance 

when additional geomorphologic parameters were considered (Hortness and Berenbrock, 2001; Stuckey, 

2006; Vogel et al., 1999). Therefore, we included average slope and elevation of the catchment as additional 

predictors in our study. Although elevation and slope alone may not directly influence MAF, they may 

serve as proxies for other factors causing inter-basin streamflow variation which are difficult to measure, 

e.g. radiation, wind, vegetation and basin ruggedness (Thomas and Benson, 1970). 
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2. Materials and methods 

2.1. Mean annual discharge data 

We retrieved worldwide MAF data from the Global Runoff Data Centre (GRDC) database, which provides 

daily or monthly observations of 9,213 gauging stations monitored from 1806 to 2015, with variable record 

length (GRDC, 2015). The GRDC has spent more than 25 years gathering river discharge data from the 

National Hydrological Services of all the World Meteorological Organization (WMO) state members, 

which has resulted in a discharge dataset unprecedented in size. For example, the SAGE Global River 

Discharge Database (http://nelson.wisc.edu/sage/data-and-models/riverdata/) and the RivDis database 

(Vorosmarty et al., 1998) provide discharge data for 3,500 and 1,018 stations, respectively. The accuracy 

of the discharge measurements included in the GRDC database is estimated to be about 10 – 20% (Syvitski 

et al., 2005). For our model development we selected discharge data for the period 1981 – 2010. We used 

a 30 year period because this is in accordance with the recommendations for climate analyses (World 

Meteorological Organization, 1992). We excluded years after 2010 because of a decrease in data 

availability for the most recent years. We averaged the daily discharge data over each year, using only those 

years where 100% of the daily observations were available. Next, we averaged the yearly observations for 

the period 1981 - 2010 in order to obtain a long-term mean annual discharge for each catchment. We 

selected monitoring stations with at least 15 yearly average discharge values in order to obtain 

representative long-term mean values (Kennard et al., 2010). This resulted in a dataset of 1,885 observations 

out of the 2,759 available GRDC gauged catchments with observations in the time range 1981 - 2010 

(Figure 1). 

2.2. Catchment characteristics 

We retrieved catchment-specific values for catchment area (A), average altitude (H), average slope (S), 30-

years average temperature (T) and 30-years average precipitation (P) from a combination of data sources 

(Table 1). Catchment area was retrieved from the GRDC database, which includes a georeferenced map of 

the upstream catchment corresponding with each gauging station (GRDC, 2011). 

http://nelson.wisc.edu/sage/data-and-models/riverdata/
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Figure 1. Distribution of the 1,885 GRDC gauging stations monitored for at least 15 years in the 1981-

2010 period. The stations are grouped (graduated symbols) based on the mean annual flow (MAF) 

recorded at each station. Next to each MAF category, the number of observations are provided in 

brackets. 

Catchment boundaries in this map have been established based on the HydroSHEDS drainage network, a 

15 arc-seconds hydrological map derived from 3 arc-seconds elevation data of the National Aeronautics 

and Space Administration (NASA) Shuttle Radar Topography Mission (SRTM), extended with the hydro1k 

hydrological network for latitudes above 60N, which are not covered by the SRTM data (GRDC, 2011; 

Lehner et al., 2008). 

We derived altitude from the WorldClim digital elevation model (DEM), which is a 30 arc-seconds DEM 

based upon the SRTM elevation data extended with GTOPO30 elevation data for latitudes above 60N 

(Hijmans et al., 2005). We derived a raster slope map from the WorldClim DEM using the ‘average 

maximum technique’ in ArcGIS, similarly to Hortness and Berenbrock (2001). For precipitation and 

temperature, we averaged 30 arc-minutes resolution monthly raster maps from the Climatic Research Unit 

time series (CRU TS) 3.23 to annual values, and consequently averaged over the period 1981-2010 (Harris 

et al., 2014; University of East Anglia Climatic Research Unit, 2013).  
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We resampled the raster maps obtained for precipitation, temperature, altitude and slope in order to match 

the 15 arc-seconds resolution of the HydroSHEDS drainage network, upon which the watershed boundaries 

were established. We then calculated a single mean value of each variable for each catchment corresponding 

with a GRDC gauging station, as described by Syvitski et al. (2003). Resampling and averaging were 

performed in ArcGIS 10.3. An overview of the summary statistics of the variables is available in Table 1.  

