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REVIEW

Paleodysmorphology and Paleoteratology:
Diagnosing and Interpreting Congenital Conditions of the

Skeleton in Anthropological Contexts
ROELOF-JAN OOSTRA,1* LUCAS BOER,2 AND AND ALIE E. VAN DER MERWE1

1Department of Anatomy, Embryology and Physiology, University of Amsterdam, Academic Medical Center,
Amsterdam, The Netherlands

2Department of Anatomy and Museum for Anatomy and Pathology, Radboud University Medical Centre,
Nijmegen, the Netherlands

Most congenital conditions have low prevalence, but collectively they occur in a
few percent of all live births. Congenital conditions are rarely encountered in
anthropological studies, not least because many of them have no obvious
effect on the skeleton. Here, we discuss two groups of congenital conditions
that specifically affect the skeleton, either qualitatively or quantitatively. Skele-
tal dysplasias (osteochondrodysplasias) interfere with the histological forma-
tion, growth and maturation of skeletal tissues leading to diminished postural
length, but the building plan of the body is unaffected. Well- known skeletal
dysplasias represented in the archeological record include osteogenesis imper-
fecta and achondroplasia. Dysostoses, in contrast, interfere with the building
plan of the body, leading to e.g. missing or extraskeletal elements, but the his-
tology of the skeletal tissues is unaffected. Dysostoses can concern the
extremities (e.g., oligodactyly and polydactyly), the vertebral column (e.g.,
homeotic and meristic anomalies), or the craniofacial region. Conditions per-
taining to the cranial sutures, i.e., craniosynostoses, can be either skeletal dys-
plasias or dysostoses. Congenital conditions that are not harmful to the
individual are known as anatomical variations, several of which have a high
and population-specific prevalence that could potentially make them useful for
determining ethnic origins. In individual cases, specific congenital conditions
could be determinative in establishing identity, provided that ante-mortem reg-
istration of those conditions was ensured. Clin. Anat. 00:000–000, 2016. VC
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INTRODUCTION

Congenital anomalies have intrigued mankind since
the earliest times. Initially considered to result from
divine intervention or maternal imagination, their true
nature has been progressively unraveled since the
late 17th century. Physical conditions are considered
“congenital” if they result from a prenatally present
cause. This does not necessarily imply that the condi-
tions themselves are always apparent before or at
birth. Conditions with an insidious onset can show
their first symptoms in childhood, adolescence, or
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even adulthood. The collectively recorded prevalence
of all congenital conditions is around 2.4% of live
births (Dolk et al., 2010). However, there is a transi-
tional region rather than a sharp boundary between
normal morphology and congenital anomalies, which
encompasses the so-called anatomical variations.
Although they deviate from the default building plan
of the human body, these variations are not signifi-
cantly disadvantageous to the affected subject.

Congenital conditions in humans are studied by two
overlapping disciplines: dysmorphology and teratolo-
gy. Dysmorphology is a medical, mostly pediatric, dis-
cipline that focuses on the clinical diagnosis and
symptomatology of physically apparent patterns of
congenital anomalies, whereas teratology, a biological
discipline, deals with the epidemiology and pathogen-
esis of congenital conditions. This review surveys
what these two disciplines can offer to physical and
forensic anthropologists in assessing skeletonized
human remains presenting with congenital anomalies.

CONGENITAL CONDITIONS: CAUSES,
DISTRIBUTIONS, AND
ARCHAELOGICAL REPRESENTATION

The cause of a congenital condition can be endoge-
nous (i.e., fetal), exogenous (i.e., maternal) or a com-
bination of both, although in many cases no exact
cause can be established. Endogenous causes include
>5,000 presently known genetic conditions and many
chromosomal anomalies (aneuploidies) and sporadic
conditions with no clear-cut genetic involvement.
Exogenous causes mainly comprise placentally trans-
mittable infections, intoxications and metabolic condi-
tions that render the fetus either deprived of or
overexposed to certain metabolites. Well-known
examples of exogenously induced conditions are con-
genital syphilis (which is discussed elsewhere in this
issue of the journal) and fetal alcohol syndrome.

Congenital conditions are not distributed equally
over the global population. Depending on the causes,
their prevalences can differ profoundly among popula-
tion groups. For instance, certain genetic conditions are
significantly more (or less) prevalent in geographically
and/or culturally isolated, hence inbred, communities
in which ancestral mutations are preserved in subse-
quent generations and become part of a stagnant and
increasingly homogeneous gene pool. This phenome-
non is known as the “founder effect”. Exogenous
causes, especially maternal infections and intoxica-
tions, can also show community-specific prevalences in
relation to health care provision and socioeconomic
stratification.

