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Abstract: We developed an automatic system to identify and differentiate
color fundus images containing no lesions, drusen or exudates. Drusen and
exudates are lesions with a bright appearance, associated with age-related
macular degeneration and diabetic retinopathy, respectively. The system
consists of three lesion detectors operating at pixel-level, combining their
outputs using spatial pooling and classification with a random forest clas-
sifier. System performance was compared with ratings of two independent
human observers using human-expert annotations as reference. Kappa
agreements of 0.89, 0.97 and 0.92 and accuracies of 0.93, 0.98 and 0.95
were obtained for the system and observers, respectively.
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1. Introduction

Diabetic retinopathy (DR) is the leading cause of blindness worldwide in the working popu-
lation with an estimated number of affected patients of 93 million in 2010 [1–3]. Age-related
macular degeneration (AMD) is another sight threatening disease and the most common cause
of blindness in the elderly. The estimated number of patients affected by AMD was 170 million
in 2014 [4]. Both diseases progress without any visual complaints in early stages, while leading
to visual impairment and, ultimately, vision loss in advanced stages. Major risk factors for these
diseases include diabetes and an increased age. With the rising prevalence of diabetes and the
aging population, the incidence of DR and AMD is expected to increase rapidly in the near
future [5, 6].

To improve early detection of these diseases, screening for both DR and AMD through reti-
nal examination using color fundus (CF) images is recommended by national authorities [7,8].
However, only screening for DR is currently routinely implemented for diabetic patients. The
main limitation of widespread implementation of DR and AMD screening is the enormous
screening population and the associated costs of acquiring and analyzing the large amount of
images generated. Automatic software solutions have been proposed to allow for more cost-
effective mass-screening, reducing the amount of specialized personnel required and making
mass-screening feasible. Most of these automatic software solutions analyze CF images for
presence of lesions which are associated with DR or AMD [9–17]. Lesions associated with
DR include microaneurysms, hemorrhages, exudates and cotton wool spots, whereas for AMD,
these include drusen. After fusing the information obtained from the individual lesion detec-
tions, a final decision is made and in case of a positive finding, the patient is referred to an
ophthalmologist for a precise diagnosis and follow-up procedure [18].

To make a correct decision for patient referral, it is evidently important to identify which
types of lesions are present. On CF images, drusen have a similar bright appearance as exu-
dates and cotton wool spots. Whereas cotton wool spots can be more easily identified by their
generally larger size and different color appearance, exudates and drusen have very similar
characteristics and differentiation is difficult. Following the criteria of international grading
schemes for DR and AMD, a patient referral decision is different when a patient presents with
drusen or exudates [19–21]: A patient can have a few drusen present without the need for a di-
rect referral to an ophthalmologist, whereas the presence of only a few exudates is an indication
for more severe levels of DR and the patient should be referred immediately.

As the underlying cause and disease mechanisms for DR and AMD are different, exudates
and drusen appear with different location patterns in the retina. Exudates are caused by leaking
fatty deposits from blood vessels and appear in compact groups, whereas drusen are believed to
be a result of a reduced capacity of the retina to cleanse waste products from the photoreceptors
and can appear over the whole retina. In our previous work we have shown that including con-
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textual information is beneficial for individual lesion detection [22]. We believe that including
spatial information is an important factor to differentiate between drusen and exudates.

In this work, we therefore propose an automatic classification scheme that employs spatial
information to both identify and discriminate between images containing drusen and exudates.
The method makes use of information of individual lesions as detected by three separate sys-
tems focusing on the detection of red lesions, bright lesions in general, and drusen in particular.
We introduce a concentric spatial pyramid approach with a twofold purpose: 1) to incorporate
spatial information in the classification step and 2) to structurally transform lesion-level infor-
mation into image-level information. Features encoding local lesion load are computed in an
increasingly fine concentric spatial grid and used in combination with a random forest classifier
to make the final three-class classification. We compare our system performance with that of
two independent human graders.