Table 1. Summary statistics of the mean annual streamflow (MAF) and catchment characteristics of 

1,885 gauging stations in the period 1981-2010 

Variable Symbol Unit Mean Median SDa Mina Maxa γ1
a Source database 

MAF Q m3∙s-1 3.72∙102 3.38∙101 1.99∙103 3.47∙10-3 4.73∙104 14.2 GRDCb 

Catchment area A m2 4.58∙1010 4.61∙109 2.05∙1011 2.00∙106 3.63∙1012 9.7 GRDCc 

Altitude H m 6.84∙102 4.52∙102 6.05∙102 1.35∙101 4.76∙103 1.6 WorldClimd 

Slope S (°) 2.31∙100 1.27∙100 2.65∙100 4.71∙10-2 1.56∙101 2.0 WorldClimd 

Precipitation P m∙s-1 2.78∙10-8 2.46∙10-8 1.46∙10-8 3.53∙10-9 1.09∙10-7 1.3 CRU TS 3.23e 

Temperature T °C 8.96∙100 8.24∙100 7.51∙100 -1.67∙101 2.76∙101 0.4 CRU TS 3.23e 

aSD = standard deviation; Min = minimum; Max = maximum; γ1 = skewness 
b(GRDC, 2015) 
c(GRDC, 2011) 
d(Hijmans et al., 2005) 
e(Harris et al., 2014) 
 

2.3 Model fitting 

Methods available for correlative modelling range from parametric and non-parametric regression-based 

approaches to machine-learning techniques (Chen et al., 2015; Danandeh Mehr et al., 2013; Fan et al., 2015; 

Okkan and Serbes, 2012; Wang et al., 2015; Wu et al., 2009). For the present study we selected ordinary 

least squares (OLS) regression because it results in an explicit equation, which facilitates interpretation and 

comparison with other studies. All the variables except for temperature were log-transformed to avoid 

heteroscedasticity as they revealed a right-skewed distribution (Table 1), in agreement with the choices 

made in previous studies for similar variables (Burgers et al., 2013; Hendriks et al., 2012; Syvitski et al., 

2003; Verdin and Worstell, 2008; Vogel et al., 1999). This resulted in the following linear regression 

equation: 

 𝑙𝑜𝑔10𝑄 = 𝛽0 + 𝛽𝐴 ∙ 𝑙𝑜𝑔10𝐴 + 𝛽𝑃 ∙ 𝑙𝑜𝑔10𝑃 + 𝛽𝑇 ∙ 𝑇 + 𝛽𝑆 ∙ 𝑙𝑜𝑔10𝑆 + 𝛽𝐻 ∙ 𝑙𝑜𝑔10𝐻 + 𝜀 (1) 
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where β0 is the intercept, <βA, βP, βT, βS, βH> is the vector of the regression coefficients associated with the 

predictor variables (symbols are described in Table 1) and ε is the error term. The back-transformed form 

to real scale of Equation 1 yields the nonlinear formulation: 

 𝑄 = 10𝛽0 ∙ 𝐴𝛽𝐴 ∙ 𝑃𝛽𝑃 ∙ 10𝛽𝑇∙𝑇 ∙ 𝑆𝛽𝑆 ∙ 𝐻𝛽𝐻 ∙ 10𝜀 (2) 

Prior to performing the regression analysis, we assessed multi-collinearity among the predictors using 

Variance Inflation Factors (VIFs), employing the function “vif” of the package “HH” (Heiberger, 2015) in 

the R environment (Development Core Team, 2005). We preferred VIFs over bivariate correlation analysis 

because pairwise correlation coefficients do not reveal more subtle forms of multicollinearity (Field, 2009). 

The maximum VIF was 2.8, well below the standard threshold of 5 (Zuur et al., 2009). We then fitted OLS 

regression models for an increasing number of predictors. To identify the best regression model for each of 

the five sets of predictors (first set with one predictor variable, second set with two predictor variables, etc.) 

as well as the best overall model, we employed the function “dredge” of the package “MuMIn” in the R 

environment (Barton, 2015). Within each set, the algorithm analyzes all possible combinations of predictor 

variables and ranks the regression models based on a user-defined criterion. To identify the most 

parsimonious model for each set of predictors, we used the Akaike Information Criterion (AIC) as well as 

the Bayesian Information Criterion (BIC), which employs a larger penalty term for additional predictor 

variables. Further, we used the Cooks D influence statistic in order to identify observations that may have 

biased the coefficients of the regression (Cook and Weisberg, 1982). 

