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Abstract

Background

Numerous factor analytic studies consistently support a distinction between two symptom

domains of attention-deficit/hyperactivity disorder (ADHD), inattention and hyperactivity/

impulsivity. Both dimensions show high internal consistency and moderate to strong corre-

lations with each other. However, it is not clear what drives this strong correlation. The aim

of this paper is to address this issue.

Method

We applied a sophisticated approach for causal discovery on three independent data

sets of scores of the two ADHD dimensions in NeuroIMAGE (total N = 675), ADHD-200

(N = 245), and IMpACT (N = 164), assessed by different raters and instruments, and further

used information on gender or a genetic risk haplotype.

Results

In all data sets we found strong statistical evidence for the same pattern: the clear depen-

dence between hyperactivity/impulsivity symptom level and an established genetic factor

(either gender or risk haplotype) vanishes when one conditions upon inattention symptom

level. Under reasonable assumptions, e.g., that phenotypes do not cause genotypes, a

causal model that is consistent with this pattern contains a causal path from inattention to

hyperactivity/impulsivity.
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Conclusions

The robust dependency cancellation observed in three different data sets suggests that

inattention is a driving factor for hyperactivity/impulsivity. This causal hypothesis can be fur-

ther validated in intervention studies. Our model suggests that interventions that affect inat-

tention will also have an effect on the level of hyperactivity/impulsivity. On the other hand,

interventions that affect hyperactivity/impulsivity would not change the level of inattention.

This causal model may explain earlier findings on heritable factors causing ADHD reported

in the study of twins with learning difficulties.

Introduction

Problem description

Attention-deficit/hyperactivity disorder (ADHD) is a common and highly heritable neurode-
velopmental disorder that affects about 5–6% of children worldwide [1, 2]. ADHD persists into
adulthood in about 30–50% of the childhood cases, depending on definition of remission [3],
and prevalence of ADHD in adults is estimated between 2.5–4.9% [4]. In pediatric populations,
ADHD is about 2–3 times more common in boys than girls [5], but gender balance is rather
equal in adult populations [6]. The genetics of ADHD is complex [7] and several candidate
genes have been associated with ADHD in meta-analyses, among which the dopamine trans-
porter gene SLC6A3/DAT1 [8] and dopamine D4 receptor geneDRD4 [9]. Genetic variation of
theDAT1 gene may affect the functioning of the dopamine transporter caused by individual
variation in regulating levels of dopamine [10, 11]. This alters baseline dopamine tone; which
is utilized therapeutically by drugs such as methylphenidate that block the dopamine trans-
porter involved in the recycling of dopamine into neurons. TheDAT1 gene has a differential
risk haplotype (formed by a variable number of tandem repeat (VNTR) polymorphisms in the
3’ UTR and in intron 8) associated with childhoodADHD (10R/6R) and adult ADHD (9R/6R)
[12, 13]. Similarly, polymorphism in the 7 repeat allele of the DRD4 gene (which is expressed
on neuronal dendrites) confers reduced intracellular cAMP signalling following binding of
dopamine to dopamine D4 receptors. As such, increased expression of these VNTR polymor-
phisms inDAT1 or DRD4 increases the degree of genetic risk associated with ADHD symp-
toms. Furthermore, bothDAT1 knockout and DRD4 knockout transgenic mice demonstrate
face validity with documented increases in hyperactivity and impulsivity [14] and reduced
behavioral inhibition [15].
As evident from its name, ADHD is characterized by inappropriate and pervasive levels of

inattention and/or hyperactivity and impulsivity. Exploratory and confirmatory factor analyses
of the core ADHD symptoms defined in the DSM system and assessed by parents and teachers,
as well as self-report ratings in adolescents and adults consistently support a distinction
between two symptom dimensions: inattention and hyperactivity/impulsivity (see [16] for a
review). Inattention and hyperactivity/impulsivity both show high internal consistency and are
moderately to strongly correlated (correlation coefficient between .63 and .75), indicating that
they constitute separable but substantially correlated dimensions [16]. Inattention is more
strongly related to internalizing problems of anxiety and depression and to academic under-
achievement. In contrast, hyperactivity/impulsivity is linked to peer rejection and externalizing
behavioral problems such as oppositional defiant and antisocial behavior [16].
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The cause of the strong correlation between the two symptom dimensions of ADHD inat-
tention and hyperactivity/impulsivity is yet unclear. Are these two dimensions two sides of the
same coin, i.e., the consequence of a (possibly unknown) common cause, or could it be that
one dimension drives the other? This question is relevant to the current literature: some studies
assume a bi-factor model to explain the correlation [17], others propose a driving effect of inat-
tention on hyperactivity based on the analysis of twin studies [18].

