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Abstract

Several EU countries import wood pellets from the south-eastern United States. The imported wood pellets are
(co-)fired in power plants with the aim of reducing overall greenhouse gas (GHG) emissions from electricity and

meeting EU renewable energy targets. To assess whether GHG emissions are reduced and on what timescale,

we construct the GHG balance of wood-pellet electricity. This GHG balance consists of supply chain and com-

bustion GHG emissions, carbon sequestration during biomass growth and avoided GHG emissions through

replacing fossil electricity. We investigate wood pellets from four softwood feedstock types: small roundwood,

commercial thinnings, harvest residues and mill residues. Per feedstock, the GHG balance of wood-pellet elec-

tricity is compared against those of alternative scenarios. Alternative scenarios are combinations of alternative

fates of the feedstock materials, such as in-forest decomposition, or the production of paper or wood panels like
oriented strand board (OSB). Alternative scenario composition depends on feedstock type and local demand for

this feedstock. Results indicate that the GHG balance of wood-pellet electricity equals that of alternative scenar-

ios within 0–21 years (the GHG parity time), after which wood-pellet electricity has sustained climate benefits.

Parity times increase by a maximum of 12 years when varying key variables (emissions associated with paper

and panels, soil carbon increase via feedstock decomposition, wood-pellet electricity supply chain emissions)

within maximum plausible ranges. Using commercial thinnings, harvest residues or mill residues as feedstock

leads to the shortest GHG parity times (0–6 years) and fastest GHG benefits from wood-pellet electricity. We

find shorter GHG parity times than previous studies, for we use a novel approach that differentiates feedstocks
and considers alternative scenarios based on (combinations of) alternative feedstock fates, rather than on alterna-

tive land uses. This novel approach is relevant for bioenergy derived from low-value feedstocks.
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Introduction

The EU aims to increase the share of renewable energy

in its gross final energy consumption to 20% by the year

2020 to mitigate climate change and improve energy

security of supply (EU directive 2009/28/EC). Wood

pellets, a type of solid biofuel, form one such renewable

and accounted for 0.47% of EU gross inland energy con-

sumption in 2014 (Aebiom, 2015; Eurostat, 2016). The

EU is the largest global producer, consumer and impor-

ter of wood pellets used for both electricity production

and for residential and district heating (Sikkema et al.,

2011; Lamers et al., 2012; Goh et al., 2013; Eurostat,

2015). The United Kingdom, the Netherlands, Belgium

and Denmark have been the main importers of wood

pellets from outside the EU that are used for (co-)firing

in power plants to (partly) replace fossil fuels (Sikkema

et al., 2011; Lamers et al., 2012, 2015; Goh et al., 2013;

Goetzl, 2015). These wood-pellet imports increased

more than fourfold between 2009 and 2014 (Eurostat,

2015).

The United States is the largest global exporter of

wood pellets (EIA, 2014). Production is largest in the US

Southeast (US SE; as defined by Wear & Greis, 2012, see

Fig. S1) and nearly all wood-pellet exports from the US
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SE go to the EU (Pinchot institute, 2013; Abt et al., 2014;

EIA, 2014). Primarily driven by EU demand (Abt et al.,

2014), US SE wood-pellet production and export have

doubled since 2011 (Eurostat, 2015; Prestemon et al.,

2015), making the region one of the largest global

wood-pellet suppliers to the EU (Hoefnagels et al.,

2014). Even so, the wood-pellet market is small relative

to that of other forest products (e.g. saw timber or

paper), with wood pellets having comprised <1% of

total US forest products by weight and about 1% of total

US forest products exports by value in 2014 (FAO,

2016).

There are several concerns regarding the sustainabil-

ity of electricity production from wood pellets, includ-

ing biodiversity loss, soil degradation and climate

change (e.g. Lamers et al., 2013b; Pinchot Institute for

Conversation, 2013; Thiffault et al., 2015; Olesen et al.,

2016). This study considers the climate change impact

of wood-pellet electricity. This impact is usually

assessed by constructing the greenhouse gas (GHG) bal-

ance of wood-pellet electricity, and then determining

the (time to) GHG emission savings (i.e. GHG benefits)

compared to a reference system or scenario. Standard-

ized guidelines for GHG accounting currently do not

exist (Buchholz et al., 2015; Galik & Abt, 2015). How-

ever, there is wide agreement that regardless of the

GHG accounting method applied, larger and faster

GHG emission savings (GHG benefits) from wood-pel-

let electricity are achieved:

• when replacing higher GHG-intensity fossil fuels

(e.g. Cherubini et al., 2009; Walker et al., 2010; Colnes

et al., 2012; Zanchi et al., 2012; Jonker et al., 2013;

Lamers & Junginger, 2013a),

• when forest productivity is high; productivity

depends on climate, soil and other biophysical site

characteristics, as well as tree species and forest

management (e.g. Marland & Schlamadinger, 1997;

Cherubini et al., 2011; Zanchi et al., 2012; Jonker

et al., 2013; Lamers & Junginger, 2013a),

• when GHG emissions along the wood-pellet supply

chain are low; emissions depend on forest manage-

ment, transport and processing (e.g. Schlamadinger

& Marland, 1996a; Magelli et al., 2009; Sikkema et al.,

2010; Mitchell et al., 2012; Jonker et al., 2013).

Greenhouse gas footprinting studies that use a life-

cycle assessment approach (in which forest carbon

sequestration is accounted for by considering biogenic

emissions carbon neutral) show that European electric-

ity generated using softwood wood pellets from the US

SE causes 50–75% less GHG emissions than fossil-fuel-

derived grid electricity (Dwivedi et al., 2011, 2014a; per-

sonal communication G.-J. Jonker, October 23, 2015).

Other studies point out that GHG benefits of wood-

pellet electricity are often not immediate but depend on

the following: (1) the time lag between GHG emission

(harvesting of forest biomass and burning of resulting

biofuels) and GHG sequestration during forest regrowth

(Zanchi et al., 2010; McKechnie et al., 2011; Lamers &

Junginger, 2013a); (2) the potential (in)direct GHG emis-

sions or sequestration from the conversion of a previous

land- or forest use to production forests (Fargione et al.,

2008; Searchinger et al., 2008, 2009; Berndes et al., 2013;

Lamers & Junginger, 2013a; Wang et al., 2015); and (3)

whether or not the GHG balance of wood-pellet electric-

ity is compared against a (dynamic) counterfactual sce-

nario, in which forestland or pellet feedstock is used

differently and electricity is produced from fossil

sources (Schlamadinger & Marland, 1996b; Mitchell

et al., 2012; Lamers & Junginger, 2013a; Lamers et al.,

2014; Stephenson & MacKay, 2014; Buchholz et al.,

2014).

The first two effects can lead to initial GHG emissions

and an initial dip in the GHG balance of forest bioen-

ergy that is ambiguously refered to (Matthews et al.,

2014) as the carbon debt (Zanchi et al., 2010; reviewed by

Lamers & Junginger, 2013a). Carbon debt payback times

(i.e. the time until forest regrowth and avoided fossil

GHG emissions compensate the carbon debt) have been

estimated to be 1–27 years for Dutch electricity from US

SE wood pellets (Jonker et al., 2013). The third consider-

ation has led to the calculation of so-called GHG (or

carbon-) parity times: the time to the point at which

wood-pellet electricity (usually with higher initial emis-

sions) and the counterfactual have the same cumulative

net GHG emissions (explained in detail by Mitchell

et al., 2012; Lamers & Junginger, 2013a). Beyond the

GHG parity time, wood-pellet electricity leads to GHG

emission savings compared to the counterfactual. For

European electricity from US SE wood pellets, estimated

GHG parity times range 2–80 years (in most cases: 20–
50), when compared to commonly used counterfactuals

of continued forest growth or natural regrowth after

one harvest (Colnes et al., 2012; Jonker et al., 2013).