In order to assess potential bias in the regression coefficients induced by spatial autocorrelation resulting 

from the nested structure of the catchments, we compared the regression coefficients with the coefficients 

of a spatial error (SE) model. Since spatial autocorrelation can exist within either the residuals (spatial error) 

or the response variable (spatial lag), we performed a preliminary test for spatial autocorrelation based on 

the Lagrange Multiplier test (LM test) using the R package ‘spdep’ (Anselin, 1988; Bivand et al., 2013; 

Bivand and Piras, 2015). We preferred the LM test to the more commonly employed Moran’s I test, for the 

LM test has a higher power to discriminate among either spatial error autocorrelation or spatial lag (Anselin 
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and Rey, 1991). The LM test showed significantly higher autocorrelation in the error term (LM test value 

of 465, robust LM test value of 375) than in the response variable (with values of 115 and 25, respectively). 

Therefore we fitted an SE model that accounts for spatial autocorrelation in the residuals, expressing the 

error term of Equation 1 as: ε = λWε + μ, where λ is the coefficient in the spatial autoregressive structure, 

W is a weight matrix defined by the inverse distance between observations, and μ is the vector of identically 

distributed random errors (Ord, 1975). We calculated the distances between the GRDC stations across the 

stream network thereby considering as neighbors only those stations belonging to the same encompassing 

hydrologic basin. As we employed HydroSHEDS as rivers network for the calculation of W, we fitted and 

compared the OLS and SE regression coefficients based on a subset of observations within 58S - 60N 

latitude (n = 1,748). 

2.4. Comparison with PCR-GLOBWB: backcasting analysis 

We compared the predictive performance of our best regression model with the global hydrological model 

PCR-GLOBWB (van Beek and Bierkens, 2008; van Beek et al., 2011). Defined as a “leaky bucket” type 

of model, PCR-GLOBWB calculates changes in water storage between two different soil layers, 

groundwater reservoir and atmosphere, forced by CRU TS 2.1 data, on a cell-by-cell basis at 30 arc-minutes 

resolution, for daily time steps. PCR-GLOBWB has been widely employed for assessments of global 

surface water and groundwater availability, nutrient transport modelling and biodiversity impact 

calculations (Beusen et al., 2016; Gleeson et al., 2012; Janse et al., 2015; Wada et al., 2011; Wanders and 

Wada, 2015). Compared to other GHMs, PCR-GLOBWB is a purely process-based model, as opposed to 

for example WaterGAP which is partially calibrated (Alcamo et al., 2003; Döll et al., 2003). Therefore, we 

considered PCR-GLOBWB a more suitable benchmark for the comparison. 

We considered monitoring data of GRDC stations continuously monitored from 1971 to 1980 as an 

independent and common basis for the comparison between the regression model and PCR-GLOBWB. 

From the 2,219 GRDC stations used for the testing of PCR-GLOBWB (van Beek et al., 2011), we selected 

the 543 stations that were continuously monitored from 1971 through 1980 (Figure S2). We derived mean 
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annual values of temperature and precipitation from the CRU TS 3.23 for each catchment, according to the 

approach described in section 2.2, and calculated mean annual streamflow for each year in the time span 

1971-1980, and as a 10 years average. 

We evaluated and compared the performances of the regression model and PCR-GLOBWB employing root 

mean square error (RMSE) and modified index of agreement (d). Thus, we employed an absolute as well as 

a relative error measure, following the recommendations for hydrological model evaluation as provided by 

Legates and McCabe (1999). We adopted the index of agreement d2 in the modified form d to avoid inflation 

of errors by squared values (Legates and McCabe, 1999). In addition, the d represents an improvement over 

the coefficient of determination (R2) (Legates and McCabe, 1999).  

Given the six orders of magnitude covered by the data, we log transformed the mean annual streamflow 

values. The RMSE is calculated as: 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛 ∙ 𝑚
∙ ∑ ∑(log10 𝑂𝑥,𝑡 − log10 𝑃𝑥,𝑡)

2
𝑛

𝑡=1

𝑚

𝑥=1

 (3) 

where n∙m are the dimensions of the matrix of observations of the m GRDC stations over the n years of the 

backcasting period, Ox,t is the observed value for the station x at time t, and Px,t is the predicted value for 

the station x at time t.  