Causal discovery from observational data

The standard approach to establish causal relationships is through experimentalmanipulation
or intervention. For example, in order to establish a causal effect of inattention upon hyperac-
tivity/impulsivity, one would need to apply an intervention that only acts upon inattention and
then measure its effect on hyperactivity/impulsivity. When analyzing the results of these exper-
iments the Bradford Hill criteria for causation should be taken into account [19]. These criteria
specify the conditions necessary to provide evidence of causal relationships. Although in theory
such an intervention, e.g., through a well-designed therapy or some novel highly specificmedi-
cation, could be attainable, we are not aware of any such attempts or studies in the current
literature.
That being the case, the emerging field of causal discovery from observational data may pro-

vide a powerful alternative [20, 21]. In apparent contradiction with the good old adagio “corre-
lation does not imply causation”, theoretical and experimental studies have shown that, under
certain reasonable assumptions, it is possible to learn cause-effect relationships from purely
observational data. The key insight is that, where a single number such as a mere correlation
indeed cannot reveal anything about causal direction, other, more subtle characteristicsmay
contain important directional information. Just considering pairs of variables, these can be
found in higher-order moments [22]. In higher-dimensional systems, the seminal work of
Turing award winner Judea Pearl [21] and others revealed the close connection between causal
relationships and conditional independencies. Since then, causal discovery algorithms have
successfully been applied in various domains, and slowly find their way into the biomedical sci-
ences [23–26]. To the best of our knowledge, the current paper is the first to describe an appli-
cation of causal discovery for the analysis of observational clinical data.
Intuitively, two variables ‘Z’ and ‘Y’ are conditionally independent given ‘X’ if, once the

value of variable ‘X’ is known, the value of ‘Z’ does not add any additional information about
‘Y’. For example, in the context of children with ADHD, we can call gender and hyperactivity/
impulsivity conditionally independent given inattention, if knowing whether a subject is a boy
or a girl does not help to better estimate the hyperactivity/impulsivity symptom score, once we
already know the child’s inattention symptom score. In this paper we investigate whether such
conditional independencies can be derived from observational data.
Most causal discovery algorithms start by assuming that real-world events are governed by

specific, yet unknown causal mechanisms. Given a particular causal model, one can in principle
read off the conditional dependencies and independencies one should then find in observa-
tional data. Reasoning backwards, given particular observed conditional dependencies and
independencies in observational data, one may be able to infer causal relations that any causal
model should have to be consistent with the observed statistical patterns.
It is exactly this kind of inverse reasoning that underlies so-called constraint-based algo-

rithms for causal discovery such as PC/Fast Causal Inference [27] and Bayesian Constraint-
based Causal Discovery [28]. Specialized variants, such as Cooper’s local causal discovery algo-
rithm (LCD) [29] and the Trigger algorithm [24], handle the case of three variables and are
particularly relevant for our purposes. The statistical pattern in LCD takes a triplet of mutually

Statistical Evidence that Inattention Drives Hyperactivity/Impulsivity in ADHD

PLOS ONE | DOI:10.1371/journal.pone.0165120 October 21, 2016 3 / 17



dependent variables with the additional prior knowledge that one of the variables (‘Z’) cannot
be caused by the other two (‘X’ and ‘Y’). As we will show in more detail in the Supplementary
material (S1 File), any causal model that now implies a conditional independence between the
variables ‘Y’ and ‘Z’ conditioned upon ‘X’ has a causal link from ‘X’ to ‘Y’. So, reasoning back-
ward, if we observe such a conditional independence in our observational data, we can inter-
pret this as evidence for a causal link from ‘X’ to ‘Y’. This causal pattern was first derived by
Cooper in [29], and later independently rediscovered in the context of genome biology in [24].
This method has been applied in various papers in the biomedical research literature, such as
[30, 31].

Related models and methodologies

LCD is closely related to other, arguably more standard approaches, such as Structural Equa-
tionModeling, mediation analysis and instrumental variable analysis. Below we explain the
similarities and differences between these methods.