Apart from the fact that pathology, whether
acquired or congenital, can be difficult or even impos-
sible to assess in skeletal remains, there are several
reasons for the paucity of congenital conditions in the
anthropological record. First, most congenital and
genetic conditions are rare, with incidences well below
1 in 50,000. Moreover, a substantial portion of these,
e.g., cardiovascular and genitourinary defects, cause
no skeletal lesions. Secondly, most individuals with

congenital anomalies, in particular the more severely
affected ones, die in infancy or while they are juvenile.
These age groups are underrepresented in the
archaeological record (Pinhasi and Bourbou, 2008).
Thirdly, several skeletal conditions such as skeletal
dysplasias affect the histological architecture of bones,
rendering them vulnerable to diagenetic processes.
Finally, in some instances, seemingly congenital con-
ditions can in fact have postnatal causes.

Several excellent papers have been published on
the archeological presentation of certain congenital
conditions, including neural tube closure defects
(Kumar and Tubbs, 2011), Down syndrome (Rivollat
et al., 2014) and orofacial clefts (Tur et al, 2016).
Leaving aside conditions with a predominantly extra-
skeletal focus, the remainder of this review will focus
on the morphological characteristics of congenital con-
ditions that directly and specifically concern the skele-
ton, qualitatively and/or quantitatively. These
conditions are known, respectively, as skeletal dyspla-
sias and dysostoses, of which >400 are presently
known and categorized in accordance with their radio-
graphic, biochemical and genetic characteristics (War-
man et al., 2011). Although most of these conditions
are quite rare, their overall prevalence is around
2.327.6 per 10,000 (Panda et al., 2014). However,
since mildly affected individuals often remain undiag-
nosed, the actual prevalence could be higher.

SKELETAL DYSPLASIAS

Skeletal dysplasias (osteochondrodysplasias) most-
ly originate from genetic defects resulting in abnormal
histological formation, growth and maturation of carti-
laginous and/or osseous tissues. They usually affect
most skeletal elements equally, leading to diminished
postural length (dwarfism). Skeletal dysplasias are
therefore a generalized qualitative disorder of the
skeleton, but the building plan of the body, including
four extremities and pentadactylous hands and feet, is
unaffected.

Before the 1860s, children born with neonatally
apparent skeletal dysplasias were considered to suffer
from a congenital form of rickets, a common disease
in those days, because of their shortened and often
curved extremities. However, true congenital rickets is
rare, with only 25 cases reported to date (Paterson
and Ayoub, 2015), and is one of the very few skeletal
dysplasias that may result from an exogenous cause
(i.e., maternal vitamin D deficiency). The Dutch anat-
omist Willem Vrolik (1801–1863) was one of the first
to consider an alternative diagnosis in a stillborn child
with numerous congenital fractures (Fig. 1), which he
considered to result from imperfect bone formation
rather than rickets (Oostra et al., 1998). He named
the condition “osteogenesis imperfecta” (Vrolik,
1849). Still known as such today, osteogenesis imper-
fecta (OI) is a genetic disease mainly caused by domi-
nant mutations in genes encoding subunits of collagen
type I, a structural protein crucial for the architecture
of bone and various other mesenchymal tissues.
Mutations in other genes involved in collagen
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metabolism are increasingly being recognized as caus-
al in different OI types (Shaker et al., 2015).

Occurring in 1 in 15–20,000 births (Forlino and
Marini, 2016), OI is rare, yet it is one of the most com-
mon skeletal dysplasias. Its most important feature is
the fragility of bones, leading to an increased tendency
to fracture and to bow after healing. Shortening of the
long bones, which is the main characteristic of most
other skeletal dysplasias, occurs only secondarily in
OI, i.e., when fractures fragment the diaphyses or
destroy the growth plates. Depending on the severity
of the condition and the mutations responsible, at
least four different types are recognized, type II being
lethal within the first two years of life while type I can
have up to normal life expectancies. Several archaeo-
logical cases of what seems to be OI are known. These
include mainly young adults with a mild phenotype,
and a two year old child and a near-term fetus with
presumably OI type II or III (reviewed by Cope and
Dupras, 2011). The latter is exceptional considering
the frailty of fetal bones in general, and especially
when affected by OI. Nevertheless, in none of the
described cases could the diagnosis of OI be estab-
lished with certainty, leaving room for differential diag-
noses that include other skeletal dysplasias.