2. Materials and Methods

The automatic method to identify and differentiate between drusen and exudates consists of
four steps. First, to standardize image resolution across different datasets, the field of view is
automatically extracted and resized to 650 pixels in diameter. Next, three lesion detection and
classification algorithms are applied to the images for the detection and classification of: (1)
bright appearing lesions [14], i.e. hard exudates, cotton wools spots and drusen; (2) drusen [9];
and (3) red lesions [23], i.e. microaneurysms and hemorrhages. In the third step, results of these
systems, consisting of the detected lesions and their associated posterior probability of being a
true lesion, are combined. After removing lesions with a low posterior probability, the detected
lesions are used as inputs to the spatial pyramid framework by creating histograms encoding the
lesion load for each of the different type of detected lesions. Red lesion information is also in-
cluded as the presence of red lesions is considered to be an indicator of DR, and therefore bright
appearing lesions are more likely to be exudates. Finally, a multi-class classification is obtained
by using a random forest classifier in a one-versus-all classification scheme using the spatial
pyramid features. Using such a general framework allows to incorporate contextual information
for differentiation between lesion types and allows to transform lesion-level information into
image-level information.

2.1. Study Dataset

For this study, images were taken from several public datasets as well as from private
datasets. In total, 130, 89, 397, 1200 and 569 images were taken from DiaretB0 [24], Di-
aretB1 [25], Stare [27], Messidor (Kindly provided by the Messidor program partners, see
http://messidor.crihan.fr) and DR1/DR2 [28] datasets, respectively. After adding 488 and 1777
images, which were consecutively selected from the European Genetic Database (EUGENDA)
(http://www.eugenda.org) and from the diabetic screening database of KSYOS TeleMedical
Center (http://www.ksyos.org), we obtained a total of 4650 images. Images from the DiaretB0
and DiaretB1 dataset were taken at 50o field of view with a resolution of 1500x1152 pixels,
while the type of camera is not reported. Images from the Stare dataset were taken with a Top-
Con TRV-50 fundus camera at 35o field of view and subsequently digitized at 605x700 pixels
in resolution. Images from the Messidor dataset were captured with a Topcon TRC NW6 non-
mydriatic retinograph with a 45o field of view and had a resolution of 1440x960, 2240x1488 or
2304x1536 pixels. Images from the DR1/DR2 dataset were captured using a Topcon TRC50X
mydriatic camera with a 45o field of view and 640x480 pixel resolution. Images from the EU-
GENDA dataset were taken with either a Topcon TRC501X at 50o field of view or with a Canon
CR-DGi at 45o field of view. Resolution of the EUGENDA images varied between 1360x1024
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and 3504x2336 pixels. Images from the DR screening dataset had a resolution varying between
1024x768 and 4992x3328 pixels. Camera type and field of view were not reported for this set.

(a) (b) (c)

Fig. 1. Examples of color fundus images. (a): Control case, (b): image showing the presence
of drusen and (c): image showing the presence of exudates.

Images which were not macula centered, had insufficient quality, or contained other bright
appearing abnormalities such as myelinated nerve fibers or abnormalities not related to DR or
AMD were discarded from the study dataset. The number of discarded images for each of these
criteria was 1002, 270 and 302, respectively. The remaining set of images was graded by a
human expert, who had over ten years of experience, into one of following categories: control,
containing only drusen, containing only exudates, or containing both drusen and exudates. All
images containing either drusen (N=362) or exudates (N=186) as graded by the expert were in-
cluded and complemented with randomly selected images graded as control (N=552), resulting
in a final study dataset of 1100 images of 1100 eyes. Figure 1 shows example images of the
three different classes. Gradings of the human expert were considered as the reference standard
in this study. Table 1 shows the distribution of the images among the different data sources.
Two independent human observers, referred to as Observer 1 and Observer 2, also graded this
set and rated every image into one of three categories: control, containing drusen or containing
exudates. Observer 1 and Observer 2 had four and six years of experience, respectively. In addi-
tion, Observer 1 also identified subtle cases within the study dataset, where his/her confidence
level in discriminating the underlying disease was low. Image quality, image focus, lesion size
and lesion number influenced the level of confidence of the observer.

2.2. Preprocessing

In a preprocessing step, all images were resized to have the same field of view diameter of
650 pixels. No correction of illumination or shade correction was applied to the images. The
optic disk location and fovea location were automatically detected using a previously developed
algorithm [29], and were used later in the spatial pyramid framework.