The d is formulated as: 

 

𝑑 =
∑ ∑ |log10𝑂𝑥,𝑡 − log10𝑃𝑥,𝑡|𝑛

𝑡=1
𝑚
𝑥=1

∑ ∑ (|log10𝑃𝑥,𝑡 − log10�̅�| + |log10𝑂𝑥,𝑡 − log10�̅�|)𝑛
𝑡=1

𝑚
𝑥=1

 (4) 

where �̅� stands for the overall average of the observed streamflow of all the stations across the 10 years 

period. The index of agreement varies between 0 and 1, with higher values indicating a better fit. When the 

mean annual streamflow averaged over the 10 years is considered, n becomes 1 in Equations 3 and 4. 
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3. Results 

3.1 Model fitting 

The OLS regression analysis revealed that the model with the full set of predictors was the most 

parsimonious (i.e., lowest AIC; Table S1). Nearly 90% of the variation in MAF could be explained by the 

five catchment characteristics (Table 2), indicating that the most relevant predictors for MAF were covered 

by the regression model. According to the standardized regression coefficients, which can be compared 

across explanatory variables to assess their relative importance (Bring, 1994), catchment area was the most 

important predictor of MAF, followed by precipitation, temperature, slope and elevation.  

Table 2. Coefficients (raw and standardized), goodness of fit (R2) and number of underlying observations 

(m) of the most parsimonious regression model Q = 10β0 ∙ A βA ∙ P βP ∙ 10 βT∙T ∙ H βH ∙ S βS. CI = confidence 

interval. 

Coefficient Value (95% CI) Std. value R2 m 

β0 9.066 (8.503  ̵  9.630) 0 0.89 1,885 

βA 1.018 (1.001  ̵  1.035) 0.961   

βP 2.070 (1.991  ̵  2.148) 0.486   

βT -0.038 (-0.040  ̵  -0.035) -0.290   

βH -0.509 (-0.565  ̵  -0.454) -0.212   

βS 0.464 (0.421  ̵  0.507) 0.237   

 

The model performed better for higher MAF values (Figure 2). Furthermore, residual errors were slightly 

larger for catchments with lower precipitation values and at higher altitudes (Figure S1). Residuals tended 

to be randomly distributed in relation to catchment area, precipitation or slope (Figure S1). Only about 

1.3% of the predicted values showed errors greater than one order of magnitude (Figure 2). For the Cooks 

D statistic, a maximum value of 0.03 was found, well below the threshold of 1 (Cook and Weisberg, 1982), 

meaning that none of the observations biased the regression coefficients.  

The comparison of the regression coefficients between the OLS and SE regression models revealed a large 

overlap of the confidence intervals of the coefficients (49-86% CI overlap; Table S2). This indicated that 

the OLS regression coefficients were not significantly influenced by spatial autocorrelation (type I error). 



12 

 

 

Figure 2. Predicted versus observed MAF values of the 1,885 GRDC stations employed in the regression 

analysis. The solid line represents perfect model fit (1:1 line) and the dashed lines represent a difference 

of one order of magnitude. 

3.2 Performance testing on independent data and comparison with PCR-GLOBWB 

The testing of the regression model on independent data in the time period 1971 - 1980 (backcasting 

analysis), for both single year and 10-years average MAF, revealed that the predictions of the regression 

model were characterized by lower RMSE values and higher d values than the predictions of the global 

hydrological model PCR-GLOBWB (Figure 3).  

The PCR-GLOBWB simulation resulted in a greater number of outliers, in agreement with the higher 

RMSE values (Figure 3). For the OLS model, about 3% of the observations had residuals greater than one 

order of magnitude, whereas about 7% of the PCR-GLOBWB results deviated more than one order of 

magnitude from the measurements. PCR-GLOBWB performed slightly better than the OLS model for the 

highest MAF values (> 10,000 m3/s; Figure 3). Both models performed poorly for MAF values lower than 

10 m3/s. In general, residuals of PCR-GLOBWB revealed a cone-shaped distribution, with larger errors at 

lower discharge values. In contrast, the OLS model showed a tendency to overestimate low discharge 

values. 
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Figure 3. Results of the backcasting analysis for the period 1971-1980, showing predicted versus 

observed MAF for the OLS regression model (left) and the GHM PCR-GLOBWB (right), based on 

yearly values (top) as well as 10-year average values (bottom). Within each chart, the solid line represents 

perfect model fit (1:1 line) and the dashed lines define a range of accuracy of plus/minus one order of 

magnitude. RMSE = root mean square error; d = modified index of agreement. 