Similarly prevalent as OI is a condition known as
achondroplasia, which occurs in 1 in 10,000 to 1 in
30,000 births (Horton et al., 2007). Initially described
by Parrot (1876), it inappropriately became a generic
name for any short-limbed skeletal dysplasia, even well
after the advent of radiology, leading to much misdiag-
nosis. Achondroplasia is characterized by an average
adult stature of 120–130 cm, rhizomelic shortening of
the limbs (the upper arms and thighs being more
affected than the forearms and legs), which is dispro-
portionate to the shortening of the trunk, and macroce-
phaly with bulging forehead (Jones et al., 2013) (Fig.
2). Intellectual development and lifespan are usually
within normal ranges. Other features include midfacial
retrusion, exaggerated lumbar lordosis, limitation of
elbow extension, genu varum, brachydactyly, and tri-
dent appearance of the hands (Pauli, 2012). The short
stature results not only from the diminished length of
the tubular bones in the lower extremities but also from
the reduced height of the vertebral bodies, which is
known as platyspondyly. This is found in most skeletal
dysplasias that are characterized by short stature.
Radiographically, the short and relatively thick tubular
bones in achondroplasia show metaphyseal flaring and
cupping (reviewed by Cheema et al. 2003). Typically,

Fig. 1. Osteogenesis imperfecta type II. A: Complete macerated skeleton, show-
ing numerous fractures in all tubular bones and ribs. B: Detail of the occipital part of
the skull, showing many Wormian bones. Museum Vrolik, Amsterdam, The Nether-
lands (Oostra et al., 1998).
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there is overgrowth of the fibula, which correlates
strongly with the degree of genu varum (Lee et al.,
2007). Like many skeletal dysplasias, achondroplasia
mainly affects enchondrally rather than intramembra-
nously ossifying skeletal elements, hence the bulging
forehead andmidfacial retrusion.

Achondroplasia is caused by mutations in a gene
encoding a receptor of fibroblast growth factors
(FGFR3) (Shiang et al., 1994), the same dominant
mutation being found in nearly all affected individuals
(Bellus et al., 1995). However, since most of them are
born to healthy, noncarrying parents, especially with
increased paternal age (reviewed by Crow, 2000), it
has long been assumed that this gene locus is a highly
mutable “hotspot” in the human genome. Neverthe-
less, it appears that spermatogonial stem cells carry-
ing the mutation have a proliferative advantage over
non-mutated cells, thereby selectively increasing the
number of mutated sperm cells (Shinde et al., 2013).
As a result of the mutation, FGFR3 can be activated
without binding to fibroblast growth factors (Webster
and Donoghue, 1996), and since FGFR3 normally
inhibits cartilage proliferation, diminished diaphyseal
growth ensues (Deng et al., 1996).

Some other skeletal dysplasias are also caused by
dominant germline mutations in FGFR3. They all
resemble achondroplasia in their clinical and radio-
graphic characteristics but they differ in severity.
Intriguingly, the same mutations that repress cartilage
proliferation can stimulate (malignant) proliferation of
other tissues when they occur somatically, indicating
that FGFR signaling dynamics are much more complex
than originally assumed (Goriely et al., 2009;
Foldynova-Trantirkova et al., 2012; Krejci 2014).
Hypochondroplasia is the mildest FGFR3-related skel-
etal dysplasia. Whereas achondroplasia is usually rec-
ognized at birth, hypochondroplasia can go unnoticed
until early childhood and is one of the conditions that
mainly accounts for initially undiagnosed skeletal dys-
plasias in idiopathic short stature (Flechtner et al.,
2014). As a result, the actual incidence and preva-
lence of hypochondroplasia are unknown (Wynne-
Davies et al., 1981), but it is generally assumed that
these numbers approach those of achondroplasia.
Although its symptomatology is similar to but mostly
milder than achondroplasia, it typically lacks the crani-
al dysmorphology, which was the key feature in differ-
ential diagnosis prior to the discovery of their

Fig. 2. Achondroplasia. A: Complete macerated skeleton, showing rhizomelic
shortening of the extremities. B: Detail of the skull, showing relative macrocephaly
and retracted cranial base. Museum Vrolik, Amsterdam, The Netherlands (Oostra
et al., 1998).
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molecular causes (Specht and Daentl, 1975; Ober-
klaid et al., 1979).

The most severe, neonatally lethal skeletal dyspla-
sias associated with FGFR3 mutations are thanato-
phoric dysplasia (TD) types I and II. The incidence of
TD has been investigated in different populations and
seems to be equal to or somewhat less than that of
achondroplasia, though it is likely that other lethal
skeletal dysplasias are sometimes misdiagnosed as
TD (Donnelly et al., 2010; Moffitt et al., 2011; Steven-
son et al., 2012). As with hypochondroplasia, TD
resembles achondroplasia but the symptoms are
much more severe. The lethality results from the ribs
being extremely short—as are all other enchondrally
ossifying bones—and this is accompanied by pulmo-
nary hypoplasia, which leads to perinatal suffocation.
A comparable clinical phenotype can occur in patients
born to parents who are both affected with achondro-
plasia or hypochondroplasia, from whom they have
inherited two mutated alleles. The two types of TD,
each caused by specific FGFR3 mutations, differ espe-
cially in the morphology of the femur, which is pro-
foundly curved in TD type I and straight in type II
(Fig. 3). Also, type II is often accompanied by

premature closure of all calvarial sutures. This indi-
cates that FGF signaling is also involved in intramem-
branous ossification, which will be discussed further.