Structural equationmodeling. LCD, as most methods for causal discovery, is closely
related to Structural Equation Modeling (SEM). Typically, SEMs are used in a confirmatory
setting, where a limited amount of specific structures are taken into consideration and com-
pared against each other by scoring them on the available data. Causal discoverymethods are
used in a more exploratory setting. They assume that there is some SEM underlying the data
and then aim to reason about its structure. Under particular conditions, parts of the structure
can be derived from conditional (in)dependencies [20]. As explained in detail in the Appendix,
LCD does exactly this for the specific case of three observed and possibly many latent variables.
A key advantage of LCD over fitting different SEM structures to the data is that LCD automati-
cally incorporates latent variables and then implicitly considers all possible models instead of
just a few. This makes it possible for LCD to make generic statements about causal directions.
PLS-SEM, for partial least squares structural equation modeling, is a specific variant of

structural equation modeling [32, 33]. Among others, it more explicitly handles latent variables
and hence may be considered closer to the approach that we take in this paper. However, also
in PLS-SEM, one starts by specifying the structure between the (latent and measured) variables,
which makes it different from LCD, which aims to infer the (invariant parts of the) structure
from observational data. Thus, by using LCD we do not have to preselect several possible
models to test, as typically done with PLS-SEM. As a result, LCD can potentially infer causal
statements.

Mediation analysis. Mediation analysis starts from the assumption that the independent
variable ‘Z’ (genetic factor) causes the dependent variable ‘Y’ (impulsivity/hyperactivity) and
then aims to answer the question whether the effect of ‘Z’ on ‘Y’ can be (fully) explained by the
mediator ‘X’ (inattention). The important difference with the analysis underlying LCD is that
LCD does not start from the assumption that there is a causal relationship, but instead aims to
derive one. Nevertheless, following the analysis detailed in the Supplementary material (S1
File), it can be seen that we can only derive a causal statement if the data reveals a conditional
independence,which amounts to one variable mediating the correlation between the other
two.

Instrumental variable approaches. In so-called instrumental variable approaches [34],
the genetic factor ‘Z’ is called an instrument. It can be used to estimate the causal effect of the
variable ‘X’ on the variable ‘Y’ in the presence of latent confounders. A valid instrument has to
satisfy various criteria, among others that its effect on the variable ‘Y’ is fully mediated by the
variable ‘X’ (in more complex settings possibly controlled for other variables). The main differ-
ence with LCD is that instrumental variable analysis starts from the assumption that there is a
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causal effect from ‘X’ to ‘Y’ and then tries to make use of the instrument ‘Z’ to estimate or
bound its strength, whereas LCD uses the instrument ‘Z’ to try and infer the existence and
direction of a cause-effect relationship between ‘X’ and ‘Y’, without attempting to estimate the
causal strength of this relationship.

Goal

The goal of this paper is to analyze whether such statistical patterns can be observed in studies
of ADHD populations, and if so, what causal relationships these patterns then suggest.We will
use symptom scores for inattention and hyperactivity/impulsivity as substitutes for the actual
level of inattentiveness and hyperactivity/impulsivity. These then play the role of the variables
‘X’ and ‘Y’ above. For the variable ‘Z’ we will consider genetic variables such as gender and the
DAT1 risk haplotype. These three variables clearly satisfy the premises of LCD: they are all
mutually dependent (as shown in various other studies and easily checked for the data sets ana-
lyzed in this paper) and it seems completely reasonable to assume that manipulations of inat-
tentiveness and hyperactivity/impulsivity do not affect gender, nor theDAT1 risk haplotype.

Materials and Methods

Materials

To infer causal relationships betweenADHD symptoms we used three data sets, describing
children, adolescents, and adults with ADHD. For each data set we only consider three vari-
ables: inattention symptom scores, hyperactivity/impulsivity symptom scores, and a genetic
variable (either gender or a risk haplotype). The main rationale for choosing these data sets is
availability, as explained in more detail in the discussion.
The first data set was collected for the NeuroIMAGE project [35] (see www.neuroimage.nl)

and considers adolescents.We will refer to this data set as the NeuroIMAGE data set. This data
set includes N = 903 participants (413 adolescents with ADHD, 228 unaffected siblings of
ADHD probands, and 262 healthy control subjects) with a mean age of 16.7 years (min = 5.7
years, max = 28.6 years). The presence of ADHD symptoms was assessed by a semi-structured
diagnostic interview Schedule for AffectiveDisorders and Schizophrenia for School-Age Chil-
dren—Present and LifetimeVersion (K-SADS-PL [36]) and Conners' ADHD questionnaires
frommultiple informants (parents and children) [37]. An algorithmwas applied to create a
combined symptom count from the interview and questionnaires (symptom range 0–18) (the
algorithm is provided in [35]). Participants were diagnosedwith ADHD if they met the full
DSM-IV criteria for the disorder. For the current analyses, the sum of the symptom counts on
the two symptom dimensions inattention (0–9) and hyperactivity/impulsivity (0–9) was used.
In addition, we used the information on gender. In order not to complicate our analysis with
ways to account for the dependencies between probands and their unaffected siblings, we
ignore the siblings, leaving N = 675 subjects in total. A more detailed description of the symp-
tom assessment and recruitment process can be found in [35].
The second data set was collected by Peking University and is publicly available as part of