2.3. Automatic lesion identification

Three types of lesions were automatically detected using previously developed algorithms: (1)
Bright appearing lesions, i.e. hard exudates, cotton wools spots and drusen [14]; (2) drusen [9];
and (3) red lesions, i.e. microaneurysms and hemorrhages [23]. The systems generally con-
sisted of a candidate extraction step, followed by a candidate classification step. Features based
on shape, color and intensity were extracted from each candidate and used in a supervised
classification framework to classify each individual candidate as being a true lesion. Table 2
shows a brief overview of the different features used for lesion classification. Candidates which
overlapped with the optic disc location were automatically discarded in these previous works
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Table 1. Distribution of images across different data sources. Only macular centered images
with sufficient grading quality showing presence of only drusen or exudates were included
and complemented with random control images.

DB0 DB1 Eugenda KSYOS Messidor Stare DR1/DR2 Total

Control 18 10 47 142 306 5 24 552
Drusen 2 1 163 92 68 21 15 362

Exudates 25 14 1 12 99 25 10 186
Total 45 25 211 246 473 51 49 1100

DB0: DiaretB0; DB1: DiaretB1.

using an automatic optic disc detection system [26,29]. More details on the individual system’s
implementations can be found following the provided references [9, 14, 23]. The outputs of
these systems are the detected bright appearing lesions, drusen and red lesions, respectively,
and their associated posterior probability of being a true lesion. Figure 2 shows examples of the
individual system outputs.

Table 2. Features for classification of lesion candidates as used the works for bright appear-
ing lesion detection, drusen detection and red lesion detection [9, 14, 23].

Feature type Criteria
Shape Area, perimeter, compactness, length and width of the lesion candidate.
Context Average and standard deviation of vessel pixel probability at the lesion

candidate border.
Distance to the closest lesion candidate.
Number and average pixel probability of neighboring lesion candidates
within a certain radius.

Intensity Features measuring the difference in intensity in the RGB color space
of the lesion candidate as compared to its surrounding area.
Mean and standard deviation of Gaussian filter bank outputs.

Color Average and standard deviation inside and outside the lesion candidate
using the planes of the Luv and HSI color space.

Misc. Average, standard deviation, maximum and median pixel probability
inside the lesion candidate.

HSI: hue-saturation-intensity; Luv: luminescence-saturation-hue angle color space adopted by the International Com-
mission on Illumination (CIE); RGB: red-green-blue.

2.4. Feature descriptor

Using the three lesion type probabilities, an estimate of the lesion load was made. This was
done by constructing a weighted histogram of the detected lesions taking the size of the lesion
into account. The size of the detected lesions was included as exudates are in general smaller
in size compared to drusen. Given the probability Pi of the detected lesion i, the value hn of the
histogram bin n is defined as:

hn = ∑
i∈Ln

Pi (1)

where Ln is the group of lesions whose size is n pixels, calculated as the smallest enclosing
diameter of the lesion. The number of bins was set to 25 as most lesions have sizes smaller than
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 2. Examples of images with the outputs of the individual automatic lesion detection
systems. Top row: (a): Control case, (b): image showing the presence of drusen and (c):
image showing the presence of exudates. Second row: output of the bright lesion detection
system [14]. Third row: output of the red lesion detection system [23]. Bottom row: output
of the drusen detection system [9]. In each of the lesion detection output maps, a brighter
color indicates a higher likelihood of being a true lesion.

25 pixels. The last bin also takes into account lesions with size larger than 25 pixels. To remove
false positive detections by the individual lesion identification systems, all bright appearing
lesions and drusen with Pi smaller than 0.5 and all red lesions with Pi smaller than 0.3 were
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neglected during construction of the weighted histograms. The values for these thresholds were
determined in pilot experiments with each of the individual lesion detection systems.

Level 0 Level 1

Level 2 Level 3

Fig. 3. Division of the image into concentric regions at different spatial pyramid levels.
At each level, the number of concentric regions is doubled. Each region is centered on the
fovea (depicted with the white cross) and the outer region has a radius of two times the
distance between the fovea and optic disk.

2.5. Spatial pyramids

The image was divided into increasingly coarser concentric circular regions [30]. With increa-
sing coarseness, i.e. level, the number of concentric regions was doubled. Each circular region
was centered on the automatically detected fovea location. At the 0th level, the radius of the
circular region was equal to twice the distance between the automatically detected fovea and
the optic disc center. This radius was chosen in such a way that, for most images, the complete
field of view of the image fell inside the 0th level region. At each increasing level, the number
of regions was doubled with equally spaced radii. See Fig. 3 for an example of the regions at
different levels.