The choice of counterfactual greatly influences the

GHG benefits of wood-pellet electricity (Jonker et al.,

2013; Lamers & Junginger, 2013a; Lamers et al., 2014;

Stephenson & MacKay, 2014). So far however, the

counterfactuals for wood-pellet electricity considered

in previous studies have been limited and can be

improved in three ways. First, earlier work on coun-

terfactuals has focused on alternative land or forest

uses (Colnes et al., 2012; Mitchell et al., 2012; Jonker

et al., 2013; Lamers & Junginger, 2013a; Lamers et al.,

2014). However, decisions on land- or forest use are

more often driven by saw timber and paper markets

(Wear & Greis, 2013; Forest2market, 2016) or external

pressures like urbanization (Wear & Greis, 2013) than

© 2016 John Wiley & Sons Ltd, GCB Bioenergy, doi: 10.1111/gcbb.12426
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by wood-pellet markets. Instead of alternative land-

use, counterfactuals for wood-pellet electricity should

therefore focus on alternative fates of wood-pellet

feedstock material. That is, what would have hap-

pened to the feedstock material had it not been used

to produce wood pellets. Examples include the pro-

duction of other products or in-forest decomposition

of feedstock material (similar to counterfactuals by

Stephenson & MacKay, 2014).

Second, the exact type of wood-pellet feedstock likely

affects its alternative-fate counterfactual. Counterfactu-

als should therefore be determined per feedstock type.

This approach enables more accurate parity time calcu-

lation as well as intercomparison of GHG benefits of

wood-pellet electricity from different feedstocks. Wood-

pellet feedstock types derived from softwood planta-

tions in the US SE generally include (saw) mill residues,

small roundwood (including pulpwood traditionally

used for the pulp and paper industry), forest thinnings

and harvest residues (Lamers & Junginger, 2013a; Dwi-

vedi et al., 2014a; Dwivedi & Khanna, 2014; Stephenson

& MacKay, 2014; Buchholz & Gunn, 2015; Dwivedi &

Khanna, 2015). Previous work on the effect of feedstock

type on GHG emissions has been limited to show that

using harvest residues as wood-pellet feedstock leads to

largest GHG benefits while assuming that residues

would otherwise decompose or be burnt (e.g. McKech-

nie et al., 2011; Zanchi et al., 2012; Bernier & Par�e, 2013;

Lamers & Junginger, 2013a; Lamers et al., 2014; NRDC,

2015).

Third, multiple counterfactuals, that is, multiple alter-

native fates, for each wood-pellet feedstock type are fea-

sible (e.g. some material is used in the paper industry,

whereas the remainder decays on site). To our knowl-

edge, there has been no attempt to create a mix of coun-

terfactuals and analyse its effect on GHG benefits of

wood-pellet electricity or forest bioenergy in general.

In this study, we calculate GHG parity times of

wood-pellet electricity from different feedstocks origi-

nating from existing US SE softwood plantations, to

determine whether and when GHG benefits of wood-

pellet electricity occur. We use a new approach that for

each feedstock compares the GHG balance of wood-pellet

electricity against alternative scenarios that are combina-

tions of individual feedstock fate-based counterfactuals.

Alternative scenario composition is also made to

depend on demand for the different feedstock materials

for production of alternative products. Our research

focuses on pellets from softwood plantations, as more

than 60% of US SE wood pellets are produced from soft-

wood material (Forest2Market, 2016), and softwood

plantations form 19% of US SE total forest cover (Wear

& Greis, 2013).

Materials and methods

The GHG balance of forest bioenergy is often assessed using

a forest carbon accounting model like GORCAM

(Schlamadinger & Marland, 1996b; Jonker et al., 2013),

LANDCARB (Harmon, 2012; Mitchell et al., 2012) or FOR-

CARB2 (Heath et al., 2010). However, the exact calculations

behind these models are often not transparent and/or US

SE-specific parameterizations are not available. We therefore

calculated GHG parity times with a set of equations tailored

for comparing wood-pellet electicity to alternative scenarios,

and parametrized for the US SE (Table S1). Before dis-

cussing these calculations in detail, we first define different

wood-pellet feedstock types. We then describe feedstock

production, wood-pellet electricity and individual counterfac-

tuals and their combination into alternative scenarios

(Fig. 1). Then lastly, we set out our GHG accounting

assumptions and explain our calculations and sensitivity

analyses.

Wood-pellet feedstock definition

A softwood plantation yields several products; most valuable

are saw logs [diameter at breast height (DBH) of >35 cm] and

chip-n-saw wood (DBH of 25–35 cm; SC forestry commission,

2015). These two categories were lumped here as saw wood,

which is sawn into lumber at a (chip-n-) sawmill and it is too

expensive for use as wood-pellet feedstock (Dwivedi et al.,

2014b), except for the (chip-n-) saw mill’s residues. We defined

the following wood-pellet feedstocks derived from softwood

plantations, in consultation with various local scientists and

wood-pellet stakeholders [personal communication, K. Kline,

A. Taylor, B. Abt, D. Hazel, K. Abt (US SE based forest/bioen-

ergy scientists), B. Wigley, R. Miner (US National Council for

Air and Stream Improvement), M. Jostrom, B. Emory (repr. lar-

gest US SE corporate foresters) and Parrish, B. (repr. a pellet

mill), April 7–December 15, 2015; Enviva, 2015], and in line

with previous studies (Dwivedi et al., 2014a; Stephenson &

MacKay, 2014; Buchholz & Gunn, 2015; Dwivedi & Khanna,

2015; NRDC, 2015):

• Small roundwood: wood harvested at final cut, including

stemwood (10–25 cm DBH), larger tops and limbs (10–

25 cm diameter) and stemwood >25 cm DBH that is dam-

aged or otherwise unsuitable for saw wood. The category

includes pulpwood (i.e. wood that is traditionally used in

the pulp and paper industry).

• Commercial thinnings: wood that is harvested during mid-

rotation plantation thinning and is merchantable (usually as

pulpwood). Pre-commercial thinning (at an earlier stage of

rotation) is not commonly practiced in the US SE (B. Par-

rish, personal communication, June 17, 2015) and was

excluded.

• Collectible harvest residues: woody material left behind after

the final cut that is still economically collectible (typically

70% of total harvest residues, Dwivedi et al., 2014a; leaving

30% required for ecological services, Daioglou et al., 2015).

The category includes wood of <10 cm diameter, coarse

© 2016 John Wiley & Sons Ltd, GCB Bioenergy, doi: 10.1111/gcbb.12426
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woody debris and in-wood chips (i.e. chipped harvest

residues).

• Saw mill residues: woody material that is a co-product of saw-

ing saw logs and chip-n-saw wood into lumber, that is, clean

wood chips including chips from chip-n-saw wood (67%),

wood shavings (15%) and sawdust (18%; Aebiom, 2013).