the ADHD-200 Sample and parts of this data were described in several papers [38–41], (http://
fcon_1000.projects.nitrc.org/indi/adhd200/) and considers children.We will refer to this data
set as the ADHD-200 data set. This data set includes N = 245 participants (102 children with
ADHD, 143 control subjects) with a mean age of 11.7 years (min = 8.1 years, max = 17.3
years). The data set contains information about subjects’ ADHD symptom scores, disease
status, gender, and IQ. Symptom scores were measured using the ADHD Rating Scale
(ADHD-RS) IV [42], for which scores can range from 0 to 27 for each symptom domain. Also
for this data set we will restrict our analysis to the two symptom scores and gender. We could

Statistical Evidence that Inattention Drives Hyperactivity/Impulsivity in ADHD

PLOS ONE | DOI:10.1371/journal.pone.0165120 October 21, 2016 5 / 17

http://www.neuroimage.nl
http://fcon_1000.projects.nitrc.org/indi/adhd200/
http://fcon_1000.projects.nitrc.org/indi/adhd200/


not use the other data sets that are part of the ADHD-200 sample, because in those data sets
the ADHD symptom scores were corrected for the effect of gender. More details about the
ADHD-200 data sets are provided in [38].
The third data set was collected for the IMpACT project [43] and considers adults. We will

refer to this data set as the IMpACT data set. This data set contains N = 164 participants (87
adults with ADHD, 77 control subjects) with a mean age of 36.6 years (min = 18.0 years,
max = 63.0 years). Subjects were assessed using the Diagnostic Interview for Adult ADHD
(DIVA) (www.divacenter.eu). This interview focuses on the 18 DSM-IV symptoms of ADHD
and uses concrete and realistic examples to thoroughly investigate whether the symptom is
present now or was in childhood. In addition, a quantitative measure of clinical symptoms was
obtained using the ADHD-DSM-IV Self Rating scale [6], which has a range of scores from 0 to
9 for each symptom domain. To support the validity of the symptoms estimate based on self-
reports, extra information about ADHD symptoms and impairment in childhoodwas obtained
from parents and school reports, whenever possible. Patients were included in the study if they
met the DSM-IV-TR criteria for ADHD in childhood as well as adulthood. As gender was not
associated with ADHD in the adult data, we used an alternative genetic variable: the presence/
absence of theDAT1 9/6 risk haplotype, a genetic polymorphism associated with ADHD in
adulthood [43]. More detailed information about the data collection and symptom assessment
can be found in the original paper by Hoogman [43]. For this type of analysis the use of DAT1
instead of gender as a genetic variable does not influence the validity of our results, since DAT1
also fulfills all the requirements of the LCD approach (DAT1 is correlated with inattention and
hyperactivity/impulsivity, neither inattention nor hyperactivity can cause DAT1).

Data analysis

The inference of causal relationships from observational data crucially depends on the detect-
able absence and presence of conditional dependencies between variables [21]. For random
variables that follow a multivariate Gaussian distribution, conditional independence corre-
sponds to zero partial correlation. The partial correlation betweenX and Y given controlling
variable Z is defined as the correlation between the residuals RX and RY resulting from the lin-
ear regression of X with Z and of Ywith Z, respectively. In other words, partial correlation mea-
sures the degree of association between two random variables, with the effect of the controlling
random variable removed. By measuring partial correlation it is possible to measure condi-
tional independencies in the data.
Our symptom scores are not normally distributed and both gender and presence/absence of

risk haplotype are binary variables. The standard approach of estimating conditional indepen-
dencies uses Pearson partial correlation that relies on the assumption of Gaussian data. Since
this assumption does not hold for our data, Pearson partial correlation is not guaranteed to
represent conditional dependencies and independencies correctly for our data [44]. We there-
fore replaced Pearson by Spearman rank partial correlation. Technically, a standard test for
zero partial correlation with Spearman correlation instead of Pearson is valid for variables
that obey a so-called non-paranormal distribution [45]: a multivariate Gaussian distribution
on latent variables, each of which is related to the observedvariables through a monotonic
transformation.
An alternative method to infer conditional independencies/dependencies from non-nor-

