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disease and other akinetic movement disorders. Since the 
introduction of PPN DBS, a variety of clinical studies have 
been published. Most indicate improvements in freezing 
and falls in patients who are severely affected by these prob-
lems. The results across patients, however, have been vari-
able, perhaps reflecting patient selection, heterogeneity in 
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 Abstract 

 Several lines of evidence over the last few years have been 
important in ascertaining that the pedunculopontine nucle-
us (PPN) region could be considered as a potential target for 
deep brain stimulation (DBS) to treat freezing and other 
problems as part of a spectrum of gait disorders in Parkinson 
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target selection and differences in surgical methodology 
and stimulation settings. Here we outline both the accumu-
lated knowledge and the domains of uncertainty in surgical 
anatomy and terminology. Specific topics were assigned to 
groups of experts, and this work was accumulated and re-
viewed by the executive committee of the working group. 
Areas of disagreement were discussed and modified accord-
ingly until a consensus could be reached. We demonstrate 
that both the anatomy and the functional role of the PPN 
region need further study. The borders of the PPN and of ad-
jacent nuclei differ when different brainstem atlases and at-
las slices are compared. It is difficult to delineate precisely 
the PPN pars dissipata from the nucleus cuneiformis, as 
these structures partially overlap. This lack of clarity contrib-
utes to the difficulty in targeting and determining the exact 
localization of the electrodes implanted in patients with aki-
netic gait disorders. Future clinical studies need to consider 
these issues.  © 2016 S. Karger AG, Basel 

 Gait disorders are a major source of disability in pa-
tients with akinetic movement disorders. Their anatomi-
cal basis and pathophysiology are poorly understood, and 
there is a need to further investigate the role of surgery in 
this field. The possible relevance of the pedunculopontine 
nucleus (PPN) region for movement disorders has been 
outlined by independent groups of investigators who 
demonstrated that there are degenerative changes in pa-
tients with advanced akinetic disorders such as Parkinson 
disease (PD), progressive supranuclear palsy and multi-
ple systems atrophy  [1–5] . More recent data indicate that 
cholinergic denervation due to degeneration of PPN neu-
rons may underlie dopamine-nonresponsive gait and bal-
ance impairment in PD  [6, 7] .

  Several lines of evidence over the last few years have 
been important in ascertaining that the PPN region 
could be considered as a potential target for deep brain 
stimulation (DBS) to treat freezing and other problems 
as part of the spectrum of gait disorders in PD. In 1986, 
Mitchell et al.  [8]  had shown increased 2-deoxyglucose 
uptake reflecting increased synaptic activity in the PPN 
region of a primate rendered parkinsonian after MPTP 
(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) injec-
tions. The PPN receives GABAergic projections from 
the medial pallidum  [9, 10] , and therefore it has been 
assumed that PPN activity was reduced in the parkinso-
nian brain  [9, 11] . Yet, this concept has been challenged 
by the known pathophysiology that the subthalamic nu-
cleus (STN), which is excitatory and hyperactive in PD, 

also projects to the PPN. This latter pathway might ac-
count for the hyperactivity of PPN neurons projecting 
to the STN in rats with unilateral lesion of the substantia 
nigra  [12] . In normal primates, high-frequency stimula-
tion, radiofrequency and excitotoxic PPN lesions in-
duced akinesia  [13–17] . In MPTP-treated parkinsonian 
primates, however, low-frequency stimulation (25 Hz) 
and microinjections of bicuculline, a GABA antagonist, 
into the PPN reversed akinesia  [17–20] . Recording of 
the midlatency auditory evoked P50 potential in PD
patients concluded that the PPN was overactive in PD, 
and that bilateral pallidotomy normalized PPN output 
 [21, 22] .