Wood-pellet feedstock production

We estimated biomass growth (Fig. S2) and associated carbon

sequestration (Table S1) of medium- to highly intensively man-

aged softwood plantations using the Carbon OnLine Estimator

(COLE; NCASI, 2016). COLE uses empirical data from the US

Forest Service’s Forest Analysis & Inventory data base (FIA,

2016) and estimates stored carbon in live tree biomass, among

other ecosystem carbon pools (which are fairly constant on

both landscape and plot level; Smith et al., 2006; NCASI, 2016;

for details see Table S1). Based on COLE and a plantation rota-

tion period of 25 years (Markewitz, 2006; Colnes et al., 2012;

Jonker et al., 2013; Dwivedi et al., 2014b; Dwivedi & Khanna,

2014; Dwivedi & Khanna, 2015; Table S1), plantation yield

was estimated at 197 dry tonne tree biomass per hectare after

25 years, including thinnings [in line with Dwivedi et al., 2011,

2014a; Dwivedi & Khanna, 2015; Jonker et al., 2013 (140–232.5

dtonne ha�1 25 yr�1 at medium-high intensity management)].

Plantation thinning was included by harvesting one-third of

live tree biomass 15 years after planting (based on Markewitz,

2006; Jonker et al., 2013). We estimated that the enhanced growth

of the remaining trees after thinning compensates for 50% of

the biomass taken out during thinning (for details, see

Table S1; Fig. S2). This estimate is conservative, as some studies

indicate near 100% compensation (e.g. Gonzalez-Benecke et al.,

2010, 2011; Jonker et al., 2013). Mass fractions of the different

products orginating from softwood plantations (saw wood,

small roundwood, etc. – at medium- to high-intensity forest

management) and saw mills (lumber, residues and bark) were

estimated from literature (Table S2).

Greenhouse gas emissions of medium- to high-intensity for-

est management (including site preparation, planting, fertilizer

and herbicide use, and thinning) and harvesting were obtained

from literature (Table S1). Emissions were allocated to the dif-

ferent forest products, according to their mass [or equivalently:

embodied carbon – as all feedstocks were assumed to have the

same moisture- and carbon contents (0.5 and 0.25, respectively),

Table S1]. Similarly, sawmill GHG emissions were mass-allo-

cated over different sawmill products, including mill residues.

No forest management GHG emissions were allocated to non-

collectible harvest residues (twigs, needles; 3.7% of total live

tree biomass produced).

Wood-pellet electricity

Getting electricity from wood-pellet feedstock requires trans-

port of feedstock and pellets (truck, train, transatlantic ship-

ping), pelletizing, handling and combustion, which lead to

GHG emissions in the form of biogenic CO2, fossil CO2, CH4

and N2O emissions. These supply chain emissions were

assumed to be equal for all feedstocks and were based on liter-

ature (Table S1). It was assumed that wood-pellet feedstock

material is dried at the pellet mill using heat from burning bio-

mass (Magelli et al., 2009; Sikkema et al., 2010; Dwivedi et al.,

2011, 2014a; McKechnie et al., 2011; Jonker et al., 2013); in this

study: bark (in case of commercial thinnings and small round-

wood, which are debarked at the pellet mill) and/or part of the

feedstock material itself (Table S1). Feedstock and pellet mate-

rial that is lost along the supply chain is assumed to decom-

pose quickly (Table S1). Based on this set of assumptions and

parameterization, overall supply chain efficiency (including

losses) was 2.56 tonne of wet feedstock per tonne pellets com-

busted (Table S1), in line with Dwivedi et al. (2011) (2.32) and

Jonker et al. (2013) (2.65).

Wood-pellet electricity was assumed to replace EU fossil

grid electricity (JRC, 2014), thereby avoiding emissions from

fossil grid electricity. Since wood pellets from all feedstocks are

dried to the same moisture level, they have the same energy

Fig. 1 Overview of feedstock production (on the left), wood-pellet electricity production (top right) and alternative scenarios (bottom

right). Alternative scenarios consist of multiple individual feedstock-fate-based counterfactuals (shaded areas in the bottom right sec-

tion). After feedstock material is produced, it either goes to wood-pellet electricity or the alternative scenario. All definitions are

explained in detail in the main text. Note that in contrast to life-cycle assessment, the compared systems yield different products here:

power vs. paper and panels (e.g. OSB). Avoided GHG emissions of these products were included in our analysis.

© 2016 John Wiley & Sons Ltd, GCB Bioenergy, doi: 10.1111/gcbb.12426
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density and lead to the same (gross) avoided emissions per

tonne of pellets combusted.

Counterfactuals and alternative scenarios

If wood-pellet feedstock is not used to produce wood pel-

lets, there are three main counterfactuals in the US SE (per-

sonal communication, B. Abt, K. Abt, D. Hazel, M. Jostrom,

R. Miner, A. Taylor, B. Wigley, May 28–December 15, 2015):

(1) wood-pellet feedstock is used for alternative products,

that is, pulp and paper and panels (including feedstock use

for process heat), (2) wood-pellet feedstock remains in the

forest and decomposes, and (3) (for the commercial thin-

nings feedstock category specifically) softwood plantations

are not thinned in the first place.

In the alternative products counterfactual wood-pellet feed-

stock material is used to produce the following alternative

products (on landscape scale, on average): 80% pulp and paper,

19% oriented strand board (OSB) and 1% other wood panels

like medium density fibreboard (MDF) (based on Matthews

et al., 2014), including biomass for process heat. The counterfac-

tual includes the GHG emissions of production and disposal of

these alternative products, as well as avoided GHG emissions

of the alternative products (Table S1). Avoided emissions were

based on what the (wood-based) alternative products replace

and consist of the GHG emissions associated with the replaced

products (recycled paper, blockwork external wall cladding,

plasterboard partition wall, see Table S1 note ab; based on Mat-

thews et al., 2015). The alternative products’ use phase (be-

tween production and disposal) does not lead to significant

GHG emissions and was excluded (in line with Matthews et al.,

2015). Disposal is assumed to occur via incineration (or quick

decomposition of uncollected waste), incineration with electric-

ity production or landfilling (based on Smith et al., 2006). Dis-

posal patterns were based on Smith et al. (2006; see Table S3)

and are specific to US SE softwood pulpwood products. As

landfilled material decomposes, it releases CO2 and CH4. Land-

fill decomposition was modelled as exponential decay. Part of

the produced CH4 is flared or is used for electricity production

(Table S1). Pulp and paper products can also be recycled. Car-

bon then remains embedded in products for a longer time –

effectively delaying final disposal; this was investigated in the

sensitivity analysis.

Based on previous studies (Naesset, 1999; Palosuo et al.,

2001; Liski et al., 2002; Palviainen et al., 2004; Zanchi et al.,

2012; Russell et al., 2014), the in-forest decomposition counter-

factual was modelled as exponential decay with the majority of

carbon in the feedstock being released as CO2, part as CH4 and

part of the carbon being stored in the soil (Table S1).

In the third counterfactual, plantations are not thinned,

which means that the commercial thinnings are not produced

and any (avoided/reduced) GHG emissions associated with

their use no longer exist. Not thinning was therefore consid-

ered to cause zero GHG emissions. Not thinning does result in

lower plantation management GHG emissions (Table S1) and

larger landscape wide carbon stocks (Fig. S2). However, these

effects reduce the GHG emissions of this counterfactual by less

than 1% compared to wood-pellet electricity (based on default

parameterization, see Table S1) and were excluded from the

analysis.