mally distributed data is to discretize the data at the risk of losing some statistical power and
use the so-calledMantel-Haenszel test [46]. The basic idea of this test is to turn observed
counts into expected counts under the assumption that there is a conditional independence
and then check whether there is a significant difference between the expected and observed
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counts. For all three data sets we discretized the symptom scores into a binary variable using a
median split, which had its threshold at 4.5. The observed counts were visualized in a cross
table with a mosaic plot. A mosaic plot is an area-proportional hierarchical visualization of
(typically observed) counts, composed of tiles (corresponding to the cells) created by recursive
vertical and horizontal splits of a rectangle. The area of each tile is proportional to the corre-
sponding cell entry given the dimensions of previous splits [47]. Mosaic plots are excellent
tools for visualizing conditional independencies: if two variables are conditionally independent
given a third, this will show in the mosaic plot through straight lines as long as the conditioning
variable is not represented at the lowest level of the hierarchy.

Results

We obtained consistent results for all three data sets. We provide a detailed description of the
results for the ADHD adolescence data, including figures, in the main text. Figures for the
other two data sets can be found in the Supplementary material (S2 File). A summary of the
results for the three data sets is presented in Table 1.
In Fig 1 the NeuroIMAGE data set is displayed. It can be clearly seen that all three vari-

ables are significantly correlated (see Table 2 for correlations and effect sizes). Spearman’s
partial correlation between gender and hyperactivity/impulsivity symptom scores condi-
tioned upon inattention symptom scores is negligible (Spearman R = -0.0008, p = 0.9826).
However, the Spearman partial correlation between gender and inattention symptom scores
conditioned upon hyperactivity/impulsivity symptom is significantly different from zero
(Spearman R = 0.1235, p = 0.0013). Spearman’s rank partial correlation coefficients are visu-
alized in Fig 2.
The Mantel-Haenszel test for discretized data provided similar results. As shown in the

mosaic plots in Fig 3, there is a significant difference (chi-squared = 11.37, p<0.001) between
the observed and expected scores of inattention for the different genders, conditioned upon
hyperactivity/impulsivity symptom level (Fig 3a). No significant difference (chi-squared = 0.15,
p = 0.70) is seen between the observed and expected scores of hyperactivity/impulsivity for dif-
ferent gender, conditioned upon inattention symptoms (Fig 3b). This implies that the triples in
all three data sets satisfy the LCD-condition, i.e., where for a triplet of mutually dependent vari-
ables (‘X’, ‘Y’, ‘Z’) with the prior knowledge that ‘Z’ is not caused by ‘X’ and ‘Y’we observe a
conditional independencybetween ‘Y’ and ‘Z’ conditioned upon ‘X’.

Table 1. Outcome of the conditional independence tests for the three different data sets. We check both whether inattention is conditionally indepen-

dent of Gender/DAT1 given hyperactivity/impulsivity (second column) and whether hyperactivity/impulsivity is conditionally independent of Gender/DAT1

given inattention (third column). R specifies the partial correlation (higher means more strongly correlated); chi-squared the Mantel—Haenszel test statistic

(higher means larger deviation from independence). The p-values correspond to the null hypothesis that the two variables are conditionally independent.

Type of test Gender/DAT1 and inattention symptom scores conditioned

upon hyperactivity/impulsivity

Gender/DAT1 and hyperactivity/impulsivity symptom

scores conditioned upon inattention

NeuroIMAGE

Partial correlation test R = 0.1235, p = 0.0013 R = -0.0008, p = 0.9826

Mantel-Haenszel test Chi-squared = 11.37, p<0.001 Chi-squared = 0.15, p = 0.70

ADHD-200

Partial correlation test R = 0.18, p = 0.006 R = 0.05, p = 0.42

Mantel-Haenszel test Chi-squared = 10.98, p = 0.001 Chi-squared = 0.47, p = 0.49

IMpACT

Partial correlation test R = 0.19, p = 0.02 R = -0.01, p = 0.91

Mantel-Haenszel test Chi-squared = 11.21, p = 0.001 Chi-squared = 0.005, p = 0.95

doi:10.1371/journal.pone.0165120.t001
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Discussion

The aim of this paper was to apply a novel approach for causal discovery to improve our under-
standing of the strong correlation between the two symptom dimensions of ADHD. In three
different and independent data sets, employing different instruments and raters to measure
ADHD symptoms, and using different genetic variables, we found robust statistical evidence
for a conditional independence of hyperactivity/impulsivity symptom level from a genetic vari-
able, conditioned upon inattention symptom level. Without conditioning, the genetic variable
(gender/risk haplotype) and hyperactivity/impulsivity were clearly dependent. Causal inference
provides an explanation for this dependency cancellation: inattention causes hyperactivity/
impulsivity.