The occurrence of achondroplasia is relatively fre-
quent in all times and all places, as reflected by its
abundant representation in archaeological artifacts,
especially in cultures with a positive appreciation of
dwarfing conditions (Kozma, 2006, 2008; Rodriguez
et al., 2012). The oldest skeletal remains that have
been diagnosed with achondroplasia are of two Egyp-
tian adults—a 45- to 50-year-old male and a 25- to
30-year-old female—dated to the third millennium BCE
(Kozma et al., 2011). Several other osteoarcheological
cases of achondroplasia have been reported (reviewed
by Woo et al., 2015) but, to the best of our knowledge,
none of hypochondroplasia or TD, which is surprising
considering their equally frequent occurrence.

DYSOSTOSES

In contrast to skeletal dysplasias, dysostoses result
from localized quantitative developmental disorders,
with exogenous and endogenous causes that affect

Fig. 3. Thanatophoric dysplasia. A: Complete macerated skeleton, showing
severe rhizomelic shortening of the extremities. B: Detail of the skull, showing pansy-
nostosis and bulging of the brain at the sites of the anterior and mastoid fontanelles
(dotted lines). Museum Vrolik, Amsterdam, The Netherlands (Oostra et al., 1998).
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the building plan of the body, leading to e.g. missing
or extra skeletal elements. However, the histology of
skeletal tissues is unaffected. Dysostoses are usually
categorized in terms of their effect on the building
plan, which can involve an excess of elements (e.g.
polydactyly), a shortage of elements (e.g. oligodac-
tyly, phocomelia and peromelia) or a persistence of
embryonic morphology (e.g. syndactyly). They can
occur as solitary entities or as parts of complex condi-
tions such as malformation syndromes and disrup-
tions. They can also co-occur with skeletal dysplasias.
A well-known example of this is Ellis Van Creveld syn-
drome, a skeletal dysplasia characterized by short
ribs, mesomelic shortening of the limbs, polydactyly,
cleft palate and several other anomalies. Like most
other recessively inherited conditions it is rare but its
occurrence differs among populations as a result of
the founder effect (see previously). Ellis Van Creveld
syndrome is particularly prevalent among the Old
Order Amish in Pennsylvania (McKusick et al., 1964).

Polydactyly—an excess of fingers and/or toes—is a
relatively common dysostosis, occurring in 19 per
10,000 births (Castilla et al., 1996, 1998). They range
from a barely visible pedunculated skin tag or a par-
tially duplicated distal phalanx to multiple completely
developed and articulated extra digits, which can
occur unilaterally or bilaterally on the radial/tibial
(preaxial) and/or ulnar/fibular (postaxial) side of the
hands and feet or in their center (mesoaxial). Many
categories can be recognized depending on the loca-
tion of the extra elements, their extent, and the co-
occurrence of other anomalies such as syndactyly
(Temtamy and Mc Kusick, 1969; Losch et al. 1984;
Castilla et al., 1996). More and more genes involved
in hand and foot development are being recognized
and mutations in them could cause a whole range of
(syndromic) forms of polydactyly (Biesecker, 2002).
Many of these genes are implicated in the embryonic
development of the anteroposterior (radio-ulnar) axis
of the hand and foot. By far the most frequent type,
either isolated, monogenetic or part of a syndrome, is
postaxial polydactyly, which occurs in 6–15 per
10,000 births (Castilla et al., 1996). Remarkably, the
incidence of this type is ten times higher in Negroid
populations than Caucasoids, although this only con-
cerns the pedunculated type (Woolf and Myriantho-
poulos, 1973; Buck-Gramcko, 1998). Archaeological
reports of polydactyly (reviewed by Wrobel et al.,
2012) are scarce, despite the rather high incidence of
polydactylous conditions. This is no surprise with
respect to the pedunculated type, which usually lacks
osseous elements. However, completely formed extra
digits can also go unnoticed if the investigated
remains are disarticulated or arise from more than
one individual. In fact, the most consistently recogniz-
able types are those involving a bifurcated phalanx or
an osseous branch attached to a metacarpal or
metatarsal.

Oligodactyly, the lack of (parts of) fingers and/or
toes, also is common dysostotic condition, ranging
from shortness to complete absence of one or more
digits, involving either the forearms or legs or both.
The prexial, postaxial and/or mesoaxial regions of the
extremities can be affected. Conrad and Ezaki (2002)

reviewed the condition and recognized four catego-
ries, with incidences ranging from 1 in 10,000 to 1 in
100,000. Unless they are bilateral, most cases of oli-
godactyly occur sporadically and can result when an
initially normal developmental process is disrupted.
Such disruptions are considered to arise from e.g.
necrosis caused by vascular malformations. Heritable
forms of oligodactyly can show population-specific
prevalences. Explicit examples include the various
reports on (large) kindreds presenting with “split
hand-foot” syndrome (mesoaxial oligodactyly), includ-
ing an African village inhabited by an “ostrich-footed”
tribe (Viljoen and Beighton, 1984). As with polydacty-
ly, and for similar reasons, oligodactyly is scarcely
represented in the archeological record. Additionally,
it can be difficult if not impossible to differentiate
between congenital reductions of the digits and post-
natal traumatic amputations. It is claimed that the
pharaoh Tutankhamun (14th century BCE), who suf-
fered from several, mostly acquired conditions, had a
mild form of oligodactyly, manifest in the absence of
the middle phalanx of his left second toe (Hawass
et al., 2010).