Which counterfactual is relevant for which feedstock and to

what extent is a hypothetical matter that likely varies over time

and space and is subject to large uncertainty. Therefore, we

investigated a wide range of combinations of these counterfac-

tuals into alternative scenarios for each feedstock type (Fig. 2).

Alternative scenario composition was determined in consulta-

tion and conversation with local experts (personal communica-

tion, B. Abt & D. Hazel, K. Abt, M. Jostrom, A. Taylor, B.

Wigley & R. Miner, May 28–December 15, 2015). Scenario com-

position was based on feedstock properties. For example, only

a limited share of harvest residues can be used for alternative

products, mill residues tend to be fully allocated in the market

and decomposition of commercial thinnings is infrequent

because economic use is what makes them ‘commercial’. Alter-

native scenario composition was also made to be dependent on

the demand for alternative products (pulp and paper, panels).

Higher demand means that in the absence of wood-pellet pro-

duction, less feedstock is left to decompose and more is used to

produce alternative products (K. Abt, personal communication,

November, 23, 2015; Stephenson & MacKay, 2014; p. 11). In this

study, demand for feedstock material to produce alternative

products was considered at three levels: low, US SE average or

high. Feedstock properties and levels of demand were trans-

lated to fractions that each counterfactual contributes to the

alternative scenarios of each feedstock (see Fig. 2).

GHG accounting assumptions

Three main assumptions underly our approach. First, biogenic

CO2 emissions were considered equal to non-biogenic CO2

Fig. 2 Alternative scenario composition from individual coun-

terfactuals. Each pie diagram represents one alternative sce-

nario. The fractions that the counterfactuals of alternative

products (fAPi), in-forest decomposition (fDCi) and no thinning

(fNTi) contribute to each alternative scenario are indicated. Sce-

nario composition depends on feedstock type and the demand

for feedstock for alternative products.

© 2016 John Wiley & Sons Ltd, GCB Bioenergy, doi: 10.1111/gcbb.12426
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emissions, and carbon sequestration during growth was explic-

itly modelled. Second, the time lag between GHG emission and

sequestration was accounted for by applying a landscape-level

approach, in which temporal dynamics of individual forest

plots are averaged out geographically across all plots in the

landscape (see Jonker et al., 2013; Lamers & Junginger, 2013a).

This results in constant annual carbon sequestration and GHG

emission associated with (constant) wood-pellet feedstock pro-

duction. Third, potential GHG emissions caused by the conver-

sion of a previous land- or forest use to a softwood plantation

were not included, as only existing plantations were consid-

ered (see section ‘Discussion’).

GHG parity time calculations

Greenhouse gas parity times were determined as the number

of years it takes until the initial lower GHG balance of wood-

pellet electricity (Eqn 1a) becomes equal to or larger than that

of the alternative scenario (Eqn 2a). GHG balances were deter-

mined in time steps of 1 year by calculating cumulative GHG

emissions and sequestration associated with a constant feed-

stock use of one tonne per year (for either wood-pellet electric-

ity or the alternative scenario). GHG emissions are negative on

the GHG balance, whereas sequestration and avoided emis-

sions are positive. The equations are the same for all feed-

stocks. Parameter values can be found in Table S1.

Equation (1a) describes the GHG balance of wood-pellet

electricity (BWP). It consists of a constant feedstock production

and use (u) over time (t) to produce wood-pellet electricity.

Furthermore, it consists of GHG sequestration (SQ), various

GHG emissions (e) including biogenic CO2 emissions, and

avoided GHG emissions (ae) associated with wood-pellet elec-

tricity. GHG sequestration and (avoided) emissions are

expressed per tonne pellets and are therefore divided by the

feedstock-to-wood-pellet conversion efficiency (HWP).

BWP tð Þ ¼ u � t � SQ� eMH � eTH � eSM � ePM � ePP � eLO þ ae

HWP

� �
ð1aÞ

BWP (t) = cumulative GHG balance of wood-pellet electricity

over time (kg CO2-eq.); u = constant feedstock use (1 tonne

feedstock yr�1); t = time (years); SQ = carbon sequestration (kg

CO2-eq. � tonne pellets�1); e = GHG emissions (kg CO2-eq. �
tonne pellets�1); Subscripts: MH = plantation management and

harvesting, TH = thinning, SM = sawmill, PM = pellet mill

(incl. biogenic CO2 emission from drying), pp = power plant

(incl. biogenic CO2 emissions from combustion), LO = trans-

port losses (incl. biogenic CO2 emission from lost biomass);

ae = avoided GHG emissions of wood-pellet electricity (kg

CO2-eq. � pellets�1); HWP = overall conversion efficiency (tonne

feedstock�tonne pellets�1)

Equation (1b) describes the avoided GHG emissions of

wood-pellet electricity (ae) with a pellet-to-electricity conver-

sion efficiency g. Avoided emissions arise through replacing

fossil-fuel-based electricity and avoiding its emissions (EF).

ae ¼ g � EF ð1bÞ

g = wood pellet to electricity conversion efficiency (MWh �
tonne pellets�1); EF = GHG emission factor of EU fossil grid

electricity (kg CO2-eq. � MWh�1).

Equation (2a) describes the GHG balance (B) of alternative

scenarios (i). In the first term, feedstock is produced at a con-

stant rate, in the same way as in Eqn (1a). In the next three

terms, feedstock is divided over the three counterfactuals (al-

ternative products, in-forest decomposition and not thinning)

according to the alternative scenario-specific fractions of each

counterfactual (fAPi, fDCi and fNTi, for the three counterfactuals,

respectively, see Fig. 2). The alternative product counterfactual

leads to GHG emissions associated with production (eAPp),

avoided GHG emissions from replacing other products (ae)
and disposal GHG emissions (EAPd(t)). Decomposition and not-

thinning counterfactuals also lead to GHG emissions (EDC(t)

and eNT, respectively).

Bi tð Þ ¼u � t � SQ� eMH � eTH � eSM
HWP

� �
þ fAPi u � t � ae� eAPp

� �� EAPd tð Þ� �
� fDCi � EDC tð Þ � fNTi � u � t � eNT

ð2aÞ

Bi(t) = cumulative GHG balance of alternative scenario i

over time (kg CO2-eq.); f = fraction (dimensionless); ae =

avoided GHG emissions of alternative products (kg CO2-eq. �
tonne feedstock�1); e = GHG emissions (kg CO2-eq. � tonne

feedstock�1); subscripts: APp = alternative products produc-

tion; NT = not thinning; E(t) = cumulative GHG emissions

over time (kg CO2-eq.); subscripts: APd = alternative products

disposal, DC = decomposition.

Equation (2b) shows the cumulative GHG emissions over

time from the in-forest decomposition counterfactual (EDC(t)).

Annually produced feedstock (u) decomposes via exponential

decay (with half-life t1/2DC). When also considering that feed-

stock that is produced earlier has decayed more than recently

produced feedstock, the cumulative amount of feedstock that

has decomposed at time step t can be represented as shown in

the first part of Eqn (2b) (up to cc). Carbon in wet feedstock

(cc∙(1�mc)) that has decomposed is emitted as CO2 (fDCCO2
)

or CH4 (fDCCH4
), or is stored in the soil (fDC soil), where it is

GHG neutral (explaining the zero).