For each region, three lesion encoding weighted histograms, Equation 1, were computed
including only lesions whose center of gravity fell inside the region. Histograms for each of the
lesion types were concatenated, resulting in a feature vector of 75 features per region. For higher
level regions, these regions can be seen as hollow circles, i.e. a lesion was included only once in
a weighted histogram. Finally, one image encoding feature vector was composed for each image
following either a single-scale approach or a multi-scale approach. In the single-scale approach,
all feature vectors of the different regions at the level of evaluation were concatenated. In the
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multi-scale approach, all feature vectors of regions at the current level and the feature vectors
of the regions at the previous, lower levels, were concatenated. Figure 4 shows a graphical
representation of the image feature vector computed at spatial pyramid level 0.

(a) (b) (c)

Fig. 4. Graphical representation of the image feature vector at the 0th level spatial pyramid.
(a): Feature vector of the image shown in Fig. 2(a), (b): feature vector of the image shown
in Fig. 2(b) and (c): feature vector of the image shown in Fig. 2(c).

2.6. Multi-class differentiation of controls, drusen and exudates

Classification of the image into either control, containing drusen, or containing exudates was
done using a one-versus-all classification scheme using the constructed image feature vector
and a random forest classifier. In each of the one-versus-all classifications, 100 decision trees
with a tree depth of 18 were used for the random forest classifier. All experiments were per-
formed in a 10-fold cross-validation scheme. The total dataset was split up into 10 subsets. For
each of the 10 folds, the random forest classifiers in the one-versus-all classification scheme
were trained using 9 subsets and the left out subset was classified. Rotating this scheme 10
times resulted in classification of all subsets, without training and testing on the same data. All
classified subsets were then pooled back together and performance was calculated by assigning
the label of the class with the highest assigned probability. Receiver Operating Characteristics
(ROC) analysis was performed using the assigned soft-probabilities for each of the individ-
ual classes in a one-versus-all classification scheme. Area (Az) under the ROC curve and 95%
confidence intervals were calculated using bootstrap analysis [31].

3. Results

3.1. Observer grading

Two independent observers independently graded all images into one of the three categories:
control, drusen or exudates. Results of the human observers are reported in a contingency table,
shown in Table 3.

Table 3. Contingency table showing the results for the human observer gradings.
Reference Observer 1 Observer 2

Control Drusen Exudates Control Drusen Exudates
Control 479 55 18 404 138 10
Drusen 33 302 27 13 340 9

Exudates 1 2 183 0 11 175

Observer 1 had an overall accuracy of 0.876 and kappa agreement of 0.802 with 95% con-
fidence interval (CI) of [0.771;0.833], whereas observer 2 had an overall accuracy of 0.835
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and kappa agreement of 0.740 [0.706;0.775]. Eyes that were graded as control by the reference
and as having drusen by the observers contributed mostly to the errors made by the observers.
Individual sensitivity/specificity pairs for differentiating controls, drusen and exudates were
computed in a one-versus-all fashion and are reported in Table 6.

3.2. Automatic differentiation between controls, drusen and exudates

System performance was measured by applying two spatial pyramid schemes: one using single-
scale analysis and one using multi-scale analysis. Table 4 shows the results for the single- and
multi-scale spatial pyramid approaches. Kappa agreement and overall accuracy is reported.

Table 4. Classification performance of the automatic system using single- and multi-scale
spatial pyramid approaches.

Single-scale Multi-scale
Pyramid level Kappa [95% CI] Accuracy Kappa [95% CI] Accuracy

0 0.666 [0.626;0.705] 0.801 0.666 [0.626;0.705] 0.801
1 0.665 [0.625;0.705] 0.800 0.664 [0.624;0.703] 0.799
2 0.635 [0.594;0.676] 0.785 0.663 [0.623;0.703] 0.799
3 0.608 [0.566;0.651] 0.772 0.663 [0.623;0.703] 0.799

CI: Confidence interval.