  Since the introduction of the PPN area as a target for 
DBS in PD, a variety of studies have been published. 
Most indicate improvements in freezing and falls in pa-
tients that are severely affected by these problems. The 
results across patients, however, have been variable, per-
haps reflecting patient selection, heterogeneity in target 
selection and differences in surgical methodology and 
stimulation settings. Therefore, we (E.M., J.K.K.) initi-
ated an interdisciplinary task force in 2010 with the aim 
to explore in more detail the possible role of the PPN 
region as a target for DBS in PD. It was our goal to in-
volve experts from different disciplines in the task force 
to reflect both diversity in opinion and in methodology. 
The task force became an official working group of the 
Movement Disorders Society (MDS) in 2012 with an ex-
ecutive committee consisting of three neurologists 
(E.M., B.R.B., M.S.O.) and three neurosurgeons (J.K.K., 
A.M.L., T.A.). In 2013, the president of the MDS at that 
time, Matthew Stern, and the president of the World
Society for Stereotactic and Functional Neurosurgery 
(WSSFN), J.K.K., agreed that the working group would 
become a bisocietal endeavor, named the MDS Pedun-
culopontine Nucleus DBS Working Group in collabora-
tion with WSSFN. The working group then planned to 
evaluate four different domains relevant to PPN DBS 
surgery in PD: preoperative selection of patients and 
available rating scales, clinical outcome and DBS pro-
gramming, surgical anatomy, and surgical technique. It 
was decided that the first two papers would be submitted 
to a primarily neurological journal while the two latter 
papers would be submitted to a specialized neurosurgi-
cal journal. Here we outline both the accumulated 
knowledge and the domains of uncertainty in surgical 
anatomy and terminology. Issues relevant for surgical 
technique, side effects and postoperative imaging will be 
addressed in a companion paper.
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  Methodological Approach 

 In order to evaluate the details of both surgical anato-
my and terminology of the PPN region relevant to DBS 
surgery, the executive committee formulated several 
questions during a consensus conference which were
distributed to the co-authors of the paper. The PubMed 
database was searched using the following key words:
pedunculopontine nucleus; deep brain stimulation; anat-
omy; physiology; surgery.

  Specific topics were assigned to groups of authors, and 
this work was accumulated and reviewed by the executive 
committee of the working group. Areas of disagreement 
were discussed and modified accordingly until a consen-
sus could be reached. The literature was continuously up-
dated during that process.

  Anatomy and Function of the PPN Region 

 The PPN, subcuneiform and cuneiform nuclei (CnF) 
comprise the mesencephalic locomotor region (MLR) 
 [23–25] . This is a functional region from which electrical 
stimulation induces coordinated locomotion in decere-
brate mammals  [23, 24] .

  The PPN projects and receives projections from the 
STN, globus pallidus internus, and substantia nigra re-
ticulata and compacta  [26–28] . Further, it has afferent 
and efferent connections with the cerebellum, thalamus, 
cerebral cortex, and the spinal cord  [9, 23] .

  The PPN is also connected to catecholaminergic sys-
tems in the brainstem, such as the noradrenergic locus 
coeruleus  [23, 29]  and to serotonergic neurons of the dor-
sal raphe nucleus  [30–32] .

  On the basis of its cytoarchitectural organization, the 
PPN has been subdivided into a pars dissipata and a pars 
compacta ( fig. 1 ). Triple in situ hybridization studies de-

PN
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  Fig. 1.  The PPN region at the level of the decussation of the supe-
rior cerebellar peduncles and the inferior colliculus ( a ) and at the 
level of the trochlear nucleus and the intercollicular area ( b ). The 
main nuclei are labeled on the left and the long fiber tracts on the 
right side. STT = Spinothalamic tract; CA = cerebral aqueduct;
CN = cuneiform nucleus; CTT = central tegmental tract; Dec
SCP = decussation of the superior cerebellar peduncles; LC = locus 
coeruleus; LL = lateral lemniscus; ML = medial lemniscus; MLF = 

medial longitudinal fasciculus; NRD = nucleus raphe dorsalis; 
PAG = periaqueductal gray; PN = pontine nuclei; PPNc = pedun-
culopontine nucleus pars compacta; PPNd = pedunculopontine 
nucleus pars dissipata; SNc = substantia nigra pars compacta;
RST = rubrospinal tract; IV = trochlear nucleus; V = mesencephal-
ic nucleus of the trigeminal nerve. Adapted from Fournier-Gosse-
lin et al.  [35] , with permission. 
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termined that the profile of PPN neurons varies across its 
extent  [33] . The PPN pars dissipata is located throughout 
the rostrocaudal extent of the PPN region and contains 
mainly small to medium-sized GABAergic neurons. The 
PPN pars compacta is located in the caudal half of the nu-
cleus and contains mostly cholinergic and glutamatergic 
cells  [9, 11, 23, 34, 35] . In addition, cholinergic neurons of 
the PPN are also known as the Ch5 cholinergic cell group 
according to the classification of Mesulam et al.  [36] . Sim-
ilar to the PPN, the subcuneiform and cuneiform nuclei do 
not contain homogenous neuronal populations. Neurons 
of the CnF are mainly comprised of nitrinergic and GABA-
ergic cells. These nuclei have no clear boundaries. This has 
led to some confusion concerning the overlap of function-
ally or anatomically defined regions in this area.