Both models performed better when backcasting the 10-years average of MAF than MAF for single years. 

For the 10-years average MAF, the residuals greater than 1 order of magnitude reduced to about 1% (4 

observations) and 4% (22 observations) for the regression model and PCR-GLOBWB, respectively. 
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4. DISCUSSION 

4.1 Regression coefficients interpretation 

We developed a global-scale multiple regression model for predicting mean annual flow of rivers based on 

easily retrievable input parameters. We calibrated the model on 1,885 catchments worldwide based on long-

term average discharge data (1981-2010), resulting in a model explaining 89% of the variance in MAF 

based on catchment area and catchment-averaged precipitation, temperature, slope and altitude. The 

analysis revealed the catchment area to be the most important predictor of MAF (Table 2). Indeed, a single 

regression analysis based on catchment area alone already explains 61% of the variation in MAF (Table 

S1), in agreement with scaling relationships reflecting self-similarity across catchments. Nevertheless, 

additional predictors considerably increased the explained variance (Table S1). This suggests that multiple 

regression improves the interpretation of the spatial scaling of MAF at a global level, in agreement with 

recent findings that point toward multiple regression (called “multiscaling”) to improve the interpretation 

of scaling behavior for daily streamflow of the Southeast United States (Farmer et al., 2015). 

The MAF scaled to catchment area with an exponent of about 1, implying a linear relationship between 

MAF and drainage area. This is in agreement with the coefficients reported by a number of regional studies 

using multiple regression analysis (Table 3), and close to the value of 0.86 reported by the global study of 

Burgers et al. (2013). Further, MAF scaled to precipitation with an exponent of about two. This is highly 

similar to the findings reported by Tran et al. (2015) (Table 3), who conducted a regional study covering 

533 catchments. On the other hand, the coefficient for precipitation found in this study is in contrast with 

the linear relationship observed in Burgers et al. (2013). However, in the current study we employed about 

three times more observations and our regression model explained about 33% more of the variance. In 

general, coefficients reported for precipitation tend to be greater than 1 and converging towards 2 (Table 

3), reflecting nonlinearity in the physical process responsible for the runoff generation (see e.g. Yu et al. 

(2015)). Therefore, given the global coverage, the heterogeneity of the input variables values employed to 

calibrate the coefficients and the large explained variance, the value of about 2 is considered to be a 

reasonable estimate of the exponent for precipitation. 
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Table 3. Regression coefficients found in this study compared with coefficients reported in regional and 

global studies available from the literature. n represents the number of catchments employed to calibrate 

the regression coefficients; A range is the range of the catchment areas employed in the respective study. 

 This 

study 

Burgers et 

al. (2013) 

Hortness and 

Berenbrock (2001) 

Stuckey 

(2006) 

Tran et al. 

(2015) 

Vogel et 

al. (1999) 

Gyawali et al. 

(2015) 

βA 1.02 0.86 0.83 - 1.10 1.01 1.01 0.58 - 1.14 0.87 

βP 2.07 1.01 1.64 - 2.70 1.80 2.04 1.21 - 6.42 3.68 

βT -0.04 - - - -0.49a -7.66 -  

-0.51a - 

βS 0.46 - -3.44 - 7.52b - - 0.33 - 0.51 0.30b 

βH -0.51 - -2.36 - 2.30 0.13 - 1.66c - 

n 1,885 663 200 195 533 1,553 93 

A range 

[km2] 

2.0∙100 - 

3.6∙106 

7.3∙103 - 

4.6∙106 
8.0∙100 - 3.5∙104 

5.6∙100 - 

4.5∙103 

1.3∙101 – 

1.7∙102 
- 

6.2∙100 - 

4.4∙103 

Extent Global Global Idaho, USA 
Pennsylvan

ia, USA 

Upper 

Mississippi, 

USA 

USA 
western Great 

Lakes, USA 

avalues refer to the log-transformed form and are therefore not directly comparable with the coefficient obtained in this study 
bvalues refer to slope in percent instead of degrees and are therefore not directly comparable with the coefficient obtained in this study 
cused only for region 16, “Great Basin” in Vogel et al. (1999) 

For temperature a negative coefficient was obtained, reflecting decreasing MAF with increasing 

temperature. Indeed, increases in temperature would lead to an increased evapotranspiration, which 

eventually implies that less water is routed through the drainage network and poured at the discharge point. 