Figure 5 shows the ROC curves for each of the one-versus-all classifications. The operating
points of both human observers are added to each graph. The CAD system achieved an area Az
under the ROC curve of 0.929, 0.883 and 0.956 for the detection of controls, images containing
drusen and images containing exudates, respectively. Table 5 shows the contingency table for
the automatic system for differentiation between controls, drusen and exudates at the 0th pyra-
mid level. Note that the results for the 0th level was the same for the single- and multi-scale
approaches. The multi-class approach achieved a kappa agreement of 0.666 [0.626;0.705] and
accuracy of 0.801. Table 6 shows the sensitivity and specificity of the automatic system for
identifying controls, drusen or exudates. The 0th level spatial pyramid approach achieved sen-
sitivity/specificity pairs of 0.904/0.781, 0.699/0.896 and 0.694/0.976 for controls, drusen and
exudates, respectively.

(a) (b) (c)

Fig. 5. Receiver operating characteristics curves for each of the one-vs-all classifications.
Area (Az) under the curve and 95% confidence intervals are reported in the legend. (a):
Control versus all, (b): drusen versus all and (c): exudates versus all.
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Table 5. Contingency table showing the results for the multi-class automatic system differ-
entiation between controls, drusen and exudates using features of the 0th pyramid level.

Reference Automatic system

Control Drusen Exudates
Control 499 42 11
Drusen 98 253 11

Exudates 22 35 129

Table 6. Performance of the observers and the automatic spatial pyramid approach using
features of the 0th pyramid level.

Grader Accuracy Kappa [95% CI] Control Drusen Exudates

Obs 1 0.876 0.802 [0.771;0.833] 0.868/0.938 0.834/0.923 0.984/0.951
Obs 2 0.835 0.740 [0.706;0.775] 0.732/0.976 0.939/0.798 0.941/0.979

System 0.801 0.666 [0.626;0.705] 0.904/0.781 0.699/0.896 0.694/0.976

Obs 1: Observer 1, Obs 2: Observer 2, System: automatic system.
Control, Drusen, Exudutes: Sensitivity/specificity pair for identification of the corresponding class using
one-vs-all approach.
CI: Confidence interval.

3.3. Evaluation of influence of image subtlety

Observer 1 indicated for each image whether he/she was confident about his/her grading. Image
gradings of which observer 1 was less confident were marked as subtle cases (N=582), whereas
others were marked as clear cases (N=518). Table 7 shows the performance of the observers
and the spatial pyramid method on the subset of subtle and clear cases. Total number of subtle
cases was 292, 226 and 64 for normal, drusen and exudates, respectively. For clear cases, these
numbers were 260, 136 and 122 for normal, drusen and exudates, respectively. Figure 6 shows
the ROC curves obtained using only the clear cases and the 0th level spatial pyramid. The CAD
system achieved Az values of 0.997, 0.973 and 0.978 for the detection of controls, images
containing drusen and images containing exudates, respectively.

Table 7. Performance of the observers and the proposed spatial pyramid approach on the
subset of subtle (N=582) and clear (N=518) cases.

Grader Accuracy Kappa [95% CI] Control Drusen Exudates

Subtle cases
Obs 1 0.784 0.645 [0.590;0.700] 0.760/0.883 0.765/0.848 0.953/0.927
Obs 2 0.734 0.564 [0.505;0.623] 0.558/0.955 0.925/0.640 0.859/0.973

System 0.687 0.444 [0.377;0.511] 0.842/0.590 0.549/0.865 0.469/0.971
Clear cases
Obs 1 0.981 0.969 [0.950;0.988] 0.988/1.000 0.949/0.992 1.000/0.982
Obs 2 0.950 0.921 [0.891;0.950] 0.927/1.000 0.963/0.945 0.984/0.987

System 0.929 0.886 [0.850;0.921] 0.973/0.996 0.949/0.924 0.811/0.982

Obs 1: Observer 1, Obs 2: Observer 2, System: automatic system.
Control, Drusen, Exudutes: Sensitivity/specificity pair for identifying the corresponding class.
CI: Confidence interval.

#254550 Received 26 Nov 2015; revised 22 Jan 2016; accepted 23 Jan 2016; published 2 Feb 2016 
(C) 2016 OSA 1 Mar 2016 | Vol. 7, No. 3 | DOI:10.1364/BOE.7.000709 | BIOMEDICAL OPTICS EXPRESS 719 



(a) (b) (c)

Fig. 6. Receiver operating characteristics curves for each of the one-vs-all classifications
using the set consisting of clear cases (N=518). Area (Az) under the curve and 95% confi-
dence intervals are reported in the legend. (a): Control versus all, (b): drusen versus all and
(c): exudates versus all.