  Experimental studies have shown that the PPN receives 
dopaminergic input from the substantia nigra compacta 
and ventral tegmental area  [30, 37, 38] . Such inputs are 
modulated by NMDA, AMPA and GABA B  receptors.

  The PPN output controls the striatal loop, i.e. the STN, 
globus pallidus internus, and substantia nigra pars com-
pacta. Other projections reach the intralaminar nuclei of 
the thalamus and nuclei of the lower brainstem. As such, 
the PPN occupies a strategic position between the limbic 
and striatal loops, and while it is mainly involved in loco-
motor activity  [9, 11, 23, 34, 39–42] , it is also potentially 
relevant in other domains including cognition and sleep. 
Together with the thalamic intralaminar nuclei, the PPN is 
part of the ‘ascending reticular activating system’  [9, 23, 43] .

  Both PPN and CnF have been suggested to influence 
muscle tone during the initiation of locomotion  [44, 45] . 
Rodent studies have shown that MLR injections of the 
GABA A  agonist muscimol completely abolish stepping. 
Because muscimol solely acts on neuronal cell bodies and 
not on passing axons, these results suggest that cells 
around the injection site (i.e. CnF and PPN) may be re-
sponsible for MLR-induced stepping  [41] . A recent ro-
dent study has shown that stimulation of the MLR mark-
edly improves hind limb function in rats with incomplete 
spinal cord injury  [46] . The integrative role of the PPN in 
human gait was demonstrated also by intraoperative and 
postoperative neurophysiological studies  [47] .

  Considerations about the Terminology Used in PPN 

Anatomy 

 Since the description of the PPN by Jacobsohn  [48]  in 
1909, the terminology used to label this nucleus has var-
ied continuously. For instance, it has been labeled as ‘nu-

cleus tegmenti pedunculopontinus’  [48] , ‘pedunculopon-
tine tegmental nucleus’  [49] , ‘nucleus reticularis pedun-
culopontinus’  [50] , ‘nucleus pedunculopontinus’  [51] , 
‘nucleus tegmenti pedunculopontinus’  [52, 53] , ‘the area 
U’  [53–55] , ‘the n nucleus’  [56] , and ‘the PPTn of Köl-
liker’  [52]  (the latter must be distinguished from the Köl-
liker-Fuse nucleus which now refers to a subnucleus of 
the parabrachialis nucleus). Since there are so many dif-
ferences in nomenclature, the terminology used across 
studies has not been consistent.

  Anatomical Localization of the PPN in Brainstem 

Atlases 

 There is variability concerning the exact anatomical 
localization of the PPN across different brainstem atlases, 
in particular with regard to its borders  [49, 50, 52, 53, 57] . 
It is commonly accepted that the PPN is bordered medi-
ally by the superior cerebellar peduncle (and its decussa-
tion) as well as the central tegmental tract ( fig. 2 ). Ante-
rior and lateral to the PPN is the lemniscal system, and 
caudal and rostral are the retrorubral field and substantia 
nigra reticulata, respectively. The posterior aspect of the 
PPN is contiguous with the lateral portion of the CnF.

  Considering the cytoarchitectural characteristics of 
the pontomesencephalic reticular formation, the precise 
anatomical distinction between pontine and mesence-
phalic structures has always been open to debate. As a 
result, to define the rostrocaudal extent of the PPN some 
investigators have relied on the pontomesencephalic 
junction (PMJ), a line that connects the inferior aspect of 
the quadrigeminal plate (frenulum veli) posteriorly with 
the foramen caecum of the interpeduncular fossa anteri-
orly.

  Reviewing different brainstem atlases with a focus on 
the PMJ as well as on the orientation of the slices in the 
transverse plane may provide a landmark for the rostro-
caudal extent of the PPN in the human brainstem.

  Cytoarchitecture of the Human Brainstem: Olszewski 
and Baxter 
 This atlas of brainstem structures provides an accu-

rate description of the PPN and its subregions  [52] . Ca-
veats from a surgical perspective include that it is not 
based on stereotactic coordinates and that the transverse 
angle of sections is not exactly parallel to the PMJ. Two 
subdivisions of the PPN are distinguished: the pars dis-
sipata and pars compacta. The PMJ slice is in plate No. 
XXVIII (cross-section No. 801) with no reference made 
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to the PPN or the CnF. The next plate consists of a sec-
tion 3 mm or 150 slices rostral (plate No. XXX; cross-
section No. 651) that crosses the brainstem at the mid-
portion of the inferior colliculus (IC) ( fig.  3 ). In this
section, the PPN pars dissipata and CnF are clearly
delineated. Of interest, plate No. XXXI (cross-section 
No. 601), located 1 mm (50 slices) rostral to plate No. 
XXX and 4 mm rostral from the PMJ, contains the PPN 
pars compacta and dissipata, which is in contact with the 
CnF posteriorly. In this atlas, the PPN extends for 8 mm 
in the rostrocaudal axis, its most rostral extension reach-
ing the level of the caudal border of the red nucleus (plate 
No. XXXIV, cross-section No. 401). The CnF and its sub-

nuclei are represented as a large structure that extends 
from the PMJ (or just above it) to the level of the red 
nucleus.