Interpretation

The causal statement explaining the association between hyperactivity/impulsivity and inatten-
tion asks for a careful interpretation. Obviously, inattention as well as hyperactivity/impulsivity
could be caused by many factors, directly or indirectly through yet other factors. What the
causal model implies is that there is a significant causal path from inattention to hyperactivity/
impulsivity, but not the other way around. Furthermore, there appears to be no (unobserved)
factor with a similarly relevant causal path to both inattention and hyperactivity/impulsivity,
since in that case the genetic variable and hyperactivity/impulsivity should be dependent

Fig 1. The NeuroIMAGE data set: Hyperactivity/impulsivity is plotted versus inattention symptoms

for male and female. The bars indicate the histogram of the distribution. For visualization purposes random

noise has been added to the discrete symptom scores.

doi:10.1371/journal.pone.0165120.g001

Table 2. Correlation between the three variables for three data sets and the category of the effect size (in brackets). R represents Spearman rank

correlation, and p-values correspond to the null hypothesis that the two variables are independent. Effect size estimates are based on the size of the correla-

tion observed between two variables, where small, medium, and large correlation thresholds are respectively 0.10, 0.30, and 0.50 based on Cohen’s classifi-

cation [48].

Gender/DAT1 and Inattention Gender/DAT1 and Hyperactivity/Impulsivity Inattention and Hyperactivity/Impulsivity

NeuroIMAGE R = 0.187, p<0.001 (small) R = 0.141, p<0.001(small) R = 0.759, p<0.001 (large)

ADHD-200 R = 0.288, p<0.001 (small) R = 0.215, p = 0.001 (small) R = 0.679, p<0.001 (large)

IMpACT R = 0.307, p = 0.001 (medium) R = 0.224, p = 0.004 (small) R = 0.764, p<0.001 (large)

doi:10.1371/journal.pone.0165120.t002
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conditioned upon inattention, which contradicts with the observed conditional independence.
Summarizing the above, there are factors that influence inattention directly and influence indi-
rectly hyperactivity/impulsivity via inattention. On the other hand there are also factors that
influence hyperactivity/impulsivity directly, and have no effect on inattention. The variance of
the hyperactivity/impulsivity explained by the inattention ranges between 67–77% for the data
sets described in this study, based on the correlation between the two variables. The rest of the
variance can be explained by factors that influence hyperactivity/impulsivity directly, not via
inattention.
Note also that in this causal interpretation, we treat the outcome of the interviews/question-

naires as proxy for “inattention” and “hyperactivity/impulsivity”. In fact, “inattention” and
“hyperactivity/impulsivity” themselves are perhaps best viewed as hidden concepts, which can
be represented as latent variables that by themselves are linked to (causing) the respective
symptoms. That we find this causal link between inattention symptoms and hyperactivity/
impulsivity implies that there is likely to be a latent concept (which we may call “inattention”)
that is quite accurately captured by the interview/questionnaire items related to inattention
and which “causes” another latent concept (which we may call “hyperactivity/impulsivity”)
that is quite accurately represented by items for hyperactivity/impulsivity in the interviews/
questionnaires, see Fig 4. Furthermore, when we say that one variable “causes” another, we
mean that if we manage to intervene on the first variable, this will change (the probability dis-
tribution of) the second variable. A similar subtle interpretation is implicit in many practical
applications of causal discovery.

Fig 2. Spearman’s partial correlation coefficients for the NeuroIMAGE data set representing

inattention symptoms (In), hyperactivity/impulsivity (HI) symptoms, and gender (Gen). The bar colors

represent the correlation value. Every cell(i,j) in the table shows Spearman partial correlation between two

variables Xi and Xj, conditioned on the remaining variables in the model. For example, figure shows that HI is

independent of Gen given In (white square), while In depends on Gen given HI (pink square).

doi:10.1371/journal.pone.0165120.g002
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Related literature on ADHD

Early work on what we now know as ADHD in the 1940’s emphasized characteristics as hyper-
activity and impulsivity as part of the so-calledMinimal Brain Damage syndrome [49]. Later

Fig 3. Mosaic plots of the observed counts for the NeuroIMAGE data set under the assumptions that

a) hyperactivity/impulsivity symptom level and gender are conditionally independent given

inattention symptom level; b) inattention symptom level and gender are conditionally independent

given hyperactivity/impulsivity symptom level. The color of the cell represents the value of Pearson

residuals of the Mantel-Haenszel test. Two variables are independent when the boxes proportions across

categories are the same and there is a straight line that goes through these areas. For example,

hyperactivity/impulsivity is independent of gender on Fig (a) when adjusted for the level of inattention, since

there is no significant difference in the proportion of males and females for high and low level of hyperactivity.