The vertebral column can also be involved in dysos-
totic conditions that result in either an excess or a
shortage of vertebrae—together known as meristic or
numerical anomalies (see below)—or in a persisting
embryonic morphology such as butterfly vertebrae,
which results from notochordal remnants that inter-
fere with the positions of ossification centers (Postma
et al., 2014). Other conditions result from an aberrant
segmentation of the mesoderm that gives rise to the
alternating pattern of vertebrae and intervertebral
discs, leading to hemivertebrae, block vertebrae and
other dyssegmentations. These conditions usually
occur sporadically but can also be components of
more complex (syndromic) conditions. A particular
group of vertebral dysostoses result from aberrant
expression of homeotic selector (Hox) genes along
the anteroposterior body axis of the early developing
embryo. On each transverse level a specific set of Hox
genes is expressed that determines the phenotypic
identity of the vertebra formed at that level. Altera-
tions in the expression of Hox genes - resulting either
from functional mutations in those genes or from lon-
gitudinal shifts in their expression patterns - will
therefore cause phenotypic changes in the vertebrae
affected. Typically, the phenotypic characteristics of
these vertebrae resemble those of adjacent vertebrae.
These changes, known as homeotic transformations,
are best recognized at the level of regional transitions
(i.e., occipitocervical, cervicothoracic, thoracolumbar,
lumbosacral and sacrococcygeal) (Fig. 4). In anterior
homeotic transformations (AHT), the affected level
phenotypically resembles the level above it. An exam-
ple of this is lumbar ribs, in which the first lumbar ver-
tebra resembles the twelfth thoracic and hence
features true ribs (thoracalization) (Figs. 5A and 5B).
Comparably, cervical ribs are an example of a posteri-
or homeotic transformation (PHT), because the sev-
enth cervical vertebra resembles the first thoracic
(Figs. 5C and 5D). Although the number of vertebrae
does not change in homeotic transformations, it can
be difficult or even impossible to differentiate them
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Fig. 4. Schematic representation of the interregional
effects of homeotic transformations (in gray). A: Normal
situation. B: Anterior transformations include: occipitali-
zation of the first cervical vertebra (atlas assimilation),
cervicalization of the first thoracic vertebra (hypoplastic
first ribs), thoracalization of the first lumbar vertebra
(lumbar ribs), lumbarization of the first sacral vertebra,

and sacralization of the first coccygeal vertebra. C: poste-
rior transformations include: cervicalization of the last
occipital segment (occipital vertebra), thoracalization of
the seventh cervical vertebra (cervical ribs), lumbariza-
tion of the twelfth thoracic vertebra, sacralization of the
fifth lumbar vertebra, and coccygealization of the fifth
sacral vertebra. (Adapted from Oostra et al., 2005a.).
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from meristic anomalies (reviewed by Oostra et al.,
2005a), especially if the vertebral column cannot be
completely retrieved. An isolated sacral bone consist-
ing of six vertebrae, for example, could have resulted
from sacralization of either the first coccygeal (AHT)
or the fifth lumbar (PHT) vertebra or from an extra

vertebra. A block vertebra of the second and third cer-
vical vertebrae, although generally resulting from
either segmentation defects or from degenerative
(hence acquired) conditions, can result from an ante-
rior homeotic transformation that causes the third cer-
vical vertebra to resemble an axis with the body of

Fig. 5. Homeotic transformations. A: Macerated
trunk skeleton with multi-level anterior homeotic trans-
formations. B: Detail of the lower part of the vertebral
column, showing thoracalization of the first lumbar verte-
bra (Lu1) and lumbarization of the first sacral vertebra

(Sa1). C: Macerated trunk skeleton with multi-level pos-
terior homeotic transformations. D: Detail of the upper
part of the vertebral column, showing thoracalization of
the seventh cervical vertebra (Ce7). Museum Vrolik,
Amsterdam, The Netherlands (Oostra et al., 2005a).
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the second cervical vertebra as its dens (Oostra et al.,
2005a).