  Atlas of the Human Brainstem: Paxinos and Huang 
 Plates in this brainstem atlas are numbered based on 

distance from the obex  [49] . The PMJ is represented in its 
figures 48 (obex + 31 mm) and 49 (obex + 32 mm), which 
contain the nucleus of the trochlear nerve, fibers of the 
trochlear nerve, their decussation, and the frenulum veli, 
just caudal to the infracollicular recess. The caudal aspect 
of the PPN pars dissipata is shown in its figure 48 (obex 
+ 31 mm). The pars compacta is shown in its figure 50 

PPN

Dec SCP

Periaqueductal gray
(discomfort/warmth)
Mesencephalic nucleus
of the trigeminal nerve
( jaw movement)
Locus coeruleus
(possible changes in alertness)

Lateral lemniscus
(buzzing sound)

Spinothalamic tract
(pain and temperature)

Medial lemniscus
(paresthesias)

Medial longitudinal fasciculus 
and trochlear nucleus
(ocular deviation, diplopia, oscillopsia)

Retrobulbar tract
(blink, facial pulling)
Substantia nigra pars compacta
(possible mood changes)

SNc

Dorsal

MedialLateral

Ventral

  Fig. 2.  Functional mapping of PPN region: correlations between 
the structures in the vicinity of the PPN and their potential stimu-
lation effects. An electrode positioned lateral to the PPN might be 
revealed by buzzing sounds (lateral lemniscus), unpleasant painful 
sensation and/or change in temperature sensation (spinothalamic 
tract), or paresthesias (medial lemniscus) when trial stimulation is 
applied. An anteromedial position could elicit the sensation of 
contralateral facial pulling or blinking (rubrobulbar tract) and/or 
mood changes (substantia nigra). A mediodorsal location could 
lead to oscillopsia, diplopia, or ocular deviation toward the side 
stimulated (medial longitudinal fascicle and trochlear nucleus), 

mandating careful inspection of extraocular movements. An elec-
trode positioned dorsally could lead to a sensation of discomfort 
(periaqueductal gray), mandating that the stimulation be done 
with caution in the vicinity of the PPN. A dorsally placed electrode 
could also be noticed by jaw movements subjectively felt as pulling 
of masticatory muscles (mesencephalic nucleus of the trigeminal 
nerve). A nonspecific altered level of alertness (locus coeruleus) 
might also be observed. PPN = Pedunculopontine nucleus; Dec 
SCP = decussation of the superior cerebellar peduncles; SNc = sub-
stantia nigra pars compacta. Adapted from Fournier-Gosselin et 
al.  [35] , with permission. 
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(obex + 33 mm), which also shows the pars dissipata at 
the level of the IC. According to the atlas, the pars com-
pacta extends 4 mm rostrally but does not extend beyond 
the level of the IC. The PPN extends to the rostral pole of 
the IC (obex + 36 mm). Just above the PMJ, the CnF is 
located posterior to the PPN and extends to the caudal 
aspect of the superior colliculus. We note that in recent 
work, the authors have considerably changed this no-
menclature  [58] .

  Atlas for Stereotaxy of the Human Brain: 
Schaltenbrand and Wahren 
 In this atlas, the PPN is labeled as the nucleus tegmen-

ti pedunculopontinus  [53] . It is represented in coronal 

slices perpendicular to the anterior-posterior commis-
sural plane at the level of the superior aspect of the supe-
rior cerebellar peduncle (plate 29). Axial slices of the ros-
tral brainstem are presented in plate 57. The PPN per se 
is not labeled in those plates. Nevertheless, it may be in-
cluded in the diffuse area labeled as griseum circumflex-
um brachii conjunctivi, which extends from the caudal 
mesencephalon to a region 5 mm below the PMJ.