There is almost a straight line that divides high and low level of hyperactivity/impulsivity for both high and low

level of inattention in Fig. (a). Fig. (b) shows that inattention depends on gender adjusted for the level of

hyperactivity/impulsivity. There is significant difference in the proportion of females with high and low

inattention when controlling for the hyperactivity/impulsivity level to the proportion of males with high and low

inattention.

doi:10.1371/journal.pone.0165120.g003
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on, research failed to establish a firm link between hyperactivity and brain damage. Most chil-
dren suffering brain damage did not develop hyperactivity, and fewer than 5% of hyperactive
children appeared to suffer from brain damage [50]. During the late 60's and early 70's, the
focus shifted to problems in attention regulation. Virginia Douglas and her colleagues at
McGill University in Canada were among the first to demonstrate the marked attention deficits
seen in these children. Douglas argued that the major deficit was the inability to “stop, look,
and listen” [51]. After intense debate on what the primary features of the disorder were, the
American Psychiatric Association published the DSM-III I 1980, and coined the disorder
“Attention Deficit Disorder, with or without hyperactivity”. It was realized that the earlier diag-
nosis of hyperactivity in children does not necessarilymean that these children do not have
inattention. It may well be that in small children, who have a more limited attention span than
adults, inattention is harder to diagnose than hyperactivity. The results of Douglas’ research
reflected the consensus that attention deficit, not hyperactivity, was the key to the disorder.
The findings in our current analysis support this consensus.
The proposedmodel has many characteristics in common with the bi-factor model [17].

The bi-factor model allows symptoms to be associated with general factors that are common
for both symptoms, and specific factors for each symptom in particular. The model proposed
in this paper suggests that there are general factors that influence inattention and consequently
hyperactivity, and specific factors that influence only hyperactivity. When given a causal inter-
pretation, the bi-factor model explains a correlation between symptoms by a common cause
(general factor), while our proposedmodel explains it by an effect from inattention to hyperac-
tivity/impulsivity. Unfortunately, we cannot directly compare our study with the study in [17],
which suggests that the bi-factor model outperforms other standard factor models of ADHD,
since such analysis [17] requires symptom scores for each question, while in this study only
aggregated scores per symptom were available. Furthermore, there are many slightly different
variants that one could consider, each with various possible causal interpretations. In future

Fig 4. Causal relationships implied by our data for inattention (In), hyperactivity-impulsivity (HI),

genetic variables (Gender or genotype), and behavioral estimates based on interview/questionnaire

symptom scores.

doi:10.1371/journal.pone.0165120.g004
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work, we aim to extend the analysis of [17] on data with symptom scores for each question.
Our current analysis strongly suggests to then explicitly incorporate gender or another genetic
factor as an instrumental variable, since this may lead to larger differences between various
models and could substantiate the causal relationships found through our analysis and possibly
reveal others.
Our causal model is in line with findings by Willcutt and coworkers [18] in a study of

ADHD heritability in adolescent twin pairs. They showed that inattention is heritable for all
levels of hyperactivity/impulsivity, whereas hyperactivity/impulsivity is heritable only when
the level of inattention symptoms is high. This made the authors suggest that the etiology of
hyperactivity/impulsivity is different in subjects who show a high level of inattention from that
in subjects with low inattention. Such a hypothesis is perfectly consistent with our causal
model: there are heritable factors that cause inattention and affect hyperactivity/impulsivity
downstream of that, whereas those factors that lead to high hyperactivity/impulsivity do not
necessarily lead to higher inattention.
It has been found that hyperactivity/impulsivity symptoms remit more likely than inatten-

tion symptoms [52]. An obvious explanation, consistent with our model, is that those factors
that directly affect hyperactivity become less prominent in adulthood, whereas the factors that
affect hyperactivity through inattentions remain more or less constant. Longitudinal data are
required to study such phenomena in more detail.
Considering clinical management of patients, the existence of a causal path from inattention

to hyperactivity/impulsivity suggests that interventions (for example medication treatment)
that decrease inattention are also likely to have a beneficial effect on the level of hyperactivity/
impulsivity. On the other hand, interventions that affect hyperactivity/impulsivity cannot be
expected to also have a positive effect on the level of inattention symptoms. This would further
be consistent with reports that methylphenidate treatment of ADHD primarily targets atten-
tional mechanisms by blocking the dopamine transporter in the striatum and the resulting
increase in synaptic dopamine [53].