4. Discussion

Correctly identifying the type of bright lesions is important for correct disease diagnosis in a
screening setup as presence of drusen or exudates result in different referral criteria and might
alter automatic referral decision of a patient. An automatic method using information of in-
dividual lesion detections in a global spatial pyramid framework to identify and differentiate
between drusen and exudates was presented and evaluated in a heterogeneous dataset consisting
of images from multiple sources and cameras. Using spatial information, the automatic method
approaches the level of performance of human observers. The automatic system achieved an
overall accuracy of 0.80 and kappa agreement of 0.67 with the reference. Observers achieved
slightly higher performances with accuracies of 0.88 and 0.84 and kappa agreements of 0.80
and 0.74, respectively. Higher level spatial pyramids, in which the image was divided into more
concentric sub-regions, did not lead to an increase in performance. Using multi-scale analysis
is beneficial over single-scale analysis when using higher levels of spatial pyramids, but does
not increase overall performance.

In our proposed framework an image level decision was generated by combining individual
lesion detections in the whole image. Other methods have used a rule-based approach where the
image level score was determined by the maximum lesion probability of the target class [9,14].
To investigate the added value of our approach over such maximum rule based approach, we
have applied the bright lesion detection system [14] and the drusen detection system [9] in our
dataset. The bright lesion detection system achieved Az values of 0.906, 0.702 and 0.804 for the
identification of controls, cases with drusen and cases with exudates, respectively. The drusen
detection system achieved an Az value of 0.711 for the identification of cases with drusen. Our
proposed method achieved substantially higher performance, with Az values of 0.929, 0.883
and 0.956 for controls, drusen and exudates, respectively. By not using only the maximum
lesion detection response for the image score, our method is more robust to outliers and con-
founding lesions present in the data (i.e. drusen are confounding lesions when identifying cases
with exudates and vice versa).

From Table 3 and Table 6, it can be observed that both observers achieved good performance
for the identification of each of the individual classes. Control images which were graded as
having drusen contributed most to the errors made by both observers. This can also be seen in
the sensitivity for identifying control cases and specificity for drusen cases, which is slightly
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lower than the ones for the other classes for both observers, see Table 6. A possible explanation
for this is that drusen can be very subtle and small reflections in the retina can be misinterpreted
as drusen. For exudates, this poses less of a problem as exudates in general have a higher
contrast with the background. The proposed spatial pyramid approach achieved a sensitivity of
0.904 for identification of normal cases with a slightly lower specificity than observers. Lower
sensitivities of the automatic system compared to observer for the classes drusen and exudates
can be observed in Table 6.

One reason for the lower sensitivities of the automatic detection of images with drusen or
exudates is the fact that the three automatic systems that detected various lesions are not perfect.
The outputs of these systems are used in the spatial pyramid framework. Lesions which are not
detected by these systems will not be incorporated in the spatial framework and hamper thus the
ability of the automatic system to make a correct decision. This is reflected in the larger number
of images assigned to the control class, while being a drusen or exudates case, see Table 5, and
the lower sensitivities for identification of drusen and exudates cases, see Table 6.

Lowering the threshold for the lesions to be included in the framework increases the chance
of subtle lesions to be included in the spatial pyramid framework, but also contributes to a larger
number of false positive detections. The thresholds were determined using pilot experiments
with each of the individual lesion detection systems. Additional analysis of the influence of
these system hyper-parameters on the final performance of our proposed system showed similar
performance. Table 8 shows the accuracy values obtained by the 0th pyramid level CAD system.
A change in threshold values led to only minor changes on the overall CAD system’s accuracy.
However, these thresholds might not be optimal for the identification of the individual classes,
such as drusen or exudates.

Table 8. Accuracy values obtained using the 0th pyramid level CAD system using different
threshold settings for discarding bright appearing lesion, drusen and red lesion information.
Threshold 1: threshold for discarding bright appearing lesions and drusen; Threshold 2:
threshold for discarding red lesions.