Homeotic and meristic anomalies of the vertebral
column are remarkably common, with a reported
prevalence as high as 17% (Bornstein and Peterson,
1966). Although they result from aberrations early in
embryonic development, their direct clinical implica-
tions seem quite limited, except for cervical ribs,
which can occasionally lead to thoracic outlet syn-
drome. However, they appear to be associated with
both malignancies (Merks et al., 2005) and several
congenital malformations, and have a prevalence of
75–80% in stillborn and therapeutically aborted
fetuses (Ten Broek et al., 2012; Castori et al., 2016).
This implies that either the Hox genes themselves—
and their targets—or their upstream enhancers are
more intricately involved in tissue and organ develop-
ment and proliferation than has yet been established.
In accordance with their high prevalence, homeotic
and meristic anomalies are frequently encountered in
archeological settings, often in combination with other
vertebral anomalies. Barclay-Smith (1911) described
an AHT ranging from the atlanto-occipital down to the
lumbosacral junction, together with several cleft neu-
ral arches, in the skeleton of a young Egyptian female
dating from 500–600 BCE. An unusual case of meris-
tic anomalies was described by Usher and Christensen
(2000), who found no fewer than three additional ver-
tebrae in the skeleton of a 12th century Danish
female.

CRANIAL SUTURES IN DYSPLASIAS
AND DYSOSTOSES

It is often less straightforward to recognize and dis-
tinguish between dysplasias and dysostoses in the
craniofacial region than in the postcranial skeleton.
For instance, facial and palatal clefts could be consid-
ered as dysostoses though they are generally not cat-
egorized as such, whereas hypoplasias such as
mandibulofacial dysostosis usually are. Sutural disor-
ders of the cranial vault, with or without concomitant
macro- or micro-cephaly, can result from both dyspla-
sias and dysostoses.

Unlike the postcranial skeleton, the bones of the
cranial vault develop without a cartilaginous interme-
diate, i.e., intramembranously instead of enchondrally,
and are therefore among the first osseous elements
to be formed during late embryonic and early fetal
life. The appearance of ossification centers is followed
by the radial expansion of bone formation. Where the
ossification fronts of adjacent calvaria meet, a type of
fibrous joint called a cranial suture is formed. During
subsequent pre- and post-natal development the pro-
liferating mesenchyme of which these sutures consist
serves as a source of new bone tissue, thereby allow-
ing the cranial vault to expand in directions perpendic-
ular to the sutures. This process ends as soon as the
mesenchyme of (parts of) a suture ceases to prolifer-
ate and consequently ossifies. In most cranial sutures
this will occur when the cranium has reached its final
size. Physiological obliteration of cranial sutures is
therefore age-related, but because the time-course of

initiation, progression and completion of closure is
variable, its value for estimating age is rather limited.
By contrast, sutures between the bones of the facial
cranium remain open throughout life. While most cal-
varial sutures start closing after the 3rd decade of life,
some close much earlier, including the metopic suture
between the two halves of the frontal bone, which
normally closes during the first 3–9 postnatal months
(Vu et al., 2001). The various ossification centers in
the squamous part of the occipital bone even coalesce
during early fetal life (Srivastava, 1992).

Abnormalities of sutural biology can be divided into
premature closure, prolonged persistence and super-
numerary ossification centers. In contrast to the latter
two conditions, premature closure—known as cranio-
synostosis—leads to skull shape anomalies, especially
in the cranial vault, that result from abolished growth
across the closing suture and compensatory growth
across the sutures that are still open (Fig. 6). Earlier
onset generally results in more severe shape anoma-
lies. Sagittal synostosis, the most common type of
single-suture craniosynostosis, leads to a narrow but
elongated skull (dolicho-, scapho- or clinocephaly,
Figs. 6A–6C), whereas bicoronal synostosis results in
a short but broadened skull (brachycephaly, Figs. 6D–
6F). Asymmetry of the cranial vault can result from
synostosis of one of the coronal or one of the lamb-
doid sutures, with compensatory growth across the
still-open contralateral suture (plagiocephaly, Figs.
6G–6I). Closure of the metopic suture prior to birth
results in a narrow, pointy forehead and compensato-
ry widening across the sagittal suture, giving the cra-
nial vault a triangular contour when seen from above.
This condition is known as trigonocephaly (Figs. 6J–
6L). If two or more sutures are involved, e.g. the
coronal together with the sagittal or lambdoid sutures,
a complex, more or less tower-shaped deformation
results known as acro-, oxy-, turri- or hyps-encephaly
(Figs. 6M–6O). This sometimes co-occurs with closure
of the squamosal suture (Duncan and Stojanowski,
2008), which as an isolated condition is exceedingly
rare (Tandon et al., 2014). If all calvarial sutures close
prenatally, the growing brain can only expand at the
sites of the anterior and mastoid fontanelles, resulting
in a bizarre shape anomaly known as cloverleaf skull,
with reference to its trilobed appearance (Fig. 3B). It
should be noted that most shape anomalies described
here can also result from other, non-suture-related
conditions, most of which have a postnatal, exoge-
nous cause. Well-known examples are the intentional
skull deformations practiced by numerous cultures
throughout history. Moreover, premature closure
should be differentiated from early but adequate clo-
sure in response to cerebral growth arrest, in which
case closure occurs secondarily and should not be
considered a congenital or genetic condition per se.