Assumptions

As any statistical analysis, causal inference relies on several assumptions. Some of these
assumptions are more fundamental, such as the assumption that we can use statistical tests to
uncover the probabilistic (in)dependence relationships among the measured variables, and
the assumption that reality can be properly modeled by acyclic Bayesian networks. These
assumptions are discussed in detail in [29]. Note that we explicitly do not (have to) assume
so-called causal sufficiency and hence do allow for the presence of latent confounders. These
latent confounders could be clinical comorbidities or environmental mediators such as epige-
netic mechanisms. Moreover, the fact that the observed conditional independencieswere
found in three independent data sets representing three different age groups and considering
two different control variables, appear to rule out that these results are an artifact of a selection
bias.
The selection of the appropriate data sets for the analysis was based on previous findings in

our research and the availability of the data. An earlier paper [54] describes a causal analysis of
data from the IMpACT study on a larger number of variables. Here we noticed, among other
things, the causal link between inattention and hyperactivity/impulsivity. The analysis in this
paper reveals that this causal link can also be found by restricting the analysis on the IMpACT
data set to just three variables. To confirm this finding we considered the NeuroIMAGE and
the ADHD-200 data sets.We did not have any other data sets available for the analysis that
would satisfy the requirements mentioned in the introduction.
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In this paper the ADHD case-control sample was used instead of a random sample which
raises the question whether a biased sampling plan will impact the empirical associations. To
answer this question we checked how the results of the conditional independence tests change if
we decrease the number of ADHD cases in the sample, keeping the number of controls the same.
The tests showed that if the number of ADHD cases is very small (less than 10), the correlation
between the gender and symptoms becomes insignificant, due to low variation in symptoms and
small sample size. Consequently, a conditional independence test between inattention and gen-
der, conditioned on hyperactivity also becomes insignificant.When we increase the number of
ADHD cases the variation in symptoms in the sample increases as well as the sample size, mak-
ing the correlation between gender and symptoms more pronounced. Consequently, the depen-
dency between inattention and gender, conditioned on hyperactivity becomes significant.
However, the dependencybetween hyperactivity and gender, conditioned on inattention does
not depend on the number of ADHD cases and is always insignificant. This analysis implies that
considering a random sample instead of an ADHD case-control sample, we obtain the same sets
of conditional independencies provided that the sample size is large enough.We also repeated
our analysis on the siblings from the NeuroImage data set, where we found evidence for the same
pattern (not reported here, because statistically less significant than the other, larger data sets).
In this paper we considered the division of ADHD into two symptom dimensions, namely

inattention and hyperactivity/impulsivity. Other studies used a set of items that was much
larger than the core ADHD symptoms and included items on mood, oppositional behavior
and cognitive problems. These studies described a three-dimensionalmodel splitting hyperac-
tivity/impulsivity into separate dimensions of hyperactivity and impulsivity [55]. Future stud-
ies may extend our current work into examining causal relationships between inattention,
hyperactivity and impulsivity.

Conclusion

In this paper we discuss the robust cancellation of dependency between hyperactivity/impulsiv-
ity and a genetic factor conditioned upon inattention observed in three different data sets. It is
difficult to quantify one’s confidence in a statement such as “inattention causes hyperactivity/
impulsivity”, if only because it strongly depends on the typical assumptions underlying causal
inference. Some of these assumptions have been debated (see e.g., the discussion in [56, 57]),
and some may claim that alternative approaches are more fruitful (e.g., causal inference as a
missing-data problem as proposed by [58]; see however [21]). It is clearly beyond the scope of
this paper to resolve such issues. We do argue that, when one is willing to apply these methods
for causal inference (see e.g., [30, 31] for similar approaches within the biomedical domain),
they suggest a logical explanation for the robust cancellation of dependencies in three different
studies, which follows Ockham's principle of parsimony to select the hypothesis with fewest
assumptions. We further have discussed how such a causal model can be put in the historical
context of the disease and may explain other findings such as those in [18] showing different
etiology of the hyperactivity/impulsivity for subjects that have a high level of inattention from
subjects with a low level of inattention. Last but not least, our causal model yields testable
hypotheses, which may be validated in future intervention studies.
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