EDC tð Þ ¼ u �
Xt
j¼1

tþ 1� jð Þ � 1� 1

2

j=t1=2DC

 ! !
� cc � ð1�mcÞ � 1000

� fDCCO2
� 44:01
12:01

þ fDCCH4
� 44:01 � 34

12:01
þ fDCsoil � 0

� �
ð2bÞ

j = year of emission since start of decomposition (years); t1/

2DC = half-life of exponential decay during in-forest decompo-

sition (years); cc = carbon content dry feedstock (kg C � kg dry

feedstock�1); mc = moisture content of wet feedstock (kg H2O �
kg wet feedstock�1).

Equation (2c) shows the cumulative GHG emissions over

time from the disposal of alternative products (EAPd(t)). The

summations over k (the year of disposal since production) in

Eqn (2c) multiplied by the alternative product supply (u/HAP)

represent the cumulative amount of disposed alternative

© 2016 John Wiley & Sons Ltd, GCB Bioenergy, doi: 10.1111/gcbb.12426
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product at time t. Part of disposal of alternative products takes

place through incineration (with and without energy recapture,

fIWk and fIEk, respectively), which causes net GHG emissions

(�eIW and �eIE, respectively). Another part of disposed alternative

products are landfilled (fLFk). Landfilled products are assumed

to decompose via exponential decay according to half-life t1/2LF
releasing GHG emissions (�eLF). The cumulative nature of these

emissions is expressed as the summation over l (the year of

emissions since initial disposal; similar to j in Eqn 2b). Note

that disposal fractions (fIWk, fIEk, fLFk) are dependent on the

year of disposal since the product was formed (k), see Table S3.

EAPd tð Þ ¼ u

HAP
�
 Xt

k¼1

tþ 1� jð Þ � fIWk � �eIW þ fIEk � �eIEð Þð Þ

þ
Xt
k¼1

Xtþ1�k

l¼1

 
tþ 2� k� lð Þ �

 
1� 1

2

l=t1=2LF
!
fLFk � �eLF

!!

ð2cÞ
HAP = conversion efficiency alternative product production

(tonne feedstock ∙ tonne alternative product�1); k = year of dis-

posal since production of alternative product (years); �e = GHG

emissions (kg CO2-eq. � alternative product�1); subscripts:

IW = incineration without electricity production, IE = incinera-

tion with electricity production, LF = landfill; l = year of emis-

sion since initial disposal (years).

Equation (2d )shows the overall lifetime landfill GHG emis-

sions per tonne disposed alternative products (�eLF). Methane

that is produced in the landfill (MP) is partly released to the

atmosphere (fLFCH4
), partly flared (fLF flare) and partly burned

for electricity production (fLFel). The latter is considered GHG

neutral, as emissions from natural-gas-based electricity are

avoided using landfill methane. Part of CO2 production in the

landfill (CP) is emitted to the atmosphere (fLFCO2
), whereas

the remainder remains in the landfill.

�eLF ¼ MP � fLFCH4
þ fLFflare � 44:01

16:04 � 34þ fLFel � 0
� �

þ CP � fLFCO2

ð2dÞ
MP = overall landfill CH4 production (kg CO2-eq. � t alterna-

tive product�1); CP = overall landfill CO2 production (kg CO2-

eq. � t alternative product�1).

Lastly, to allow for comparison with GHG footprinting stud-

ies (e.g. Dwivedi et al., 2011, 2014a), the percentages of GHG

emission reduction of wood-pellet electricity compared to EU

fossil grid electricity (ER) were calculated as well (Eqn 3). In

GHG footprinting, biogenic CO2 emissions are considered

GHG neutral and no alternative scenarios are included.

ER ¼ 1� SQ� eMH � eSM � ePM � ePP � eLOð Þ
ae

� �
� 100% ð3Þ

Sensitivity analyses

A sensitivity analysis was performed on the GHG parity times

of wood-pellet electricity for parameters that most affect parity

times (as determined by trying all parameters), and for

parameters whose values are uncertain based on literature. The

variation in parameter value of the selected parameters was

based on literature (Table 1). Two further sensitivity analyses

were performed. First, economic allocation was applied to feed-

stock production GHG emissions, instead of mass-based alloca-

tion (see Table S2). Second, the timing of alternative product

disposal was investigated to test the sensitivity of GHG parity

times both to alternative product composition (as some prod-

ucts have longer use phases than others) and to uncertainty in

disposal patterns in general (Smith et al., 2006, see Table S3),

including delayed final disposal due to recycling. The analysis

consisted of delaying disposal of half of the alternative product

produced by an additional 50 years compared to default

values.

Results

Our results show how the GHG balances of wood-pellet

electricity from different feedstocks compare to the

GHG balances of individual counterfactuals (Fig. 3) and

of alternative scenarios (Fig. 4). GHG parity times that

result from this comparison form the main results of

this study (Fig. 5, Tables S4 and S5). GHG footprinting

outcomes are included as well, for comparison with pre-

vious studies. Lastly, the sensitivity of all results to

parameterization is shown (Fig. 6).

Wood-pellet electricity

The GHG balance of wood-pellet electricity from all

feedstocks is positive (i.e. wood-pellet electricity results

in reduced GHG emissions compared to the EU fossil

grid electricity it replaces; Fig. 3), because the avoided

fossil electricity emissions are higher than net emissions

from wood-pellet electricity itself. The GHG balance is

immediately positive because of the landscape-level

approach applied (which is considered appropriate for

the US SE; Jonker et al., 2013) and because only existing

softwood plantations are considered, which means that

land- or forest use change emissions were excluded.

The GHG balance of wood-pellet electricity differs little

among feedstocks (Fig. 3). The only deviations are

caused by thinning and saw milling emissions, which

slightly lower the GHG balance of wood-pellet electric-

ity from commercial thinnings and from mill residues,

respectively.

Wood-pellet electricity vs. individual counterfactuals

The GHG balance of the alternative product counterfac-

tual is determined by manufacturing emissions, tempo-

rary carbon storage in the product and product disposal

emissions. Temporary carbon storage has a positive

effect on the GHG balance. However, the average GHG

emissions from the production of alternative products

© 2016 John Wiley & Sons Ltd, GCB Bioenergy, doi: 10.1111/gcbb.12426
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are higher than their avoided emissions which has a

(strongly) negative effect on the GHG balance. The

avoided emissions of the alternative products were

determined as the GHG emissions of the products they

replace. The alternative products (i.e. pulp and paper,

OSB and other panels) in this study are more GHG inten-

sive than the products they replace (i.e. recycled paper,

blockwork external wall cladding, plasterboard partition

wall, see Table S1 note ab and Matthews et al., 2015).

Overall, wood-pellet electricity (from all feedstocks) has

GHG parity times of 1 year when compared to the alter-

native product counterfactual (Table S4). Product dis-

posal only has a minor effect on parity time, as most

alternative products are still in use after this first year

(see Table S3). After parity is reached, wood-pellet elec-

tricity has larger and increasing GHG benefits (Fig. 3).

Ultimately, despite alternative products embedding car-

bon, their GHG balance becomes negative after about

40 years (Fig. 3), because alternative product production

GHG emissions are larger than avoided emissions (as

explained above), and because methane is emitted from

an increasing amount of disposed material.

GHG parity times of wood-pellet electricity as com-

pared to the in-forest decomposition counterfactual are

6 years for harvest residues, and a substantially longer

30 years for small roundwood and commercial thin-

nings (Fig. 3, Table S4). The latter two decompose more

slowly and hence store carbon for longer period of time,

resulting in a more positive GHG balance. GHG emis-

sions (including methane) from an accumulating

amount of decomposing material eventually become

larger than the GHG benefits of carbon stored in decom-

posing matter, causing a negative GHG balance after

18 years for harvest residues, and after about 80 years

for small roundwood and commercial thinnings (Fig. 3).