Craniosynostoses involving one or more calvarial
sutures can occur in isolation or as part of more com-
plex congenital conditions (syndromes). Isolated cra-
niosynostosis has an overall incidence of 1 in 2,000
and about half of all cases involve the sagittal suture
(Kimonis et al., 2007). For unknown reasons, sagittal
synostosis is three times more frequent in males
(Hunter and Rudd, 1976), whereas coronal synostosis
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is two to three times more frequent in females
(Lajeune et al., 1995). Nonsyndromic, single-suture
conditions rarely have a genetic cause or familial
occurrence, in contrast to bi- and multi-sutural and
syndromic conditions, in which an increasing number

of genes appear to be causally involved (reviewed by
e.g. Kimonis et al., 2007). Conditions in the latter
group, which have much lower incidences, include
some dysplasias as well as dysostoses. In TD type II
(see above) a severe metaphyseal dysplasia occurs

Fig. 6. Craniosynostoses. (A-C) sagittal synostosis (dolichocephaly); (D-F)
bicoronal synostosis (brachycephaly); (G-I) unicoronal synostosis (plagiocephaly);
(J-L) metopic synostosis (trigonocephaly); (M-O) sagittal and bicoronal synostosis
(acrocephaly). Museum Vrolik, Amsterdam, The Netherlands (Oostra et al., 2005b).
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together with pansynostosis, whereas in dysostotic
syndromes such as Apert, Pfeiffer, Carpenter and
Greig, multiple sutural synostoses are combined with
mild to severe (poly)syndactylies. Intriguingly, there
is not only a phenotypic but also a genetic overlap
between dysplasias and dysostoses that feature cra-
niosynostosis. Pathogenic mutations in e.g. FGFR
genes are found in dysplasias, both with (e.g., TD
type II) and without (e.g., achondroplasia) craniosyn-
ostosis, in dysostoses with craniosynostosis (e.g.,
Apert and Pfeiffer), and in craniosynostotic syndromes
without other skeletal involvement (e.g., Crouzon and
Beare-Stevenson). The effect of craniosynostosis on
the neurocognitive development of the patient
depends on several factors, including the age at onset
and the number of sutures involved. Intracranial pres-
sure is significantly elevated even when only one
suture is involved (Thompson et al., 1995).

In accordance with their relatively high incidences,
isolated craniosynostoses are well represented in the
archeological record (reviewed by e.g., Duncan and
Stojanowski, 2008), in particular isolated sagittal syn-
ostosis. Pankowsk�a et al. (2010) described this condi-
tion in a >4,500 year old adult female skeleton. The
oldest known case of craniosynostosis is that of a
500,000 years old Homo heidelbergensis child with a
unilateral lambdoid synostosis, found at Atapuerca,
Spain (Gracia et al., 2010). Syndromic craniosynosto-
sis, which is rarely encountered in an archeological
context, was described in a young adult 16th-19th
century female from Siena, Italy, who was diagnosed
with Crouzon syndrome (Giuffra et al., 2011).

Rather than closing prematurely, sutures that
should close at a certain age can remain open for lon-
ger or even throughout life. Partial or complete persis-
tence of the metopic suture beyond the first year of
life—known as metopism—is a well-known phenome-
non that has been extensively studied in numerous
dry bone collections, making this one of the very few
congenital conditions that is better known from the
archeological record and anatomical collections than
from living individuals. Its prevalence ranges from 1%
to 10% depending on the population investigated and
the definitions applied, without consistent gender dif-
ferences (Da Silva Ido et al., 2013). The condition
itself is harmless but it can co-occur with other more
serious affections including hydrocephalus (Baaten
et al., 2003), craniosynostosis (Giuffra et al., 2011),
and basilar impression (Oostra et al., 2005b), in which
cases metopic persistence could allow compensatory
expansion. It was argued in the past that metopism is
accompanied by agenesis of the frontal sinuses,
although several subsequent studies failed to confirm
this (reviewed by Marciniac and Nizankowski, 1959).
The oldest known case of metopism, although diag-
nostically disputed (Holloway et al., 2014), concerns
the 2.5 million year old skull of an Australopithecus
africanus child aged 3–4 years and found near Taung,
South-Africa (Hrdlicka, 1925). This ignited the idea
that persistence of the metopic suture well beyond
birth, as in modern humans and apparently in earlier
hominids but not in chimpanzees or gorillas (our clos-
est living relatives), reflects prolonged growth of the

frontal lobes and hence advanced cognitive develop-
ment (Falk et al., 2012).