Accuracy Threshold 2
0.0 0.1 0.2 0.3 0.4

T
hr

es
ho

ld
1

0.0 0.795 0.804 0.800 0.803 0.795
0.1 0.792 0.796 0.789 0.793 0.799
0.2 0.791 0.797 0.798 0.795 0.793
0.3 0.799 0.809 0.799 0.798 0.797
0.4 0.799 0.803 0.803 0.801 0.795
0.5 0.800 0.812 0.810 0.801 0.803
0.6 0.804 0.812 0.800 0.800 0.801

Another reason for the fact that the automatic system is performing worse than human experts
may be the large amount of subtle cases in the dataset. Many images only contain a single or
only a few drusen or exudates. Figure 7 shows examples of subtle cases included in the dataset.
Images presenting with only a single subtle lesion are more likely to be missed by the automatic
lesion detection systems. Furthermore, based on a single lesion, it is hard or even impossible
for the automatic system to make a differentiation between drusen or exudates using spatial
information. Table 5 shows the number of images correctly and incorrectly classified by the
automatic system. To analyze the influence of subtlety of the data on the system performance,
we evaluated performance on the subset of images marked as clear cases by Observer 1. System
performance and also observer performance is much higher in this subset compared to the
subtle subset, Table 7, reaching an accuracy of 0.93 and kappa agreement of 0.89. The ability
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to detect and differentiate normal, drusen and exudates cases appears to be heavily influence by
the subtlety of the images under consideration.

(a) (b)

(c) (d)

Fig. 7. Examples of images showing subtle bright lesions. (a): image showing the presence
of drusen with (b) showing a close up view of the region as indicated by the black box in
(a). (c): image showing the presence of exudates with (d) showing a close up view of the
region as indicated by the black box in (b). Both images (a) and (c) were graded by the
automatic system as control.

In our study, we have excluded images if they contained myelinated nerve fibers or abnor-
malities which are not related to AMD or DR. However, in a screening setup, such images
can be encountered. Therefore, we have investigated how our system would respond in such a
case. Figure 8 shows an example of an image containing myelinated nerve fibers. The 0th level
spatial pyramid classified this image as containing exudates. Although this classification might
not be correct, the system has identified that the image does not belong to the control class.
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Although identification of this image as not being a control is important in a screening setting,
an automated system which identifies multiple eye abnormalities would lead to a more accurate
patient referral and treatment decision.

Fig. 8. Example of an image with myelinated nerve fibers.

Table 6 and Table 7 show that the incorporation of spatial information through spatial pyra-
mids did not improve the final performance. The value of using higher spatial pyramids might
not be well expressed for this task, but could potentially increase performance for other related
classification tasks. In retinal screening, not only the type of lesions, but also the location of
lesions is important to make a decision on whether a patient should be referred. Lesions close to
the macular region represent a higher risk of disease progression for the patient and, therefore,
influence the decision for referral. Higher level spatial pyramids could improve the performance
as compared to the 0th level as higher levels are capable of capturing this spatial information in
the image. Another application where higher level spatial pyramids might prove to have added
value is for disease severity grading. In the case of AMD severity grading, the level of sever-
ity is based on the location of the abnormalities with respect to the fovea. The 0th level spatial
pyramid is unable to encode this information as all lesions in the image are encoded in the same
weighted histogram regardless their position. Higher level spatial pyramids are, however, able
to capture this spatial information: the concentric circles of the higher level spatial pyramids
are centered on the fovea and each ring encodes information at a fixed distance from the fovea.
The property of encoding spatial information might have a higher impact on such classification
tasks. We will further investigate the impact of higher level spatial pyramids for these tasks in
future work.

We have used the ratings of a single expert as reference, mimicking the clinical protocol
where a single observer grades the images. However, as the availability of multiple ratings for
each image allowed for construction of a potentially more robust reference, we also examined
the use of a consensus reference, constructed by using majority voting of the three observers.
Training and evaluating the system using this consensus reference resulted in a similar perfor-
mance with an accuracy of 0.793. One-versus-all sensitivity/specificity values of 0.883/0.817,
0.718/0.868 and 0.709/0.971 were achieved for the identification of controls, drusen and exu-
dates, respectively. Using a consensus of the available graders to construct the reference omits
us, however, to directly compare the results with independent human observers.