In the long run, the GHG balance of the decomposition

counterfactual becomes more negative than that of the

alternative product counterfactual. This means that in-

forest decomposition may cause larger absolute GHG

emissions than alternative products, despite the fact that

decomposition results in longer GHG parity times. This

result is especially relevant for harvest residues, where

decomposition is relatively fast (Fig. 3).

The counterfactual of not thinning was assumed to be

GHG neutral (as explained in counterfactual section of

the methods), resulting in immediate GHG parity when

compared to wood-pellet electricity, and in accumulat-

ing GHG benefits in the long run (Fig. 3, Table S4).

Wood-pellet electricity vs. alternative scenarios

The largest differences among feedstocks are found in

the GHG balance of their alternative scenarios (Fig. 4),

which consist of combinations of individual counterfac-

tuals’ GHG balances (Fig. 3). Using small roundwood

results in the longest GHG parity times for wood-pellet

Table 1 Parameters analysed and parameter variation range studied in sensitivity analysis

Parameter

Minimum Maximum

Sources and notes(% of default value)

GHG emissions of plantation management and harvesting (eMH) 75 125 a

enhanced growth of thinned forest (affects eMH) 0 200 b

GHG emissions of wood-pellet electricity supply chain (ePM + ePP + eLO) 75 125 a, c

GHG emissions of production of alt. products (eAPp) 77 128 d

GHG emissions disposal of alt. products (EAPd (t)) 50 200 e

Half-life of carbon during (exponential) in-forest decomposition (t1/2DC)

Small roundwood and commercial thinnings 27 136 f

Harvest residues 69 123 g

Fraction of decomposed carbon stored in forest soil (fDC soil) 50 200 e, h

Fraction of CH4 (and N2O) released during in-forest decomposition (fDC CH4) 50 200 e

Softwood plantation yield (affects eMH) 75 125 a, i

a: A wide range of literature is available for these parameters – with relatively little variation among studies (see main text and

Table 1). Therefore, uncertainty was limited to 75%–125%. b: The growth rate of thinned plantations was varied such that final bio-

mass stocks on a thinned plantation were reduced by either 0% or 100% of the amount of biomass taken out during thinning; the

default setting was a reduction of 50% (see main text). Growth linearly affects yield, which affects eMH (see note i). c: GHG emissions

from feedstock production, sequestration and any CO2 emissions from biogenic carbon are excluded. d: Matthews et al. (2015). e: Few

studies on these parameters exist and uncertainty was therefore deemed high at 50–200%, that is, doubling or halving parameter

values. f: Based on Palosuo et al., 2001; Liski et al., 2002; Radtke et al., 2009; Zanchi et al., 2012; Dunn & Bailey, 2012; and Russell et al.

(2014). (g) Based on Liski et al. (2002) and Mobley et al. (2013). h: Decomposition GHG emissions (fDC CH4 and fDCCO2
) change accor-

dingly. i: Plantation yield inverse linearly affects GHG emissions of plantation management and harvesting. In terms of GHG balance;

yield sensitivity analysis is therefore essentially the same as for eMH.

© 2016 John Wiley & Sons Ltd, GCB Bioenergy, doi: 10.1111/gcbb.12426
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electricity, of 3–21 years (Figs 4 and 5, Table S5), as the

alternative scenario (especially at low feedstock demand

for alternative products) consists of a large share of in-

forest decomposition. Due to the feedstock’s relatively

large size, decomposition is relatively slow, and carbon

is stored for a long time. At higher demand, more

roundwood is used for alternative products (rather than

being left to decompose), which is a worse alternative in

terms of GHG emissions, hence shortening GHG parity

times of wood-pellet electricity.

The alternative scenarios for commercial thinnings

have similar GHG balances to those of small round-

wood (Fig. 4). However, since part of all alternative sce-

narios for commercial thinnings is not thinning, which

was considered GHG neutral (as explained in the meth-

ods section), the alternative scenarios’ GHG balances

are lowered. This means that, for commercial thinnings,

wood-pellet electricity has near-instant GHG benefits

(GHG parity times of 0–1 year) over the alternative sce-

narios at all levels of feedstock demand (Fig. 5,

Table S5).

Wood-pellet electricity from harvest residues has short

GHG parity times (5–6 years; Fig. 5, Table S5) at all

levels of feedstock demand. These short GHG parity

times are caused by the fact that the alternative scenarios

for harvest residues largely consist of decomposition,

which is relatively fast for harvest residues due to their

small size, resulting in small GHG benefits from carbon

storage (Fig. 4). In the long run, using harvest residues

for wood-pellet electricity causes relatively large abso-

lute GHG savings, as the alternative scenario (largely

fast decomposition) leads to large GHG emissions.

Fig. 3 Cumulative GHG balance of wood-pellet electricity and this study’s three individual counterfactuals (alternative products,

in-forest decomposition and not thinning) shown per feedstock type at constant feedstock production of one wet tonne per year.

© 2016 John Wiley & Sons Ltd, GCB Bioenergy, doi: 10.1111/gcbb.12426
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The alternative scenario for mill residues consists

entirely of the production of alternative products, at all

levels of feedstock demand (Fig. 2). As explained in the

previous section, the GHG balance of alternative prod-

ucts quickly becomes lower than that of wood-pellet

electricity, resulting in GHG parity times of 1 year.

Demand for feedstock to produce alternative products

only had a strong effect on GHG parity times of small

roundwood. For small roundwood, a larger demand

means replacing more (GHG intensive) alternative

products and less (slow) decomposition. Alternative

scenario composition of mill and harvest residues was

not or minimally influenced by demand (Fig. 2). For

commercial thinnings, the alternative scenarios are

dependent on demand, but consist mostly of either the

not-thinning counterfactual or the alternative product

counterfactual, which both cause a lower GHG balance.

GHG footprinting

When applying a GHG footprinting approach (i.e. con-

sidering biogenic CO2 emissions GHG neutral and not

including alternative scenarios), GHG emission reduc-

tions of wood-pellet electricity compared to fossil EU

grid electricity are 71% (for small roundwood and har-

vest residues), 69% (for commercial thinnings) or 65%

Fig. 4 Cumulative GHG balances of wood-pellet electricity and alternative scenarios per feedstock type at constant feedstock pro-

duction of one wet tonne per year. Lines indicate alternative scenarios with average demand for feedstock to produce alternative

products. Shaded areas indicate the range of alternative scenario outcomes from low feedstock demand (upper end of shaded area) to

high feedstock demand (lower end of shaded area); harvest residues form an exception, for low demand leads to the lowest GHG bal-

ance (lower end of shaded area). The GHG balances of all alternative scenarios for mill residues are equal, due to equal scenario com-

position (Fig. 2). Note that negative balances indicate net GHG emissions, and that sensitivity analyses are not included in this figure.
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10 S . V. HANSSEN et al.



(for mill residues), as shown in more detail in Fig. S3.

The GHG reduction percentage of wood-pellet electric-

ity from mill residues was also calculated using JRC

methodology (JRC, 2014), which considers mill residues

a pure by-product and excludes plantation manage-

ment, harvesting and saw milling emissions; this leads

to a 75% GHG emission reduction (Fig. S3).