Most variations in sutural morphology are found at
the back of the skull, for example the occipital bone,
which develops from several enchondral and intra-
membranous ossification centers. Four centers sur-
rounding the foramen magnum give rise to the
enchondrally ossifying basioccipital, left and right
exoccipital, and squamous supraoccipital bones (Sha-
piro and Robinson, 1976). The remainder of the squa-
mous part—the interparietal bone—develops from ten
paired intramembranous ossification centers (Srivas-
tava, 1992; Thanapaisal et al., 2013), although their
number seems to vary (Niida et al., 1992). Around
the beginning of the fetal period the first two ossifica-
tion centers, one on either side of the midline, appear
above the superior margin of the supra-occipital bone,
giving rise to the intermediate segment between the
future superior and highest nuchal lines (Srivastava,
1992). Subsequently, four sets of two centers each
arise above the intermediate segment, giving rise to a
lateral and a medial plate on either side of the mid-
line. Normally, the borders between these centers and
plates have disappeared by the end of the first trimes-
ter to form the interparietal bone sensu stricto, which
in its lateral aspects is still separated from the inter-
mediate segment (Srivastava, 1992). These lateral
fissures are usually obliterated by the end of the sec-
ond year (Shapiro and Robinson, 1976) but remnants
can persist into adulthood (Tubbs et al., 2007).

This pattern varies when borders between ossifica-
tion centers persist and subsequently give rise to
additional sutures. A well-known example is the men-
dosal suture, which results from persistence of the fis-
sure between the intermediate segment and the
lateral plates. When the latter are normally fused with
the medial plates a separate interparietal bone is
formed. However, since any of the eight centers in the
medial and lateral plates can either fuse or remain
separate from the rest and/or from the intermediate
segment, a vast number of bone and suture patterns
results, as vividly illustrated by e.g., Srivastava
(1992), Hanihara and Ishida (2001), and Thanapaisal
et al. (2013). Collectively, these variations are known
as Inca bones (ossa incae), since they were first
described in skulls originating from the indigenous
population of Peru (Rivero and Tschudy, 1851, cited
by Oetteking, 1930). Indeed, the prevalence of ossifi-
cation variations of the occipital bone differs markedly
among populations worldwide, ranging from <1% to
>10% (e.g., Hanihara and Ishida, 2001; Thanapaisal
et al., 2013), but the incidence among South Ameri-
can natives has been reported as high as 27%
(Garc�ıa-Hern�andez and Murphy-Echeverr�ıa, 2008).
Apart from the demographic differences, interparietal
bones seem to be more frequent in patients with cra-
niosynostoses (Wu et al., 2011).

The variations in ossification patterns as described
above, resulting in aberrant calvarial partitions, should
be differentiated from Wormian bones, which are
intrasutural (rather than intersutural) bones resulting
from supernumerary (rather than generic) ossification
centers. The presence of one or more Wormian bones,
ranging in size from less than a millimeter up to
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several centimeters, is so common, with prevalences
ranging from 55% to 80% (reviewed by Cirpan et al.,
2015), that it seems inappropriate to consider their
presence rather than their absence as an anatomical
variation. Wormian bones occur even more often in
combination with sutural conditions such as cranio-
synostosis (Sanchez-Lara et al., 2007) and metopism
(Cirpan et al., 2016). Since they are mostly found
within the lambdoid suture, co-occurrence with Inca
bones can lead to very complex patterns, especially
when the Wormian bones are formed not only in the
lambdoid but also in the additional sutures. The fact
that Wormian bones are associated with many other
conditions, including skeletal dysplasias such as oste-
ogenesis imperfecta (Fig. 1B) and Hajdu-Cheney syn-
drome, and also with postural and intentional skull
deformities, has led to the idea that their occurrence
is triggered by mechanical stress on the forming bone
tissue within the sutures in combination with an (epi)-
genetic predisposition (reviewed by Bellary et al.,
2013). This suggests that in certain cases, Wormian
bones touch the limits of what can still be called a
congenital and/or inherited condition rather than an
acquired one.

CONCLUSIONS AND PERSPECTIVE

Most congenital conditions, especially those that
are deleterious to the owner, have a low prevalence in
extant populations and even more so in the anthropo-
logical record. Nevertheless, as a group they occur in
a few percent of all live births and their occurrence
should be anticipated. Although it is therefore impor-
tant to recognize anomalies as deviant from normal
development, detailed knowledge of all these condi-
tions is of limited value in archeological and forensic
practice, considering their rarity. Specific diagnoses
can sometimes be made in collaboration with patholo-
gists, radiologists, and geneticists who have special-
ized expertise in developmental osteology.

On the other hand, some anatomical variations per-
taining to the skeleton have a high and population-
specific prevalence which, in selected situations, could
make them useful for determining ethnic origins. In
this respect, although outside the scope of this article,
creating a database of anatomical variations and their
specific occurrence and prevalence in populations and
geographical areas would be helpful for physical
anthropologists. In individual cases the presence of
specific congenital conditions could be determinative
in establishing identity, provided that ante mortem
registration of these conditions was ensured.
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