The choice of a suitable classifier is difficult to make in advance as the classifier performance
depends on the dataset and the classification task at hand. We have also compared other classi-
fiers such as a support vector machine and a k-nearest neighbor classifier, obtaining an accuracy
of 0.736 and 0.696 for the 0th level spatial pyramid, respectively. The random forest classifier
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obtained higher performance with a moderate computational cost of 12 seconds for training and
classification, computed on an Intel Xeon CPU with 2.4 GHz memory.

In literature, other methods which have focused on the identification of either drusen or exu-
dates have been described [10–13, 15–17]. In these works, the focus was put on discriminating
control cases from abnormal cases, i.e. cases containing either abnormalities related to AMD or
abnormalities related to DR. The datasets for this task consisted of control cases and cases with
either exudates or drusen, but not simultaneously. Features to differentiate between exudates
and drusen need to be more robust as these abnormalities might have similar appearance on
color fundus images, making differentiation more difficult. This difficulty is also reflected in
Fig. 6 which shows that the CAD system achieves higher performance for the identification of
controls with an Az value of 0.997, as compared to the identification of drusen (Az=0.978) or
exudates (Az=0.973).

Previous works also described methods to discriminate between images containing bright
lesions. A method, making use of sparse coded features and a support vector machine achieved
near perfect discrimination results [32]. However, it should be noted that a fair comparison be-
tween methods is hard to make since results are based on different datasets. The composition of
the datasets has a large influence on algorithm performance, as is evident from the difference in
performance between subtle and clear cases in our experiments (see Table 7). In our study, ima-
ges showing presence of single drusen or exudates were included. Based on a single lesion, it
can be difficult or even impossible for an algorithm to make a differentiation. Reference criteria
for data inclusion in the previous study [32] were not mentioned by the authors. Furthermore,
no human observer was used in the previous study, which would allow to compare system
performance to human level performance, giving a measure of overall performance. Including
human observers is therefore important to draw conclusions on algorithm performance.

Other studies have proposed frameworks based on bag-of-visual-words (BoVW) representa-
tion which was used to detect bright lesions and red lesions [28, 33, 34]. In these approaches, a
visual vocabulary is constructed using features extracted from the color fundus images. These
methods achieve good performance on specific datasets. An evaluation of these methods on a
diverse dataset consisting of image from multiple centers and cameras has not been performed.
Furthermore, these methods have many system parameters which need to be tuned in order to
obtain good results. These parameters include the number of visual words for image description
and the manual crafted features used to map local image patches to one of the visual words.
Furthermore, interpretation of the system is difficult as the visual vocabulary cannot be mapped
directly to individual lesions or image characteristics.

In this work, we have combined features extracted from solely color fundus images. Adding
information from different imaging modalities could, however, increase the CAD performance.
For example, pathologies related to AMD and DR manifest at different retinal depths and af-
fect different layers of the retina. As Optical Coherence Tomography (OCT) provides valuable
depth information, features derived from OCT could potentially be beneficial for disease dif-
ferentiation. Previous works employing OCT imaging data have shown good performance for
the automatic differentiation of retinal diseases [35, 36]. A method incorporating histogram of
oriented gradient features and a support vector machine correctly identified 100% of the cases
with AMD, 100% of the cases with diabetic macular edema, and 86.7% of the normal sub-
jects in a small study dataset of 15 subjects for each class [35]. Another work focused on the
identification of different macular pathologies: macular hole, macular edema and AMD [36].
This method uses multiscale texture features and shape features in combination with support
vector machines to identify control cases and each of the pathologies separately. The method
obtained Az values ranging between 0.941 and 0.978 in a dataset comprising of 131 scans from
37 subjects. Extending our proposed framework by adding features derived from OCT data
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could therefore potentially increase the classification performance. However, in current screen-
ing settings, only color fundus imaging is performed, which limits the inclusion of OCT derived
features in our proposed framework.

To conclude, we presented an automatic system for the identification and differentiation of
images containing drusen or exudates using a spatial pyramid framework. We provide a gen-
eral framework to generate an image level decision based on individual lesion detections and
we show that the automatic system approaches human level performance, although results do
not improve when using higher level spatial pyramids. System performance is limited by the
subtlety of the images in the dataset and leaves room for improvement. Improvements could in-
clude the addition of lesion level characteristics, such as color and shape in the spatial pyramid
approach.
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