Sensitivity analyses

GHG parity times of wood-pellet electricity are sensitive

to five of the investigated parameters (Fig. 6, Table S6).

First, sensitivity is, in most cases, highest for GHG emis-

sions of the production of alternative products. For

alternative scenarios with a large alternative products

component (mill residues, other feedstocks at high

demand for feedstock to produce alternative products),

halving production of GHG emissions increases GHG

parity time by up to 12 years (Fig. 6). Furthermore,

GHG parity times of harvest residues become shorter

than those of commercial thinnings (at high demand)

and mill residues in general. Second, by doubling or

halving the emissions from alternative product disposal,

GHG parity times are respectively reduced or extended

by a maximum of five years (Fig. 6). When varying this

or any of the remaining parameters, the order of feed-

stocks in terms of GHG benefits does not deviate

from the ranking under default parameterization. Third,

when in-forest decomposition forms a large component

of the alternative scenario (i.e. small roundwood at low

demand and harvest residues at all levels of demand),

doubling or halving the fraction of decomposed carbon,

that is stored in the forest soil, increases or decreases

GHG parity times by a maximum of 8 years (Fig. 6).

Fourth, when in-forest decomposition forms a large

component of the alternative scenario, varying the half-

life value of (exponential) in-forest decomposition of

feedstocks proves another sensitive parameter. GHG

parity times for harvest residues change by up to

3 years (Fig. 6). For small roundwood, assuming the

shortest half-life (5 years) even reduces GHG parity

times of wood-pellet electricity from 21 years to 6 years.

Fifth, variation in wood-pellet electricity supply chain

emissions (Table 1) changes parity times by 1–3 years

(Fig. 6). Lastly, delaying half of the GHG emissions

from alternative product disposal by 50 years causes a

maximum GHG parity time increase in 6 years

(Table S6).

Varying other investigated parameters (CH4 and N2O

emissions from decomposition, plantation productivity,

effect of thinning on growth, plantation management

emissions) over their estimated parameter range

(Table 1), or applying economic allocation to feedstock

production GHG emissions, affects GHG parity times of

wood-pellet electricity by less than 1 year.

Overall, the sensitivity analysis shows that results are

robust across our wide range of alternative scenarios.

The changes in GHG parity times through varying

input parameter values are limited. Parity times of

wood-pellet electricity range 0–21 years for default val-

ues, and 0–29 years in the sensitivity analyses, exclud-

ing interaction effects. The order of feedstocks in terms

of GHG parity times only changes when substantially

varying alternative product production GHG emissions.

Discussion

Comparison with previous studies

In our study, GHG parity times of wood-pellet electric-

ity from US SE softwood plantation-derived feedstocks

range 0–21 years under default parameterization and 0–
29 years in sensitivity analysis. Previous studies with

similar assumptions (reference electricity formed by an

average fossil fuel mix for electricity, medium-intensity

forest management) yielded different results because

different alternative scenarios were assumed. Jonker

et al. (2013) compared wood-pellet electricity to the

Fig. 5 Greenhouse gas parity times of wood-pellet electricity

from different feedstocks, as compared to the feedstocks’ alter-

native scenarios, at low, average and high demand for feed-

stock for alternative products. Error bars indicate the range of

GHG parity times found in the sensitivity analysis.
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alternative scenarios of protection (no trees harvested)

and natural regrowth (trees harvested once, followed by

natural regrowth), which resulted in GHG parity times

of wood-pellet electricity of 55 and 41 years, respec-

tively. Colnes et al. (2012) used a business-as-usual alter-

native scenario (harvest for traditional products only)

that resulted in GHG parity times (avant la lettre) of

about 40 years.

We argue that our new feedstock-fate-based alterna-

tive scenarios are more relevant for wood-pellet

electricity than these land- or forest-use-based alterna-

tive scenarios. Land- or forest-use-based alternative sce-

narios assume a single end use for all forest products

and implicitly assume that wood-pellet markets are the

main driver of forest- and/or land use. Decisions on

land- or forest use are, however, more likely influenced

by saw timber and paper markets (Wear & Greis, 2013;

Forest2market.com, 2014), landownership changes

(Forest2market.com, 2014) and external pressures like

urbanization (Wear & Greis, 2013). Feedstock-fate-based

Fig. 6 Sensitivity analysis of GHG parity times of wood-pellet electricity from different feedstocks as compared to three alternative

feedstock-use scenarios. Sensitivity analyses are performed for different feedstocks: (a–c) small roundwood, (d–f) commercial thin-

nings, (g–i) harvest residues, (j) mill residues, and for low-, average- and high demand for feedstock to produce alternative products,

respectively. Percentual parameter variation is shown on the x-axis. Note that sensitivity analyses of all alternative scenarios for mill

residues are equal, due to equal scenario composition.
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alternative scenarios, on the other hand, differentiate

feedstocks and fates of different forest products. More-

over, they consider the more relevant question of what

happens to the (lower-value) feedstock once it is pro-

duced (rather than whether it is produced). This ques-

tion is highly relevant because wood-pellet feedstocks

are co-products of more valuable forest products (like

saw timber), whose production largely determines feed-

stock availability.

Previous work indicates that wood-pellet electricity

from residues (harvest residues and mill residues) leads

to fast and/or large GHG benefits, as this feedstock

would otherwise be burnt or decompose (McKechnie

et al., 2011; Colnes et al., 2012; Zanchi et al., 2012; Ber-

nier & Par�e, 2013; Lamers & Junginger, 2013a; Lamers

et al., 2014; Stephenson & MacKay, 2014; Dwivedi et al.,

2016). We come to similar conclusions regarding harvest

residues (GHG parity times of 5–6 years and relatively

large long term GHG savings), for their alternative sce-

nario largely consists of rapid decomposition. For mill

residues, we also found short GHG parity times (ap-

proximately 1 year), but for a different reason, the alter-

native scenario consists of the production of relatively

GHG-intensive alternative products (as discussed in the

next section).

Commercial thinnings and small roundwood are

often not separately considered in previous work, but

are lumped in the wider category of ‘whole trees’

(which also includes saw wood). GHG benefits of

wood-pellet electricity from this category are low and/

or slow, as additional tree felling is required, reducing

carbon stocks (McKechnie et al., 2011; Colnes et al.,

2012; Zanchi et al., 2012). However, except for culled

trees, whole-tree usage for pellets is unlikely, as other

industries pay more for larger diameter parts of straight

stems (see Table S2). In contrast to these studies, we

found that commercial thinnings (0–1 year GHG parity

times) and small roundwood at medium- and high

demand for feedstock (3–6 years GHG parity times)

lead to rapid GHG benefits, as the alternative is either

not thinning at all or usage for relatively GHG-intensive

alternative products. At low feedstock demand, the

alternative scenario for small roundwood largely con-

sists of decomposition, which delays GHG benefits of

wood-pellet electricity (in this study, a 21-year GHG

parity time), in line with Gustavsson et al. (2015). Since

decomposition rates vary significantly and locally (Rus-

sell et al., 2014, 2015), GHG parity times of small round-

wood at low demand may also be substantially shorter

(down to 6 years in the most extreme case). The default

21-year GHG parity time can be considered a conserva-

tive estimate.

GHG footprinting showed that GHG emissions of

wood-pellet electricity from different feedstocks are 65–

75% lower than the EU fossil electricity mix (without

considering alternative scenarios or temporal dynam-

ics). This estimate is in line with the 50%–75% reduction

found in previous studies on EU electricity from US SE

wood pellets (Dwivedi et al., 2011, 2014a; personal com-

munication G.-J. Jonker, October 23, 2015).