The negative relationship is in agreement with the results of regional studies, but as these studies were 

based on log-transformed temperature data, the values of the coefficients are not directly comparable with 

ours (Tran et al., 2015; Verdin and Worstell, 2008; Vogel et al., 1999). The relationship between MAF and 

altitude is rather complex. The exponent resulting from the regression analysis was negative, which can be 

explained by the fact that at higher altitudes the solar radiation and wind are more intense, therefore 

enhancing the evapotranspiration process (Tran et al., 2015). In contrast, some studies reported positive 

exponents for altitude (Table 3). A possible explanation could be that these studies did not include 

temperature as a predictor, which implies that the positive exponent for the altitude term may reflect an 

effect of temperature. At high altitudes, the lower temperature likely results in less evapotranspiration hence 

an increase in MAF. However, if the model does not include temperature as predictor, the larger MAF at 

higher altitudes may result in a positive regression coefficient for altitude instead. The positive exponent of 
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about ½ obtained for slope (S) compares well with the values reported in regional studies and reflects that 

in catchments with steeper slopes, the runoff and consequently the MAF is enhanced.  

4.2 Performance comparison with PCR-GLOBWB 

Overall, our regression model performed better than PCR-GLOBWB when applied to an independent test 

dataset. Differences were apparent in particular for smaller catchments (Figure 3). The residuals (absolute 

values) of PCR-GLOBWB for the 10-years average MAF revealed a significant negative trend in relation 

to area (p-value < 0.01, R2 = 0.03), while for the regression model no significant correlation was found. 

However, new global hydrological models with greater spatial resolution than the 30 arc-minutes version 

of PCR-GLOBWB employed in this study may achieve better results, especially for smaller catchments 

(e.g. see the list of models provided in Bierkens (2015)). Yet, such refined models are more demanding in 

terms of computational costs (Bierkens, 2015), and might therefore be more suitable when monthly or daily 

discharge values are needed. 

Both the regression model and PCR-GLOBWB performed worse for water-scarce regions, as revealed by 

larger errors at higher dryness ratio values (Figure 4). The dryness ratio reflects water losses due to 

evapotranspiration relative to the amount of precipitation. It is defined as the actual annual 

evapotranspiration divided by the total annual precipitation, where the actual evapotranspiration is 

calculated as the annual precipitation minus the unit discharge, in turn obtained by dividing the discharge 

by the area of the catchment (Vogel et al., 1999). The larger errors with higher dryness ratios are likely due 

to a combination of higher uncertainty in the precipitation values for water-scarce regions and hydrological 

processes that are particularly relevant in dry regions yet not described by the models (Döll et al., 2003; 

van Beek et al., 2011; Vogel et al., 1999). Examples of such processes include the almost instantaneous 

evaporation from many ephemeral post-rainfall ponds and relatively large losses from the river channel to 

groundwater (Döll et al., 2003). In addition, water abstraction by human activities is likely to affect the 

natural flow in water scarce regions more than in wet regions, thus providing an additional possible 

explanation for the overestimation of MAF in dry regions. 
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Figure 4. Plot of the residuals of the backcasting on the 10-year average MAF vs the dryness ratio for a) 

the regression model and b) PCR-GLOBWB. Note that 18 values (about 3% of total data) with dryness 

ratios smaller than 0 were excluded for clarity of representation. 

4.3 Applicability of the regression model 

The residuals of our regression model were not related to area (Figure S1-b), suggesting that the model is 

area-independent and maintains similar performance across catchments ranging across at least six orders of 

magnitude in size (2 to 106 km2). Although the distribution of the monitoring stations employed for the 

calibration of the regression coefficients was skewed towards America and Europe (Figure 1), the residuals 

of the model-application (yearly and 10 years average MAF) were consistent across different continents 

(Figure S3). This is supported by the wide range of latitudes covered by the monitoring stations, reflected 

by a large range in precipitation and temperature values (Table 1). This indicates that the model developed 

by this study can be applied to predict MAF at any point of any river network globally, taking into account 

the weaker prediction power for water scarce regions (see section 4.2). As such, the model is most suitable 

for assessments of water availability and ecological integrity in relation to changing future climatic 

conditions. 