  Duvernoy’s Atlas of the Human Brainstem and 
Cerebellum: Naidich et al. 
 This book  [50]  consists of a multimodal atlas of the 

brainstem based on magnetic resonance imaging. The 
PPN and CnF are described in several axial slices (P 84–

Dec. Pe. ce. s.

N. V. me

Coe
Coe

Tg. ds

Le. l

Col. l

Sag

St. gl

Le. m

Pes. ped

Gr. pontis

lp. m

F. lo. m

Gr. cn. me

Cun

Spt

Pb. l

IV

Col. i

Gr. ch. me. l

Sag
Cun

Le. l

Tg. ds

Tg. cm

Le. m

Pb. l

Pe. ce. s

ba

Plate XXXIPlate XXX

  Fig. 3.  Plates XXX and XXXI of  Cytoarchitecture of the Human 
Brain Stem  published by J. Olszewski and D. Baxter  [52] . The PPN 
pars dissipata is labeled as Tg. ds, and the PPN pars compacta is 
labeled as Tg. cm. The CnF is labelled as Cun.  a  Plate XXX: repre-
sentation of cross-section 651. The plate contains the most caudal 
aspect of the PPN observable in the atlas. The posterior aspect of 
the brainstem is clearly located in the mesencephalon due to the 

presence of the IC. According to the distances between cross-sec-
tions, the posterior aspect is located 3 mm rostral to the PMJ (plate 
XXVIII in cross-section 801).  b  Plate XXXI: photomicrograph of 
cross-section 601 located 1 mm rostral to plate XXX. The plate 
contains the PPN pars compacta. Reprinted from Olszewski and 
Baxter  [52] , with permission. 
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89; P 329–330). Assumptions on the rostrocaudal extent 
of the PPN are difficult to conclude since the sections are 
not parallel to the PMJ.

  The fact that most atlases rely on cytoarchitectural fea-
tures may underestimate the extent of the PPN, since it is 
a diffuse reticular nucleus with indistinct borders. Using 
choline acetyltransferase immunohistochemistry, for ex-
ample, Mesulam et al.  [59]  studied the extent of PPN cho-
linergic cells. They indicated that the caudal aspect of the 
PPN extends far below the level of the IC, whereas the 
PPN pars compacta could be observed as rostral as the 
decussation of the superior cerebellar peduncle. These 
findings were confirmed in a later study which provided 
more detail about the cholinergic cell group Ch5 within 
the PPN  [1] .

  Two postmortem human studies found that sagittal 
sections were the most reliable for identifying the PPN
in three dimensions. Labeling of cholinergic neurons 
showed that the pars compacta was located immediately 
dorsal to the brachium conjunctivum, with cells of the 
pars dissipata scattered within the brachium conjuncti-
vum. The pars compacta was localized anterior/ventral to 
the posterior half of the IC, while the pars dissipata ex-
tended posteriorly and anteriorly below the PPN pars 
compacta  [60, 61] .

  Conclusions 

 The PPN is a reticular nucleus with indistinct anatom-
ical boundaries. Its long axis straddles the PMJ from the 
inferior collicular level to reach the rostral pons. The ma-
jority of its neurons lie lateral to the superior cerebellar 
peduncle and its decussation and the central tegmental 

tract, and medial to the curved band of the lemniscal sys-
tem. It is evident that both the anatomy and the function 
of the PPN area will require further clarification. The ex-
tent of both the PPN and CnF does not exactly coincide 
when different brainstem atlases and atlas slices are com-
pared. It is difficult to provide a precise delineation be-
tween the PPN pars dissipata and the CnF, as these two 
structures partially overlap in the mesencephalic reticular 
formation.

  The indistinct boundaries of this nucleus and the gen-
eral lack of consensus in the field are important overall 
limitations, particularly with regard to PPN DBS surgery. 
This lack of clarity contributes to the difficulty in target-
ing and determining the exact localization of the elec-
trodes implanted in human subjects suffering from neu-
rodegenerative disorders.

  We suggest that authors may use commonly accepted 
anatomical terms in future studies and reports. We advise 
also that reference should be made to the source which 
has been used to delineate the PPN. While the term ‘PPN’ 
would be appropriate when the nuclear core can be clear-
ly identified, ‘PPN region’ might be used when this is not 
the case. To allow easier comparison of surgical results, 
we recommend to indicate whether the rostral or the cau-
dal portion of the PPN is used for neuromodulation.

  It is important to consider these issues when planning 
future studies in PPN DBS surgery, in particular with re-
gard to developing a commonly accepted study protocol.

  Disclosure Statement 

 The MDS Pedunculopontine Nucleus DBS Working Group in 
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