Robustness of our approach

Sensitivity analysis showed that our wood-pellet elec-

tricity GHG parity times are robust for all studied alter-

native scenarios. What exact combination of

counterfactuals is relevant to a wood-pellet feedstock

remains a more hypothetical and to some degree subjec-

tive matter. This issue was largely negated by consider-

ing a wide range of alternative scenarios for each

feedstock (at different levels of feedstock demand for

alternative products) and by the outcome that for each

feedstock GHG parity times are similar accross these

alternative scenarios (except for small roundwood at

low demand). Saw wood demand may also influence

alternative scenario composition, as it is an important

driver of forest management and harvesting decisions

(Aebiom, 2013). However, considering the range of

alternative scenarios already studied here, we do not

expect substantial changes in overall outcomes.

We captured the most important counterfactuals for

wood-pellet feedstocks from softwood plantations via

consultation with local experts (see section ‘Methods’).

Other less frequent counterfactuals may include the fol-

lowing: (1) burning feedstock material as waste (which

is common on non-plantation private forests), resulting

in immediate GHG benefits of wood-pellet electricity; or

(2) using feedstock material for local energy (beyond

processing heat), which may cause fewer GHG emis-

sions than electricity from long-distance transported

wood pellets. As these counterfactuals are not frequent

in softwood plantations, they would unlikely affect our

conclusions.

The alternative product counterfactual showed a rela-

tively low and eventually negative GHG balance

because the alternative products were relatively GHG

intensive. This result is somewhat counterintuitive, as

most wood-based products are relatively GHG-uninten-

sive; lumber, for instance, can replace more GHG-inten-

sive products like steel or concrete. However, this

relationship does not hold for the wood-based alterna-

tive products of wood-pellet feedstocks: OSB (19% of

alternative products) and other panels (1%) replace

products with similar associated GHG emissions (based

on Matthews et al., 2015). Pulp and paper products

(80% of alternative products) are even three times more

GHG intensive than the product they replace, that is,

recycled pulp and paper (with both virgin and recycled

© 2016 John Wiley & Sons Ltd, GCB Bioenergy, doi: 10.1111/gcbb.12426

GHG PARITY TIMES OF WOOD-PELLET ELECTRICITY 13



pulp and paper starting from dry feedstock; based on

Matthews et al., 2015). Taking GHG-unintensive recycled

paper as replaced product may seem to lead to an

(overly) optimistic estimate of the GHG benefits of

wood-pellet electricity (as the alternative product to

wood pellets, i.e. virgin pulp and paper becomes rela-

tively GHG-intensive). However, recycled paper is, in

many applications, the only real alternative to virgin

paper (as also assumed by Matthews et al., 2015).

Increasing the share of recycled paper in the United

States seems feasible, as the EU paper recycling rate is,

for instance, 7% higher than the US rate (EPA, 2013;

ERPC, 2015). Moreover, when pulp and paper replace

products other than recycled paper, these other replaced

products are often also less GHG-intensive than virgin

pulp and paper. Plastic packaging, for example, is about

three times less GHG-intensive than paper packaging,

due to lower weight requirements and a less GHG-

intensive production process (Cadman et al., 2005;

NIAR, 2011; Franklin Associates, 2014).

We explicitly looked at wood pellets derived from ex-

isting softwood plantations. Results may be different for

new plantations, as GHG emission or sequestration

from converting previous land- or forest uses to planta-

tions should be accounted for (e.g. Fargione et al., 2008;

Searchinger et al., 2008, 2009; Berndes et al., 2013;

Lamers & Junginger, 2013a), as well as potential associ-

ated albedo changes and other biogeophysical climate

forcings (e.g. Cherubini et al., 2012; Bright, 2015). Cur-

rent availability of wood-pellet feedstock material will

likely continue to suffice for wood-pellet exports

towards 2030 (Fingerman et al., 2016). This implies that

a large share of wood-pellet feedstock will continue to

be derived from existing softwood plantations, high-

lighting the importance of our study. In case demand

for alternative products (pulp and paper, panels)

increases, our high demand scenarios will be more rele-

vant. When demand for alternative products does not

increase and/or when pellet, paper and OSB mills avoid

local competition for feedstock, our low demand scenar-

ios may be more relevant.

We included direct wood-use change (WUC) effects

by considering counterfactuals. We also accounted for

avoided emissions of both wood-pellet electricity and of

alternative products. These assumptions are internally

consistent and account for indirect wood-use change

(iWUC). Since we considered existing plantations, no

direct land-use change (LUC) effects had to be

accounted for. However, indirect land-use change

(iLUC) effects could still be caused by WUC. As an

hypothetical example, increased feedstock use for pel-

lets could mean that more feedstock has to be produced

on other land to meet demand from paper mills. This

iLUC through WUC effect may not be large, as pellet

mills produce the least valuable product (see Table S3)

and tend to have lower buying power than the com-

peting industries, but requires further research nonethe-

less.

Implications of our findings

Based on robust results, we conclude that wood-pellet

electricity from existing US SE softwood plantations

reduces GHG emissions compared to EU fossil grid

electricity within 0–29 years for all investigated wood-

pellet feedstocks while taking feedstocks’ alternative

fates into account. The climate change mitigation poten-

tial of wood-pellet electricity can be maximized by sour-

cing wood pellets from commercial thinnings, mill- and

harvest residues, leading to GHG benefits within several

years, substantially faster than was found in previous

work (e.g. Colnes et al., 2012; Jonker et al., 2013). How-

ever, the GHG balance of wood-pellet electricity from

non-plantation forests or from newly created planta-

tions, as well as sustainability concerns beyond climate

change, need to be addressed separately.

We also find that allocating the studied feedstocks,

that is, lower-value forest materials, to wood-pellet elec-

tricity rather than to paper and wood panels (e.g. OSB)

reduces GHG emissions. Electricity and these alterna-

tive products serve very different purposes and are not

interchangeable. Therefore, whether (feedstock use of)

wood-pellet mills will replace paper or OSB mills ulti-

mately depends on market dynamics of the different

products. Whether it is desirable that they replace paper

or OSB mills in terms of GHG emissions also depends

on potential iLUC emissions. Nonetheless, our findings

do imply that the climate change mitigation paradigm

of prioritizing materials over bioenergy (e.g. Ellen-

MacArthur Foundation, 2013; Vis et al., 2016) does not

hold in all circumstances and should in some cases be

reconsidered.

Finally, we argue that for wood-pellet electricity from

the studied feedstocks, alternative feedstock fates form

a more relevant alternative scenario than alternative

land- or forest-use scenarios. The reason being that the

latter implicitly and (likely) inaccurately assume wood

pellets are the main driver of forest- and land-use

change and assume a single end use for all forest feed-

stocks. More generally, feedstock-fate-based analyses

may be highly relevant for all bioenergy from lower

value co-products of existing industries. The discussion

on land- or forest use for bioenergy vs. carbon storage

or traditional uses (e.g. Schlamadinger & Marland,

1996a,b; Marland & Schlamadinger, 1997; McKechnie

et al., 2011; Berndes et al., 2013) should therefore also

include trade-offs between using feedstock for bioen-

ergy vs. alternative fates.

© 2016 John Wiley & Sons Ltd, GCB Bioenergy, doi: 10.1111/gcbb.12426
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