The model requires only a small number of input parameters, namely catchment area, catchment-averaged 

precipitation, catchment-averaged temperature, catchment-averaged altitude and catchment-averaged 

slope. Catchment area as well as slope and altitude can be easily derived from a flow direction raster map 
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and a digital elevation model with standard Geographic Information System (GIS) tools. Annual mean 

precipitation and temperature can be obtained from observations covering a given period of interest. If 

predictor variable values are within the range of values employed in the calibration phase (Table 1), the 

uncertainty of the predictions is known. Application of the model to predictor values outside the calibration 

domain results in MAF values with unknown uncertainty. In addition to this, given the fact that the model 

was calibrated on climatic data different from the CRU TS 3.23 (Harris et al., 2014), with a river network 

different from HydroSHEDS 15-sec (Lehner et al., 2008) or with another DEM else than the one provided 

by the WorldClim database (Hijmans et al., 2005), we acknowledge that the model is not valid with other 

input sources.  

The regression model performed worse for extreme MAF values when applied at finer temporal scales, as 

exemplified by the decreased performance of the model on a year-by-year basis (Figure 3). This is due to 

the fact that the regression coefficients have been calibrated on 30 years averaged data and therefore when 

the model is applied at a finer temporal scale it would underestimate high MAF values and overestimate 

low MAF values. Yet, the bias due to temporal downscaling was relatively low at high MAF values (Figure 

3), suggesting that the overestimation of MAF at low values is related to the decreased model performance 

in water-scarce regions (Figure 4) rather than the temporal downscaling. Implementing catchment aridity 

as predictor in a regression model is, however, a non-trivial problem. Attempts to include an interaction 

term of precipitation and temperature to describe catchment aridity within this study were inconclusive due 

to the scarce increase in the explained variance and multicollinearity issues. Furthermore, including 

complex multi-variable predictors would go beyond the scope of developing a conceptually simple and 

easily applicable model. In addition, process-based models like PCR-GLOBWB which implement the 

evapotranspiration process in a more mechanistic way reveal the same limitations when predicting MAF in 

arid catchments. Therefore, the scarcity and uncertainty of monitored precipitation and discharge values in 

such regions represent a major source of bias. Hence, further research should focus on improving models 

for predicting mean annual flow in water scarce regions, which is particularly relevant in assessments of 
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water availability and water footprints. In addition, future work would benefit from an increase in the quality 

and quantity of monitoring data, for precipitation and discharge in particular. 

5. CONCLUSIONS 

We presented a conceptually simple model for predicting mean annual flow of rivers globally at any point 

of the river network. The model explained 89% of the variance in MAF based on observations retrieved 

from 1,885 catchments worldwide. The regression coefficients obtained were within the ranges reported by 

previous regional-scale studies and indicated that MAF scales linearly to catchment area, while it scales 

nonlinearly to precipitation with an exponent of about 2. Temperature, slope and altitude, which have not 

been used before in global regression models for MAF, further improve the explained variance. Our model 

can be applied to estimate MAF at any ungauged site in the river network globally. However, it should be 

noted that the model is valid only for input parameters within the range of the calibration variables and 

therefore, outside the applicability domain the uncertainty in the estimation of MAF is unknown. 

Application of the model to predict 1-year and 10-year average MAF based on independent test data 

revealed that only 3% and 1% of the simulated MAF values deviated more than one order of magnitude 

from the measurements, respectively. In addition to this, our model performed slightly better than the 

widely employed macro hydrological model PCR-GLOBWB, particularly for smaller catchments. Both the 

model developed in this study and PCR-GLOBWB performed worse for water-scarce regions by 

overestimating the MAF, due to the increased uncertainty in rainfall and discharge observations and to the 

difficulty in describing the catchment hydrology in such regions. This implies that in dry regions, our model 

should be applied very cautiously.  

It is recommended that forthcoming studies on global models for the prediction of MAF concentrate on 

including a better description of water-scarce regions within the model. Nonetheless, streamflow prediction 

models would in general benefit from the improvement of quality and quantity of monitored precipitation 

and discharge data especially in arid regions. In addition, future research should focus on whether such a 
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simplified framework for describing catchment hydrology worldwide can be derived for finer temporal 

resolutions (daily or monthly).  
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